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résumé 135 further reading 136 exercises 138 references 139

10 Relativity for cyclists 143
10.1 Continuous symmetries 143
10.2 Symmetries of solutions 150
10.3 Stability 154
10.4 Reduced state space 155
10.5 Method of images: Hilbert bases 159
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C.8 Hénon map symmetries 531

further reading 531 exercises 531 references 533



Contributors

No man but a blockhead ever wrote except for money

—Samuel Johnson

This book is a result of collaborative labors of many people over a span of
several decades. Coauthors of a chapter or a section are indicated in the byline
to the chapter/section title. If you are referring to a specific coauthored section
rather than the entire book, cite it as (for example):

C. Chandre, F.K. Diakonos and P. Schmelcher, section “Discrete cyclist
relaxation method,” in P. Cvitanović, R. Artuso, R. Mainieri, G. Tan-
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If I have seen less far than other men it is because I have stood behind
giants.

—Edoardo Specchio

Rereading classic theoretical physics textbooks leaves a sense that there
are holes large enough to steam a Eurostar train through them. Here
we learn about harmonic oscillators and Keplerian ellipses - but where

is the chapter on chaotic oscillators, the tumbling Hyperion? We have just
quantized hydrogen, where is the chapter on the classical 3-body problem and
its implications for quantization of helium? We have learned that an instanton
is a solution of field-theoretic equations of motion, but shouldn’t a strongly
nonlinear field theory have turbulent solutions? How are we to think about
systems where things fall apart; the center cannot hold; every trajectory is
unstable?

This chapter offers a quick survey of the main topics covered in the book.
We start out by making promises–we will right wrongs, no longer shall you Throughout the book

indicates that the section is on
a pedestrian level - you are ex-
pected to know/learn this mate-
rial

indicates that the section is on a
somewhat advanced, cyclist level

indicates that the section requires
a hearty stomach and is probably
best skipped on first reading

fast track points you where to
skip to

tells you where to go for more
depth on a particular topic
[chapter 3] on margin links to a
related chapter
[exercise 1.2] on margin links to
an exercise that might clarify a
point in the text

indicates that a figure is still
missing–you are urged to fetch it

In the hyperlinked ChaosBook.pdf these
destinations are only a click away.

suffer the slings and arrows of outrageous Science of Perplexity. We relegate
a historical overview of the development of chaotic dynamics to Appendix 28,
and head straight to the starting line: A pinball game is used to motivate and
illustrate most of the concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you should be able to fol-
low the thread of the argument without constant excursions to sources. Hence
there are no literature references in the text proper, all learned remarks and
bibliographical pointers are relegated to the “Further reading” section at the
end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with science, we
acquire a firmer hold over the vicissitudes of life and meet them with
greater calm, but in reality we have done no more than to find a way
to escape from our sorrows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuccess-
ful) crack at the 3-body problem, lunar dynamics. Nature is rich in systems
governed by simple deterministic laws whose asymptotic dynamics are com-
plex beyond belief, systems which are locally unstable (almost) everywhere
but globally recurrent. How do we describe their long term dynamics?



2 CHAPTER 1. OVERTURE

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. It would hardly merit a learned treatise, were it not for the fact that
this determinant that we are to compute is fashioned out of infinitely many
infinitely small pieces. The feel is of statistical mechanics, and that is how
the problem was solved; in the 1960’s the pieces were counted, and in the
1970’s they were weighted and assembled in a fashion that in beauty and in
depth ranks along with thermodynamics, partition functions and path integrals
amongst the crown jewels of theoretical physics.

This book is not a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, short-time dynamically in-
variant compact sets (equilibria, periodic orbits, partially hyperbolic invariant
tori) and the global long-time evolution of densities of trajectories. Chaotic
dynamics is generated by the interplay of locally unstable motions, and the
interweaving of their global stable and unstable manifolds. These features are
robust and accessible in systems as noisy as slices of rat brains. Poincaré,
the first to understand deterministic chaos, already said as much (modulo rat
brains). Once this topology is understood, a powerful theory yields the ob-
servable consequences of chaotic dynamics, such as atomic spectra, transport
coefficients, gas pressures.

That is what we will focus on in ChaosBook. The book is a self-contained
graduate textbook on classical and quantum chaos. Your professor does not
know this material, so you are on your own. We will teach you how to evaluate
a determinant, take a logarithm–stuff like that. Ideally, this should take 100
pages or so. Well, we fail–so far we have not found a way to traverse this
material in less than a semester, or 200-300 page subset of this text. Nothing
to be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats: The Second Coming

The study of chaotic dynamics is no recent fashion. It did not start with the
widespread use of the personal computer. Chaotic systems have been studied
for over 200 years. During this time many have contributed, and the field fol-
lowed no single line of development; rather one sees many interwoven strands
of progress.

In retrospect many triumphs of both classical and quantum physics were a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though ‘non-generic,’ have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations–an
expectation tempered by our recently acquired ability to numerically scan the
state space of non-integrable dynamical systems. The initial impression might
be that all of our analytic tools have failed us, and that the chaotic systems
are amenable only to numerical and statistical investigations. Nevertheless,
a beautiful theory of deterministic chaos, of predictive quality comparable to
that of the traditional perturbation expansions for nearly integrable systems,
intro - 9apr2009 ChaosBook.org version13.5, Sep 7 2011



1.3. THE FUTURE AS IN A MIRROR 3

already exists.
In the traditional approach the integrable motions are used as zeroth-order

approximations to physical systems, and weak nonlinearities are then accounted
for perturbatively. For strongly nonlinear, non-integrable systems such expan-
sions fail completely; at asymptotic times the dynamics exhibits amazingly
rich structure which is not at all apparent in the integrable approximations.
However, hidden in this apparent chaos is a rigid skeleton, a self-similar tree
of cycles (periodic orbits) of increasing lengths. The insight of the modern dy-
namical systems theory is that the zeroth-order approximations to the harshly
chaotic dynamics should be very different from those for the nearly integrable
systems: a good starting approximation here is the stretching and folding of
baker’s dough, rather than the periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling
for how and why unstable cycles come about, we start by playing a game
of pinball. The reminder of the chapter is a quick tour through the material
covered in ChaosBook. Do not worry if you do not understand every detail at
the first reading–the intention is to give you a feeling for the main themes of
the book. Details will be filled out later. If you want to get a particular point

section 1.4
clarified right now, [section 1.4] on the margin points at the appropriate section.

1.3 The future as in a mirror

All you need to know about chaos is contained in the introduction of
[ChaosBook]. However, in order to understand the introduction you
will first have to read the rest of the book.

—Gary Morriss

Fig. 1.1 A physicist’s bare bones game of
pinball.

That deterministic dynamics leads to chaos is no surprise to anyone who has
tried pool, billiards or snooker–the game is about beating chaos–so we start
our story about what chaos is, and what to do about it, with a game of pinball.
This might seem a trifle, but the game of pinball is to chaotic dynamics what
a pendulum is to integrable systems: thinking clearly about what ‘chaos’ in a
game of pinball is will help us tackle more difficult problems, such as com-
puting the diffusion constant of a deterministic gas, the drag coefficient of a
turbulent boundary layer, or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among
the pinball machine’s disks, and only high-school level Euclidean geometry
is needed to describe its trajectory. A physicist’s pinball game is the game
of pinball stripped to its bare essentials: three equidistantly placed reflecting
disks in a plane, Fig. 1.1. A physicist’s pinball is free, frictionless, point-
like, spin-less, perfectly elastic, and noiseless. Point-like pinballs are shot at
the disks from random starting positions and angles; they spend some time
bouncing between the disks and then escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz was
confident that given the initial conditions one knew everything a deterministic
system would do far into the future. He wrote [1.2], anticipating by a century
and a half the oft-quoted Laplace’s “Given for one instant an intelligence which
ChaosBook.org version13.5, Sep 7 2011 intro - 9apr2009
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could comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is just
as certain as that three times three is nine. [. . . ] If, for example, one

1

2

3

23132321

2313

Fig. 1.2 Sensitivity to initial conditions: two
pinballs that start out very close to each other
separate exponentially with time.

sphere meets another sphere in free space and if their sizes and their paths
and directions before collision are known, we can then foretell and cal-
culate how they will rebound and what course they will take after the
impact. Very simple laws are followed which also apply, no matter how
many spheres are taken or whether objects are taken other than spheres.
From this one sees then that everything proceeds mathematically–that is,
infallibly–in the whole wide world, so that if someone could have a suf-
ficient insight into the inner parts of things, and in addition had remem-
brance and intelligence enough to consider all the circumstances and to
take them into account, he would be a prophet and would see the future
in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of
physical system that we shall use here as a paradigm of ‘chaos.’ His claim
is wrong in a deep and subtle way: a state of a physical system can never
be specified to infinite precision, and by this we do not mean that eventually
the Heisenberg uncertainty principle kicks in. In the classical, deterministic
dynamics there is no way to take all the circumstances into account, and a
single trajectory cannot be tracked, only a ball of nearby initial points makes
physical sense. 11 ‘Stochastic’ is derived from Greek ‘sto-

chos,’ meaning a target, as in shooting arrows
at a target, and not always hitting it; targeted
flow, with a small component of uncertainty.
Today it stands for deterministic drift + dif-
fusion. ‘Random’ stands for pure diffusion,
with a Gaussian profile. ‘Probabilistic’ might
have a distribution other than a Gaussian one.
Boltzmann’s ‘Ergodic’ refers to the determin-
istic microscopic dynamics of many colliding
molecules. ‘Chaotic’ is the same thing, but
usually for a few degrees of freedom.

1.3.1 What is ‘chaos’?

I accept chaos. I am not sure that it accepts me.
—Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully
determined by its initial conditions.

In contrast, radioactive decay, Brownian motion and heat flow are examples
of stochastic systems, for which the initial conditions determine the future only
partially, due to noise, or other external circumstances beyond our control: the
present state reflects the past initial conditions plus the particular realization of
the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling the deterministic from the
stochastic is the main challenge in many real-life settings, from stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?

  x(0)δ

  x(t)δ

x(t)x(0)

Fig. 1.3 Unstable trajectories separate with
time.

In a game of pinball, any two trajectories that start out very close to each
other separate exponentially with time, and in a finite (and in practice, a very
small) number of bounces their separation δx(t) attains the magnitude of L,
the characteristic linear extent of the whole system, Fig. 1.2. This property of
sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt|δx(0)|

where λ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracy δx = |δx(0)| of the initial data, the

section 17.3
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1.3. THE FUTURE AS IN A MIRROR 5

dynamics is predictable only up to a finite Lyapunov time

TLyap ≈ −
1
λ

ln |δx/L| , (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that
rule the pinball motion.

(a)

(b)

Fig. 1.4 Dynamics of a chaotic dynami-
cal system is (a) everywhere locally unstable
(positive Lyapunov exponent) and (b) glob-
ally mixing (positive entropy). (A. Jo-
hansen)

A positive Lyapunov exponent does not in itself lead to chaos. One could
try to play 1- or 2-disk pinball game, but it would not be much of a game;
trajectories would only separate, never to meet again. What is also needed is
mixing, the coming together again and again of trajectories. While locally the
nearby trajectories separate, the interesting dynamics is confined to a globally
finite region of the state space and thus the separated trajectories are neces-
sarily folded back and can re-approach each other arbitrarily closely, infinitely
many times. For the case at hand there are 2n topologically distinct n bounce
trajectories that originate from a given disk. More generally, the number of
distinct trajectories with n bounces can be quantified as

section 15.1

N(n) ≈ ehn

where h, the growth rate of the number of topologically distinct trajectories, is
called the “topological entropy” (h = ln 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in deterministic dynam-
ics there is no chaos in the everyday sense of the word; everything proceeds
mathematically–that is, as Baron Leibniz would have it, infallibly. When a
physicist says that a certain system exhibits ‘chaos,’ he means that the system
obeys deterministic laws of evolution, but that the outcome is highly sensitive
to small uncertainties in the specification of the initial state. The word ‘chaos’
has in this context taken on a narrow technical meaning. If a deterministic
system is locally unstable (positive Lyapunov exponent) and globally mixing
(positive entropy)–Fig. 1.4–it is said to be chaotic.

While mathematically correct, the definition of chaos as ‘positive Lyapunov
+ positive entropy’ is useless in practice, as a measurement of these quantities
is intrinsically asymptotic and beyond reach for systems observed in nature.
More powerful is Poincaré’s vision of chaos as the interplay of local instability
(unstable periodic orbits) and global mixing (intertwining of their stable and
unstable manifolds).2 In a chaotic system any open ball of initial conditions, 2 We owe the appellation “chaos”–as well

as several other dynamics catchwords–to J.
Yorke who in 1973 entitled a paper [1.3] that
he wrote with T. Li “Period 3 implies chaos”.

no matter how small, will in finite time overlap with any other finite region
and in this sense spread over the extent of the entire asymptotically accessible
state space. Once this is grasped, the focus of theory shifts from attempting
to predict individual trajectories (which is impossible) to a description of the
geometry of the space of possible outcomes, and evaluation of averages over
this space. How this is accomplished is what ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Can you recognize
turbulence when you see it? The word comes from ‘tourbillon,’ French for
‘vortex,’ and intuitively it refers to irregular behavior of an infinite-dimens-
ional dynamical system described by deterministic equations of motion–say,
a bucket of sloshing water described by the Navier-Stokes equations. But in
practice the word ‘turbulence’ tends to refer to messy dynamics which we un-
derstand poorly. As soon as a phenomenon is understood better, it is reclaimed
and renamed: ‘a route to chaos’, ‘spatiotemporal chaos’, and so on.
ChaosBook.org version13.5, Sep 7 2011 intro - 9apr2009



6 CHAPTER 1. OVERTURE

In ChaosBook we shall develop a theory of chaotic dynamics for low dim-
ensional attractors visualized as a succession of nearly periodic but unstable
motions. In the same spirit, we shall think of turbulence in spatially extended
systems in terms of recurrent spatiotemporal patterns. Pictorially, dynamics
drives a given spatially extended system (clouds, say) through a repertoire of
unstable patterns; as we watch a turbulent system evolve, every so often we
catch a glimpse of a familiar pattern:

=⇒ other swirls =⇒

For any finite spatial resolution, a deterministic flow follows approximately
for a finite time an unstable pattern belonging to a finite alphabet of admissible
patterns, and the long term dynamics can be thought of as a walk through the
space of such patterns. In ChaosBook we recast this image into mathematics.

1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited magnification
range, Jones-Smith and Mathur would also dismiss half the published
investigations of physical fractals.

— Richard P. Taylor [1.4, 5]

When should we be mindful of chaos? The solar system is ‘chaotic’, yet
we have no trouble keeping track of the annual motions of planets. The rule
of thumb is this; if the Lyapunov time (1.1)–the time by which a state space
region initially comparable in size to the observational accuracy extends across
the entire accessible state space–is significantly shorter than the observational
time, you need to master the theory that will be developed here. That is
why the main successes of the theory are in statistical mechanics, quantum
mechanics, and questions of long term stability in celestial mechanics.

In science popularizations too much has been made of the impact of ‘chaos
theory,’ so a number of caveats are already needed at this point.

At present the theory that will be developed here is in practice applicable
only to systems of a low intrinsic dimension – the minimum number of co-
ordinates necessary to capture its essential dynamics. If the system is very
turbulent (a description of its long time dynamics requires a space of high in-
trinsic dimension) we are out of luck. Hence insights that the theory offers
in elucidating problems of fully developed turbulence, quantum field theory of
strong interactions and early cosmology have been modest at best. Even that is
a caveat with qualifications. There are applications–such as spatially extended
(non-equilibrium) systems, plumber’s turbulent pipes, etc.,–where the few im-
portant degrees of freedom can be isolated and studied profitably by methods
to be described here.

Thus far the theory has had limited practical success when applied to the
very noisy systems so important in the life sciences and in economics. Even
though we are often interested in phenomena taking place on time scales much
intro - 9apr2009 ChaosBook.org version13.5, Sep 7 2011



1.4. A GAME OF PINBALL 7

longer than the intrinsic time scale (neuronal inter-burst intervals, cardiac pulses,
etc.), disentangling ‘chaotic’ motions from the environmental noise has been
very hard.

In 1980’s something happened that might be without parallel; this is an
area of science where the advent of cheap computation had actually subtracted
from our collective understanding. The computer pictures and numerical plots
of fractal science of the 1980’s have overshadowed the deep insights of the
1970’s, and these pictures have since migrated into textbooks. By a re-

Fig. 1.5 Katherine Jones-Smith, ‘Untitled
5,’ the drawing used by K. Jones-Smith and
R.P. Taylor to test the fractal analysis of Pol-
lock’s drip paintings [1.6].

grettable oversight, ChaosBook has none, so ‘Untitled 5’ of Fig. 1.5 will have
to do as the illustration of the power of fractal analysis. Fractal science posits

remark 1.6

that certain quantities (Lyapunov exponents, generalized dimensions, . . . ) can
be estimated on a computer. While some of the numbers so obtained are in-
deed mathematically sensible characterizations of fractals, they are in no sense
observable and measurable on the length-scales and time-scales dominated by
chaotic dynamics.

Even though the experimental evidence for the fractal geometry of nature
is circumstantial [1.7], in studies of probabilistically assembled fractal aggre-
gates we know of nothing better than contemplating such quantities. In deter-
ministic systems we can do much better.

1.4 A game of pinball

Formulas hamper the understanding.

—S. Smale

We are now going to get down to the brass tacks. Time to fasten your seat
belts and turn off all electronic devices. But first, a disclaimer: If you under-
stand the rest of this chapter on the first reading, you either do not need this
book, or you are delusional. If you do not understand it, it is not because the
people who figured all this out first are smarter than you: the most you can
hope for at this stage is to get a flavor of what lies ahead. If a statement in this
chapter mystifies/intrigues, fast forward to a section indicated by [section ...]
on the margin, read only the parts that you feel you need. Of course, we think
that you need to learn ALL of it, or otherwise we would not have included it
in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical system, our analysis pro-
ceeds in three stages; I. diagnose, II. count, III. measure. First, we determine
the intrinsic dimension of the system–the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent we are,
at present, out of luck. We know only how to deal with the transitional regime
between regular motions and chaotic dynamics in a few dimensions. That is
still something; even an infinite-dimensional system such as a burning flame
front can turn out to have a very few chaotic degrees of freedom. In this regime
the chaotic dynamics is restricted to a space of low dimension, the number of
relevant parameters is small, and we can proceed to step II; we count and clas-

chapter 11

chapter 15
sify all possible topologically distinct trajectories of the system into a hierarchy
whose successive layers require increased precision and patience on the part of
ChaosBook.org version13.5, Sep 7 2011 intro - 9apr2009



8 CHAPTER 1. OVERTURE

the observer. This we shall do in Section 1.4.2. If successful, we can proceed
with step III: investigate the weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step III–measure–in Section 1.5. The three sections

chapter 20
that follow are highly technical, they go into the guts of what the book is about.
Is today is not your thinking day, skip them, jump straight to Section 1.7.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck–it is a low dimensional system, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the
three disks by 1, 2 and 3, we can associate every trajectory with an itinerary,
a sequence of labels indicating the order in which the disks are visited; for
example, the two trajectories in Fig. 1.2 have itineraries 2313 , 23132321
respectively. Such labeling goes by the name symbolic dynamics. As the

exercise 1.1
section 2.1 particle cannot collide two times in succession with the same disk, any two

consecutive symbols must differ. This is an example of pruning, a rule that
forbids certain subsequences of symbols. Deriving pruning rules is in general a
difficult problem, but with the game of pinball we are lucky–for well-separated
disks there are no further pruning rules.

chapter 12

Fig. 1.6 Binary labeling of the 3-disk pinball
trajectories; a bounce in which the trajectory
returns to the preceding disk is labeled 0, and
a bounce which results in continuation to the
third disk is labeled 1.

The choice of symbols is in no sense unique. For example, as at each bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary {0, 1} alphabet, Fig. 1.6. A clever
choice of an alphabet will incorporate important features of the dynamics, such
as its symmetries.

section 11.6

Suppose you wanted to play a good game of pinball, that is, get the pinball to
bounce as many times as you possibly can–what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks–if you managed to shoot it so it starts out in the periodic
orbit bouncing along the line connecting two disk centers, it would stay there
forever. Your game would be just as good if you managed to get it to keep
bouncing between the three disks forever, or place it on any periodic orbit. The
only rub is that any such orbit is unstable, so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear that if one is interested
in playing well, unstable periodic orbits are important–they form the skeleton
onto which all trajectories trapped for long times cling.

Fig. 1.7 The 3-disk pinball cycles 1232 and
121212313.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum.
We shall sometimes refer to the set of periodic points that belong to a given
periodic orbit as a cycle.

Short periodic orbits are easily drawn and enumerated–an example is drawn
in Fig. 1.7–but it is rather hard to perceive the systematics of orbits from their
configuration space shapes. In mechanics a trajectory is fully and uniquely
specified by its position and momentum at a given instant, and no two dis-
tinct state space trajectories can intersect. Their projections onto arbitrary sub-
intro - 9apr2009 ChaosBook.org version13.5, Sep 7 2011



1.4. A GAME OF PINBALL 9

spaces, however, can and do intersect, in rather unilluminating ways. In the
pinball example the problem is that we are looking at the projections of a 4−d
state space trajectories onto a 2−d subspace, the configuration space. A

Fig. 1.8 (a) A trajectory starting out from
disk 1 can either hit another disk or escape.
(b) Hitting two disks in a sequence requires a
much sharper aim, with initial conditions that
hit further consecutive disks nested within
each other, as in Fig. 1.9.

clearer picture of the dynamics is obtained by constructing a set of state space
Poincaré sections.

Suppose that the pinball has just bounced off disk 1. Depending on its po-
sition and outgoing angle, it could proceed to either disk 2 or 3. Not much
happens in between the bounces–the ball just travels at constant velocity along
a straight line–so we can reduce the 4−d flow to a 2−d map P that takes the
coordinates of the pinball from one disk edge to another disk edge. The trajec-
tory just after the moment of impact is defined by sn, the arc-length position of
the nth bounce along the billiard wall, and pn = p sinφn the momentum com-
ponent parallel to the billiard wall at the point of impact, see Fig. 1.9. Such
section of a flow is called a Poincaré section. In terms of Poincaré sections,

example 3.2the dynamics is reduced to the set of six maps P sk←s j : (sn, pn) �→ (sn+1, pn+1),
with s ∈ {1, 2, 3}, from the boundary of the disk j to the boundary of the next
disk k.

chapter 8
Next, we mark in the Poincaré section those initial conditions which do not

escape in one bounce.

(a)
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Fig. 1.9 The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk
1 with x0 = (s0 , p0) . (a) Strips of initial
points M12, M13 which reach disks 2, 3 in
one bounce, respectively. (b) Strips of initial
points M121, M131 M132 and M123 which
reach disks 1, 2, 3 in two bounces, respec-
tively. Disk radius : center separation ratio
a:R = 1:2.5. (Y. Lan)

There are two strips of survivors, as the trajectories originating from one
disk can hit either of the other two disks, or escape without further ado. We
label the two strips M12, M13. Embedded within them there are four strips
M121,M123,M131,M132 of initial conditions that survive for two bounces, and
so forth, see Figs. 1.8 and 1.9. Provided that the disks are sufficiently separated,
after n bounces the survivors are divided into 2 n distinct strips: theMith strip
consists of all points with itinerary i = s1s2 s3 . . . sn, s = {1, 2, 3}. The unstable
cycles as a skeleton of chaos are almost visible here: each such patch contains
a periodic point s1 s2 s3 . . . sn with the basic block infinitely repeated. Periodic
points are skeletal in the sense that as we look further and further, the strips
shrink but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a nav-
igation chart through chaotic state space. There exists a unique trajectory for
every admissible infinite length itinerary, and a unique itinerary labels every
trapped trajectory. For example, the only trajectory labeled by 12 is the 2-
cycle bouncing along the line connecting the centers of disks 1 and 2; any
other trajectory starting out as 12 . . . either eventually escapes or hits the 3rd
disk.

1.4.3 Escape rate

example 17.4

What is a good physical quantity to compute for the game of pinball? Such a
system, for which almost any trajectory eventually leaves a finite region (the
pinball table) never to return, is said to be open, or a repeller. The repeller
escape rate is an eminently measurable quantity. An example of such a mea-
surement would be an unstable molecular or nuclear state which can be well
approximated by a classical potential with the possibility of escape in certain
directions. In an experiment many projectiles are injected into a macroscopic
‘black box’ enclosing a microscopic non-confining short-range potential, and
their mean escape rate is measured, as in Fig. 1.1. The numerical experiment
ChaosBook.org version13.5, Sep 7 2011 intro - 9apr2009



10 CHAPTER 1. OVERTURE

might consist of injecting the pinball between the disks in some random direc-
tion and asking how many times the pinball bounces on the average before it
escapes the region between the disks.

exercise 1.2
For a theorist, a good game of pinball consists in predicting accurately the

asymptotic lifetime (or the escape rate) of the pinball. We now show how
periodic orbit theory accomplishes this for us. Each step will be so simple that
you can follow even at the cursory pace of this overview, and still the result is
surprisingly elegant.

Consider Fig. 1.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previous bounce. The total
area that remains at a given time is the sum of the areas of the strips, so that the
fraction of survivors after n bounces, or the survival probability is given by

Γ̂1 =
|M0|
|M|

+
|M1|
|M|

, Γ̂2 =
|M00|
|M|

+
|M10|
|M|

+
|M01|
|M|

+
|M11|
|M|

,

Γ̂n =
1
|M|

(n)∑
i

|Mi| , (1.2)

where i is a label of the ith strip, |M| is the initial area, and |M i| is the area
of the ith strip of survivors. i = 01, 10, 11, . . . is a label, not a binary number.
Since at each bounce one routinely loses about the same fraction of trajectories,
one expects the sum (1.2) to fall off exponentially with n and tend to the limit

chapter 22

Γ̂n+1/Γ̂n = e−γn → e−γ. (1.3)

The quantity γ is called the escape rate from the repeller.

1.5 Chaos for cyclists

Étant données des équations ... et une solution particuliére quel-
conque de ces équations, on peut toujours trouver une solution pé-
riodique (dont la période peut, il est vrai, étre trés longue), telle que la
différence entre les deux solutions soit aussi petite qu’on le veut, pen-
dant un temps aussi long qu’on le veut. D’ailleurs, ce qui nous rend
ces solutions périodiques si précieuses, c’est qu’elles sont, pour ansi
dire, la seule bréche par où nous puissions esseyer de pénétrer dans
une place jusqu’ici réputée inabordable.

—H. Poincaré, Les méthodes nouvelles de la méchanique céleste

We shall now show that the escape rate γ can be extracted from a highly con-
vergent exact expansion by reformulating the sum (1.2) in terms of unstable
periodic orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape
rate is roughly γ = 0.4103384077693464893384613078192 . . ., you do not
need this book. If you have no clue, hang on.
intro - 9apr2009 ChaosBook.org version13.5, Sep 7 2011



1.5. CHAOS FOR CYCLISTS 11

1.5.1 How big is my neighborhood?

Not only do the periodic points keep track of topological ordering of the strips,
but, as we shall now show, they also determine their size. As a trajectory
evolves, it carries along and distorts its infinitesimal neighborhood. Let

x(t) = f t(x0)

denote the trajectory of an initial point x0 = x(0). Expanding f t(x0 + δx0)
to linear order, the evolution of the distance to a neighboring trajectory x i(t) +
δxi(t) is given by the Jacobian matrix J:

δxi(t) =
d∑

j=1

Jt(x0)i jδx0 j , Jt(x0)i j =
∂xi(t)
∂x0 j

. (1.4)

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this case d = 3. Evaluation of
a cycle Jacobian matrix is a long exercise - here we just state the result. The

section 8.2
Jacobian matrix describes the deformation of an infinitesimal neighborhood of
x(t) along the flow; its eigenvectors and eigenvalues give the directions and the
corresponding rates of expansion or contraction, Fig. 1.10. The trajectories that
start out in an infinitesimal neighborhood separate along the unstable directions
(those whose eigenvalues are greater than unity in magnitude), approach each
other along the stable directions (those whose eigenvalues are less than unity
in magnitude), and maintain their distance along the marginal directions (those
whose eigenvalues equal unity in magnitude).

δ  x(t) = J tδ  x(0)

  x(0)δ

x(0)

x(t)

Fig. 1.10 The Jacobian matrix Jt maps an
infinitesimal displacement δx at x0 into a dis-
placement Jt(x0)δx finite time t later.

In our game of pinball the beam of neighboring trajectories is defocused
along the unstable eigen-direction of the Jacobian matrix J.

As the heights of the strips in Fig. 1.9 are effectively constant, we can con-
centrate on their thickness. If the height is ≈ L, then the area of the ith strip is
Mi ≈ Lli for a strip of width li.

Each strip i in Fig. 1.9 contains a periodic point x i. The finer the intervals,
the smaller the variation in flow across them, so the contribution from the strip
of width li is well-approximated by the contraction around the periodic point
xi within the interval,

li = ai/|Λi| , (1.5)

where Λi is the unstable eigenvalue of the Jacobian matrix J t(xi) evaluated at
the ith periodic point for t = T p, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). Only the magnitude of
this eigenvalue matters, we can disregard its sign. The prefactors a i reflect the
overall size of the system and the particular distribution of starting values of
x. As the asymptotic trajectories are strongly mixed by bouncing chaotically
around the repeller, we expect their distribution to be insensitive to smooth
variations in the distribution of initial points.

section 16.4
To proceed with the derivation we need the hyperbolicity assumption: for

large n the prefactors ai ≈ O(1) are overwhelmed by the exponential growth
of Λi, so we neglect them. If the hyperbolicity assumption is justified, we can

section 18.1.1
ChaosBook.org version13.5, Sep 7 2011 intro - 9apr2009



12 CHAPTER 1. OVERTURE

replace |Mi| ≈ Lli in (1.2) by 1/|Λi| and consider the sum

Γn =

(n)∑
i

1/|Λi| ,

where the sum goes over all periodic points of period n. We now define a
generating function for sums over all periodic orbits of all lengths:

Γ(z) =
∞∑

n=1

Γnzn . (1.6)

Recall that for large n the nth level sum (1.2) tends to the limit Γ n → e−nγ, so
the escape rate γ is determined by the smallest z = eγ for which (1.6) diverges:

Γ(z) ≈
∞∑

n=1

(ze−γ)n
=

ze−γ

1 − ze−γ
. (1.7)

This is the property of Γ(z) that motivated its definition. Next, we devise a
formula for (1.6) expressing the escape rate in terms of periodic orbits:

Γ(z) =

∞∑
n=1

zn
(n)∑
i

|Λi|−1

=
z
|Λ0|
+

z
|Λ1|
+

z2

|Λ00|
+

z2

|Λ01|
+

z2

|Λ10|
+

z2

|Λ11|

+
z3

|Λ000|
+

z3

|Λ001|
+

z3

|Λ010|
+

z3

|Λ100|
+ . . . (1.8)

For sufficiently small z this sum is convergent. The escape rate γ is now
section 18.3

given by the leading pole of (1.7), rather than by a numerical extrapolation of
a sequence of γn extracted from (1.3). As any finite truncation n < n trunc of
(1.8) is a polynomial in z, convergent for any z, finding this pole requires that
we know something about Γn for any n, and that might be a tall order.

We could now proceed to estimate the location of the leading singularity of
Γ(z) from finite truncations of (1.8) by methods such as Padé approximants.
However, as we shall now show, it pays to first perform a simple resummation
that converts this divergence into a zero of a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is Λ r
p.

A prime cycle p is a single traversal of the orbit; its label is a non-repeating
symbol string of np symbols. There is only one prime cycle for each cyclic
permutation class. For example, p = 0011 = 1001 = 1100 = 0110 is prime, but
0101 = 01 is not. By the chain rule for derivatives the stability of a cycle is the

exercise 15.2
section 4.5 same everywhere along the orbit, so each prime cycle of length n p contributes

np terms to the sum (1.8). Hence (1.8) can be rewritten as

Γ(z) =
∑

p

np

∞∑
r=1

(
znp

|Λp|

)r

=
∑

p

nptp

1 − tp
, tp =

znp

|Λp|
(1.9)

intro - 9apr2009 ChaosBook.org version13.5, Sep 7 2011



1.5. CHAOS FOR CYCLISTS 13

where the index p runs through all distinct prime cycles. Note that we have
resummed the contribution of the cycle p to all times, so truncating the sum-
mation up to given p is not a finite time n ≤ n p approximation, but an asymp-
totic, infinite time estimate based by approximating stabilities of all cycles by
a finite number of the shortest cycles and their repeats. The n pznp factors in
(1.9) suggest rewriting the sum as a derivative

Γ(z) = −z
d
dz

∑
p

ln(1 − tp) .

Hence Γ(z) is a logarithmic derivative of the infinite product

1/ζ(z) =
∏

p

(1 − tp) , tp =
znp

|Λp|
. (1.10)

This function is called the dynamical zeta function, in analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definition as 1/ζ(z). This is the
prototype formula of periodic orbit theory. The zero of 1/ζ(z) is a pole of Γ(z),
and the problem of estimating the asymptotic escape rates from finite n sums
such as (1.2) is now reduced to a study of the zeros of the dynamical zeta func-
tion (1.10). The escape rate is related by (1.7) to a divergence of Γ(z), and Γ(z)

section 22.1
diverges whenever 1/ζ(z) has a zero.

section 19.4
Easy, you say: “Zeros of (1.10) can be read off the formula, a zero

zp = |Λp|1/np

for each term in the product. What’s the problem?” Dead wrong!

1.5.3 Cycle expansions

How are formulas such as (1.10) used? We start by computing the lengths
and eigenvalues of the shortest cycles. This usually requires some numerical
work, such as the Newton method searches for periodic solutions; we shall
assume that the numerics are under control, and that all short cycles up to given
length have been found. In our pinball example this can be done by elementary

chapter 13
geometrical optics. It is very important not to miss any short cycles, as the
calculation is as accurate as the shortest cycle dropped–including cycles longer
than the shortest omitted does not improve the accuracy (unless exponentially
many more cycles are included). The result of such numerics is a table of the
shortest cycles, their periods and their stabilities.

section 27.3
Now expand the infinite product (1.10), grouping together the terms of the

same total symbol string length

1/ζ = (1 − t0)(1 − t1)(1 − t10)(1 − t100) · · ·
= 1 − t0 − t1 − [t10 − t1t0] − [(t100 − t10t0) + (t101 − t10t1)]

−[(t1000 − t0t100) + (t1110 − t1t110)

+(t1001 − t1t001 − t101t0 + t10t0t1)] − . . . (1.11)

The virtue of the expansion is that the sum of all terms of the same total length
chapter 20
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14 CHAPTER 1. OVERTURE

n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section.

section 20.1
The calculation is now straightforward. We substitute a finite set of the

eigenvalues and lengths of the shortest prime cycles into the cycle expansion
(1.11), and obtain a polynomial approximation to 1/ζ. We then vary z in (1.10)
and determine the escape rate γ by finding the smallest z = eγ for which (1.11)
vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you will find out that the
convergence is very impressive: only three input numbers (the two fixed points
0, 1 and the 2-cycle 10) already yield the pinball escape rate to 3-4 significant
digits! We have omitted an infinity of unstable cycles; so why does approxi-

section 20.2.2
mating the dynamics by a finite number of the shortest cycle eigenvalues work
so well?

Fig. 1.11 Approximation to a smooth dynam-
ics (left frame) by the skeleton of periodic
points, together with their linearized neigh-
borhoods, (right frame). Indicated are seg-
ments of two 1-cycles and a 2-cycle that alter-
nates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-
cycles, and then the other.

The convergence of cycle expansions of dynamical zeta functions is a con-
sequence of the smoothness and analyticity of the underlying flow. Intu-
itively, one can understand the convergence in terms of the geometrical picture
sketched in Fig. 1.11; the key observation is that the long orbits are shadowed
by sequences of shorter orbits.

A typical term in (1.11) is a difference of a long cycle {ab} minus its shad-
owing approximation by shorter cycles {a} and {b}

tab − tatb = tab(1 − tatb/tab) = tab

(
1 −

∣∣∣∣∣ Λab

ΛaΛb

∣∣∣∣∣) , (1.12)

where a and b are symbol sequences of the two shorter cycles. If all orbits are
weighted equally (tp = znp ), such combinations cancel exactly; if orbits of sim-
ilar symbolic dynamics have similar weights, the weights in such combinations
almost cancel.

This can be understood in the context of the pinball game as follows. Con-
sider orbits 0, 1 and 01. The first corresponds to bouncing between any two
disks while the second corresponds to bouncing successively around all three,
tracing out an equilateral triangle. The cycle 01 starts at one disk, say disk 2.
It then bounces from disk 3 back to disk 2 then bounces from disk 1 back to
disk 2 and so on, so its itinerary is 2321. In terms of the bounce types shown in
Fig. 1.6, the trajectory is alternating between 0 and 1. The incoming and outgo-
ing angles when it executes these bounces are very close to the corresponding
angles for 0 and 1 cycles. Also the distances traversed between bounces are
similar so that the 2-cycle expanding eigenvalue Λ 01 is close in magnitude to
the product of the 1-cycle eigenvalues Λ0Λ1.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s state space in terms of cycle neighborhoods as
a tessellation (a tiling) of the dynamical system, with smooth flow approxi-
mated by its periodic orbit skeleton, each ‘tile’ centered on a periodic point,
and the scale of the ‘tile’ determined by the linearization of the flow around
the periodic point, as illustrated by Fig. 1.11.
intro - 9apr2009 ChaosBook.org version13.5, Sep 7 2011



1.6. CHANGE IN TIME 15

The orbits that follow the same symbolic dynamics, such as {ab} and a
‘pseudo orbit’ {a}{b}, lie close to each other in state space; long shadowing
pairs have to start out exponentially close to beat the exponential growth in
separation with time. If the weights associated with the orbits are multiplica-
tive along the flow (for example, by the chain rule for products of derivatives)
and the flow is smooth, the term in parenthesis in (1.12) falls off exponentially
with the cycle length, and therefore the curvature expansions are expected to
be highly convergent.

chapter 23

1.6 Change in time

The above derivation of the dynamical zeta function formula for the escape
rate has one shortcoming; it estimates the fraction of survivors as a function
of the number of pinball bounces, but the physically interesting quantity is
the escape rate measured in units of continuous time. For continuous time
flows, the escape rate (1.2) is generalized as follows. Define a finite state space
regionM such that a trajectory that exitsM never reenters. For example, any
pinball that falls of the edge of a pinball table in Fig. 1.1 is gone forever. Start
with a uniform distribution of initial points. The fraction of initial x whose
trajectories remain withinM at time t is expected to decay exponentially

Γ(t) =

∫
M dxdy δ(y − f t(x))∫

M dx
→ e−γt .

The integral over x starts a trajectory at every x ∈ M. The integral over y tests
whether this trajectory is still inM at time t. The kernel of this integral

Lt(y, x) = δ
(
y − f t(x)

)
(1.13)

is the Dirac delta function, as for a deterministic flow the initial point x maps
into a unique point y at time t. For discrete time, f n(x) is the nth iterate of the
map f . For continuous flows, f t(x) is the trajectory of the initial point x, and it
is appropriate to express the finite time kernel L t in terms of A, the generator
of infinitesimal time translations

Lt = etA ,

very much in the way the quantum evolution is generated by the Hamiltonian
section 16.6

H, the generator of infinitesimal time quantum transformations.
As the kernelL is the key to everything that follows, we shall give it a name,

and refer to it and its generalizations as the evolution operator for a d-dimens-
ional map or a d-dimensional flow. 3 3 If you are still in Kansas, please place a

sticker with words “change in time” over the
offending word, whenever you encounter it.
ChaosBook expands, indeed, upon a theory,
not a fact.

The number of periodic points increases exponentially with the cycle length
(in the case at hand, as 2n). As we have already seen, this exponential prolifer-
ation of cycles is not as dangerous as it might seem; as a matter of fact, all our
computations will be carried out in the n → ∞ limit. Though a quick look at
long-time density of trajectories might reveal it to be complex beyond belief,
this distribution is still generated by a simple deterministic law, and with some
luck and insight, our labeling of possible motions will reflect this simplicity.
ChaosBook.org version13.5, Sep 7 2011 intro - 9apr2009
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If the rule that gets us from one level of the classification hierarchy to the next
does not depend strongly on the level, the resulting hierarchy is approximately
self-similar. We now turn such approximate self-similarity to our advantage,
by turning it into an operation, the action of the evolution operator, whose
iteration encodes the self-similarity.

1.6.1 Trace formula

In physics, when we do not understand something, we give it a name.

—Matthias Neubert

Recasting dynamics in terms of evolution operators changes everything. So
far our formulation has been heuristic, but in the evolution operator formalism
the escape rate and any other dynamical average are given by exact formu-
las, extracted from the spectra of evolution operators. The key tools are trace
formulas and spectral determinants.

Fig. 1.12 The trace of an evolution operator
is concentrated in tubes around prime cycles,
of length Tp and thickness 1/|Λp |r for the rth
repetition of the prime cycle p.

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.13) forL t(x, y) enables us to evaluate the trace. Identify y with x
and integrate x over the whole state space. The result is an expression for trL t

as a sum over neighborhoods of prime cycles p and their repetitions

section 18.2

trLt =
∑

p

Tp

∞∑
r=1

δ(t − rTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (1.14)

where T p is the period of prime cycle p, and the monodromy matrix M p is
the flow-transverse part of Jacobian matrix J (1.4). This formula has a sim-
ple geometrical interpretation sketched in Fig. 1.12. After the rth return to
a Poincaré section, the initial tube M p has been stretched out along the ex-
panding eigen-directions, with the overlap with the initial volume given by
1/

∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ → 1/|Λp|, the same weight we obtained heuristically in Sec-
tion 1.5.1.

The ‘spiky’ sum (1.14) is disquieting in the way reminiscent of the Pois-
son resummation formulas of Fourier analysis; the left-hand side is the smooth
eigenvalue sum tr eAt =

∑
esαt, while the right-hand side equals zero every-

where except for the set t = rT p. A Laplace transform smooths the sum
over Dirac delta functions in cycle periods and yields the trace formula for the
eigenspectrum s0, s1, · · · of the classical evolution operator:

chapter 18 ∫ ∞

0+

dt e−st trLt = tr
1

s −A
=

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (1.15)

The beauty of trace formulas lies in the fact that everything on the right-hand-
side–prime cycles p, their periods T p and the eigenvalues of Mp–is an invariant
property of the flow, independent of any coordinate choice.
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1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities

exercise 4.1

d
ds

ln det (s −A) = tr
d
ds

ln(s −A) = tr
1

s − A
, (1.16)

and integrating over s. In this way the spectral determinant of an evolution
operator becomes related to the traces that we have just computed:
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det (s −A) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

e−sTpr∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (1.17)

The 1/r factor is due to the s integration, leading to the replacement T p →
Tp/rTp in the periodic orbit expansion (1.15).

section 19.5
We have now retraced the heuristic derivation of the divergent sum (1.7)

and the dynamical zeta function (1.10), but this time with no approximations:
formula (1.17) is exact. The computation of the zeros of det (s − A) proceeds
very much like the computations of Section 1.5.3.

1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of individual trajectories by evolution operators which prop-
agate densities feels like a bit of mathematical voodoo. Nevertheless, some-
thing very radical and deeply foundational has taken place. Understanding the
distinction between evolution of individual trajectories and the evolution of the
densities of trajectories is key to understanding statistical mechanics–this is the
conceptual basis of the second law of thermodynamics, and the origin of irre-
versibility of the arrow of time for deterministic systems with time-reversible
equations of motion: reversibility is attainable for distributions whose measure
in the space of density functions goes exponentially to zero with time.

Consider a chaotic flow, such as the stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure white and pure red; there
would be no pink. What is more, if we reversed the stirring, we would return
to the perfect white/red separation. However, that cannot be–in a very few
turns of the stirring stick the thickness of the layers goes from centimeters to
Ångströms, and the result is irreversibly pink.

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics,
and already at the level of a few degrees of freedom the evolution of densities
is irreversible. Furthermore, the theory that we shall develop here general-
izes notions of ‘measure’ and ‘averaging’ to systems far from equilibrium, and
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18 CHAPTER 1. OVERTURE

transports us into regions hitherto inaccessible with the tools of equilibrium
statistical mechanics.

By going to a description in terms of the asymptotic time evolution operators
we give up tracking individual trajectories for long times, but trade in the un-
controllable trajectories for a powerful description of the asymptotic trajectory
densities. This will enable us, for example, to give exact formulas for transport
coefficients such as the diffusion constants without any probabilistic assump-

chapter 25
tions. The classical Boltzmann equation for evolution of 1-particle density is
based on stosszahlansatz, neglect of particle correlations prior to, or after a
2-particle collision. It is a very good approximate description of dilute gas dy-
namics, but a difficult starting point for inclusion of systematic corrections. In
the theory developed here, no correlations are neglected - they are all included
in the cycle averaging formulas such as the cycle expansion for the diffusion
constant 2dD = limT→∞

〈
x(T )2

〉
/T of a particle diffusing chaotically across a

spatially-periodic array,
section 25.1

D =
1

2d
1
〈T〉ζ

∑′
(−1)k+1 (n̂p1 + · · · + n̂pk )

2

|Λp1 · · ·Λpk |
, (1.18)

where n̂p is a translation along one period of a spatially periodic ‘runaway’
trajectory p. Such formulas are exact; the issue in their applications is what
are the most effective schemes of estimating the infinite cycle sums required
for their evaluation. Unlike most statistical mechanics, here there are no phe-
nomenological macroscopic parameters; quantities such as transport coeffi-
cients are calculable to any desired accuracy from the microscopic dynamics.

The concepts of equilibrium statistical mechanics do help us, however, to
understand the ways in which the simple-minded periodic orbit theory falters.
A non-hyperbolicity of the dynamics manifests itself in power-law correlations
and even ‘phase transitions.’

chapter 24

1.8 Chaos: what is it good for?

Happy families are all alike; every unhappy family is unhappy in its
own way.

— Anna Karenina, by Leo Tolstoy

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is pre-
dictable only up to the finite Lyapunov time (1.1), T Lyap ≈ λ−1 ln |L/δx| . Be-
yond that, chaos rules. And so the most successful applications of ‘chaos the-
ory’ have so far been to problems where observation time is much longer than
a typical ‘turnover’ time, such as statistical mechanics, quantum mechanics,
and questions of long term stability in celestial mechanics, where the notion of
tracking accurately a given state of the system is nonsensical.

So what is chaos good for? Transport! Though superficially indistinguish-
able from the probabilistic random walk diffusion, in low dimensional settings
the deterministic diffusion is quite recognizable, through the fractal depen-
dence of the diffusion constant on the system parameters, and perhaps through
non-Gaussion relaxation to equilibrium (non-vanishing Burnett coefficients).
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(a)
Θ

(b) ωsin(   t)

(c) velocity

frequency Ω

Fig. 1.13 (a) Washboard mean velocity, (b)
cold atom lattice diffusion, and (c) AFM tip
drag force. (Y. Lan)

Several tabletop experiments that could measure transport on macroscopic
scales are sketched in Fig. 1.13 (each a tabletop, but an expensive tabletop).
Figure 1.13 (a) depicts a ‘slanted washboard;’ a particle in a gravity field bounc-
ing down the washboard, losing some energy at each bounce, or a charged par-
ticle in a constant electric field trickling across a periodic condensed-matter
device. The interplay between chaotic dynamics and energy loss results in
a terminal mean velocity/conductance, a function of the washboard slant or
external electric field that the periodic theory can predict accurately. Fig-
ure 1.13 (b) depicts a ‘cold atom lattice’ of very accurate spatial periodicity,
with a dilute cloud of atoms placed onto a standing wave established by strong
laser fields. Interaction of gravity with gentle time-periodic jiggling of the EM
fields induces a diffusion of the atomic cloud, with a diffusion constant pre-
dicted by the periodic orbit theory. Figure 1.13 (c) depicts a tip of an atomic
force microscope (AFM) bouncing against a periodic atomic surface moving
at a constant velocity. The frictional drag experienced is the interplay of the
chaotic bouncing of the tip and the energy loss at each tip/surface collision,
accurately predicted by the periodic orbit theory. None of these experiments

ChaosBook.org/projects
have actually been carried out, (save for some numerical experimentation), but
are within reach of what can be measured today.

Given microscopic dynamics, periodic orbit theory predicts observable macro-
scopic transport quantities such as the washboard mean velocity, cold atom lat-
tice diffusion constant, and AFM tip drag force. But the experimental proposal
is sexier than that, and goes into the heart of dynamical systems theory.

remark A.1
Smale 1960s theory of the hyperbolic structure of the non-wandering set

(AKA ‘horseshoe’) was motivated by his ‘structural stability’ conjecture, which
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- in non-technical terms - asserts that all trajectories of a chaotic dynamical
system deform smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard in Fig. 1.13 (a) is
easy to see for a cyclist. Take a trajectory which barely grazes the tip of one
of the groves. An arbitrarily small change in the washboard slope can result in
loss of this collision, change a forward scattering into a backward scattering,
and lead to a discontinuous contribution to the mean velocity. You might hold
out hope that such events are rare and average out, but not so - a loss of a
short cycle leads to a significant change in the cycle-expansion formula for a
transport coefficient, such as (1.18).

When we write an equation, it is typically parameterized by a set of param-
eters by as coupling strengths, and we think of dynamical systems obtained by
a smooth variation of a parameter as a ‘family.’ We would expect measurable
predictions to also vary smoothly, i.e., be ‘structurally stable.’

But dynamical systems families are ‘families’ only in a name. That the
structural stability conjecture turned out to be badly wrong is, however, not a
blow for chaotic dynamics. Quite to the contrary, it is actually a virtue, perhaps

section 12.2
the most dramatic experimentally measurable prediction of chaotic dynamics.

As long as microscopic periodicity is exact, the prediction is counterintu-
itive for a physicist - transport coefficients are not smooth functions of system

section 25.2
parameters, rather they are non-monotonic, nowhere differentiable functions.
Conversely, if the macroscopic measurement yields a smooth dependence of
the transport on system parameters, the periodicity of the microscopic lattice is
degraded by impurities, and probabilistic assumptions of traditional statistical
mechanics apply. So the proposal is to –by measuring macroscopic transport–
conductance, diffusion, drag –observe determinism on nanoscales, and –for
example– determine whether an atomic surface is clean.

The signatures of deterministic chaos are even more baffling to an engineer:
a small increase of pressure across a pipe exhibiting turbulent flow does not
necessarily lead to an increase in the mean flow; mean flow dependence on
pressure drop across the pipe is also a fractal function.

Is this in contradiction with the traditional statistical mechanics? No - deter-
ministic chaos predictions are valid in settings where a few degrees of freedom
are important, and chaotic motion time and space scales are commensurate
with the external driving and spatial scales. Further degrees of freedom act as
noise that smooths out the above fractal effects and restores a smooth func-
tional dependence of transport coefficients on external parameters.

1.9 What is not in ChaosBook

There is only one thing which interests me vitally now, and that is
the recording of all that which is omitted in books. Nobody, as far
as I can see, is making use of those elements in the air which give
direction and motivation to our lives.

— Henry Miller, Tropic of Cancer

This book offers everyman a breach into a domain hitherto reputed unreach-
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able, a domain traditionally traversed only by mathematical physicists and
mathematicians. What distinguishes it from mathematics is the insistence
on computability and numerical convergence of methods offered. A rigorous
proof, the end of the story as far as a mathematician is concerned, might state
that in a given setting, for times in excess of 1032 years, turbulent dynamics
settles onto an attractor of dimension less than 600. Such a theorem is of a
little use to an honest, hard-working plumber, especially if her hands-on expe-
rience is that within the span of a few typical ‘turnaround’ times the dynamics
seems to settle on a (transient?) attractor of dimension less than 3. If rigor,
magic, fractals or brains is your thing, read Remark 1.4 and beyond.

So, no proofs! but lot of hands-on plumbing ahead.
Many a chapter alone could easily grow to a book size if unchecked: the

nuts and bolt of the theory include ODEs, PDEs, stochastic ODEs, path inte-
grals, group theory, coding theory, graph theory, ergodic theory, linear operator
theory, quantum mechanics, etc.. We include material into the text proper on
‘need-to-know’ basis, relegate technical details to appendices, and give point-
ers to further reading in the remarks at the end of each chapter.

Résumé

This text is an exposition of the best of all possible theories of deterministic
chaos, and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses
on describing the geometry of the space of possible outcomes, and evaluating
averages over this space, rather than attempting the impossible: precise pre-
diction of individual trajectories. The dynamics of densities of trajectories is
described in terms of evolution operators. In the evolution operator formal-
ism the dynamical averages are given by exact formulas, extracted from the
spectra of evolution operators. The key tools are trace formulas and spectral
determinants.

The theory of evaluation of the spectra of evolution operators presented here
is based on the observation that the motion in dynamical systems of few de-
grees of freedom is often organized around a few fundamental cycles. These
short cycles capture the skeletal topology of the motion on a strange attrac-
tor/repeller in the sense that any long orbit can approximately be pieced to-
gether from the nearby periodic orbits of finite length. This notion is made
precise by approximating orbits by prime cycles, and evaluating the associ-
ated curvatures. A curvature measures the deviation of a longer cycle from its
approximation by shorter cycles; smoothness and the local instability of the
flow implies exponential (or faster) fall-off for (almost) all curvatures. Cy-
cle expansions offer an efficient method for evaluating classical and quantum
observables.

The critical step in the derivation of the dynamical zeta function was the
hyperbolicity assumption, i.e., the assumption of exponential shrinkage of all
strips of the pinball repeller. By dropping the a i prefactors in (1.5), we have
given up on any possibility of recovering the precise distribution of starting x
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(which should anyhow be impossible due to the exponential growth of errors),
but in exchange we gain an effective description of the asymptotic behavior of
the system. The pleasant surprise of cycle expansions (1.10) is that the infinite
time behavior of an unstable system is as easy to determine as the short time
behavior.

To keep the exposition simple we have here illustrated the utility of cycles
and their curvatures by a pinball game, but topics covered in ChaosBook – un-
stable flows, Poincaré sections, Smale horseshoes, symbolic dynamics, prun-
ing, discrete symmetries, periodic orbits, averaging over chaotic sets, evolution
operators, dynamical zeta functions, spectral determinants, cycle expansions,
quantum trace formulas, zeta functions, and so on to the semiclassical quanti-
zation of helium – should give the reader some confidence in the broad sway
of the theory. The formalism should work for any average over any chaotic set
which satisfies two conditions:

1. the weight associated with the observable under consideration is multi-
plicative along the trajectory,

2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.
The theory is applicable to evaluation of a broad class of quantities character-
izing chaotic systems, such as the escape rates, Lyapunov exponents, transport
coefficients and quantum eigenvalues. A big surprise is that the semi-classical
quantum mechanics of systems classically chaotic is very much like the clas-
sical mechanics of chaotic systems; both are described by zeta functions and
cycle expansions of the same form, with the same dependence on the topology
of the classical flow.
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But the power of instruction is seldom of much efficacy, except in
those happy dispositions where it is almost superfluous.

—Gibbon

Further reading

1.1 Nonlinear dynamics texts. This text aims to bridge the
gap between the physics and mathematics dynamical systems
literature. The intended audience is Henri Roux, the perfect
physics graduate student with a theoretical bent who does not
believe anything he is told. As a complementary presenta-
tion we recommend Gaspard’s monograph [1.8] which covers
much of the same ground in a highly readable and scholarly
manner.
As far as the prerequisites are concerned–ChaosBook is not
an introduction to nonlinear dynamics. Nonlinear science re-
quires a one semester basic course (advanced undergraduate
or first year graduate). A good start is the textbook by Stro-
gatz [1.9], an introduction to the applied mathematician’s vi-
sualization of flows, fixed points, manifolds, bifurcations. It
is the most accessible introduction to nonlinear dynamics–a
book on differential equations in nonlinear disguise, and its
broadly chosen examples and many exercises make it a fa-
vorite with students. It is not strong on chaos.4 There the text-
book of Alligood, Sauer and Yorke [1.10] is preferable: an el-
egant introduction to maps, chaos, period doubling, symbolic
dynamics, fractals, dimensions–a good companion to Chaos-
Book. Introduction more comfortable to physicists is the text-
book by Ott [1.11], with the baker’s map used to illustrate
many key techniques in analysis of chaotic systems. Ott is
perhaps harder than the above two as first books on nonlin-
ear dynamics. Sprott [1.12] and Jackson [1.13] textbooks are
very useful compendia of the ’70s and onward ‘chaos’ litera-
ture which we, in the spirit of promises made in Section 1.1,
tend to pass over in silence.
An introductory course should give students skills in quali-
tative and numerical analysis of dynamical systems for short
times (trajectories, fixed points, bifurcations) and familiarize
them with Cantor sets and symbolic dynamics for chaotic sys-
tems. For the dynamical systems material covered here in
chapters 2 to 4, as well as for the in-depth study of bifurca-
tion theory we warmly recommend Kuznetsov [1.14]. A good
introduction to numerical experimentation with physically re-
alistic systems is Tufillaro, Abbott, and Reilly [1.15]. Ko-
rsch and Jodl [1.16] and Nusse and Yorke [1.17] also empha-
size hands-on approach to dynamics. With this, and a gradu-
ate level-exposure to statistical mechanics, partial differential

equations and quantum mechanics, the stage is set for any of
the one-semester advanced courses based on ChaosBook.

1.2 ChaosBook based courses. The courses taught so far (for
a listing, consult ChaosBook.org/courses) start out with
the introductory chapters on qualitative dynamics, symbolic
dynamics and flows, and then continue in different directions:

Deterministic chaos. Chaotic averaging, evolution operators,
trace formulas, zeta functions, cycle expansions, Lyapunov
exponents, billiards, transport coefficients, thermodynamic
formalism, period doubling, renormalization operators. A
graduate level introduction to statistical mechanics from the
dynamical point view is given by Dorfman [1.18]; the Gas-
pard monograph [1.8] covers the same ground in more depth.
Driebe monograph [1.19] offers a nice introduction to the
problem of irreversibility in dynamics. The role of ‘chaos’
in statistical mechanics is critically dissected by Bricmont in
his highly readable essay “Science of Chaos or Chaos in Sci-
ence?” [1.20].

Spatiotemporal dynamical systems. Partial differential equa-
tions for dissipative systems, weak amplitude expansions,
normal forms, symmetries and bifurcations, pseudospectral
methods, spatiotemporal chaos, turbulence. Holmes, Lum-
ley and Berkooz [1.21] offer a delightful discussion of why
the Kuramoto-Sivashinsky equation deserves study as a stag-
ing ground for a dynamical approach to study of turbulence in
full-fledged Navier-Stokes boundary shear flows.

Quantum chaos. Semiclassical propagators, density of states,
trace formulas, semiclassical spectral determinants, billiards,
semiclassical helium, diffraction, creeping, tunneling, higher-
order � corrections. For further reading on this topic, consult
the quantum chaos part of ChaosBook.org.

1.3 Periodic orbit theory. This book puts more emphasis on
periodic orbit theory than any other current nonlinear dynam-
ics textbook. The role of unstable periodic orbits was already
fully appreciated by Poincaré [1.22, 23], who noted that hid-
den in the apparent chaos is a rigid skeleton, a tree of cycles
(periodic orbits) of increasing lengths and self-similar struc-
ture, and suggested that the cycles should be the key to chaotic
dynamics. Periodic orbits have been at core of much of the
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mathematical work on the theory of the classical and quan-
tum dynamical systems ever since. We refer the reader to the
reprint selection [1.24] for an overview of some of that litera-
ture.

1.4 If you seek rigor? If you find ChaosBook not rig-
orous enough, you should turn to the mathematics literature.
We recommend Robinson’s advanced graduate level exposi-
tion of dynamical systems theory [1.25] from Smale perspec-
tive. The most extensive reference is the treatise by Katok
and Hasselblatt [1.26], an impressive compendium of mod-
ern dynamical systems theory. The fundamental papers in this
field, all still valuable reading, are Smale [1.27], Bowen [1.28]
and Sinai [1.29]. Sinai’s paper is prescient and offers a vision
and a program that ties together dynamical systems and sta-
tistical mechanics. It is written for readers versed in statisti-
cal mechanics. For a dynamical systems exposition, consult
Anosov and Sinai [1.30]. Markov partitions were introduced
by Sinai in Ref. [1.31]. The classical text (though certainly
not an easy read) on the subject of dynamical zeta functions
is Ruelle’s Statistical Mechanics, Thermodynamic Formal-
ism [1.32]. In Ruelle’s monograph transfer operator technique
(or the ‘Perron-Frobenius theory’) and Smale’s theory of hy-
perbolic flows are applied to zeta functions and correlation
functions. The status of the theory from Ruelle’s point of view
is compactly summarized in his 1995 Pisa lectures [1.33].
Further excellent mathematical references on thermodynamic
formalism are Parry and Pollicott’s monograph [1.34] with
emphasis on the symbolic dynamics aspects of the formalism,

and Baladi’s clear and compact reviews of the theory of dy-
namical zeta functions [1.35, 36].

1.5 If you seek magic? ChaosBook resolutely skirts number-
theoretical magic such as spaces of constant negative curva-
ture, Poincaré tilings, modular domains, Selberg Zeta func-
tions, Riemann hypothesis, . . . Why? While this beautiful
mathematics has been very inspirational, especially in studies
of quantum chaos, almost no powerful method in its repertoire
survives a transplant to a physical system that you are likely
to care about.

1.6 Sorry, no schmactals! ChaosBook skirts mathemat-
ics and empirical practice of fractal analysis, such as Haus-
dorff and fractal dimensions. Addison’s introduction to frac-
tal dimensions [1.37] offers a well-motivated entry into this
field. While in studies of probabilistically assembled fractals
such as diffusion limited aggregates (DLA) better measures of
‘complexity’ are lacking, for deterministic systems there are
much better, physically motivated and experimentally measur-
able quantities (escape rates, diffusion coefficients, spectrum
of helium, ...) that we focus on here.

1.7 Rat brains? If you were wondering while reading this
introduction ‘what’s up with rat brains?’, the answer is yes
indeed, there is a line of research in neuronal dynamics that
focuses on possible unstable periodic states, described for ex-
ample in Refs. [1.38–41].
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A guide to exercises

God can afford to make mistakes. So can Dada!

—Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to
try to work through the essential exercises. As not to fragment the text, the
exercises are indicated by text margin boxes such as the one on this margin, and

exercise 20.2
collected at the end of each chapter. By the end of a (two-semester) course you
should have completed at least three small projects: (a) compute everything for
a 1−d repeller, (b) compute escape rate for a 3-disk game of pinball, (c) compute
a part of the quantum 3-disk game of pinball, or the helium spectrum, or if
you are interested in statistical rather than the quantum mechanics, compute a
transport coefficient. The essential steps are:

• Dynamics

(1) count prime cycles, Exercise 1.1, Exercise 9.6, Exercise 11.1

(2) pinball simulator, Exercise 8.1, Exercise 13.4

(3) pinball stability, Exercise 13.7, Exercise 13.4

(4) pinball periodic orbits, Exercise 13.5, Exercise 13.6

(5) helium integrator, Exercise 2.10, Exercise 13.11

(6) helium periodic orbits, Exercise 13.12

• Averaging, numerical

(1) pinball escape rate, Exercise 17.3

• Averaging, periodic orbits

(1) cycle expansions, Exercise 20.1, Exercise 20.2

(2) pinball escape rate, Exercise 20.4, Exercise 20.5

(3) cycle expansions for averages, Exercise 20.1, Exercise 22.3

(4) cycle expansions for diffusion, Exercise 25.1

(5) pruning, transition graphs, Exercise 15.6

(6) desymmetrization Exercise 21.1

(7) intermittency, phase transitions, Exercise 24.6

The exercises that you should do have underlined titles. The rest (smaller
type) are optional. Difficult problems are marked by any number of *** stars.
If you solve one of those, it is probably worth a publication. 5 Solutions to some 5 To keep you on your toes, some of the prob-

lems are nonsensical, and some of the solu-
tions given are plainly wrong

of the problems are available on ChaosBook.org. A clean solution, a pretty
figure, or a nice exercise that you contribute to ChaosBook will be gratefully
acknowledged. Often going through a solution is more instructive than reading
the chapter that problem is supposed to illustrate.
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Exercises

(1.1) 3-disk symbolic dynamics. As periodic trajectories
will turn out to be our main tool to breach deep into
the realm of chaos, it pays to start familiarizing oneself
with them now by sketching and counting the few short-
est prime cycles (we return to this in Section 15.4). Show
that the 3-disk pinball has 3 · 2n−1 itineraries of length
n. List periodic orbits of lengths 2, 3, 4, 5, · · ·. Verify
that the shortest 3-disk prime cycles are 12, 13, 23, 123,
132, 1213, 1232, 1323, 12123, · · ·. Try to sketch them.
(continued in Exercise 12.6)

(1.2) Sensitivity to initial conditions. Assume that two pin-
ball trajectories start out parallel, but separated by 1
Ångström, and the disks are of radius a = 1 cm and
center-to-center separation R = 6 cm. Try to estimate
in how many bounces the separation will grow to the
size of system (assuming that the trajectories have been
picked so they remain trapped for at least that long). Es-
timate the Who’s Pinball Wizard’s typical score (number
of bounces) in a game without cheating, by hook or crook
(by the end of Chapter 20 you should be in position to
make very accurate estimates).
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France, Paris 1990).

[1.35] V. Baladi, “Dynamical zeta functions,” in B. Branner and P. Hjorth,
eds., Real and Complex Dynamical Systems (Kluwer, Dordrecht 1995).

[1.36] V. Baladi, Positive Transfer Operators and Decay of Correlations (World
Scientific, Singapore 2000).

[1.37] P.S. Addison Fractals and chaos: an illustrated course, (Inst. of Physics
Publishing, Bristol 1997).

[1.38] S.J. Schiff, et al. “Controlling chaos in the brain,” Nature 370, 615
(1994).

[1.39] F. Moss, “Chaos under control,” Nature 370, 596 (1994).
[1.40] J. Glanz, “Do chaos-control techniques offer hope for epilepsy?” Sci-

ence 265, 1174 (1994).
[1.41] J. Glanz, “Mastering the Nonlinear Brain,” Science 227, 1758 (1997).
[1.42] Henry Miller, Tropic of Cancer (Obelisk Press, Paris 1939; Grove Press,

New York 1961).

refsIntro - 6mar2009 ChaosBook.org version13.5, Sep 7 2011



Part I

Geometry of chaos

We start out with a recapitulation of the basic notions of dynamics. Our aim is
narrow; we keep the exposition focused on prerequisites to the applications
to be developed in this text. We assume that the reader is familiar with

dynamics on the level of the introductory texts mentioned in Remark 1.1, and
concentrate here on developing intuition about what a dynamical system can do. It
will be a coarse brush sketch–a full description of all possible behaviors of dynamical
systems is beyond human ken. While for a novice there is no shortcut through this
lengthy detour, a sophisticated traveler might bravely skip this well-trodden territory
and embark upon the journey at Chapter 15.

The fate has handed you a flow. What are you to do about it?

(1) Define your dynamical system (M, f ): the space of its possible states M, and
the law f t of their evolution in time.

(2) Pin it down locally–is there anything about it that is stationary? Try to determine
its equilibria / fixed points (Chapter 2).

(3) Slice it, represent as a map from a section to a section (Chapter 3).

(4) Explore the neighborhood by linearizing the flow–check the linear stability of
its equilibria / fixed points, their stability eigen-directions (Chapter 4).

(5) Go global: partition the state space of 1−d maps. Label the regions by symbolic
dynamics (Chapter 11).

(6) Now venture global distances across the system by continuing eigenvectors into
stable / unstable manifolds. Their intersections partition the state space in a
dynamically invariant way (Chapter 12).

(7) Guided by this topological partition, compute a set of periodic orbits up to a
given topological length (Chapter 13).

Along the way you might want to learn about dynamical invariants (Chapter 5), nonlin-
ear transformations (Chapter 6), classical mechanics (Chapter 7), billiards (Chapter 8),
and discrete (Chapter 9) and continuous (Chapter 10) symmetries of dynamics.
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Dynamical systems theory includes an extensive body of knowledge
about qualitative properties of generic smooth families of vector fields
and discrete maps. The theory characterizes structurally stable invari-
ant sets [...] The logic of dynamical systems theory is subtle. The
theory abandons the goal of describing the qualitative dynamics of all
systems as hopeless and instead restricts its attention to phenomena
that are found in selected systems. The subtlety comes in specifying
the systems of interest and which dynamical phenomena are to be an-
alyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

We define a dynamical system (M, f ), classify its solutions as equilib-
ria, periodic, and aperiodic, refine the ‘aperiodic’ into wandering
and non-wandering sets, decompose the non-wandering into chain-

recurrent sets, and illustrate various cases with concrete examples, the Rössler
and Lorenz systems.

fast track

Chapter 16, p. 269

2.1 Dynamical systems

In a dynamical system we observe the world as it evolves with time. We ex-
press our observations as numbers and record how they change; given suffi-
ciently detailed information and understanding of the underlying natural laws,
we see the future in the present as in a mirror. The motion of the planets against

section 1.3
the celestial firmament provides an example. Against the daily motion of the
stars from East to West, the planets distinguish themselves by moving among
the fixed stars. Ancients discovered that by knowing a sequence of planet’s
positions–latitudes and longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude in the celestial
sphere suffices to completely specify the planet’s apparent motion. All pos-
sible values for positions and velocities of the planets form the phase space
of the system. More generally, a state of a physical system, at a given instant
in time, can be represented by a single point in an abstract space called state
spaceM (mnemonic: curly ‘M’ for a ‘manifold’). As the system changes, so
does the representative point in state space. We refer to the evolution of such
points as dynamics, and the function f t which specifies where the representa-
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tive point is at time t as the evolution rule.
remark 2.1

If there is a definite rule f that tells us how this representative point moves
in M, the system is said to be deterministic. For a deterministic dynamical
system, the evolution rule takes one point of the state space and maps it into
exactly one point. However, this is not always possible. For example, know-
ing the temperature today is not enough to predict the temperature tomorrow;
knowing the value of a stock today will not determine its value tomorrow. The
state space can be enlarged, in the hope that in a sufficiently large state space it
is possible to determine an evolution rule, so we imagine that knowing the state
of the atmosphere, measured over many points over the entire planet should be
sufficient to determine the temperature tomorrow. Even that is not quite true,
and we are less hopeful when it comes to stocks.

For a deterministic system almost every point has a unique future, so tra-
jectories cannot intersect. We say ‘almost’ because there might exist a set of
measure zero (tips of wedges, cusps, etc.) for which a trajectory is not defined.
We may think such sets a nuisance, but it is quite the contrary–they will enable

chapter 12
us to partition state space, so that the dynamics can be better understood.

f (x)f (x)
t

x

Fig. 2.1 A trajectory traced out by the evo-
lution rule f t . Starting from the state space
point x, after a time t, the point is at ft(x).

Locally, the state spaceM looks like Rd, meaning that a dynamical evolu-
tion is an initial value problem, with d numbers sufficient to determine what
will happen time t later. Globally, it may be a more complicated manifold such
as a torus, a cylinder, or some other smooth geometric object. By manifold we
mean a smooth differentiable d-dimensional space which looks like R d only
locally, within the tangent space at any given state space point x ∈ M. For
example, the state space of an autonomous Hamiltonian system the flow is
confined to a constant energy hyper-surface. When we need to stress that the
dimension d ofM is greater than one, we may refer to the point x ∈ M as x i

where i = 1, 2, 3, . . . , d. If the dynamics is described by a set of PDEs (par-
tial differential equations), the state space is the infinite dimensional function
space. The evolution rule f t :M→M tells us where a point x is inM after a
time interval t.

The pair (M, f ) constitute a dynamical system.

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule f t can be differentiated as
many times as needed. Its action on a point x is sometimes indicated by f (x, t)
to remind us that f is really a function of two variables: the time and a point
in state space. Note that time is relative rather than absolute, so only the time
interval is necessary. This follows from the fact that a point in state
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Mi

t
ff (     )Mi

Fig. 2.2 The evolution rule f tcan be used to
map a region Mi of the state space into the
region f t(Mi).

space completely determines all future evolution, and it is not necessary to
know anything else. The time parameter can be a real variable (t ∈ R), in
which case the evolution is called a flow, or an integer (t ∈ Z), in which case
the evolution advances in discrete steps in time, given by iteration of a map.
The evolution parameter need not be the physical time; for example, a time-
stationary solution of a partial differential equation is parameterized by spatial
variables. In such situations one talks of a ‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest
flows - 6dec2009 ChaosBook.org version13.5, Sep 7 2011
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themselves through their trajectories: given an initial point x 0, the evolution
rule traces out a sequence of points x(t) = f t(x0), the trajectory through the
point x0 = x(0). A trajectory is parameterized by the time t and thus belongs

exercise 2.1
to ( f t(x0), t) ∈ M × R. By extension, we can also talk of the evolution of a
regionMi of the state space: just apply f t to every point inMi to obtain a new
region f t(Mi), as in Fig. 2.2.

Because f t is a single-valued function, any point of the trajectory can be
used to label the trajectory.

If we mark the trajectory by its initial point x0, we are describing it in the
Lagrangian coordinates.

The subset of pointsMx0 ⊂ M that belong to the infinite-time trajectory of
a given point x0 is called the orbit of x0; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth contin-
uous curve; for a map, it is a sequence of points. “Trajectory” refers to a set
of points or a curve segment traced out by x(t) up to time instant t. “Orbit”
refers to the totality of states that can be reached from x0, with state spaceM
foliated into a union of such orbits (each M x0 labeled by a single point be-
longing to the set, x0 = x(0) for example). Under time evolution a trajectory
segment is mapped into another trajectory segment, but points within an orbit
are only permuted; the orbit considered as a set is unchanged. Hence orbit is a
dynamically invariant notion.

The central idea of ChaosBook is to describe complicated, ergodic asymp-
totic, t → ∞ dynamics in terms of compact time-invariant sets or compact
orbits (equilibria, periodic orbits, invariant tori, · · ·).

2.1.1 A classification of possible motions?

What are the possible trajectories? This is a grand question, and there are
many answers, the chapters to follow offering some. Here is the first attempt
to classify all possible trajectories:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp (x) for a given minimum period T p

aperiodic: f t(x) � f t′ (x) for all t � t′ .

x1
x(T) = x(0)

x2

x3

Fig. 2.3 A periodic point returns to the initial
point after a finite time, x = fTp (x). Periodic
orbit p is the set of periodic points p =Mp =

{x1 , x2 , · · ·} swept out by the trajectory of any
one of them in the finite time Tp.

A periodic orbit (or a cycle) p is the set of pointsM p ⊂ M swept out by a
trajectory that returns to the initial point in a finite time. We refer to a point on
a periodic orbit as a periodic point, see Fig. 2.3. Periodic orbits form a very
small subset of the state space, in the same sense that rational numbers are a
set of zero measure on the unit interval.

chapter 5

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamics can also preserve
higher-dimensional smooth compact invariant manifolds; most commonly en-
countered are the M-dimensional tori of Hamiltonian dynamics, with notion of
periodic motion generalized to quasiperiodic (the superposition of M incom-
mensurate frequencies) motion on a smooth torus, and families of solutions
related by a continuous symmetry.

The ancients tried to make sense of all dynamics in terms of periodic mo-
tions, epicycles, integrable systems. The embarrassing truth is that for a generic
ChaosBook.org version13.5, Sep 7 2011 flows - 6dec2009



34 CHAPTER 2. GO WITH THE FLOW

dynamical systems almost all motions are aperiodic. So we refine the classifi-
cation by dividing aperiodic motions into two subtypes: those that wander off,
and those that keep coming back.

A point x ∈ M is called a wandering point, if there exists an open neighbor-
hoodM0 of x to which the trajectory never returns

f t(x) �M0 for all t > tmin . (2.1)

In physics literature, the dynamics of such state is often referred to as tran-
sient.

Wandering points do not take part in the long-time dynamics, so your first
task is to prune them fromM as well as you can. What remains envelops the
set of the long-time trajectories, or the non-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity, and replace it by the notion of recurrence. A
point is recurrent or non-wandering if for any open neighborhoodM 0 of x and
any time tmin there exists a later time t, such that

f t(x) ∈ M0 . (2.2)

In other words, the trajectory of a non-wandering point reenters the neigh-
borhood M0 infinitely often. We shall denote by Ω the non-wandering set
of f , i.e., the union of all the non-wandering points of M. The set Ω, the
non-wandering set of f , is the key to understanding the long-time behavior of
a dynamical system; all calculations undertaken here will be carried out on
non-wandering sets.

So much about individual trajectories. What about clouds of initial points?
If there exists a connected state space volume that maps into itself under for-
ward evolution (and you can prove that by the method of Lyapunov function-
als, or several other methods available in the literature), the flow is globally
contracting onto a subset ofM which we shall refer to as the attractor. The
attractor may be unique, or there can coexist any number of distinct attract-
ing sets, each with its own basin of attraction, the set of all points that fall
into the attractor under forward evolution. The attractor can be a fixed point
(a sink), a periodic orbit (a limit cycle), aperiodic, or any combination of the
above. The most interesting case is that of an aperiodic recurrent attractor,
to which we shall refer loosely as a strange attractor. We say ‘loosely’, as

example 2.3
will soon become apparent that diagnosing and proving existence of a genuine,
card-carrying strange attractor is a highly nontrivial undertaking; it requires ex-
plaining notions like “transitive” and “chain-recurrent” that we will be ready
to discuss only in Section 14.1.

Conversely, if we can enclose the non-wandering set Ω by a connected state
space volumeM0 and then show that almost all points withinM0, but not in
Ω, eventually exitM0, we refer to the non-wandering set Ω as a repeller. An
example of a repeller is not hard to come by–the pinball game of Section 1.3
is a simple chaotic repeller. Ω, the non-wandering set of f , is the union of all
of the above, separately invariant sets: attracting/repelling fixed points, strange
attractors, repellers, etc..

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we have given up the an-
flows - 6dec2009 ChaosBook.org version13.5, Sep 7 2011



2.2. FLOWS 35

cients’ fixation on periodic motions. Nothing could be further from truth. As
longer and longer cycles approximate more and more accurately finite seg-
ments of aperiodic trajectories, we shall establish control over non-wandering
sets by defining them as the closure of the union of all periodic points.

Before we can work out an example of a non-wandering set and get a better
grip on what chaotic motion might look like, we need to ponder flows in a little
more depth.

2.2 Flows

Knowing the equations and knowing the solution are two different
things. Far, far away.

— T.D. Lee

A flow is a continuous-time dynamical system. The evolution rule f t is a family
of mappings ofM→M parameterized by t ∈ R. Because t represents a time
interval, any family of mappings that forms an evolution rule must satisfy:

exercise 2.2

(a) f 0(x) = x (in 0 time there is no motion)

(b) f t( f t′ (x)) = f t+t′ (x) (the evolution law is the same at all times)

(c) the mapping (x, t) �→ f t(x) fromM× R intoM is continuous.

We shall often find it convenient to represent functional composition by ‘◦ :’
appendix C.1

f t+s = f t ◦ f s = f t( f s) . (2.3)

The family of mappings f t(x) thus forms a continuous (forward semi-) group.
Why ‘semi-’group? It may fail to form a group if the dynamics is not re-
versible, and the rule f t(x) cannot be used to rerun the dynamics backwards
in time, with negative t; with no reversibility, we cannot define the inverse
f −t( f t(x)) = f 0(x) = x , in which case the family of mappings f t(x) does not
form a group. In exceedingly many situations of interest–for times beyond
the Lyapunov time, for asymptotic attractors, for dissipative partial differential
equations, for systems with noise, for non-invertible maps–the dynamics can-
not be run backwards in time, hence, the circumspect emphasis on semigroups.
On the other hand, there are many settings of physical interest, where dynam-

ics is reversible (such as finite-dimensional Hamiltonian flows), and where the
family of evolution maps f t does form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory as

x(t + τ) = f t+τ(x0) = f ( f (x0, t), τ) (2.4)

and express the time derivative of a trajectory at point x(t),
exercise 2.3

dx
dτ

∣∣∣∣∣
τ=0
= ∂τ f ( f (x0, t), τ)|τ=0 = ẋ(t) . (2.5)

as the time derivative of the evolution rule, a vector evaluated at the same point.
By considering all possible trajectories, we obtain the vector ẋ(t) at any point
ChaosBook.org version13.5, Sep 7 2011 flows - 6dec2009
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x ∈ M. This vector field is a (generalized) velocity field:

ẋ(t) = v(x) . (2.6)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar pro-
cedures for obtaining a set of differential equations for the vector field v(x)
that describes the evolution of a mechanical system. Equations of mechanics
may appear different in form from (2.6), as they are often involve higher time
derivatives, but an equation that is second or higher order in time can always
be rewritten as a set of first order equations.

We are concerned here with a much larger world of general flows, mechan-
ical or not, all defined by a time-independent vector field (2.6). At each point
of the state space a vector indicates the local direction in which the trajectory
evolves. The length of the vector |v(x)| is proportional to the speed at the point
x, and the direction and length of v(x) changes from point to point. When

(a)

(b)

Fig. 2.4 (a) The 2−d vector field for the Duff-
ing system (2.7), together with a short tra-
jectory segment. (b) The flow lines. Each
‘comet’ represents the same time interval of
a trajectory, starting at the tail and ending at
the head. The longer the comet, the faster the
flow in that region.

the state space is a complicated manifold embedded in Rd, one can no longer
think of the vector field as being embedded in the state space. Instead, we have
to imagine that each point x of state space has a different tangent plane TM x

attached to it. The vector field lives in the union of all these tangent planes, a
space called the tangent bundle TM.

Example 2.1 A 2−d vector field v(x):
A simple example of a flow is afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15 y(t) + x(t) − x(t)3 (2.7)

plotted in Fig. 2.4. The velocity vectors are drawn superimposed over the configura-
tion coordinates (x(t), y(t)) of state spaceM, but they belong to a different space, the
tangent bundle TM.

The instantaneous velocity vector v is tangent to the trajectory, except at the
equilibrium points, where it vanishes.

If v(xq) = 0 , (2.8)

xq is also referred to as a stationary, fixed, critical, invariant, rest, stagnation
point, zero of the vector field v, standing wave or steady state - our usage is
‘equilibrium’ for a flow, ‘fixed point’ for a map, and the trajectory remains
forever stuck at xq. Otherwise the trajectory passing through x0 at time t = 0
can be obtained by integrating the equations (2.6):

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.9)

We shall consider here only autonomous flows, i.e., flows for which the veloc-
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Fig. 2.5 Lorenz “butterfly” strange attractor.
(J. Halcrow)

ity field vi is stationary, not explicitly dependent on time. A non-autonomous
system

dy
dτ
= w(y, τ) , (2.10)

can always be converted into a system where time does not appear explicitly.

exercise 2.4
exercise 2.5
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To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining
x = {y, τ}, with a stationary vector field

v(x) =

[
w(y, τ)

1

]
. (2.11)

The new flow ẋ = v(x) is autonomous, and the trajectory y(τ) can be read off
x(t) by ignoring the last component of x.

Example 2.2 Lorenz strange attractor:
Edward Lorenz arrived at the equation

ẋ = v(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẋ
ẏ
ż

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ(y − x)
ρx − y − xz

xy − bz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.12)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b =
8/3, and varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium EQ0 =

(0, 0, 0) at the origin is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a
pair of equilibria at

remark 2.3

xEQ1,2 = (±
√

b(ρ − 1),±
√

b(ρ − 1), ρ − 1) , (2.13)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows,
but here is a brief synopsis: the EQ0 1−d unstable manifold closes into a homoclinic
orbit at ρ = 13.56 . . .. Beyond that, an infinity of associated periodic orbits are
generated, until ρ = 24.74 . . ., where EQ1,2 undergo a Hopf bifurcation.
All computations that follow will be performed for the Lorenz parameter choice
σ = 10, b = 8/3, ρ = 28 . For these parameter values the long-time dynamics is
confined to the strange attractor depicted in Fig. 2.5, and the positions of its equilibria
are marked in Fig. 9.3. (continued in Example 3.5)

Example 2.3 Rössler strange attractor:
The Duffing flow of Fig. 2.4 is bit of a bore–every trajectory ends up in one of the
two attractive equilibrium points. Let’s construct a flow that does not die out, but
exhibits a recurrent dynamics. Start with a harmonic oscillator

ẋ = −y , ẏ = x . (2.14)

The solutions are reit, re−it, and the whole x-y plane rotates with constant angular
velocity θ̇ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x + ay , a > 0 , (2.15)

or, in radial coordinates, ṙ = ar sin2 θ, θ̇ = 1 + (a/2) sin 2θ. The plane is still
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Fig. 2.6 A trajectory of the Rössler flow at
time t = 250. (G. Simon)

rotating with the same average angular velocity, but trajectories are now spiraling
out. Any flow in the plane either escapes, falls into an attracting equilibrium point,
or converges to a limit cycle. Richer dynamics requires at least one more dimension.
In order to prevent the trajectory from escaping to∞, kick it into 3rd dimension when
x reaches some value c by adding

ż = b + z(x − c) , c > 0 . (2.16)

As x crosses c, z shoots upwards exponentially, z � e(x−c)t . In order to bring it back,
start decreasing x by modifying its equation to

ẋ = −y − z .
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Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Rössler flow

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) , a = b = 0.2 , c = 5.7 (2.17)

(for definitiveness, we fix the parameters a, b, c in what follows). The system is as
exercise 2.8

simple as they get–it would be linear, were it not for the sole bilinear term zx. Even
for so ‘simple’ a system the nature of long-time solutions is far from obvious.
There are two repelling equilibrium points (2.8):

x± = (
1
2
± 1

2

√
1 − 4ab/c2)(c,−c/a, c/a)

x− ≈ (ab/c,−b/c, b/c) , x+ ≈ (c,−c/a, c/a)

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351)

(x+, y+, z+) = ( 5.6929, −28.464, 28.464) (2.18)

One is close to the origin by construction. The other, some distance away, exists
because the equilibrium condition has a 2nd-order nonlinearity.
To see what solutions look like in general, we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in Fig. 2.6 (see
also Fig. 11.10). Trajectories that start out sufficiently close to the origin seem to
converge to a strange attractor. We say ‘seem’ as there exists no proof that such an

exercise 3.5
attractor is asymptotically aperiodic–it might well be that what we see is but a long
transient on a way to an attractive periodic orbit. For now, accept that Fig. 2.6 and
similar figures in what follows are examples of ‘strange attractors.’ (continued in
Exercise 2.8 and Example 3.4) (R. Paškauskas)

The Rössler flow is the simplest flow which exhibits many of the key as-
pects of chaotic dynamics; we shall use it and the 3-pinball (see Chapter 8)
systems throughout ChaosBook to motivate introduction of Poincaré sections,
return maps, symbolic dynamics, cycle expansions, and much else. Rössler
flow is integrated in Exercise 2.7, its equilibria are determined in Exercise 2.8,
its Poincaré sections constructed in Exercise 3.1, and the corresponding re-
turn Poincaré map computed in Exercise 3.2. Its volume contraction rate is
computed in Exercise 4.3, its topology investigated in Exercise 4.4, the short-
est Rössler flow cycles are computed and tabulated in Exercise 13.10, and its
Lyapunov exponents evaluated in Exercise 17.4.

fast track

Chapter 3, p. 45

2.3 Computing trajectories

On two occasions I have been asked [by members of Parliament],
’Pray, Mr. Babbage, if you put into the machine wrong figures, will
the right answers come out?’ I am not able rightly to apprehend the
kind of confusion of ideas that could provoke such a question.

— Charles Babbage
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You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, you need to imple-
ment some finite time-step prescription for integration of the equations of mo-
tion (2.6). The simplest is the Euler integrator which advances the trajectory
by δτ× velocity at each time step:

xi → xi + vi(x) δτ . (2.19)

This might suffice to get you started, but as soon as you need higher numerical
accuracy, you will need something better. There are many excellent reference
texts and computer programs that can help you learn how to solve differential
equations numerically using sophisticated numerical tools, such as pseudo-
spectral methods or implicit methods. If a ‘sophisticated’ integration routine

exercise 2.6
takes days and gobbles up terabits of memory, you are using brain-damaged
high level software. Try writing a few lines of your own Runge-Kutta code in
some mundane everyday language. While you absolutely need to master the

exercise 2.7
requisite numerical methods, this is neither the time nor the place to expound
upon them; how you learn them is your business. And if you have developed

exercise 2.9
some nice routines for solving problems in this text or can point another student
to some, let us know.

exercise 2.10

Résumé

Chaotic dynamics with a low-dimensional attractor can be visualized as a suc-
cession of nearly periodic but unstable motions. In the same spirit, turbulence
in spatially extended systems can be described in terms of recurrent spatiotem-
poral patterns. Pictorially, dynamics drives a given spatially extended sys-
tem through a repertoire of unstable patterns; as we watch a turbulent system
evolve, every so often we catch a glimpse of a familiar pattern. For any finite
spatial resolution and finite time the system follows approximately a pattern
belonging to a finite repertoire of possible patterns, and the long-term dynam-
ics can be thought of as a walk through the space of such patterns. Recasting
this image into mathematics is the subject of this book.

Further reading

2.1 ‘State space’ or ‘phase space?’ In this text we denote
by the term state space the set of admissible states of a
general d- or ∞-dimensional dynamical system, and reserve
the term phase space to Hamiltonian 2D-dimensional state
spaces, where D is the number of Hamiltonian degrees of
freedom. If the state space is a continuous smooth mani-
fold much of the literature refers to it as ‘phase space,’ but
we find the control engineering usage sharper: in the state

space (or ‘time-domain’) description of an autonomous phys-
ical system, the state of the system is represented as a vector
within the ‘state space,’ space whose axes are the state vari-
ables, and the set of state variables is related by first-order
differential equations. The distinction made here is needed in
a text where one treats both general dynamical systems and
quantum-mechanical systems. The term ‘phase’ has a precise
meaning in wave mechanics, quantum mechanics and dynam-
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ics of integrable systems at the heart of Hamilton’s formu-
lation of Newtonian mechanics, while ‘state space’ is more
descriptive of the way the notion is used in the general theory
of dynamical systems. Further confusion arises when prefix
spatio- as in ‘spatiotemporal’ is used in reference to states ex-
tended in the (1, 2, or 3-dimensional) physical configuration
space. They may exhibit spatial wave-like behaviors, but their
state space is∞-dimensional.
Much of the literature denotes the vector field in a first order
differential equation (2.6) by f (x) or F(x) or even X(x), and
its integral for time t by the ‘time-t forward map’ x(x0, t) =
Φ(x0, t) or φt(x0) or something else. As we shall treat here
maps and flows on equal footing, and need to save Greek let-
ters for matters quantum-mechanical, we reserve the notation
f (x) for maps such as (2.9), and refer to a state space veloc-
ity vector field as v(x). We come to regret this choice very
far into the text, only by the time we delve into Navier-Stokes
equations.

2.2 Rössler and Duffing flows. The Duffing system (2.7)
arises in the study of electronic circuits [2.1]. The Rössler
flow (2.17) is the simplest flow which exhibits many of the key
aspects of chaotic dynamics. It was introduced in Ref. [2.2] as
a set of equations describing no particular physical system, but
capturing the essence of Lorenz chaos in a simplest imagin-
able smooth flow. Otto Rössler, a man of classical education,
was inspired in this quest by that rarely cited grandfather of
chaos, Anaxagoras (456 B.C.). This, and references to earlier
work can be found in Refs. [2.3–5]. We recommend in partic-
ular the inimitable Abraham and Shaw illustrated classic [2.6]
for its beautiful sketches of the Rössler and many other flows.
Timothy Jones [2.7] has a number of interesting simulations
on a Drexel website.

2.3 Lorenz equation. The Lorenz equation (2.12) is the most
celebrated early illustration of “deterministic chaos” [2.8] (but
not the first - the honor goes to Dame Cartwright [2.9]).
Lorenz’s paper, which can be found in reprint collections
Refs. [2.10, 11], is a pleasure to read, and is still one of the
best introductions to the physics motivating such models. For
a geophysics derivation, see Rothman course notes [2.12].
The equations, a set of ODEs in R3, exhibit strange attrac-
tors [2.13–15]. Frøyland [2.16] has a nice brief discussion

of Lorenz flow. Frøyland and Alfsen [2.17] plot many peri-
odic and heteroclinic orbits of the Lorenz flow; some of the
symmetric ones are included in Ref. [2.16]. Guckenheimer-
Williams [2.18] and Afraimovich-Bykov-Shilnikov [2.19] of-
fer in-depth discussion of the Lorenz equation. The most de-
tailed study of the Lorenz equation was undertaken by Spar-
row [2.20]. For a physical interpretation of ρ as “Rayleigh
number.” see Jackson [2.21] and Seydel [2.22]. Lorenz trun-
cation to 3 modes is so drastic that the model bears no re-
lation to the geophysical hydrodynamics problem that moti-
vated it. For a detailed pictures of Lorenz invariant manifolds
consult Vol II of Jackson [2.21]. Lorenz attractor is a very
thin fractal – as we saw, stable manifold thickness is of order
10−4 – whose fractal structure has been accurately resolved
by D. Viswanath [2.23, 24]. If you wander what analytic
function theory has to say about Lorenz, check Ref. [2.25].
Refs. [2.26, 27] might also be of interest. (continued in Re-
mark 9.2)

2.4 Diagnosing chaos. In Section 1.3.1 we have stated
that a deterministic system exhibits ‘chaos’ if its trajectories
are locally unstable (positive Lyapunov exponent) and glob-
ally mixing (positive entropy). In Section 17.3 we shall define
Lyapunov exponents, and discuss their evaluation, but already
at this point it would be handy to have a few quick numerical
methods to diagnose chaotic dynamics. Laskar’s frequency
analysis method [2.28] is useful for extracting quasi-periodic
and weakly chaotic regions of state space in Hamiltonian dy-
namics with many degrees of freedom. For pointers to other
numerical methods, see Ref. [2.29].

2.5 Dynamical systems software: J.D. Meiss [2.30] has
maintained for many years Sci.nonlinear FAQ which is now
in part superseded by the SIAM Dynamical Systems web-
site www.dynamicalsystems.org. The website glossary
contains most of Meiss’s FAQ plus new ones, and a up-
to-date software list [2.31], with links to DSTool, xpp,
AUTO, etc.. Springer on-line Encyclopaedia of Mathemat-
ics maintains links to dynamical systems software packages
on eom.springer.de/D/d130210.htm. Kuznetsov [2.14] Ap-
pendix D.9 gives an exhaustive overview of software available
in 2004. (see also Remark 12.1)
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The exercises that you should do have underlined titles. The rest (smaller
type) are optional. Difficult problems are marked by any number of *** stars.

Exercises

(2.1) Trajectories do not intersect. A trajectory in the state
spaceM is the set of points one gets by evolving x ∈ M
forwards and backwards in time:

Cx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the
same curve.

(2.2) Evolution as a group. The trajectory evolution f t is a
one-parameter semigroup, where (2.3)

f t+s = f t ◦ f s .

Show that it is a commutative semigroup.

In this case, the commutative character of the (semi-
)group of evolution functions comes from the commuta-
tive character of the time parameter under addition. Can
you think of any other (semi-)group replacing time?

(2.3) Almost ODE’s.

(a) Consider the point x on R evolving according ẋ =
eẋ . Is this an ordinary differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ẋ = x(t + 1) ?

(2.4) All equilibrium points are fixed points. Show that
a point of a vector field v where the velocity is zero is a
fixed point of the dynamics f t.

(2.5) Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potential’ φ

ẋ = −∇φ(x)

where x ∈ Rd, and φ is a function from that space to the
reals R.

(a) Show that the velocity of the particle is in the di-
rection of most rapid decrease of the function φ.

(b) Show that all extrema of φ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for the
system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

(2.6) Runge-Kutta integration. Implement the fourth-
order Runge-Kutta integration formula (see, for example,
Ref. [2.32]) for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(δτ5)

k1 = δτ v(xn) , k2 = δτ v(xn + k1/2)

k3 = δτ v(xn + k2/2)

k4 = δτ v(xn + k3) .

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

(2.7) Rössler flow. Use the result of Exercise 2.6 or some
other integration routine to integrate numerically the
Rössler flow (2.17). Does the result look like a ‘strange
attractor’?

(2.8) Equilibria of the Rössler flow.

(a) Find all equilibrium points (xq, yq, zq) of the
Rössler system (2.17). How many are there?

(b) Assume that b = a. As we shall see, some surpris-
ingly large, and surprisingly small numbers arise
in this system. In order to understand their size,
introduce parameters

ε = a/c , D = 1 − 4ε2 , p± = (1 ±
√

D)/2 .

Express all the equilibria in terms of (c, ε,D, p±).
Expand equilibria to the first order in ε. Note that
it makes sense because for a = b = 0.2, c = 5.7 in
(2.17), ε ≈ 0.03. (continued as Exercise 3.1)

(Rytis Paškauskas)

(2.9) Can you integrate me? Integrating equations
numerically is not for the faint of heart. It is not al-
ways possible to establish that a set of nonlinear ordi-
nary differential equations has a solution for all times and
there are many cases were the solution only exists for a
limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .
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(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer
this question?

(b) Let’s test the integrator you wrote in Exercise 2.6.
The equation ẍ = −x with initial conditions x(0) =
2 and ẋ = 0 has as solution x(t) = e−t(1 + e2 t) .
Can your integrator reproduce this solution for the
interval t ∈ [0, 10]? Check you solution by plotting
the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

...
x +0.6ẍ + ẋ − |x| + 1 = 0 ,

which can be checked–numerically–to be chaotic.
As initial conditions we will always use ẍ(0) =
ẋ(0) = x(0) = 0 . Can you reproduce the re-
sult x(12) = 0.8462071873 (all digits are signifi-
cant)? Even though the equation being integrated
is chaotic, the time intervals are not long enough
for the exponential separation of trajectories to be
noticeable (the exponential growth factor is ≈ 2.4).

(d) Determine the time interval for which the solution
of ẋ = x2, x(0) = 1 exists.

(2.10) Classical collinear helium dynamics. In order to ap-
ply periodic orbit theory to quantization of helium we
shall need to compute classical periodic orbits of the he-

lium system. In this exercise we commence their evalua-
tion for the collinear helium atom (7.6)

H =
1
2

p2
1 +

1
2

p2
2 −

Z
r1
− Z

r2
+

1
r1 + r2

.

The nuclear charge for helium is Z = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics
can be visualized as a motion in the (r1, r2), ri ≥ 0 quad-
rant. In (r1, r2)-coordinates the potential is singular for
ri → 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in Section 6.3. In the transformed coor-
dinates (x1, x2, p1, p2) the Hamiltonian equations of mo-
tion take the form

Ṗ1 = 2Q1

[
2 −

P2
2

8
− Q2

2(1 +
Q2

2

R4
)

]
Ṗ2 = 2Q2

[
2 −

P2
1

8
− Q2

1(1 +
Q2

1

R4
)

]
Q̇1 =

1
4

P1Q2
2 , Q̇2 =

1
4

P2Q2
1 . (2.20)

where R = (Q2
1 + Q2

2)1/2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of Exercise 2.6
(or whatever integration routine you like). A con-
venient way to visualize the 3−d state space orbit
is by projecting it onto the 2−d (r1(t), r2(t)) plane.
(continued as Exercise 3.4)

(Gregor Tanner, Per Rosenqvist)
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3.1 Poincaré sections 45

3.2 Constructing a Poincaré section 50
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(R. Mainieri and P. Cvitanović)

The time parameter in the definition of a dynamical system can be either
continuous or discrete (Section 2.1). Discrete time dynamical systems
arise naturally from flows; in the Poincaré section method one records

the coordinates of a trajectory whenever a special event happens. This trigger-
ing event can be as simple as vanishing of one of the coordinates, or as compli-
cated as the trajectory cutting through a curved hypersurface. No information
about the flow is lost by reducing it to the set of its Poincaré section points
and the return maps connecting them; the full space trajectory can always be
reconstructed by integration from the nearest point in the section.

Reduction of a continuous time flow to its Poincaré section is a powerful
visualization tool. But, as we shall see in Chapter 10, the method of sections
is much deeper than that - to fully unravel the geometry of a chaotic flow,
one has to reduce all of its symmetries, and evolution in time is one of these
symmetries.

3.1 Poincaré sections

Successive trajectory intersections with a Poincaré section, a (d − 1)-dimens-
ional hypersurface embedded in the d-dimensional state space M, Fig. 3.1,
define the Poincaré return map P(x), a (d − 1)-dimensional map of form

x′ = P(x) = f τ(x)(x) , x′, x ∈ P . (3.1)

Here the first return function τ(x)–sometimes referred to as the ceiling function–
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U(x)=0

x(t)

U’

x3
z

x1

x2

x4

Fig. 3.1 A x(t) trajectory that intersects a
Poincaré section P at times t1 , t2 , t3, t4, and
closes a cycle (x1 , x2, x3 , x4), xk = x(tk) ∈ P
of topological length 4 with respect to this
section. Note that the intersections are not
normal to the section, and that the crossing
z does not count, as it in the wrong direction.

is the time of flight to the next section for a trajectory starting at x. The choice
of the section hypersurface P is altogether arbitrary. It is rarely possible to
define a single section that cuts across all trajectories of interest. In practice
one often needs only a local section–a finite hypersurface of codimension 1
intersected by a swarm of trajectories near to the trajectory of interest. The
hypersurface can be specified implicitly through a function U(x) that is zero
whenever a point x is on the Poincaré section,

x ∈ P iff U(x) = 0 . (3.2)

The gradient of U(x) evaluated at x ∈ P serves a two-fold function. First, the
flow should pierce the hypersurfaceP, rather than being tangent to it. A nearby
point x + δx is in the hypersurface P if U(x + δx) = 0. A nearby point on the
trajectory is given by δx = vδt, so a traversal is ensured by the transversality



46 CHAPTER 3. DISCRETE TIME DYNAMICS

condition

(v · ∇U) =
d∑

j=1

v j(x) ∂ jU(x) � 0 , ∂ jU(x) =
∂

∂x j
U(x) , x ∈ P . (3.3)

Second, the gradient ∇U defines the orientation of the hypersurface P. The
flow is oriented as well, and a periodic orbit can pierce P twice, traversing it
in either direction, as in Fig. 3.1. Hence the definition of Poincaré return map
P(x) needs to be supplemented with the orientation condition

xn+1 = P(xn) , U(xn+1) = U(xn) = 0 , n ∈ Z+
d∑

j=1

v j(xn) ∂ jU(xn) > 0 . (3.4)

In this way the continuous time t flow x(t) = f t(x) is reduced to a discrete time
n sequence xn of successive oriented trajectory traversals of P.

chapter 17
With a sufficiently clever choice of a Poincaré section or a set of sections,

any orbit of interest intersects a section. Depending on the application, one
might need to convert the discrete time n back to the continuous flow time.
This is accomplished by adding up the first return function times τ(x n), with
the accumulated flight time given by

tn+1 = tn + τ(xn) , t0 = 0 , xn ∈ P . (3.5)

Other quantities integrated along the trajectory can be defined in a similar

Fig. 3.2 Some examples of 3-disk cycles: (a)
12123 and 13132 are mapped into each other
by the flip across 1 axis. Similarly (b) 123
and 132 are related by flips, and (c) 1213,
1232 and 1323 by rotations. (d) The cycles
121212313 and 121212323 are related by ro-
tation and time reversal. These symmetries
are discussed in Chapter 9. (From Ref. [3.1])

manner, and will need to be evaluated in the process of evaluating dynamical
averages.

A few examples may help visualize this.

Example 3.1 Hyperplane P:
The simplest choice of a Poincaré section is a plane P specified by a point (located

at the tip of the vector r0) and a direction vector a perpendicular to the plane. A point
x is in this plane if it satisfies the condition

U(x) = (x − r0) · a = 0 . (3.6)

Consider a circular periodic orbit centered at r0, but not lying in P. It pierces the
hyperplane twice; the (v · a) > 0 traversal orientation condition (3.4) ensures that the
first return time is the full period of the cycle. (continued in Example 12.1)

The above flat hyperplane is an ad hoc construct; one Poincaré section rarely
suffices to capture all of the dynamics of interest. A more insightful picture of
the dynamics is obtained by partitioning the state space into N qualitatively
distinct regions {M1,M2, . . . ,MN} and constructing a Poincaré section P s per
region. The d-dimensional flow is thus reduced reduced to composition

section 11.1

Psn←sn−1 ◦ · · · ◦ Ps2←s1 ◦ Ps1←s0

of a set of (d−1)-dimensional maps

Psn+1←sn : xn �→ xn+1 , s ∈ {1, 2, . . . ,N} (3.7)
maps - 21mar2011 ChaosBook.org version13.5, Sep 7 2011
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that map the coordinates of Poincaré section P sn to those of Psn+1 , the next
section traversed by a given trajectory.

A return map Ps0 from section Ps0 to itself now has a contribution from any
admissible (i.e., there exist trajectories that traverse regionsM s0 → Ms1 →
· · · → Msn → Ms0 in the same temporal sequence) periodic sequence of
compositions

Ps0 s1···sn−1 = Ps0←sn−1 ◦ · · · ◦ Ps2←s1 ◦ Ps1←s0 (3.8)

The next example offers an unambiguous set of such Poincaré sections which
chapter 11

do double duty, providing us both with an exact representation of dynamics in
terms of maps, and with a covering symbolic dynamics, a subject that will will
return to in Chapter 11.

s1

φ1

s2

a

φ1

Fig. 3.3 Poincaré section coordinates for the
3-disk game of pinball.

Example 3.2 Pinball game, Poincaré dissected.
A phase space orbit is fully specified by its position and momentum at a given

instant, so no two distinct phase space trajectories can intersect. The configuration
space trajectories, however, can and do intersect, in rather unilluminating ways, as
e.g. in Fig. 3.2 (d), and it can be rather hard to perceive the systematics of orbits
from their configuration space shapes. The problem is that we are looking at the
projections of a 4−d state space trajectories onto a 2−d configuration subspace. A
much clearer picture of the dynamics is obtained by constructing a set of state space
Poincaré sections.
Suppose that the pinball has just bounced off disk 1. Depending on its position and
outgoing angle, it could proceed to either disk 2 or 3. Not much happens in between
the bounces–the ball just travels at constant velocity along a straight line–so we can
reduce the 4−d flow to a 2−d map Pσk←σ j that maps the coordinates (Poincaré section
Pk) of the pinball from one disk edge to another. Just after the moment of impact

p sin φ1

s1

p sin φ2

s2

p sin φ3

s3

(s1,p1)

(s2,p2)

(s3,p3)

Fig. 3.4 Collision sequence (s1, p1) �→
(s2 , p2) �→ (s3, p3) from the boundary of
a disk to the boundary of the next disk is
coded by the Poincaré sections maps se-
quence P3←2P2←1.

the trajectory is defined by sn, the arc-length position of the nth bounce along the
billiard wall, and pn = p sinφn the momentum component parallel to the billiard
wall at the point of impact, Fig. 3.3. These coordinates (due to Birkhoff) are smart,
as they conserve the phase space volume. Trajectories originating from one disk can
hit either of the other two disks, or escape without further ado. We label the survivor
state space regions P12, P13. In terms of the three Poincaré sections, one for each
disk, the dynamics is reduced to the set of six maps

Pσn+1←σn : (sn, pn) �→ (sn+1, pn+1) , σ ∈ {1, 2, 3} (3.9)

from the boundary of the disk j to the boundary of the next disk k, Fig. 3.4. The
explicit form of this map is easily written down, see Chapter 8, but much more eco-
nomical is the symmetry quotiented version of Chapter 9 which replaces the above 6

chapter 9

maps by a return map pair P0, P1.

chapter 8

Embedded within P12, P13 are four strips P121, P123, P131, P132 of initial con-
ditions that survive two bounces, and so forth. Provided that the disks are suffi-
ciently separated, after n bounces the survivors are labeled by 2n distinct itineraries
σ1σ2σ3 . . . σn.

Billiard dynamics is exceptionally simple - free flight segments, followed
by specular reflections at boundaries, thus billiard boundaries are the obvious
choice as Poincaré sections. What about smooth, continuous time flows, with
no obvious surfaces that would fix the choice of Poincaré sections?
ChaosBook.org version13.5, Sep 7 2011 maps - 21mar2011
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Fig. 3.5 (Right:) a sequence of Poincaré sec-
tions of the Rössler strange attractor, defined
by planes through the z axis, oriented at an-
gles (a) −60o (b) 0o, (c) 60o, (d) 120o , in the
x-y plane. (Left:) side and x-y plane view of
a typical trajectory with Poincaré sections su-
perimposed. (R. Paškauskas)
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Example 3.3 Pendulum:
The phase space of a simple pendulum is 2−d: momentum on the vertical axis and
position on the horizontal axis. We choose the Poincaré section to be the positive
horizontal axis. Now imagine what happens as a point traces a trajectory through
this phase space. As long as the motion is oscillatory, in the pendulum all orbits
are loops, so any trajectory will periodically intersect the line, that is the Poincaré
section, at one point.
Consider next a pendulum with friction, such as the unforced Duffing system plotted
in Fig. 2.4. Now every trajectory is an inward spiral, and the trajectory will intersect
the Poincaré section y = 0 at a series of points that get closer and closer to either of
the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a
piece of paper. The next example offers a better illustration of the utility of
visualization of dynamics by means of Poincaré sections.

Example 3.4 Rössler flow:
(continued from Example 2.3) Consider Fig. 2.6, a typical trajectory of the 3−d

Rössler flow (2.17). It wraps around the z axis, so a good choice for a Poincaré
section is a plane passing through the z axis. A sequence of such Poincaré sections
placed radially at increasing angles with respect to the x axis, Fig. 3.5, illustrates the
‘stretch & fold’ action of the Rössler flow, by assembling these sections into a series
of snapshots of the flow. A line segment in (a), traversing the width of the attractor
at y = 0, x > 0 section, starts out close to the x-y plane, and after the stretching (a)→
(b) followed by the folding (c)→ (d), the folded segment returns (d)→ (a) close to
the initial segment, strongly compressed. In one Poincaré return the interval is thus
stretched, folded and mapped onto itself, so the flow is expanding. It is also mixing,
as in one Poincaré return a point from the interior of the attractor can map onto the
outer edge, while an edge point lands in the interior.
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Fig. 3.6 Return maps for the rn → rn+1 radial
distance Poincaré sections of Fig. 3.5. (R.
Paškauskas)

Once a particular Poincaré section is picked, we can also exhibit the return map (3.1),
as in Fig. 3.6. Cases (a) and (d) are examples of nice 1-to-1 return maps. However,
(b) and (c) appear multimodal and non-invertible, artifacts of projection of a 2−d
return map (rn, zn) → (rn+1, zn+1) onto a 1−d subspace rn → rn+1. (continued in
Example 3.6)

fast track

Section 3.3, p. 52

The above examples illustrate why a Poincaré section gives a more infor-
mative snapshot of the flow than the full flow portrait. For example, while the
full flow portrait of the Rössler flow Fig. 2.6 gives us no sense of the thickness
of the attractor, we see clearly in the Poincaré sections of Fig. 3.5 that even
though the return map is 2−d→ 2−d, the flow contraction is so strong that for
all practical purposes it renders the return map 1−d.

3.1.1 What’s the best Poincaré section?

In practice, picking sections is a dark and painful art, especially for high-dim-
ensional flows where the human visual cortex falls short. It helps to understand
why we need them in the first place.

Whenever a system has a continuous symmetry G, any two solutions related
by the symmetry are equivalent, so it would be stupid to keep recomputing
them over and over. We would rather replace the whole continuous family of
solutions by one.

A smart way to do would be to replace dynamics (M, f ) by dynamics on
the quotient state space (M/G, f̃ ). We will discuss this in Chapter 9, but in

chapter 9
general constructing explicit quotient state space flow f̃ appears either difficult,
or not appreciated enough to generate much readable literature, or perhaps
impossible. So one resorts to method of sections.

Time evolution itself is a 1-parameter abelian Lie group, albeit a highly
nontrivial one (otherwise this book would not be much of a doorstop). The
invariants of the flow are its infinite-time orbits; particularly useful invariants
are compact orbits such as equilibrium points, periodic orbits and tori. For any
orbit it suffices to pick a single state space point x ∈ M p, the rest of the orbit
is generated by the flow and its symmetries.

Choice of this one point is utterly arbitrary; in dynamics this is called a
“Poincaré section,” and in theoretical physics this goes by the exceptionally un-
informative name of “gauge fixing.” The price is that one generates “ghosts,”
or, in dynamics, increases the dimensionality of the state space by additional
ChaosBook.org version13.5, Sep 7 2011 maps - 21mar2011
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Fig. 3.7 (a) Lorenz flow Fig. 2.5 cut by y = x
Poincaré section plane P through the z axis
and both EQ1,2 equilibria. Points where flow
pierces into section are marked by dots. To
aid visualization of the flow near the EQ0
equilibrium, the flow is cut by the second
Poincaré section, P′, through y = −x and
the z axis. (b) Poincaré sections P and P′
laid side-by-side. The singular nature of these
sections close to EQ0 will be elucidated in
Example 4.7 and Fig. 11.8 (b). (E. Siminos) (a) (b)

constraints (see Section 13.4). It is a commonly deployed but inelegant proce-
dure where symmetry is broken for computational convenience, and restored
only at the end of the calculation, when all broken pieces are reassembled.

This said, there are a few rules of thumb to follow: (a) You can pick as
many sections as convenient. (b) For ease of computation, pick linear sec-
tions (3.6) if you can. (c) If equilibria play important role in organizing a flow,
pick sections that go through them (see Example 3.5). (c) If you have a global

chapter 9
discrete or continuous symmetry, pick sections left invariant by the symme-
try (see Example 9.10). (d) If you are solving a local problem, like finding
a periodic orbit, you do not need a global section. Pick a section or a set of
(multi-shooting) sections on the fly, requiring only that they are locally trans-
verse to the flow. (e) If you have another rule of thumb dear to you, let us
know.

Example 3.5 Sections of Lorenz flow:
(continued from Example 2.2) The plane P fixed by the x = y diagonal and the

z-axis depicted in Fig. 3.7 is a natural choice of a Poincaré section of the Lorenz flow
of Fig. 2.5, as it contains all three equilibria, xEQ0 = (0, 0, 0) and the (2.13) pair xEQ1 ,
xEQ2 . A section has to be supplemented with the orientation condition (3.4): here
points where flow pierces into the section are marked by dots.
xEQ1 , xEQ2 are centers of out-spirals, and close to them the section to EQ0 trajectories
pass the z-axis either by crossing the section P or staying on the viewer’s side. We
are free to deploy as many sections as we wish: in order to capture the whole flow
in this neighborhood we add the second Poincaré section, P′, through the y = −x
diagonal and the z-axis. Together the two sections, Fig. 3.7 (b), capture the whole
flow near EQ0. In contrast to Rössler sections of Fig. 3.5, these appear very singular.
We explain this singularity in Example 4.7, and postpone construction of a Poincaré
return map to Example 9.10. (E. Siminos and J. Halcrow)

3.2 Constructing a Poincaré section

For almost any flow of physical interest a Poincaré section is not available
in analytic form. We describe now a numerical method for determining a
Poincaré section.

remark 3.1
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Consider the system (2.6) of ordinary differential equations in the vector
variable x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.10)

where the flow velocity v is a vector function of the position in state space x and
the time t. In general, v cannot be integrated analytically, so we will have to
resort to numerical integration to determine the trajectories of the system. Our
task is to determine the points at which the numerically integrated trajectory
traverses a given hypersurface. The hypersurface will be specified implicitly
through a function U(x) that is zero whenever a point x is on the Poincaré
section, such as the hyperplane (3.6).

If we use a tiny step size in our numerical integrator, we can observe the
value of U as we integrate; its sign will change as the trajectory crosses the
hypersurface. The problem with this method is that we have to use a very
small integration time step. In order to land exactly on the Poincaré section
one often interpolates the intersection point from the two trajectory points on
either side of the hypersurface. However, there is a better way.

Let ta be the time just before U changes sign, and tb the time just after it
changes sign. The method for landing exactly on the Poincaré section will be
to convert one of the space coordinates into an integration variable for the part
of the trajectory between ta and tb. Using

dxk

dx1

dx1

dt
=

dxk

dx1
v1(x, t) = vk(x, t) (3.11)

we can rewrite the equations of motion (3.10) as

dt
dx1
=

1
v1
, · · · , dxd

dx1
=

vd

v1
. (3.12)

Now we use x1 as the ‘time’ in the integration routine and integrate it from
x1(ta) to the value of x1 on the hypersurface, determined by the hypersurface
intersection condition (3.6). This is the end point of the integration, with no
need for any interpolation or backtracking to the surface of section. The x 1–
axis need not be perpendicular to the Poincaré section; any x i can be chosen
as the integration variable, provided the x i-axis is not parallel to the Poincaré
section at the trajectory intersection point. If the section crossing is transverse
(3.3), v1 cannot vanish in the short segment bracketed by the integration step
preceding the section, and the point on the Poincaré section.

Example 3.6 Computation of Rössler flow Poincaré sections.
(continued from Example 3.4) Poincaré sections of Fig. 3.5 are defined by the fixing
angle U(x) = θ − θ0 = 0. Convert Rössler equation (2.17) to cylindrical coordinates:

ṙ = υr = −z cos θ + ar sin2 θ

θ̇ = υθ = 1 +
z
r

sin θ +
a
2

sin 2θ

ż = υz = b + z(r cos θ − c) . (3.13)

In principle one should use the equilibrium x+ from (2.18) as the origin, and its
eigenvectors as the coordinate frame, but here original coordinates suffice, as for pa-
rameter values (2.17), and (x0, y0, z0) sufficiently far away from the inner equilibrium,
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θ increases monotonically with time. Integrate

dr
dθ
= υr/υθ ,

dt
dθ
= 1/υθ ,

dz
dθ
= υz/υθ (3.14)

from (rn, θn, zn) to the next Poincaré section at θn+1, and switch the integration back
to (x, y, z) coordinates. (continued in Example 4.1) (Radford Mitchell, Jr.)

3.3 Maps

Do it again!
—Isabelle, age 3

Though we have motivated discrete time dynamics by considering sections
of a continuous flow, there are many settings in which dynamics is inherently
discrete, and naturally described by repeated iterations of the same map

f :M→M ,

or sequences of consecutive applications of a finite set of maps,

{ fA, fB, . . . fZ} :M→M , (3.15)

for example maps relating different sections among a set of Poincaré sections.
The discrete ‘time’ is then an integer, the number of applications of a map. As
writing out formulas involving repeated applications of a set of maps explicitly
can be awkward, we streamline the notation by denoting a map composition
by ‘◦’

fZ(· · · fB( fA(x))) · · ·) = fZ ◦ · · · fB ◦ fA(x) , (3.16)

and the nth iterate of map f by

f n(x) = f ◦ f n−1(x) = f
(

f n−1(x)
)
, f 0(x) = x .

The trajectory of x is the finite set of points
section 2.1
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Fig. 3.8 A flow x(t) of Fig. 3.1 repre-
sented by a Poincaré return map that maps
points in the Poincaré section P as xn+1 =

f (xn) . In this example the orbit of x1 is peri-
odic and consists of the four periodic points
(x1 , x2 , x3 , x4).

{
x, f (x), f 2(x), . . . , f n(x)

}
,

traversed in time n, and the orbit of x is the subset of all points ofM that can
be reached by iterations of f . A periodic point (cycle point) x k belonging to a
periodic orbit (cycle) of period n is a real solution of

f n (xk) = f ( f (. . . f (xk) . . .)) = xk , k = 0, 1, 2, . . . , n − 1 . (3.17)

For example, the orbit of x1 in Fig. 3.8 is the 4-cycle (x1, x2, x3, x4) .
The functional form of such Poincaré return maps P as Fig. 3.6 can be ap-

proximated by tabulating the results of integration of the flow from x to the
first Poincaré section return for many x ∈ P, and constructing a function that
interpolates through these points. If we find a good approximation to P(x),
we can get rid of numerical integration altogether, by replacing the continuous
maps - 21mar2011 ChaosBook.org version13.5, Sep 7 2011



3.3. MAPS 53

time trajectory f t(x) by iteration of the Poincaré return map P(x). Construct-
ing accurate P(x) for a given flow can be tricky, but we can already learn much
from approximate Poincaré return maps. Multinomial approximations

Pk(x) = ak +

d∑
j=1

bk jx j +

d∑
i, j=1

cki jxix j + . . . , x ∈ P (3.18)

to Poincaré return maps⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1,n+1

x2,n+1

. . .
xd,n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1(xn)
P2(xn)
. . .

Pd(xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , xn, xn+1 ∈ P

motivate the study of model mappings of the plane, such as the Hénon map.

Example 3.7 Hénon map:
The map

xn+1 = 1 − ax2
n + byn

yn+1 = xn (3.19)

is a nonlinear 2−d map most frequently employed in testing various hunches about
chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence rela-
tion

xn+1 = 1 − ax2
n + bxn−1 . (3.20)

An n-step recurrence relation is the discrete-time analogue of an nth order differen-

xt-1

x
t

 -1.5   1.50.0

 -1.5

  1.5

0.0

0
1
1
1
0
1
0

0011101

1110100

1001110
1010011

0100111

1
1
0
1
0
0
1

Fig. 3.9 The strange attractor and an unstable
period 7 cycle of the Hénon map (3.19) with
a = 1.4, b = 0.3. The periodic points in the
cycle are connected to guide the eye. (from
K.T. Hansen [3.2])

tial equation, and it can always be replaced by a set of n 1-step recurrence relations.
The Hénon map is the simplest map that captures the ‘stretch & fold’ dynamics
of return maps such as Rössler’s, Fig. 3.5. It can be obtained by a truncation of a
polynomial approximation (3.18) to a Poincaré return map (3.18) to second order.
A quick sketch of the long-time dynamics of such a mapping (an example is depicted
in Fig. 3.9), is obtained by picking an arbitrary starting point and iterating (3.19) on
a computer. We plot here the dynamics in the (xn, xn+1) plane, rather than in the
(xn, yn) plane, because we think of the Hénon map as a model return map xn → xn+1.
As we shall soon see, periodic orbits will be key to understanding the long-time

exercise 3.5

dynamics, so we also plot a typical periodic orbit of such a system, in this case an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
Section 27.1, and the periodic point labels 0111010, 1110100, · · · in Section 12.2.

Example 3.8 Lozi map:
Another example frequently employed is the Lozi map, a linear, ‘tent map’ version
of the Hénon map (3.19) given by

xn+1 = 1 − a|xn| + byn

yn+1 = xn . (3.21)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very
helpful tool for developing intuition about the topology of a large class of maps of
the ‘stretch & fold’ type.

ChaosBook.org version13.5, Sep 7 2011 maps - 21mar2011
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What we get by iterating such maps is–at least qualitatively–not unlike what
we get from Poincaré section of flows such as the Rössler flow Fig. 3.6. For
an arbitrary initial point this process might converge to a stable limit cycle,
to a strange attractor, to a false attractor (due to roundoff errors), or diverge.
In other words, mindless iteration is essentially uncontrollable, and we will
need to resort to more thoughtful explorations. As we shall explain in due

exercise 3.5
course, strategies for systematic exploration rely on stable/unstable manifolds,
periodic points, saddle-straddle methods and so on.

Example 3.9 Parabola:
For sufficiently large value of the stretching parameter a, one iteration of the Hénon
map (3.19) stretches and folds a region of the (x, y) plane centered around the origin.
The parameter a controls the amount of stretching, while the parameter b controls

the thickness of the folded image through the ‘1-step memory’ term bxn−1 in (3.20).
In Fig. 3.9 the parameter b is rather large, b = 0.3, so the attractor is rather thick, with
the transverse fractal structure clearly visible. For vanishingly small b the Hénon
map reduces to the 1−d quadratic map

xn+1 = 1 − ax2
n . (3.22)

By setting b = 0 we lose determinism, as on reals the inverse of map (3.22) has two
exercise 3.6

preimages {x+n−1, x−n−1} for most xn. If Bourbaki is your native dialect: the Hénon map
is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still,
this 1−d approximation is very instructive. (continued in Example 11.5)

As we shall see in Section 11.3, an understanding of 1−d dynamics is in-
deed the essential prerequisite to unraveling the qualitative dynamics of many
higher-dimensional dynamical systems. For this reason many expositions of
the theory of dynamical systems commence with a study of 1−d maps. We
prefer to stick to flows, as that is where the physics is.

appendix C.8

Résumé

In recurrent dynamics a trajectory exits a region in state space and then reen-
ters it infinitely often, with a finite mean return time. If the orbit is periodic, it
returns after a full period. So, on average, nothing much really happens along
the trajectory–what is important is behavior of neighboring trajectories trans-
verse to the flow. This observation motivates a replacement of the continuous
time flow by iterative mapping, the Poincaré return map.

The visualization of strange attractors is greatly facilitated by a felicitous
choice of Poincaré sections, and the reduction of flows to Poincaré return
maps. This observation motivates in turn the study of discrete-time dynam-
ical systems generated by iterations of maps.

A particularly natural application of the Poincaré section method is the re-
duction of a billiard flow to a boundary-to-boundary return map, described in
Chapter 8. As we shall show in Chapter 6, further simplification of a Poincaré

chapter 8

chapter 6
return map, or any nonlinear map, can be attained through rectifying these
maps locally by means of smooth conjugacies.

In truth, as we shall see in Chapter 10, the reduction of a continuous time
flow by the method of Poincaré sections is much deeper than that - to make
maps - 21mar2011 ChaosBook.org version13.5, Sep 7 2011
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sense of an ergodic flow, all of its continuous symmetries must be reduced,
evolution in time being one of these symmetries.

Further reading

3.1 Determining a Poincaré section. The trick described in
Section 3.2 is due to Hénon [3.3–5]. The idea of changing the
integration variable from time to one of the coordinates, al-
though simple, avoids the alternative of having to interpolate
the numerical solution to determine the intersection.

3.2 Hénon, Lozi maps. The Hénon map is of no particular
physical import in and of itself–its significance lies in the
fact that it is a minimal normal form for modeling flows near
a saddle-node bifurcation, and that it is a prototype of the
stretching and folding dynamics that leads to deterministic
chaos. It is generic in the sense that it can exhibit arbitrarily
complicated symbolic dynamics and mixtures of hyperbolic
and non–hyperbolic behaviors. Its construction was motivated
by the best known early example of ‘deterministic chaos’, the
Lorenz equation, see Example 2.2 and Remark 2.3.
Hénon’s and Lorenz’s original papers can be found in reprint
collections Refs. [3.7, 8]. They are a pleasure to read, and are
still the best introduction to the physics motivating such mod-

els. The rigorous proof of the existence of Hénon attractor
is due to Benedicks and Carleson [3.9]. A detailed descrip-
tion of the dynamics of the Hénon map is given by Mira and
coworkers [3.10–12], as well as very many other authors.
The Lozi map [3.13] is particularly convenient in investigat-
ing the symbolic dynamics of 2−d mappings. Both the Lorenz
and Lozi systems are uniformly smooth systems with singu-
larities. The existence of the attractor for the Lozi map was
proven by M. Misiurewicz [3.14], and the existence of the
SRB measure was established by L.-S. Young [3.15].

3.3 Grasshoppers vs. butterflies. The ’sensitivity to initial
conditions’ was discussed by Maxwell, then 30 years later by
Poincaré. In weather prediction, the Lorentz’ ‘Butterfly Ef-
fect’ started its journey in 1898, as a ‘Grasshopper Effect’ in
a book review by W. S. Franklin [3.16]. In 1963 Lorenz as-
cribed a ‘seagull effect’ to an unnamed meteorologist, and in
1972 he repackaged it as the ‘Butterfly Effect’.
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Exercises

(3.1) Poincaré sections of the Rössler flow.

(continuation of Exercise 2.8) Calculate numerically a
Poincaré section (or several Poincaré sections) of the
Rössler flow. As the Rössler flow state space is 3D, the
flow maps onto a 2D Poincaré section. Do you see that
in your numerical results? How good an approximation
would a replacement of the return map for this section by
a 1−d map be? More precisely, estimate the thickness of
the strange attractor. (continued as Exercise 4.4)

(R. Paškauskas)

(3.2) A return Poincaré map for the Rössler flow. (con-
tinuation of Exercise 3.1) That Poincaré return maps
of Fig. 3.6 appear multimodal and non-invertible is an
artifact of projections of a 2−d return map (Rn, zn) →
(Rn+1, zn+1) onto a 1−d subspace Rn → Rn+1.

Construct a genuine sn+1 = f (sn) return map by parame-
trazing points on a Poincaré section of the attractor
Fig. 3.5 by a Euclidean length s computed curvilinearly
along the attractor section.

This is best done (using methods to be developed in what
follows) by a continuation of the unstable manifold of the
1-cycle embedded in the strange attractor, Fig. 13.2 (b).
(P. Cvitanović)

(3.3) Arbitrary Poincaré sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equation U(x) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

dxk

ds
= κ fk , (3.23)

with dt/ds = κ, and choosing κ to be 1 or 1/ f1.
This allows one to switch between t and x1 as the
integration ’time.’

(b) Introduce an extra dimension xn+1 into your system
and set

xn+1 = U(x) . (3.24)

How can this be used to find a Poincaré section?

(3.4) Classical collinear helium dynamics.

(continuation of Exercise 2.10) Make a Poincaré surface
of section by plotting (r1, p1) whenever r2 = 0: Note that
for r2 = 0, p2 is already determined by (7.6). Compare
your results with Fig. 6.3 (b).

(Gregor Tanner, Per Rosenqvist)

(3.5) Hénon map fixed points. Show that the two fixed
points (x0, x0), (x1, x1) of the Hénon map (3.19) are given
by

x0 =
−(1 − b) −

√
(1 − b)2 + 4a

2a
,

x1 =
−(1 − b) +

√
(1 − b)2 + 4a

2a
.

(3.6) Fixed points of maps. A continuous function F is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity of F to show that a 1−d contrac-
tion F of the interval [0, 1] has at least one fixed
point.

(b) In a uniform (hyperbolic) contraction the slope of
F is always smaller than one, |F′| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?
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(R. Mainieri and P. Cvitanović)

So far we have concentrated on description of the trajectory of a single ini-
tial point. Our next task is to define and determine the size of a neighbor-
hood of x(t). We shall do this by assuming that the flow is locally smooth,

and describe the local geometry of the neighborhood by studying the flow lin-
earized around x(t). Nearby points aligned along the stable (contracting) di-
rections remain in the neighborhood of the trajectory x(t) = f t(x0); the ones to
keep an eye on are the points which leave the neighborhood along the unsta-
ble directions. As we shall demonstrate in Chapter 18, in hyperbolic systems
what matters are the expanding directions. The repercussion are far-reaching:
As long as the number of unstable directions is finite, the same theory applies
to finite-dimensional ODEs, state space volume preserving Hamiltonian flows,
and dissipative, volume contracting infinite-dimensional PDEs.

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods. The deformation of an infinitesimal neighborhood is best un-
derstood by considering a trajectory originating near x 0 = x(0) with an initial
infinitesimal displacement δx(0), and letting the flow transport the displace-
ment δx(t) along the trajectory x(x0, t) = f t(x0).

4.1.1 Instantaneous shear

The system of linear equations of variations for the displacement of the in-
finitesimally close neighbor x + δx follows from the flow equations (2.6) by
Taylor expanding to linear order

ẋi + δ̇xi = vi(x + δx) ≈ vi(x) +
∑

j

∂vi

∂x j
δx j .

The infinitesimal displacement δx is thus transported along the trajectory x(x 0, t),
with time variation given by

d
dt
δxi(x0, t) =

∑
j

∂vi

∂x j
(x)

∣∣∣∣∣∣
x=x(x0,t)

δx j(x0, t) . (4.1)

As both the displacement and the trajectory depend on the initial point x 0 and
the time t, we shall often abbreviate the notation to x(x0, t) → x(t) → x,
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δxi(x0, t)→ δxi(t)→ δx in what follows. Taken together, the set of equations

ẋi = vi(x) , δ̇xi =
∑

j

Ai j(x)δx j (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by ad-
δ t

Fig. 4.1 A swarm of neighboring points of
x(t) is instantaneously sheared by the action
of the stability matrix A - a bit hard to draw.

joining the d-dimensional tangent space δx ∈ TM x to every point x ∈ M in
the d-dimensional state spaceM ⊂ Rd. The stability matrix (velocity gradients
matrix)

Ai j(x) =
∂vi(x)
∂x j

(4.3)

describes the instantaneous rate of shearing of the infinitesimal neighborhood
of x(t) by the flow, Fig. 4.1.

Example 4.1 Rössler and Lorenz flows, linearized:
(continued from Example 3.6) For the Rössler (2.17) and Lorenz (2.12) flows the
stability matrices are, respectively

ARoss =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 −1 −1
1 a 0
z 0 x − c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ALor =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ −σ σ 0
ρ − z −1 x

y x −b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.4)

(continued in Example 4.6)

4.1.2 Linearized flow
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Fig. 4.2 The Jacobian matrix Jt maps an in-
finitesimal displacement at x0 into a displace-
ment rotated and sheared by the linearized
flow Jacobian matrix Jt(x0) finite time t later.

Taylor expanding a finite time flow to linear order,

f t
i (x0 + δx) = f t

i (x0) +
∑

j

∂ f t
i (x0)

∂x0 j
δx j + · · · , (4.5)

one finds that the linearized neighborhood is transported by

δx(t) = Jt(x0)δx0 , Jt
i j(x0) =

∂xi(t)
∂x j

∣∣∣∣∣∣
x=x0

. (4.6)

This Jacobian matrix is sometimes referred to as the fundamental solution ma-
trix or simply fundamental matrix, a name inherited from the theory of linear
ODEs. It is also sometimes called the Fréchet derivative of the nonlinear map-
ping f t(x). It is often denoted D f , but for our needs (we shall have to sort
through a plethora of related Jacobian matrices) matrix notation J is more eco-
nomical. J describes the deformation of an infinitesimal neighborhood at finite
time t in the co-moving frame of x(t).

As this is a deformation in the linear approximation, one can think of it as a
deformation of an infinitesimal sphere enveloping x 0 into an ellipsoid around
x(t), described by the eigenvectors and eigenvalues of the Jacobian matrix of
the linearized flow, Fig. 4.2. Nearby trajectories separate along the unstable
directions, approach each other along the stable directions, and change their
distance along the marginal directions at a rate slower than exponential, corre-
sponding to the eigenvalues of the Jacobian matrix with magnitude larger than,
smaller than, or equal 1. In the literature adjectives neutral or indifferent are
stability - 27jun2011 ChaosBook.org version13.5, Sep 7 2011
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often used instead of ‘marginal,’ (attracting) stable directions are sometimes
called ‘asymptotically stable,’ and so on.

One of the preferred directions is what one might expect, the direction of the
flow itself. To see that, consider two initial points along a trajectory separated
by infinitesimal flight time δt: δx0 = f δt(x0) − x0 = v(x0)δt. By the semigroup
property of the flow, f t+δt = f δt+t , where

f δt+t(x0) =
∫ δt+t

0
dτ v(x(τ)) + f t(x0) = δt v(x(t)) + f t(x0) .

Expanding both sides of f t( f δt(x0)) = f δt( f t(x0)), keeping the leading term in
δt, and using the definition of the Jacobian matrix (4.6), we observe that J t(x0)
transports the velocity vector at x0 to the velocity vector at x(t) at time t:

v(x(t)) = Jt(x0) v(x0) . (4.7)

In nomenclature of page 60, the Jacobian matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinate frame.

The velocity at point x(t) in general does not point in the same direction
as the velocity at point x0, so this is not an eigenvalue condition for J t; the
Jacobian matrix computed for an arbitrary segment of an arbitrary trajectory
has no invariant meaning.

δ  x
x(T) = x(0)

Fig. 4.3 Any two points along a periodic orbit
p are mapped into themselves after one cycle
period T , hence a longitudinal displacement
δx = v(x0)δt is mapped into itself by the cycle
Jacobian matrix Jp .

As the eigenvalues of finite time J t have invariant meaning only for periodic
orbits, we postpone their interpretation to Chapter 5. However, already at this
stage we see that if the orbit is periodic, x(T p) = x(0), at any point along cycle
p the velocity v is an eigenvector of the Jacobian matrix J p = JTp with a unit
eigenvalue,

Jp(x) v(x) = v(x) , x ∈ Mp . (4.8)

Two successive points along the cycle separated by δx0 have the same sepa-
ration after a completed period δx(T p) = δx0, see Fig. 4.3, hence eigenvalue
1.

As we started by assuming that we know the equations of motion, from
(4.3) we also know stability matrix A, the instantaneous rate of shear of an
infinitesimal neighborhood δxi(t) of the trajectory x(t). What we do not know
is the finite time deformation (4.6).

Our next task is to relate the stability matrix A to Jacobian matrix J t. On the
level of differential equations the relation follows by taking the time derivative
of (4.6) and replacing δ̇x by (4.2)

δ̇x(t) = J̇t δx0 = A δx(t) = AJt δx0 .

Hence the d2 matrix elements of Jacobian matrix satisfy ‘tangent linear equa-
tions,’ the linearized equations (4.1)

d
dt

Jt(x0) = A(x) Jt(x0) , initial condition J0(x0) = 1 . (4.9)

Given a numerical routine for integrating the equations of motion, evaluation
of the Jacobian matrix requires minimal additional programming effort; one
simply extends the d-dimensional integration routine and integrates concur-
rently with f t(x) the d2 elements of Jt(x0).
ChaosBook.org version13.5, Sep 7 2011 stability - 27jun2011
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The qualifier ‘simply’ is perhaps too glib. Integration will work for short
finite times, but for exponentially unstable flows one quickly runs into numer-
ical over- and/or underflow problems, so further thought will have to go into
implementation this calculation.

So now we know how to compute Jacobian matrix J t given the stability
matrix A, at least when the d2 extra equations are not too expensive to compute.
Mission accomplished.

fast track

Chapter 7, p. 103

And yet... there are mopping up operations left to do. We persist until
we derive the integral formula (4.37) for the Jacobian matrix, an analogue of
the finite-time “Green function” or “path integral” solutions of other linear
problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a
sufficiently small neighborhood it is essentially linear. Hence the next section,
which might seem an embarrassment (what is a section on linear flows doing
in a book on nonlinear dynamics?), offers a firm stepping stone on the way
to understanding nonlinear flows. If you know your eigenvalues and eigen-
vectors, you may prefer to fast forward here.

fast track

Section 4.3, p. 66

4.2 Linear flows

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described by linear differential
equations which can be solved explicitly, with solutions that are good for all
times. The state space for linear differential equations is M = Rd, and the
equations of motion (2.6) are written in terms of a vector x and a constant
stability matrix A as

ẋ = v(x) = Ax . (4.10)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through the point x0. If x(t) is a solution with x(0) = x0 and y(t) another
solution with y(0) = y0, then the linear combination ax(t) + by(t) with a, b ∈ R
is also a solution, but now starting at the point ax0 + by0. At any instant in
time, the space of solutions is a d-dimensional vector space, which means that
one can find a basis of d linearly independent solutions.

How do we solve the linear differential equation (4.10)? If instead of a
matrix equation we have a scalar one, ẋ = λx , the solution is

x(t) = etλx0 . (4.11)
stability - 27jun2011 ChaosBook.org version13.5, Sep 7 2011
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In order to solve the d-dimensional matrix case, it is helpful to rederive the
solution (4.11) by studying what happens for a short time step δt. If at time
t = 0 the position is x(0), then

x(δt) − x(0)
δt

= λx(0) , (4.12)

which we iterate m times to obtain Euler’s formula for compounding interest

x(t) ≈
(
1 +

t
m
λ
)m

x(0) . (4.13)

The term in parentheses acts on the initial condition x(0) and evolves it to x(t)
by taking m small time steps δt = t/m. As m → ∞, the term in parentheses
converges to etλ. Consider now the matrix version of equation (4.12):

x(δt) − x(0)
δt

= Ax(0) . (4.14)

A representative point x is now a vector in Rd acted on by the matrix A, as in
(4.10). Denoting by 1 the identity matrix, and repeating the steps (4.12) and
(4.13) we obtain Euler’s formula for the exponential of a matrix:

x(t) = Jt x(0) , Jt = etA = lim
m→∞

(
1 +

t
m

A
)m

. (4.15)

We will find this definition the exponential of a matrix helpful in the general
case, where the matrix A = A(x(t)) varies along a trajectory.
How do we compute the exponential (4.15)?

saddle

××
�
�

out node

× ×
�
�

in node

× ×
�
�

center

×

×

�
�

out spiral

×

×

�
�

in spiral

×

×

�
�

Fig. 4.4 Qualitatively distinct types of expo-
nents of a [2×2] Jacobian matrix.

fast track

Section 4.3, p. 66

Example 4.2 Jacobian matrix eigenvalues, diagonalizable case:
Should we be so lucky that A = AD happens to be a diagonal matrix with eigenvalues
(λ(1), λ(2), . . . , λ(d)), the exponential is simply

Jt = etAD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
etλ(1) · · · 0

. . .

0 · · · etλ(d)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.16)

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings
it to a diagonal form AD = U−1AU. Then J can also be brought to a diagonal form
(insert factors 1 = UU−1 between the terms of the product (4.15)):

exercise 4.2

Jt = etA = UetAD U−1 . (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of Jt, and under the flow the neigh-
borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
axis.

We recapitulate the basic facts of linear algebra in Appendix 29. A 2−d
example serves well to highlight the most important types of linear flows:
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Example 4.3 Linear stability of 2−d flows:
For a 2−d flow the eigenvalues λ(1), λ(2) of A are either real, leading to a linear motion
along their eigenvectors, xj(t) = x j(0) exp(tλ( j)), or a form a complex conjugate pair
λ(1) = μ+ iω , λ(2) = μ− iω , leading to a circular or spiral motion in the [x1, x2] plane.

Fig. 4.5 Streamlines f
flows: saddle (hyperbo
ing), center (elliptic), in

These two possibilities are refined further into sub-cases depending on the signs of
the real part. In the case λ(1) > 0, λ(2) < 0, x1 grows exponentially with time, and
x2 contracts exponentially. This behavior, called a saddle, is sketched in Fig. 4.5, as
are the remaining possibilities: in/out nodes, inward/outward spirals, and the center.
The magnitude of out-spiral |x(t)| diverges exponentially when μ > 0, and in-spiral
contracts into (0, 0) when the μ < 0, whereas the phase velocity ω controls its oscil-
lations.
If eigenvalues λ(1) = λ(2) = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a) A
can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [dα×dα] block
there is only one eigenvector per block.
We sketch the full set of possibilities in Figs. 4.5 and 4.4, and work out in detail the
most important cases in Appendix 29, Example B.3.

section 5.1.2

4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symbol Λk will always denote the kth eigenvalue (in
literature sometimes referred to as the multiplier) of the finite time Jacobian
matrix Jt. Symbol λ(k) will be reserved for the kth Floquet or characteristic
exponent, or characteristic value, with real part μ (k) and phase ω(k):

Λk = etλ(k)
= et(μ(k)+iω(k)) . (4.18)

Jt(x0) depends on the initial point x0 and the elapsed time t. For notational
brevity we tend to omit this dependence, but in general

Λ = Λk = Λk(x0, t) , λ = λ
(k)(x0, t) , ω = ω

(k)(x0, t) , · · · etc. ,

depend on both the trajectory traversed and the choice of coordinates.
However, as we shall see in Section 5.2, if the stability matrix A or the Jaco-

bian matrix J is computed on a flow-invariant setM p, such as an equilibrium
q or a periodic orbit p of period T p,

Aq = A(xq) , Jp(x) = JTp (x) , x ∈ Mp , (4.19)

(x is any point on the cycle) its eigenvalues

λ(k)
q = λ

(k)(xq) , Λp,k = Λk(x, Tp)

are flow-invariant, independent of the choice of coordinates and the initial
point in the cycle p, so we label them by their q or p label.

We number eigenvalues Λk in order of decreasing magnitude

|Λ1| ≥ |Λ2| ≥ . . . ≥ |Λd | . (4.20)
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Since |Λ j| = etμ( j)
, this is the same as labeling by

μ(1) ≥ μ(2) ≥ . . . ≥ μ(d) . (4.21)

In dynamics the expanding directions, |Λ e| > 1, have to be taken care of first,
while the contracting directions |Λc| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

fast track

Section 4.3, p. 66

4.2.2 Singular value decomposition

In general Jt is neither diagonal, nor diagonalizable, nor constant along the
trajectory. As any matrix with real elements, J t can be expressed in the singular
value decomposition (SVD) form

J = UDVT (4.22)

where D is diagonal and real, and U, V are orthogonal matrices. unique up to
permutations of rows and columns. The diagonal elements σ 1, σ2, . . ., σd of D
are called the singular values of J, namely the square root of the eigenvalues
of JT J = VD2VT (or JJT = UD2UT ), which is a symmetric, positive semi-
definite matrix (and thus admits only real, non-negative eigenvalues).

Singular values {σ j} are not related to the Jt eigenvalues {Λ j} in any simple
way. From a geometric point of view, when all singular values are non-zero, J
maps the unit sphere into an ellipsoid, Fig. 4.2: the singular values are then the
lengths of the semiaxes of this ellipsoid. Note however that the eigenvectors
of JT J that determine the orientation of the semiaxes are distinct from the J
eigenvectors {e( j)}, and that JT J satisfies no semigroup property (see (4.38))
along the flow. For this reason the J eigenvectors {e ( j)} are sometimes called
‘covariant’ or ‘covariant Lyapunov vectors’, in order to emphasize the distinc-
tion between them and the singular value decomposition semiaxes directions.

Eigenvectors / eigenvalues are suited to study of iterated forms of a matrix,
such as Jk or exponentials exp(tA), and are thus a natural tool for study of
dynamics. Singular vectors are not. They are suited to study of J itself, and the
singular value decomposition is convenient for numerical work (any matrix,
square or rectangular, can be brought to this form), as a way of estimating the
effective rank of matrix J by neglecting the small singular values.

Example 4.4 Singular values and geometry of deformations:
Suppose we are in three dimensions, and J is not singular, so that the diagonal ele-
ments of D in (4.22) satisfy σ1 ≥ σ2 ≥ σ3 > 0, and consider how J maps the unit ball
S = {x ∈ R3 | x2 = 1}. V is orthogonal (rotation/reflection), so VTS is still the unit
sphere: then D maps S onto ellipsoid S̃ = {y ∈ R3 | y2

1/σ
2
1+y2

2/σ
2
2+y2

3/σ
2
3 = 1} whose

principal axes directions - y coordinates - are determined by V). Finally the ellipsoid
is further rotated by the orthogonal matrix U. The local directions of stretching and
their images under J are called the right-hand and left-hand singular vectors for J and
are given by the columns in V and U respectively: it is easy to check that Jvk = σkuk,
if vk, uk are the k-th columns of V and U.
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Henri Roux: So, computing eigenvalues and eigenvectors seems like a good
thing. But how do you really do it?
A: Economical description of neighborhoods of equilibria and periodic orbits
is afforded by projection operators of Appendix ??. The requisite linear al-
gebra is standard, but usually not phrased in language of projection operators.
As this is a bit of sidetrack that you will find confusing at the first go, it is
relegated here to Appendix 29.

Now that we have some feeling for the qualitative behavior of eigenvectors
and eigenvalues of linear flows, we are ready to return to the nonlinear case.

4.3 Stability of flows

How do you determine the eigenvalues of the finite time local deformation J t

for a general nonlinear smooth flow? The Jacobian matrix is computed by
integrating the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = Jt(x0) δx(x0, 0) . (4.23)

The equations are linear, so we should be able to integrate them–but in order
to make sense of the answer, we derive this integral step by step.

4.3.1 Stability of equilibria

For a start, consider the case where x is an equilibrium point (2.8). Expanding
around the equilibrium point xq, using the fact that the stability matrix A =
A(xq) in (4.2) is constant, and integrating,

f t(x) = xq + eAt(x − xq) + · · · , (4.24)

we verify that the simple formula (4.15) applies also to the Jacobian matrix of
an equilibrium point,

Jt(xq) = eAqt , Aq = A(xq) . (4.25)

Example 4.5 In-out spirals.
Consider an equilibrium whose Floquet exponents {λ(1), λ(2)} = {μ+ iω, μ − iω} form
a complex conjugate pair. The corresponding complex eigenvectors can be replaced
by their real and imaginary parts, {e(1), e(2)} → {Re e(1), Im e(1)}. The 2−d real repre-
sentation (??), (

μ −ω
ω μ

)
= μ

( 1 0
0 1

)
+ ω

( 0 −1
1 0

)
consists of the identity and the generator of SO(2) rotations in the {Re e(1), Im e(1)}
plane. Trajectories x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-directions)

Jt = eAqt = etμ
( cos ωt − sin ωt

sin ωt cos ωt

)
, (4.26)

spiral in/out around (x, y) = (0, 0), see Fig. 4.5, with the rotation period T , and con-
traction/expansion radially by the multiplier Λradial, and by the multiplier Λ j along
the e( j) eigen-direction per a turn of the spiral:

exercise B.1

T = 2π/ω , Λradial = eTμ , Λ j = eTμ( j)
. (4.27)
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We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000 T , or 10−2T). Λ j multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane.

Example 4.6 Stability of equilibria of the Rössler flow.
(continued from Example 4.1) The Rösler system (2.17) has two equilibrium points

exercise 4.4
exercise 2.8

(2.18), the inner equilibrium (x−, y−, z−), and the outer equilibrium point (x+, y+, z+).
Together with their exponents (eigenvalues of the stability matrix) the two equilibria
yield quite detailed information about the flow. Figure 4.6 shows two trajectories
which start in the neighborhood of the outer ‘+’ equilibrium. Trajectories to the
right of the equilibrium point ‘+’ escape, and those to the left spiral toward the inner
equilibrium point ‘−’, where they seem to wander chaotically for all times. The sta-
ble manifold of outer equilibrium point thus serves as the attraction basin boundary.
Consider now the numerical values for eigenvalues of the two equilibria

xy

z

 0

 20

 40

-40
-20

 0

Fig. 4.6 Two trajectories of the Rössler
flow initiated in the neighborhood of the
‘+’ or ‘outer’ equilibrium point (2.18).
(R. Paškauskas)

(μ(1)
− , μ

(2)
− ± iω(2)

− ) = (−5.686, 0.0970 ± i 0.9951 )
(μ(1)
+ , μ

(2)
+ ± iω(2)

+ ) = ( 0.1929, −4.596 × 10−6 ± i 5.428 )
(4.28)

Outer equilibrium: The μ(2)
+ ± iω(2)

+ complex eigenvalue pair implies that that neigh-
borhood of the outer equilibrium point rotates with angular period T+ ≈

∣∣∣2π/ω(2)
+

∣∣∣ =
1.1575. The multiplier by which a trajectory that starts near the ‘+’ equilibrium point
contracts in the stable manifold plane is the excrutiatingly slow Λ+2 ≈ exp(μ(2)

+ T+) =
0.9999947 per rotation. For each period the point of the stable manifold moves away
along the unstable eigen-direction by factor Λ+1 ≈ exp(μ(1)

+ T+) = 1.2497. Hence the
slow spiraling on both sides of the ‘+’ equilibrium point.

Inner equilibrium: The μ(2)
− ± iω(2)

− complex eigenvalue pair tells us that neighborhood
of the ‘−’ equilibrium point rotates with angular period T− ≈

∣∣∣2π/ω(2)
−

∣∣∣ = 6.313,
slightly faster than the harmonic oscillator estimate in (2.14). The multiplier by
which a trajectory that starts near the ‘−’ equilibrium point spirals away per one
rotation is Λradial ≈ exp(μ(2)

− T−) = 1.84. The μ(1)
− eigenvalue is essentially the

z expansion correcting parameter c introduced in (2.16). For each Poincaré section
return, the trajectory is contracted into the stable manifold by the amazing factor of
Λ1 ≈ exp(μ(1)

− T−) = 10−15.6 (!).
Suppose you start with a 1 mm interval pointing in the Λ1 eigen-direction. After
one Poincaré return the interval is of order of 10−4 fermi, the furthest we will get
into subnuclear structure in this book. Of course, from the mathematical point of
view, the flow is reversible, and the Poincaré return map is invertible. (continued in
Example 11.3) (R. Paškauskas)

Example 4.7 Stability of Lorenz flow equilibria:
(continued from Example 4.1) A glance at Fig. 3.7 suggests that the flow is orga-

nized by its 3 equilibria, so lets have a closer look at their stable/unstable manifolds.
The EQ0 equilibrium stability matrix (4.4) evaluated at xEQ0 = (0, 0, 0) is block-
diagonal. The z-axis is an eigenvector with a contracting eigenvalue λ(2) = −b. From

remark 9.10
(4.42) it follows that all [x, y] areas shrink at rate−(σ+1). Indeed, the [x, y] submatrix

A− =

(
−σ σ
ρ −1

)
(4.29)

has a real expanding/contracting eigenvalue pair λ(1,3) = −(σ+1)/2±
√

(σ − 1)2/4 + ρσ,
with the right eigenvectors e(1), e(3) in the [x, y] plane, given by (either) column of the
projection operator

Pi =
A− − λ( j)1
λ(i) − λ( j)

=
1

λ(i) − λ( j)

(
−σ − λ( j) σ

ρ −1 − λ( j)

)
, i � j ∈ {1, 3} . (4.30)
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Fig. 4.7 (a) A perspective view of the lin-
earized Lorenz flow near EQ1 equilibrium,
see Fig. 3.7 (a). The unstable eigenplane of
EQ1 is spanned by Re e(1) and Im e(1). The
stable eigenvector e(3). (b) Lorenz flow near
the EQ0 equilibrium: unstable eigenvector
e(1), stable eigenvectors e(2), e(3). Trajec-
tories initiated at distances 10−8 · · · 10−12,
10−13 away from the z-axis exit finite distance
from EQ0 along the (e(1), e(2)) eigenvectors
plane. Due to the strong λ(1) expansion, the
EQ0 equilibrium is, for all practical purposes,
unreachable, and the EQ1 → EQ0 hetero-
clinic connection never observed in simula-
tions such as Fig. 2.5. (E. Siminos; continued
in Fig. 11.8.) (a) (b)
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EQ1,2 equilibria have no symmetry, so their eigenvalues are given by the roots of a
cubic equation, the secular determinant det (A − λ1) = 0:

λ3 + λ2(σ + b + 1) + λb(σ + ρ) + 2σb(ρ − 1) = 0 . (4.31)

For ρ > 24.74, EQ1,2 have one stable real eigenvalue and one unstable complex
conjugate pair, leading to a spiral-out instability and the strange attractor depicted in
Fig. 2.5.
As all numerical plots of the Lorenz flow are here carried out for the Lorenz param-
eter choice σ = 10, b = 8/3, ρ = 28 , we note the values of these eigenvalues for
future reference,

EQ0 : (λ(1), λ(2), λ(3)) = ( 11.83 , − 2.666, −22.83 )
EQ1 : (μ(1) ± iω(1), λ(3)) = ( 0.094 ± i 10.19, −13.85 ) ,

(4.32)

as well as the rotation period TEQ1 = 2π/ω(1) about EQ1, and the associated expan-
sion/contraction multipliers Λ(i) = exp(μ( j)TEQ1 ) per a spiral-out turn:

TEQ1 = 0.6163 , (Λ(1),Λ(3)) = ( 1.060 , 1.957 × 10−4 ) . (4.33)

We learn that the typical turnover time scale in this problem is of order T ≈ TEQ1 ≈ 1
(and not, let us say, 1000, or 10−2). Combined with the contraction rate (4.42), this
tells us that the Lorenz flow strongly contracts state space volumes, by factor of
≈ 10−4 per mean turnover time.
In the EQ1 neighborhood the unstable manifold trajectories slowly spiral out, with
very small radial per-turn expansion multiplier Λ(1) � 1.06, and very strong contrac-
tion multiplier Λ(3) � 10−4 onto the unstable manifold, Fig. 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2−d surface evident in
the section Fig. 3.7.
In the xEQ0 = (0, 0, 0) equilibrium neighborhood the extremely strong λ(3) � −23
contraction along the e(3) direction confines the hyperbolic dynamics near EQ0 to
the plane spanned by the unstable eigenvector e(1), with λ(1) � 12, and the slow-
est contraction rate eigenvector e(2) along the z-axis, with λ(2) � −3. In this plane
the strong expansion along e(1) overwhelms the slow λ(2) � −3 contraction down
the z-axis, making it extremely unlikely for a random trajectory to approach EQ0,
Fig. 4.7 (b). Thus linearization suffices to describe analytically the singular dip in the
Poincaré sections of Fig. 3.7, and the empirical scarcity of trajectories close to EQ0.
(continued in Example 4.9)

(E. Siminos and J. Halcrow)
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Example 4.8 Lorenz flow: Global portrait.
(continued from Example 4.7) As the EQ1 unstable manifold spirals out, the strip

that starts out in the section above EQ1 in Fig. 3.7 cuts across the z-axis invariant
subspace. This strip necessarily contains a heteroclinic orbit that hits the z-axis head
on, and in infinite time (but exponentially fast) descends all the way to EQ0.
How? As in the neighborhood of the EQ0 equilibrium the dynamics is linear (see
Fig. 4.7 (a)), there is no need to integrate numerically the final segment of the hete-
roclinic connection - it is sufficient to bring a trajectory a small distance away from
EQ0, continue analytically to a small distance beyond EQ0, then resume the numer-
ical integration.
What happens next? Trajectories to the left of z-axis shoot off along the e(1) direction,
and those to the right along −e(1). As along the e(1) direction xy > 0, the nonlinear
term in the ż equation (2.12) bends both branches of the EQ0 unstable manifold
Wu(EQ0) upwards. Then . . . - never mind. Best to postpone the completion of this
narrative to Example 9.10, where the discrete symmetry of Lorenz flow will help
us streamline the analysis. As we shall show, what we already know about the 3
equilibria and their stable/unstable manifolds suffices to completely pin down the
topology of Lorenz flow. (continued in Example 9.10)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary trajectory x(t). The expo-
nential of a constant matrix can be defined either by its Taylor series expansion,
or in terms of the Euler limit (4.15):

etA =

∞∑
k=0

tk

k!
Ak (4.34)

= lim
m→∞

(
1 +

t
m

A
)m

. (4.35)

Taylor expanding is fine if A is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for
the task at hand, as for a dynamical system the local rate of neighborhood
distortion A(x) depends on where we are along the trajectory. The linearized
neighborhood is multiplicatively deformed along the flow, and the m discrete
time step approximation to J t is therefore given by a generalization of the Euler
product (4.35):

Jt = lim
m→∞

1∏
n=m

(1 + δtA(xn)) = lim
m→∞

1∏
n=m

eδt A(xn) (4.36)

= lim
m→∞

eδt A(xn)eδt A(xm−1) · · · eδt A(x2)eδt A(x1) ,

where δt = (t − t0)/m, and xn = x(t0 + nδt). Slightly perverse indexing of the
products indicates that the successive infinitesimal deformation are applied by
multiplying from the left. The two formulas for J t agree to leading order in
δt, and the m→ ∞ limit of this procedure is the integral

Jt
i j(x0) =

[
Te

∫ t

0
dτA(x(τ))

]
i j
, (4.37)
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where T stands for time-ordered integration, defined as the continuum limit of
the successive left multiplications (4.36). This integral formula for J is the

exercise 4.5
main conceptual result of this chapter.

It makes evident important properties of Jacobian matrices, such as that they
are multiplicative along the flow,

Jt+t′ (x) = Jt′ (x′) Jt(x), where x′ = f t(x0) , (4.38)

an immediate consequence of time-ordered product structure of (4.36). How-
ever, in practice J is evaluated by integrating (4.9) along with the ODEs that
define a particular flow.

in depth:

Section 17.3, p. 293

4.4 Neighborhood volume

section 17.3
remark 17.3

Consider a small state space volume ΔV = dd x centered around the point x0 at
time t = 0. The volume ΔV ′ around the point x′ = x(t) time t later is

ΔV ′ =
ΔV ′

ΔV
ΔV =

∣∣∣∣∣det
∂x′

∂x

∣∣∣∣∣ΔV =
∣∣∣det J(x0)t

∣∣∣ΔV , (4.39)

so the |det J| is the ratio of the initial and the final volumes. The determinant
det Jt(x0) =

∏d
i=1Λi(x0, t) is the product of the Floquet multipliers. We shall

refer to this determinant as the Jacobian of the flow. This Jacobian is easily
exercise 4.1

evaluated. Take the time derivative, use the J evolution equation (4.9) and the
matrix identity ln det J = tr ln J:

d
dt

lnΔV(t) =
d
dt

ln det J = tr
d
dt

ln J = tr
1
J

J̇ = tr A = ∂ivi .

(Here, as elsewhere in this book, a repeated index implies summation.) Inte-
grate both sides to obtain the time evolution of an infinitesimal volume

det Jt(x0) = exp

[∫ t

0
dτ tr A(x(τ))

]
= exp

[∫ t

0
dτ ∂ivi(x(τ))

]
. (4.40)

As the divergence ∂ivi is a scalar quantity, the integral in the exponent (4.37)
needs no time ordering. So all we need to do is evaluate the time average

∂ivi = lim
t→∞

1
t

∫ t

0
dτ

d∑
i=1

Aii(x(τ))

=
1
t

ln

∣∣∣∣∣∣∣
d∏

i=1

Λi(x0, t)

∣∣∣∣∣∣∣ =
d∑

i=1

λ(i)(x0, t) (4.41)

along the trajectory. If the flow is not singular (for example, the trajectory
does not run head-on into the Coulomb 1/r singularity), the stability matrix
elements are bounded everywhere, |Ai j| < M , and so is the trace

∑
i Aii. The

time integral in (4.40) grows at most linearly with t, hence ∂ ivi is bounded for
all times, and numerical estimates of the t→ ∞ limit in (4.41) are not marred
by any blowups.
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Example 4.9 Lorenz flow state space contraction:
(continued from Example 4.7) It follows from (4.4) and (4.41) that Lorenz flow is

volume contracting,

∂ivi =

3∑
i=1

λ(i)(x, t) = −σ − b − 1 , (4.42)

at a constant, coordinate- and ρ-independent rate, set by Lorenz to ∂ivi = −13.66 .
As for periodic orbits and for long time averages there is no contraction/expansion
along the flow, λ(‖) = 0, and the sum of λ(i) is constant by (4.42), there is only one
independent exponent λ(i) to compute. (continued in Example 4.8)

Even if we were to insist on extracting ∂ ivi from (4.36) by first multiply-
ing Jacobian matrices along the flow, and then taking the logarithm, we can
avoid exponential blowups in J t by using the multiplicative structure (4.38),
det Jt′+t(x0) = det Jt′ (x′) det Jt(x0) to restart with J0(x′) = 1 whenever the
eigenvalues of Jt(x0) start getting out of hand. In numerical evaluations of

section 17.3
Lyapunov exponents, λ i = limt→∞ μ

(i)(x0, t), the sum rule (4.41) can serve as a
helpful check on the accuracy of the computation.

The divergence ∂ivi characterizes the behavior of a state space volume in
the infinitesimal neighborhood of the trajectory. If ∂ ivi < 0, the flow is locally
contracting, and the trajectory might be falling into an attractor. If ∂ ivi(x) <
0 , for all x ∈ M, the flow is globally contracting, and the dimension of the
attractor is necessarily smaller than the dimension of state spaceM. If ∂ ivi = 0,
the flow preserves state space volume and det J t = 1. A flow with this property
is called incompressible. An important class of such flows are the Hamiltonian
flows considered in Section 7.2.

But before we can get to that, Henri Roux, the perfect student and always
alert, pipes up. She does not like our definition of the Jacobian matrix in
terms of the time-ordered exponential (4.37). Depending on the signs of
multipliers, the left hand side of (4.40) can be either positive or negative. But
the right hand side is an exponential of a real number, and that can only be
positive. What gives? As we shall see much later on in this text, in discussion
of topological indices arising in semiclassical quantization, this is not at all a
dumb question.

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the
iteration of a map follows from Taylor expanding the iterated mapping at finite
time n to linear order, as in (4.5). The linearized neighborhood is transported
by the Jacobian matrix evaluated at a discrete set of times n = 1, 2, . . .,

Mn
i j(x0) =

∂ f n
i (x)

∂x j

∣∣∣∣∣∣
x=x0

. (4.43)

In case of a periodic orbit, f n(x) = x, we shall refer to this Jacobian matrix as
the monodromy matrix. Derivative notation M t(x0) → D f t(x0) is frequently
employed in the literature. As in the continuous case, we denote by Λ k the kth
eigenvalue or multiplier of the finite time Jacobian matrix M n(x0), and by μ(k)
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the real part of kth eigen-exponent

Λ± = en(μ±iω) , |Λ| = enμ .

For complex eigenvalue pairs the phase ω describes the rotation velocity in the
plane defined by the corresponding pair of eigenvectors, with one period of
rotation given by

T = 2π/ω . (4.44)

Example 4.10 Stability of a 1−d map:
Consider the orbit {. . . , x−1, x0, x1, x2, . . .} of a 1−d map xn+1 = f (xn). Since point xn

is carried into point xn+1, in studying linear stability (and higher derivatives) of the
map it is often convenient to deploy a local coordinate systems za centered on the
orbit points xa, together with a notation for the map, its derivative, and, by the chain
rule, the derivative of the kth iterate f k evaluated at the point xa,

xn+1

xn

110
01

011

10

101
0

1

Fig. 4.8 A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.

x = xa + za , fa(za) = f (xa + za)

f ′a = f ′(xa)

Λ(x0, k) = f k
a
′ = f ′a+k−1 · · · f ′a+1 f ′a , k ≥ 2 . (4.45)

Here a is the label of point xa, and the label a+1 is a shorthand for the next point b on
the orbit of xa, xb = xa+1 = f (xa). For example, a period-3 periodic point in Fig. 4.8
might have label a = 011, and by x110 = f (x011) the next point label is b = 110.

The formula for the linearization of nth iterate of a d-dimensional map

Mn(x0) = M(xn−1) · · ·M(x1)M(x0) , x j = f j(x0) , (4.46)

in terms of single time steps M jl = ∂ f j/∂xl follows from the chain rule for
functional composition,

∂

∂xi
f j( f (x)) =

d∑
k=1

∂

∂yk
f j(y)

∣∣∣∣∣
y= f (x)

∂

∂xi
fk(x) .

If you prefer to think of a discrete time dynamics as a sequence of Poincaré
section returns, then (4.46) follows from (4.38): Jacobian matrices are multi-
plicative along the flow.

exercise 17.1

Example 4.11 Hénon map Jacobian matrix:
For the Hénon map (3.19) the Jacobian matrix for the nth iterate of the map is

Mn(x0) =
1∏

m=n

(
−2axm b

1 0

)
, xm = f m

1 (x0, y0) . (4.47)

The determinant of the Hénon one time step Jacobian matrix (4.47) is constant,

det M = Λ1Λ2 = −b (4.48)

so in this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

fast track

Chapter 7, p. 103
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4.5.1 Stability of Poincaré return maps

(R. Paškauskas and P. Cvitanović)
We now relate the linear stability of the Poincaré return map P : P → P
defined in Section 3.1 to the stability of the continuous time flow in the full
state space.

The hypersurfaceP can be specified implicitly through a function U(x) that
is zero whenever a point x is on the Poincaré section. A nearby point x + δx
is in the hypersurface P if U(x + δx) = 0, and the same is true for variations
around the first return point x′ = x(τ), so expanding U(x′) to linear order in
variation δx restricted to the Poincaré section leads to the condition

d+1∑
i=1

∂U(x′)
∂xi

dx′i
dx j

∣∣∣∣∣∣
P
= 0 . (4.49)

In what follows Ui = ∂ jU is the gradient of U defined in (3.3), unprimed
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x(t)

v’ tδ
x’

U(x)=0

x

x(t)+δ x(t)

Jδ

U’

Fig. 4.9 If x(t) intersects the Poincaré section
P at time τ, the nearby x(t) + δx(t) trajectory
intersects it time τ + δt later. As (U′ · v′δt) =
−(U′ · J δx), the difference in arrival times is
given by δt = −(U′ · J δx)/(U′ · v′).

quantities refer to the starting point x = x0 ∈ P, v = v(x0), and the primed
quantities to the first return: x′ = x(τ), v′ = v(x′), U ′ = U(x′). For brevity
we shall also denote the full state space Jacobian matrix at the first return by
J = Jτ(x0). Both the first return x′ and the time of flight to the next Poincaré
section τ(x) depend on the starting point x, so the Jacobian matrix

Ĵ(x)i j =
dx′i
dx j

∣∣∣∣∣∣P (4.50)

with both initial and the final variation constrained to the Poincaré section
hypersurfaceP is related to the continuous flow Jacobian matrix by

dx′i
dx j

∣∣∣∣∣∣P = ∂x′i
∂x j
+

dx′i
dτ

dτ
dx j
= Ji j + v′i

dτ
dx j

.

The return time variation dτ/dx, Fig. 4.9, is eliminated by substituting this
expression into the constraint (4.49),

0 = ∂iU
′ Ji j + (v′ · ∂U ′)

dτ
dx j

,

yielding the projection of the full space (d+1)-dimensional Jacobian matrix to
the Poincaré map d-dimensional Jacobian matrix:

Ĵi j =

(
δik −

v′i ∂kU ′

(v′ · ∂U ′)

)
Jk j . (4.51)

Substituting (4.7) we verify that the initial velocity v(x) is a zero-eigenvector
of Ĵ

Ĵv = 0 , (4.52)

so the Poincaré section eliminates variations parallel to v, and Ĵ is a rank d
matrix, i.e., one less than the dimension of the continuous time flow.
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Résumé

A neighborhood of a trajectory deforms as it is transported by a flow. In the lin-
ear approximation, the stability matrix A describes the shearing/compression/-
expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite time t is described by the Jacobian matrix

Jt(x0) = Te
∫ t

0
dτA(x(τ)) ,

where T stands for the time-ordered integration, defined multiplicatively along
the trajectory. For discrete time maps this is multiplication by time step Ja-
cobian matrix M along the n points x0, x1, x2, . . ., xn−1 on the trajectory of
x0,

Mn(x0) = M(xn−1)M(xn−2) · · ·M(x1)M(x0) ,

with M(x) the single discrete time step Jacobian matrix. In ChaosBook Λ k

denotes the kth eigenvalue of the finite time Jacobian matrix J t(x0), and μ(k)

the real part of kth eigen-exponent

|Λ| = enμ , Λ± = en(μ±iω) .

For complex eigenvalue pairs the ‘angular velocity’ω describes rotational mo-
tion in the plane spanned by the real and imaginary parts of the corresponding
pair of eigenvectors.

The eigenvalues and eigen-directions of the Jacobian matrix describe the
deformation of an initial infinitesimal cloud of neighboring trajectories into a
distorted cloud a finite time t later. Nearby trajectories separate exponentially
along unstable eigen-directions, approach each other along stable directions,
and change slowly (algebraically) their distance along marginal directions. The
Jacobian matrix Jt is in general neither symmetric, nor diagonalizable by a
rotation, nor do its (left or right) eigenvectors define an orthonormal coordinate
frame. Furthermore, although the Jacobian matrices are multiplicative along
the flow, in dimensions higher than one their eigenvalues in general are not.
This lack of multiplicativity has important repercussions for both classical and
quantum dynamics.

Further reading

4.1 Linear flows. The subject of linear algebra generates
innumerable tomes of its own; in Section 4.2 we only sketch,
and in Appendix 29 recapitulate a few facts that our narrative
relies on: a useful reference book is [4.1]. The basic facts
are presented at length in many textbooks. Frequently cited
linear algebra references are Golub and Van Loan [4.2], Cole-
man and Van Loan [4.3], and Watkins [4.4, 5]. The standard
references that exhaustively enumerate and explain all possi-

ble cases are Hirsch and Smale [4.6] and Arnol’d [4.7]. A
quick overview is given by Izhikevich [4.8]; for different no-
tions of orbit stability see Holmes and Shea-Brown [4.9]. For
ChaosBook purposes, we enjoyed the discussion in chapter 2
Meiss [4.10], chapter 1 of Perko [4.11] and chapters 3 and 5
of Glendinning [4.12] the most, and liked the discussion of
norms, least square problems, and differences between sin-
gular value and eigenvalue decompositions in Trefethen and
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Bau [4.13]. Other linear algebra references of possible interest
are Golub and Van Loan [4.2], Coleman and Van Loan [4.3],
and Watkins [4.4, 5].
The nomenclature tends to be a bit confusing. In referring
to velocity gradients matrix) A defined in (4.3) as the “stabil-
ity matrix” we follow Tabor [4.22]. Goldhirsch, Sulem, and
Orszag [4.25] call in the “Hessenberg matrix.” Sometimes
A, which describes the instantaneous shear of the trajectory
point x(x0, t) is referred to as the ‘Jacobian matrix,’ a particu-
larly unfortunate usage when one considers linearized stabil-
ity of an equilibrium point (4.25). What Jacobi had in mind in
his 1841 fundamental paper [4.26] on the determinants today
known as ‘jacobians’ were transformations between different
coordinate frames. These are dimensionless quantities, while
dimensionally Ai j is 1/[time]. More unfortunate still is refer-
ring to Jt = etA as an ‘evolution operator,’ which here (see
Section 17.2) refers to something altogether different. In this
book Jacobian matrix Jt always refers to (4.6), the linearized
deformation after a finite time t, either for a continuous time
flow, or a discrete time mapping. Single discrete time step Ja-
cobian Mjl = ∂ f j/∂xl in (4.46) is referred to as the ‘tangent
map’ by Skokos [4.23, 24].

4.2 Matrix decompositions of Jacobian matrix. Though
singular values decomposition provides geometrical insights
into how tangent dynamics acts, many popular algorithms
for asymptotic stability analysis (recovering Lyapunov spec-
trum) employ another standard matrix decomposition: the
QR scheme [4.1], through which a nonsingular matrix J is
(uniquely) written as a product of an orthogonal and an upper
triangular matrix J = QR. This can be thought as a Gram-
Schmidt decomposition of the column vectors of J (which
are linearly independent as A is nonsingular). The geomet-
ric meaning of QR decomposition is that the volume of the
d-dimensional parallelepiped spanned by the column vectors
of J has a volume coinciding with the product of the diagonal
elements of the triangular matrix R, whose role is thus pivotal
in algorithms computing Lyapunov spectra [4.29, 30, 24].

4.3 Routh-Hurwitz criterion for stability of a fixed point.
For a criterion that matrix has roots with negative real parts,
see Routh-Hurwitz criterion [4.27, 28] on the coefficients of
the characteristic polynomial. The criterion provides a neces-
sary condition that a fixed point is stable, and determines the
numbers of stable/unstable eigenvalues of a fixed point.

Exercises

(4.1) Trace-log of a matrix. Prove that

det M = etr ln M .

for an arbitrary nonsingular finite dimensional matrix M,
det M � 0.

(4.2) Stability, diagonal case. Verify the relation (4.17)

Jt = etA = U−1etAD U , AD = UAU−1 .

(4.3) State space volume contraction.

(a) Compute the Rössler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous ∂ivi along a
typical trajectory on the Rössler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of ∂ivi. If you see regions
of local expansion, explain them.

(c) (optional) color-code the points on the trajectory by
the sign (and perhaps the magnitude) of ∂ivi − ∂ivi.

(d) Compute numerically the average contraction rate
(4.41) along a typical trajectory on the Rössler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state space d = 3.

(f) (optional) Start some trajectories on the escape side
of the outer equilibrium, color-code the points on
the trajectory. Is the flow volume contracting?

(continued in Exercise 20.12)

(4.4) Topology of the Rössler flow. (continuation of Exer-
cise 3.1)

(a) Show that equation |det (A − λ1)| = 0 for Rössler
flow in the notation of Exercise 2.8 can be written
as

λ3 + λ2c (p∓ − ε)+ λ(p±/ε + 1− c2εp∓)∓ c
√

D = 0
(4.53)

(b) Solve (4.53) for eigenvalues λ± for each equilib-
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rium as an expansion in powers of ε. Derive

λ−1 = −c + εc/(c2 + 1) + o(ε)
λ−2 = εc

3/[2(c2 + 1)] + o(ε2)
θ−2 = 1 + ε/[2(c2 + 1)] + o(ε)
λ+1 = cε(1 − ε) + o(ε3)
λ+2 = −ε5c2/2 + o(ε6)
θ+2 =

√
1 + 1/ε (1 + o(ε))

(4.54)

Compare with exact eigenvalues. What are dynam-
ical implications of the extravagant value of λ−1 ?
(continued as Exercise 13.10)

(R. Paškauskas)

(4.5) Time-ordered exponentials. Given a time dependent
matrix V(t) check that the time-ordered exponential

U(t) = Te
∫ t
0 dτV(τ)

may be written as

U(t) =
∞∑

m=0

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tm−1

0
dtmV(t1) · · ·V(tm)

and verify, by using this representation, thatU(t) satisfies
the equation

U̇(t) = V(t)U(t),

with the initial conditionU(0) = 1.

(4.6) A contracting baker’s map. Consider a contract-
ing (or ‘dissipative’) baker’s map, acting on a unit square
[0, 1]2 = [0, 1] × [0, 1], defined by(

xn+1

yn+1

)
=

(
xn/3
2yn

)
yn ≤ 1/2

(
xn+1

yn+1

)
=

(
xn/3 + 1/2

2yn − 1

)
yn > 1/2 .

This map shrinks strips by a factor of 1/3 in the x-
direction, and then stretches (and folds) them by a factor
of 2 in the y-direction.

By how much does the state space volume contract for
one iteration of the map?
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Topological features of a dynamical system –singularities, periodic or-
bits, and the ways in which the orbits intertwine– are invariant under a
general continuous change of coordinates. Surprisingly, there also ex-

ist quantities that depend on the notion of metric distance between points, but
nevertheless do not change value under a smooth change of coordinates. Local
quantities such as the eigenvalues of equilibria and periodic orbits, and global
quantities such as Lyapunov exponents, metric entropy, and fractal dimensions
are examples of properties of dynamical systems independent of coordinate
choice.

We now turn to the first, local class of such invariants, linear stability of
periodic orbits of flows and maps. This will give us metric information about
local dynamics, as well as the key concept, the concept of a neighborhood of a
point x : its size is determined by the number of expanding directions, and the
rates of expansion along them: contracting directions play only a secondary
role. (see Section 5.4).

If you already know that the eigenvalues of periodic orbits are invariants of
a flow, skip this chapter.

fast track

Chapter 7, p. 103

5.1 Stability of periodic orbits

As noted on page 34, a trajectory can be stationary, periodic or aperiodic. For
chaotic systems almost all trajectories are aperiodic–nevertheless, equilibria
and periodic orbits turn out to be the key to unraveling chaotic dynamics. Here
we note a few of the properties that make them so precious to a theorist.

An obvious virtue of periodic orbits is that they are topological invariants:
a fixed point remains a fixed point for any choice of coordinates, and similarly
a periodic orbit remains periodic in any representation of the dynamics. Any
re-parametrization of a dynamical system that preserves its topology has to
preserve topological relations between periodic orbits, such as their relative
inter-windings and knots. So the mere existence of periodic orbits suffices to
partially organize the spatial layout of a non–wandering set. No less important,
as we shall now show, is the fact that cycle eigenvalues are metric invariants:
they determine the relative sizes of neighborhoods in a non–wandering set.

We start by noting that due to the multiplicative structure (4.38) of Jacobian
matrices, the Jacobian matrix for the rth repeat of a prime cycle p of period T p
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is
JrTp (x) = JTp( f (r−1)Tp (x)) · · · JTp ( f Tp (x))JTp(x) = Jp(x)r , (5.1)

where Jp(x) = JTp (x) is the Jacobian matrix for a single traversal of the prime
cycle p, x ∈ Mp is any point on the cycle, and f rTp (x) = x as f t(x) returns to x
every multiple of the period T p. Hence, it suffices to restrict our considerations
to the stability of prime cycles.

fast track

Section 5.2, p. 83

5.1.1 Floquet vectors

When dealing with periodic orbits, some of the quantities already introduced
inherit names from the Floquet theory of differential equations with time-
periodic coefficients. Consider the equation of variations (4.2) evaluated on
a periodic orbit p,

δ̇x = A(t) δx , A(t) = A(x(t)) = A(t + T p) . (5.2)

The Tp periodicity of the stability matrix implies that if δx(t) is a solution
of (5.2) then also δx(t + T p) satisfies the same equation: moreover the two
solutions are related by (4.6)

δx(t + Tp) = Jp(x) δx(t) . (5.3)

Even though the Jacobian matrix J p(x) depends upon x (the ‘starting’ point of
the periodic orbit), we shall show in Section 5.2 that its eigenvalues do not,
so we may write for its eigenvectors e( j) (sometimes referred to as ‘covariant
Lyapunov vectors,’ or, for periodic orbits, as ‘Floquet vectors’)

Jp(x) e( j)(x) = Λp, j e( j)(x) , Λp, j = σ
( j)
p eλ

( j)
p Tp . (5.4)

where λ( j)
p = μ

( j)
p ± iω( j)

p and σ
( j)
p are independent of x. When Λ p, j is real,

we do care about σ( j)
p = Λp, j/|Λp, j| ∈ {+1,−1}, the sign of the jth Floquet

multiplier. If σ( j)
p = −1 and λ( j)

p � 0, the corresponding eigen-direction is said
section 7.2

to be inverse hyperbolic. Keeping track of this by case-by-case enumeration
is an unnecessary nuisance, so most of our formulas will be stated in terms of
the Floquet multipliers Λ j rather than in the terms of the multiplier signs σ ( j),
exponents μ( j) and phases ω( j).

Expand δx in the (5.4) eigenbasis, δx(t) =
∑
δx j(t) e( j) , e( j) = e( j)(x(0)) .

Taking into account (5.3), we get that δx j(t) is multiplied by Λp, j per each
period

δx(t + Tp) =
∑

j

δx j(t + Tp) e( j) =
∑

j

Λp, j δx j(t) e( j) .

We can absorb this exponential growth / contraction by rewriting the coeffi-
cients δx j(t) as

δx j(t) = eλ
( j)
p t u j(t) , u j(0) = δx j(0) ,
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with u j(t) periodic with period T p. Thus each solution of the equation of vari-
ations (4.2) may be expressed in the Floquet form

δx(t) =
∑

j

eλ
( j)
p t u j(t) e( j) , u j(t + Tp) = u j(t) . (5.5)

The continuous time t appearing in (5.5) does not imply that eigenvalues of the
Jacobian matrix enjoy any multiplicative property for t � rT p: λ( j)

p = μ
( j)
p ±iω( j)

p

refer to a full traversal of the periodic orbit. Indeed, while u j(t) describes the
variation of δx(t) with respect to the stationary eigen-frame fixed by eigen-
vectors at the point x(0), the object of real interest is the co-moving eigen-
frame defined below in (5.13).

5.1.2 Floquet matrix eigenvalues and exponents

J

+   x δ

δp

x0

0x +      x

Fig. 5.1 For a prime cycle p, Floquet matrix
Jp returns an infinitesimal spherical neigh-
borhood of x0 ∈ Mp stretched into an ellip-
soid, with overlap ratio along the eigendirec-
tion e(i) of Jp(x) given by the Floquet multi-
plier |Λp,i |. These ratios are invariant under
smooth nonlinear reparametrizations of state
space coordinates, and are intrinsic property
of cycle p.

The time-dependent T-periodic vector fields, such as the flow linearized around
a periodic orbit, are described by Floquet theory. Hence from now on we shall
refer to a Jacobian matrix evaluated on a periodic orbit either as a Floquet
matrix or a monodromy matrix, to its eigenvalues Λ p, j as Floquet multipliers
(5.4), and to λ( j)

p = μ
( j)
p + iω( j)

p as Floquet or characteristic exponents. We sort
the Floquet multipliers {Λp,1, Λp,2, . . ., Λp,d} of the [d×d] Floquet matrix J p

evaluated on the p-cycle into sets {e,m, c}

expanding: {Λ}e = {Λp, j :
∣∣∣Λp, j

∣∣∣ > 1}
marginal: {Λ}m = {Λp, j :

∣∣∣Λp, j

∣∣∣ = 1} (5.6)

contracting: {Λ}c = {Λp, j :
∣∣∣Λp, j

∣∣∣ < 1} .

and denote by Λp (no jth eigenvalue index) the product of expanding Floquet
multipliers

Λp =
∏

e

Λp,e . (5.7)

As Jp is a real matrix, complex eigenvalues always come in complex conjugate
pairs, Λp,i+1 = Λ

∗
p,i, so the product (5.7) is always real.

The stretching/contraction rates per unit time are given by the real parts of
Floquet exponents

μ(i)
p =

1
Tp

ln
∣∣∣Λp,i

∣∣∣ . (5.8)

The factor 1/T p in the definition of the Floquet exponents is motivated by its
form for the linear dynamical systems, for example (4.16), as well as the fact
that exponents so defined can be interpreted as Lyapunov exponents (17.33)
evaluated on the prime cycle p. As in the three cases of (5.6), we sort the
Floquet exponents λ = μ ± iω into three sets

section 17.3

x’ x=x(T)

x’(T)

Fig. 5.2 An unstable periodic orbit repels ev-
ery neighboring trajectory x′(t), except those
on its center and unstable manifolds.

expanding: {λ}e = {λ(i)
p : μ(i)

p > 0}
marginal: {λ}m = {λ(i)

p : μ(i)
p = 0}

contracting: {λ}c = {λ(i)
p : μ(i)

p < 0} . (5.9)

A periodic orbit p of a d-dimensional flow or a map is stable if real parts
of all of its Floquet exponents (other than the vanishing longitudinal exponent,
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explained in Section 5.2.1) are strictly negative, μ (i)
p < 0. For continuous time

flows such orbit is called a limit cycle, with one zero exponent (perturbation
tangent to the cycle) and all other exponents negative. The region of system
parameter values for which a periodic orbit p is stable is called the stability
window of p. The setMp of initial points that are asymptotically attracted to
p as t → +∞ (for a fixed set of system parameter values) is called the basin of
attraction of p. If all Floquet exponents (other than the vanishing longitudinal
exponent) are strictly positive, μ(i) ≥ μmin > 0, the cycle is repelling, and
unstable to any perturbation. If some are strictly positive, and rest strictly
negative, −μ(i) ≥ μmin > 0, the cycle is said to be hyperbolic or a saddle, and
unstable to perturbations outside its stable manifold. Repelling and hyperbolic
cycles are unstable to generic perturbations, and thus said to be unstable, see
Fig. 5.2. If all μ(i) = 0, the orbit is said to be elliptic, and if μ(i) = 0 for a subset
of exponents (other than the longitudinal one), the orbit is said to be partially
hyperbolic. Such orbits proliferate in Hamiltonian flows.

section 7.3
If all Floquet exponents (other than the vanishing longitudinal exponent) of

all periodic orbits of a flow are strictly bounded away from zero, the flow is
said to be hyperbolic. Otherwise the flow is said to be nonhyperbolic.

Example 5.1 Stability of cycles of 1-dimensional maps:
The stability of a prime cycle p of a 1−d map follows from the chain rule (4.45) for
stability of the npth iterate of the map

Λp =
d

dx0
f np (x0) =

np−1∏
m=0

f ′(xm) , xm = f m(x0) . (5.10)

Λp is a property of the cycle, not the initial periodic point, as taking any periodic
point in the p cycle as the initial one yields the same Λp.
A critical point xc is a value of x for which the mapping f (x) has vanishing deriva-
tive, f ′(xc) = 0. A periodic orbit of a 1−d map is stable if∣∣∣Λp

∣∣∣ = ∣∣∣ f ′(xnp ) f ′(xnp−1) · · · f ′(x2) f ′(x1)
∣∣∣ < 1 ,

and superstable if the orbit includes a critical point, so that the above product van-
ishes. For a stable periodic orbit of period n the slope Λp of the nth iterate f n(x)
evaluated on a periodic point x (fixed point of the nth iterate) lies between −1 and 1.
If

∣∣∣Λp

∣∣∣ > 1, p-cycle is unstable.

Example 5.2 Stability of cycles for maps:
No matter what method we use to determine the unstable cycles, the theory to be
developed here requires that their Floquet multipliers be evaluated as well. For maps
a Floquet matrix is easily evaluated by picking any periodic point as a starting point,
running once around a prime cycle, and multiplying the individual periodic point
Jacobian matrices according to (4.46). For example, the Floquet matrix Mp for a
Hénon map (3.19) prime cycle p of length np is given by (4.47),

Mp(x0) =
1∏

k=np

(
−2axk b

1 0

)
, xk ∈ Mp ,

and the Floquet matrix Mp for a 2−d billiard prime cycle p of length np

Mp = (−1)np

1∏
k=np

(
1 τk

0 1

) (
1 0
rk 1

)
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follows from (8.11) of Chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond to
multiplication from the left, Mp(x1) = M(xnp ) · · ·M(x1). We shall compute Floquet
multipliers of Hénon map cycles once we learn how to find their periodic orbits, see
Exercise 13.13.

5.2 Floquet multipliers are invariant

The 1−d map Floquet multiplier (5.10) is a product of derivatives over all points
around the cycle, and is therefore independent of which periodic point is cho-
sen as the initial one. In higher dimensions the form of the Floquet matrix
Jp(x0) in (5.1) does depend on the choice of coordinates and the initial point
x0 ∈ Mp. Nevertheless, as we shall now show, the cycle Floquet multipliers
are intrinsic property of a cycle in any dimension. Consider the ith eigenvalue,
eigenvector pair (Λp,i, e(i)) computed from Jp evaluated at a periodic point x,

Jp(x) e(i)(x) = Λp,i e(i)(x) , x ∈ Mp . (5.11)

Consider another point on the cycle at time t later, x ′ = f t(x) whose Floquet
matrix is Jp(x′). By the semigroup property (4.38), J Tp+t = Jt+Tp , and the
Jacobian matrix at x′ can be written either as

JTp+t(x) = JTp (x′) Jt(x) = Jp(x′) Jt(x) ,

or Jt(x) Jp(x). Multiplying (5.11) by J t(x), we find that the Floquet matrix
evaluated at x′ has the same Floquet multiplier,

Jp(x′) e(i)(x′) = Λp,i e(i)(x′) , e(i)(x′) = Jt(x) e(i)(x) , (5.12)

but with the eigenvector e(i) transported along the flow x → x′ to e(i)(x′) =
Jt(x) e(i)(x). Hence, in the spirit of the Floquet theory (5.5) one can define
time-periodic unit eigenvectors (in a co-moving ‘Lagrangian frame’)

e( j)(t) = e−λ
( j)
p t Jt(x) e( j)(0) , e( j)(t) = e( j)(x(t)) , x(t) ∈ Mp . (5.13)

Jp evaluated anywhere along the cycle has the same set of Floquet multipliers
{Λp,1,Λp,2, · · · , 1, · · · ,Λp,d−1}. As quantities such as tr Jp(x), det Jp(x) depend
only on the eigenvalues of J p(x) and not on the starting point x, in expressions
such as det

(
1 − Jr

p(x)
)

we may omit reference to x,

det
(
1 − Jr

p

)
= det

(
1 − Jr

p(x)
)

for any x ∈ Mp . (5.14)

We postpone the proof that the cycle Floquet multipliers are smooth conjugacy
invariants of the flow to Section 6.6.

5.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either a continuous symmetry of
the flow (which one should immediately exploit to simplify the problem), or
a non-hyperbolicity of a flow (a source of much pain, hard to avoid). In that
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case (typical of parameter values for which bifurcations occur) one has to go
beyond linear stability, deal with Jordan type subspaces (see Example 4.3), and
sub-exponential growth rates, such as tα.

chapter 24

exercise 5.1
For flow-invariant solutions such as periodic orbits, the time evolution is

itself a continuous symmetry, hence a periodic orbit of a flow always has a
marginal Floquet multiplier:

As Jt(x) transports the velocity field v(x) by (4.7), after a complete period

Jp(x) v(x) = v(x) , (5.15)

so for a periodic orbit of a flow the local velocity field is always has an eigen-
vector e(‖)(x) = v(x) with the unit Floquet multiplier,

Λp,‖ = 1 , λ(‖)
p = 0 . (5.16)

The continuous invariance that gives rise to this marginal Floquet multiplier is
exercise 6.3

the invariance of a cycle (the setM p) under a translation of its points along the
cycle: two points on the cycle (see Fig. 4.3) initially distance δx apart, x ′(0) −
x(0) = δx(0), are separated by the exactly same δx after a full period T p. As
we shall see in Section 5.3, this marginal stability direction can be eliminated
by cutting the cycle by a Poincaré section and eliminating the continuous flow
Floquet matrix in favor of the Floquet matrix of the Poincaré return map.

If the flow is governed by a time-independent Hamiltonian, the energy is
conserved, and that leads to an additional marginal Floquet multiplier (we shall
show in Section 7.3 that due to the symplectic invariance (7.19) real eigenval-
ues come in pairs). Further marginal eigenvalues arise in presence of contin-
uous symmetries, as discussed in Chapter 10 below.

5.3 Stability of Poincaré map cycles

(R. Paškauskas and P. Cvitanović)
If a continuous flow periodic orbit p pierces the Poincaré section P once, the
section point is a fixed point of the Poincaré return map P with stability (4.51)

Ĵi j =

(
δik −

vi Uk

(v · U)

)
Jk j , (5.17)

with all primes dropped, as the initial and the final points coincide, x ′ =
f Tp (x) = x. If the periodic orbit p pierces the Poincaré section n times, the
same observation applies to the nth iterate of P.

We have already established in (4.52) that the velocity v(x) is a zero eigen-
vector of the Poincaré section Floquet matrix, Ĵ v = 0. Consider next (Λp,α, e(α)),
the full state space αth (eigenvalue, eigenvector) pair (5.11), evaluated at a pe-
riodic point on a Poincaré section,

J(x) e(α)(x) = Λα e(α)(x) , x ∈ P . (5.18)

Multiplying (5.17) by e(α) and inserting (5.18), we find that the full state space
Floquet matrix and the Poincaré section Floquet matrix Ĵ have the same Flo-
quet multiplier

Ĵ(x) ê(α)(x) = Λα ê(α)(x) , x ∈ P , (5.19)
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where ê(α) is a projection of the full state space eigenvector onto the Poincaré
section:

(ê(α))i =

(
δik −

vi Uk

(v · U)

)
(e(α))k . (5.20)

Hence, Ĵp evaluated on any Poincaré section point along the cycle p has the
same set of Floquet multipliers {Λp,1,Λp,2, · · ·Λp,d} as the full state space Flo-
quet matrix Jp, except for the marginal unit Floquet multiplier (5.16).

1As established in (4.52), due to the continuous symmetry (time invariance) 1 monodromy: from Greek mono- = alone,
single, and dromo = run, racecourse, meaning
a single run around the stadium.

Ĵp is a rank d−1 matrix. We shall refer to any such rank [(d−1−N)× (d−1−N)]
submatrix with N−1 continuous symmetries quotiented out as the monodromy
matrix Mp. Quotienting continuous symmetries is discussed in Chapter 10
below.

5.4 There goes the neighborhood

In what follows, our task will be to determine the size of a neighborhood of
x(t), and that is why we care about the Floquet multipliers, and especially the
unstable (expanding) ones.

Nearby points aligned along the stable (contracting) directions remain in
the neighborhood of the trajectory x(t) = f t(x0); the ones to keep an eye on
are the points which leave the neighborhood along the unstable directions:
all chaos arises from flights along these these directions. The sub-volume
|Mx0 | =

∏e
i Δxi of the set of points which get no further away from f t(x0)

than L, the typical size of the system, is fixed by the condition that Δx iΛi =

O(L) in each expanding direction i. Hence the neighborhood size scales as
|Mx0 | ∝ O(Lde )/|Λp| ∝ 1/|Λp| where Λp is the product of expanding Floquet
multipliers (5.7) only; contracting ones play a secondary role. Discussion of
Section 1.5.1, Fig. 1.9 the Fig. ?? intersection of initial volume with its return,
and Chapters 12 and 18 illustrate the key role that the unstable directions play
in systematically partitioning the state space of a given dynamical system. The
contracting directions are so secondary that even infinitely many of them (for
example, the infinity of contracting eigen-directions of the spatiotemporally
chaotic dynamics described by a PDE will not matter.

So the dynamically important information is carried by the expanding sub-
volume, not the total volume computed so easily in (4.41). That is also the
reason why the dissipative and the Hamiltonian chaotic flows are much more
alike than one would have naively expected for ‘compressible’ vs. ‘incom-
pressible’ flows. In hyperbolic systems what matters are the expanding direc-
tions. Whether the contracting eigenvalues are inverses of the expanding ones
or not is of secondary importance. As long as the number of unstable direc-
tions is finite, the same theory applies both to the finite-dimensional ODEs and
infinite-dimensional PDEs.

Résumé

Periodic orbits play a central role in any invariant characterization of the dy-
namics, because (a) their existence and inter-relations are a topological, coordinate-
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independent property of the dynamics, and (b) their Floquet multipliers form
an infinite set of metric invariants: The Floquet multipliers of a periodic or-

section 6.6
bit remain invariant under any smooth nonlinear change of coordinates f →
h ◦ f ◦ h−1 . Let us summarize the linearized flow notation used throughout the
ChaosBook.
Differential formulation, flows:

ẋ = v , δ̇x = A δx

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoin-
ing the d-dimensional tangent space δx ∈ TM x to every point x ∈ M in the
d-dimensional state spaceM ⊂ Rd. The stability matrix A = ∂v/∂x describes
the instantaneous rate of shearing of the infinitesimal neighborhood of x(t) by
the flow.
Finite time formulation, maps: A discrete sets of trajectory points {x0, x1,
· · · , xn, · · ·} ∈ M can be generated by composing finite-time maps, either given
as xn+1 = f (xn), or obtained by integrating the dynamical equations

xn+1 = f (xn) = xn +

∫ tn+1

tn

dτ v(x(τ)) , (5.21)

for a discrete sequence of times {t0, t1, · · · , tn, · · ·}, specified by some criterion
such as strobing or Poincaré sections. In the discrete time formulation the
dynamics in the tangent bundle (x, δx) ∈ TM is governed by

xn+1 = f (xn) , δxn+1 = J(xn) δxn , J(xn) = Jtn+1−tn (xn) ,

where J(xn) = ∂xn+1/∂xn =
∫

dτ exp (A τ) is the Jacobian matrix.
Stability of invariant solutions: The linear stability of an equilibrium v(x E Q) =
0 is described by the eigenvalues and eigenvectors {λ ( j), e( j)} of the stability ma-
trix A evaluated at the equilibrium point, and the linear stability of a periodic
orbit f T (x) = x, x ∈ Mp,

Jp(x) e( j)(x) = Λp, j e( j)(x) , Λp, j = σ
( j)
p eλ

( j)
p Tp ,

by its Floquet multipliers, vectors and exponents {Λ j, e( j)}, where λ( j)
p = μ

( j)
p ±

iω( j)
p For every continuous symmetry there is a marginal eigen-direction, with

Λp, j = 1, λ( j)
p = 0. With all 1 + N continuous symmetries quotiented out

(Poincaré sections for time, slices for continuous symmetries of dynamics, see
Section 10.4) linear stability of a periodic orbit (and, more generally, of a par-
tially hyperbolic torus) is described by the [(d-1-N)× (d-1-N)] monodromy
matrix, all of whose Floquet multipliers |Λ p, j| � 1 are generically strictly hy-
perbolic,

Mp(x) e( j)(x) = Λp, j e( j)(x) , x ∈ Mp/G .

We shall show in Chapter 11 that extending the linearized stability hy-
perbolic eigen-directions into stable and unstable manifolds yields important
global information about the topological organization of state space. What
matters most are the expanding directions. The physically important informa-
tion is carried by the unstable manifold, and the expanding sub-volume char-
acterized by the product of expanding Floquet multipliers of J p. As long as
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the number of unstable directions is finite, the theory can be applied to flows
of arbitrarily high dimension.

in depth:

Appendix 29, p. 495

fast track

Chapter 9, p. 121

Further reading

5.1 Floquet theory. Study of time-dependent and T-periodic
vector fields is a classical subject in the theory of differen-
tial equations [5.1, 2]. In physics literature Floquet expo-
nents often assume different names according to the context
where the theory is applied: they are called Bloch phases in

the discussion of Schrödinger equation with a periodic poten-
tial [5.3], or quasi-momenta in the quantum theory of time-
periodic Hamiltonians.

5.2 Periodic orbits. For further reading, consult Moehlis and
K. Josić [5.?] Scholarpedia.org article.

Exercises

(5.1) A limit cycle with analytic Floquet exponent. There
are only two examples of nonlinear flows for which the
Floquet multipliers can be evaluated analytically. Both
are cheats. One example is the 2−d flow

q̇ = p + q(1 − q2 − p2)

ṗ = −q + p(1 − q2 − p2) .

Determine all periodic solutions of this flow, and deter-
mine analytically their Floquet exponents. Hint: go to
polar coordinates (q, p) = (r cos θ, r sin θ). G. Bard

Ermentrout

(5.2) The other example of a limit cycle with analytic Flo-
quet exponent. What is the other example of a non-
linear flow for which the Floquet multipliers can be eval-
uated analytically? Hint: email G.B. Ermentrout.

(5.3) Yet another example of a limit cycle with analytic Flo-
quet exponent. Prove G.B. Ermentrout wrong by
solving a third example (or more) of a nonlinear flow for
which the Floquet multipliers can be evaluated analyti-
cally.
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We owe it to a book to withhold judgment until we reach page 100.
—Henrietta McNutt, George Johnson’s seventh-grade English

teacher

AHamiltonian system is said to be ‘integrable’ if one can find a change of
coordinates to an action-angle coordinate frame where the phase space
dynamics is described by motion on circles, one circle for each degree

of freedom. In the same spirit, a natural description of a hyperbolic, unstable
flow would be attained if one found a change of coordinates into a frame where
the stable/unstable manifolds are straight lines, and the flow is along hyperbo-
las. Achieving this globally for anything but a handful of contrived examples is
too much to hope for. Still, as we shall now show, we can make some headway
on straightening out the flow locally.

There is much more to this story than what we touch upon here: other tricks
and methods to construct regularizations, what kind of singularities could be
regularized, etc.. Even though such nonlinear coordinate transformations are
very important, especially in celestial mechanics, we shall not use them much
in what follows, so you can safely skip this chapter on the first reading. Ex-
cept, perhaps, you might want to convince yourself that cycle stabilities are
indeed metric invariants of flows (Section 6.6), and you might like transforma-
tions that turn a Keplerian ellipse into a harmonic oscillator (Example 6.2) and
regularize the 2-body Coulomb collisions (Section 6.3) in classical helium.

fast track

Chapter 7, p. 103

6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are not
always expressed in the most convenient way. In order to simplify a given
problem, one may stretch, rotate, bend and mix the coordinates, but in doing
so, the vector field will also change. The vector field lives in a (hyper)plane
tangent to state space and changing the coordinates of state space affects the
coordinates of the tangent space as well, in a way that we will now describe.

Denote by h the conjugation function which maps the coordinates of the
initial state spaceM into the reparameterized state spaceM′ = h(M), with a
point x ∈ M related to a point y ∈ M′ by

y = h(x) = (y1(x), y2(x), . . . , yd(x)) .
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The change of coordinates must be one-to-one and span bothM andM′, so
given any point y we can go back to x = h−1(y). For smooth flows the repa-
rameterized dynamics should support the same number of derivatives as the
initial one. If h is a (piecewise) analytic function, we refer to h as a smooth
conjugacy.

The evolution rule gt(y0) on M′ can be computed from the evolution rule
f t(x0) onM by taking the initial point y0 ∈ M′, going back toM, evolving,
and then mapping the final point x(t) back toM′:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (6.1)

Here ‘◦’ stands for functional composition h ◦ f (x) = h( f (x)), so (6.1) is a
shorthand for y(t) = h( f t(h−1(y0))).

The vector field ẋ = v(x) inM, locally tangent to the flow f t, is related to
the flow by differentiation (2.5) along the trajectory. The vector field ẏ = w(y)
inM′, locally tangent to gt follows by the chain rule:

exercise 6.2

w(y) =
dgt

dt
(y)

∣∣∣∣∣∣
t=0

=
d
dt

(
h ◦ f t ◦ h−1(y)

)∣∣∣∣∣
t=0

= h′(h−1(y)) v(h−1(y)) = h′(x) v(x) . (6.2)

In order to rewrite the right-hand side as a function of y, note that the ∂ y differ-
entiation of h(h−1(y)) = y implies

∂h
∂x

∣∣∣∣∣
x
·
∂h−1

∂y

∣∣∣∣∣∣
y

= 1 →
∂h
∂x

(x) =

[
∂h−1

∂y
(y)

]−1

, (6.3)

so the equations of motion in the transformed coordinates, with the indices
reinstated, are

ẏi = wi(y) =

[
∂h−1

∂y
(y)

]−1

i j

v j(h
−1(y)) . (6.4)

Imagine that the state space is a rubber sheet with the flow lines drawn on it.
A coordinate change h corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersections of the distorted rubber
sheet. Trajectories that are closed loops inM will remain closed loops in the
new manifoldM′, but their shapes will change. Globally h deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears
the tangent field by the Jacobian matrix ∂ jhi, hence the simple transformation
law (6.2) for the velocity fields.

The time itself is a parametrization of points along flow lines, and it can
also be reparameterized, s = s(t), with the attendant modification of (6.4). An
example is the 2-body collision regularization of the helium Hamiltonian (7.6),
to be undertaken in Section 6.3 below.

fast track

Section 6.6, p. 97
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6.2 Rectification of flows

A profitable way to exploit invariance of dynamics under smooth conjugacies
is to use it to pick out the simplest possible representative of an equivalence
class. In general and globally these are just words, as we have no clue how to
pick such ‘canonical’ representative, but for smooth flows we can always do it
locally and for sufficiently short time, by appealing to the rectification theorem,
a fundamental theorem of ordinary differential equations. The theorem assures
us that there exists a solution (at least for a short time interval) and what the
solution looks like. The rectification theorem holds in the neighborhood of
points of the vector field v(x) that are not singular, that is, everywhere except
for the equilibrium points (2.8), and points at which v is infinite. According
to the theorem, in a small neighborhood of a non-singular point there exists
a change of coordinates y = h(x) such that ẋ = v(x) in the new, canonical
coordinates takes form

ẏ1 = ẏ2 = · · · = ẏd−1 = 0
ẏd = 1 ,

(6.5)

with unit velocity flow along yd, and no flow along any of the remaining di-
rections. This is an example of a one-parameter Lie group of transformations,
with finite time τ action

exercise 9.8
exercise 6.1y′i = yi , i = 1, 2, . . . , d − 1

y′d = yd + τ .

Example 6.1 Harmonic oscillator, rectified:
As a simple example of global rectification of a flow consider the harmonic oscillator

q̇ = p , ṗ = −q . (6.6)

The trajectories x(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates y = (r, θ):

h−1 :

{
q = h−1

1 (r, θ) = r cos θ
p = h−1

2 (r, θ) = r sin θ
. (6.7)

The Jacobian matrix of the transformation is

h′ =

⎛⎜⎜⎜⎜⎜⎜⎝ cos θ sin θ

− sin θ
r

cos θ
r

⎞⎟⎟⎟⎟⎟⎟⎠ (6.8)

resulting in (6.4) of rectified form
exercise 5.1(

ṙ
θ̇

)
=

⎛⎜⎜⎜⎜⎜⎜⎝ cos θ sin θ

− sin θ
r

cos θ
r

⎞⎟⎟⎟⎟⎟⎟⎠ (
q̇
ṗ

)
=

(
0
−1

)
. (6.9)

In the new coordinates the radial coordinate r is constant, and the angular coordinate
θ wraps around a cylinder with constant angular velocity. There is a subtle point in
this change of coordinates: the domain of the map h−1 is not the plane R2, but rather
the plane minus the origin. We had mapped a plane into a cylinder, and coordinate
transformations should not change the topology of the space in which the dynamics
takes place; the coordinate transformation is not defined on the equilibrium point
x = (0, 0), or r = 0.
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6.3 Collinear helium

(G. Tanner)
So far much has been said about 1−d maps, game of pinball and other curi-
ous but rather idealized dynamical systems. If you have become impatient and
started wondering what good are the methods learned so far in solving real life
physical problems, good news are here. We will apply here concepts of nonlin-
ear dynamics to nothing less than the helium, a dreaded three-body Coulomb
problem.

Can we really jump from three static disks directly to three charged particles
moving under the influence of their mutually attracting or repelling forces? It
turns out, we can, but we have to do it with care. The full problem is indeed
not accessible in all its detail, but we are able to analyze a somewhat sim-
pler subsystem–collinear helium. This system plays an important role in the
classical and quantum dynamics of the full three-body problem.

e

θ

++
He

r2
r1

e

Fig. 6.1 Coordinates for the helium three
body problem in the plane.

The classical helium system consists of two electrons of mass me and charge
−e moving about a positively charged nucleus of mass m he and charge +2e.

The helium electron-nucleus mass ratio mhe/me = 1836 is so large that we
may work in the infinite nucleus mass approximation m he = ∞, fixing the
nucleus at the origin. Finite nucleus mass effects can be taken into account
without any substantial difficulty. We are now left with two electrons moving
in three spatial dimensions around the origin. The total angular momentum of
the combined electron system is still conserved. In the special case of angular
momentum L = 0, the electrons move in a fixed plane containing the nucleus.
The three body problem can then be written in terms of three independent
coordinates only, the electron-nucleus distances r1 and r2 and the inter-electron
angle Θ, see Fig. 6.1.

He
++

e e

r r

- -

1 2

Fig. 6.2 Collinear helium, with the two elec-
trons on opposite sides of the nucleus.

This looks like something we can lay our hands on; the problem has been
reduced to three degrees of freedom, six phase space coordinates in all, and
the total energy is conserved. But let us go one step further; the electrons are
attracted by the nucleus but repelled by each other. They will tend to stay as far
away from each other as possible, preferably on opposite sides of the nucleus.
It is thus worth having a closer look at the situation where the three particles
are all on a line with the nucleus being somewhere between the two electrons.
If we, in addition, let the electrons have momenta pointing towards the nucleus
as in Fig. 6.2, then there is no force acting on the electrons perpendicular to
the common interparticle axis. That is, if we start the classical system on the
dynamical subspace Θ = π, d

dtΘ = 0, the three particles will remain in this
collinear configuration for all times.

6.3.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace. It is a
system of two degrees of freedom with the Hamiltonian

H =
1

2me

(
p2

1 + p2
2

)
− 2e2

r1
− 2e2

r2
+

e2

r1 + r2
= E , (6.10)
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where E is the total energy. As the dynamics is restricted to the fixed energy
shell, the four phase space coordinates are not independent; the energy shell
dependence can be made explicit by writing

(r1, r2, p1, p2)→ (r1(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on the energy E. A
simple analysis of potential versus kinetic energy tells us that if the energy is
positive both electrons can escape to ri → ∞, i = 1, 2. More interestingly,
a single electron can still escape even if E is negative, carrying away an un-
limited amount of kinetic energy, as the total energy of the remaining inner
electron has no lower bound. Not only that, but one electron will escape even-
tually for almost all starting conditions. The overall dynamics thus depends
critically on whether E > 0 or E < 0. But how does the dynamics change oth-
erwise with varying energy? Fortunately, not at all. Helium dynamics remains
invariant under a change of energy up to a simple scaling transformation; a so-
lution of the equations of motion at a fixed energy E 0 = −1 can be transformed
into a solution at an arbitrary energy E < 0 by scaling the coordinates as

ri(E) =
e2

(−E)
ri, pi(E) =

√
−meE pi, i = 1, 2 ,

together with a time transformation t(E) = e2m1/2
e (−E)−3/2 t. We include the

electron mass and charge in the scaling transformation in order to obtain a
non–dimensionalized Hamiltonian of the form

H =
p2

1

2
+

p2
2

2
−

2
r1
−

2
r2
+

1
r1 + r2

= −1 . (6.11)

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states
and resonances of the quantum problem.

6.3.2 Regularization of two–body collisions

Next, we have a closer look at the singularities in the Hamiltonian (6.11).
Whenever two bodies come close to each other, accelerations become large,
numerical routines require lots of small steps, and numerical precision suffers.
No numerical routine will get us through the singularity itself, and in collinear
helium electrons have no option but to collide with the nucleus. Hence a reg-
ularization of the differential equations of motions is a necessary prerequisite
to any numerical work on such problems, both in celestial mechanics (where
a spaceship executes close approaches both at the start and its destination) and
in quantum mechanics (where much of semiclassical physics is dominated by
returning classical orbits that probe the quantum wave function at the nucleus).

There is a fundamental difference between two–body collisions r 1 = 0 or
r2 = 0, and the triple collision r1 = r2 = 0. Two–body collisions can be reg-
ularized, with the singularities in equations of motion removed by a suitable
coordinate transformation together with a time transformation preserving the
Hamiltonian structure of the equations. Such regularization is not possible
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for the triple collision, and solutions of the differential equations can not be
continued through the singularity at the origin. As we shall see, the chaos in
collinear helium originates from this singularity of triple collisions.

A regularization of the two–body collisions is achieved by means of the
Kustaanheimo–Stiefel (KS) transformation, which consists of a coordinate de-
pendent time transformation which stretches the time scale near the origin, and
a canonical transformation of the phase space coordinates. In order to motivate
the method, we apply it first to the 1−d Kepler problem

H =
1
2

p2 − 2
x
= E . (6.12)

Example 6.2 Keplerian ellipse, rectified:
To warm up, consider the E = 0 case, starting at x = 0 at t = 0. Even though the
equations of motion are singular at the initial point, we can immediately integrate

1
2

ẋ2 − 2
x
= 0

by means of separation of variables

√
xdx = 2 dt , x = (3t)

2
3 , (6.13)

and observe that the solution is not singular. The aim of regularization is to compen-
sate for the infinite acceleration at the origin by introducing a fictitious time, in terms
of which the passage through the origin is smooth.
A time transformation dt = f (q, p)dτ for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered,
if the Hamiltonian itself is transformed into H(q, p) = f (q, p)(H(q, p) − E). For
the 1– dimensional Coulomb problem with (6.12) we choose the time transformation
dt = xdτ which lifts the |x| → 0 singularity in (6.12) and leads to a new Hamiltonian

H = 1
2

xp2 − 2 − Ex = 0. (6.14)

The solution (6.13) is now parameterized by the fictitous time dτ through a pair of
equations

x = τ2 , t =
1
3
τ3 .

The equations of motion are, however, still singular as x→ 0:

d2 x
dτ2
= − 1

2x
dx
dτ
+ xE .

Appearance of the square root in (6.13) now suggests a canonical transformation of
form

x = Q2 , p =
P

2Q
(6.15)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian

H(Q, P) =
1
8

P2 − EQ2 = 2, (6.16)

with all singularities completely removed.
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Fig. 6.3 (a) A typical trajectory in the [r1, r2]
plane; the trajectory enters here along the r1
axis and escapes to infinity along the r2 axis;
(b) Poincaré map (r2=0) for collinear helium.
Strong chaos prevails for small r1 near the nu-
cleus.

We now apply this method to collinear helium. The basic idea is that one
seeks a higher-dimensional generalization of the ‘square root removal’ trick
(6.15), by introducing a new vector Q with property r = |Q| 2 . In this simple
1−d example the KS transformation can be implemented by

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
(6.17)

and reparameterization of time by dτ = dt/r1r2. The singular behavior in the
original momenta at r1 or r2 = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of the equations of motions
with respect to the new time τ is conserved, if we consider the Hamiltonian

Hko =
1
8

(Q2
2P2

1 + Q2
1P2

2) − 2R2
12 + Q2

1Q2
2(−E + 1/R2

12) = 0 (6.18)

with R12 = (Q2
1 + Q2

2)1/2, and we will take E = −1 in what follows. The
equations of motion now have the form

Ṗ1 = 2Q1

⎡⎢⎢⎢⎢⎣2 − P2
2

8
− Q2

2

⎛⎜⎜⎜⎜⎝1 +
Q2

2

R4
12

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ ; Q̇1 =
1
4

P1Q2
2 (6.19)

Ṗ2 = 2Q2

⎡⎢⎢⎢⎢⎣2 − P2
1

8
− Q2

1

⎛⎜⎜⎜⎜⎝1 +
Q2

1

R4
12

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ ; Q̇2 =
1
4

P2Q2
1.

Individual electron–nucleus collisions at r1 = Q2
1 = 0 or r2 = Q2

2 = 0 no
longer pose a problem to a numerical integration routine. The equations (6.19)
are singular only at the triple collision R12 = 0, i.e., when both electrons hit
the nucleus at the same time.

The new coordinates and the Hamiltonian (6.18) are very useful when cal-
culating trajectories for collinear helium; they are, however, less intuitive as
a visualization of the three-body dynamics. We will therefore refer to the old
coordinates r1, r2 when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a form where the
2-body collisions have been transformed away, and the phase space trajecto-
ries computable numerically. To appreciate the full beauty of what has been
attained, you have to fast-forward to quantum chaos part of ChaosBook.org;
we are already ‘almost’ ready to quantize helium by semiclassical methods.
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fast track

Chapter 5, p. 79

6.4 Rectification of maps

In Section 6.2 we had argued that nonlinear coordinate transformations can
be profitably employed to simplify the representation of a flow. We shall
now apply the same idea to nonlinear maps, and determine a smooth nonlinear
change of coordinates that flattens out the vicinity of a fixed point and makes
the map linear in an open neighborhood. In its simplest form the idea can
be implemented only for an isolated nondegenerate fixed point (otherwise are
needed in the normal form expansion around the point), and only in a finite
neighborhood of a point, as the conjugating function in general has a finite
radius of convergence. In Section 6.5 we will extend the method to periodic
orbits.

6.4.1 Rectification of a fixed point in one dimension
exercise 6.3 Consider a 1−d map xn+1 = f (xn) with a fixed point at x = 0, with stability

Λ = f ′(0). If |Λ| � 1, one can determine term-by-term the power series for a
smooth conjugation h(x) centered at the fixed point, h(0) = 0, that flattens out
the neighborhood of the fixed point

f (x) = h−1(Λh(x)) (6.20)

and replaces the nonlinear map f (x) by a linear map y n+1 = Λyn.
To compute the conjugation h we use the functional equation h −1(Λx) =

f (h−1(x)) and the expansions

f (x) = Λx + x2 f2 + x3 f3 + . . .

h−1(x) = x + x2h2 + x3h3 + . . . . (6.21)

Equating the coefficients of xk on both sides of the functional equation yields
hk order by order as a function of f2, f3, . . .. If h(x) is a conjugation, so is any
scaling h(bx) of the function for a real number b. Hence the value of h ′(0) is not
determined by the functional equation (6.20); it is convenient to set h ′(0) = 1.

The algebra is not particularly illuminating and best left to computers. In
any case, for the time being we will not use much beyond the first, linear term
in these expansions.

Here we have assumed Λ � 1. If the fixed point has first k−1 derivatives
vanishing, the conjugacy is to the kth normal form.

In several dimensions, Λ is replaced by the Jacobian matrix, and one has to
check that the eigenvalues M are non-resonant, that is, there is no integer linear
relation between the Floquet exponents (5.8).

remark 6.3
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6.5 Rectification of a periodic orbit

In Section 6.4.1 we have constructed the conjugation function for a fixed point.
Here we turn to the problem of constructing it for periodic orbits. Each point
around the cycle has a differently distorted neighborhood, with differing sec-
ond and higher order derivatives, so we need to compute a different conjuga-
tion function ha at each periodic point xa. We expand the map f around each
periodic point along the cycle,

ya(φ) = fa(φ) − xa+1 = φ fa,1 + φ
2 fa,2 + . . . (6.22)

where xa is a point on the cycle, fa(φ) = f (xa + φ) is centered on the periodic
orbit, and the index k in fa,k refers to the kth order in the expansion (6.21).

For a periodic orbit the conjugation formula (6.20) generalizes to

fa(φ) = h−1
a+1( f ′a(0)ha(φ)) , a = 1, 2, · · · , n ,

point by point. The conjugationg functions h a are obtained in the same way
as before, by equating coefficients of the expansion (6.21), and assuming that
the cycle Floquet multiplier Λ =

∏n−1
a=0 f ′(xa) is not marginal, |Λ| � 1. The

explicit expressions for ha in terms of f are obtained by iterating around the
whole cycle,

f n(xa + φ) = h−1
a (Λha(φ)) + xa . (6.23)

evaluated at each periodic point a. Again we have the freedom to set h ′a(0) = 1
remark 6.2

for all a.

6.5.1 Repeats of cycles

We have traded in our initial nonlinear map f for a (locally) linear map Λy and
an equally complicated conjugation function h. What is gained by rewriting
the map f in terms of the conjugacy function h? Once the neighborhood of a
fixed point is linearized, the repeats of it are trivialized; from the conjugation
formula (6.21) one can compute the derivatives of a function composed with
itself r times:

f r(x) = h−1(Λrh(x)) .

One can already discern the form of the expansion for arbitrary repeats; the an-
swer will depend on the conjugacy function h(x) computed for a single repeat,
and all the dependence on the repeat number will be carried by factors polyno-
mial in Λr, a considerable simplification. The beauty of the idea is difficult to
gauge at this stage–an appreciation only sets in when one starts computing per-
turbative corrections, be it in celestial mechanics (where the method was born),
be it the quantum or stochastic corrections to ‘semiclassical’ approximations.

6.6 Cycle Floquet multipliers are metric
invariants

In Section 5.2 we have established that for a given flow the cycle Floquet mul-
tipliers are intrinsic to a given cycle, independent of the starting point along
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the cycle. Now we can prove a much stronger statement; cycle Floquet multi-
pliers are smooth conjugacy or metric invariants of the flow, the same in any
representation of the dynamical system.

That the cycle Floquet multipliers are an invariant property of the given dy-
namical system follows from elementary considerations of Section 6.1: If the
same dynamics is given by a map f in x coordinates, and a map g in the y =
h(x) coordinates, then f and g (or any other good representation) are related by
(6.4), a reparameterization and a coordinate transformation g = h ◦ f ◦ h −1. As
both f and g are arbitrary representations of the dynamical system, the explicit
form of the conjugacy h is of no interest, only the properties invariant under
any transformation h are of general import. Furthermore, a good representa-
tion should not mutilate the data; h must be a smooth conjugacy which maps
nearby periodic points of f into nearby periodic points of g. This smoothness
guarantees that the cycles are not only topological invariants, but that their lin-
earized neighborhoods are also metrically invariant. For a fixed point f (x) = x
of a 1−d map this follows from the chain rule for derivatives,

g′(y) = h′( f ◦ h−1(y)) f ′(h−1(y))
1

h′(x)

= h′(x) f ′(x)
1

h′(x)
= f ′(x) . (6.24)

In d dimensions the relationship between the maps in different coordinate rep-
resentations is again g◦h = h◦ f .We now make the matrix structure of relation
(6.3) explicit:

Γik(x) =
∂hi

∂xk

∣∣∣∣∣
x

and Γ−1
ik (x) =

∂h−1
i

∂yk

∣∣∣∣∣∣
h(x)

,

i.e., Γik(x) is the matrix inverse of Γ−1
ik (x). The chain rule now relates M ′, the

Jacobian matrix of the map g to the Jacobian matrix of map f :

M′i j(h(x)) = Γik( f (x))Mkl(x)Γ−1
l j (x) . (6.25)

If x is a fixed point then (6.25) is a similarity transformation and thus preserves
eigenvalues: it is easy to verify that in the case of period n p cycle again
M′p(h(x)) and M p(x) are related by a similarity transformation (note that this is
not true for Mr(x) with r � np). As stability of a flow can always be reduced to
stability of a Poincaré section return map, a Floquet multiplier of any cycle, for
a flow or a map in arbitrary dimension, is a metric invariant of the dynamical
system.

exercise 6.3

in depth:

Appendix B.4, p. 504

Résumé

Dynamics (M, f ) is invariant under the group of all smooth conjugacies

(M, f ) → (M′, g) = (h(M), h ◦ f ◦ h−1) .
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This invariance can be used to (i) find a simplified representation for the flow
and (ii) identify a set of invariants, numbers computed within a particular
choice of (M, f ), but invariant under allM→ h(M) smooth conjugacies.

The 2D-dimensional phase space of an integrable Hamiltonian system of D
degrees of freedom is fully foliated by D-tori. In the same spirit, for a uni-
formly hyperbolic, chaotic dynamical system one would like to change into a
coordinate frame where the stable/unstable manifolds form a set of transver-
sally intersecting hyper-planes, with the flow everywhere locally hyperbolic.
That cannot be achieved in general: Fully globally integrable and fully glob-
ally chaotic flows are a very small subset of all possible flows, a ‘set of measure
zero’ in the world of all dynamical systems.

What we really care about is developping invariant notions of what a given
dynamical system is. The totality of smooth one-to-one nonlinear coordi-
nate transformations h which map all trajectories of a given dynamical sys-
tem (M, f t) onto all trajectories of dynamical systems (M′, gt) gives us a huge
equivalence class, much larger than the equivalence classes familiar from the
theory of linear transformations, such as the rotation group O(d) or the Galilean
group of all rotations and translations in Rd . In the theory of Lie groups, the
full invariant specification of an object is given by a finite set of Casimir in-
variants. What a good full set of invariants for a group of general nonlinear
smooth conjugacies might be is not known, but the set of all periodic orbits
and their Floquet multipliers will turn out to be a good start.

Further reading

6.1 Rectification of flows. See Section 2.2.5 of Ref. [6.10] for
a pedagogical introduction to smooth coordinate reparameter-
izations. Explicit examples of transformations into canonical
coordinates for a group of scalings and a group of rotations
are worked out.

6.2 Rectification of maps. The methods outlined above are
standard in the analysis of fixed points and construction of
normal forms for bifurcations, see for example Ref. [6.26, 31,
2–7,11]. The geometry underlying such methods is pretty, and
we enjoyed reading, for example, Percival and Richards [6.8],
chaps. 2 and 4 of Ozorio de Almeida’s monograph [6.9], and,
as always, Arnol’d [6.1].
Recursive formulas for evaluation of derivatives needed to
evaluate (6.21) are given, for example, in Appendix A of
Ref. [6.9]. Section 10.6 of Ref. [6.11] describes in detail the
smooth conjugacy that relates the Ulam map (11.5) to the tent
map (11.4). For ‘negative Schwartzian derivatives,’ families

of conjugacies of Ulam-type maps, associated Lyapunov ex-
ponents, continuous measures and further pointers to litera-
ture, see Ref. [6.12].

6.3 A resonance condition. In the hyperbolic case there is
a resonance condition that must be satisfied: none of the Flo-
quet exponents may be related by ratios of integers. That is,
if Λp,1,Λp,2, . . . ,Λp,d are the Floquet multipliers of the Jaco-
bian matrix, then they are in resonance if there exist integers
n1, . . . , nd such that

(Λp,1)n1 (Λp,2)n2 · · · (Λp,d)nd = 1 .

If there is resonance, then one may get corrections to the basic
conjugation formulas in the form of monomials in the vari-
ables of the map. (R.
Mainieri)
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Exercises

(6.1) Harmonic oscillator in polar coordinates: Given a
harmonic oscillator (6.6) that follows ṗ = −q and q̇ = p,
use (6.8) to rewrite the system in polar coordinates (6.7)
and find equations for r and θ.

1. Show that the 1−d state space of the rewritten sys-
tem is the quotient spaceM/SO(2).

2. Construct a Poincaré section of the quotiented flow.

(6.2) Coordinate transformations. Changing coordinates
is conceptually simple, but can become confusing when
carried out in detail. The difficulty arises from confusing
functional relationships, such as x(t) = h−1(y(t)) with nu-
merical relationships, such as w(y) = h′(x)v(x). Working
through an example will clear this up.

(a) The differential equation in the M space is ẋ =
{2x1, x2} and the change of coordinates fromM to
M′ is h(x1, x2) = {2x1 + x2, x1 − x2}. Solve for x(t).
Find h−1.

(b) Show that in the transformed spaceM′, the differ-
ential equation is

d
dt

[
y1

y2

]
=

1
3

[
5y1 + 2y2

y1 + 4y2

]
.

Solve this system. Does it match the solution in the
M space?

(6.3) Linearization for maps. Let f : C → C be a map
from the complex numbers into themselves, with a fixed
point at the origin and analytic there. By manipulating
power series, find the first few terms of the map h that
conjugates f to αz, that is,

f (z) = h−1(αh(z)) .

There are conditions on the derivative of f at the origin to
assure that the conjugation is always possible. Can you
formulate these conditions by examining the series?

(difficulty: medium) (R. Mainieri)

(6.4) Ulam and tent maps. Show that the smooth conjugacy
(6.1)

g(y0) = h ◦ f ◦ h−1(y0)

y = h(x) = sin2(πx/2) ,

conjugates the tent map f (x) = 1−2|x−1/2| into the Ulam
map g(y) = 4y(1 − y) . (continued as Exercise 13.1)
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Conservative mechanical systems have equations of motion that are
symplectic and can be expressed in Hamiltonian form. The generic
properties within the class of symplectic vector fields are quite differ-
ent from those within the class of all smooth vector fields: the system
always has a first integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in their energy
level.

— John Guckenheimer

You might think that the strangeness of contracting flows, flows such as
the Rössler flow of Fig. 2.6 is of concern only to chemists or biomedi-
cal engineers or the weathermen; physicists do Hamiltonian dynamics,

right? Now, that’s full of chaos, too! While it is easier to visualize aperiodic
dynamics when a flow is contracting onto a lower-dimensional attracting set,
there are plenty examples of chaotic flows that do preserve the full symplectic
invariance of Hamiltonian dynamics. The whole story started with Poincaré’s
restricted 3-body problem, a realization that chaos rules also in general (non-
Hamiltonian) flows came much later.

Here we briefly review parts of classical dynamics that we will need later
on; symplectic invariance, canonical transformations, and stability of Hamil-
tonian flows. If your eventual destination are applications such as chaos in
quantum and/or semiconductor systems, read this chapter. If you work in neu-
roscience or fluid dynamics, skip this chapter, continue reading with the bil-
liard dynamics of Chapter 8 which requires no incantations of symplectic pairs
or loxodromic quartets.

fast track

Chapter 8, p. 113

7.1 Hamiltonian flows

(P. Cvitanović and L.V. Vela-Arevalo)
An important class of flows are Hamiltonian flows, given by a Hamiltonian

appendix 29
H(q, p) together with the Hamilton’s equations of motion

remark 2.1

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (7.1)

with the 2D phase space coordinates x split into the configuration space coor-
dinates and the conjugate momenta of a Hamiltonian system with D degrees
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of freedom (dof):

x = (q, p) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (7.2)

The energy, or the value of the Hamiltonian function at the state space point
x = (q, p) is constant along the trajectory x(t),

d
dt

H(q(t), p(t)) =
∂H
∂qi

q̇i(t) +
∂H
∂pi

ṗi(t)

=
∂H
∂qi

∂H
∂pi
− ∂H
∂pi

∂H
∂qi
= 0 , (7.3)

so the trajectories lie on surfaces of constant energy, or level sets of the Hamil-
tonian {(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically
the whole story.

−2 −1 0 1 2

−1

0

1

q

p

Fig. 7.1 Phase plane of the unforced, un-
damped Duffing oscillator. The trajectories
lie on level sets of the Hamiltonian (7.4).

Example 7.1 Unforced undamped Duffing oscillator:
When the damping term is removed from the Duffing oscillator (2.7), the system can

be written in Hamiltonian form with the Hamiltonian

H(q, p) =
p2

2
− q2

2
+

q4

4
. (7.4)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).
The Hamilton’s equations (7.1) are

q̇ = p , ṗ = q − q3 . (7.5)

For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves in the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy
are the trajectories, as shown in Fig. 7.1.

Thus all 1-dof systems are integrable, in the sense that the entire phase plane
is foliated by curves of constant energy, either periodic – as is the case for the
harmonic oscillator (a ‘bound state’)–or open (a ‘scattering trajectory’). Add

example 6.1
one more degree of freedom, and chaos breaks loose.

0

2

4

6

8

10

0 2 4 6 8 10

r1

2r

Fig. 7.2 A typical collinear helium trajec-
tory in the [r1, r2] plane; the trajectory enters
along the r1-axis and then, like almost every
other trajectory, after a few bounces escapes
to infinity, in this case along the r2-axis.

Example 7.2 Collinear helium:
In the quantum chaos part of ChaosBook.org we shall apply the periodic orbit

theory to the quantization of helium. In particular, we will study collinear helium,
a doubly charged nucleus with two electrons arranged on a line, an electron on each
side of the nucleus. The Hamiltonian for this system is

H =
1
2

p2
1 +

1
2

p2
2 −

2
r1
− 2

r2
+

1
r1 + r2

. (7.6)

Collinear helium has 2 dof, and thus a 4-dimensional phase spaceM, which energy
conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-
dimensional configuration plane, the (r1, r2), ri ≥ 0 quadrant, Fig. 7.2. It looks
messy, and, indeed, it will turn out to be no less chaotic than a pinball bouncing
between three disks. As always, a Poincaré section will be more informative than
this rather arbitrary projection of the flow.

Note an important property of Hamiltonian flows: if the Hamilton equations
(7.1) are rewritten in the 2D phase space form ẋ i = vi(x), the divergence of the
velocity field v vanishes, namely the flow is incompressible. The symplectic
invariance requirements are actually more stringent than just the phase space
volume conservation, as we shall see in the next section.
newton - 23apr2011 ChaosBook.org version13.5, Sep 7 2011
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7.2 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of
equations of motion can affect the dynamics. In the case at hand, the symplectic
invariance will reduce the number of independent Floquet multipliers by a
factor of 2 or 4.

7.2.1 Canonical transformations

The equations of motion for a time-independent, D-dof Hamiltonian (7.1) can
be written

ẋi = ωi jH j(x) , ω =

(
0 I
−I 0

)
, H j(x) =

∂

∂x j
H(x) , (7.7)

where x = (q, p) ∈ M is a phase space point, Hk = ∂kH is the column vector
of partial derivatives of H, I is the [D×D] unit matrix, and ω the [2D×2D]
symplectic form 1 1 The term ‘symplectic’ –Greek for twin-

ing or plaiting together– was introduced into
mathematics by Hermann Weyl. ‘Canonical’
lineage is church-doctrinal: Greek ‘kanon,’
referring to a reed used for measurement,
came to mean in Latin a rule or a standard.

ωT = −ω , ω2 = −1 . (7.8)

The evolution of J t (4.6) is again determined by the stability matrix A, (4.9):

d
dt

Jt(x) = A(x)Jt(x) , Ai j(x) = ωik Hk j(x) , (7.9)

where the matrix of second derivatives Hkn = ∂k∂nH is called the Hessian
matrix. From the symmetry of Hkn it follows that

ATω + ωA = 0 . (7.10)

This is the defining property for infinitesimal generators of symplectic (or
canonical) transformations, transformations which leave the symplectic form
ω invariant.

Symplectic matrices are by definition linear transformations that leave the
(antisymmetric) quadratic form xiωi jy j invariant. This immediately implies
that any symplectic matrix satisfies

QTωQ = ω , (7.11)

and – when Q is close to the identity Q = 1 + δtA – it follows that that A must
satisfy (7.10).

Consider now a smooth nonlinear change of variables of form y i = hi(x),
and define a new function K(x) = H(h(x)). Under which conditions does
K generate a Hamiltonian flow? In what follows we will use the notation
∂̃ j = ∂/∂y j: by employing the chain rule we have that

ωi j∂ jK = ωi j∂̃lH
∂hl

∂x j
(7.12)

(Here, as elsewhere in this book, a repeated index implies summation.) By
virtue of (7.1) ∂̃lH = −ωlmẏm, so that, again by employing the chain rule, we
obtain

ωi j∂ jK = −ωi j
∂hl

∂x j
ωlm

∂hm

∂xn
ẋn (7.13)

ChaosBook.org version13.5, Sep 7 2011 newton - 23apr2011
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The right hand side simplifies to ẋi (yielding Hamiltonian structure) only if

−ωi j
∂hl

∂x j
ωlm

∂hm

∂xn
= δin (7.14)

or, in compact notation, by defining (∂h) i j =
∂hi
∂x j

−ω(∂h)Tω(∂h) = 1 (7.15)

which is equivalent to the requirement that ∂h is symplectic. h is then called
a canonical transformation. We care about canonical transformations for
two reasons. First (and this is a dark art), if the canonical transformation h

example 6.1
is very cleverly chosen, the flow in new coordinates might be considerably
simpler than the original flow. Second, Hamiltonian flows themselves are a
prime example of canonical transformations.

Example 7.3 Hamiltonian flows are canonical:
For Hamiltonian flows it follows from (7.10) that d

dt

(
JTωJ

)
= 0, and since at the

initial time J0(x0) = 1, Jacobian matrix is a symplectic transformation (7.11). This
equality is valid for all times, so a Hamiltonian flow f t(x) is a canonical transfor-
mation, with the linearization ∂x f t(x) a symplectic transformation (7.11): For

complex saddle saddle−center

degenerate saddle

(2)(2)

real saddle

generic center degenerate center

(2)

(2)

Fig. 7.3 Stability exponents of a Hamiltonian
equilibrium point, 2-dof.

notational brevity here we have suppressed the dependence on time and the initial
point, J = Jt(x0). By elementary properties of determinants it follows from (7.11)
that Hamiltonian flows are phase space volume preserving:

|det J| = 1 . (7.16)

Actually it turns out that for symplectic matrices (on any field) one always has det J =
+1.

7.2.2 Stability of equilibria of Hamiltonian flows

For an equilibrium point xq the stability matrix A is constant. Its eigenvalues
describe the linear stability of the equilibrium point. A is the matrix (7.10)
with real matrix elements, so its eigenvalues (the Floquet exponents of (4.25))
are either real or come in complex pairs. In the case of Hamiltonian flows, it
follows from (7.10) that the characteristic polynomial of A for an equilibrium
xq satisfies

section 4.3.1
exercise 7.4
exercise 7.5

det (A − λ1) = det (ω−1(A − λ1)ω) = det (−ωAω − λ1)

= det (AT + λ1) = det (A + λ1) . (7.17)

That is, the symplectic invariance implies in addition that if λ is an eigenvalue,
then −λ, λ∗ and −λ∗ are also eigenvalues. Distinct symmetry classes of the
Floquet exponents of an equilibrium point in a 2-dof system are displayed in
Fig. 7.3. It is worth noting that while the linear stability of equilibria in a
Hamiltonian system always respects this symmetry, the nonlinear stability can
be completely different.
newton - 23apr2011 ChaosBook.org version13.5, Sep 7 2011
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7.3 Symplectic maps

A Floquet multiplier Λ = Λ(x0, t) associated to a trajectory is an eigenvalue of
the Jacobian matrix J. As J is symplectic, (7.11) implies that

J−1 = −ωJTω , (7.18)

so the characteristic polynomial is reflexive, namely it satisfies

det (J − Λ1) = det (JT − Λ1) = det (−ωJTω − Λ1)

= det (J−1 − Λ1) = det (J−1) det (1 − ΛJ)

= Λ2D det (J − Λ−11) . (7.19)

Hence if Λ is an eigenvalue of J, so are 1/Λ,Λ∗ and 1/Λ∗. Real eigenvalues

complex saddle saddle−center

degenerate saddle

(2) (2)

real saddle

generic center degenerate center

(2)

(2)

Fig. 7.4 Stability of a symplectic map in R4.

always come paired as Λ, 1/Λ. The Liouville conservation of phase space
volumes (7.16) is an immediate consequence of this pairing up of eigenvalues.
The complex eigenvalues come in pairs Λ, Λ∗, |Λ| = 1, or in loxodromic
quartets Λ, 1/Λ, Λ∗ and 1/Λ∗. These possibilities are illustrated in Fig. 7.4.

Example 7.4 Hamiltonian Hénon map, reversibility:
By (4.48) the Hénon map (3.19) for b = −1 value is the simplest 2−d orienta-

tion preserving area-preserving map, often studied to better understand topology and
symmetries of Poincaré sections of 2 dof Hamiltonian flows. We find it convenient
to multiply (3.20) by a and absorb the a factor into x in order to bring the Hénon map
for the b = −1 parameter value into the form

xi+1 + xi−1 = a − x2
i , i = 1, ..., np , (7.20)

The 2-dimensional Hénon map for b = −1 parameter value

xn+1 = a − x2
n − yn

yn+1 = xn . (7.21)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, y] plane.
For definitiveness, in numerical calculations in examples to follow we shall fix (ar-
bitrarily) the stretching parameter value to a = 6, a value large enough to guarantee
that all roots of 0 = f n(x) − x (periodic points) are real.

exercise 8.6

Example 7.5 2-dimensional symplectic maps:
In the 2-dimensional case the eigenvalues (5.6) depend only on tr Mt

Λ1,2 =
1
2

(
tr Mt ±

√
(tr Mt − 2)(tr Mt + 2)

)
. (7.22)

The trajectory is elliptic if the stability residue |tr Mt| − 2 ≤ 0, with complex eigen-
values Λ1 = eiθt, Λ2 = Λ

∗
1 = e−iθt. If |tr Mt | − 2 > 0, λ is real, and the trajectory is

either

hyperbolic Λ1 = eλt , Λ2 = e−λt , or (7.23)

inverse hyperbolic Λ1 = −eλt , Λ2 = −e−λt . (7.24)
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Fig. 7.5 Phase portrait for the standard map
for (a) k = 0: symbols denote periodic orbits,
full lines represent quasiperiodic orbits. (b)
k = 0.3, k = 0.85 and k = 1.4: each plot
consists of 20 random initial conditions, each
iterated 400 times. (a) (b)

Example 7.6 Standard map.
Given a smooth function g(x), the map

xn+1 = xn + yn+1

yn+1 = yn + g(xn) (7.25)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.43) is

Mn(x0, y0) =
1∏

k=n

(
1 + g′(xk) 1

g′(xk) 1

)
. (7.26)

The map preserves areas, det M = 1, and one can easily check that M is symplectic.
In particular, one can consider x on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map
is thus the cylinder S 1 × R (S 1 stands for the 1-torus, which is fancy way to say
“circle”): by taking (7.25) mod 1 the map can be reduced on the 2-torus S2.
The standard map corresponds to the choice g(x) = k/2π sin(2πx). When k = 0,
yn+1 = yn = y0, so that angular momentum is conserved, and the angle x rotates with
uniform velocity

xn+1 = xn + y0 = x0 + (n + 1)y0 mod 1 .

The choice of y0 determines the nature of the motion (in the sense of Section 2.1.1):
for y0 = 0 we have that every point on the y0 = 0 line is stationary, for y0 = p/q
the motion is periodic, and for irrational y0 any choice of x0 leads to a quasiperiodic
motion (see Fig. 7.5 (a)).
Despite the simple structure of the standard map, a complete description of its dy-
namics for arbitrary values of the nonlinear parameter k is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
Fig. 7.5 (a), while, when k is sufficiently large, single trajectories wander erratically
on a large fraction of the phase space, as in Fig. 7.5 (b).
This gives a glimpse of the typical scenario of transition to chaos for Hamiltonian
systems.
Note that the map (7.25) provides a stroboscopic view of the flow generated by a
(time-dependent) Hamiltonian

H(x, y; t) =
1
2

y2 +G(x)δ1(t) (7.27)

where δ1 denotes the periodic delta function

δ1(t) =
∞∑

m=−∞
δ(t − m) (7.28)

and
G′(x) = −g(x) . (7.29)
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Important features of this map, including transition to global chaos (destruction of
the last invariant torus), may be tackled by detailed investigation of the stability of
periodic orbits. A family of periodic orbits of period Q already present in the k =
0 rotation maps can be labeled by its winding number P/Q The Greene residue
describes the stability of a P/Q-cycle:

RP/Q =
1
4

(
2 − tr MP/Q

)
. (7.30)

If RP/Q ∈ (0, 1) the orbit is elliptic, for RP/Q > 1 the orbit is hyperbolic orbits, and for
RP/Q < 0 inverse hyperbolic.
For k = 0 all points on the y0 = P/Q line are periodic with period Q, winding
number P/Q and marginal stability RP/Q = 0. As soon as k > 0, only a 2Q of such
orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half
hyperbolic. If we further vary k in such a way that the residue of the elliptic Q-cycle
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher
period are generated.

7.4 Poincaré invariants

Let C be a region in phase space and V(0) its volume. Denoting the flow of the
Hamiltonian system by f t(x), the volume of C after a time t is V(t) = f t(C),
and using (7.16) we derive the Liouville theorem:

V(t) =

∫
f t(C)

dx =
∫

C

∣∣∣∣∣∣det
∂ f t(x′)
∂x

∣∣∣∣∣∣ dx′∫
C

det (J)dx′ =
∫

C
dx′ = V(0) , (7.31)

Hamiltonian flows preserve phase space volumes.
The symplectic structure of Hamilton’s equations buys us much more than

the ‘incompressibility,’ or the phase space volume conservation. Consider the
symplectic product of two infinitesimal vectors

(δx, δx̂) = δxTωδx̂ = δpiδq̂i − δqiδp̂i

=

D∑
i=1

{
oriented area in the (qi, pi) plane

}
. (7.32)

Time t later we have

(δx′, δx̂′) = δxT JTωJδx̂ = δxTωδx̂ .

This has the following geometrical meaning. We imagine there is a reference
phase space point. We then define two other points infinitesimally close so
that the vectors δx and δx̂ describe their displacements relative to the refer-
ence point. Under the dynamics, the three points are mapped to three new
points which are still infinitesimally close to one another. The meaning of the
above expression is that the area of the parallelepiped spanned by the three fi-
nal points is the same as that spanned by the initial points. The integral (Stokes
ChaosBook.org version13.5, Sep 7 2011 newton - 23apr2011
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theorem) version of this infinitesimal area invariance states that for Hamilto-
nian flows the D oriented areas Vi bounded by D loops ΩV i, one per each
(qi, pi) plane, are separately conserved:∫

V
dp ∧ dq =

∮
ΩV

p · dq = invariant . (7.33)

Morally a Hamiltonian flow is really D-dimensional, even though its phase
space is 2D-dimensional. Hence for Hamiltonian flows one emphasizes D, the
number of the degrees of freedom.

in depth:

Appendix B.4, p. 504

Further reading

7.1 Hamiltonian dynamics literature. If you are read-
ing this book, in theory you already know everything that is
in this chapter. In practice you do not. Try this: Put your
right hand on your heart and say: “I understand why nature
prefers symplectic geometry.” Honest? Out there there are
about 2 centuries of accumulated literature on Hamilton, La-
grange, Jacobi etc. formulation of mechanics, some of it ex-
cellent. In context of what we will need here, we make a very
subjective recommendation–we enjoyed reading Percival and
Richards [7.1] and Ozorio de Almeida [7.2].

7.2 The sign convention of ω. The overall sign of ω, the
symplectic invariant in (7.7), is set by the convention that the
Hamilton’s principal function (for energy conserving flows) is
given by R(q, q′, t) =

∫ q′

q
pidqi−Et. With this sign convention

the action along a classical path is minimal, and the kinetic
energy of a free particle is positive.

7.3 Symmetries of the symbol square. For a more detailed
discussion of symmetry lines see Refs. [7.3–7]. It is an open
question (see Remark 21.2) as to how time reversal symme-
try can be exploited for reductions of cycle expansions. For
example, the fundamental domain symbolic dynamics for re-
flection symmetric systems is discussed in some detail in Sec-
tion 21.5, but how does one recode from time-reversal sym-
metric symbol sequences to desymmetrized 1/2 state space
symbols?

7.4 Standard map. Standard maps model free rotators un-
der the influence of short periodic pulses, as can be physically
implemented, for instance, by pulsed optical lattices in cold
atoms physics. On the theoretical side, standard maps exhibit
a number of important features: small k values provide an
example of KAM perturbative regime (see Ref. [7.10]), while
for larger k chaotic deterministic transport is observed [7.8,9];
the transition to global chaos also presents remarkable univer-
sality features [7.3, 11, 6]. Also the quantum counterpart of
this model has been widely investigated, being the first ex-
ample where phenomena like quantum dynamical localization
have been observed [7.12]. Stability residue was introduced
by Greene [7.11]. For some hands-on experience of the stan-
dard map, download Meiss simulation code [7.13].

7.5 Loxodromic quartets. For symplectic flows, real eigen-
values always come paired as Λ, 1/Λ, and complex eigenval-
ues come either in Λ, Λ∗ pairs, |Λ| = 1, or Λ, 1/Λ, Λ∗, 1/Λ∗

loxodromic quartets. As most maps studied in introductory
nonlinear dynamics are 2d, you have perhaps never seen a
loxodromic quartet. How likely are we to run into such things
in higher dimensions? According to a very extensive study
of periodic orbits of a driven billiard with a four dimensional
phase space, carried in Ref. [7.17], the three kinds of eigen-
values occur with about the same likelihood.
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Exercises

(7.1) Complex nonlinear Schrödinger equation. Con-
sider the complex nonlinear Schrödinger equation in one
spatial dimension [7.15]:

i
∂φ

∂t
+
∂2φ

∂x2
+ βφ|φ|2 = 0, β � 0.

(a) Show that the function ψ : R → C defining the
traveling wave solution φ(x, t) = ψ(x−ct) for c > 0
satisfies a second-order complex differential equa-
tion equivalent to a Hamiltonian system in R4 rel-
ative to the noncanonical symplectic form whose
matrix is given by

wc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 1
−1 0 0 −c
0 −1 c 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(b) Analyze the equilibria of the resulting Hamiltonian

system in R4 and determine their linear stability
properties.

(c) Let ψ(s) = eics/2a(s) for a real function a(s) and
determine a second order equation for a(s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits for β < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrödinger equation.

(Luz V. Vela-Arevalo)

(7.2) Symplectic group/algebra

Show that if a matrix C satisfies (7.10), then exp(sC) is a
symplectic matrix.

(7.3) When is a linear transformation canonical?

(a) Let A be a [n × n] invertible matrix. Show that
the map φ : R2n → R

2n given by (q,p) �→
(Aq, (A−1)T p) is a canonical transformation.

(b) If R is a rotation in R3, show that the map (q,p) �→
(R q,R p) is a canonical transformation.

(Luz V. Vela-Arevalo)

(7.4) Determinants of symplectic matrices. Show that
the determinant of a symplectic matrix is +1, by going
through the following steps:

(a) use (7.19) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that the joint multiplicity of λ = ±1 is even,

(c) show that the multiplicities of λ = 1 and λ = −1
cannot be both odd. (Hint: write

P(λ) = (λ − 1)2m+1(λ + 1)2l+1Q(λ)

and show that Q(1) = 0).

(7.5) Cherry’s example. What follows Refs. [7.14, 16] is
mostly a reading exercise, about a Hamiltonian system
that is linearly stable but nonlinearly unstable. Consider
the Hamiltonian system on R4 given by

H =
1
2

(q2
1 + p2

1) − (q2
2 + p2

2) +
1
2

p2(p2
1 − q2

1) − q1q2 p1.

(a) Show that this system has an equilibrium at the ori-
gin, which is linearly stable. (The linearized sys-
tem consists of two uncoupled oscillators with fre-
quencies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constant τ:

q1 = −
√

2
cos(t − τ)

t − τ
, q2 =

cos 2(t − τ)
t − τ

,

p1 =
√

2
sin(t − τ)

t − τ , p2 =
sin 2(t − τ)

t − τ .

These solutions clearly blow up in finite time; how-
ever they start at t = 0 at a distance

√
3/τ from

the origin, so by choosing τ large, we can find so-
lutions starting arbitrarily close to the origin, yet
going to infinity in a finite time, so the origin is
nonlinearly unstable.

(Luz V. Vela-Arevalo)
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The dynamics that we have the best intuitive grasp on, and find easiest to
grapple with both numerically and conceptually, is the dynamics of bil-
liards. For billiards, discrete time is altogether natural; a particle moving

through a billiard suffers a sequence of instantaneous kicks, and executes sim-
ple motion in between, so there is no need to contrive a Poincaré section. We
have already used this system in Section 1.3 as the intuitively most accessible
example of chaos. Here we define billiard dynamics more precisely, anticipat-
ing the applications to come.

8.1 Billiard dynamics

A billiard is defined by a connected region Q ⊂ RD, with boundary ∂Q ⊂ RD−1

separating Q from its complement RD \ Q. The region Q can consist of one
compact, finite volume component (in which case the billiard phase space is
bounded, as for the stadium billiard of Fig. 8.1), or can be infinite in extent,
with its complementRD\Q consisting of one or several finite or infinite volume
components (in which case the phase space is open, as for the 3-disk pinball
game in Fig. 1.1). In what follows we shall most often restrict our attention to
planar billiards.
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Fig. 8.1 The stadium billiard is a 2-
dimensional domain bounded by two semi-
circles of radius d = 1 connected by two
straight walls of length 2a. At the points
where the straight walls meet the semi-
circles, the curvature of the border changes
discontinuously; these are the only singular
points of the flow. The length a is the only
parameter.

A point particle of mass m and momentum pn = mvn moves freely within the
billiard, along a straight line, until it encounters the boundary. There it reflects
specularly (specular = mirrorlike), with no change in the tangential compo-
nent of momentum, and instantaneous reversal of the momentum component
normal to the boundary,

p
′
= p − 2(p · n̂)n̂ , (8.1)

with n̂ the unit vector normal to the boundary ∂Q at the collision point. The
angle of incidence equals the angle of reflection, as illustrated in Fig. 8.2. A
billiard is a Hamiltonian system with a 2D-dimensional phase space x = (q, p)
and potential V(q) = 0 for q ∈ Q, V(q) = ∞ for q ∈ ∂Q.

remark 2.1

A billiard flow has a natural Poincaré section defined by Birkhoff coordi-
nates sn, the arc length position of the nth bounce measured along the billiard
boundary, and pn = |p| sinφn, the momentum component parallel to the bound-
ary, where φn is the angle between the outgoing trajectory and the normal to
the boundary. We measure both the arc length s, and the parallel momen-
tum p counterclockwise relative to the outward normal (see Fig. 8.2 as well
as Fig. 3.3). In D = 2, the Poincaré section is a cylinder (topologically an
annulus), Fig. 8.3, where the parallel momentum p ranges for −|p| to |p|, and
the s coordinate is cyclic along each connected component of ∂Q. The vol-
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Fig. 8.2 (a) A planar billiard trajectory is
fixed by specifying the perimeter length
parametrized by s and the outgoing trajec-
tory angle φ, both measured counterclock-
wise with respect to the outward normal n̂.
(b) The Birkhoff phase space coordinate pair
(s, p) fully specifies the trajectory, where p =
|p| sin φ is the momentum component tangen-
tial to the boundary As the pinball kinetic
energy is conserved in elastic scattering, the
pinball mass and the magnitude of the pinball
momentum are customarily set to m = |p| =
1. �����������������
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ume in the full phase space is preserved by the Liouville theorem (7.31). The
Birkhoff coordinates x = (s, p) ∈ P, are the natural choice, because with them
the Poincaré return map preserves the phase space volume of the (s, p) param-
eterized Poincaré section (a perfectly good coordinate set (s, φ) does not do
that).

exercise 8.6
section 8.2 Without loss of generality we set m = |v| = |p| = 1. Poincaré section condi-

tion eliminates one dimension, and the energy conservation |p| = 1 eliminates
another, so the Poincaré section return map P is (2D − 2)-dimensional.
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Fig. 8.3 In D = 2 the billiard Poincaré sec-
tion is a cylinder, with the parallel momentum
p ranging over p ∈ {−1, 1}, and with the s co-
ordinate is cyclic along each connected com-
ponent of ∂Q. The rectangle Fig. 8.2 (b) is
such cylinder unfolded, with periodic bound-
ary conditions glueing together the left and
the right edge of the rectangle.

The dynamics is given by the Poincaré return map

P : (sn, pn) �→ (sn+1, pn+1) (8.2)

from the nth collision to the (n + 1)st collision. The discrete time dynamics
map P is equivalent to the Hamiltonian flow (7.1) in the sense that both de-
scribe the same full trajectory. Let tn denote the instant of nth collision. Then
the position of the pinball ∈ Q at time tn + τ ≤ tn+1 is given by 2D− 2 Poincaré
section coordinates (sn, pn) ∈ P together with τ, the distance reached by the
pinball along the nth section of its trajectory (as we have set the pinball speed
to 1, the time of flight equals the distance traversed).

Example 8.1 3-disk game of pinball:
In case of bounces off a circular disk, the position coordinate s = rθ is given by

angle θ ∈ [0, 2π]. For example, for the 3-disk game of pinball of Fig. 1.6 and Fig. 3.3
we have two types of collisions:

exercise 8.1
P0 :

{
φ′ = −φ + 2 arcsin p
p′ = −p + a

R sinφ′
back-reflection (8.3)

P1 :

{
φ′ = φ − 2 arcsin p + 2π/3
p′ = p − a

R sin φ′
reflect to 3rd disk . (8.4)

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more
than high-school geometry is required. There is no need to compute arcsin - one only
needs to compute one square root per each reflection, and the simulations can be very
fast.

exercise 8.2
Trajectory of the pinball in the 3-disk billiard is generated by a series of P0’s and
P1’s. At each step one has to check whether the trajectory intersects the desired disk
(and no disk in-between). With minor modifications, the above formulas are valid for

billiards - 16sep2008 ChaosBook.org version13.5, Sep 7 2011
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any smooth billiard as long as we replace a by the local curvature of the boundary at
the point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discrete time billiard systems.
Infinitesimal equations of variations (4.2) do not apply, but the multiplicative
structure (4.38) of the finite-time Jacobian matrices does. As they are more
physical than most maps studied by dynamicists, let us work out the billiard
stability in some detail.

On the face of it, a plane billiard phase space is 4-dimensional. However,
one dimension can be eliminated by energy conservation, and the other by the
fact that the magnitude of the speed is constant. We shall now show how going
to a local frame of motion leads to a [2×2] Jacobian matrix.

Consider a 2-dimensional billiard with phase space coordinates x = (q 1, q2, p1, p2).
Let tn be the instant of the nth collision of the pinball with the billiard bound-
ary, and t±n = tn ± ε, ε positive and infinitesimal. With the mass and the
speed equal to 1, the momentum direction can be specified by angle θ: x =
(q1, q2, sin θ, cos θ). Now parametrize the 2−d neighborhood of a trajectory
segment by δx = (δz, δθ), where

δz = δq1 cos θ − δq2 sin θ , (8.5)

δθ is the variation in the direction of the pinball motion. Due to energy con-
servation, there is no need to keep track of δq ‖, variation along the flow, as
that remains constant. (δq1, δq2) is the coordinate variation transverse to the
kth segment of the flow. From the Hamilton’s equations of motion for a free
particle, dqi/dt = pi, dpi/dt = 0, we obtain the equations of motion (4.1) for
the linearized neighborhood

d
dt
δθ = 0,

d
dt
δz = δθ . (8.6)

Let δθn = δθ(t+n ) and δzn = δz(t+n ) be the local coordinates immediately after the
nth collision, and δθ−n = δθ(t

−
n ), δz−n = δz(t−n ) immediately before. Integrating

the free flight from t+n−1 to t−n we obtain

δz−n = δzn−1 + τnδθn−1 , τn = tn − tn−1

δθ−n = δθn−1 , (8.7)

and the Jacobian matrix (4.37) for the nth free flight segment is

MT (xn) =

(
1 τn

0 1

)
. (8.8)

At incidence angle φn (the angle between the outgoing particle and the outgo-
ing normal to the billiard edge), the incoming transverse variation δz −n projects
onto an arc on the billiard boundary of length δz−n / cosφn. The corresponding
incidence angle variation δφn = δz−n /ρn cosφn, ρn = local radius of curvature,
ChaosBook.org version13.5, Sep 7 2011 billiards - 16sep2008
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increases the angular spread to

δzn = −δz−n

δθn = − δθ−n −
2

ρn cos φn
δz−n , (8.9)

so the Jacobian matrix associated with the reflection is

MR(xn) = −
(

1 0
rn 1

)
, rn =

2
ρn cos φn

. (8.10)

The full Jacobian matrix for n p consecutive bounces describes a beam of tra-
jectories defocused by MT along the free flight (the τn terms below) and defo-
cused/refocused at reflections by MR (the rn terms below)

exercise 8.4

ϕθ

Fig. 8.4 Defocusing of a beam of nearby tra-
jectories at a billiard collision. (A. Wirzba)

Mp = (−1)np

1∏
n=np

(
1 τn

0 1

) (
1 0
rn 1

)
, (8.11)

where τn is the flight time of the kth free-flight segment of the orbit, r n =

2/ρn cos φn is the defocusing due to the kth reflection, and ρn is the radius of
curvature of the billiard boundary at the nth scattering point (for our 3-disk
game of pinball, ρ = 1). As the billiard dynamics is phase space volume
preserving, det M = 1, and the eigenvalues are given by (7.22).

This is an example of the Jacobian matrix chain rule (4.46) for discrete time
systems (the Hénon map stability (4.47) is another example). Stability of every
flight segment or reflection taken alone is a shear with two unit eigenvalues,

det MT = det

(
1 τn

0 1

)
, det MR = det

(
1 0
rn 1

)
, (8.12)

but acting in concert in the interwoven sequence (8.11) they can lead to a hy-
perbolic deformation of the infinitesimal neighborhood of a billiard trajectory.

exercise 13.7
As a concrete application, consider the 3-disk pinball system of Section 1.3.

Analytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles
follow from elementary geometrical considerations. Longer cycles require

exercise 13.8
exercise 8.3 numerical evaluation by methods such as those described in Chapter 13.

chapter 13

Résumé

A particulary natural application of the Poincaré section method is the reduc-
tion of a billiard flow to a boundary-to-boundary return map.

Further reading

8.1 Billiards. The 3-disk game of pinball is to chaotic dy- namics what a pendulum is to integrable systems; the simplest
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physical example that captures the essence of chaos. Another
contender for the title of the ‘harmonic oscillator of chaos’ is
the baker’s map which is used as the red thread through Ott’s
introduction to chaotic dynamics [8.11]. The baker’s map is
the simplest reversible dynamical system which is hyperbolic
and has positive entropy. We will not have much use for the
baker’s map here, as due to its piecewise linearity it is so non-
generic that it misses all of the subtleties of cycle expansions
curvature corrections that will be central to this treatise.
That the 3-disk game of pinball is a quintessential example
of deterministic chaos appears to have been first noted by
B. Eckhardt [8.1]. The model was studied in depth classi-
cally, semiclassically and quantum mechanically by P. Gas-
pard and S.A. Rice [8.3], and used by P. Cvitanović and
B. Eckhardt [8.4] to demonstrate applicability of cycle expan-
sions to quantum mechanical problems. It has been used to
study the higher order � corrections to the Gutzwiller quanti-
zation by P. Gaspard and D. Alonso Ramirez [8.5], construct
semiclassical evolution operators and entire spectral determin-
ants by P. Cvitanović and G. Vattay [8.6], and incorporate the
diffraction effects into the periodic orbit theory by G. Vat-
tay, A. Wirzba and P.E. Rosenqvist [8.7]. Gaspard’s mono-
graph [8.8], which we warmly recommend, utilizes the 3-disk
system in much more depth than will be attained here. For
further links check ChaosBook.org.
A pinball game does miss a number of important aspects of
chaotic dynamics: generic bifurcations in smooth flows, the
interplay between regions of stability and regions of chaos,

intermittency phenomena, and the renormalization theory of
the ‘border of order’ between these regions. To study these
we shall have to face up to much harder challenge, dynamics
of smooth flows.
Nevertheless, pinball scattering is relevant to smooth poten-
tials. The game of pinball may be thought of as the infinite
potential wall limit of a smooth potential, and pinball sym-
bolic dynamics can serve as a covering symbolic dynamics in
smooth potentials. One may start with the infinite wall limit
and adiabatically relax an unstable cycle onto the correspond-
ing one for the potential under investigation. If things go well,
the cycle will remain unstable and isolated, no new orbits (un-
accounted for by the pinball symbolic dynamics) will be born,
and the lost orbits will be accounted for by a set of prun-
ing rules. The validity of this adiabatic approach has to be
checked carefully in each application, as things can easily go
wrong; for example, near a bifurcation the same naive sym-
bol string assignments can refer to a whole island of distinct
periodic orbits.

8.2 Stability analysis. The chapter 1 of Gaspard mono-
graph [8.8] is recommended reading if you are interested in
Hamiltonian flows, and billiards in particular. A. Wirzba
has generalized the stability analysis of Section 8.2 to
scattering off 3-dimensional spheres (follow the links in
ChaosBook.org/extras). A clear discussion of linear sta-
bility for the general d-dimensional case is given in Gas-
pard [8.8], sect. 1.4.

Exercises

(8.1) A pinball simulator. Implement the disk → disk
maps to compute a trajectory of a pinball for a given
starting point, and a given R:a = (center-to-center dis-
tance):(disk radius) ratio for a 3-disk system. As this
requires only computation of intersections of lines and
circles together with specular reflections, implementation
should be within reach of a high-school student. Please
start working on this program now; it will be continually
expanded in chapters to come, incorporating the Jacobian
calculations, Newton root–finding, and so on.

Fast code will use elementary geometry (only one√· · · per iteration, rest are multiplications) and eschew
trigonometric functions. Provide a graphic display of the
trajectories and of the Poincaré section iterates. To be
able to compare with the numerical results of coming

chapters, work with R:a = 6 and/or 2.5 values. Draw
the correct versions of Fig. 1.9 or Fig. 12.3 for R:a = 2.5
and/or 6.

(8.2) Trapped orbits. Shoot 100,000 trajectories from one
of the disks, and trace out the strips of Fig. 1.9 for vari-
ous R:a by color coding the initial points in the Poincaré
section by the number of bounces preceding their escape.
Try also R:a = 6:1, though that might be too thin and re-
quire some magnification. The initial conditions can be
randomly chosen, but need not - actually a clearer picture
is obtained by systematic scan through regions of inter-
est.

(8.3) Pinball stability. Add to your Exercise 8.1 pinball sim-
ulator a routine that computes the [2×2] Jacobian matrix.
To be able to compare with the numerical results of com-
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ing chapters, work with R:a = 6 and/or 2.5 values.

(8.4) Stadium billiard. Consider the Bunimovich sta-
dium [8.9, 10] defined in Fig. 8.1. The Jacobian matrix
associated with the reflection is given by (8.10). Here we
take ρk = −1 for the semicircle sections of the bound-
ary, and cos φk remains constant for all bounces in a ro-
tation sequence. The time of flight between two semi-
circle bounces is τk = 2 cos φk. The Jacobian matrix of
one semicircle reflection folowed by the flight to the next
bounce is

J = (−1)

(
1 2 cos φk

0 1

) (
1 0

−2/ cos φk 1

)
= (−1)

(
−3 2 cos φk

2/ cos φk 1

)
.

A free flight must always be followed by k = 1, 2, 3, · · ·
bounces along a semicircle, hence the natural symbolic
dynamics for this problem is nary, with the correspond-
ing Jacobian matrix given by shear (ie. the eigenvalues

remain equal to 1 throughout the whole rotation), and k
bounces inside a circle lead to

Jk = (−1)k

(
−2k − 1 2k cos φ
2k/ cos φ 2k − 1

)
. (8.13)

The Jacobian matrix of a cycle p of length np is given by

Jp = (−1)
∑

nk

np∏
k=1

(
1 τk

0 1

) (
1 0

nkrk 1

)
. (8.14)

Adopt your pinball simulator to the stadium billiard.

(8.5) A test of your pinball simulator. Test your Exer-
cise 8.3 pinball simulator by computing numerically cy-
cle stabilities by tracking distances to nearby orbits.
Compare your result with the exact analytic formulas of
Exercise 13.7 and 13.8.

(8.6) Birkhoff coordinates. Prove that the Birkhoff coordi-
nates are phase space volume preserving.
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A detour of a thousand pages starts with a single misstep.

—Chairman Miaw

Dynamical systems often come equipped with symmetries, such as the re-
flection and rotation symmetries of various potentials. In this chapter
we study quotienting of discrete symmetries, and in the next chapter we

study symmetry reduction for continuous symmetries. We look at individual
orbits, and the ways they are interrelated by symmetries. This sets the stage
for a discussion of how symmetries affect global densities of trajectories, and
the factorization of spectral determinants to be undertaken in Chapter 21.
As we shall show here and in Chapter 21, discrete symmetries simplify the
dynamics in a rather beautiful way: If dynamics is invariant under a set of
discrete symmetries G, the state spaceM is tiled by a set of symmetry-related
tiles, and the dynamics can be reduced to dynamics within one such tile, the
fundamental domainM/G. In presence of a symmetry the notion of a prime
periodic orbit has to be reexamined: a set of symmetry-related full state space
cycles is replaced by often much shorter relative periodic orbit, the shortest
segment of the full state space cycle which tiles the cycle and all of its copies
under the action of the group. Furthermore, the group operations that relate
distinct tiles do double duty as letters of an alphabet which assigns symbolic
itineraries to trajectories.

section 11.1
Familiarity with basic group-theoretic notions is assumed, with details rele-

gated to Appendix C.1. The erudite reader might prefer to skip the lengthy
group-theoretic overture and go directly to C 2 = D1 Example 9.7, Exam-
ple 9.10, and C3v = D3 Example 9.12, backtrack as needed.

9.1 Discrete symmetries

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter

We show that a symmetry equates multiplets of equivalent orbits, or ‘stratifies’
the state space into equivalence classes, each class a ‘group orbit.’. We start
by defining a finite (discrete) group, its state space representations, and what
we mean by a symmetry (invariance or equivariance) of a dynamical system.
As is always the problem with ‘gruppenpest’ (read Appendix A.2.3) way too
many abstract notions have to be defined before an intelligent conversation can
take place. Perhaps best to skim through this section on the first reading, then
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return to it later as needed.

Definition: A finite group consists of a set of elements

G = {e, g2, . . . , gn} (9.1)

and a group multiplication rule g j ◦ gi (often abbreviated as g jgi), satisfying

(1) Closure: If gi, g j ∈ G, then g j ◦ gi ∈ G

(2) Associativity: gk ◦ (g j ◦ gi) = (gk ◦ g j) ◦ gi

(3) Identity e: g ◦ e = e ◦ g = g for all g ∈ G

(4) Inverse g−1: For every g ∈ G, there exists a unique element h = g−1 ∈ G
such that
h ◦ g = g ◦ h = e.

|G| = n, the number of elements, is called the order of the group.

Example 9.1 Discrete groups of order 2 on R3.
Three types of discrete group of order 2 can arise by linear action on our 3−d Euclid-

ian space R3:

reflections: σ(x, y, z) = (x, y,−z)

rotations: R(1/2)(x, y, z) = (−x,−y, z) (9.2)

inversions: P(x, y, z) = (−x,−y,−z) .

σ is a reflection (or an inversion) through the [x, y] plane. R(1/2) is [x, y]-plane,
constant z rotation by π about the z-axis (or an inversion thorough the z-axis). P is
an inversion (or parity operation) through the point (0, 0, 0). Singly, each operation
generates a group of order 2: D1 = {e, σ}, C2 = {e,R(1/2)}, and D1 = {e, P}. To-
gether, they form the dihedral group D2 = {e, σ,R(1/2), P} of order 4. (continued
in Example 9.2)

Definition: Coordinate transformations. Consider a map x ′ = f (x), x, f (x) ∈
M. An active coordinate transformation Mx corresponds to a non-singular
[d×d] matrix M that maps the vector x ∈ M onto another vector Mx ∈ M. The
corresponding passive coordinate transformation f (x)→ M −1 f (x) changes the
coordinate system with respect to which the vector f (x) ∈ M is measured. To-
gether, a passive and active coordinate transformations yield the map in the
transformed coordinates:

f̂ (x) = M−1 f (Mx) . (9.3)

Definition: Matrix representation. Linear action of a discrete group G el-
ement g on states x ∈ M is given by a finite non-singular [d×d] matrix g,
the matrix representation of element g ∈ G. We shall denote by ‘g’ both the
abstract group element and its matrix representation.

If the coordinate transformation g belongs to a linear non-singular represen-
tation of a discrete finite group G, for any element g ∈ G there exists a number
m ≤ |G| such that

gm ≡ g ◦ g ◦ . . . ◦ g︸����������︷︷����������︸
m times

= e → |det g| = 1 . (9.4)

discrete - 8nov2009 ChaosBook.org version13.5, Sep 7 2011
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As the modulus of its determinant is unity, det g is an mth root of 1. Hence all
finite groups have unitary representations.

Example 9.2 Discrete operations on R3.
(continued from Example 9.1) The matrix representation of reflections, rotations

and inversions defined by (9.2) is

σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , R(1/2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0 0
0 −1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1 0 0
0 −1 0
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(9.5)

with det R(1/2) = 1, detσ = det P = −1; that is why we refer to R(1/2) as a rotation,
and σ, P as inversions. (continued in Example 9.4)

Definition: Symmetry of a dynamical system. A group G is a symmetry
of the dynamics if for every solution f (x) ∈ M and g ∈ G, g f (x) is also a
solution.

x

f(x)

x0

x1

x2

x3

x

f(x)

2x

1xσ

0xσ

3x

σ

σ

Fig. 9.1 The bimodal Ulam sawtooth map
with the D1 symmetry f (−x) = − f (x). If the
trajectory x0 → x1 → x2 → · · · is a solution,
so is its reflection σx0 → σx1 → σx2 → · · ·.
(continued in Fig. 9.2)

Another way to state this: A dynamical system (M, f ) is invariant (or G-
equivariant) under a symmetry group G if the time evolution f : M → M
(a discrete time map f , or the continuous flow f t map from the d-dimensional
manifoldM into itself) commutes with all actions of G,

f (gx) = g f (x) , (9.6)

or, in the language of physicists: The ‘law of motion’ is invariant, i.e., retains
its form in any symmetry-group related coordinate frame (9.3),

f (x) = g−1 f (gx) , (9.7)

for any state x ∈ M and any finite non-singular [d×d] matrix representation
g of element g ∈ G. Why ‘equivariant?’ A scalar function h(x) is said to be
G-invariant if h(x) = h(gx) for all g ∈ G. The group actions map the solu-
tion f : M → M into different (but equivalent) solutions g f (x), hence the
invariance condition f (x) = g−1 f (gx) appropriate to vectors (and, more gen-
erally, tensors). The full set of such solutions is G-invariant, but the flow that
generates them is said to be G-equivariant. It is obvious from the context, but
for verbal emphasis applied mathematicians like to distinguish the two cases
by in/equi-variant. The distinction is helpful in distinguishing the dynamics
written in the original, equivariant coordinates from the dynamics rewritten in
terms of invariant coordinates, see Sections 9.1.2 and 10.4.

exercise 9.7

Example 9.3 A reflection symmetric 1d map.
Consider a 1d map f with reflection symmetry f (−x) = − f (x), such as the bimodal

‘sawtooth’ map of Fig. 9.1, piecewise-linear on the state spaceM = [−1, 1], a com-
pact 1-dimensional line interval, split into three regions M = ML ∪ MC ∪ MR.
Denote the reflection operation by σx = −x. The 2-element group G = {e, σ}
goes by many names, such as Z2 or C2. Here we shall refer to it as D1, dihedral
group generated by a single reflection. The G-equivariance of the map implies that
if {xn} is a trajectory, than also {σxn} is a symmetry-equivalenttrajectory because
σxn+1 = σ f (xn) = f (σxn) (continued in Example 9.7)
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Example 9.4 Equivariance of the Lorenz flow.
(continued from Example 9.2) The vector field in Lorenz equations (2.12) is equiv-

ariant under the action of cyclic group C2 = {e,R(1/2)} acting on R3 by a π rotation
about the z axis,

R(1/2)(x, y, z) = (−x,−y, z) .

(continued in Example 9.10)

Example 9.5 Discrete symmetries of the plane Couette flow.
The plane Couette flow is a fluid flow bounded by two countermoving planes, in

a cell periodic in streamwise and spanwise directions. The Navier-Stokes equa-
tions for the plane Couette flow have two discrete symmetries: reflection through the
(streamwise,wall-normal) plane, and rotation by π in the (streamwise,wall-normal)
plane. That is why the system has equilibrium and periodic orbit solutions, (as op-
posed to relative equilibrium and relative periodic orbit). They belong to discrete
symmetry subspaces. (continued in Example 10.4)

9.1.1 Subgroups, orbits, subspaces

A solution usually exhibits less symmetry than the equations of motion. The
symmetry of a solution is thus a subgroup of the symmetry group of dynamics.
This section makes the statement precise by setting up the group-theoretic no-
tions needed in what follows. The reader might prefer to skip to Section 9.2,
backtrack as needed.

Definition: Subgroup, coset. Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup
of order h = |H|. The set of h elements {c, cb2, cb3, . . . , cbh}, c ∈ G but not
in H, is called left coset cH. For a given subgroup H the group elements are
partitioned into H and m − 1 cosets, where m = |G|/|H|. The cosets cannot be
subgroups, since they do not include the identity element.

Definition: Class. An element b ∈ G is conjugate to a if b = c a c−1 where
c is some other group element. If b and c are both conjugate to a, they are
conjugate to each other. Application of all conjugations separates the set of

exercise 9.3
group elements into mutually not-conjugate subsets called classes, types or
conjugacy classes. The identity e is always in the class {e} of its own. This is

exercise 9.5
the only class which is a subgroup, all other classes lack the identity element.

Physical importance of classes is clear from (9.7), the way coordinate trans-
formations act on mappings: action of elements of a class (say reflections, or
rotations) is equivalent up to a redefinition of the coordinate frame.

Definition: Invariant subgroup. A subgroup H ⊆ G is an invariant sub-
group or normal divisor if it consists of complete classes. Class is complete if
no conjugation takes an element of the class out of H.

Think of action of H within each coset as identifying its |H| elements as
equivalent. This leads to the notion of the factor group or quotient group G/H
of G, with respect to the normal divisor (or invariant subgroup) H. H thus
divides G into H and m − 1 cosets, each of order |H|. The order of G/H is
m = |G|/|H|, and its multiplication table can be worked out from the G multi-
plication table class by class, with the subgroup H playing the role of identity.
discrete - 8nov2009 ChaosBook.org version13.5, Sep 7 2011
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G/H is homeomorphic to G, with |H| elements in a class of G represented by a
single element in G/H.

So far we have discussed the structure of a group as an abstract entity. Now
we switch gears and describe the action of the group on the state space. This is
the key step; if a set of solutions is equivalent by symmetry (a circle, let’s say),
we would like to represent it by a single solution (cut the circle at a point, or
rewrite the dynamics in a ‘reduced state space,’ where the circle of solutions is
represented by a single point).

Definition: Orbit. The subsetMx0 ⊂ M traversed by the infinite-time tra-
jectory of a given point x0 is called the orbit (or a solution) x(t) = f t(x0). An
orbit is a dynamically invariant notion: it refers to the set of all states that can
be reached in time from x0, thus as a set it is invariant under time evolution.
The full state spaceM is foliated (stratified) into a union of such orbits. We
label a generic orbitMx0 by any point belonging to it, x0 = x(0) for example.

A generic orbit might be ergodic, unstable and essentially uncontrollable.
The ChaosBook strategy is to populate the state space by a hierarchy of orbits
which are compact invariant sets (equilibria, periodic orbits, invariant tori, . . .),
each computable in a finite time. They are a set of zero Lebesgue measure, but
dense on the non-wandering set, and are to a generic orbit what fractions are to
normal numbers on the unit interval. Orbits which are compact invariant sets
we label by whatever alphabet we find convenient in a given context: point
EQ = xEQ =MEQ for an equilibrium, 1-dimensional loop p =M p for a prime
periodic orbit p, etc. (note also discussion on page 162, and the distinction
between trajectory and orbit made in Section 2.1; a trajectory is a finite-time
segment of an orbit).

Definition: Group orbit or the G-orbit of the point x ∈ M is the set

Mx = {g x | g ∈ G} (9.8)

of all state space points into which x is mapped under the action of G. If G is a
symmetry, intrinsic properties of an equilibrium (such as stability eigenvalues)
or a cycle p (period, Floquet multipliers) evaluated anywhere along its G-orbit
are the same.

A symmetry thus reduces the number of inequivalent solutions M p. So
we also need to describe the symmetry of a solution, as opposed to (9.7), the
symmetry of the system. We start by defining the notions of reduced state
space, of isotropy of a state space point, and of stabilizer of an orbit.

Definition: Reduced state space. The action of group G partitions the state
spaceM into a union of group orbits. This set of group orbits, denotedM/G,
has many names: reduced state space, quotient space or any of the names
listed on page 155.

Reduction of the dynamical state space is discussed in Section 9.4 for dis-
crete symmetries, and in Section 10.4 for continuous symmetries. 1 1 ‘Isotropic’ is derived from Greek ‘iso-

tropos,’ ‘same’-‘turn,’ meaning ‘identical in
all directions.’

ChaosBook.org version13.5, Sep 7 2011 discrete - 8nov2009



126 CHAPTER 9. WORLD IN A MIRROR

Definition: Isotropy subgroup. The maximal set of group actions which
maps a state space point x into itself,

Gx = {g ∈ G : gx = x} , (9.9)

is called the isotropy group or little group of x.
We also need a notion of set-wise invariance, as opposed to the point-wise

invariance under G x.
exercise 9.2

Definition: Fixed-point subspace. MH is the set of all state space points
left H-fixed, point-wise invariant under subgroup or ‘centralizer’ H ⊂ G action

MH = Fix (H) = {x ∈ M : h x = x for all h ∈ H} . (9.10)

Points in state space subspace MG which are fixed points of the full group
action are called invariant points,

MG = Fix (G) = {x ∈ M : g x = x for all g ∈ G} . (9.11)

Definition: Stabilizer. We shall sometimes refer to the subset of nontrivial
group actions G p ⊆ G on state space points within a compact setM p, which
leave no point fixed but leave the set invariant, as the stabilizer G p ofMp,

Gp = {g ∈ Gp : gx ∈ Mp, gx � x for g � e} , (9.12)

and reserve the notion of ‘isotropy’ of a setM p for the subgroup G p that leaves
each point in it fixed.

Saying that Gp is the symmetry of the solution p, or that the orbitM p is ‘Gp-
invariant,’ accomplishes as much without confusing you with all these names
(see Remark 9.1). In what follows we shall speak freely and say things like
“the symmetry of the periodic orbit p is C 2 = {e,R},” rather than bandy about
‘stabilizers’ and such.

The splitting of a group G into an stabilizer G p and m− 1 cosets cGp relates
an orbitMp to m−1 other distinct orbits cMp. All of them have equivalent sta-

exercise 9.4
bilizers, or, more precisely, the points on the same group orbit have conjugate
stabilizers:

Gc p = c Gp c−1 , (9.13)

i.e.,
If Gp is the stabilizer of orbitMp, elements of the coset space g ∈ G/G p

generate the mp−1 distinct copies ofMp, so for discrete groups the multiplicity
of orbit p is mp = |G|/|Gp|.

Definition: Flow invariant subspace. A typical point in fixed-point sub-
spaceMH moves with time, but, due to equivariance (9.6), its trajectory x(t) =
f t(x) remains within f (MH) ⊆ MH for all times,

h f t(x) = f t(hx) = f t(x) , h ∈ H , (9.14)
discrete - 8nov2009 ChaosBook.org version13.5, Sep 7 2011
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i.e., it belongs to a flow invariant subspace. This suggests a systematic ap-
proach to seeking compact invariant solutions. The larger the symmetry sub-
group, the smallerMH , easing the numerical searches, so start with the largest
subgroups H first.

We can often decompose the state space into smaller subspaces, with group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. Mα ⊂ M is an invariant subspace if

{Mα : gx ∈ Mα for all g ∈ G and x ∈ Mα} . (9.15)

{0} andM are always invariant subspaces. So is any Fix (H) which is point-
wise invariant under action of G.

Definition: Irreducible subspace. A space Mα whose only invariant sub-
spaces are {0} andMα is called irreducible.

9.1.2 Invariant bases

Physical laws should have the same form in symmetry-equivalent coordinate
frames, so they are often formulated in terms of functions (Hamiltonians, La-
grangians, · · ·) invariant under a given set of symmetries.

Example 9.6 Polynomials invariant under discrete operations on R3.
(continued from Example 9.1) σ is a reflection through the [x, y] plane. Any {e, σ}-

invariant function can be expressed in the polynomial basis {u1, u2, u3} = {x, y, z2}.
R(1/2) is a [x, y]-plane rotation by π about the z-axis. Any {e,R(1/2)}-invariant
function can be expressed in the polynomial basis {u1, u2, u3, u4} = {x2, xy, y2, z},
with one syzygy between the basis polynomials, (x2)(y2) − (xy)2 = 0.
P is an inversion through the point (0, 0, 0). Any {e, P}-invariant function can be ex-
pressed in the polynomial basis {u1, · · · , u6} = {x2, y2, z2, xy, xz, yz}, with three syzy-
gies between the basis polynomials, (x2)(y2) − (xy)2 = 0, and its 2 permutations.
For the D2 dihedral group G = {e, σ,R(1/2), P} the G-invariant polynomial basis is
{u1, u2, u3, u4} = {x2, y2, z2, xy}, with one syzygy, (x2)(y2) − (xy)2 = 0. (continued in
Example 10.13)

The key result of the representation theory of invariant functions is:

Hilbert-Weyl theorem. For a compact group G there exists a finite G-invariant
homogenous polynomial basis {u1, u2, . . . , um}, m ≥ d, such that any G-invariant
polynomial can be written as a multinomial

h(x) = p(u1(x), u2(x), . . . , um(x)) , x ∈ M . (9.16)

These polynomials are linearly independent, but can be functionally dependent
through nonlinear relations called syzygies.

In practice, explicit construction of G-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few simple low-dimens-
ional cases, such as the 5-dimensional example of Section 10.5. We prefer to
apply the symmetry to the system as given, rather than undertake a series of
ChaosBook.org version13.5, Sep 7 2011 discrete - 8nov2009



128 CHAPTER 9. WORLD IN A MIRROR

Fig. 9.2 The D1-equivariant bimodal saw-
tooth map of Fig. 9.1 has three types of pe-
riodic orbits: (a) D1-fixed fixed point C,
asymmetric fixed points pair {L,R}. (b) D1-
symmetric (setwise invariant) 2-cycle LR. (c)
Asymmetric 2-cycles pair {LC,CR}. (con-
tinued in Fig. 9.8) (Y.
Lan)

CR

LR

C

R

(a) (b) (c)
L

fL f fRC

x

f(x)

x

f(x)

LC

x

f(x)

nonlinear coordinate transformations that the theorem suggests. (What ‘com-
pact’ in the above refers to will become clearer after we have discussed con-
tinuous symmetries. For now, it suffices to know that any finite discrete group
is ‘compact’.)

exercise 9.1

9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all of the system’s symme-
tries, a subgroup of them, or have no symmetry at all. For a generic ergodic
orbit f t(x) the trajectory and any of its images under action of g ∈ G are dis-
tinct with probability one, f t(x) ∩ g f t′ (x) = ∅ for all t, t′. For example, a
typical turbulent trajectory of plane Couette flow has no symmetry beyond the
identity, so its symmetry group is the trivial {e}. For compact invariant sets,
such as fixed points and periodic orbits the situation is very different. For ex-
ample, the symmetry of the laminar solution of the plane Couette flow is the
full symmetry of its Navier-Stokes equations. In between we find solutions
whose symmetries are subgroups of the full symmetry of dynamics.

The key concept in the classification of dynamical orbits is the concept of
their symmetry (isotropy or stabilizer subgroup). We note three types of solu-
tions: (i) fully asymmetric a, (ii) G p set-wise invariant cycles s built by repeats
of relative cycle segments s̃, and (iii) isotropy subgroup G EQ -invariant equilib-
ria or point-wise Gp-fixed cycles b.

Definition: Asymmetric orbits. An equilibrium or periodic orbit is not sym-
metric if {xa} ∩ {gxa} = ∅ for any g ∈ G, where {xa} is the set of periodic points
belonging to the cycle a. Thus g ∈ G generate |G| distinct orbits with the same
number of points and the same stability properties.

Example 9.7 Group D1 - a reflection symmetric 1d map:
Consider the bimodal ‘sawtooth’ map of Example 9.3, with the state space M =

[−1, 1] split into three regions M = {ML,MC ,MR} which we label with a 3-letter
alphabet L(eft), C(enter), and R(ight). The symbolic dynamics is complete ternary
dynamics, with any sequence of letters A = {L,C,R} corresponding to an admissi-
ble trajectory (‘complete’ means no additional grammar rules required, see Exam-
ple 11.6 below). The D1-equivariance of the map, D1 = {e, σ}, implies that if {xn} is
a trajectory, so is {σxn}.
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Asymmetric cycles. σ maps a cycle a into the reflected cycle σa, with the same period
and the same stability properties, see Fig. 9.2 (c).

Definition: Gp-symmetric cycles. A cycle p is Gp-symmetric (set-wise sym-
metric, self-dual) if the action of elements of G p on the set of periodic points
Mp reproduces the set. The set G p of group elements with this property is
called the stabilizer of the cycle s. g ∈ G p acts as a shift in time, mapping the
periodic point x ∈ Mp into another periodic point.

Example 9.8 D1-symmetric cycles:
For D1 the period of a set-wise symmetric cycle is even (ns = 2ns̃), and the mirror
image of the xs periodic point is reached by traversing the relative periodic orbit
segment s̃ of length ns̃ , f ns̃ (xs) = σxs, see Fig. 9.2 (b).

Definition: Gp-fixed orbits: An equilibrium xq or a compact solution p is
point-wise or Gp-fixed if it lies in the invariant points subspace Fix

(
Gp

)
, gx = x

for all g ∈ Gp, and x = xq or x ∈ Mp. A solution that is G-invariant under all
group G operations has multiplicity 1. Stability of such solutions will have to
be examined with care, as they lie on the boundaries of domains related by the
action of the symmetry group.

Example 9.9 Group D1-invariant cycles:
In the example at hand there is only one G-invariant (point-wise invariant) orbit, the
fixed point C at the origin, see Fig. 9.2 (a). We shall continue analysis of this system
in Example 9.13, and work out the symbolic dynamics of such reflection symmetric
systems in Example 12.5.

As reflection symmetry is the only discrete symmetry that a map of the inter-
val can have, this example completes the group-theoretic analysis of 1−d maps.
Consider next a 3−d flow with a symmetry.

exercise 9.7
exercise 9.8
exercise 9.9

Example 9.10 Desymmetrization of Lorenz flow:
(continuation of Example 9.4) Lorenz equation (2.12) is invariant under the action

of order-2 group C2 = {e,R(1/2)}, where R(1/2) is [x, y]-plane, constant z half-cycle
rotation by π about the z-axis:

(x, y, z)→ R(1/2)(x, y, z) = (−x,−y, z) . (9.17)

(R(1/2))2 = 1 condition decomposes the state space into two linearly irreducible
subspaces M = M+ ⊕M−, the z-axisM+ and the [x, y] planeM−, with projection
operators onto the two subspaces given by (see Section ??)

P+ =
1
2

(1 + R(1/2)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , P− =
1
2

(1 − R(1/2)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 0 0
0 1 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
(9.18)

As the flow is C2-invariant, so is its linearization ẋ = Ax. Evaluated at EQ0, A com-
mutes with R(1/2), and, as we have already seen in Example 4.7, the EQ0 stability
matrix decomposes into [x, y] and z blocks.
The 1−d M+ subspace is the fixed-point subspace of C2, with the z-axis points left
fixed (i.e., point-wise invariant) under the group action

M+ = Fix (C2) = {x ∈ M : g x = x for g ∈ {e,R(1/2)}} . (9.19)
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Fig. 9.4 (a) Lorenz attractor plotted in
[x′ , y′, z], the doubled-polar angle coordi-
nates (9.21), with points related by π-rotation
in the [x, y] plane identified. Stable eigen-
vectors of EQ0: e(3) and e(2), along the z axis
(9.20). Unstable manifold orbit Wu(EQ0)
(green) is a continuation of the unstable e(1)

of EQ0. (b) Blow-up of the region near
EQ1: The unstable eigenplane of EQ1 de-
fined by Re e(2) and Im e(2), the stable eigen-
vector e(3). The descent of the EQ0 unstable
manifold (green) defines the innermost edge
of the strange attractor. As it is clear from
(a), it also defines its outermost edge. (E.
Siminos) (a) (b)

A C2-fixed point x(t) in Fix (C2) moves with time, but according to (9.14) remains
within x(t) ∈ Fix (C2) for all times; the subspaceM+ = Fix (C2) is flow invariant. In
case at hand this jargon is a bit of an overkill: clearly for (x, y, z) = (0, 0, z) the full
state space Lorenz equation (2.12) is reduced to the exponential contraction to the
EQ0 equilibrium,

ż = −b z . (9.20)

However, for flows in higher-dimensional state spaces the flow-invariant Mα sub-
spaces can each be high-dimensional, with interesting dynamics of its own. Even in
this simple case this subspace plays an important role as a topological obstruction,
with the number of windings of a trajectory around it providing a natural symbolic
dynamics.
TheM− subspace is, however, not flow-invariant, as the nonlinear terms ż = xy − bz
in the Lorenz equation (2.12) send all initial conditions withinM− = (x(0), y(0), 0)
into the full, z(t) � 0 state spaceM/M+. The R(1/2) symmetry is nevertheless very
useful.

EQ2EQ1

EQ0

x

y

z

Fig. 9.3 Lorenz attractor of Fig. 3.7, the full
state space coordinates [x, y, z], with the un-
stable manifold orbits Wu(EQ0). (Green) is
a continuation of the unstable e(1) of EQ0,
and (brown) is its π-rotated symmetric part-
ner. Compare with Fig. 9.4. (E.
Siminos)

By taking as a Poincaré section any R(1/2)-invariant, infinite-extent, non-self-inter-
secting surface that contains the z axis, the state space is divided into a half-space
fundamental domain M̃ = M/C2 and its 180o rotation R(1/2)M̃. An example is
afforded by the P plane section of the Lorenz flow in Fig. 3.7. Take the fundamental
domain M̃ to be the half-space between the viewer and P. Then the full Lorenz flow
is captured by re-injecting back into M̃ any trajectory that exits it, by a rotation of π
around the z axis.
As any such R(1/2)-invariant section does the job, a choice of a ‘fundamental do-
main’ is here largely mater of taste. For purposes of visualization it is convenient
to make the double-cover nature of the full state space by M̃ explicit, through any
state space redefinition that maps a pair of points related by symmetry into a single
point. In case at hand, this can be easily accomplished by expressing (x, y) in polar
coordinates (x, y) = (r cos θ, r sin θ), and then plotting the flow in the ‘doubled-polar
angle representation:’

(x′, y′) = (r cos 2θ, r sin 2θ) = ((x2 − y2)/r, 2xy/r) , (9.21)

as in Fig. 9.4 (a). In contrast to the original G-equivariant coordinates [x, y, z], the
Lorenz flow expressed in the new coordinates [x′, y′, z] is G-invariant, see Exam-
ple 9.6. In this representation the M̃ =M/C2 fundamental domain flow is a smooth,
continuous flow, with (any choice of) the fundamental domain stretched out to seam-
lessly cover the entire [x′, y′] plane. (continued in Example 11.4)
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(E. Siminos and J. Halcrow)

Note: nonlinear coordinate transformations such as the doubled-polar angle
representation (9.21) are not required to implement the symmetry quotienting
M/G. Here they are deployed only as a visualization aid that might help the
reader disentangle 2−d projections of higher-dimensional flows. All numerical
calculations can still be carried in the initial, full state space formulation of a
flow, with symmetry-related points identified by linear symmetry transforma-
tions.

in depth:

Appendix 30, p. 509

9.3 Relative periodic orbits

We show that a symmetry reduces computation of periodic orbits to repeats of
shorter, ‘relative periodic orbit’ segments.

Invariance of a flow under a symmetry means that the group action image of
a cycle is again a cycle, with the same period and stability. The new orbit may
be topologically distinct (in which case it contributes to the multiplicity of the
cycle) or it may be the same cycle.

A cycle p is Gp-symmetric under symmetry operation g ∈ G p if the operation
acts on it as a shift in time, advancing a cycle point to a cycle point on the
symmetry related segment. The cycle p can thus be subdivided into m p repeats
of a relative periodic orbit segment, ‘prime’ in the sense that the full state space
cycle is built from its repeats. Thus in presence of a symmetry the notion of a
periodic orbit is replaced by the notion of the shortest segment of the full state
space cycle which tiles the cycle under the action of the group. In what follows
we refer to this segment as a relative periodic orbit segment (in the literature
sometime referred to as a short periodic orbit).

Fig. 9.5 The symmetries of three disks on an
equilateral triangle. The fundamental domain
is indicated by the shaded wedge.

Relative periodic orbits (or equivariant periodic orbits) are orbits x(t) in
state spaceM which exactly recur

x(t) = g x(t + T) (9.22)

for the shortest fixed relative period T and a fixed group action g ∈ G p. Param-
eters of this group action are referred to as ‘phases’ or ‘shifts.’ For a discrete
group by (9.4) gm = e for some finite m, so the corresponding full state space
orbit is periodic with period mT .

The period of the full orbit is given by the m p × (period of the relative pe-
riodic orbit), np̃ = np/|Gp|, and the ith Floquet multiplier Λ p,i is given by Λ

mp

p̃,i
of the relative periodic orbit. The elements of the quotient space b ∈ G/G p

generate the copies bp, so the multiplicity of the full state space cycle p is
mp = |G|/|Gp|.

Example 9.11 Relative periodic orbits of Lorenz flow:
(continuation of Example 9.10) The relation between the full state space periodic

orbits, and the fundamental domain (9.21) reduced relative periodic orbits of the
Lorenz flow: an asymmetric full state space cycle pair p, Rp maps into a single cycle
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Fig. 9.6 The 3-disk pinball cycles: (a) 12, 13,

23, 123; the clockwise 132 not drawn. (b)
Cycle 1232; the symmetry related 1213 and
1323 not drawn. (c) 12323; 12123, 12132,
12313, 13131 and 13232 not drawn. (d) The
fundamental domain, i.e., the 1/6th wedge in-
dicated in (a), consisting of a section of a
disk, two segments of symmetry axes act-
ing as straight mirror walls, and the escape
gap to the left. The above 14 full-space cy-
cles restricted to the fundamental domain and
recoded in binary reduce to the two fixed
points 0, 1, 2-cycle 10, and 5-cycle 00111
(not drawn). See Fig. 9.9 for the 001 cycle.

(a) (b) (c)

(d)

p̃ in the fundamental domain, and any self-dual cycle p = Rp = p̃Rp̃ is a repeat of a
relative periodic orbit p̃.

The next illustration of these ideas brings in the noncommutative group
structure: for the 3-disk game of pinball of Section 1.3, Example 9.12 and
Example 9.14, the symmetry group has elements that do not commute. is a

exercise 9.5
non-abelian

Example 9.12 C3v = D3 invariance - 3-disk game of pinball:
As the three disks in Fig. 9.5 are equidistantly spaced, our game of pinball has a

sixfold symmetry. The symmetry group of relabeling the 3 disks is the permutation
group S3; however, it is more instructive to think of this group geometrically, as C3v

(dihedral group D3), the group of order |G| = 6 consisting of the identity element
e, three reflections across axes {σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3
denoted {R(1/3),R(2/3)}. Applying an element (identity, rotation by ±2π/3, or one
of the three possible reflections) of this symmetry group to a trajectory yields another
trajectory. For instance, σ23, the flip across the symmetry axis going through disk 1
interchanges the symbols 2 and 3; it maps the cycle 12123 into 13132, Fig. 9.6 (c).
Cycles 12, 23, and 13 in Fig. 9.6 (a) are related to each other by rotation by ±2π/3,
or, equivalently, by a relabeling of the disks.
The nontrivial subgroups of D3 are D1 = {e, σ}, consisting of the identity and any
one of the reflections, of order 2, and C3 = {e,R(1/3),R(2/3)}, of order 3, so possible
cycle multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has
full symmetry Gp = G. Such equilibria exist for smooth potentials, but not for the
3-disk billiard.
The C3 subgroup Gp = {e,R(1/3),R(2/3)} invariance is exemplified by 2 cycles 123
and 132 which are invariant under rotations by 2π/3 and 4π/3, but are mapped into
each other by any reflection, Fig. 9.7 (a), and have multiplicity |G|/|Gp| = 2.
The Cv type of a subgroup is exemplified by the invariances of p̂ = 1213. This cycle
is invariant under reflection σ23{1213} = 1312 = 1213, so the invariant subgroup is
Gp̂ = {e, σ23}, with multiplicity is mp̂ = |G|/|Gp| = 3; the cycles in this class, 1213,
1232 and 1323, are related by 2π/3 rotations, Fig. 9.7 (b).
A cycle of no symmetry, such as 12123, has Gp = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132 and 13232),
Fig. 9.7 (c).
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Fig. 9.7 Cycle 121212313 has multiplicity 6;

shown here is 121313132 = σ23121212313.
However, 121231313 which has the same sta-
bility and period is related to 121313132 by
time reversal, but not by any C3v symmetry.

Besides the above spatial symmetries, for Hamiltonian systems cycles may be related
by time reversal symmetry. An example are the cycles 121212313 and 313212121 =
121213132 which have the same periods and stabilities, but are related by no space
symmetry, see Fig. 9.7. (continued in Example 9.14)

9.4 Dynamics reduced to fundamental domain

I submit my total lack of apprehension of fundamental concepts.

—John F. Gibson

So far we have used symmetry to effect a reduction in the number of indepen-
dent cycles, by separating them into equivalence classes, and slicing them into
‘prime’ relative orbit segments. The next step achieves much more: it replaces
each class by a single (typically shorter) prime cycle segment.

(1) Discrete symmetry tessellates the state space into dynamically equiva-
lent domains, and thus induces a natural partition of state space: If the
dynamics is invariant under a discrete symmetry, the state spaceM can
be completely tiled by a fundamental domain M̃ and its symmetry im-
ages M̃a = aM̃, M̃b = bM̃, . . . under the action of the symmetry group
G = {e, a, b, . . .},

M = M̃ ∪ M̃a ∪ M̃b · · · ∪ M̃|G| = M̃ ∪ aM̃ ∪ bM̃ · · · . (9.23)

(2) Discrete symmetries can be used to restrict all computations to the fun-
damental domain M̃ = M/G, the reduced state space quotient of the
full state spaceM by the group actions of G.
We can use the invariance condition (9.6) to move the starting point x
into the fundamental domain x = ax̃, and then use the relation a −1b =
h−1 to also relate the endpoint y ∈ M̃b to its image in the fundamental
domain M̃. While the global trajectory runs over the full space M,
the restricted trajectory is brought back into the fundamental domain M̃
any time it exits into an adjoining tile; the two trajectories are related
by the symmetry operation h which maps the global endpoint into its
fundamental domain image.

(3) Cycle multiplicities induced by the symmetry are removed by desym-
metrization, reduction of the full dynamics to the dynamics on a fun-
damental domain. Each symmetry-related set of global cycles p corre-
sponds to precisely one fundamental domain (or relative) cycle p̃. Con-
versely, each fundamental domain cycle p̃ traces out a segment of the
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Fig. 9.8 The bimodal Ulam sawtooth map
of Fig. 9.2 with the D1 symmetry f (−x) =
− f (x) restricted to the fundamental domain.
f (x) is indicated by the thin line, and funda-
mental domain map f̃ (x̃) by the thick line. (a)
Boundary fixed point C is the fixed point 0.
The asymmetric fixed point pair {L,R} is re-
duced to the fixed point 2, and the full state
space symmetric 2-cycle LR is reduced to the
fixed point 1. (b) The asymmetric 2-cycle
pair {LC,CR} is reduced to 2-cycle 01. (c)
All fundamental domain fixed points and 2-
cycles. (Y.
Lan)
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global cycle p, with the end point of the cycle p̃ mapped into the irre-
ducible segment of p with the group element h p̃. The relative periodic
orbits in the full space, folded back into the fundamental domain, are
periodic orbits.

(4) The group elements G = {e, g2, . . . , g|G|} which map the fundamental do-
main M̃ into its copies gM̃, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symmetries, see Sec-
tion 10.4.

exercise 9.6

Example 9.13 Group D1 and reduction to the fundamental domain.
Consider again the reflection-symmetric bimodal Ulam sawtooth map f (−x) = − f (x)
of Example 9.7, with symmetry group D1 = {e, σ}. The state spaceM = [−1, 1] can
be tiled by half-line M̃ = [0, 1], and σM̃ = [−1, 0], its image under a reflection
across x = 0 point. The dynamics can then be restricted to the fundamental domain
x̃k ∈ M̃ = [0, 1]; every time a trajectory leaves this interval, it is mapped back using
σ.

(a)

(b)

Fig. 9.9 (a) The pair of full-space 9-cycles,
the counter-clockwise 121232313 and the
clockwise 131323212 correspond to (b) one
fundamental domain 3-cycle 001.

In Fig. 9.8 the fundamental domain map f̃ (x̃) is obtained by reflecting x < 0 seg-
ments of the global map f (x) into the upper right quadrant. f̃ is also bimodal and
piecewise-linear, with M̃ = [0, 1] split into three regions M̃ = {M̃0, M̃1, M̃2} which
we label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic dynamics is again
complete ternary dynamics, with any sequence of letters {0, 1, 2} admissible.
However, the interpretation of the ‘desymmetrized’ dynamics is quite different - the
multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
Fig. 9.8:
In (a) the boundary fixed point C is also the fixed point 0. In this case the set of
points invariant under group action of D1, M̃∩σM̃, is just this fixed point x = 0, the
reflection symmetry point.
The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the full
state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR} is reduced to the 2-cycle 01. Finally, the symmetric 4-cycle
LCRC is reduced to the 2-cycle 02. This completes the conversion from the full state
space for all fundamental domain fixed points and 2-cycles, Fig. 9.8 (c).

Example 9.14 3-disk game of pinball in the fundamental domain
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If the dynamics is equivariant under interchanges of disks, the absolute disk labels
εi = 1, 2, · · · ,N can be replaced by the symmetry-invariant relative disk→disk incre-
ments gi, where gi is the discrete group element that maps disk i−1 into disk i. For
3-disk system gi is either reflection σ back to initial disk (symbol ‘0’) or 2π/3 rota-
tion by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry
invariant relabeling is that N-disk symbolic dynamics becomes (N−1)-nary, with no
restrictions on the admissible sequences.
An irreducible segment corresponds to a periodic orbit in the fundamental domain, a
one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflecting
mirrors (see Fig. 9.6(d)). A set of orbits related in the full space by discrete symme-
tries maps onto a single fundamental domain orbit. The reduction to the fundamen-
tal domain desymmetrizes the dynamics and removes all global discrete symmetry-
induced degeneracies: rotationally symmetric global orbits (such as the 3-cycles 123
and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles 12, 13
and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degener-
ate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. Some examples
of such orbits are shown in Figs. 9.7 and 9.9. (continued in Example 12.7)

Résumé

If a dynamical system (M, f ) has a symmetry G, the symmetry should be
deployed to ‘quotient’ the state space to M/G, i.e., identify all symmetry-
equivalent x ∈ M on each group orbit. The main result of this chapter can be
stated as follows:

In presence of a discrete symmetry G, associated with each full state space
cycle p is the group of its symmetries G p ⊆ G of order 1 ≤ |G p| ≤ |G|, whose
elements leave the set Mp invariant. The elements of G p act on p as time
shifts, tiling it with |Gp| copies of its shortest invariant segment, the relative
periodic orbit p̃. The elements of the coset b ∈ G/G p generate mp = |G|/|Gp|
equivalent copies of p.

Once you grasp the relation between the full state spaceM and the desym-
metrized, G-quotiented reduced state space M/G, you will find the life as a
fundamentalist so much simpler that you will never return to your full state
space confused ways of yesteryear. The reduction to the fundamental domain
M̃ = M/G simplifies symbolic dynamics and eliminates symmetry-induced
degeneracies. For the short orbits the labor saving is dramatic. In the next
chapter continuous symmetries will induce relative periodic orbits that never
close a periodic orbit, and in the Chapter 25 they will tile the infinite periodic
state space, and reduce calculation of diffusion constant in an infinite domain
to a calculation on a compact torus.
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Further reading

9.1 Literature. We found Tinkham [9.1] the most enjoy-
able as a no-nonsense, the user friendliest introduction to
the basic concepts. Byron and Fuller [9.2], the last chap-
ter of volume two, offers an introduction even more compact
than Tinkham’s. For a summary of the theory of discrete
groups see, for example, Ref. [9.3]. Chapter 3 of Rebecca
Hoyle [9.4] is a very student-friendly overview of the group
theory a nonlinear dynamicist might need, with exception of
the quotienting, reduction of dynamics to a fundamental do-
main, which is not discussed at all. We found sites such as
en.wikipedia.org/wiki/Quotient group helpful. Curiously, we
have not read any of the group theory books that Hoyle recom-
mends as background reading, which just confirms that there
are way too many group theory books out there. For example,
one that you will not find useful at all is Ref. [9.5]. The reason
is presumably that in the 20th century physics (which moti-
vated much of the work on the modern group theory) the fo-
cus is on the linear representations used in quantum mechan-
ics, crystallography and quantum field theory. We shall need
these techniques in Chapter 21, where we reduce the linear ac-
tion of evolution operators to irreducible subspaces. However,
here we are looking at nonlinear dynamics, and the emphasis
is on the symmetries of orbits, their reduced state space sis-
ters, and the isotypic decomposition of their linear stability
matrices.
In ChaosBook we focus on chaotic dynamics, and skirt the
theory of bifurcations, the landscape between the boredom of
regular motions and the thrills of chaos. Chapter 4 of Rebecca
Hoyle [9.4] is a student-friendly introduction to the treatment
of bifurcations in presence of symmetries, worked out in full
detail and generality in monographs by Golubitsky, Stewart
and Schaeffer [9.6], Golubitsky and Stewart [9.7] and Chossat
and Lauterbach [9.8]. Term ‘stabilizer’ is used, for example,
by Broer et al. [9.9] to refer to a periodic orbit with Z2 sym-
metry; they say that the relative or pre-periodic segment is in
this case called a ‘short periodic orbit.’ In Efstathiou [9.10]
a subgroup of ‘short periodic orbit’ symmetries is referred to
as a ‘nontrivial isotropy group or stabilizer.’ Chap. 8 of Go-
vaerts [9.11] offers a review of numerical methods that em-
ploy equivariance with respect to compact, and mostly dis-
crete groups. (continued in Remark 10.1)

9.2 Symmetries of the Lorenz equation: (continued from
Remark 2.3) After having studied Example 9.10 you will ap-
preciate why ChaosBook.org starts out with the symmetry-
less Rössler flow (2.17), instead of the better known Lorenz
flow (2.12). Indeed, getting rid of symmetry was one of
Rössler’s motivations. He threw the baby out with the wa-

ter; for Lorenz flow dimensionalities of stable/unstable man-
ifolds make possible a robust heteroclinic connection absent
from Rössler flow, with unstable manifold of an equilib-
rium flowing into the stable manifold of another equilibrium.
How such connections are forced upon us is best grasped by
perusing the chapter 13 ‘Heteroclinic tangles’ of the inim-
itable Abraham and Shaw illustrated classic [9.12]. Their
beautiful hand-drawn sketches elucidate the origin of hete-
roclinic connections in the Lorenz flow (and its high-dim-
ensional Navier-Stokes relatives) better than any computer
simulation. Miranda and Stone [9.13] were first to quotient
the C2 symmetry and explicitly construct the desymmetrized,
‘proto-Lorenz system,’ by a nonlinear coordinate transforma-
tion into the Hilbert-Weyl polynomial basis invariant under
the action of the symmetry group [9.14]. For in-depth discus-
sion of symmetry-reduced (‘images’) and symmetry-extended
(‘covers’) topology, symbolic dynamics, periodic orbits, in-
variant polynomial bases etc., of Lorenz, Rössler and many
other low-dimensional systems there is no better reference
than the Gilmore and Letellier monograph [9.15]. They inter-
pret [9.16] the proto-Lorenz and its ‘double cover’ Lorenz as
‘intensities’ being the squares of ‘amplitudes,’ and call quo-
tiented flows such as (Lorenz)/C2 ‘images.’ Our ‘doubled-
polar angle’ visualization Fig. 11.8 is a proto-Lorenz in dis-
guise; we, however, integrate the flow and construct Poincaré
sections and return maps in the original Lorenz [x, y, z] coordi-
nates, without any nonlinear coordinate transformations. The
Poincaré return map Fig. 11.9 is reminiscent in shape both
of the one given by Lorenz in his original paper, and the one
plotted in a radial coordinate by Gilmore and Letellier. Nev-
ertheless, it is profoundly different: our return maps are from
unstable manifold → itself, and thus intrinsic and coordinate
independent. In this we follow Ref. [9.17]. This construction
is necessary for high-dimensional flows in order to avoid prob-
lems such as double-valuedness of return map projections on
arbitrary 1−d coordinates encountered already in the Rössler
example of Fig. 3.6. More importantly, as we know the em-
bedding of the unstable manifold into the full state space, a
periodic point of our return map is - regardless of the length
of the cycle - the periodic point in the full state space, so no
additional Newton searches are needed. In homage to Lorenz,
we note that his return map was already symmetry-reduced:
as z belongs to the symmetry invariant Fix (G) subspace, one
can replace dynamics in the full space by ż, z̈, · · ·. That is
G-invariant by construction [9.15].

9.3 Examples of systems with discrete symmetries.
Almost any flow of interest is symmetric in some way or

discrete - 8nov2009 ChaosBook.org version13.5, Sep 7 2011



Further reading 137

other: the list of examples is endless, we list here a hand-
ful that we found interesting. One has a C2 symmetry in
the Lorenz system (Remark 2.3), the Ising model, and in the
3−d anisotropic Kepler potential [9.18–20], a D4 = C4v sym-
metry in quartic oscillators [9.21, 22], in the pure x2y2 po-
tential [9.23, 24] and in hydrogen in a magnetic field [9.25],
and a D2 = C2v = V4 = C2 × C2 symmetry in the stadium
billiard [9.26]. A very nice nontrivial desymmetrization is
carried out in Ref. [9.27]. An example of a system with
D3 = C3v symmetry is provided by the motion of a particle in

the Hénon-Heiles potential [9.28–31]

V(r, θ) =
1
2

r2 +
1
3

r3 sin(3θ) .

Our 3-disk coding is insufficient for this system because of the
existence of elliptic islands and because the three orbits that
run along the symmetry axis cannot be labeled in our code.
As these orbits run along the boundary of the fundamental
domain, they require the special treatment. A partial classifi-
cation of the 67 possible symmetries of solutions of the plane
Couette flow of Example 9.5, and their reduction 5 conjugate
classes is given in Ref. [9.32].
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Exercises

(9.1) Polynomials invariant under discrete operations on
R

3. Prove that the {e, σ}, {e,R(1/2)}, {e, P} and
{e, σ,R(1/2), P}-invariant polynomial basis and syzygies
are those listed in Example 9.6.

(9.2) Gx ⊂ G. Prove that the set Gx as defined in (9.9) is a
subgroup of G.

(9.3) Transitivity of conjugation. Assume that g1, g2, g3 ∈
G and both g1 and g2 are conjugate to g3. Prove that g1 is
conjugate to g2.

(9.4) Isotropy subgroup of gx. Prove that for g ∈ G, x and
gx have conjugate isotropy subgroups:

Ggx = g Gx g−1

(9.5) D3: symmetries of an equilateral triangle. Consider
group D3 � C3v, the symmetry group of an equilateral
triangle:

1

2  3 .

(a) List the group elements and the corresponding ge-
ometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups of D3.

(9.6) Reduction of 3-disk symbolic dynamics to binary.
(continued from Exercise 1.1)

(a) Verify that the 3-disk cycles
{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.}, · · ·,
correspond to the fundamental domain cycles 0, 1,
01, 001, 011, · · · respectively.

(b) Check the reduction for short cycles in Table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in Fig. 9.9.

(c) Optional: Can you see how the group elements
listed in Table 12.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in Exercise 12.6)

(9.7) C2-equivariance of Lorenz system. Verify that the
vector field in Lorenz equations (2.12)

ẋ = v(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẋ
ẏ
ż

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ(y − x)
ρx − y − xz

xy − bz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9.24)

is equivariant under the action of cyclic group C2 =

{e,R(1/2)} acting on R3 by a π rotation about the z axis,

R(1/2)(x, y, z) = (−x,−y, z) ,

as claimed in Example 9.4. (continued in Exercise 9.8)

(9.8) Lorenz system in polar coordinates: group theory.
Use (6.7), (6.8) to rewrite the Lorenz equation (9.24) in
polar coordinates (r, θ, z), where (x, y) = (r cos θ, r sin θ).

1. Show that in the polar coordinates Lorentz flow
takes form

ṙ =
r
2

(−σ − 1 + (σ + ρ − z) sin 2θ

+(1 − σ) cos 2θ)

θ̇ =
1
2

(−σ + ρ − z + (σ − 1) sin 2θ

+(σ + ρ − z) cos 2θ)

ż = −bz +
r2

2
sin 2θ . (9.25)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

3. Show that this is the (Lorenz)/C2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by the π rotation in the [x, y] plane.

4. Rewrite (9.24) in the invariant polynomial basis of
Example 9.6 and Exercise 9.25.

5. Show that a periodic orbit of the Lorenz flow in po-
lar representation (9.25) is either a periodic orbit or
a relative periodic orbit (9.22) of the Lorenz flow in
the (x, y, z) representation.

By going to polar coordinates we have quotiented out the
π-rotation (x, y, z) → (−x,−y, z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.
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(9.9) Proto-Lorenz system. Here we quotient out the
C2 symmetry by constructing an explicit “intensity” rep-
resentation of the desymmetrized Lorenz flow, following
Miranda and Stone [9.13].

1. Rewrite the Lorenz equation (2.12) in terms of
variables

(u, v, z) = (x2 − y2, 2xy, z) , (9.26)

show that it takes form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ u̇
v̇
ż

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ −(σ + 1)u + (σ − r)v + (1 − σ)N + vz
(r − σ)u − (σ + 1)v + (r + σ)N − uz − uN

v/2 − bz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
N =

√
u2 + v2 . (9.27)

2. Show that this is the (Lorenz)/C2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by the π rotation (9.17).

3. Show that (9.26) is invertible. Where does the in-
verse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(2.12) and in the proto-Lorenz form (9.27)
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for the Lorenz parameter values σ = 10, b = 8/3,
ρ = 28. Topologically, does it resemble more the
Lorenz, or the Rössler attractor, or neither? (plot
by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is
either a periodic orbit or a relative periodic orbit of
the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz
is also periodic orbit of the Lorenz flow, their Flo-
quet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

9 What does the volume contraction formula (4.42)
look like now? Interpret.

10. Show that the coordinate change (9.26) is the same
as rewriting (9.25) in variables

(u, v) = (r2 cos 2θ, r2 sin 2θ) ,

i.e., squaring a complex number z = x + iy, z2 =

u + iv.

11. How is (9.27) related to the invariant polynomial
basis of Example 9.6 and Exercise 9.25?
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Maybe when I’m done with grad school I’ll be able to figure it all out
. . .

— Rebecca Wilczak, undergraduate

What if the laws of motion retain their form for a family of coordinate
frames related by continuous symmetries? The notion of ‘fundamen-
tal domain’ is of no use here. If the symmetry is continuous, the

dynamical system should be reduced to a lower-dimensional, desymmetrized
system, with ‘ignorable’ coordinates eliminated (but not forgotten).

We shall describe here two ways of reducing a continuous symmetry. In the
‘method of slices’ or ‘moving frames’ of Section 10.4 we slice the state space
in such a way that an entire class of symmetry-equivalent points is represented
by a single point. In the Hilbert polynomial basis approach of Section 10.5
we replace the equivariant dynamics by the dynamics rewritten in terms of
invariant coordinates. In either approach we retain the option of computing in
the original coordinates, and then, when done, projecting the solution onto the
symmetry reduced state space.

Instead of writing yet another tome on group theory, in what follows we
continue to serve group theoretic nuggets on need-to-know basis, through a
series of pedestrian examples (but take a slightly higher, cyclist road in the text
proper).

Fig. 10.1 A typical {x1, x2 , z} trajectory of the
complex Lorenz flow, with a short trajectory
of Fig. 10.4 whose initial point is close to the
relative equilibrium TW1 superimposed. See
also Fig. 10.7. (R. Wilczak)

10.1 Continuous symmetries

First of all, why worry about continuous symmetries? Here is an example of

exercise 10.1
exercise 10.2

the effect a continuous symmetry has on dynamics (for physics background,
see Remark 10.2).

Example 10.1 Complex Lorenz flow:
Consider a complex generalization of Lorenz equations (2.12),

ẋ = −σx + σy , ẏ = (ρ − z)x − ay

ż = (xy∗ + x∗y)/2 − bz , (10.1)

where x, y are complex variables, z is real, while the parameters σ, b are real and
ρ = ρ1 + iρ2, a = 1 − ie are complex. Recast in real variables, this is a set of five
coupled ODEs

ẋ1 = −σx1 + σy1

ẋ2 = −σx2 + σy2
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ẏ1 = (ρ1 − z)x1 − ρ2 x2 − y1 − ey2

ẏ2 = ρ2 x1 + (ρ1 − z)x2 + ey1 − y2

ż = −bz + x1y1 + x2y2 . (10.2)

In all numerical examples that follow, the parameters will be set to ρ1 = 28, ρ2 =

0, b = 8/3, σ = 10, e = 1/10, unless explicitly stated otherwise. As we shall
show in Example 10.7, this is a dynamical system with a continuous (but no discrete)
symmetry. Figure 10.1 offers a visualization of its typical long-time dynamics. It is a
mess. In the rest of this chapter we shall investigate various ways of ‘quotienting’ its
SO(2) symmetry, and reducing the dynamics to a 4-dimensional reduced state space.
As we shall show here, the dynamics has a nice ‘stretch & fold’ action, but that is
totally masked by the continuous symmetry drifts. We shall not rest until we attain
the simplicity of Fig. 10.12, and the bliss of 1-dimensional return map of Fig. 10.14.

We shall refer to the component of the dynamics along the continuous sym-
metry directions as a ‘drift.’ In a presence of a continuous symmetry an orbit
explores the manifold swept by combined action of the dynamics and the sym-
metry induced drifts. Further problems arise when we try to determine whether
an orbit shadows another orbit (see the Fig. 13.1 for a sketch of a close pass
to a periodic orbit), or develop symbolic dynamics (partition the state space,
as in Chapter 11): here a 1-dimensional trajectory is replaced by a (N +1)-
dimensional ‘sausage,’ a dimension for each continuous symmetry (N being
the total number of parameters specifying the continuous transformation, and
‘1’ for the time parameter t). How are we to measure distances between such
objects? We shall learn here how to develop more illuminating visualizations
of such flow than Fig. 10.1, ‘quotient’ symmetries, and offer computation-
ally straightforward methods of reducing the dynamics to lower-dimensional,
reduced state spaces. The methods should also be applicable to high-dimens-
ional flows, such as translationally invariant fluid flows bounded by pipes or
planes (see Example 10.4).

But first, a lightning review of the theory of Lie groups. The group-theoretical
concepts of Section 9.1 apply to compact continuous groups as well, and will
not be repeated here. All the group theory that we shall need is in principle
contained in the Peter-Weyl theorem, and its corollaries: A compact Lie group
G is completely reducible, its representations are fully reducible, every com-
pact Lie group is a closed subgroup of a unitary group U(n) for some n, and
every continuous, unitary, irreducible representation of a compact Lie group is
finite dimensional.

Example 10.2 Special orthogonal group SO(2)
(or S 1) is a group of length-preserving rotations in a plane. ‘Special’ refers to re-

quirement that det g = 1, in contradistinction to the orthogonal group O(n) which
allows for det g = ±1. A group element can be parameterized by angle θ, with the
group multiplication law g(θ′)g(θ) = g(θ′ + θ), and its action on smooth periodic
functions u(θ + 2π) = u(θ) generated by

g(θ′) = eθ
′T , T =

d
dθ

. (10.3)

Expand the exponential, apply it to a differentiable function u(θ), and you will rec-
ognize a Taylor series. So g(θ′) shifts the coordinate by θ′, g(θ′) u(θ) = u(θ′ + θ) .
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Example 10.3 Translation group:
Differential operator T in (10.3) is reminiscent of the generator of spatial translations.
The ‘constant velocity field’ v(x) = v = c · T’ acts on xj by replacing it by the
velocity vector cj. It is easy to verify by Taylor expanding a function u(x) that the
time evolution is nothing but a coordinate translation by (time× velocity):

e−τc·Tu(x) = e−τc· ddx u(x) = u(x − τ c) . (10.4)

As x is a point in the Euclidean Rd space, the group is not compact. In general, a
sequence of time steps in time evolution always forms an abelian Lie group, albeit
never as trivial as this free ballistic motion.
If the group actions consist of N rotations which commute, for example act on an
N-dimensional cell with periodic boundary conditions, the group is an abelian group
that acts on a torus T N .

Example 10.4 Continuous symmetries of the plane Couette flow.
(continued from Example 9.5) The plane Couette flow is a Navier-Stokes flow

bounded by two countermoving planes, in a cell periodic in streamwise and spanwise
directions. Every solution of Navier-Stokes equations belongs, by the SO(2)×SO(2)
symmetry, to a 2-torus T 2 of equivalent solutions. Furthermore these tori are in-
terrelated by a discrete D2 group of spanwise and streamwise flips of the flow cell.
(continued in Example 10.10)

Let G be a group, and gM −→M a group action on the state spaceM. The
[d×d] matrices g acting on vectors in the d-dimensional state spaceM form
a linear representation of the group G. If the action of every element g of a
group G commutes with the flow

gv(x) = v(gx) , g f τ(x) = f τ(gx) , (10.5)

G is a symmetry of the dynamics, and, as in (9.6), the dynamics is said to be
invariant under G, or G-equivariant.

In order to explore the implications of equivariance for the solutions of dyn-
amical equations, we start by examining the way a compact Lie group acts on
state spaceM. For any x ∈ M, the group orbitM x of x is the set of all group
actions (see page 125 and Fig. 10.2)

Mx = {g x | g ∈ G} . (10.6)

As we saw in Example 10.3, the time evolution itself is a noncompact 1-
parameter Lie group. Thus the time evolution and the continuous symmetries
can be considered on the same Lie group footing. For a given state space point
x a symmetry group of N continuous transformations together with the evo-
lution in time sweeps out, in general, a smooth (N+1)-dimensional manifold
of equivalent solutions (if the solution has a nontrivial symmetry, the manifold
may have a dimension less than N + 1). For solutions p for which the group
orbit of xp is periodic in time T p, the group orbit sweeps out a compact in-
variant manifoldMp. The simplest example is the N = 0, no symmetry case,
where the invariant manifoldM p is the 1-torus traced out by a periodic trajec-
tory p. IfM is a smooth C∞ manifold, and G is compact and acts smoothly
onM, the reduced state space can be realized as a ‘stratified manifold,’ mean-
ing that each group orbit (a ‘stratum’) is represented by a point in the reduced
ChaosBook.org version13.5, Sep 7 2011 continuous - 12dec2010
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Fig. 10.2 (a) The group orbit Mx(0) of state
space point x(0), and the group orbit Mx(t)
reached by the trajectory x(t) time t later. As
any point on the manifoldMx(t) is physically
equivalent to any other, the state space is foli-
ated into the union of group orbits. (b) Sym-
metry reduction M → M̄ replaces each full
state space group orbit Mx by a single point
y ∈ M̄. (a)

M
x(τ)

M
x(0)

x(0)

x(τ)

M
(b)

M̄ y(0)

y(τ)

state space, see Section 10.4. Generalizing the description of a non-wandering
set of Section 2.1.1, we say that for flows with continuous symmetries the non-
wandering setΩ of dynamics (2.2) is the closure of the set of compact invariant
manifoldsMp. Without symmetries, we visualize the non-wandering set as a
set of points; in presence of a continuous symmetry, each such ‘point’ is a
group orbit.

10.1.1 Lie groups for pedestrians

[...] which is an expression of consecration of ‘angular momentum.’

— Mason A. Porter’s student

Definition: A Lie group is a topological group G such that (i) G has the
structure of a smooth differential manifold, and (ii) the composition map G ×
G → G : (g, h)→ gh−1 is smooth, i.e., C∞ differentiable.

Do not be mystified by this definition. Mathematicians also have to make
a living. Historically, the theory of compact Lie groups that we will deploy
here emerged as a generalization of the theory of SO(2) rotations, i.e., Fourier
analysis. By a ‘smooth differential manifold’ one means objects like the circle
of angles that parameterize continuous rotations in a plane, Example 10.2, or
the manifold swept by the three Euler angles that parameterize SO(3) rotations.

An element of a compact Lie group continuously connected to identity can
be written as

g(θ) = eθ·T , θ · T =
∑

θaTa, a = 1, 2, · · · ,N , (10.7)

where θ · T is a Lie algebra element, and θa are the parameters of the trans-
formation. Repeated indices are summed throughout this chapter, and the dot
product refers to a sum over Lie algebra generators. The Euclidian product of
two vectors x, y will be indicated by x-transpose times y, i.e., xT y =

∑d
i xiyi.

Unitary transformations exp(θ · T) are generated by sequences of infinitesimal
steps of form

g(δθ) � 1 + δθ · T , δθ ∈ RN , |δθ| � 1 , (10.8)
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where Ta, the generators of infinitesimal transformations, are a set of linearly
independent [d×d] anti-hermitian matrices, (Ta)† = −Ta, acting linearly on
the d-dimensional state space M. In order to streamline the exposition, we
postpone discussion of combining continuous coordinate transformations with
the discrete ones to Section 10.2.1.

exercise 10.3
For continuous groups the Lie algebra, i.e., the set of N generators T a of

infinitesimal transformations, takes the role that the |G| group elements play in
the theory of discrete groups. The flow field at the state space point x induced
by the action of the group is given by the set of N tangent fields

ta(x)i = (Ta)i jx j , (10.9)

which span the tangent space. Any representation of a compact Lie group G
is fully reducible, and invariant tensors constructed by contractions of T a are
useful for identifying irreducible representations. The simplest such invariant
is

TT · T =
∑
α

C(α)
2 11(α) , (10.10)

where C(α)
2 is the quadratic Casimir for irreducible representation labeled α,

and 11(α) is the identity on the α-irreducible subspace, 0 elsewhere. The dot
product of two tangent fields is thus a sum weighted by Casimirs,

t(x)T · t(x′) =
∑
α

C(α)
2 xi δ

(α)
i j x′j . (10.11)

Example 10.5 SO(2) irreducible representations:
(continued from Example 10.2) Expand a smooth periodic function u(θ+2π) = u(θ)

as a Fourier series

u(θ) = a0 +

∞∑
m=1

(am cos mθ + bm sin mθ) . (10.12)

The matrix representation of the SO(2) action (10.3) on the mth Fourier coefficient
pair (am, bm) is

g(m)(θ′) =

(
cos mθ′ sin mθ′

− sin mθ′ cos mθ′

)
, (10.13)

with the Lie group generator

T(m) =

(
0 m
−m 0

)
. (10.14)

The SO(2) group tangent (10.9) to state space point u(θ) on the mth invariant subspace
is

t(m)(u) = m

(
bm

−am

)
. (10.15)

The L2 norm of t(u) is weighted by the SO(2) quadratic Casimir (10.10), C(m)
2 = m2,∮

dθ
2π

(Tu(θ))T Tu(2π − θ) =
∞∑

m=1

m2
(
a2

m + b2
m

)
, (10.16)

and converges only for sufficiently smooth u(θ). What does that mean? We saw in
(10.4) that T generates translations, and by (10.14) the velocity of the mth Fourier
mode is m times higher than for the m = 1 component. If |u(m) | does not fall off faster
the 1/m, the action of SO(2) is overwhelmed by the high Fourier modes.
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Example 10.6 SO(2) rotations for complex Lorenz equations:
Substituting the Lie algebra generator

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10.17)

acting on a 5-dimensional space (10.2) into (10.7) yields a finite angle SO(2) rotation:

g(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos θ sin θ 0 0 0
− sin θ cos θ 0 0 0

0 0 cos θ sin θ 0
0 0 − sin θ cos θ 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (10.18)

From (10.13) we see that the action of SO(2) on the complex Lorenz equations state
space decomposes into m = 0 G-invariant subspace (z-axis) and m = 1 subspace with
multiplicity 2.
The generator T is indeed anti-hermitian, T† = −T, and the group is compact, its
elements parametrized by θ mod 2π. Locally, at x ∈ M, the infinitesimal action of
the group is given by the group tangent field t(x) = Tx = (x2,−x1, y2,−y1, 0). In
other words, the flow induced by the group action is normal to the radial direction in
the (x1, x2) and (y1, y2) planes, while the z-axis is left invariant.

fast track

Section 10.2, p. 150

10.1.2 Lie groups for cyclists

Henri Roux: “Why do you devote to Lie groups only a page, while
only a book-length monograph can do it justice?” A: “ChaosBook
tries its utmost to minimize the Gruppenpest jargon damage, which is
a total turnoff to our intended audience of working plumbers and elec-
tricians. The sufferings of our master plumber Fabian Waleffe while
reading Chapter 9 - World in a mirror are chicken feed in comparison
to the continuous symmetry reduction nightmare that we embark upon
here.”

—

Here comes all of the theory of Lie groups in one quick serving. You will live
appendix A.2.3

even if you do not digest this section, or, to spell it out; skip this section unless
you already know the theory of Lie algebras.

The [d×d] matrices g acting on vectors in the state spaceM form a linear
representation of the group G. Tensors transform as

h′i j
k = gi

i′g j
j′gk

k′hi′ j′
k′ . (10.19)

A multilinear function h(q, r, . . . , s) is an invariant function if (and only if) for
any transformation g ∈ G and for any set of vectors q, r, s, . . . it is unchanged
by the coordinate transformation

h(gq, gr, . . .gs) = h(q, r, . . . , s) = hab···
···c qarb · · · sc . (10.20)
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Examples of such invariant functions are the length r(x) 2 = δ
j
i xix j and the

volume V(x, y, z) = ε i jk xiy jzk. Substitute the infinitesimal form of group action
(10.8) into (10.19), keep the linear terms. In the index-notation longhand, the
Lie algebra generator acts on each index separately,

(Ta)i′
i h k...

i′ j... + (Ta) j′

j h k...
i j′... − (Ta)k

k′h
k′...

i j... + . . . = 0 . (10.21)

Hence the tensor h ...k
i j... is invariant if Tah = 0, i.e., the N generators Ta

‘annihilate’ it.
As one does not want the symmetry rules to change at every step, the gener-

ators Ta, a = 1, 2, . . . ,N, are themselves invariant tensors:

(Ta) i
j = gi

i′g j
j′gaa′ (Ta′ ) i′

j′ , (10.22)

where gab =
[
e−iθ·C

]
ab

is the adjoint [N×N] matrix representation of g ∈ G. The
[d×d] matrices Ta are in general non-commuting, and from (10.21) it follows
that they close N-element Lie algebra

[Ta,Tb] = TaTb − TbTa = −CabcTc , a, b, c = 1, 2, ...,N ,

where the fully antisymmetric adjoint representation hermitian generators

[Cc]ab = Cabc = −Cbac = −Cacb

are the structure constants of the Lie algebra.
As we will not use non-abelian Lie groups in this chapter, we omit the

derivation of the Jacobi relation between C abc’s, and you can safely ignore
all this talk of tensors and Lie algebra commutators as far as the pedestrian
applications at hand are concerned.

10.1.3 Equivariance under infinitesimal transformations

A flow ẋ = v(x) is G-equivariant (10.5) if

exercise 10.5
v(x) = g−1 v(g x) , for all g ∈ G . (10.23)

For an infinitesimal transformation (10.8) the G-equivariance condition be-
comes

v(x) = (1 − θ · T) v(x + θ · Tx) + · · · = v(x) − θ · Tv(x) +
dv
dx

θ · Tx + · · · .

The v(x) cancel, and θa are arbitrary. Denote the group flow tangent field at x by
ta(x)i = (Ta)i jx j. Thus the infinitesimal, Lie algebra G-equivariance condition
is

ta(v) − A(x) ta(x) = 0 , (10.24)

where A = ∂v/∂x is the stability matrix (4.3). If case you find such learned re-
marks helpful: the left-hand side of (10.24) is the Lie derivative of the dynam-
ical flow field v along the direction of the infinitesimal group-rotation induced
flow ta(x) = Tax,

Lta v =

(
Ta −

∂

∂y
(Ta x)

)
v(y)

∣∣∣∣∣∣
y=x

. (10.25)
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The equivariance condition (10.24) states that the two flows, one induced
exercise 10.6
exercise 10.7
exercise 10.8

by the dynamical vector field v, and the other by the group tangent field t,
commute if their Lie derivatives (or the ‘Lie brackets ’ or ‘Poisson brackets’)
vanish.

Example 10.7 Equivariance of complex Lorenz flow:
That complex Lorenz flow (10.2) is equivariant under SO(2) rotations (10.18) can

be checked by substituting the Lie algebra generator (10.17) and the stability matrix
(4.3) for complex Lorenz flow (10.2),

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−σ 0 σ 0 0
0 −σ 0 σ 0

ρ1 − z −ρ2 −1 −e −x1

ρ2 ρ1 − z e −1 −x2

y1 y2 x1 x2 −b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (10.26)

into the equivariance condition (10.24). Considering that t(v) depends on the full set
of equations (10.2), and A(x) is only its linearization, this is not an entirely trivial
statement. For the parameter values (10.2) the flow is strongly volume contracting
(4.41),

∂ivi =

5∑
i=1

λi(x, t) = −b − 2(σ + 1) = −24 − 2/3 , (10.27)

at a coordinate-, ρ- and e-independent constant rate.

Checking equivariance as a Lie algebra condition (10.24) is easier than check-
ing it for global, finite angle rotations (10.23).

10.2 Symmetries of solutions

Let v(x) be the dynamical flow, and f τ the trajectory or ‘time-τ forward map’
of an initial point x0,

dx
dt
= v(x) , x(τ) = f τ(x0) = x0 +

∫ τ

0
dτ′ v(x(τ′)) . (10.28)

As discussed in Section 9.2, solutions x(τ) can be classified by their symme-
tries. Generic trajectories have no symmetry, but recurrent solutions often do.
The simplest solutions are the equilibria or steady solutions (2.8).

Definition: equilibrium xEQ =MEQ is a fixed, time-invariant solution,

v(xEQ ) = 0 ,

x(xEQ , τ) = xEQ +

∫ τ

0
dτ′ v(x(τ′)) = xEQ . (10.29)

An equilibrium with full symmetry,

g xEQ = xEQ for all g ∈ G ,

lies, by definition, in Fix (G) subspace (9.10), for example the x3 axis in Fig. 10.3 (a).
The multiplicity of such solution is one. An equilibrium x EQ with symmetry
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GEQ smaller than the full group G belongs to a group orbit G/G EQ . If G
exercise 10.9

exercise 10.10 is finite there are |G|/|GEQ | equilibria in the group orbit, and if G is continu-
ous then the group orbit of x is a continuous family of equilibria of dimension
dim G−dim GEQ . For example, if the angular velocity c in Fig. 10.3 (b) equals
zero, the group orbit consists of a circle of (dynamically static) equivalent equi-
libria.

Definition: Relative equilibrium solution xTW(τ) ∈ MTW : the dynamical
flow field points along the group tangent field, with constant ‘angular’ velocity
c, and the trajectory stays on the group orbit, see Fig. 10.3 (a):

exercise 10.11
exercise 10.12
exercise 10.13
exercise 10.14
exercise 10.15
exercise 10.16
exercise 10.17

v(x) = c · t(x) , x ∈ MTW

x(τ) = g(−τ c) x(0) = e−τ c·Tx(0) . (10.30)

A traveling wave

x(τ) = g(−cτ) xTW = xTW − c τ , c ∈ Rd (10.31)

is a special type of a relative equilibrium of equivariant evolution equations,
where the action is given by translation (10.4), g(y) x(0) = x(0) + y . A

exercise 10.18
rotating wave is another special case of relative equilibrium, with the action is
given by angular rotation. By equivariance, all points on the group orbit are
equivalent, the magnitude of the velocity c is same everywhere along the orbit,
so a ‘traveling wave’ moves at a constant speed. For an N > 1 trajectory
traces out a line within the group orbit. As the ca components are generically
not in rational ratios, the trajectory explores the N-dimensional group orbit
(10.6) quasi-periodically. In other words, the group orbit g(τ) x(0) coincides
with the dynamical orbit x(τ) ∈ MTW and is thus flow invariant.

Example 10.8 A relative equilibrium:
For complex Lorenz equations and our canonical parameter values of (10.2) a

x1

x2

x3

τg( )τx( )= x(0)

τg( )

x(0)

g( )tτ

v = c t

v = c 

Fig. 10.3 (a) A relative equilibrium orbit
starts out at some point x(0), with the dynam-
ical flow field v(x) = c·t(x) pointing along the
group tangent space. For the SO(2) symmetry
depicted here, the flow traces out the group
orbit of x(0) in time T = 2π/c. (b) An equi-
librium lives either in the fixed Fix(G) sub-
space (x3 axis in this sketch), or on a group
orbit as the one depicted here, but with zero
angular velocity c. In that case the circle (in
general, N-torus) depicts a continuous family
of fixed equilibria, related only by the group
action.

computation yields the relative equilibrium TW1 with a representative group orbit
point

(x1, x2, y1, 0, z)TW1 = (8.48492, 0.0771356, 8.48562, 0, 26.9999) , (10.32)

and angular velocity cTW1 = 1/11. This corresponds to period TTW1 = 2π/c ≈ 69, so
a simulation has to be run up to time of order of at least 70 for the strange attractor
in Fig. 10.1 to start filling in.
Figure 10.4 shows the complex Lorenz flow with the initial point (10.32) on the
relative equilibrium TW1. It starts out by drifting in a circle around the z-axis, but as
the numerical errors accumulate, the trajectory spirals out.
Calculation of the relative equilibrium stability reveals that it is spiral-out unstable,
with the very short period Tspiral = 0.6163. This is the typical time scale for fast
oscillations visible in Fig. 10.1, with some 100 turns for one circumambulation of
the TW1 orbit. In that time an initial deviation from xTW1 is multiplied by the factor
Λradial ≈ 500. It would be sweet if we could eliminate the drift time scale ≈ 70 and
focus just on the fast time scale of ≈ 0.6. That we will attain by reformulating the
dynamics in a reduced state space.
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Definition: Periodic orbit. Let x be a periodic point on the periodic orbit p
of period T ,

f T (x) = x , x ∈ Mp.

By equivariance, g x is another periodic point, with the orbits of x and gx either
identical or disjoint.

Fig. 10.4 {x1 , x2 , z} plot of the complex
Lorenz flow with initial point close to TW1.
In Fig. 10.1 this relative equilibrium is super-
imposed over the strange attractor. (R.
Wilczak)

If gx lands on the same orbit, g is an element of periodic orbit’s symmetry
group Gp. If the symmetry group is the full group G, we are back to (10.30),
i.e., the periodic orbit is the group orbit traced out by a relative equilibrium.
The other option is that the isotropy group is discrete, the orbit segment {x, gx}
is pre-periodic (or eventually periodic), x(0) = g px(Tp), where T p is a fraction
of the full period, T p = T/m, and thus

x(0) = gpx(Tp) , x ∈ Mp , gp ∈ Gp

x(0) = gm
p x(m Tp) = x(T) = x(0) . (10.33)

If the periodic solutions are disjoint, as in Fig. 10.5, their multiplicity (if G
is finite, see Section 9.1), or the dimension of the manifold swept under the
group action (if G is continuous) can be determined by applications of g ∈ G.
They form a family of conjugate solutions (9.13),

Mg p = gMp g−1 . (10.34)

Definition: Relative periodic orbit p is an orbitM p in state spaceMwhich
exactly recurs

xp(0) = gpxp(Tp) , xp(τ) ∈ Mp , (10.35)

at a fixed relative period T p, but shifted by a fixed group action g p which brings
the endpoint xp(Tp) back into the initial point xp(0), see Fig. 10.6. The group
action gp parameters θ = (θ1, θ2, · · · θN) are referred to as “phases,” or “shifts.”
In contrast to the pre-periodic (10.33), the phase here are irrational, and the
trajectory sweeps out ergodically the group orbit without ever closing into a
periodic orbit. For dynamical systems with only continuous (no discrete) sym-

x3

x2

x1

gv

gt

gx(0)
g

t

v

x(T) = x(0)

Fig. 10.5 A periodic orbit starts out at x(0)
with the dynamical v and group tangent t
flows pointing in different directions, and re-
turns after time Tp to the initial point x(0) =
x(Tp). The group orbit of the temporal or-
bit of x(0) sweeps out a (1+N)-dimensional
torus, a continuous family of equivalent peri-
odic orbits, two of which are sketched here.
For SO(2) this is topologically a 2-torus.

metries, the parameters {t, θ1, · · · , θN } are real numbers, ratios π/θ j are almost
never rational, likelihood of finding a periodic orbit for such system is zero,
and such relative periodic orbits are almost never eventually periodic.

Relative periodic orbits are to periodic solutions what relative equilibria
(traveling waves) are to equilibria (steady solutions). Equilibria satisfy f τ(x)−
x = 0 and relative equilibria satisfy f τ(x)−g(τ) x = 0 for any τ. In a co-moving
frame, i.e., frame moving along the group orbit with velocity v(x) = c · t(x),
the relative equilibrium appears as an equilibrium. Similarly, a relative peri-
odic orbit is periodic in its mean velocity c p = θp/Tp co-moving frame (see
Fig. 10.8), but in the stationary frame its trajectory is quasiperiodic. A co-
moving frame is helpful in visualizing a single ‘relative’ orbit, but useless for
viewing collections of orbits, as each one drifts with its own angular velocity.
Visualization of all relative periodic orbits as periodic orbits we attain only by
global symmetry reductions, to be undertaken in Section 10.4.

Example 10.9 Complex Lorenz flow with relative periodic orbit:
Figure 10.7 is a group portrait of the complex Lorenz equations state space dynam-

ics, with several important players posing against a generic orbit in the background.
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Fig. 10.6 A relative periodic orbit starts out at x(0)
with the dynamical v and group tangent t flows point-
ing in different directions, and returns to the group or-
bit of x(0) after time Tp at x(Tp) = gpx(0), a rotation
of the initial point by gp. For flows with continuous
symmetry a generic relative periodic orbit (not pre-
periodic to a periodic orbit) fills out ergodically what
is topologically a torus, as in Fig. 10.5; if you are able
to draw such a thing, kindly send us the figure. As
illustrated by Fig. 10.8 (a) this might be a project for
Lucas Films.

x1

gp

x(Tp)

x2

gpt

gpv
x(0)

x3

t

v

The unstable manifold of relative equilibrium TW1 is characterized by a 2-dimensional
complex eigenvector pair, so its group orbit is a 3-dimensional. Only one representa-
tive trajectory on it is plotted in the figure. The unstable manifold of equilibrium EQ0

has one expanding eigenvalue, but its group orbit is a cone originating at EQ0. Only
one representative trajectory on this cone is shown in the figure. It lands close to
TW1, and then spirals out along its unstable manifold. 3 repetitions of a short relative
periodic orbit 01 are drawn. The trajectory fills out ergodically a 2-dimensional
orbitM01. The assignment of its symbolic dynamics label will be possible only after
the symmetry reduction, see Fig. 10.14 and Fig. 11.9.

10.2.1 Discrete and continuous symmetries together

We expect to see relative periodic orbits because a trajectory that starts on
and returns to a given torus of a symmetry equivalent solutions is unlikely to
intersect it at the initial point, unless forced to do so by a discrete symmetry.
This we will make explicit in Section 10.4, where relative periodic orbits will
be viewed as periodic orbits of the reduced dynamics.

Fig. 10.7 (Figure 10.1 continued) A group
portrait of the complex Lorenz equations
state space dynamics. Plotted are relative
equilibrium TW1 (red), its unstable mani-
fold (brown), equilibrium EQ0, one trajec-
tory from the group orbit of its unstable man-
ifold (green), 3 repetitions of relative periodic
orbit 01 (magenta) and a generic orbit (blue).
(E. Siminos)

If, in addition to a continuous symmetry, one has a discrete symmetry which
is not its subgroup, one does expect equilibria and periodic orbits. However,
a relative periodic orbit can be pre-periodic if it is equivariant under a discrete
symmetry, as in (10.33): If gm = 1 is of finite order m, then the corresponding
orbit is periodic with period mT p. If g is not of a finite order, a relative periodic
orbit is periodic only after a shift by g p, as in (10.35). Morally, as it will be
shown in Chapter 21, such orbit is the true ‘prime’ orbit, i.e., the shortest
segment that under action of G tiles the entire invariant submanifoldM p.

Definition: Relative orbit MGx in state spaceM is the time evolved group
orbitMx of a state space point x, the set of all points that can be reached from
x by all symmetry group actions and evolution of each in time.

Mx(t) = {gxt : t ∈ R, g ∈ G} . (10.36)

In presence of symmetry, an equilibrium is the set of all equilibria related by
symmetries, an relative periodic orbit is the hyper-surface traced by a trajectory
in time T and all group actions, etc..

Example 10.10 Relative orbits in the plane Couette flow.
(continued from Example 10.4) Translational symmetry allows for relative equi-

libria (traveling waves), characterized by a fixed profile Eulerian velocity uTW (x)
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Fig. 10.8 A relative periodic orbit of
Kuramoto-Sivashinsky flow projected on (a)
the stationary state space coordinate frame
{v1, v2 , v3}, traced for four periods Tp; (b)
the co-moving {ṽ1, ṽ2, ṽ3} coordinate frame,
moving with the mean angular velocity cp =

θp/Tp. (from Ref. [10.1]) (a)

v1v2

v3

(b)

v�1
v�2

v�3

moving with constant velocity c, i.e.

u(x, τ) = uTW (x − cτ) . (10.37)

As the plane Couette flow is bounded by two counter-moving planes, it is easy to
see where the relative equilibrium (traveling wave) solutions come from. A relative
equilibrium solution hugs close to one of the walls and drifts with it with constant ve-
locity, slower than the wall, while maintaining its shape. A relative periodic solution
is a solution that recurs at time Tp with exactly the same disposition of the Eule-
rian velocity fields over the entire cell, but shifted by a 2-dimensional (streamwise,-
spanwise) translation gp. By discrete symmetries these solutions come in counter-
traveling pairs uq(x − cτ), −uq(−x + cτ): for example, for each one drifting along
with the upper wall, there is a counter-moving one drifting along with the lower wall.
Discrete symmetries also imply existence of strictly stationary solutions, or ‘standing
waves.’ For example, a solution with velocity fields antisymmetric under reflection
through the midplane has equal flow velocities in opposite directions, and is thus an
equilibrium stationary in time.

10.3 Stability
chapter 21 A spatial derivative of the equivariance condition (10.5) yields the matrix equiv-

ariance condition satisfied by the stability matrix (stated here both for the finite
group actions, and for the infinitesimal, Lie algebra generators):

exercise 10.19 gA(x)g−1 = A(gx) , [Ta, A] =
∂A
∂x

ta(x) . (10.38)

For a flow within the fixed Fix (G) subspace, t(x) vanishes, and the symmetry
imposes strong conditions on the perturbations out of the Fix (G) subspace. As
in this subspace stability matrix A commutes with the Lie algebra generators
T, the spectrum of its eigenvalues and eigenvectors is decomposed into irre-
ducible representations of the symmetry group. This we have already observed
for the EQ0 of the Lorenz flow in Example 9.10.

A infinitesimal symmetry group transformation maps the initial and the end
point of a finite trajectory into a nearby, slightly rotated equivalent points, so
we expect the perturbations along to group orbit to be marginal, with unit
eigenvalues. The argument is akin to (4.7), the proof of marginality of per-
turbations along a periodic orbit. Consider two nearby initial points sepa-
rated by an N-dimensional infinitesimal group transformation (10.8): δx 0 =
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g(δθ)x0− x0 = δθ ·Tx0 = δθ · t(x0). By the commutativity of the group with the
flow, g(δθ) f τ(x0) = f τ(g(δθ)x0). Expanding both sides, keeping the leading
term in δθ, and using the definition of the Jacobian matrix (4.6), we observe
that Jτ(x0) transports the N-dimensional group tangent space at x(0) to the
rotated tangent space at x(τ) at time τ:

ta(τ) = Jτ(x0) ta(0) , ta(τ) = Ta x(τ) . (10.39)

For a relative periodic orbit, g px(Tp) = x(0), at any point along cycle p the
group tangent vector ta(τ) is an eigenvector of the Jacobian matrix with an
eigenvalue of unit magnitude,

Jp ta(x) = ta(x) , Jp(x) = gpJTp(x) , x ∈ Mp . (10.40)

Two successive points along the cycle separated by δx0 = δθ · t(τ) have the
same separation after a completed period δx(T p) = gpδx0, hence eigenvalue
of magnitude 1. In presence of an N-dimensional Lie symmetry group, N
eigenvalues equal unity.

10.4 Reduced state space

Given Lie group G acting smoothly on a C∞ manifold M, we can think of
each group orbit as an equivalence class. Symmetry reduction is the identi-
fication of a unique point on a group orbit as the representative of its equiv-
alence class. We call the set of all such group orbit representatives the re-
duced state spaceM/G. In the literature this space is often rediscovered, and
thus has many names - it is alternatively called ‘desymmetrized state space,’
‘symmetry-reduced space,’ ‘orbit space,’ ‘quotient space,’ or ‘image space,’
obtained by mapping equivariant dynamics to invariant dynamics by methods
such as ‘moving frames,’ ‘cross sections,’ ‘slices,’ ‘freezing,’ ‘Hilbert bases,’

exercise 10.20
‘quotienting,’ ‘lowering of the degree,’ ‘lowering the order,’ or ‘desymmetriza-
tion.’

remark 10.1
Symmetry reduction replaces a dynamical system (M, f ) with a symme-

try by a ‘desymmetrized’ system (M̄, f̄ ), a system where each group orbit
is replaced by a point, and the action of the group is trivial, gy = y for all
y ∈ M̄, g ∈ G. The reduced state space M̄ is sometimes called the ‘quo-
tient space’M/G because the symmetry has been ‘divided out.’ For a discrete
symmetry, the reduced state spaceM/G is given by the fundamental domain
of Section 9.4. In presence of a continuous symmetry, the reduction toM/G
amounts to a change of coordinates where the ‘ignorable angles’ {θ 1, · · · , θN }
that parameterize N group translations can be separated out.

We start our discussion of symmetry reduction by considering the finite-
rotations method of moving frames, and its differential formulation, the method
of slices.

10.4.1 Go with the flow: method of moving frames

The idea: We can, at least locally, map each point along any solution x(τ) to
the unique representative y(τ) of the associated group orbit equivalence class,
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by a suitable rotation
x(τ) = g(τ) y(τ) . (10.41)

Equivariance implies the two points are equivalent. In the ‘method of slices’
the reduced state space representative y of a group orbit equivalence class is
picked by slicing across the group orbits by a fixed hypersurface. We start

Fig. 10.9 A point x on the full state space
trajectory x(t) is equivalent up to a group ro-
tation g(t) to the point y on the curve y(t) if
the two points belong to the same group orbit
Mx, see (10.6).

by describing how the method works for a finite segment of the full state space
trajectory.

Definition: Slice. Let G act regularly on a d-dimensional manifoldM, i.e.,
with all group orbits N-dimensional. A slice through point x ′ is a (d−N)-
dimensional submanifold M̄ such that all group orbits in an open neighbor-
hood of the slice-defining point x ′ intersect M̄ transversally and only once
(see Fig. 10.10).

The simplest slice condition defines a linear slice as a (d−N)-dimensional
hyperplane M̄ normal to the N group rotation tangents t ′a at point x′:

(y − x′)T t′a = 0 , t′a = ta(x′) = Ta x′ . (10.42)

In other words, ‘slice’ is a Poincaré section (3.6) for group orbits. Each ‘big
circle’ –group orbit tangent to t ′a– intersects the hyperplane exactly twice, with
the two solutions separated by π. As for a Poincaré section (3.4), we add an
orientation condition, and select the intersection with the clockwise rotation
angle into the slice.

Definition: Moving frame. Assume that for a given x ∈ M and a given slice
M̄ there exists a unique group element g = g(x) that rotates x into the slice,
gx = y ∈ M̄. The map that associates to a state space point x a Lie group
action g(x) is called a moving frame.

M x(0)

x(t)

x(t)

g(t)

g

x’

t’

Fig. 10.10 Slice M̄ is a hyperplane (10.42)
passing through the slice-fixing point x′ , and
normal to the group tangent t′ at x′. It in-
tersects all group orbits (indicated by dotted
lines here) in an open neighborhood of x′.
The full state space trajectory x(τ) and the re-
duced state space trajectory y(τ) belong to the
same group orbitMx(τ) and are equivalent up
to a group rotation g(τ), defined in (10.41).

exercise 6.1

As x′T t′a = 0 by the antisymmetry of Ta, the slice condition (10.42) fixes θ
for a given x by

0 = yT t′a = xT g(θ)T t′a , (10.43)

where gT denotes the transpose of g. The method of moving frames can be

exercise 10.21

interpreted as a change of variables

y(τ) = g−1(τ) x(τ) , (10.44)

that is passing to a frame of reference in which condition (10.43) is identically
satisfied, see Example 10.11. Therefore the name ‘moving frame.’ Method of
moving frames should not be confused with the co-moving frames, such as the
one illustrated in Fig. 10.8. Each relative periodic orbit has its own co-moving
frame. In the method of moving frames (or the method of slices) one fixes a
stationary slice, and rotates all solutions back into the slice.

The method of moving frames is a post-processing method; trajectories are
computed in the full state space, then rotated into the slice whenever desired,
with the slice condition easily implemented. The slice group tangent t ′ is a
given vector, and g(θ) x is another vector, linear in x and a function of group
parameters θ. Rotation parameters θ are determined numerically, by a Newton
method, through the slice condition (10.43).
continuous - 12dec2010 ChaosBook.org version13.5, Sep 7 2011



10.4. REDUCED STATE SPACE 157

Figure 10.11 illustrates the method of moving frames for an SO(2) slice
normal to the x2 axis. Looks innocent, except there is nothing to prevent a
trajectory from going through (x1, x2) = (0, 0), and what θ is one to use then?
We can always chose a finite time step that hops over this singularity, but in
the continuous time formulation we will not be so lucky.

How does one pick a slice point x′? A generic point x′ not in an invari-
ant subspace (on the complex Lorenz equations z axis, for example) should
suffice to fix a slice. The rules of thumb are much like the ones for picking
Poincaré sections, Section 3.1.1. The intuitive idea is perhaps best visualized
in the context of fluid flows. Suppose the flow exhibits an unstable coherent
structure that –approximately– recurs often at different spatial dispositions.
One can fit a ‘template’ to one recurrence of such structure, and describe other
recurrences as its translations. A well chosen slice point belongs to such dy-
namically important equivalence class (i.e., group orbit). A slice is locally
isomorphic toM/G, in an open neighborhood of x ′. As is the case for the dy-
namical Poincaré sections, in general a single slice does not suffice to reduce
M→M/G globally.

The Euclidian product of two vectors x, y is indicated in (10.42) by x-transpose
times y, i.e., xT y =

∑d
i xiyi. More general bilinear norms 〈x, y〉 can be used,

as long as they are G-invariant, i.e., constant on each irreducible subspace. An
example is the quadratic Casimir (10.11).

Example 10.11 An SO(2) moving frame:
(continued from Example 10.2) The SO(2) action

(y1, y2) = (x1 cos θ + x2 sin θ, −x1 sin θ + x2 cos θ) (10.45)

is regular on R2\{0}. Thus we can define a slice as a ‘hyperplane’ (here a mere
line), through x′ = (0, 1), with group tangent t′ = (1, 0), and ensure uniqueness by
clockwise rotation into positive x2 axis. Hence the reduced state space is the half-line
x1 = 0, y2 = x2 > 0. The slice condition then simplifies to y1 = 0 and yields the
explicit formula for the moving frame parameter

θ(x1, x2) = tan−1(x1/x2) , (10.46)

i.e., the angle which rotates the point (x1, x2) back to the slice, taking care that tan−1

distinguishes (x1, x2) plane quadrants correctly. Substituting (10.46) back to (10.45)
and using cos(tan−1 a) = (1 + a2)−1/2, sin(tan−1 a) = a(1 + a2)−1/2 confirms y1 = 0. It
also yields an explicit expression for the transformation to variables on the slice,

y2 =

√
x2

1 + x2
2 . (10.47)

This was to be expected as SO(2) preserves lengths, x2
1+x2

2 = y2
1+y2

2. If dynamics is in
plane and SO(2) equivariant, the solutions can only be circles of radius (x2

1+x2
2)1/2, so

this is the “rectification” of the harmonic oscillator by a change to polar coordinates,
Example 6.1. Still, it illustrates the sense in which the method of moving frames
yields group invariants. (E. Siminos)

The slice condition (10.42) fixes N directions; the remaining vectors (yN+1 . . . yd)
span the slice hyperplane. They are d −N fundamental invariants, in the sense
that any other invariant can be expressed in terms of them, and they are func-
tionally independent. Thus they serve to distinguish orbits in the neighborhood
of the slice-fixing point x′, i.e., two points lie on the same group orbit if and
only if all the fundamental invariants agree.
ChaosBook.org version13.5, Sep 7 2011 continuous - 12dec2010



158 CHAPTER 10. RELATIVITY FOR CYCLISTS

10.4.2 Dynamics within a slice

I made a wrong mistake.
—Yogi Berra

As an alternative to the post-processing approach of the preceding sections, we
can proceed as follows: Split up the integration into a sequence of finite time
steps, each followed by a rotation of the final point (and the whole coordinate
frame with it; the ‘moving frame’) such that the next segment’s initial point
is in the slice fixed by a point x′, see Fig. 10.11. It is tempting to see what
happens if the steps are taken infinitesimal. As we shall see, we do get a flow
restricted to the slice, but at a price.

exercise 10.22
Using decomposition (10.41) one can always write the full state space tra-

jectory as x(τ) = g(τ) y(τ), where the (d−N)-dimensional reduced state space
trajectory y(τ) is to be fixed by some condition, and g(τ) is then the corre-
sponding curve on the N-dimensional group manifold of the group action that
rotates y into x at time τ. The time derivative is then ẋ = v(gy) = ġy + gu, with
the reduced state space velocity field given by u = dy/dt. Rewriting this as
u = g−1v(g y) − g−1ġ y and using the equivariance condition (10.23) leads to

u = v − g−1ġ y .

The Lie group element (10.7) and its time derivative describe the group tangent
flow

g−1ġ = g−1 d
dt

eθ·T = θ̇ · T .

This is the group tangent velocity g−1ġ y = θ̇ · t(y) evaluated at the point y, i.e.,
with g = 1 . The flow in the (d−N) directions transverse to the group flow is
now obtained by subtracting the flow along the group tangent direction,

u(y) = v(y) − θ̇(y) · t(y) , u = dy/dt , (10.48)

for any factorization (10.41) of the flow of form x(τ) = g(τ) y(τ). To integrate
these equations we first have to fix a particular flow factorization by imposing
conditions on y(τ), and then integrate phases θ(τ) on a given reduced state
space trajectory y(τ).

2x(t )

1x(t ) θ2

θ1

x =y 2       21y(t )
2y(t )

x1

y(0)

Fig. 10.11 Method of moving frames for
a flow SO(2)-equivariant under (10.18) with
slice through x′ = (0, 1, 0, 0, 0), group tan-
gent t′ = (1, 0, 0, 0, 0). The clockwise ori-
entation condition restricts the slice to half-
hyperplane y1 = 0, y2 > 0. A trajectory
started on the slice at y(0), evolves to a state
space point with a non-zero x1(t1). Com-
pute the polar angle θ1 of x(t1) in the (x1 , x2)
plane. Rotate x(t1) clockwise by θ1 to y(t1) =
g(−θ1) x(t1), so that the equivalent point on
the circle lies on the slice, y1(t1) = 0. Thus
after every finite time step followed by a rota-
tion the trajectory restarts from the y1(tk) = 0
reduced state space.

exercise 10.23

Here we demand that the reduced state space is confined to a hyperplane
slice. Substituting (10.48) into the time derivative of the fixed slice condition
(10.43),

u(y)T t′a = v(y)T t′a − θ̇a · t(y)T t′a = 0 ,

yields the equation for the group phases flow θ̇ for the slice fixed by x′, together
with the reduced state space M̄ flow u(y):

θ̇a(y) =
v(y)T t′a
t(y)T · t′

(10.49)

u(y) = v(y) − θ̇(y) · t(y) , y ∈ M̄ . (10.50)

Each group orbitM x = {g x | g ∈ G} is an equivalence class; method of slices
represents the class by its single slice intersection point y. By construction
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uT t′ = 0, and the motion stays in the (d−N)-dimensional slice. We have thus
replaced the original dynamical system {M, f } by a reduced system {M̄, f̄ }.

In the pattern recognition and ‘template fitting’ settings (10.49) is called the
‘reconstruction equation.’ Integrated together, the reduced state space trajec-

exercise 10.24
exercise 10.25tory (10.50) and g(τ) = exp{θ(τ) · T}, the integrated phase (10.49), reconstruct

the full state space trajectory x(τ) = g(τ) y(τ) from the reduced state space tra-
jectory y(τ), so no information about the flow is lost in the process of symmetry
reduction.

exercise 10.26

Example 10.12 A slice for complex Lorenz flow.
(continuation of Example 10.6) Here we can use the fact that

t(y)T · t′ = x̄T TT · T x′ = x̄1 x′1 + x̄2 x′2 + ȳ1y′1 + ȳ2y′2

is the dot-product restricted to the m = 1 4-dimensional representation of SO(2). A
generic x′ can be brought to form x′ = (0, 1, y′1, y

′
2, z) by a rotation and rescaling.

Then Tx′ = (1, 0, y′2,−y′1, 0), and

v(x̄) · t′

t(x̄) · t′ = −
v1 + v3y′2 − v4y′1
x̄2 + ȳ1y′1 + ȳ2y′2

. (10.51)

A long time trajectory of (10.50) with x′ on the relative equilibrium TW1 group orbit
is shown in Fig. 10.12. As initial condition we chose the initial point (10.32) on
the unstable manifold of TW1, rotated back to the slice by angle θ as prescribed by
(10.43). We show the part of the trajectory for t ∈ [70, 100]. The relative equilibrium
TW1, now an equilibrium of the reduced state space dynamics, organizes the flow
into a Rössler type attractor (see Fig. 2.6). The denominator in (10.49) vanishes
and the phase velocity θ̇(y) diverges whenever the direction of group action on the
reduced state space point is perpendicular to the direction of group action on the
slice point x′. While the reduced state space flow appears continuous in the {x1, x2, z}
projection, Fig. 10.12 (a), this singularity manifests itself as a discontinuity in the
{x2, y2, z} projection, Fig. 10.12 (b). The reduced state space complex Lorenz flow
strange attractor of Fig. 10.1 now exhibits a discontinuity whenever the trajectory
crosses this 3−d subspace.

Slice flow equations (10.50) and (10.49) are pretty, but there is a trouble in
the paradise. The slice flow encounters singularities in subsets of state space,
with phase velocity θ̇ divergent whenever the denominator in (10.51) changes
sign, see {x2, y2, z} projection of Fig. 10.12 (b). Hence a single slice does not
in general suffice to coverM/G globally.

10.5 Method of images: Hilbert bases

(E. Siminos and P. Cvitanović)
Erudite reader might wonder: why all this slicing and dicing, when the problem
of symmetry reduction had been solved by Hilbert and Weyl nearly a century
ago? Indeed, the most common approach to symmetry reduction is by means of
a Hilbert invariant polynomial bases (9.16), motivated intuitively by existence
of such nonlinear invariants as the rotationally-invariant length r 2 = x2

1 + x2
2 +

· · · + x2
d, or, in Hamiltonian dynamics, the energy function. One trades in

the equivariant state space coordinates {x1, x2, · · · , xd} for a non-unique set of
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Fig. 10.12 Method of moving frames, slice
fixed by a point on the complex Lorenz equa-
tions relative equilibrium group orbit, x′ =
xTW1. (a) The strange attractor of Fig. 10.1 in
the reduced state space of (10.50), {x1, x2 , z}
projection. (b) {x2, y2, z} projection. The
reduced state space complex Lorenz flow
strange attractor of Fig. 10.1 now exhibits a
discontinuity due to the vanishing denomina-
tor in (10.51). (a) (b)

m ≥ d polynomials {u1, u2, · · · , um} invariant under the action of the symmetry
group. These polynomials are linearly independent, but functionally dependent
through m − d + N relations called syzygies.

Example 10.13 An SO(2) Hilbert basis.
(continued from Example 9.6) The Hilbert basis

u1 = x2
1 + x2

2 , u2 = y2
1 + y2

2 ,

u3 = x1y2 − x2y1 , u4 = x1y1 + x2y2 ,

u5 = z . (10.52)

is invariant under the SO(2) action on a 5-dimensional state space (10.18). That
implies, in particular, that the image of the full state space relative equilibrium TW1

group orbit of Fig. 10.4 is the stationary equilibrium point EQ1, see Fig. 10.13. The
polynomials are linearly independent, but related through one syzygy,

u1u2 − u2
3 − u2

4 = 0 , (10.53)

yielding a 4-dimensionalM/SO(2) reduced state space, a symmetry-invariant repre-
sentation of the 5-dimensional SO(2) equivariant dynamics. (continued in Exam-
ple 10.14)

The dynamical equations follow from the chain rule

u̇i =
∂ui

∂x j
ẋ j , (10.54)

upon substitution {x1, x2, · · · , xd} → {u1, u2, · · · , um}. One can either rewrite the
dynamics in this basis or plot the ‘image’ of solutions computed in the original,
equivariant basis in terms of these invariant polynomials.

Example 10.14 Complex Lorenz equations in a Hilbert basis.
(continuation of Example 10.13) Substitution of (10.2) and (10.52) into (10.54)

yields complex Lorenz equations in terms of invariant polynomials:

u̇1 = 2σ (u4 − u1) ,

u̇2 = −2 ( u2 − ρ2 u3 − (ρ1 − u5) u4) ,

u̇3 = −(σ + 1) u3 + ρ2 u1 + e u4 , (10.55)

u̇4 = −(σ + 1) u4 + (ρ1 − u5) u1 + σ u2 − e u3 ,

u̇5 = u4 − b u5 .
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As far as visualization goes, we need neither construct nor integrate the invariant dy-
namics (10.55). It suffices to integrate the original, unreduced flow of Figure 10.1,
but plot the solution in the image space, i.e., ui invariant, Hilbert polynomial coordi-
nates, as in Fig. 10.13. (continued in Example 10.15)

Reducing dimensionality of a dynamical system by elimination of variables
through inclusion of syzygies such as (10.53) introduces singularities. Such
elimination of variables, however, is not needed for visualization purposes;
syzygies merely guarantee that the dynamics takes place on a submanifold
in the projection on the {u1, u2, · · · , um} coordinates. However, when one re-
constructs the dynamics in the original space M from its image M/G, the
transformations have singularities at the fixed-point subspaces of the isotropy
subgroups inM.

Example 10.15 Hilbert basis singularities.
(continuation of Example 10.14) When one takes syzygies into account in rewriting

a dynamical system, singularities are introduced. For instance, if we solve (10.53)
for u2 and substitute into (10.55), the reduced set of equations,

u̇1 = 2σ (u4 − u1)

u̇3 = −(σ + 1) u3 + ρ2 u1 + e u4

u̇4 = −(σ + 1) u4 + (ρ1 − u5) u1 + σ (u2
3 + u2

4)/u1 − e u3

u̇5 = u4 − b u5 , (10.56)

is singular as u1 → 0. (E. Siminos)

Nevertheless we can now easily identify a suitable Poincaré section, guided
by the Lorenz flow examples of Chapter 9, as one that contains the z-axis and
the image of the relative equilibrium TW1, here defined by the condition u1 =

u4. As in Example 11.4, we construct the first return map using as coordinate
the Euclidean arclength along the intersection of the unstable manifold of TW 1

with the Poincaré surface of section, see Fig. 10.14. Thus the goals set into

u3

u4

z

Q1

Fig. 10.13 Invariant ‘image’ of complex
Lorenz flow, Fig. 10.1, projected onto the in-
variant polynomials basis (10.52). Note the
unstable manifold connection from the equi-
librium EQ0 at the origin to the strange at-
tractor controlled by the rotation around rela-
tive equilibrium EQ1 (the reduced state space
image of TW1); as in the Lorenz flow Fig. 3.7,
natural measure close to EQ0 is vanishingly
small but non-zero.

the introduction to this chapter are attained: we have reduced the messy strange
attractor of Fig. 10.1 to a 1-dimensional return map. As will be explained in
Example 11.4 for the Lorenz attractor, we now have the symbolic dynamics
and can compute as many relative periodic orbits of the complex Lorenz flow
as we wish, missing none.

What limits the utility of Hilbert basis methods are not such singularities,
but rather the fact that the algebra needed to determine a Hilbert basis becomes
computationally prohibitive as the dimension of the system or of the group inc-
reases. Moreover, even if such basis were available, rewriting the equations in
an invariant polynomial basis seems impractical, so Hilbert basis computations
appear not feasible beyond state space dimension of order ten. When our goal
is to quotient continuous symmetries of high-dimensional flows, such as the
Navier-Stokes flows, we need a more practical, workable framework. The
method of moving frames of Section 10.4 is one such minimalist alternative.
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Résumé

The message: If a dynamical systems has a symmetry, use it! Here we have
described how, and offered two approaches to continuous symmetry reduction.
In the method of slices one fixes a ‘slice’ (y − x′)T t′ = 0, a hyperplane normal
to the group tangent t′ that cuts across group orbits in the neighborhood of the
slice-fixing point x′. Each class of symmetry-equivalent points is represented
by a single point, with the symmetry-reduced dynamics in the reduced state
spaceM/G given by (10.50):

u = v − θ̇ · t , θ̇a = (vT t′a)/(t · t′) .

In practice one runs the dynamics in the full state space, and post-processes the
trajectory by the method of moving frames. In the Hilbert polynomial basis
approach one transforms the equivariant state space coordinates into invariant
ones, by a nonlinear coordinate transformation

{x1, x2, · · · , xd} → {u1, u2, · · · , um} + {syzygies} ,

and studies the invariant ‘image’ of dynamics (10.54) rewritten in terms of
invariant coordinates.

In practice, continuous symmetry reduction is considerably more involved
than the discrete symmetry reduction to a fundamental domain of Chapter 9.
Slices are only local sections of group orbits, and Hilbert polynomials are non-
unique and difficult to compute for high-dimensional flows. However, there is
no need to actually recast the dynamics in the new coordinates: either approach
can be used as a visualization tool, with all computations carried out in the
original coordinates, and then, when done, projecting the solutions onto the
symmetry reduced state space by post-processing the data. The trick is to
construct a good set of symmetry invariant Poincaré sections (see Section 3.1),
and that is always a dark art, with or without a symmetry.

We conclude with a few general observations: Higher dimensional dynamics
requires study of compact invariant sets of higher dimension than 0-dimension-
al equilibria and 1-dimensional periodic orbits studied so far. In Section 2.1.1
we made an attempt to classify ‘all possible motions:’ (1) equilibria, (2) peri-
odic orbits, (3) everything else. Now one can discern in the fog of dynamics an
outline of a more serious classification - long time dynamics takes place on the
closure of a set of all invariant compact sets preserved by the dynamics, and
those are: (1) 0-dimensional equilibriaMEQ , (2) 1-dimensional periodic orbits
Mp, (3) global symmetry induced N-dimensional relative equilibriaM TW , (4)
(N+1)-dimensional relative periodic orbitsM p, (5) terra incognita. We have
some inklings of the ‘terra incognita:’ for example, in symplectic symmetry
settings one finds KAM-tori, and in general dynamical settings we encounter
partially hyperbolic invariant M-tori, isolated tori that are consequences of dy-
namics, not of a global symmetry. They are harder to compute than anything
we have attempted so far, as they cannot be represented by a single relative pe-
riodic orbit, but require a numerical computation of full M-dimensional com-
pact invariant sets and their infinite-dimensional linearized Jacobian matrices,
marginal in M dimensions, and hyperbolic in the rest. We expect partially hy-
perbolic invariant tori to play important role in high-dimensional dynamics. In
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this chapter we have focused on the simplest example of such compact invari-
ant sets, where invariant tori are a robust consequence of a global continuous
symmetry of the dynamics. The direct product structure of a global symmetry
that commutes with the flow enables us to reduce the dynamics to a desym-
metrized (d−1−N)-dimensional reduced state spaceM/G.

Relative equilibria and relative periodic orbits are the hallmark of systems
with continuous symmetry. Amusingly, in this extension of ‘periodic orbit’
theory from unstable 1-dimensional closed periodic orbits to unstable (N+1)-
dimensional compact manifolds M p invariant under continuous symmetries,
there are either no or proportionally few periodic orbits. In presence of a con-
tinuous symmetry, likelihood of finding a periodic orbit is zero. Relative pe-
riodic orbits are almost never eventually periodic, i.e., they almost never lie
on periodic trajectories in the full state space, so looking for periodic orbits in
systems with continuous symmetries is a fool’s errand.

However, dynamical systems are often equivariant under a combination of
continuous symmetries and discrete coordinate transformations of Chapter 9,
for example the orthogonal group O(n). In presence of discrete symmetries
relative periodic orbits within discrete symmetry-invariant subspaces are even-
tually periodic. Atypical as they are (no generic chaotic orbit can ever enter
these discrete invariant subspaces) they will be important for periodic orbit
theory, as there the shortest orbits dominate, and they tend to be the most sym-
metric solutions.
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Fig. 10.14 Return map to the Poincaré sec-
tion u1 = u4 for complex Lorenz equations
projected on invariant polynomials (10.52).
The return map coordinate is the Euclidean
arclength distance from TW1, measured
along the Poincaré section of its spiral-out un-
stable manifold, as for the Lorenz flow return
map of Example 11.4.

Further reading

10.1 A brief history of relativity, or, ‘Desymmetrization and
its discontents’ (after Civilization and its discontents; con-
tinued from Remark 9.1): The literature on symmetries in
dynamical systems is immense, most of it deliriously unin-
telligible. Would it kill them to say ‘symmetry of orbit p’
instead of carrying on about ‘isotropies, quotients, factors,
normalizers, centralizers and stabilizers?’ Group action be-
ing ‘free, faithful, proper, regular?’ Symmetry-reduced state
space being ‘orbitfold?’ For the dynamical systems applica-
tions at hand we need only basic the Lie group facts, on the
level of any standard group theory textbook [10.2]. Chapter 2.
of Ref. [10.3] offers a pedagogical introduction to Lie groups
of transformations, and Nakahara [10.4] to Lie derivatives and
brackets. The presentation given here is in part based on Simi-
nos thesis [10.5] and Ref. [10.6]. The reader is referred to the
monographs of Golubitsky and Stewart [10.7], Hoyle [10.8],
Olver [10.9], Bredon [10.10], and Krupa [10.11] for more
depth and rigor than would be wise to wade into here.
Relative equilibria and relative periodic solutions are related
by symmetry reduction to equilibria and periodic solutions
of the reduced dynamics. They appear in many physical ap-

plications, such as celestial mechanics, molecular dynamics,
motion of rigid bodies, nonlinear waves, spiralling patterns,
and fluid mechanics. A relative equilibrium is a solution
which travels along an orbit of the symmetry group at con-
stant speed; an introduction to them is given, for example, in
Marsden [10.?]. According to Cushman, Bates [10.12] and
Yoder [10.13], C. Huygens [10.14] understood the relative
equilibria of a spherical pendulum many years before pub-
lishing them in 1673. A reduction of the translation symmetry
was obtained by Jacobi (for a modern, symplectic implemen-
tation, see Laskar et al. [10.15]). In 1892 German sociolo-
gist Vierkandt [10.16] showed that on a symmetry-reduced
space (the constrained velocity phase space modulo the ac-
tion of the group of Euclidean motions of the plane) all orbits
of the rolling disk system are periodic [10.17]. According
to Chenciner [10.18], the first attempt to find (relative) pe-
riodic solutions of the N-body problem was the 1896 short
note by Poincaré [10.19], in the context of the 3-body prob-
lem. Poincaré named such solutions ‘relative.’ Relative equi-
libria of the N-body problem (known in this context as the
Lagrange points, stationary in the co-rotating frame) are cir-
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cular motions in the inertial frame, and relative periodic or-
bits correspond to quasiperiodic motions in the inertial frame.
For relative periodic orbits in celestial mechanics see also
Ref. [10.20]. A striking application of relative periodic or-
bits has been the discovery of “choreographies” in the N-body
problems [10.21–23].
The modern story on equivariance and dynamical systems
starts perhaps with S. Smale [10.24] and M. Field [10.25], and
on bifurcations in presence of symmetries with Ruelle [10.26].
Ruelle proves that the stability matrix/Jacobian matrix eval-
uated at an equilibrium/fixed point x ∈ MG decomposes
into linear irreducible representations of G, and that sta-
ble/unstable manifold continuations of its eigenvectors inherit
their symmetry properties, and shows that an equilibrium can
bifurcate to a rotationally invariant periodic orbit (i.e., relative
equilibrium).
Gilmore and Lettelier monograph [10.27] offers a very clear,
detailed and user friendly discussion of symmetry reduc-
tion by means of Hilbert polynomial bases (do not look for
‘Hilbert’ in the index, though). Vladimirov, Toronov and
Derbov [10.28] use an invariant polynomial basis different
from (10.52) to study bounding manifolds of the symmetry
reduced complex Lorenz flow and its homoclinic bifurcations.
There is no general strategy how to construct a Hilbert basis;
clever low-dimensional examples have been constructed case-
by-case. The Example 10.13, with one obvious syzygy, is
also misleading - syzygies proliferate rapidly with increase in
dimensionality. The determination of a Hilbert basis appears
computationally prohibitive for state space dimensions larger
than ten [10.29, 30], and rewriting the equations of motions
in invariant polynomial bases appears impractical for high-
dimensional flows. Thus, by 1920’s the problem of rewriting
equivariant flows as invariant ones was solved by Hilbert and
Weyl, but at the cost of introducing largely arbitrary extra di-
mensions, with the reduced flows on manifolds of lowered di-
mensions, constrained by sets of syzygies. Cartan found this
unsatisfactory, and in 1935 he introduced [10.31] the notion of
a moving frame, a map from a manifold to a Lie group, which
seeks no invariant polynomial basis, but instead rewrites the
reduced M/G flow in terms of d − N fundamental invari-
ants defined by a generalization of the Poincaré section, a
slice that cuts across all group orbits in some open neighbor-
hood. Fels and Olver view the method as an alternative to the
Gröbner bases methods for computing Hilbert polynomials,
to compute functionally independent fundamental invariant
bases for general group actions (with no explicit connection
to dynamics, differential equations or symmetry reduction).
‘Fundamental’ here means that they can be used to generate
all other invariants. Olver’s monograph [10.9] is pedagogical,
but does not describe the original Cartan’s method. Fels and
Olver papers [10.32,33] are lengthy and technical. They refer
to Cartan’s method as method of ‘moving frames’ and view it

as a special and less rigorous case of their ‘moving coframe’
method. The name ‘moving coframes’ arises through the use
of Maurer-Cartan form which is a coframe on the Lie group
G, i.e., they form a pointwise basis for the cotangent space.
In Refs. [10.5, 6] the invariant bases generated by the moving
frame method are used as a basis to project a full state space
trajectory to the slice (i.e., theM/G reduced state space).
The basic idea of the ‘method of slices’ is intuitive and fre-
quently reinvented, often under a different name; for exam-
ple, it is stated without attribution as the problem 1. of
Sect. 6.2 of Arnol’d Ordinary Differential Equations [10.34].
The factorization (10.41) is stated on p. 31 of Anosov and
Arnol’d [10.35], who note, without further elaboration, that
in the vicinity of a point which is not fixed by the group one
can reduce the order of a system of differential equations by
the dimension of the group. Ref. [10.36] refers to symmetry
reduction as ‘lowering the order.’ For the definition of ‘slice’
see, for example, Chossat and Lauterbach [10.30]. Briefly, a
submanifold M′

x containing x′ is called a slice through x′ if
it is invariant under isotropy G′x(M′

x) = M′
x. If x′ is a fixed

point of G, than slice is invariant under the whole group. The
slice theorem is explained, for example, in Encyclopaedia of
Mathematics. Slices tend to be discussed in contexts much
more difficult than our application - symplectic groups, sec-
tions in absence of global charts, non-compact Lie groups. We
follow Refs. [10.37] in referring to a local group-orbit sec-
tion as a ‘slice.’ Refs. [10.10, 38] and others refer to global
group-orbit sections as ‘cross-sections,’ a term that we would
rather avoid, as it already has a different and well established
meaning in physics. Duistermaat and Kolk [10.39] refer to
‘slices,’ but the usage goes back at least to Guillemin and
Sternberg [10.38] in 1984, Palais [10.40] in 1961 and Mas-
tow [10.41] in 1957. Bredon [10.10] discusses both cross-
sections and slices. Guillemin and Sternberg [10.38] define
the ‘cross-section,’ but emphasize that finding it is very rare:
“existence of a global section is a very stringent condition on
a group action. The notion of ‘slice’ is weaker but has a much
broader range of existence.”
In the 1982 paper Rand [10.53] explains how presence of
continuous symmetries gives rise to rotating and modulated
rotating (quasiperiodic) waves in fluid dynamics. Haller
and Mezić [10.54] reduce symmetries of three-dimensional
volume-preserving flows and reinvent method of moving
frames, under the name ‘orbit projection map.’ There is ex-
tensive literature on reduction of symplectic manifolds with
symmetry; Marsden and Weinstein 1974 article [10.55] is an
important early reference. Then there are studies of the re-
duced phase spaces for vortices moving on a sphere such as
Ref. [10.56], and many, many others.
Reaction-diffusion systems are often equivariant with respect
to the action of a finite dimensional (not necessarily compact)
Lie group. Spiral wave formation in such nonlinear excitable
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media was first observed in 1970 by Zaikin and Zhabotin-
sky [10.42]. Winfree [10.43, 44] noted that spiral tips execute
meandering motions. Barkley and collaborators [10.45, 46]
showed that the noncompact Euclidean symmetry of this class
of systems precludes nonlinear entrainment of translational
and rotational drifts and that the interaction of the Hopf and
the Euclidean eigenmodes leads to observed quasiperiodic and
meandering behaviors. Fiedler, in the influential 1995 talk at
the Newton Institute, and Fiedler, Sandstede, Wulff, Turaev
and Scheel [10.47–50] treat Euclidean symmetry bifurcations
in the context of spiral wave formation. The central idea is to
utilize the semidirect product structure of the Euclidean group
E(2) to transform the flow into a ‘skew product’ form, with
a part orthogonal to the group orbit, and the other part within
it, as in (10.50). They refer to a linear slice M̄ near relative
equilibrium as a Palais slice, with Palais coordinates. As
the choice of the slice is arbitrary, these coordinates are not
unique. According to these authors, the skew product flow
was first written down by Mielke [10.51], in the context of
buckling in the elasticity theory. However, this decomposi-
tion is no doubt much older. For example, it was used by
Krupa [10.11,30] in his local slice study of bifurcations of rel-
ative equilibria. Biktashev, Holden, and Nikolaev [10.52] cite
Anosov and Arnol’d [10.35] for the ‘well-known’ factoriza-
tion (10.41) and write down the slice flow equations (10.50).
Neither Fiedler et al. [10.47] nor Biktashev et al. [10.52]
implemented their methods numerically. That was done by
Rowley and Marsden for the Kuramoto-Sivashinsky [10.37]
and the Burgers [10.57] equations, and Beyn and
Thümmler [10.58, 59] for a number of reaction-diffusion
systems, described by parabolic partial differential equa-
tions on unbounded domains. We recommend the Barkley
paper [10.46] for a clear explanation of how the Euclidean
symmetry leads to spirals, and the Beyn and Thümmler
paper [10.58] for inspirational concrete examples of how
‘freezing’/‘slicing’ simplifies the dynamics of rotational, trav-
eling and spiraling relative equilibria. Beyn and Thümmler
write the solution as a composition of the action of a time de-
pendent group element g(t) with a ‘frozen,’ in-slice solution
û(t) (10.41). In their nomenclature, making a relative equilib-
rium stationary by going to a co-moving frame is ‘freezing’
the traveling wave, and the imposition of the phase condition
(i.e., slice condition (10.42)) is the ‘freezing ansatz.’ They
find it more convenient to make use of the equivariance by
extending the state space rather than reducing it, by adding
an additional parameter and a phase condition. The ‘freezing
ansatz’ [10.58] is identical to the Rowley and Marsden [10.57]
and our slicing, except that ‘freezing’ is formulated as an ad-
ditional constraint, just as when we compute periodic orbits
of ODEs we add Poincaré section as an additional constraint,
i.e., increase the dimensionality of the problem by 1 for every

continuous symmetry (see Section 13.4).
Derivation of Section 10.4.2 follows most closely Rowley and
Marsden [10.57] who, in the pattern recognition setting refer
to the slice point as a ‘template,’ and call (10.49) the ‘recon-
struction equation’ [10.?,60]. They also describe the ‘method
of connections’ (called ‘orthogonality of time and group orbit
at successive times’ in Ref. [10.58]), for which the reconstruc-
tion equation (10.49) denominator is t(y)T · t(y) and thus non-
vanishing as long as the action of the group is regular. This
avoids the spurious slice singularities, but it is not clear what
the ‘method of connections’ buys us otherwise. It does not re-
duce the dimensionality of the state space, and it accrues ‘ge-
ometric phases’ which prevent relative periodic orbits from
closing into periodic orbits. Geometric phase in laser equa-
tions, including complex Lorenz equations, has been studied
in Ref. [10.61, 62, 64–66]. Another theorist’s temptation is to
hope that a continuous symmetry would lead us to a conserved
quantity. However, Noether theorem requires that equations
of motion be cast in Lagrangian form and that the Lagrangian
exhibits variational symmetries [10.67, 68]. Such variational
symmetries are hard to find for dissipative systems.
Section 10.1.2 title ‘Lie groups for cyclists’ is bit of a joke
in more ways than one. First, ‘cyclist,’ ‘pedestrian’ through-
out ChaosBook.org refer jokingly both to the title of Lipkin’s
Lie groups for pedestrians [10.69] and to our preoccupations
with actual cycling. Lipkin’s ‘pedestrian’ is fluent in Quan-
tum Field Theory, but wobbly on Dynkin diagrams. More to
the point, it is impossible to dispose of Lie groups in a page
of text. As a counterdote to the 1-page summmary of Sec-
tion 10.1.2, consider reading Gilmore’s monograph [10.70]
which offers a quirky, personal and enjoyable distillation of
a lifetime of pondering Lie groups. As seems to be the case
with any textbook on Lie groups, it will not help you with the
problem at hand, but it is the only place you can learn both
what Galois actually did when he invented the theory of finite
groups in 1830, and what, inspired by Galois, Lie actually did
in his 1874 study of symmetries of ODEs. Gilmore also ex-
plains many things that we pass over in silence here, such as
matrix groups, group manifolds, and compact groups.
One would think that with all this literature the case is shut
and closed, but not so. Applied mathematicians are inordi-
nately fond of bifurcations, and almost all of the previous
work focuses on equilibria, relative equilibria, and their bifur-
cations, and for these problems a single slice works well. Only
when one tries to describe the totality of chaotic orbits does
the non-global nature of slices become a serious nuisance.

(E. Siminos and P. Cvitanović)

10.2 Complex Lorenz equations (10.1) were introduced
by Gibbon and McGuinness [10.71, 72] as a low-dimension-
al model of baroclinic instability in the atmosphere. They
are a generalization of Lorenz equations (2.12). Ning and
Haken [10.73] have shown that equations isomorphic to com-
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plex Lorenz equations also appear as a truncation of Maxwell-
Bloch equations describing a single mode, detuned, ring laser.
They set e + ρ2 = 0 so that SO(2)-orbits of detuned equilibria
exist [10.72]. Zeghlache and Mandel [10.?] also use equations
isomorphic to complex Lorenz equations with e + ρ2 = 0 in
their studies of detuned ring lasers. This choice is ‘degener-
ate’ in the sense that it leads to non-generic bifurcations. As
existence of relative equilibria in systems with SO(2) sym-
metry is the generic situation, we follow Bakasov and Abra-
ham [10.74] who set ρ2 = 0 and e � 0 in order to describe de-

tuned lasers. Here, however, we are not interested in the phys-
ical applications of these equations; rather, we study them as
a simple example of a dynamical system with continuous (but
no discrete) symmetries, with a view of testing methods of
reducing the dynamics to a lower-dimensional reduced state
space. Complex Lorenz flow examples and exercises in this
chapter are based on E. Siminos thesis [10.5] and R. Wilczak
project report [10.75].

(E. Siminos and P. Cvitanović)

Exercises

(10.1) Visualizations of the 5-dimensional complex Lorenz
flow: Plot complex Lorenz flow projected on any three
of the five {x1, x2, y1, y2, z} axes. Experiment with differ-
ent visualizations.

(10.2) An SO(2)-equivariant flow with two Fourier modes:
Complex Lorenz equations (10.1) of Gibbon and

McGuinness [10.71] have a degenerate 4-dimensional
subspace, with SO(2) acting only in its lowest non-
trivial representation. Here is a possible model, still
5-dimensional, but with SO(2) acting in the two low-
est representations. Such models arise as truncations of
Fourier-basis representations of PDEs on periodic do-
mains. In the complex form, the simplest such modifica-
tion of complex Lorenz equations may be the “2-mode”
system

ẋ = −σx + σx∗y

ẏ = (r − z)x2 − ay

ż =
1
2

(
x2y∗ + x∗2y

)
− bz , (10.57)

where x, y, r = r1 + i r2, a = 1 + i e are complex and
z, b, σ are real. Rewritten in terms of real variables
x = x1 + i x2 , y = y1 + i y2 this is a 5-dimensional first
order ODE system

ẋ1 = −σx1 + σy1

ẋ2 = −σx2 + σy2

ẏ1 = (ρ1 − z)x2
1 − r2 x2 − y1 − ey2

ẏ2 =

ż = −bz + x1y1 + x2y2 . (10.58)

Verify (10.58) by substituting x = x1 + i x2 , y = y1 + i y2,
r = r1+i r2, a = 1+i e into the complex 2-mode equations
(10.57).

(10.3) SO(2) rotations in a plane: Show by exponentiation
(10.7) that the SO(2) Lie algebra element T generates ro-
tation g in a plane,

g(θ) = eTθ = cos θ

(
1 0
0 1

)
+ sin θ

(
0 1
−1 0

)
=

(
cos θ sin θ
− sin θ cos θ

)
. (10.59)

(10.4) Invariance under fractional rotations. Argue that if
the isotropy group of the velocity field v(x) is the discrete
subgroup Cm of SO(2) rotations about an axis (let’s say
the ‘z-axis’),

R(1/m)v(x) = v(R(1/m)x) = v(x) , (R(1/m))m = e ,

the only non-zero components of Fourier-transformed
equations of motion are ajm for j = 1, 2, · · ·. Argue that
the Fourier representation is then the quotient map of the
dynamics, M/Cm. (Hint: this sounds much fancier than
what is - think first of how it applies to the Lorenz system
and the 3-disk pinball.)

(10.5) U(1) equivariance of complex Lorenz equations for fi-
nite angles: Show that the vector field in complex
Lorenz equations (10.1) is equivariant under the unitary
group U(1) acting on R5 � C2 × R by

g(θ)(x, y, z) = (eiθx, eiθy, z) , θ ∈ [0, 2π) . (10.60)

(E. Siminos)

(10.6) SO(2) equivariance of complex Lorenz equations for
finite angles: Show that complex Lorenz equations
(10.2) are equivariant under rotation for finite angles.
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(10.7) Stability matrix of complex Lorenz flow: Compute
the stability matrix (10.26) for complex Lorenz equations
(10.2).

(10.8) Rotational equivariance, infinitesimal angles. Show
that complex Lorenz equations are equivariant under in-
finitesimal SO(2) rotations.

(10.9) Discover the equivariance of a given flow:

Suppose you were given complex Lorenz equa-
tions, but nobody told you they are SO(2) equivariant.
More generally, you might encounter a flow without re-
alizing that it has a continuous symmetry - how would
you discover it?

(10.10) Equilibria of complex Lorenz equations: Find all
equilibria of complex Lorenz equations. Hint: Equilibria
come either in the fixed Fix (G) subspace, or on a group
orbit.

(10.11) Equilibria of complex Lorenz equations: In
Exercise 10.10 we found only one equilibrium of com-
plex Lorenz equations. The Ning and Haken [10.73]
version of complex Lorenz equations (a truncation of
Maxwell-Bloch equations describing a single mode ring
laser) sets e + ρ2 = 0 so that a detuned equilibrium ex-
ists. Test your routines on 2 cases: (a) e = 0, ρ2 = 0. As
discussed by Siminos [10.5], reality of parameters a, ρ in
(10.1) implies existence of a discrete C2 symmetry. (b)
e + ρ2 = 0, e � 0. You might want to compare results
with those of Ning and Haken.

(10.12) Complex Lorenz equations in polar coordinates.
Rewrite complex Lorenz equations from Cartesian to po-
lar coordinates, using (x1, x2, y1, y2, z) =

(r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2, z) , (10.61)

where r1 ≥ 0 , r2 ≥ 0. Show that in polar coordinates the
equations take form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṙ1

θ̇1

ṙ2

θ̇2

ż

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σ (r1 − r2 cos θ)
−σ r2

r1
sin θ

−r2 + r1 ((ρ1 − z) cos θ − ρ2 sin θ)
e + r1

r2
((ρ1 − z) sin θ + ρ2 cos θ)
−bz + r1r2 cos θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

We know from classical mechanics that for translation-
ally or rotationally invariant flows the relative distance
is invariant (that is why one speaks of ‘relative’ equilib-
ria), hence we introduce a variable θ = θ1 − θ2. θ1 and θ2

change in time, but at the relative equilibria the difference
between them is constant. Show that this new variable
allows us to rewrite the complex Lorenz equations as 4

coupled polar coordinates equations:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ṙ1

ṙ2

θ̇
ż

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σ (r1 − r2 cos θ)
−r2 + (ρ1 − z)r1 cos θ

−e −
(
σ r2

r1
+ (ρ1 − z) r1

r2

)
sin θ

−bz + r1r2 cos θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10.62)

where we have set ρ2 = 0. Plot a long-time solution
of these equations and show that the polar representation
introduces singularities into what initially was a smooth
flow:

We shall encounter the same problem in implementing
the x1 = 0 moving frames slice). A polar coordinates
{r1, r2, θ} plot of the complex Lorenz flow strange attrac-
tor. θ is very small until the trajectory approaches ei-
ther r1 → 0 or r2 → 0, where Mathematica continues
through the singularity by a rapid change of θ by π. The
the fixed Fix (G) subspace (r1, r2, θ, z) = (0, 0, θ, z) sepa-
rates the two folds of the attractor.

(10.13) Visualizations of the complex Lorenz flow in polar co-
ordinates: Plot complex Lorenz flow projected on
any three of the {r1, r2, θ, z} coordinates. Experiment with
different visualizations. The flow (10.62) is singular as
r j → 0, with angle θ j going through a rapid change
there: is that a problem? Does it make sense to insist
on r1 ≥ 0 , r2 ≥ 0, or should one let them have either sign
in order that the θ trajectory be continuous?

(10.14) Computing the relative equilibrium TW1: Find the
relative equilibria of the complex Lorenz equations by
finding the equilibria of the system in polar coordinates
(10.62). Show that

(a) The relative equilibrium (hereafter referred
to [10.5] as TW1) is given by

(r1, r2, θ, z) =
( √

b (ρ1 − d),
√

bd (ρ1 − d),

cos−1
(
1/
√

d
)
, ρ1 − d

)
, (10.63)

where d = 1 + e2/(σ + 1)2,

(b) The angular velocity of relative equilibrium TW1 is

θ̇i = σe/(σ + 1) , (10.64)

with the period TTW1 = 2π(σ + 1)/σe.
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(10.15) Relative equilibrium TW1 in polar coordinates: Plot
the equilibrium TW1 in polar coordinates.

(10.16) Relative equilibrium TW1 in Cartesian coordinates:
Show that for our parameter values,

xTW1 = (x1, x2, y1, y2, z) (10.65)

= (8.4849, 0.077135, 8.4856, 0, 26.999) ,

is a point on the TW1 orbit. Plot the relative equilibrium
TW1 in Cartesian coordinates.

(10.17) Eigenvalues and eigenvectors of TW1 stability matrix:
Compute the eigenvalues and eigenvectors of the stabil-
ity matrix (10.26) evaluated at TW1 and using the (10.2)
parameter values, in (a) Cartesian coordinates, (b) polar
coordinates.

(10.18) The eigen-system of TW1 stability matrix in polar co-
ordinates: Plot the eigenvectors of A at TW1 in polar
coordinates, as well as the complex Lorenz flow at values
very near TW1.

(10.19) Eigenvalues and eigenvectors of EQ0 stability matrix:
Find the eigenvalues and the eigenvectors of the stabil-
ity matrix A (10.26) at EQ0 = (0, 0, 0, 0, 0) determined in
Exercise 10.10. ChaosBook convention is to order eigen-
values from most positive (unstable) to the most negative.
Follow that. Replace complex eigenvectors by the real,
imaginary parts, as that is what you actually use.

(10.20) The eigen-system of the stability matrix at EQ0: Plot
the eigenvectors of A at EQ0 and the complex Lorenz
flow at values very close to EQ0.

(10.21) SO(2) or harmonic oscillator slice: Construct a
moving frame slice for action of SO(2) on R2

(x, y) �→ (x cos θ − y sin θ, x sin θ + y cos θ)

by, for instance, the positive y axis: x = 0, y > 0. Write
out explicitly the group transformations that bring any
point back to the slice. What invariant is preserved by
this construction? (E. Siminos)

(10.22) State space reduction by a slice, finite time segments:
Replace integration of the complex Lorenz equations by
a sequence of finite time steps, each followed by a rota-
tion such that the next segment initial point is in the slice
y2 = 0, y1 > 0.

(10.23) State space reduction by a slice, ODE formulation:
Reconsider (10.22) in the sequence of infinitesimal time
steps limit, each followed by an infinitesimal rotation
such that the next segment initial point is in the slice
y2 = 0, y1 > 0. Derive the corresponding 4d reduced
state space ODE for the complex Lorenz flow. Here is
a way to do it, bit different from the derivation given in
Section 10.4.2.
Infinitesimal time version of the moving frames symme-
try reduction is attained by taking small time steps in
Fig. 10.11 and dropping the higher order terms. For in-
finitesimal dθ we set sin dθ ≈ dθ, cos dθ ≈ 1, g(dθ) ≈

1 + dθT, and the condition (10.42) for rotating an in-
finitesimal time evolution step dx = v dt back into the
slice

0 = (y + dx) · g(dθ)T Tx′

≈ (y + dt v) · (1 + dθT)T Tx′

≈ dt v · Tx′ + dθ y · TT Tx′

yields

dθ ≈ − v · Tx′

y · TT Tx′
dt . (10.66)

Let u(y) be the vector field that generates the flow in the
reduced state space. According to

x*

t* x+vdt

x+udtx

R(d .(x+vdt)θ)

in the limit that g(dθ) ≈ 1 + dθT the infinitesimal time
step under u is connected to the time step under v by

y + u dt = (1 + dθT) · (y + vdt) .

Dropping second order terms, dividing through with dt

u = v +
dθ
dt

Ty ,

and substituting (10.66) gives the reduced state space
equations (10.50):

ẋ = v − (v · Tx′)
(y · x′)4

Ty , (10.67)

where we have used the fact that −x · T Tx∗ = (x · x∗)4 =

x1 x∗1+x2x∗2+y1y∗1+y2y∗2 is the dot-product restricted to the
4-dimensional representation of SO(2). By construction,
the motion stays in the (d−1)-dimensional slice.

(10.24) Accumulated phase shift: Derive the 1d equation
(10.49) for the accumulated phase shift θ associated with
the 4−d reduced state space ODE of Exercise 10.23.

(10.25) The moving frame flow stays in the reduced state
space: Show that the flow (10.67) stays in a (d−1)-
dimensional slice.

(10.26) State space reduction by a relative equilibrium TW1

cross-section: Replace integration of the complex
Lorenz equations by a sequence of short time steps, each
followed by a rotation such that the next segment initial
point is in the relative equilibrium TW1 cross-section

(y − yTW1 ) · tTW1 = 0 , tTW1 = TyTW1 , (10.68)

where for any x, y = g(θ) · x is the rotation that lies in the
cross-section. Check Fig. 10.12 by long-time integration
of (10.67).
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[10.58] W.-J. Beyn and V. Thümmler, Freezing solutions of equivariant evo-
lution equations, SIAM J. Appl. Dyn. Syst. 3, 85 (2004).
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The classification of the constituents of a chaos, nothing less is here
essayed.

—Herman Melville, Moby Dick, chapter 32

In this chapter and the next we learn how to partition state space in a topo-
logically invariant way, and name topologically distinct orbits.

We start in Section 11.1 with a simple and intuitive example, a 3-disk game
of pinball. The qualitative dynamics of stretching/shrinking strips of surviving
state space regions enables us to partition the state space and assign symbolic
dynamics itineraries to trajectories. For the 3-disk game of pinball all possible
symbol sequences enumerate all possible orbits.

In Section 11.2 we use Rössler and Lorenz flows to motivate modeling of
higher-dimensional flows by iteration of 1-dimensional maps. For these two
flows the 1-dimensional maps capture essentially all of the higher-dimensional
flow dynamics, both qualitatively and quantitatively. 1-dimensional maps suf-
fice to explain the two key aspects of qualitative dynamics; temporal ordering,
or itinerary with which a trajectory visits state space regions (Section 11.3),
and the spatial ordering between trajectory points (Section 11.4), which is the
key to determining the admissibility of an orbit with a prescribed itinerary. In
a generic dynamical system not every symbol sequence is realized as a dy-
namical trajectory; as one looks further and further, one discovers more and
more ‘pruning’ rules which prohibit families of itineraries. For 1-dimensional
‘stretch & fold’ maps the kneading theory (Section 11.5) provides the defini-
tive answer as to which temporal itineraries are admissible as trajectories of
the dynamical system. Finally, Section 11.6 is meant serve as a guide to the
basic concepts of symbolic dynamics.

Deceptively simple, this subject can get very difficult very quickly, so in this
chapter we do the first, 1-dimensional pass at a pedestrian level, postponing
the discussion of higher-dimensional, cyclist level issues to Chapter 12.

Even though by inclination you might only care about the serious stuff,
like Rydberg atoms or mesoscopic devices, and resent wasting time on for-
mal things, this chapter and Chapters 14 and 15 are good for you. Study them.

11.1 Qualitative dynamics

(R. Mainieri and P. Cvitanović)
What can a flow do to points in state space? This is a very difficult question
to answer because we have assumed very little about the evolution function f t;
continuity, and differentiability a sufficient number of times. Trying to make
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sense of this question is one of the basic concerns in the study of dynamical
systems. The first answer was inspired by the motion of the planets: they

Fig. 11.1 A coarse partition of M into re-
gions M0, M1, and M2, labeled by ternary
alphabet A = {1, 2, 3}.

appear to repeat their motion through the firmament, so the ancients’ attempts
to describe dynamical systems were to think of them as periodic.

However, periodicity is almost never quite exact. What one tends to observe
is recurrence. A recurrence of a point x0 of a dynamical system is a return of
that point to a neighborhood of where it started. How close the point x 0 must
return is up to us: we can choose a volume of any size and shape, and call it the
neighborhoodM0, as long as it encloses x0. For chaotic dynamical systems,
the evolution might bring the point back to the starting neighborhood infinitely
often. That is, the set {

y ∈ M0 : y = f t(x0), t > t0
}

(11.1)

will in general have an infinity of recurrent episodes.
To observe a recurrence we must look at neighborhoods of points. This sug-

gests another way of describing how points move in state space, the important
first step on the way to a theory of dynamical systems: qualitative, topological
dynamics, or symbolic dynamics. As the subject can get quite technical,

Fig. 11.2 A trajectory with itinerary 021012.

a summary of the basic notions and definitions of symbolic dynamics is rele-
gated to Section 11.6; check that section and references cited in Remark 11.1
whenever you run into baffling jargon.

We start by dividing the state space up into regions MA,MB, . . . ,MZ, as
in Fig. 11.1. This can be done in many ways, not all equally clever. Any
such division of state space into distinct regions constitutes a partition, and we
associate with each region (sometimes referred to as a state) a symbol s from
an N-letter alphabet or state set A = {A, B,C, · · · , Z}. As the state evolves,
different regions will be visited. The visitation sequence - forthwith referred to
as the itinerary - can be represented by the letters of the alphabetA. If, as in
the example sketched in Fig. 11.2, the state space is divided into three regions
M0, M1, andM2, the ‘letters’ are the integers {0, 1, 2}, and the itinerary for
the trajectory sketched in the figure is 0 �→ 2 �→ 1 �→ 0 �→ 1 �→ 2 �→ · · ·.

Example 11.1 3-disk symbolic dynamics:
Consider the motion of a free point particle in a plane with 3 elastically reflecting

01

12

22

02

00

20

21

11
10

Fig. 11.3 A 1-step memory refinement of the
partition of Fig. 11.1, with each region Mi

subdivided into Mi0, Mi1, and Mi2, labeled
by nine ‘words’ {00, 01, 02, · · · , 21, 22}.

exercise 1.1

convex disks, Fig. 11.4. After a collision with a disk a particle either continues to
another disk or escapes, so a trajectory can be labeled by the disk sequence. Sets of
configuration space pinball trajectories of Fig. 11.4 become quickly hard to disen-
tangle. As we shall see in what follows, their state space visualization in terms of
Poincaré sections P = [s, p] (Fig. 11.5, see also Fig. 3.4) is much more powerful.
(continued in Example 11.2)

In general only a subset of points in MB reaches MA. This observation
offers a systematic way to refine a partition by introducing m-step memory: the
regionMsm···s1 s0 consists of the subset of points of M s0 whose trajectory for
the next m time steps will be s0 �→ s1 �→ · · · �→ sm, see Fig. 11.3.

Example 11.2 3-disk state space partition:
(continued from Example 11.1) At each bounce a cone of initially nearby trajectories
defocuses (see Figs. 1.8 and 11.4), and in order to attain a desired longer and longer
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Fig. 11.5 The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk
1 with x = (arclength, parallel momentum)
= (s, p), where p = sin θ. (a) Strips of initial
points M12, M13 which reach disks 2, 3 in
one bounce, respectively. (b) 1-step memory
refinement of partition (see Fig. 11.3): strips
of initial pointsM121,M131,M132 andM123
which reach disks 1, 2, 3 in two bounces, re-
spectively. Disk radius : center separation ra-
tio a:R = 1:2.5. (Y.
Lan)

itinerary of bounces the strip of initial points x0 = (s0, p0) has to be specified with
exponentially finer precision, nested within the initial state space strips drawn in
Fig. 11.5. (continued in Example 12.2)

1

2

3

23132321

2313

Fig. 11.4 Two pinballs that start out very
close to each other exhibit the same qual-
itative dynamics 2313 for the first three
bounces, but due to the exponentially grow-
ing separation of trajectories with time, fol-
low different itineraries thereafter: one es-
capes after 2313 , the other one escapes after
23132321 . (Notation 2313 is explained in

Section 11.6.)

If there is no way to reach partitionM i from partitionM j, and conversely,
partitionM j from partitionMi, the state space consists of at least two discon-
nected pieces, and we can analyze it piece by piece. An interesting partition
should be dynamically connected, i.e., one should be able to go from any re-
gion Mi to any other region M j in a finite number of steps. A dynamical
system with such a partition is said to be metrically indecomposable.

In general one also encounters transient regions - regions to which the dy-
namics does not return to once they are exited. Hence we have to distinguish
between (uninteresting to us) wandering trajectories that never return to the
initial neighborhood, and the non-wandering set (2.2) of the recurrent trajec-
tories.

However, knowing that a point fromM i reaches {M j, · · · ,Mk} in one step
is not quite good enough. We would be happier if we knew that the map of
the entire initial region f (Mi) overlaps nicely with the entireM j; otherwise
we have to subpartitionM j into the subset f (Mi) and the reminder, and often
we will find ourselves partitioning ad infinitum, a difficult topic that we shall
return to Section 12.4.

Such considerations motivate the notion of a Markov partition, a partition
for which no memory of preceding steps is required to fix the transitions al-
lowed in the next step. Finite Markov partitions can be generated by expanding
d-dimensional iterated mappings f :M→M, ifM can be divided into N re-
gions {M0,M1, . . . ,MN−1} such that in one step points from an initial region
Mi either fully cover a regionM j, or miss it altogether,

either M j ∩ f (Mi) = ∅ or M j ⊂ f (Mi) . (11.2)

Whether such partitions can be found is not clear at all - the borders need to
be lower-dimensional sets invariant under dynamics, and there is no guaran-
tee that these are topologically simple objects. However, the game of pinball
(and many other non-wandering repeller sets) is especially nice: the issue of
determining the partition borders does not arise, as the survivors live on discon-
nected pieces of the state space, separated by a chasm of escaping trajectories.
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176 CHAPTER 11. CHARTING THE STATE SPACE

The itinerary of a billiard trajectory is finite for a scattering trajectory, com-
ing in from infinity and escaping after a finite number of collisions, infinite for
a trapped trajectory, and infinitely repeating for a periodic orbit. A finite length
trajectory is not uniquely specified by its finite itinerary, but an isolated unsta-
ble cycle is: its itinerary is an infinitely repeating block of symbols. For hy-
perbolic flows the intersection of the future and past itineraries, the bi-infinite
itinerary S -.S + = · · · s−2 s−1s0.s1s2 s3 · · · specifies a unique orbit. Almost all
infinite length trajectories (orbits) are aperiodic. Still, the longer the trajectory
is, the closer to it is a periodic orbit whose itinerary shadows the trajectory
for its whole length: think of the state space as the unit interval, aperiodic or-
bits as normal numbers, and periodic ones as fractions whose denominators
correspond to cycle periods, as is literally the case for the Farey map (20.31).

Fig. 11.6 For the 3-disk game of pinball no
itineraries are pruned as long as the inter-disk
spacing exceeds R : a > 2.04821419 . . ..
(from K.T. Hansen [11.19])

Determining whether the symbolic dynamics is complete (as is the case for
sufficiently separated disks, see Fig. 11.6), pruned (for example, for touching
or overlapping disks), or only a first coarse-graining of the topology (as, for
example, for smooth potentials with islands of stability) requires a case-by-
case investigation, a discussion we postpone until Section 11.5 and Chapter 12.
For now we assume that the disks are sufficiently separated that there is no
additional pruning beyond the prohibition of self-bounces.

Inspecting Fig. 11.5 we see that the relative ordering of regions with dif-
fering finite itineraries is a qualitative, topological property of the flow. This
observation motivates searches for simple, ‘canonical’ partitions which exhibit
in a simple manner the spatial ordering common to entire classes of topologi-
cally similar nonlinear flows.

11.2 From d-dimensional flows to
1-dimensional maps

Symbolic dynamics for the 3-disk game of pinball is so straightforward that
one may altogether fail to see the connection between the topology of hyper-
bolic flows and their symbolic dynamics. This is brought out more clearly by
the 1-dimensional visualization of ‘stretch & fold’ flows to which we turn now.

We construct here the return maps (3.4) for two iconic flows, the Rössler
and the Lorenz, in order to show how ODEs in higher dimensions can be mod-
eled by low-dimensional maps. In the examples at hand the strong dissipation
happens to render the dynamics essentially 1-dimensional, both qualitatively
and quantitatively. However, as we shall show in Chapter 12, strong dissipa-
tion is not essential -the hyperbolicity is- so the method applies to Hamiltonian
(symplectic areas preserving) flows as well. The key idea is to replace the
original, arbitrarily concocted coordinates by intrinsic, dynamically invariant
curvilinear coordinates erected on neighborhoods of unstable manifolds.

fast track

Section 11.3, p. 179

Suppose concentrations of certain chemical reactants worry you, or the variati-
ons in the Chicago temperature, humidity, pressure and winds affect your
mood. Such quantities vary within some fixed range, and so do their rates
knead - 30mar2009 ChaosBook.org version13.5, Sep 7 2011
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Fig. 11.7 (a) x = 0, y > 0 Poincaré sec-
tion of the x− unstable manifold, Rössler flow
Fig. 2.6. (p1 , p2) are measured with the ori-
gin placed at x− . (b) s → P(s) return map,
where s is the arc-length distance measured
along the unstable manifold of equilibrium
point x−. (A. Basu and J. Newman)

of change. Even if we are studying an open system such as the 3-disk pinball
game, we tend to be interested in a finite region around the disks and ignore
the escapees. So a typical dynamical system that we care about is bounded. If
the price to keep going is high - for example, we try to stir up some tar, and
observe it come to a dead stop the moment we cease our labors - the dynam-
ics tends to settle into a simple state. However, as the resistance to change
decreases - the tar is heated up and we are more vigorous in our stirring - the
dynamics becomes unstable.

Example 11.3 Rössler attractor return map: Stretch & fold.
(continued from Example 4.6) In the Rössler flow (2.17) of Example 3.4 we

sketched the attractor by running a long chaotic trajectory, and noted that the at-
tractor of Fig. 3.5 is very thin. For Rössler flow an interval transverse to the at-
tractor is stretched, folded and fiercely pressed back. The attractor is ‘fractal,’ but
for all practical purposes the return map is 1-dimensional; your printer will need a
resolution better than 1013 dots per inch to start resolving its structure. We had at-
tempted to describe this ‘stretch & fold’ flow by a 1-dimensional return map, but the
maps that we plotted in Fig. 3.6 were disquieting; they did not appear to be a 1-to-1
maps. This apparent non-invertibility is an artifact of projection of a 2−d return map
(Rn, zn) → (Rn+1, zn+1) onto the 1-dimensional subspace Rn → Rn+1. Now that we
understand equilibria and their linear stability, let’s do this right.
The key idea is to measure arclength distances along the unstable manifold of the x−
equilibrium point, as in Fig. 11.7 (a). Luck is with us; Fig. 11.7 (b) return map sn+1 =

P(sn) looks much like a parabola of Example 3.9, so we shall take the unimodal map
symbolic dynamics, Section 11.3, as our guess for the covering symbolic dynamics.
(continued in Example 11.11)

You get the idea - Rössler flow winds around the stable manifold of the
‘central’ equilibrium, stretches and folds, and the dynamics on the Poincaré
section of the flow can be reduced to a 1-dimensional map. The next example
is similar, but the folding mechanism is very different: the unstable manifold of
one of the equilibria collides with the stable manifold of the other one, forcing
a robust heteroclinic connection between the two.

fast track

Section 11.3, p. 179
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Fig. 11.8 (a) A Poincaré section of the Lorenz
flow in the doubled-polar angle representa-
tion, Fig. 9.4, given by the [y′, z] plane that
contains the z-axis and the equilibrium EQ1.
x′ axis points toward the viewer. (b) The
Poincaré section of the Lorenz flow by the
section Crossings into the section are marked
red (solid) and crossings out of the section
are marked blue (dashed). Outermost points
of both in- and out-sections are given by the
EQ0 unstable manifold Wu(EQ0) intersec-
tions. (E.
Siminos) (a) (b)
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11.2.1 Heteroclinic connections

In general, two manifolds can intersect in a stable way if the sum of their di-
mensions is greater than or equal to the dimension of the state space, hence an
unstable manifold of dimension k is likely to intersect a stable manifold whose
codimension in state space is less than or equal to k (i.e., robustly with respect
to small changes of system parameters). Trajectories that leave a fixed point
along its unstable manifold and reach another fixed point along its stable man-
ifold are called heteroclinic if the two fixed points are distinct or homoclinic if
the initial and the final point are the same point. Whether the two manifolds

remark 11.3
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Fig. 11.9 The Poincaré return map sn+1 =

P(sn) parameterized by Euclidean arclength
s measured along the EQ1 unstable manifold,
from xEQ1 to Wu(EQ0) section point, upper-
most right point of the blue (dashed) seg-
ment in Fig. 11.8 (b). The critical point (the
‘crease’) of the map is given by the section of
the heteroclinic orbit Ws(EQ0) that descends
all the way to EQ0, in infinite time and with
infinite slope. (E. Siminos)

actually intersect is a subtle question that is central to the issue of “structural
stability” of ergodic dynamical systems.

Example 11.4 Lorenz flow: Stretch & crease.
We now deploy the symmetry of Lorenz flow to streamline and complete analysis of

the Lorenz strange attractor commenced in Example 9.10. There we showed that the
dihedral D1 = {e,R} symmetry identifies the two equilibria EQ1 and EQ2, and the
traditional ‘two-eared’ Lorenz flow Fig. 2.5 is replaced by the ‘single-eared’ flow
of Fig. 9.4 (a). Furthermore, symmetry identifies two sides of any plane through
the z axis, replacing a full-space Poincaré section plane by a half-plane, and the
two directions of a full-space eigenvector of EQ0 by a one-sided eigenvector, see
Fig. 9.4 (a).
Example 4.8 explained the genesis of the xEQ1 equilibrium unstable manifold, its
orientation and thickness, its collision with the z-axis, and its heteroclinic connection
to the xEQ0 = (0, 0, 0) equilibrium. All that remains is to describe how the EQ0

neighborhood connects back to the EQ1 unstable manifold.
Figure 9.4 and Fig. 11.8 (a) show clearly how the Lorenz dynamics is pieced together
from the 2 equilibria and their unstable manifolds: Having completed the descent
to EQ0, the infinitesimal neighborhood of the heteroclinic EQ1 → EQ0 trajectory
is ejected along the unstable manifold of EQ0 and is re-injected into the unstable
manifold of EQ1. Both sides of the narrow strip enclosing the EQ0 unstable manifold
lie above it, and they get folded onto each other with a knife-edge crease (contracted
exponentially for infinite time to the EQ0 heteroclinic point), with the heteroclinic
out-trajectory defining the outer edge of the strange attractor. This leads to the folding
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of the outer branch of the Lorenz strange attractor, illustrated in Fig. 11.8 (b), with
the outermost edge following the unstable manifold of EQ0.
Now the stage is set for construction of Poincaré sections and associated Poincaré re-
turn maps. There are two natural choices; the section at EQ0, lower part of Fig. 11.8 (b),
and the section (blue) above EQ1. The first section, together with the blowup of the
EQ0 neighborhood, Fig. 4.7 (b), illustrates clearly the scarcity of trajectories (van-
ishing natural measure) in the neighborhood of EQ0. The flat section above EQ1

(which is, believe it or not, a smooth conjugacy by the flow of the knife-sharp sec-
tion at EQ0) is more convenient for our purposes. Its return map (3.4) is given by
Fig. 11.9.
The rest is straight sailing: to accuracy 10−4 the return map is unimodal, its critical
point’s forward trajectory yields the kneading sequence (11.13), and the admissible
binary sequences, so any number of periodic points can be accurately determined
from this 1-dimensional return map, and the 3−d cycles then verified by integrating
the Lorenz differential equations (2.12). As already observed by Lorenz, such a map
is everywhere expanding on the strange attractor, so it is no wonder mathematicians
can here make the ergodicity rigorous.

section 20.5
(E. Siminos and J. Halcrow)

What have we learned from the above two exemplary 3-dimensional flows?
If a flow is locally unstable but globally bounded, any open ball of initial points
will be stretched out and then folded back. If the equilibria are hyperbolic, the
trajectories will be attracted along some eigen-directions and ejected along
others. The unstable manifold of one equilibrium can avoid stable manifolds
of other equilibria, as is the case for Rössler, or slice them head on, as is the
case for Lorenz. A typical trajectory wanders through state space, alternatively
attracted into equilibria neighborhoods, and then ejected again. What is impor-
tant is the motion along the unstable manifolds – that is where 1d maps come
from.

At this juncture we proceed to show how this works on the simplest example:
unimodal mappings of the interval. The erudite reader may skim through this
chapter and then take a more demanding path, via the Smale horseshoes of
Chapter 12. Unimodal maps are easier, but physically less compelling. The
Smale horseshoes offer the high road, more complicated, but the right tool to
generalize what we learned from the 3-disk dynamics, and begin analysis of
general dynamical systems. It is up to you - unimodal maps suffice to get
quickly to the heart of this treatise.

11.3 Temporal ordering: itineraries

In this section we learn how to name topologically distinct trajectories for the
simple, but instructive case; 1-dimensional maps of an interval.

The simplest mapping of this type is unimodal; interval is stretched and
folded only once, with at most two points mapping into a point in the refolded
interval, as in the Rössler return map Fig. 11.10 (b). A unimodal map f (x) is
a 1-dimensional function R → R defined on an intervalM ∈ R with a mono-
tonically increasing (or decreasing) branch, a critical point (or interval) x c for
which f (xc) attains the maximum (minimum) value, followed by a monoton-
ically decreasing (increasing) branch. Uni-modal means that the map is a 1-
ChaosBook.org version13.5, Sep 7 2011 knead - 30mar2009
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Fig. 11.10 (a) The Rössler flow, Fig. 3.5, is
an example of a recurrent flow that stretches
and folds. (b) The Rössler ‘stretch & fold’
return map, Fig. 11.7 (b). (R. Paškauskas
and A. Basu) (a)
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humped map with one critical point within interval M. Multi-modal maps,
with several critical points within intervalM, can be described with a straight-
forward generalization of the methods we describe next.
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Fig. 11.11 The full tent map (11.4) par-
tition {M00,M01,M11,M10} together with
the fixed points x0, x1.

Example 11.5 Unimodal maps:
(continued from Example 3.9) The simplest examples of unimodal maps are the
quadratic map

f (x) = Ax(1 − x) , x ∈ M = [0, 1] (11.3)

and numerically computed return maps such as Fig. 11.10 (b). Such dynamical sys-
tems are irreversible (the inverse of f is double-valued), but, as we shall show in
Section 12.2, they may nevertheless serve as effective descriptions of invertible 2-
dimensional hyperbolic flows. For the unimodal map such as Fig. 11.12 a Markov
partition of the unit intervalM is given by the two intervals {M0,M1}. (continued
in Example 11.6)

Example 11.6 Full tent map, Ulam map:
(continued from Example 11.5) The simplest examples of unimodal maps with
complete binary symbolic dynamics are the full tent map, Fig. 11.11,

f (γ) = 1 − 2|γ − 1/2| , γ ∈ M = [0, 1] , (11.4)

the Ulam map (quadratic map (11.3) with A = 4)
exercise 6.4

f (x) = 4x(1 − x) , x ∈ M = [0, 1] , (11.5)

and the repelling unimodal maps such as Fig. 11.12. For unimodal maps the Markov
partition of the unit interval M is given by intervals {M0,M1}. We refer to (11.4)
as the complete tent map because its symbolic dynamics is complete binary: as both
f (M0) and f (M1) fully coverM = {M0,M1}, all binary sequences are realized as
admissible itineraries.

For 1d maps the critical value denotes either the maximum or the minimum
value of f (x) on the defining interval; we assume here that it is a maximum,
f (xc) ≥ f (x) for all x ∈ M. The critical point xc that yields the critical value
f (xc) belongs neither to the left nor to the right partitionM i, and is denoted
by its own symbol s = C. As we shall see, its images and preimages serve as
partition boundary points.
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The trajectory x1, x2, x3, . . . of the initial point x0 is given by the iteration
xn+1 = f (xn) . Iterating f and checking whether the point lands to the left or to
the right of xc generates a temporally ordered topological itinerary (11.17) for
a given trajectory,

xn+1

0f

1f

xn

110
01

011

10

101
0

1

0

00 01 11 10

1

Fig. 11.12 A unimodal repeller with the sur-
vivor intervals after 1 and 2 iterations. Inter-
vals marked s1s2 · · · sn consist of points that
do not escape in n iterations, and follow the
itinerary S+ = s1s2 · · · sn. Note that the spa-
tial ordering does not respect the binary or-
dering; for example x00 < x01 < x11 < x10.
Also indicated: the fixed points 0, 1, the 2-
cycle 01, and the 3-cycle 011.

sn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if xn > xc

C if xn = xc

0 if xn < xc

. (11.6)

We refer to S +(x0) = .s1s2 s3 · · · as the future itinerary. Our next task is to
answer the reverse problem: given an itinerary, what is the spatial ordering of
points that belong to the corresponding state space trajectory?

11.4 Spatial ordering

Tired of being harassed by your professors? Finish, get a job, do
combinatorics your own way, while you still know everything.

—Professor Gatto Nero

Suppose you have succeeded in constructing a covering symbolic dynamics,
such as the one we constructed for a well-separated 3-disk system. Now start
moving the disks toward each other. At some critical separation (see Fig. 11.6)
a disk will start blocking families of trajectories traversing the other two disks.
The order in which trajectories disappear is determined by their relative or-
dering in space; the ones closest to the intervening disk will be pruned first.
Determining inadmissible itineraries requires that we relate the spatial order-
ing of trajectories to their time ordered itineraries.

exercise 12.7

The easiest point of departure is to start out by working out this relation for
the symbolic dynamics of 1-dimensional mappings. As it appears impossible
to present this material without getting bogged down in a sea of 0’s, 1’s and
subscripted subscripts, we announce the main result before embarking upon its
derivation:

section 11.5

1f0f
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γ n

γ

0 1

00 01 10 11

Fig. 11.13 The n = 2, 4-intervals state space
partition for the Bernoulli shift map (11.7),
together with the fixed points 0, 1 and the 2-
cycle 01.

The admissibility criterion (Section 11.5) eliminates all itineraries that can-
not occur for a given unimodal map.

Example 11.7 Bernoulli shift map state space partition.
First, an easy example: the Bernoulli shift map, Fig. 11.13,

b(γ) =

{
b0(γ) = 2γ , γ ∈ M0 = [0, 1/2)
b1(γ) = 2γ − 1 , γ ∈ M1 = (1/2, 1]

, (11.7)

models the 50-50% probability of a coin toss. It maps the unit interval onto itself,
with fixed points γ0 = 0, γ1 = 1. The closely related doubling map acts on the circle

x �→ 2x (mod 1) , x ∈ [0, 1] (11.8)

and consequently has only one fixed point, x0 = 0 = 1 (mod 1). The Bernoulli map
is called a ‘shift’ map, as a multiplication by 2 acts on the binary representation of
γ = .s1s2 s3 . . . by shifting its digits, b(γ) = .s2s3 . . .. The nth preimages b−n(γ) of
the critical point γc = 1/2 partition the state space into 2n subintervals, each labeled
by the first n binary digits of points γ = .s1s2 s3 . . . within the subinterval: Fig. 11.13
illustrates such 4-intervals state space partition {M00,M01,M11,M10} for n = 2.
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Consider a map f (x) topologically conjugate (two monotonically increasing branches)
to the Bernoulli shift, with the forward orbit of x generating the itinerary s1 s2 s3 . . ..
Convert this itinerary into Bernoulli map point γ = .s1 s2 s3 . . .. These values can now
be used to spatially order points with different temporal itineraries: if γ < γ′, then
x < x′.
Suppose we have already computed all (n − 1)-cycles of f (x), and would now like to
compute the cycle p = s1s2 s3 . . . sn of period n. Mark γ values on the unit interval
for all known periodic points of the Bernoulli shift map, and then insert in between
them γσk p, k = 0, 1, · · · , np − 1 corresponding to periodic points of cycle p. In the
dynamical state space they will be bracketed by corresponding cycle points xj from
cycles already computed, and thus the knowledge of the topological ordering of all
cycle points provides us with robust initial guesses for periodic-orbit searches for any
map with 2 monotonically increasing branches. (continued in Example 23.5)

000

0 1

00 01 11 10

001 011 010 110 111 101 100

Fig. 11.14 Alternating binary tree relates the
itinerary labeling of the unimodal map inter-
vals, Fig. 11.12, to their spatial ordering. Dot-
ted line stands for 0, full line for 1; the binary
sub-tree whose root is a full line (symbol 1)
reverses the orientation, due to the orientation
reversing fold in Figs. 11.10 and 11.12. See
also Fig. 14.4.

For the Bernoulli shift converting itineraries into a topological ordering is
easy; the binary expansion of coordinate γ is also its temporary itinerary. The
tent map (11.4), Fig. 11.11 is a bit harder. It consists of two straight segments
joined at x = 1/2. The symbol sn defined in (11.6) equals 0 if the function
increases, and 1 if the function decreases. Iteration forward in time generates
the time itinerary. More importantly, the piecewise linearity of the map makes
the converse possible: determine analytically an initial point given its itinerary,
a property that we now use to define a topological coordinatization common to
all unimodal maps.

Here we have to face the fundamental problem of pedagogy: combinatorics
cannot be taught. The best one can do is to state the answer, and then hope
that you will figure it out by yourself.

The tent map point γ(S +) with future itinerary S + is given by converting the
sequence of sn’s into a binary number by the following algorithm:

wn+1 =

{
wn if sn+1 = 0
1 − wn if sn+1 = 1

, w1 = s1

γ(S +) = 0.w1w2w3 . . . =

∞∑
n=1

wn/2n. (11.9)

This follows by inspection from the binary tree of Fig. 11.14. Once you figure
exercise 11.4

this out, feel free to complain that the way the rule is stated here is incompre-
hensible, and show us how you did it better.

Example 11.8 Converting γ to S +:
γ whose itinerary is S + = 0110000 · · · is given by the binary number γ = .010000 · · ·.
Conversely, the itinerary of γ = .01 is s1 = 0, f (γ) = .1 → s2 = 1, f 2(γ) = f (.1) =
1 → s3 = 1, etc.. Orbit that starts out as a finite block followed by infinite repeats of
another block p = S p = (s1 s2 s3 . . . sn )∞ is said to be heteroclinic to the cycle p. An
orbit that starts out as pin f ty followed by a finite block followed

We refer to γ(S +) as the (future) topological coordinate. wt’s are the digits
in the binary expansion of the starting point γ for the full tent map (11.4). In
the left half-interval the map f (x) acts by multiplication by 2, while in the right
half-interval the map acts as a flip as well as multiplication by 2, reversing the
ordering, and generating in the process the sequence of s n’s from the binary
digits wn.
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The mapping x0 → S +(x0) → γ0 = γ(S +) is a topological conjugacy
which maps the trajectory of an initial point x0 under iteration of a given uni-
modal map to that initial point γ for which the trajectory of the ‘canonical’
unimodal map, the full tent map (11.4), has the same itinerary. The virtue of
this conjugacy is that γ(S +) preserves the ordering for any unimodal map in
the sense that if x > x, then γ > γ.

Example 11.9 Periodic orbits of unimodal maps.
Let

f (x) =

{
f0(x) if x < xc

f1(x) if x > xc
, (11.10)

and assume that all periodic orbits are unstable, i.e., the stability Λp = f k
a
′ (see

(4.45)) satisfies |Λp| > 1. Then the periodic point xs1 s2 s3 ...sn is the only fixed point of
the unique composition (3.17) of n maps

fsn ◦ · · · ◦ fs2 ◦ fs1 (xs1 s2 s3 ...sn ) = xs1 s2 s3 ...sn (11.11)

(note that successive maps, applied from the left, correspond to later times, i.e., later
symbols in the itinerary).
The nth iterate of a unimodal map has at most 2n monotone segments, and therefore
there will be 2n or fewer periodic points of length n. For the full tent map (11.4)
it has exactly 2n periodic points. A periodic orbit p of length n corresponds to an

section 12.2
infinite repetition of a length n = np symbol string block, customarily indicated by
a line over the string: p = S p = (s1s2 s3 . . . sn )∞ = s1s2 s3 . . . sn . As all itineraries
are infinite, we shall adopt convention that a finite string itinerary p = s1 s2 s3 . . . sn

stands for infinite repetition of a finite block, and routinely omit the overline. A
cycle p is called prime if its itinerary S cannot be written as a repetition of a shorter
block S ′. If the itinerary of x0 is p = s1 s2 s3 . . . sn , its cyclic permutation σk p =
sk sk+1 . . . sn s1 . . . sk−1 corresponds to the point xk−1 in the same cycle.

Example 11.10 Periodic points of the full tent map.
Each cycle p is a set of np rational-valued full tent map periodic points γ. It follows

from (11.9) that if the repeating string s1 s2 . . . sn contains an odd number of ‘1’s, the
string of well ordered symbols w1w2 . . .w2n has to be of the double length before it
repeats itself. The cycle-point γ is a geometrical sum which we can rewrite as the
odd-denominator fraction

γ(s1s2 . . . sn) =
22n

22n − 1

2n∑
t=1

wt/2
t (11.12)

Using this we can calculate the γ̂p = γ̂(S p) for all short cycles. For orbits up to length
5 this is done in Table 11.1.

Critical points are special - they define the boundary between intervals, i.e.,
interval is split into 0 [left part], xc [critical point] and 1 [right part]. For the
dike map and the repeller Fig. 11.12 xc is the whole interval of points along
the flat top of the map, but usually it is a point. As illustrated by Figs. 11.11
and 11.13, for a unimodal map the preimages f −n(xc) of the critical point xc

serve as partition boundary points. But not all preimages–one has to ensure
that they are within the set of all admissible orbits by checking them against
the kneading sequence of the map.
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S γ̂(S ) S γ̂(S )

0 .0 = 0 10111 .11010 = 26/31
1 .10 = 2/3 10110 .1101100100 = 28/33

10 .1100 = 4/5 10010 .11100 = 28/31
101 .110 = 6/7 10011 .1110100010 = 10/11
100 .111000 = 8/9 10001 .11110 = 30/31

1011 .11010010 = 14/17 10000 .1111100000 = 32/33
1001 .1110 = 14/15
1000 .11110000 = 16/17

Table 11.1 The maximal values of unimodal map cycles up to length 5. (K.T. Hansen)

11.5 Kneading theory

(K.T. Hansen and P. Cvitanović)
The main motivation for being mindful of spatial ordering of temporal itineraries
is that this spatial ordering provides us with criteria that separate inadmissible
orbits from those realizable by the dynamics. For 1-dimensional mappings the
kneading theory provides a precise and definitive criterion of admissibility.

If the parameter in the quadratic map (11.3) is A > 4, then the iterates of
the critical point xc diverge for n → ∞, and any sequence S + composed of
letters si = {0, 1} is admissible, and any value of 0 ≤ γ < 1 corresponds to
an admissible orbit in the non-wandering set of the map. The corresponding
repeller is a complete binary labeled Cantor set, the n → ∞ limit of the nth
level covering intervals sketched in Fig. 11.12.

f1f0

cκ =f(  )γ

pruned

Fig. 11.15 The ‘dike’ map obtained by slic-
ing of the top portion of the tent map in
Fig. 11.11. Any orbit that visits the pri-
mary pruning interval (κ, 1] is inadmissible.
The admissible orbits form the Cantor set
obtained by removing from the unit interval
the primary pruning interval and all its iter-
ates. Any admissible orbit has the same topo-
logical coordinate and itinerary as the corre-
sponding tent map Fig. 11.11 orbit.

For A < 4 only a subset of the points in the interval γ ∈ [0, 1] corresponds to
admissible orbits. The forbidden symbolic values are determined by observing
that the largest xn value in an orbit x1 → x2 → x3 → . . . has to be smaller
than or equal to the image of the critical point, the critical value f (x c). Let
K = S +(xc) be the itinerary of the critical point xc, denoted the kneading
sequence of the map. The corresponding topological coordinate is called the
kneading value

κ = γ(K) = γ(S +(xc)). (11.13)

The ‘canonical’ map that has the same kneading sequence K (11.13) as f (x)
is the dike map, Fig. 11.15,

f (γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f0(γ) = 2γ γ ∈ M0 = [0, κ/2)
fc(γ) = κ γ ∈ Mc = [κ/2, 1 − κ/2]
f1(γ) = 2(1 − γ) γ ∈ M1 = (1 − κ/2, 1]

, (11.14)

obtained by slicing off all γ (S +(x0)) > κ. The dike map is the full tent map
Fig. 11.11 with the top sliced off. It is convenient for coding the symbolic
dynamics, as those γ values that survive the pruning are the same as for the
full tent map Fig. 11.11, and are easily converted into admissible itineraries by
(11.9).
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Fig. 11.16 (a) Web diagram generated by the
trajectory of the critical point the unimodal
Rössler return map of Fig. 11.7 (b). (b) The
web diagram for the corresponding ‘canoni-
cal’ dike map (11.14) with the same kneading
sequence. (A. Basu and J. Newman)

If γ(S +) > γ(K), the point x whose itinerary is S + would exceed the critical
value, x > f (xc), and hence cannot be an admissible orbit. Let

γ̂(S +) = sup
m
γ(σm(S +)) (11.15)

be the maximal value, the highest topological coordinate reached by the orbit
x1 → x2 → x3 → . . ., where σ is the shift (11.20), σ(· · · s−2 s−1s0.s1s2 s3 · · ·) =
· · · s−2 s−1 s0s1.s2s3 · · · . We shall call the interval (κ, 1] the primary pruned in-
terval. The orbit S + is inadmissible if γ of any shifted sequence of S + falls
into this interval.

Criterion of admissibility: Let κ be the kneading value of the critical point,
and γ̂(S +) be the maximal value of the orbit S +. Then the orbit S + is admissible
if and only if γ̂(S +) ≤ κ.

While a unimodal map may depend on many arbitrarily chosen parameters,
its dynamics determines the unique kneading value κ. We shall call κ the topo-
logical parameter of the map. Unlike the parameters of the original dynamical
system, the topological parameter has no reason to be either smooth or contin-
uous. The jumps in κ as a function of the map parameter such as A in (11.3)
correspond to inadmissible values of the topological parameter. Each jump in
κ corresponds to a stability window associated with a stable cycle of a smooth
unimodal map. For the quadratic map (11.3) κ increases monotonically with
the parameter A, but for a general unimodal map such monotonicity need not
hold.

Example 11.11 Rössler return map web diagram:
(continuation of Example 11.2) The arclength distance along the unstable manifold

of the x− equilibrium point return map, Fig. 11.7 (b), generates the kneading sequence
(11.13) as the itinerary of the critical point plotted in Fig. 11.16 (a).

As we shall see in Section 12.4, for higher dimensional maps and flows there
is no single parameter that orders dynamics monotonically; as a matter of fact,
there is an infinity of parameters that need adjustment for a given symbolic
dynamics. This difficult subject is beyond our current ambition horizon.

fast track

Chapter 12, p. 193
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11.6 Symbolic dynamics, basic notions

(Mathematics) is considered a specialized dialect of the natural lan-
guage and its functioning as a special case of speech.

— Yuri I. Manin [11.1]

In this section we collect the basic notions and definitions of symbolic dynam-
ics. The reader might prefer to skim through this material on first reading,
return to it later as the need arises.
Shifts. We associate with every initial point x0 ∈ M the future itinerary, a
sequence of symbols S +(x0) = s1 s2 s3 · · · which indicates the order in which
the regions are visited. If the trajectory x1, x2, x3, . . . of the initial point x0 is
generated by

xn+1 = f (xn) , (11.16)

then the itinerary is given by the symbol sequence

sn = s if xn ∈ Ms . (11.17)

Similarly, the past itinerary S -(x0) = · · · s−2 s−1 s0 describes the history of x0,
the order in which the regions were visited before arriving to the point x 0. To
each point x0 in the dynamical space we thus associate a bi-infinite itinerary

S (x0) = (sk)k∈Z = S -.S + = · · · s−2 s−1 s0.s1 s2s3 · · · . (11.18)

The itinerary will be finite for a scattering trajectory, entering and then es-
caping M after a finite time, infinite for a trapped trajectory, and infinitely
repeating for a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters of the
alphabetA is called the full shift (or topological Markov chain)

AZ = {(sk)k∈Z : sk ∈ A for all k ∈ Z} . (11.19)

The jargon is not thrilling, but this is how professional dynamicists talk to each
other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries as the covering symbolic
dynamics. The name shift is descriptive of the way the dynamics acts on
these sequences. As is clear from the definition (11.17), a forward iteration
x→ x′ = f (x) shifts the entire itinerary to the left through the ‘decimal point.’
This operation, denoted by the shift operator σ,

σ(· · · s−2 s−1s0.s1s2 s3 · · ·) = · · · s−2s−1 s0 s1.s2 s3 · · · , (11.20)

demoting the current partition label s1 from the future S + to the ‘has been’
itinerary S -. The inverse shift σ−1 shifts the entire itinerary one step to the
right.

A finite sequence b = sk sk+1 · · · sk+nb−1 of symbols fromA is called a block
of length nb. If the symbols outside of the block remain unspecified, we denote
to the totality of orbits that share this block by sk sk+1 · · · sk+nb−1 .

A state space orbit is periodic if it returns to its initial point after a finite time;
in the shift space the orbit is periodic if its itinerary is an infinitely repeating
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block p∞. We shall refer to the set of periodic points M p that belong to a
given periodic orbit as a cycle

p = s1 s2 · · · snp = {xs1 s2···snp
, xs2···snp s1 , · · · , xsnp s1···snp−1 } . (11.21)

By its definition, a cycle is invariant under cyclic permutations of the symbols
in the repeating block. A bar over a finite block of symbols denotes a periodic
itinerary with infinitely repeating basic block; we shall omit the bar whenever
it is clear from the context that the orbit is periodic. Each periodic point is
labeled by the first np steps of its future itinerary. For example, the 2nd periodic
point is labeled by

xs2···snp s1 = xs2···snp s1·s2···snp s1 .

This - a bit strained - notation is meant to indicate that the symbol block repeats
both in the past and in the future. It is helpful for determining spatial ordering
of cycles of 2D-hyperbolic maps, to be undertaken in Section 12.3.1.

A prime cycle p of length np is a single traversal of the orbit; its label is
a block of np symbols that cannot be written as a repeat of a shorter block
(in literature such cycle is sometimes called primitive; we shall refer to it as
‘prime’ throughout this text).
Partitions. A partition is called generating if every infinite symbol sequence
corresponds to a distinct point in the state space. Finite Markov partition (11.2)
is an example. Constructing a generating partition for a given system is a
difficult problem. In examples to follow we shall concentrate on cases which
allow finite partitions, but in practice almost any generating partition of interest
is infinite.

A partition too coarse, coarser than, for example, a Markov partition, would
assign the same symbol sequence to distinct dynamical trajectories. To avoid
that, we often find it convenient to work with partitions finer than strictly nec-
essary. Ideally the dynamics in the refined partition assigns a unique infinite
itinerary · · · s−2 s−1s0.s1s2 s3 · · · to each distinct orbit, but there might exist full
shift symbol sequences (11.19) which are not realized as orbitss; such se-
quences are called inadmissible, and we say that the symbolic dynamics is
pruned. The word is suggested by ‘pruning’ of branches corresponding to
forbidden sequences for symbolic dynamics organized hierarchically into a
tree structure, as explained in Chapter 14.

A mapping f : M → M together with a partition A induces topological
dynamics (Σ, σ), where the subshift

Σ = {(sk)k∈Z} , (11.22)

is the set of all admissible (i.e., ‘pruned’) infinite itineraries, and σ : Σ → Σ
is the shift operator (11.20). The designation ‘subshift’ comes form the fact
that Σ ⊂ AZ is the subset of the full shift (11.19). One of our principal tasks
in developing symbolic dynamics of dynamical systems that occur in nature
will be to determine Σ, the set of all bi-infinite itineraries S that are actually
realized by the given dynamical system.
Pruning. If the dynamics is pruned, the alphabet must be supplemented
by a grammar, a set of pruning rules. After the inadmissible sequences have
been pruned, it is often convenient to parse the symbolic strings into words of
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variable length - this is called coding. Suppose that the grammar can be stated
as a finite number of pruning rules, each forbidding a block of finite length,

G = {b1, b2, · · ·bk} , (11.23)

where a pruning block b is a sequence of symbols b = s 1 s2 · · · snb , s ∈ A, of
finite length nb. In this case we can always construct a finite Markov partition
(11.2) by replacing finite length words of the original partition by letters of a
new alphabet. In particular, if the longest forbidden block is of length M+1, we
say that the symbolic dynamics is a shift of finite type with M-step memory.
In that case we can recode the symbolic dynamics in terms of a new alphabet,
with each new letter given by an admissible block of at most length M.

A topological dynamical system (Σ, σ) for which all admissible itineraries
are generated by a finite transition matrix (14.1)

Σ =
{
(sk)k∈Z : Tsk sk+1 = 1 for all k

}
(11.24)

is called a subshift of finite type.

in depth:

Chapter 12, p. 193

Résumé

From our initial chapters 2 to 4 fixation on things local: a representative point,
a short-time trajectory, a neighborhood, in this chapter we have made a coura-
geous leap and gone global.

The main lesson is that - if one intends to go thoughtfully about globaliza-
tion - one should trust the dynamics itself, and let it partition the state space,
by means of its (topologically invariant) unstable manifolds. This works if
every equilibrium and periodic orbit is unstable, so one exits it local neigh-
borhood via its unstable manifold. We delineate the segment of the unstable
manifold between the fixed point and the point where the nonlinearity of the
dynamics folds back on itself as the primary segment, and measure location
of nearby state space points by arclengths measured along this (curvilinear)
segment. For 1-dimensional maps the folding point is the critical point, and
easy to determine. In higher dimensions, the situation is not so clear - we shall
discuss that in Chapter 12.

Trajectories exit a neighborhood of an equilibrium or periodic point along
unstable directions, and fall along stable manifolds towards other fixed points,
until they again are repelled along their unstable manifolds. Such sequences
of visitations can be described by symbolic dynamics. As we shall show in
Chapter 14, they are encoded by transition matrices / transition graphs, and ap-
proximated dynamically by sequences of unstable manifold→ unstable man-
ifold maps, or, in case of a return to the initial neighborhood, by return maps
s→ f (s).

As ‘kneading theory’ of Section 11.5 illustrates, not all conceivable symbol
sequences are actually realized (admissible). The identification of all inadmis-
sible or pruned sequences is in general not possible. However, the theory to be
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developed here relies on exhaustive enumeration of all admissible itineraries
up to a given topological length; Chapters 12 and 15 describe several strategies
for accomplishing this for physically realistic goals.

Further reading

11.1 Symbolic dynamics. For a brief history of symbolic dy-
namics, from J. Hadamard in 1898 onward, see notes to chap-
ter 1 of Kitchens monograph [11.2], a very clear and enjoyable
mathematical introduction to topics discussed here. Diacu and
Holmes [11.3] provide an excellent survey of symbolic dy-
namics applied to celestial mechanics. For a compact survey
of symbolic dynamics techniques, consult sects. 3.2 and 8.3
of Robinson [11.4]. The binary labeling of the once-folding
map periodic points was introduced by Myrberg [11.5] for 1-
dimensional maps, and its utility to 2-dimensional maps has
been emphasized in Refs. [11.6,7]. For 1-dimensional maps it
is now customary to use the R-L notation of Metropolis, Stein
and Stein [11.8, 9], indicating that the point xn lies either to
the left or to the right of the critical point in Fig. 11.12. The
symbolic dynamics of such mappings has been extensively
studied by means of the Smale horseshoes, see for example
Ref. [11.10]. Using letters rather than numerals in symbol
dynamics alphabets probably reflects good taste. We prefer
numerals for their computational convenience, as they speed
up conversions of itineraries into the topological coordinates
(δ, γ) introduced in Section 12.3.1. The alternating binary or-
dering of Fig. 11.14 is related to the Gray codes of computer
science [11.11].

11.2 Kneading theory. The admissible itineraries are stud-
ied, for example, in Refs. [11.12, 8, 10, 13]. We follow here
the Milnor-Thurston exposition [11.14]. They study the top-

ological zeta function for piecewise monotone maps of the
interval, and show that for the finite subshift case it can be
expressed in terms of a finite dimensional kneading determi-
nant. As the kneading determinant is essentially the topolo-
gical zeta function of Section 15.4, we do not discuss it here.
Baladi and Ruelle have reworked this theory in a series of pa-
pers [11.15–18]. Knight and Klages [11.19] in their study of
deterministic diffusion (for deterministic diffusion, see Chap-
ter ??) refer to the set of iterates of the critical point as ‘gen-
erating orbit.’ They say: “The structure of the Markov parti-
tions varies wildly under parameter variation. The method we
employ to understand the Markov partitions involves iterating
the critical point. The set of iterates of this point form a set of
Markov partition points for the map. Hence we call the orbit
of the critical point a ‘generating orbit.’ If the generating orbit
is finite for a particular value of parameters, we obtain a finite
Markov partition. We can then use the finite Markov partition
to tell us about the diffusive properties of the map and hence
the structure of the diffusion coefficient.”

11.3 Heteroclinic connections. For sketches of heteroclinic
connections in the nonlinear setting, see Abraham and Shaw
illustrated classic [11.20]. Section 5 of Ref. [11.21] makes
elegant use of stable manifold co-dimension counts and of in-
variant subspaces implied by discrete symmetries of the un-
derlying PDE to deduce the existence of a heteroclinic con-
nection.
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Exercises

(11.1) Binary symbolic dynamics. Verify that the shortest
prime binary cycles of the unimodal repeller of Fig. 11.12
are 0, 1, 01, 001, 011, · · ·. Compare with Table 15.1.
Try to sketch them in the graph of the unimodal func-
tion f (x); compare ordering of the periodic points with
Fig. 11.14. The point is that while overlayed on each
other the longer cycles look like a hopeless jumble, the
periodic points are clearly and logically ordered by the
alternating binary tree.

(11.2) Generating prime cycles. Write a program that gen-
erates all binary prime cycles up to given finite length.

(11.3) A contracting baker’s map. Consider a contracting
(or “dissipative”) baker’s defined in Exercise 4.6.

The symbolic dynamics encoding of trajectories is real-
ized via symbols 0 (y ≤ 1/2) and 1 (y > 1/2). Consider
the observable a(x, y) = x. Verify that for any periodic
orbit p (ε1 . . . εnp ), εi ∈ {0, 1}

Ap =
3
4

np∑
j=1

δ j,1 .

(11.4) Unimodal map symbolic dynamics. Show that the
tent map point γ(S +) with future itinerary S + is given by
converting the sequence of sn’s into a binary number by
the algorithm (11.9). This follows by inspection from the
binary tree of Fig. 11.14.

(11.5) Unimodal map kneading value. Consider the 1−d
quadratic map

f (x) = Ax(1 − x) , A = 3.8 . (11.25)

(a) (easy) Plot (11.25), and the first 4-8 (whatever
looks better) iterates of the critical point xc = 1/2.

(b) (hard) Draw corresponding intervals of the par-
tition of the unit interval as levels of a Can-
tor set, as in the symbolic dynamics partition of
Fig. 11.12. Note, however, that some of the inter-
vals of Fig. 11.12 do not appear in this case - they
are pruned.

(c) (easy) Check numerically that K = S+(xc), knead-
ing sequence (the itinerary of the critical point
(11.13)) is

K = 1011011110110111101011110111110 . . .

As the orbits of a chaotic map are exponentially
unstable, so many digits seem too good to be true

- recheck this sequence using arbitrary precision
arithmetics.

(d) (medium) The tent map point γ(S+) with future
itinerary S + is given by converting the sequence of
sn’s into a binary number by the algorithm (11.9).
List the corresponding kneading value (11.13) se-
quence κ = γ(K) to the same number of digits as
K.

(e) (hard) Plot the dike map, Fig. 11.15, with the same
kneading sequence K as f (x). The dike map is ob-
tained by slicing off all γ

(
S +(x0)

)
> κ, from the

full tent map Fig. 11.11, see (11.14).

How this kneading sequence is converted into a series of
pruning rules is a dark art, relegated to Section 15.5.

(11.6) “Golden mean” pruned map. Consider a symmetri-
cal tent map on the unit interval such that its highest point
belongs to a 3-cycle:

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Find the value |Λ| for the slope (the two different
slopes ±Λ just differ by a sign) where the maxi-
mum at 1/2 is part of a 3-cycle, as in the figure.

(b) Show that no orbit of this map can visit the region
x > (1 +

√
5)/4 more than once. Verify that once

an orbit exceeds x > (
√

5−1)/4, it does not reenter
the region x < (

√
5 − 1)/4.

(c) If an orbit is in the interval (
√

5 − 1)/4 < x < 1/2,
where will it be on the next iteration?

(d) If the symbolic dynamics is such that for x < 1/2
we use the symbol 0 and for x > 1/2 we use the
symbol 1, show that no periodic orbit will have the
substring 00 in it.

(e) On the second thought, is there a periodic orbit that
violates the above 00 pruning rule?
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For continuation, see Exercise 15.7 and Exercise 19.2.
See also Exercise 15.6 and Exercise 15.8.

(11.7) Binary 3-step transition matrix. Construct [8×8] bi-
nary 3-step transition matrix analogous to the 2-step tran-
sition matrix (14.10). Convince yourself that the num-
ber of terms of contributing to tr Tn is independent of the
memory length, and that this [2m×2m] trace is well defined
in the infinite memory limit m→∞.

(11.8) Full tent map periodic points. This exercise is easy:

just making sure you know how to go back and forth be-
tween spatial and temporal ordering of trajectory points.

(a) derive (11.12)

(b) compute the five periodic points of cycle 10011

(c) compute the five periodic points of cycle 10000

(d) (optional) plot the above two cycles on the graph
of the full tent map.

(continued in Exercise 13.15)
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I.1. Introduction to conjugacy problems for diffeomorphisms.
This is a survey article on the area of global analysis defined by differ-
entiable dynamical systems or equivalently the action (differentiable)
of a Lie group G on a manifold M. Here Diff(M) is the group of all
diffeomorphisms of M and a diffeomorphism is a differentiable map
with a differentiable inverse. (. . .) Our problem is to study the global
structure, i.e., all of the orbits of M.

—Stephen Smale, Differentiable Dynamical Systems

We have learned that the Rössler attractor is very thin, but otherwise the
return maps that we found were disquieting – Fig. 3.6 did not ap-
pear to be a one-to-one map. This apparent loss of invertibility is

an artifact of projection of higher-dimensional return maps onto their lower-
dimensional subspaces. As the choice of a lower-dimensional subspace is ar-
bitrary, the resulting snapshots of return maps look rather arbitrary, too. Such
observations beg a question: Does there exist a natural, intrinsic coordinate
system in which we should plot a return map?

We shall argue in Section 12.1 that the answer is yes: The intrinsic coordi-
nates are given by the stable/unstable manifolds, and a return map should be
plotted as a map from the unstable manifold back onto the immediate neigh-
borhood of the unstable manifold. In Chapter 5 we established that Floquet
multipliers of periodic orbits are (local) dynamical invariants. Here we shall
show that every equilibrium point and every periodic orbit carries with it stable
and unstable manifolds which provide topologically invariant global foliation
of the state space. They will enable us to partition the state space in a dynam-
ically invariant way, and assign symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relative spatial ordering of
trajectories, and separates the admissible and inadmissible itineraries. We il-
lustrate how this works on Hénon map Example 12.3. Determining which sym-
bol sequences are absent, or ‘pruned’ is a formidable problem when viewed in
the state space, [x1, x2, ..., xd] coordinates. It is equivalent to the problem of
determining the location of all homoclinic tangencies, or all turning points of
the Hénon attractor. They are dense on the attractor, and show no self-similar
structure in the state space coordinates. However, in the ‘danish pastry’ rep-
resentation of Section 12.3 (and the ‘pruned danish,’ in American vernacular,
of Section 12.4), the pruning problem is visualized as crisply as the New York
subway map; any itinerary which strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the pedestrian tempo of the
preceding chapter. Skip most of this chapter unless you really need to get into
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nitty-gritty details of symbolic dynamics.

fast track

Chapter 13, p. 215

12.1 Going global: stable/unstable manifolds

The complexity of this figure will be striking, and I shall not even try
to draw it.

— H. Poincaré, on his discovery of homoclinic tangles, Les
méthodes nouvelles de la méchanique céleste

The Jacobian matrix Jt transports an infinitesimal neighborhood, its eigen-
values and eigen-directions describing deformation of an initial infinitesimal
sphere of neighboring trajectories into an ellipsoid time t later, as in Fig. 4.2. 11
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Nearby trajectories separate exponentially along the unstable directions, ap-
proach each other along the stable directions, and creep along the marginal
directions.

The fixed point q Jacobian matrix J(x) eigenvectors (5.12) form a rectilinear
coordinate frame in which the flow into, out of, or encircling the fixed point is
linear in the sense of Section 4.2.2

2

J

+   x δ

δp

x0

0x +      x

The continuations of the span of the local stable, unstable eigen-directions
into global curvilinear invariant manifolds are called the stable, respectively
unstable manifolds. They consist of all points which march into the fixed point
forward, respectively backward in time

W s =
{
x ∈ M : f t(x) − xq → 0 as t → ∞

}
Wu =

{
x ∈ M : f −t(x) − xq → 0 as t → ∞

}
. (12.1)

Eigenvectors e(i) of the monodromy matrix J(x) play a special role - on them
the action of the dynamics is the linear multiplication by Λ i (for a real eigen-
vector) along 1−d invariant curve W u,s

(i) or spiral in/out action in a 2-D surface
(for a complex pair). For t → ±∞ a finite segment on W s

(c), respectively Wu
(e)

converges to the linearized map eigenvector e (c), respectively e(e), where (c), (e)

stand respectively for ‘contracting,’ ‘expanding.’ In this sense each eigenvector
defines a (curvilinear) axis of the stable, respectively unstable manifold.

Actual construction of these manifolds is the converse of their definition
(12.1): one starts with an arbitrarily small segment of a fixed point eigenvector
and lets evolution stretch it into a finite segment of the associated manifold.
As a periodic point x on cycle p is a fixed point of f Tp (x), the fixed point
discussion that follows applies equally well to equilibria and periodic orbits.
Expanding real and positive Floquet multiplier. Consider ith expanding
eigenvalue, eigenvector pair (Λ i, e(i)) computed from J = Jp(x) evaluated at a
fixed point x,

J(x)e(i)(x) = Λie(i)(x) , x ∈ Mp , Λi > 1 . (12.2)

Take an infinitesimal eigenvector e(i)(x), ||e(i)(x)|| = ε � 1, and its return
Λie(i)(x) after one period T p. Sprinkle the straight interval between [ε,Λ iε] ⊂
smale - 19apr2009 ChaosBook.org version13.5, Sep 7 2011
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Wu
(i) with a large number of points x (k), for example equidistantly spaced on

logarithmic scale between ln ε and lnΛ i + ln ε . The successive returns of these
points f Tp (x(k)), f 2Tp (x(k)), · · ·, f mTp (x(k)) trace out the 1d curve W u

(i) within the
unstable manifold. As separations between points tend to grow exponentially,
every so often one needs to interpolate new starting points between the rarified
ones. Repeat for −e(i)(x).
Contracting real and positive Floquet multiplier. Reverse the action of the
map backwards in time. This turns a contracting direction into an expanding
one, tracing out the curvilinear stable manifold W s

(i) as a continuation of e(i).
Expanding/contracting real negative Floquet multiplier. As above, but ev-
ery even iterate f 2Tp (x(k)), f 4Tp (x(k)), f 6Tp (x(k)) continues in the direction e(i),
every odd one in the direction −e (i).
Complex Floquet multiplier pair, expanding/contracting. The complex
Floquet multiplier pair {Λ j,Λ j+1 = Λ

∗
j} has Floquet exponents (5.9) of form

λ( j) = μ( j) ± iω( j), with the sign of μ(k j) � 0 determining whether the linear
neighborhood is out / in spiralling. The orthogonal pair of real eigenvectors
{Re e(j), Im e(j)} spans a plane, as in (??). T = 2π/ω( j) is the time of one turn
of the spiral, JT Re e(j)(x) = |Λj|Re e(j)(x) . As in the real cases above, sprinkle
the straight interval between [ε, |Λ j|ε] along Re e(j)(x) with a large number of
points x(k). The flow will now trace out the 2d invariant manifold as an out / in
spiralling strip. Two low-dimensional examples are the unstable manifolds of
the Lorenz flow, Fig. 11.8 (a), and the Rössler flow, Fig. 11.10 (a). For a highly
non-trivial example, see Fig. 12.1.

Fig. 12.1 A 2d unstable manifold obtained
by continuation from the linearized neigh-
borhood of a complex eigenvalue pair of
an unstable equilibrium of plane Couette
flow, a projection from a 61,506-dimensional
state space ODE truncation of the (∞-
dimensional) Navier-Stokes PDE. (J.F. Gib-
son, 8 Nov. 2005 blog entry [12.58])

The unstable manifolds of a flow are du-dimensional. Taken together with
the marginally stable direction along the flow, they are rather hard to visualize.
A more insightful visualization is offered by (d−1)-dimensional Poincaré sec-
tions (3.2) with the marginal flow direction eliminated (see also Section 3.1.1).
Stable, unstable manifolds for maps are defined by

Ŵ s =
{
x ∈ P : Pn(x) − xq → 0 as n→ ∞

}
Ŵu =

{
x ∈ P : P−n(x) − xq → 0 as n→ ∞

}
, (12.3)

where P(x) is the (d−1)-dimensional return map (3.1). In what follows, all
invariant manifolds W u, W s will be restricted to their Poincaré sections Ŵu,
Ŵ s.

Example 12.1 A section at a fixed point with a complex Floquet multiplier
pair:
(continued from Example 3.1) The simplest choice of a Poincaré section for a fixed

(or periodic) point xq with a complex Floquet multiplier pair is the plane P specified
by the fixed point (located at the tip of the vector xq) and the eigenvector Im e(k)

perpendicular to the plane. A point x is in the section P if it satisfies the condition

(x − xq) · Im e(k) = 0 . (12.4)

In the neighborhood of xq the spiral out/in motion is in the {Re e(k), Im e(k)} plane, and
thus guaranteed to be cut by the Poincaré section P normal to e(k).

In general the full state space eigenvectors do not lie in a Poincaré section;
the eigenvectors ê( j) tangent to the section are given by (5.20). Furthermore,
ChaosBook.org version13.5, Sep 7 2011 smale - 19apr2009
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while in the linear neighborhood of fixed point x the trajectories return with
approximate periodicity T p, this is not the case for the globally continued man-
ifolds; τ(x), or the first return times (3.1) differ, and the Ŵu

( j) restricted to the
Poincaré section is obtained by continuing trajectories of the points from the
full state space curve Wu

( j) to the section P.
For long times the unstable manifolds wander throughout the connected er-

godic component, and are no more informative than an ergodic trajectory. For
example, the line with equitemporal knots in Fig. 12.1 starts out on a smoothly
curved neighborhood of the equilibrium, but after a ‘turbulent’ episode decays
into an attractive equilibrium point. The trick is to stop continuing an invariant
manifold while the going is still good.

fast track

Section 12.2, p. 197

Learning where to stop is a bit of a technical exercise, the reader might
prefer to skip next section on the first reading.

12.1.1 Parametrization of invariant manifolds

As the flow is nonlinear, there is no ‘natural’ linear basis to represent it.
Wistful hopes like ‘POD modes,’ ‘Karhunen-Loève,’ and other linear changes
of bases do not cut it. The invariant manifolds are curved, and their coordi-
natizations are of necessity curvilinear, just as the maps of our globe are, but
infinitely foliated and thus much harder to chart.

Let us illustrate this by parameterizing a 1d slice of an unstable manifold by
its arclength. Sprinkle evenly points {x (1), x(2), · · · , x(N−1)} between the equi-
librium point xq = x(0) and point x = x(N), along the 1d unstable manifold
continuation x(k) ∈ Ŵu

( j) of the unstable ê( j) eigendirection (we shall omit the
eigendirection label ( j) in what follows). Then the arclength from equilibrium
point xq = x(0) to x = x(N) is given by

s2 = lim
N→∞

N∑
k=1

gi j dx(k)
i dx(k)

j , dx(k)
i = x(k)

i − x(k−1)
i . (12.5)

For the lack of a better idea (perhaps the dynamically determined g = J T J
would be a more natural metric?) let us measure arclength in the Euclidian
metric, gi j = δi j, so

s = lim
N→∞

⎛⎜⎜⎜⎜⎜⎝ N∑
k=1

(
dx(k)

)2
⎞⎟⎟⎟⎟⎟⎠1/2

. (12.6)

By definition f τ(x)(x) ∈ Ŵu
( j), so f t(x) induces a 1d map s(s0, τ) = s( f τ(x0)(x0)).

Turning points are points on the unstable manifold for which the local un-
stable manifold curvature diverges for forward iterates of the map, i.e., points
at which the manifold folds back onto itself arbitrarily sharply. For our pur-
poses, approximate turning points suffice. The 1d curve Ŵu

( j) starts out linear
at xq, then gently curves until –under the influence of other unstable equilibria
and/or periodic orbits– it folds back sharply at ‘turning points’ and then nearly
retraces itself. This is likely to happen if there is only one unstable direction,
smale - 19apr2009 ChaosBook.org version13.5, Sep 7 2011
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as we saw in the Rössler attractor Example 11.3, but if there are several, the
‘turning point’ might get stretched out in the non-leading expanding directions.

The trick is to figure out a good base segment to the nearest turning point
L = [0, sb], and after the foldback assign to s(x, t) > sb the nearest point
s on the base segment. If the stable manifold contraction is strong, the 2nd
coordinate connecting s(x, t) → s can be neglected. We saw in Example 11.3
how this works. You might, by nature and temperament, take the dark view:
Rössler has helpful properties, namely insanely strong contraction along a 1-
dimensional stable direction, that are not present in real problems, such as
turbulence in a plane Couette flow, and thus the lessons of Chapter 11 of no use
when it comes to real plumbing. For this reason, both of the training examples
to come, the billiards and the Hénon map are of Hamiltonian, phase space
preserving type, and thus as far from being insanely contracting as possible.
Yet, to a thoughtful reader, they unfold themselves as pages of a book.

Assign to each d-dimensional point x̂ ∈ Lq a coordinate s = s(x̂) whose
value is the Euclidean arclength (12.5) to xq measured along the 1-dimensional
Pq section of the xq unstable manifold. Next, for a nearby point x̂ 0 � Lq

determine the point x̂1 ∈ Lq which minimizes the Euclidean distance (x̂0 −
x̂1)2, and assign arc length coordinate value s0 = s(x̂1) to x̂0. In this way,
an approximate 1-dimensional intrinsic coordinate system is built along the
unstable manifold. This parametrization is useful if the non-wandering set is
sufficiently thin that its perpendicular extent can be neglected, with every point
on the non-wandering set assigned the nearest point on the base segment L q.

Armed with this intrinsic curvilinear coordinate parametrization, we are now
in a position to construct a 1-dimensional model of the dynamics on the non-
wandering set. If x̂n is the nth Poincaré section of a trajectory in neighborhood
of xq, and sn is the corresponding curvilinear coordinate, then s n+1 = f τn (sn)
models the full state space dynamics x̂n → x̂n+1. We approximate f (sn) by a
smooth, continuous 1-dimensional map f : Lq → Lq by taking x̂n ∈ Lq, and
assigning to x̂n+1 the nearest base segment point sn+1 = s(x̂n+1).

12.2 Horseshoes

If you find yourself mystified by Smale’s article abstract quoted on page 197,
about ‘the action (differentiable) of a Lie group G on a manifold M,’ time
has come to bring Smale to everyman. If you still remain mystified by the
end of this chapter, reading Chapter 16 might help; for example, the Liouville
operators form a Lie group of symplectic, or canonical transformations acting
on the (p, q) manifold.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded. An example is a 3-dimensional
invertible flow sketched in Fig. 11.10 which returns a Poincaré section of the
flow folded into a ‘horseshoe’ (we shall belabor this in Fig. 12.4). We now

exercise 12.1
offer two examples of locally unstable but globally bounded flows which return
an initial area stretched and folded into a ‘horseshoe,’ such that the initial area
is intersected at most twice. We shall refer to such mappings with at most 2n
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198 CHAPTER 12. STRETCH, FOLD, PRUNE

Fig. 12.3 The 3-disk game of pinball of
Fig. 11.5, generated by starting from disk 1,
preceded by disk 2, coded in binary, as in
Fig. 12.2. (a) Strips Msi. j which have sur-
vived a bounce in the past and will survive
a bounce in the future. (b) Iteration corre-
sponds to the decimal point shift; for exam-
ple, all points in the rectangle [1.01] map into
the rectangles [0.10], [0.11] in one iteration. (a)

si
nØ

1

0

−1
−2.5 0 2.5s

0.0 1.1

0. .01. .1

0.1

1.0

(b)

si
n

θ

s

1.

0.01

0.010.01

0.

0.00

transverse self-intersections at the nth iteration as the once-folding maps.
The first example is the 3-disk game of pinball Fig. 11.5, which, for suf-

ficiently separated disks (see Fig. 11.6), is an example of a complete Smale
horseshoe. We start by exploiting its symmetry to simplify it, and then parti-
tion its state space by its stable / unstable manifolds.

Example 12.2 Recoding 3-disk dynamics in binary.
(continued from Example 11.2) The A = {1, 2, 3} symbolic dynamics for 3-disk

system is neither unique, nor necessarily the smartest one - before proceeding it
pays to quotient the symmetries of the dynamics in order to obtain a more efficient
description. We do this in a quick way here, and redo it in more detail in Section 12.5.

Fig. 12.2 Binary labeling of trajectories of
the symmetric 3-disk pinball; a bounce in
which the trajectory returns to the preceding
disk is labeled 0, and a bounce which results
in continuation to the third disk is labeled 1.

As the three disks are equidistantly spaced, the disk labels are arbitrary; what is
important is how a trajectory evolves as it hits subsequent disks, not what label the
starting disk had. We exploit this symmetry by recoding, in this case replacing the
absolute disk labels by relative symbols, indicating the type of the collision. For
the 3-disk game of pinball there are two topologically distinct kinds of collisions,
Fig. 12.2:

exercise 11.1
exercise 12.6

si =

{
0 : pinball returns to the disk it came from
1 : pinball continues to the third disk .

(12.7)

In the binary recoding of the 3-disk symbolic dynamics the prohibition of self-
bounces is automatic. If the disks are sufficiently far apart there are no further re-
strictions on symbols, the symbolic dynamics is complete, and all binary sequences
(see Table 15.1) are admissible.

exercise 11.2 It is intuitively clear that as we go backward in time (reverse the velocity vector),
we also need increasingly precise specification of x0 = (s0, p0) in order to follow
a given past itinerary. Another way to look at the survivors after two bounces is to
plot Ms1 .s2 , the intersection of M.s2 with the strips Ms1 . obtained by time reversal
(the velocity changes sign sinφ → − sin φ). Ms1 .s2 , Fig. 12.3 (a), is a ‘rectangle’
of nearby trajectories which have arrived from disk s1 and are heading for disk s2.
(continued in Example 12.6)

The 3-disk repeller does not really look like a ‘horseshoe;’ the ‘fold’ is cut
out of the picture by allowing the pinballs that fly between the disks to fall off
the table and escape. Next example captures the ‘stretch & fold’ horseshoe
dynamics of return maps such as Rössler’s, Fig. 3.5.
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(a) −1.0 0.0 1.0
−1.0

0.0

1.0

0 W
u

W
s

B

C
D

1

(b) −1.0 0.0 1.0
−1.0

0.0

1.0

1.

0

0.D

B

C

(c)

1.0

0.0

0.1

1.1

(d)
10.0
00.0

00.1

10.1

11.1

11.0
01.0

01.1

(e)

01.10

10.10

00.11

01.01

Fig. 12.4 The Hénon map (12.8) for a = 6,

b = −1: fixed point 0 with segments of
its stable, unstable manifolds Ws, Wu , and
fixed point 1. (a) Their intersection bounds
the region M. = 0BCD which contains the
non-wandering set Ω. (b) The intersection
of the forward image f (M.) with M. con-
sists of two (future) strips M0., M1., with
points BCD brought closer to fixed point 0
by the stable manifold contraction. (c) The
intersection of the forward image f (M.) with
the backward backward f−1(M.) is a four-
region cover of Ω. (d) The intersection of
the twice-folded forward horseshoe f2(M.)
with backward horseshoe f−1(M.). (e) The
intersection of f2(M.) with f−2(M.) is a 16-
region cover of Ω. Iteration yields the com-
plete Smale horseshoe non-wandering set Ω,
i.e., the union of all non-wandering points of
f , with every forward fold intersecting every
backward fold. (P. Cvitanović and Y.
Matsuoka)

Example 12.3 A Hénon repeller complete horseshoe:
(continued from Example 3.7) Consider 2-dimensional Hénon map

exercise 3.5

(xn+1, yn+1) = (1 − ax2
n + byn, xn) . (12.8)

If you start with a small ball of initial points centered around the fixed point x0, and
iterate the map, the ball will be stretched and squashed along the unstable manifold
Wu

0 . Iterated backward in time,

(xn−1, yn−1) = (yn,−b−1(1 − ay2
n − xn)) , (12.9)

this small ball of initial points traces out the stable manifold Ws
0 . Their intersections

enclose the region M. , Fig. 12.4 (a). Any point outside Ws
0 border of M. escapes

to infinity forward in time, while –by time reversal– any point outside Wu
0 border

arrives from infinity back in paste. In this way the unstable - stable manifolds define
topologically, invariant and optimal initial regionM.; all orbits that stay confined for
all times are confined toM. .
The Hénon map models qualitatively the Poincaré section return map of Fig. 11.10.
For b = 0 the Hénon map reduces to the parabola (11.3), and, as shown in Sec-
tions 3.3 and 27.1, for b � 0 it is kind of a fattened parabola; by construction, it takes
a rectangular initial area and returns it bent as a horseshoe. Parameter a controls the
amount of stretching, while the parameter b controls the amount of compression of
the folded horseshoe. For definitiveness, fix the parameter values to a = 6, b = −1;
the map is then strongly stretching but area preserving, the furthest away from the
strongly dissipative examples discussed in Section 11.2. The map is quadratic, so it
has 2 fixed points x0 = f (x0), x1 = f (x1) indicated in Fig. 12.4 (a). For the parameter
values at hand, they are both unstable.
Iterated one step forward, the regionM. is stretched and folded into a Smale horse-
shoe drawn in Fig. 12.4 (b). Label the two forward intersections f (M.)∩M. byMs .,
with s ∈ {0, 1}. The horseshoe consists of the two strips M0.,M1. , and the bent
segment that lies entirely outside the Ws

0 line. As all points in this segment escape to
infinity under forward iteration, this region can safely be cut out and thrown away.
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200 CHAPTER 12. STRETCH, FOLD, PRUNE

Iterated one step backwards, the regionM. is again stretched and folded into a horse-
shoe, Fig. 12.4 (c). As stability and instability are interchanged under time reversal,
this horseshoe is transverse to the forward one. Again the points in the horseshoe
bend wander off to infinity as n → −∞, and we are left with the two (past) strips
M.0,M.1 . Iterating two steps forward we obtain the four stripsM11.,M01.,M00.,M10.,
and iterating backwards we obtain the four stripsM.00,M.01,M.11,M.10 transverse
to the forward ones just as for 3-disk pinball game Fig. 12.2. Iterating three steps
forward we get an 8 strips, and so on ad infinitum. (continued in Example 12.4)

What is the significance of the subscript such as .011 which labels theM.011

future strip? The two stripsM.0,M.1 partition the state space into two regions
labeled by the two-letter alphabetA = {0, 1}. S + = .011 is the future itinerary
for all x ∈ M.011. Likewise, for the past strips all x ∈ Ms−m···s−1 s0. have the past
itinerary S - = s−m · · · s−1s0 . Which partition we use to present pictorially the
regions that do not escape in m iterations is a matter of taste, as the backward
strips are the preimages of the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non-wandering set (2.2) ofM ., is the union of all points whose forward
and backward trajectories remain trapped for all time, given by the intersec-
tions of all images and preimages ofM:

Ω =

{
x : x ∈ lim

m,n→∞
f m(M.)

⋂
f −n(M.)

}
. (12.10)

Two important properties of the Smale horseshoe are that it has a complete
binary symbolic dynamics and that it is structurally stable.

For a complete Smale horseshoe every forward fold f n(M) intersects transver-
sally every backward fold f −m(M), so a unique bi-infinite binary sequence can
be associated to every element of the non-wandering set. A point x ∈ Ω is la-
beled by the intersection of its past and future itineraries S (x) = · · · s−2 s−1 s0.s1 s2 · · ·,
where sn = s if f n(x) ∈ M.s , s ∈ {0, 1} and n ∈ Z.

remark A.1
The system is said to be structurally stable if all intersections of forward and

backward iterates ofM remain transverse for sufficiently small perturbations
f → f + δ of the flow, for example, for slight displacements of the disks in the
pinball problem, or sufficiently small variations of the Hénon map parameters
a, b. While structural stability is exceedingly desirable, it is also exceedingly

section 1.8
rare. About this, more later.

section 25.2

12.3 Symbol plane

Consider a system for which you have succeeded in constructing a covering
symbolic dynamics, such as a well-separated 3-disk system. Now start mov-
ing the disks toward each other. At some critical separation a disk will start
blocking families of trajectories traversing the other two disks. The order in
which trajectories disappear is determined by their relative ordering in space;
the ones closest to the intervening disk will be pruned first. Determining inad-
missible itineraries requires that we relate the spatial ordering of trajectories to
their time ordered itineraries.

exercise 12.7
smale - 19apr2009 ChaosBook.org version13.5, Sep 7 2011
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So far we have rules that, given a state space partition, generate a temporally
ordered itinerary for a given trajectory. Our next task is the converse:

B

A

A

B

B

A

Fig. 12.5 Kneading orientation preserving
danish pastry: mimic the horsheshoe dynam-
ics of Fig. 12.6 by: (1) squash the unit square
by factor 1/2, (2) stretch it by factor 2, and (3)
fold the right half back over the left half.

given a set of itineraries, what is the spatial ordering of corresponding points
along the trajectories? In answering this question we will be aided by Smale’s
visualization of the relation between the topology of a flow and its symbolic
dynamics by means of ‘horseshoes,’ such as Fig. 12.4.

12.3.1 Kneading danish pastry

The danish pastry transformation, the simplest baker’s transformation appro-
priate to Hénon type mappings, yields a binary coordinatization of all possible
periodic points.

The symbolic dynamics of once-folding map is given by the danish pastry
transformation. This generates both the longitudinal and transverse alternating
binary tree. The longitudinal coordinate is given by the head of a symbolic
sequence; the transverse coordinate is given by the tail of the symbolic se-
quence. The dynamics on this space is given by symbol shift permutations;
volume preserving, with 2 expansion and 1/2 contraction.

For a better visualization of 2-dimensional non-wandering sets, fatten the
intersection regions until they completely cover a unit square, as in Fig. 12.7.

We shall refer to such a ‘map’ of the topology of a given ‘stretch & fold’
exercise 12.2
exercise 12.3dynamical system as the symbol square. The symbol square is a topologically

accurate representation of the non-wandering set and serves as a street map for
labeling its pieces. Finite memory of m steps and finite foresight of n steps
partitions the symbol square into rectangles [s−m+1 · · · s0.s1 s2 · · · sn], such as
those of Fig. 12.6. In the binary dynamics symbol square the size of such
rectangle is 2−m × 2−n; it corresponds to a region of the dynamical state space
which contains all points that share common n future and m past symbols. This
region maps in a nontrivial way in the state space, but in the symbol square its
dynamics is exceedingly simple; all of its points are mapped by the decimal
point shift (11.20)

σ(· · · s−2s−1 s0.s1s2 s3 · · ·) = · · · s−2s−1 s0s1.s2s3 · · · , (12.11)

Example 12.4 A Hénon repeller subshift:
(continued from Example 12.3) The Hénon map acts on the binary partition as

a shift map. Figure 12.6 illustrates action f (M.0) = M0.. The square [01.01] gets
mapped into the rectangles σ[01.01] = [10.1] = {[10.10], [10.11]}, see Fig. 12.4 (e).
Further examples can be gleaned from Fig. 12.4.

.000
.001

.011
.010

.110
.111

.101
.100

100.

110.

010.

011.

111.

101.

001.

000.

110

0

1

100

001

010

101

011

Fig. 12.9 Kneading danish pastry: symbol
square representation of an orientation pre-
serving once-folding map obtained by fat-
tening the Smale horseshoe intersections of
Fig. 12.4 (e) into a unit square. Also indi-
cated: the fixed points 0, 1, and the 3-cycle
points {011,110,101}. In the symbol square
the dynamics maps rectangles into rectangles
by a decimal point shift.

As the horseshoe mapping is a simple repetitive operation, we expect a sim-
ple relation between the symbolic dynamics labeling of the horseshoe strips,
and their relative placement. The symbol square points γ(S +) with future
itinerary S + are constructed by converting the sequence of s n’s into a binary
number by the algorithm (11.9). This follows by inspection from Fig. 12.9.
In order to understand this relation between the topology of horseshoes and
their symbolic dynamics, it might be helpful to backtrace to Section 11.4 and
work through and understand first the symbolic dynamics of 1-dimensional
unimodal mappings.
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Fig. 12.6 The dynamics maps two (past)
strips stripsM.0,M.1 into two (future) strips
M0.,M1.. The corners are labeled to aid vi-
sualization. Note that the BCGH strip is ro-
tated by 180 degrees. (P. Cvitanović and Y.
Matsuoka) (e)

.0 .1
1.

0

0.D
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C

D
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C
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G

Fig. 12.7 Kneading danish pastry: symbol
square representation of an orientation pre-
serving once-folding map obtained by fatten-
ing the Smale horseshoe intersections of (a)
Fig. 12.6 (b) Fig. 12.4 into a unit square. Also
indicated: the fixed points 0, 1 and the 2-cycle
points {01,10}. In the symbol square the dy-
namics maps rectangles into rectangles by a
decimal point shift. (a) .1.0

0.

1.

0

1

(b)

01.

11.

00.

10.

.00 .01 .11 .10

0
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10

1

Under backward iteration the roles of 0 and 1 symbols are interchanged;
M−1

0 has the same orientation asM, whileM−1
1 has the opposite orientation.

We assign to an orientation preserving once-folding map the past topological
exercise 12.4

coordinate δ = δ(S -) by the algorithm:

wn−1 =

{
wn if sn = 0
1 − wn if sn = 1

, w0 = s0

δ(S -) = 0.w0w−1w−2 . . . =
∞∑

n=1

w1−n/2n . (12.12)

Such formulas are best derived by solitary contemplation of the action of a
folding map, in the same way we derived the future topological coordinate
(11.9).

The coordinate pair (δ, γ) associates a point (x, y) in the state space Cantor
set of Fig. 12.4 to a point in the symbol square of Fig. 12.9, preserving the
topological ordering. The symbol square [δ, γ] serves as a topologically faith-
ful representation of the non-wandering set of any once-folding map, and aids
us in partitioning the set and ordering the partitions for any flow of this type.

fast track

Chapter 13, p. 215
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Fig. 12.8 Kneading orientation preserving
danish pastry: symbol square representa-
tion of an orientation preserving once-folding
map obtained by fattening the intersections of
two forward iterates / two backward iterates
of Smale horseshoe into a unit square.

12.4 Prune danish

Anyone know where I can get a good prune danish in Charlotte? I
mean a real NY Jewish bakery kind of prune danish!

— Googled

In general, not all possible symbol sequences are realized as physical trajec-
tories. Trying to get from ‘here’ to ‘there’ we might find that a short path is
excluded by some obstacle, such as a disk that blocks the path, or a potential
ridge. In order to enumerate orbits correctly, we need to prune the inadmissible
symbol sequences, i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so far is rather straight-
forward, and sets the stage for situations that resembles more the real life. A
generic once-folding map does not yield a complete horseshoe; some of the
horseshoe pieces might be pruned, i.e., not realized for particular parameter
values of the mapping. In 1 dimension, the criterion for whether a given sym-
bolic sequence is realized by a given unimodal map is easily formulated; any
orbit that strays to the right of the value computable from the kneading se-
quence (the orbit of the critical point (11.13)) is pruned. This is a topological
statement, independent of a particular unimodal map. Our objective is to gen-
eralize this notion to 2−d once-folding maps.

Adjust the parameters of a once-folding map so that the intersection of the
backward and forward folds is still transverse, but no longer complete, as in
Fig. 12.10 (a). The utility of the symbol square lies in the fact that the surviv-
ing, admissible itineraries still maintain the same relative spatial ordering as
for the complete case.

In the example of Fig. 12.10 the rectangles [10.1], [11.1] have been pruned,
and consequently any trajectory containing blocks b 1 = 101, b2 = 111 is
pruned, the symbol dynamics is a subshift of finite type (11.24). We refer to
the border of this primary pruned region as the pruning front; another exam-
ple of a pruning front is drawn in Fig. 12.11 (b). We call it a ‘front’ as it can
be visualized as a border between admissible and inadmissible; any trajectory
whose points would fall to the right of the front in Fig. 12.11 is inadmissi-
ble, i.e., pruned. The pruning front is a complete description of the symbolic
dynamics of once-folding maps.For now we need this only as a concrete illus-
tration of how pruning rules arise.

In the example at hand there are total of two forbidden blocks 101, 111, so
ChaosBook.org version13.5, Sep 7 2011 smale - 19apr2009



204 CHAPTER 12. STRETCH, FOLD, PRUNE

Fig. 12.10 (a) An incomplete Smale horse-
shoe: the inner forward fold does not inter-
sect the outer backward fold. (b) The primary
pruned region in the symbol square and the
corresponding forbidden binary blocks. ��������������
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Fig. 12.11 (a) An incomplete Smale horse-
shoe which illustrates (b) the monotonicity of
the pruning front: the thick line which delin-
eates the left border of the primary pruned re-
gion is monotone on each half of the sym-
bol square. The backward folding in this fig-
ure and Fig. 12.10 is schematic - in invertible
mappings there are further missing intersec-
tions, all obtained by the forward and back-
ward iterations of the primary pruned region.

For now we concentrate on this kind of pruning because it is particularly clean
and simple.

fast track

Chapter 13, p. 215

Though a useful tool, Markov partitioning is not without drawbacks. One
glaring shortcoming is that Markov partitions are not unique: any of many
different partitions might do the job. The C 2- and D3- equivariant systems that
we discuss next offers a simple illustration of different Markov partitioning
strategies for the same dynamical system.

12.5 Recoding, symmetries, tilings

In Chapter 9 we made a claim that if there is a symmetry of dynamics,
we must use it. Here we shall show how to use it, on two concrete exam-
ples, and in Chapter 21 we shall be handsomely rewarded for our labors. First,
the simplest example of equivariance, a single ‘reflection’ C 2 group of Exam-
ple 9.13.

Example 12.5 C2 recoded:
Assume that each orbit is uniquely labeled by an infinite string {si}, si ∈ {+,−} and

exercise 9.6
that the dynamics is C2-equivariant under the + ↔ − interchange. Periodic orbits
separate into two classes, the self-dual configurations +−, + + −−, + + + − −−,
+ − − + − + +−, · · ·, with multiplicity mp = 1, and the pairs +, −, + + −, − − +, · · ·,
with multiplicity mp = 2. For example, as there is no absolute distinction between the
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Table 12.1 Correspondence between the C2 symmetry reduced cycles p̃ and the full
state space periodic orbits p, together with their multiplicities mp. Also listed are the
two shortest cycles (length 6) related by time reversal, but distinct under C2.

p̃ p mp

1 + 2
0 −+ 1
01 − − ++ 1
001 − + + 2
011 − − − + ++ 1
0001 − + − − + − ++ 1
0011 − + ++ 2
0111 − − − − + + ++ 1
00001 − + − + − 2
00011 − + − − − + − + ++ 1
00101 − + + − − + − − ++ 1
00111 − + − − − + − + ++ 1
01011 − − + + + 2
01111 − − − − − + + + ++ 1
001011 − + + − − − + − − + ++ 1
001101 − + + + − − + − − − ++ 1

‘left’ or the ‘right’ lobe of the Lorenz attractor, Fig. 3.7 (a), the Floquet multipliers
satisfy Λ+ = Λ−, Λ++− = Λ+−−, and so on.

exercise 21.5
The symmetry reduced labeling ρi ∈ {0, 1} is related to the full state space labeling
si ∈ {+,−} by

If si = si−1 then ρi = 1

If si � si−1 then ρi = 0 (12.13)

For example, the fixed point + = · · · + + + + · · · maps into · · · 111 · · · = 1, and so
does the fixed point −. The 2-cycle −+ = · · · − + − + · · · maps into fixed point
· · · 000 · · · = 0, and the 4-cycle − + +− = · · · − − + + − − + + · · · maps into 2-cycle
· · · 0101 · · · = 01. A list of such reductions is given in Table 12.1.

Next, let us take the old pinball game and ‘quotient’ the state space by the
symmetry, or ‘desymmetrize.’ As the three disks are equidistantly spaced, our
game of pinball has a sixfold symmetry. For instance, the cycles 12, 23, and 13
in Fig. 12.12 are related to each other by rotation by ±2π/3 or, equivalently, by
a relabeling of the disks. We exploit this symmetry by recoding, as in (12.7).

exercise 11.1
exercise 12.6

Example 12.6 Recoding ternary symbolic dynamics in binary:
Given a ternary sequence and labels of 2 preceding disks, rule (12.7) fixes the subse-
quent binary symbols. Here we list an arbitrary ternary itinerary, and the correspond-
ing binary sequence:

ternary : 3 1 2 1 3 1 2 3 2 1 2 3 1 3 2 3

binary : · 1 0 1 0 1 1 0 1 0 1 1 0 1 0 (12.14)

The first 2 disks initialize the trajectory and its direction; 3 �→ 1 �→ 2 �→ · · ·. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23,
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Table 12.2 D3 correspondence between the binary labeled fundamental domain prime
cycles p̃ and the full 3-disk ternary labeled cycles p, together with the D3 transformation
that maps the end point of the p̃ cycle into the irreducible segment of the p cycle, see
Section 9.12. Breaks in the above ternary sequences mark repeats of the irreducible
segment; for example, the full space 12-cycle 1212 3131 2323 consists of 1212 and its
symmetry related segments 3131, 2323. The multiplicity of p cycle is mp = 6np̃/np.
The shortest pair of fundamental domain cycles related by time reversal (but no spatial
symmetry) are the 6-cycles 001011 and 001101.

p̃ p gp̃

0 1 2 σ12

1 1 2 3 C
01 12 13 σ23

001 121 232 313 C
011 121 323 σ13

0001 1212 1313 σ23

0011 1212 3131 2323 C2

0111 1213 2123 σ12

00001 12121 23232 31313 C
00011 12121 32323 σ13

00101 12123 21213 σ12

00111 12123 e
01011 12131 23212 31323 C
01111 12132 13123 σ23

p̃ p gp̃

000001 121212 131313 σ23

000011 121212 313131 232323 C2

000101 121213 e
000111 121213 212123 σ12

001011 121232 131323 σ23

001101 121231 323213 σ13

001111 121231 232312 313123 C
010111 121312 313231 232123 C2

011111 121321 323123 σ13

0000001 1212121 2323232 3131313 C
0000011 1212121 3232323 σ13

0000101 1212123 2121213 σ12

0000111 1212123 e
· · · · · · · · ·

31, 32 respectively have the same weights, the same size state space partitions, and
are coded by a single binary sequence. (continued in Example 12.7)

exercise 12.7
exercise 14.2

(a) (b)

Fig. 12.12 The 3-disk game of pinball
with the disk radius : center separation ratio
a:R = 1:2.5. (a) 2-cycles 12, 13, 23, and 3-
cycle 123 (132, which rotates clockwise, is
not drawn). (b) The fundamental domain, i.e.,
the small 1/6th wedge indicated in (a), con-
sisting of a section of a disk, two segments
of symmetry axes acting as straight mirror
walls, and an escape gap. The above five cy-
cles restricted to the fundamental domain are
the two fixed points 0, 1. See Fig. 9.6 for cy-
cle 10 and further examples.

Binary symbolic dynamics has two immediate advantages over the ternary
one; the prohibition of self-bounces is automatic, and the coding utilizes the
symmetry of the 3-disk pinball game in an elegant manner.

exercise 11.2

The 3-disk game of pinball is tiled by six copies of the fundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors, see Fig. 12.12 (b). Every global 3-disk trajectory has a cor-
responding fundamental domain mirror trajectory obtained by replacing every
crossing of a symmetry axis by a reflection. Depending on the symmetry of the
full state space trajectory, a repeating binary alphabet block corresponds either
to the full periodic orbit or to a relative periodic orbit (examples are shown in
Fig. 12.12 and Table 12.2). A relative periodic orbit corresponds to a periodic
orbit in the fundamental domain.

Table 12.2 lists some of the shortest binary periodic orbits, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. For a num-
ber of deep reasons that will be elucidated in Chapter 21, life is much simpler
in the fundamental domain than in the full system, so whenever possible our
computations will be carried out in the fundamental domain.

Example 12.7 D3 recoded - 3-disk game of pinball:
(continued from Example 12.6) The D3 recoding can be worked out by a glance
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at Fig. 12.12 (a) (continuation of Example 9.14). For the symmetric 3-disk game
of pinball the fundamental domain is bounded by a disk segment and the two adja-
cent sections of the symmetry axes that act as mirrors (see Fig. 12.12 (b)). The three
symmetry axes divide the space into six copies of the fundamental domain. Any
trajectory on the full space can be pieced together from bounces in the fundamental
domain, with symmetry axes replaced by flat mirror reflections. The binary {0, 1}
reduction of the ternary three disk {1, 2, 3} labels has a simple geometric interpreta-
tion, Fig. 12.2: a collision of type 0 reflects the projectile to the disk it comes from
(back–scatter), whereas after a collision of type 1 projectile continues to the third
disk. For example, 23 = · · · 232323 · · · maps into · · · 000 · · · = 0 (and so do 12 and
13), 123 = · · · 12312 · · · maps into · · · 111 · · · = 1 (and so does 132), and so forth.
Such reductions for short cycles are given in Table 12.2, Fig. 12.12 and Fig. 9.7.

Résumé

In the preceding and this chapter we start with a d-dimensional state space and
end with a 1-dimensional return map description of the dynamics. The arc-
length parametrization of the unstable manifold maintains the 1-to-1 relation of
the full d-dimensional state space dynamics and its 1-dimensional return-map
representation. To high accuracy no information about the flow is lost by its
1-dimensional return map description. We explain why Lorenz equilibria are
heteroclinically connected (it is not due to the symmetry), and how to generate
all periodic orbits of Lorenz flow up to given length. This we do, in contrast to
the rest of the thesis, without any group-theoretical jargon to blind you with.

For 1-dimensional maps the folding point is the critical point, and easy to
determine. In higher dimensions, the situation is not so clear - one can attempt
to determine the (fractal set of) folding points by looking at their higher iterates
- due to the contraction along stable manifolds, the fold gets to be exponentially
sharper at each iterate. In practice this set is essentially uncontrollable for
the same reason the flow itself is chaotic - exponential growth of errors. We
prefer to determine a folding point by bracketing it by longer and longer cycles
which can be determined accurately using variational methods of Chapter 27,
irrespective of their period.

For a generic dynamical system a subshift of finite type is the exception
rather than the rule. Its symbolic dynamics can be arbitrarily complex; even for
the logistic map the grammar is finite only for special parameter values. Only
some repelling sets (like our game of pinball) and a few purely mathemati-
cal constructs (called Anosov flows) are structurally stable - for most systems
of interest an infinitesimal perturbation of the flow destroys and/or creates an
infinity of trajectories, and specification of the grammar requires determina-
tion of pruning blocks of arbitrary length. The repercussions are dramatic and
counterintuitive; for example, the transport coefficients such as the determin-
istic diffusion constant of Section 25.2 are emphatically not smooth functions
of the system parameters. Importance of symbolic dynamics is often grossly

section 25.2
unappreciated; as we shall see in Chapters 20 and 23, the existence of a finite
grammar is the crucial prerequisite for construction of zeta functions with nice
analyticity properties. This generic lack of structural stability is what makes
nonlinear dynamics so hard.
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The conceptually simpler finite subshift Smale horseshoes suffice to moti-
vate most of the key concepts that we shall need for time being. Our strategy
is akin to bounding a real number by a sequence of rational approximants; we
converge toward the non–wandering set under investigation by a sequence of
self-similar Cantor sets. The rule that everything to one side of the pruning
front is forbidden might is striking in its simplicity: instead of pruning a Can-
tor set embedded within some larger Cantor set, the pruning front cleanly cuts
out a compact region in the symbol square, and that is all - there are no addi-
tional pruning rules. A ‘self-similar’ Cantor set (in the sense in which we use
the word here) is a Cantor set equipped with a subshift of finite type symbol
dynamics, i.e., the corresponding grammar can be stated as a finite number of
pruning rules, each forbidding a finite subsequence s 1 s2 . . . sn . Here the no-
tation s1s2 . . . sn stands for n consecutive symbols s11, s2, . . ., sn, preceded
and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topological pruning into
pruning rules for inadmissible sequences; those are implemented by construct-
ing transition matrices and/or graphs, see Chapters 14 and 15.

Further reading

12.1 Stable/unstable manifolds. For pretty hand-drawn pic-
tures of invariant manifolds, see Abraham and Shaw [12.12].
Construction of invariant manifolds by map iteration is de-
scribed in Simo [12.31]. Fixed point stable / unstable mani-
folds and their homoclinic and heteroclinic intersections can
be computed using DsTool [12.55–57]. Unstable manifold
turning points were utilized in Refs. [12.12, 2, 28–30] to par-
tition state space and prune inadmissible symbol sequences.
The arclength parameterized return maps were introduced
by Christiansen et al. [12.59], and utilized in Ref. [12.33].
Even though no dynamical system has been studied more
exhaustively than the Lorenz equations, the analysis of Sec-
tion 11.2 is new. The desymmetrization follows Gilmore and
Lettelier [12.15], but the key new idea is taken from Chris-
tiansen et al. [12.59]: the arc-length parametrization of the
unstable manifold maintains the 1-to-1 relation of the full
d-dimensional state space dynamics and its 1-dimensional
return-map representation, in contrast to 1-dimensional pro-
jections of the (d − 1)-dimensional Poincaré section return
maps previously deployed in the literature. In other words,
to high accuracy no information about the flow is lost by its
1-dimensional return map description.

12.2 Smale horseshoe. S. Smale understood clearly that the
crucial ingredient in the description of a chaotic flow is the
topology of its non-wandering set, and he provided us with the
simplest visualization of such sets as intersections of Smale

horseshoes. In retrospect, much of the material covered here
can already be found in Smale’s fundamental paper [12.27],
but an engineer or a scientist who has run into a chaotic time
series in his laboratory might not know that he is investigating
the action (differentiable) of a Lie group G on a manifold M,
and that the Lefschetz trace formula is the way to go.
We have tried to explain the geometric picture the best we
could in the static text format, but there is no substitute
for dynamics but the dynamics itself. We found Demidov’s
“Chaotic maps” [12.?] simulations of the Hénon map particu-
larly helpful in explaining how horsheshoes partition the non-
wandering sets.

12.3 Pruning fronts. The ‘partition conjecture’ is due to
Grassberger and Kantz [12.3]. The notion of a pruning front
and the ‘pruning-front conjecture’ was formulated by Cvi-
tanović et al. [12.12], and developed by K.T. Hansen for a
number of dynamical systems in his Ph.D. thesis [12.19] and
a series of papers [12.20]- [12.24]. The ‘multimodal map ap-
proximation’ is described in the K.T. Hansen thesis [12.19].
Hansen’s thesis is still the most accessible exposition of the
pruning theory and its applications. Detailed studies of prun-
ing fronts are carried out in Refs. [12.13,15,14]; Ref. [12.5] is
the most detailed study carried out so far. The rigorous theory
of pruning fronts has been developed by Y. Ishii [12.16, 17]
for the Lozi map, and A. de Carvalho [12.18] in a very gen-
eral setting. Beyond the orbit pruning and its infinity of ad-
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missible unstable orbits, an attractor of Hénon type may also
own an infinity of attractive orbits coexisting with the strange
attractor [12.60,61]. We offer heuristic arguments and numer-

ical evidence that the coexistence of attractive orbits does not
destroy the strange attractor/repeller, which is also in this case
described by the 2−d danish pastry plot.
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Exercises

(12.1) A Smale horseshoe. The Hénon map of Example 3.7[
x′

y′

]
=

[
1 − ax2 + by
x

]
(12.15)

maps the [x, y] plane into itself - it was constructed by
Hénon [12.6] in order to mimic the Poincaré section of
once-folding map induced by a flow like the one sketched
in Fig. 11.10. For definitiveness fix the parameters to
a = 6, b = −1.

a) Draw a rectangle in the (x, y) plane such that its nth
iterate by the Hénon map intersects the rectangle 2n

times.

b) Construct the inverse of the (12.15).

c) Iterate the rectangle back in the time; how many
intersections are there between the n forward and
m backward iterates of the rectangle?

d) Use the above information about the intersections
to guess the (x, y) coordinates for the two fixed
points, a 2-periodic point, and points on the two
distinct 3-cycles from Table 15.1. The exact peri-
odic points are computed in Exercise 13.13.

(12.2) Kneading Danish pastry. Write down the (x, y) →
(x, y) mapping that implements the baker’s map

Figure: Kneading danish pastry: symbol square repre-
sentation of an orientation reversing once-folding map
obtained by fattening the Smale horseshoe intersections
of Fig. 12.4 into a unit square. In the symbol square the

dynamics maps rectangles into rectangles by a decimal
point shift. together with the inverse mapping. Sketch

a few rectangles in symbol square and their forward and
backward images. (Hint: the mapping is very much like
the tent map (11.4)).

(12.3) Kneading danish without flipping. The baker’s map
of Exercise 12.2 includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the (x, y)→ (x, y) mapping that implements an ori-
entation preserving baker’s map (no flip; Jacobian deter-
minant = 1). Sketch and label the first few folds of the
symbol square.

(12.4) Orientation reversing once-folding map. By adding
a reflection around the vertical axis to the horseshoe map
g we get the orientation reversing map g̃ shown in the
second Figure above. Q̃0 and Q̃1 are oriented as Q0 and
Q1, so the definition of the future topological coordinate
γ is identical to the γ for the orientation preserving horse-
shoe. The inverse intersections Q̃−1

0 and Q̃−1
1 are oriented

so that Q̃−1
0 is opposite to Q, while Q̃−1

1 has the same ori-
entation as Q. Check that the past topological coordinate
δ is given by

wn−1 =

{
1 − wn if sn = 0
wn if sn = 1

, w0 = s0

δ(x) = 0.w0w−1w−2 . . . =
∞∑

n=1

w1−n/2
n . (12.16)

(12.5) Infinite symbolic dynamics. Let σ be a func-
tion that returns zero or one for every infinite binary
string: σ : {0, 1}N → {0, 1}. Its value is represented
by σ(ε1, ε2, . . .) where the εi are either 0 or 1. We will
now define an operator T that acts on observables on the
space of binary strings. A function a is an observable if
it has bounded variation, that is, if

‖a‖ = sup
{εi}
|a(ε1, ε2, . . .)| < ∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .)

+a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .

(a) (easy) Consider a finite version Tn of the operator
T :

Tna(ε1, ε2, . . . , ε1,n) =
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a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +

a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

Show that Tn is a 2n×2n matrix. Show that its trace
is bounded by a number independent of n.

(b) (medium) With the operator norm induced by the
function norm, show that T is a bounded operator.

(c) (hard) Show that T is not trace class.

(12.6) 3-disk fundamental domain cycles. (continued from

Exercise 9.6) Try to sketch 0, 1, 01, 001, 011, · · ·. in the
fundamental domain, and interpret the symbols {0, 1} by
relating them to topologically distinct types of collisions.

Compare with Table 12.2. Then try to sketch the location
of periodic points in the Poincaré section of the billiard
flow. The point of this exercise is that while in the con-
figuration space longer cycles look like a hopeless jum-
ble, in the Poincaré section they are clearly and logically
ordered. The Poincaré section is always to be preferred
to projections of a flow onto the configuration space co-
ordinates, or any other subset of state space coordinates
which does not respect the topological organization of the
flow.

(12.7) 3-disk pruning. (Not easy) Show that for 3-disk
game of pinball the pruning of orbits starts at R : a =
2.04821419 . . ., Fig. 11.6. (K.T. Hansen)
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Having set up the dynamical context, now we turn to the key and unavoid-
able piece of numerics in this subject; search for the solutions (x, T),
x ∈ Rd, T ∈ R of the periodic orbit condition

f t+T (x) = f t(x) , T > 0 (13.1)

for a given flow or mapping.
In Chapters 18 and 19 we will establish that spectra of evolution operators

can be extracted from periodic orbit sums:∑
(spectral eigenvalues) =

∑
(periodic orbits) .

Hence, periodic orbits are the necessary ingredient for evaluation of spectra of
evolution operators. We need to know what periodic orbits can exist, and the
symbolic dynamics developed so far is an invaluable tool toward this end.

Sadly, searching for periodic orbits will never become as popular as a week
on Côte d’Azur, or publishing yet another log-log plot in Phys. Rev. Letters.
This chapter is intended as a hands-on guide to extraction of periodic orbits,
and should be skipped on first reading - you can return to it whenever the
need for finding actual cycles arises. A serious cyclist will want to also learn
about the variational methods to find cycles, Chapter 27. They are particularly
useful when little is understood about the topology of a flow, such as in high-
dimensional periodic orbit searches.

chapter 27

fast track

Chapter 15, p. 245

A prime cycle p of period T p is a single traversal of the periodic orbit, so our
task will be to find a periodic point x ∈ M p and the shortest time T p for which
(13.1) has a solution. A periodic point of a flow f t which crosses a Poincaré
section n times is a fixed point of the Pn iterate of P, the return map (3.1),
hence we shall refer to all cycles as “fixed points” in this chapter. By cyclic

section 5.2
invariance, Floquet multipliers and the period of the cycle are independent
of the choice of the initial point, so it will suffice to solve (13.1) at a single
periodic point.

If the cycle is an attracting limit cycle with a sizable basin of attraction, it
can be found by integrating the flow for sufficiently long time. If the cycle
is unstable, simple integration forward in time will not reveal it, and methods
to be described here need to be deployed. In essence, any method for find-
ing a cycle is based on devising a new dynamical system which possesses the
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same cycle, but for which this cycle is attractive. Beyond that, there is a great
freedom in constructing such systems, and many different methods are used in
practice.

Due to the exponential divergence of nearby trajectories in chaotic dynam-
ical systems, fixed point searches based on direct solution of the fixed-point
condition (13.1) as an initial value problem can be numerically very unstable.
Methods that start with initial guesses for a number of points along the cycle,

chapter 27
such as the multipoint shooting method described here in Section 13.3, and the
variational methods of Chapter 27, are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a good understanding of
the topology of the flow: a preliminary step to any serious periodic orbit calcu-
lation is preparation of a list of all distinct admissible prime periodic symbol
sequences, such as the list given in Table 15.1. The relations between the
temporal symbol sequences and the spatial layout of the topologically distinct
regions of the state space discussed in Chapters 11 and 12 should enable us to
guess location of a series of periodic points along a cycle. Armed with such
informed guess we proceed to improve it by methods such as the Newton-
Raphson iteration; we show how this works by applying the Newton method
to 1- and d-dimensional maps. But first, where are the cycles?

11 Henri Roux: “But I only want to do
billiards?” A: “Proceed straight to Sec-
tion 27.3.”

13.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it doesn’t
converge? A: Well then you only have yourself to blame.

— T.D. Lee

The simplest and conceptually easiest setting for guessing where the cycles
are is the case of planar billiards. The Maupertuis principle of least action here
dictates that the physical trajectories extremize the length of an approximate
orbit that visits a desired sequence of boundary bounces.

Example 13.1 Periodic orbits of billiards.
Consider how this works for 3-disk pinball game of Section 12.5. . Label the three

section 12.5
section 1.4

disks by 1, 2 and 3, and associate to every trajectory an itinerary, a sequence of labels
indicating the order in which the disks are visited, as in Fig. 3.2. Given the itinerary,
you can construct a guess trajectory by taking a point on the boundary of each disk
in the sequence, and connecting them by straight lines. Imagine that this is a rubber
band wrapped through 3 rings, and shake the band until it shrinks into the physical
trajectory, the rubber band of shortest length.
Extremization of a cycle length requires variation of n bounce positions si. The
computational problem is to find the extremum values of cycle length L(s) where
s = (s1, . . . , sn ) , a task that we postpone to Section 27.3. As an example, the short

exercise 27.2
exercise 13.13

periods and stabilities of 3-disk cycles computed this way are listed Table 27.3, and
some examples are plotted in Fig. 3.2. It’s a no brainer, and millions of such cycles
have been computed.

If we were only so lucky. Real life finds us staring at something like Yang-
Mills or Navier-Stokes equations, utterly clueless. What to do?
cycles - 7sep2010 ChaosBook.org version13.5, Sep 7 2011
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One, there is always mindless computation. In practice one might be satis-
fied with any rampaging robot that finds “the most important” cycles. Ergodic
exploration of recurrences that we turn to next sometimes perform admirably
well.

13.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanović)
The equilibria and periodic orbits (with the exception of sinks and stable limit

remark 13.1
cycles) are never seen in simulations and experiments because they are unsta-
ble. Nevertheless, one does observe close passes to the least unstable equilibria
and periodic orbits, as in Fig. 13.1. Ergodic exploration by long-time trajec-
tories (or long-lived transients, in case of strange repellers) can uncover state
space regions of low velocity, or finite time recurrences. In addition, such tra-

section 16.1
jectories preferentially sample the natural measure of the ‘turbulent’ flow, and
by initiating searches within the state space concentrations of natural measure
bias the search toward the dynamically important invariant solutions.

p

x(t)

x(0)

Fig. 13.1 An ergodic trajectory can shadow
an unstable periodic orbit p for a finite time.

The search consists of following a long trajectory in state space, and look-
ing for close returns of the trajectory to itself, see Fig. 13.1. Whenever the
trajectory almost closes in a loop (within a given tolerance), another point of
this near miss of a cycle can be taken as an initial condition. Supplemented by
a Newton routine described below, a sequence of improved initial conditions
may indeed rapidly lead to closing a cycle. The method preferentially finds
the least unstable orbits, while missing the more unstable ones that contribute
little to the cycle expansions.

This blind search is seriously flawed: in contrast to the 3-disk Example 13.1,
it is not systematic, it gives no insight into organization of the ergodic sets, and
can easily miss very important cycles. Foundations to a systematic exploration
of ergodic state space are laid in Chapters 11 and 12, but are a bit of work to
implement.

13.1.2 Cycles found by thinking

Thinking is extra price.

—Dicho Colombiano

A systematic charting out of state space starts out by a hunt for equilibrium
points. If the equations of motion are a finite set of ODEs, setting the velocity
field v(x) in (2.6) to zero reduces search for equilibria to a search for zeros
of a set of algebraic equations. We should be able, in principle, to enumerate
and determine all real and complex zeros in such cases, e.g. the Lorenz Ex-
ample 2.2 and the Rössler Example 2.3. If the equations of motion and the
boundary conditions are invariant under some symmetry, some equilibria can
be determined by symmetry considerations: if a function is e.g. antisymmetric,
it must vanish at origin, e.g. the Lorenz EQ0 = (0, 0, 0) equilibrium.
ChaosBook.org version13.5, Sep 7 2011 cycles - 7sep2010
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As to other equilibria: if you have no better idea, create a state space grid,
about 50 xk acrossM in each dimension, and compute the velocity field v k =

v(xk) at each grid point; a few million vk values are easily stored. Plot xk for
which |vk |2 < ε, ε << |vmax|2 but sufficiently large that a few thousand xk are
plotted. If the velocity field varies smoothly across the state space, the regions
|vk|2 < ε isolate the (candidate) equilibria. Start a Newton iteration with the
smallest |vk |2 point within each region. Barring exceptionally fast variations in
v(x) this should yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of equations, but
steady states of PDEs such as the Navier-Stokes flow are themselves solutions
of ODEs or PDEs, and much harder to determine.

Equilibria–by definition–do not move, so they cannot be “turbulent.” What
makes them dynamically important are their stable/unstable manifolds. A
chaotic trajectory can be thought of as a sequence of near visitations of equi-
libria. Typically such neighborhoods have many stable, contracting directions
and a handful of unstable directions. Our strategy will be to generalize the
billiard Poincaré section maps Psn+1←sn of Example 3.2 to maps from a section
of the unstable manifold of equilibrium sn to the section of unstable manifold
of equilibrium sn+1, and thus reduce the continuous time flow to a sequence
of maps. These Poincaré section maps do double duty, providing us both with
an exact representation of dynamics in terms of maps, and with a covering
symbolic dynamics.

We showed in the Lorenz flow Example 11.4 how to reduce the 3-dimensional
Lorenz flow to a 1−d return map. In the Rössler flow Example 2.3 we sketched
the attractor by running a long chaotic trajectory, and noted that the attractor
is very thin, but otherwise the return maps that we plotted were disquieting –
Fig. 3.6 did not appear to be a 1-to-1 map. In the next example we show how to
use such information to approximately locate cycles. In the remainder of this
chapter and in Chapter 27 we shall learn how to turn such guesses into highly
accurate cycles.

Example 13.2 Rössler attractor.
Run a long simulation of the Rössler flow f t, plot a Poincaré section, as in Fig. 3.5,

and extract the corresponding Poincaré return map P, as in Fig. 3.6. Luck is with
us; Fig. 13.2 (a) return map y → P1(y, z) looks much like a parabola, so we take
the unimodal map symbolic dynamics, Section 11.3, as our guess for the covering
dynamics. Strictly speaking, the attractor is “fractal,” but for all practical purposes
the return map is 1-dimensional; your printer will need a resolution better than 1014

dots per inch to start resolving its structure.
Periodic points of a prime cycle p of cycle length np for the x = 0, y > 0 Poincaré sec-
tion of the Rössler flow Fig. 2.6 are fixed points (y, z) = Pn (y, z) of the nth Poincaré
return map.
Using the fixed point yk+1 = yk in Fig. 13.2 (a) together with the simultaneous fixed
point of the z→ P1(y, z) return map (not shown) as a starting guess (0, y(0), z(0)) for the
Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find the
cycle Fig. 13.2 (b) with the Poincaré section point (0, yp, zp), period Tp, expanding,
marginal, contracting Floquet multipliers (Λp,e,Λp,m,Λp,c), and Lyapunov exponents
(λp,e, λp,m, λp,c):exercise 13.10

1-cycle: (x, y, z) = (0, 6.09176832, 1.2997319)
cycles - 7sep2010 ChaosBook.org version13.5, Sep 7 2011
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Fig. 13.2 (a) y → P1(y, z) return map for x =
0, y > 0 Poincaré section of the Rössler flow
Fig. 2.6. (b) The 1-cycle found by taking the
fixed point yk+n = yk together with the fixed
point of the z → z return map (not shown)
an initial guess (0, y(0), z(0)) for the Newton-
Raphson search. (c) yk+3 = P3

1(yk , zk), the
third iterate of Poincaré return map (3.1) to-
gether with the corresponding plot for zk+3 =

P3
2(yk, zk), is used to pick starting guesses for

the Newton-Raphson searches for the two 3-
cycles: (d) the 001 cycle, and (e) the 011 cy-
cle. (G. Simon)

T1 = 5.88108845586

(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353, 1 + 10−14,−1.29 × 10−14)

(λ1,e, λ1,m, λ1,c) = (0.149141556, 10−14,−5.44) . (13.2)

The Newton-Raphson method that we used is described in Section 13.4.
As an example of a search for longer cycles, we use yk+3 = P3

1(yk , zk), the third iterate
of Poincaré return map (3.1) plotted in Fig. 13.2 (c), together with a corresponding
plot for zk+3 = f 3(yk, zk), to pick starting guesses for the Newton-Raphson searches
for the two 3-cycles plotted in Fig. 13.2 (d), (e). For a listing of the short cycles of
the Rössler flow, consult Exercise 13.10.
The numerical evidence suggests (but a proof is lacking) that all cycles that com-
prise the strange attractor of the Rössler flow are hyperbolic, each with an expanding
eigenvalue |Λe| > 1, a contracting eigenvalue |Λc| < 1, and a marginal eigenvalue
|Λm| = 1 corresponding to displacements along the direction of the flow.
For the Rössler flow the contracting eigenvalues turn out to be insanely contracting,
a factor of e−32 per one par-course of the attractor, so their numerical determination is
quite difficult. Fortunately, they are irrelevant; for all practical purposes the strange
attractor of the Rössler flow is 1-dimensional, a very good realization of a horseshoe
template. (G. Simon and P. Cvitanović)

13.2 One-dimensional mappings

(F. Christiansen)

13.2.1 Inverse iteration

Let us first consider a very simple method to find unstable cycles of a 1-
dimensional map such as the logistic map. Unstable cycles of 1−d maps are
attracting cycles of the inverse map. The inverse map is not single valued, so
at each backward iteration we have a choice of branch to make. By choosing
branch according to the symbolic dynamics of the cycle we are trying to find,
we will automatically converge to the desired cycle. The rate of convergence
is given by the stability of the cycle, i.e., the convergence is exponentially fast.
Figure 13.3 shows such path to the 01-cycle of the logistic map.

exercise 13.13
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The method of inverse iteration is fine for finding cycles for 1-d maps and
some 2−d systems such as the repeller of Exercise 13.13. It is not particu-
larly fast, especially if the inverse map is not known analytically. However,
it completely fails for higher dimensional systems where we have both stable
and unstable directions. Inverse iteration will exchange these, but we will still
be left with both stable and unstable directions. The best strategy is to directly
attack the problem of finding solutions of f T (x) = x.

13.2.2 Newton method

Newton method for determining a zero x ∗ of a function F(x) of one variable is
based on a linearization around a starting guess x0:

F(x) ≈ F(x0) + F′(x0)(x − x0). (13.3)

An approximate solution x1 of F(x) = 0 is

x1 = x0 − F(x0)/F′(x0). (13.4)

The approximate solution can then be used as a new starting guess in an itera-
tive process. A fixed point of a map f is a solution to F(x) = x − f (x) = 0. We
determine x by iterating

-35

-30

-25

-20

-15

-10

-5

0

0 2 4 6 8 10 12 14 16 18 20

Fig. 13.4 Convergence of Newton method
(♦) vs. inverse iteration (+). The error after
n iterations searching for the 01-cycle of the
logistic map f (x) = 4x(1 − x) with an initial
starting guess of x1 = 0.2, x2 = 0.8. y-axis is
log10 of the error. The difference between the
exponential convergence of the inverse iter-
ation method and the super-exponential con-
vergence of Newton method is dramatic.

xm = g(xm−1) = xm−1 − F(xm−1)/F′(xm−1)

= xm−1 −
1

1 − f ′(xm−1)
(xm−1 − f (xm−1)) . (13.5)

Provided that the fixed point is not marginally stable, f ′(x) � 1 at the fixed
point x, a fixed point of f is a super-stable fixed point of the Newton-Raphson
map g, g′(x) = 0, and with a sufficiently good initial guess, the Newton-
Raphson iteration will converge super-exponentially fast.

To illustrate the efficiency of the Newton method we compare it to the in-
verse iteration method in Fig. 13.4. Newton method wins hands down: the
number of significant digits of the accuracy of x estimate doubles with each
iteration.

In order to avoid jumping too far from the desired x ∗ (see Fig. 13.5), one
often initiates the search by the damped Newton method,

Δxm = xm+1 − xm = −
F(xm)
F′(xm)

Δτ , 0 < Δτ ≤ 1 ,

takes small Δτ steps at the beginning, reinstating to the full Δτ = 1 jumps only
when sufficiently close to the desired x∗.

13.3 Multipoint shooting method

(F. Christiansen)
Periodic orbits of length n are fixed points of f n so in principle we could use

the simple Newton method described above to find them. However, this is not
an optimal strategy. f n will be a highly oscillating function with perhaps as
cycles - 7sep2010 ChaosBook.org version13.5, Sep 7 2011
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many as 2n or more closely spaced fixed points, and finding a specific periodic
point, for example one with a given symbolic sequence, requires a very good
starting guess. For binary symbolic dynamics we must expect to improve the
accuracy of our initial guesses by at least a factor of 2n to find orbits of length n.
A better alternative is the multipoint shooting method. While it might very hard
to give a precise initial point guess for a long periodic orbit, if our guesses are
informed by a good state space partition, a rough guess for each point along the
desired trajectory might suffice, as for the individual short trajectory segments
the errors have no time to explode exponentially. And, indeed, in Chapter 11
we have developed a qualitative theory of how these cycle points are laid out
topologically.

x(b)
x

F(x)

x

(m)F(x    )

(m+1)

x(m)

x
x xxc *

R

L(b+1)x

Fig. 13.5 Newton method: bad initial guess
x(b) leads to the Newton estimate x(b+1) far
away from the desired zero of F(x). Se-
quence · · · , x(m) , x(m+1), · · ·, starting with a
good guess converges super-exponentially to
x∗ . The method diverges if it iterates into the
basin of attraction of a local minimum xc .

A cycle of length n is a zero of the n-dimensional vector function F:

F(x) = F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1

x2

·
xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 − f (xn)
x2 − f (x1)
· · ·

xn − f (xn−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The relations between the temporal symbol sequences and the spatial layout
of the topologically distinct regions of the state space discussed in Chapter 11
enable us to guess location of a series of periodic points along a cycle. Armed
with such informed initial guesses we can initiate a Newton-Raphson iteration.
The iteration in the Newton method now takes the form of

d
dx

F(x)(x′ − x) = −F(x), (13.6)

where d
dx F(x) is an [n × n] matrix:

d
dx F(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − f ′(xn)

− f ′(x1) 1
· · · 1

· · · 1
− f ′(xn−1) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (13.7)

This matrix can easily be inverted numerically by first eliminating the elements
below the diagonal. This creates non-zero elements in the nth column. We
eliminate these and are done.

Example 13.3 Newton inversion for a 3-cycle.
Let us illustrate how this works step by step for a 3-cycle. The initial setup for a
Newton step is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 − f ′(x3)
− f ′(x1) 1 0

0 − f ′(x2) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δx1

Δx2

Δx3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1

F2

F3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where Δxi = x′i − xi is the correction to our initial guess xi, and Fi = xi − f (xi−1) is
the error at ith periodic point. Eliminate the sub-diagonal elements by adding f′(x1)
times the first row to the second row, then adding f ′(x2) times the second row to the
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third row: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 − f ′(x3)
0 1 − f ′(x1) f ′(x3)
0 0 1 − f ′(x2) f ′(x1) f ′(x3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δx1

Δx2

Δx3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
F1

F2 + f ′(x1)F1

F3 + f ′(x2)F2 + f ′(x2) f ′(x1)F1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The next step is to invert the last element in the diagonal, i.e., divide the third row
by 1− f ′(x2) f ′(x1) f ′(x3). If this element is zero at the periodic orbit this step cannot
work. As f ′(x2) f ′(x1) f ′(x3) is the stability of the cycle (when the Newton iteration
has converged), this is not a good method to find marginally stable cycles. We now
have ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 0 − f ′(x3)

0 1 − f ′(x1) f ′(x3)
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ Δx1

Δx2

Δx3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
F1

F2 + f ′(x1)F1
F3+ f ′(x2)F2+ f ′(x2) f ′(x1)F1

1− f ′(x2) f ′(x1) f ′(x3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Finally we add f ′(x3) times the third row to the first row and f ′(x1) f ′(x3) times the
third row to the second row. The left hand side matrix is now the unit matrix, the
right hand side is an explicit formula for the corrections to our initial guess. We have
gone through one Newton iteration.

When one sets up the Newton iteration on the computer it is not necessary
to write the left hand side as a matrix. All one needs is a vector containing
the f ′(xi)’s, a vector containing the n’th column, i.e., the cumulative product
of the f ′(xi)’s, and a vector containing the right hand side. After the iteration
the vector containing the right hand side should be the correction to the initial
guess.

exercise 13.1

13.3.1 d-dimensional mappings

Armed with clever initial guesses, informed by symbolic dynamics, we can
easily extend the Newton-Raphson iteration method to d-dimensional map-
pings. In this case f ′(xi) is a [d × d] matrix, and d

dx F(x) is an [nd× nd] matrix.
In each of the steps that we went through above we are then manipulating d
rows of the left hand side matrix. (Remember that matrices do not commute
- always multiply from the left.) In the inversion of the nth element of the
diagonal we are inverting a [d × d] matrix (1 −

∏
f ′(xi)) which can be done if

none of the eigenvalues of
∏

f ′(xi) equals 1, i.e., if the cycle has no marginally
stable eigen-directions.

Example 13.4 Newton method for time delay maps.
Some d-dimensional mappings (such as the Hénon map (3.19)) can be written as
1-dimensional time delay mappings of the form

f (xi) = f (xi−1, xi−2, . . . , xi−d). (13.8)

In this case d
dx F(x) is an [n × n] matrix as in the case of usual 1-dimensional maps

but with non-zero matrix elements on d off-diagonals. In the elimination of these off-
diagonal elements the last d columns of the matrix will become non-zero and in the
final cleaning of the diagonal we will need to invert a [d × d] matrix. In this respect,
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nothing is gained numerically by looking at such maps as 1-dimensional time delay
maps.

13.4 Flows

(R. Paškauskas and P. Cvitanović)
For a continuous time flow the periodic orbit Floquet multiplier (5.16) along
the flow direction of necessity equals unity; the separation of any two points
along a cycle remains unchanged after a completion of the cycle. More unit

section 5.2.1
Floquet multipliers arise if the flow satisfies conservation laws, such as the
symplectic invariance for Hamiltonian flows, or the dynamics is equivariant
under a continuous symmetry transformation.

section 10.3
Let us apply the Newton method of (13.4) to search for periodic orbits with

unit Floquet multipliers, starting with the case of a continuous time flow. As-
sume that the periodic orbit condition (13.1) holds for x + Δx and T + Δt, with
the initial guesses x and T close to the desired solution, i.e., with |Δx|, Δt small.
The Newton setup (13.4)

0 = x + Δx − f T+Δt(x + Δx)

≈ x − f T (x) + (1 − J(x)) · Δx − v( f T (x))Δt (13.9)

suffers from two shortcomings. First, we now need to solve not only for the pe-
riodic point x, but for the period T as well. Second, the marginal, unit Floquet
multiplier (5.16) along the flow direction (arising from the time-translation in-
variance of a periodic orbit) renders the factor (1 − J) in (13.5) non-invertible:
if x is close to the solution, f T (x) ≈ x, then J(x) · v(x) = v( f T (x)) ≈ v(x). If
Δx is parallel to the velocity vector, the derivative term (1 − J) · Δx ≈ 0, and it
becomes harder to invert (1 − J) as the iterations approach the solution.

As a periodic orbit p is a 1−d set of points invariant under dynamics, Newton
guess is not improved by pickingΔx such that the new point lies on the orbit of
the initial one, so we need to constrain the variationΔx to directions transverse
to the flow, by requiring, for example, that

v(x) · Δx = 0 . (13.10)

Combining this constraint with the variational condition (13.9) we obtain a
Newton setup for flows, best displayed in the matrix form:(

1 − J(x) v(x)
v(x) 0

) (
Δx
Δt

)
= −

(
x − f (x)

0

)
(13.11)

This illustrates the general strategy for determining periodic orbits in presence
of continuous symmetries - for each symmetry, break the invariance by a con-
straint, and compute the value of the corresponding continuous parameter (here
the period T) by iterating the enlarged set of Newton equations. Constraining
the variations to transverse ones thus fixes both of Newton’s shortcomings: it
breaks the time-translation invariance, and the period T can be read off once
the fixed point has been found (hence we omit the superscript in f T for the
remainder of this discussion).
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More generally, the Poincaré surface of section technique of Section 3.1
turns the periodic orbit search into a fixed point search on a suitably defined
surface of section, with a neighboring point variation Δx with respect to a
reference point x constrained to stay on the surface manifold (3.2),

U(x + Δx) = U(x) = 0 . (13.12)

The price to pay are constraints imposed by the section: in order to stay on the
surface, arbitrary variation Δx is not allowed.

Example 13.5 A hyperplane Poincaré section.
Let us for the sake of simplicity assume that the Poincaré surface of section is a
(hyper)-plane, i.e., it is given by the linear condition (3.6)

(x − x0) · a = 0, (13.13)

where a is a vector normal to the Poincaré section and x0 is any point in the Poincaré
section. The Newton setup is then (derived as (13.11))(

1 − J v(x)
a 0

) (
x′ − x
Δt

)
=

(
−F(x)

0

)
. (13.14)

The last row in this equation ensures that x will be in the surface of section, and the
addition of v(x)Δt, a small vector along the direction of the flow, ensures that such an
x can be found, at least if x is sufficiently close to a fixed point of f .
To illustrate how addition of the extra constraint resolves the problem of (1− J) non-
invertability, let us take a particularly simple example; consider a 3-d flow with the
(x, y, 0)-plane as Poincaré section, a = (0, 0, 1). Let all trajectories cross the Poincaré
section perpendicularly, i.e., with v = (0, 0, vz), which means that the marginally
stable direction is also perpendicular to the Poincaré section. Furthermore, let the
unstable direction be parallel to the x-axis and the stable direction be parallel to the
y-axis. The Newton setup is now⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − Λu 0 0 0
0 1 − Λs 0 0
0 0 0 vz

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
δx

δy

δz

δτ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−Fx

−Fy

−Fz

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (13.15)

If you consider only the upper-left [3 × 3] matrix (which we started out with, prior
to adding the constraint (13.13)) then this matrix is not invertible and the equation
does not have a unique solution. However, the full [4×4] matrix is invertible, as
det (·) = −vzdet (1 − M⊥), where M⊥ is the [2×2] monodromy matrix for a surface of
section transverse to the orbit, see Section 5.3. (F. Christiansen)

13.4.1 Cost function

It pays to think in terms of a cost (or error) function I(Δx) = (x + Δx − f (x +
Δx))2/2. Periodic orbit condition (13.1) corresponds both to a zero of I(Δx),
and of its first Δx variation. Expand I(Δx) to the second order in Δx, Ĩ ≈
Δ̃x

2
/2 + (x − f (x)) · Δ̃x + (x − f (x))2/2, where Δ̃x = (1 − J(x))Δx. To find

an extremum, we set the derivative with respect to Δ̃x to zero. As the term
(x − f (x))2/2 is a constant under Δx variation, let us define an unconstrained
cost function

I0(Δ̃x) =
1
2
Δ̃x · Δ̃x + (x − f (x)) · Δ̃x , (13.16)

cycles - 7sep2010 ChaosBook.org version13.5, Sep 7 2011



13.4. FLOWS 225

Setting the derivative of this function

∂I0(Δ̃x)

∂Δ̃x
= Δ̃x + x − f (x) = (1 − J(x)) · Δx + x − f (x) (13.17)

to zero recovers the Newton setup (13.4)
Next, we need to enforce the constraint that curbs the directions in which
Δx can point. Lagrange multipliers come to help.

A local surface of section can be constructed when f (x) is “near” the initial
point x. A natural choice is a hyperplane perpendicular to the velocity vector
v(x). The reference point x0 in (13.13) is x itself, and the surface of section
condition is U(x+Δx) = v(x) ·Δx = 0. Introduce a Lagrange multiplier λ, and
assemble a cost function with the constraint:

I1(Δ̃x, λ) =
1
2
Δ̃x · Δ̃x + [x − f (x)] · Δ̃x + λv(x) · Δ̃x . (13.18)

Now we differentiate I1(Δx, λ) with respect to each argument and set the deriva-
tives to zero. We recover the Newton setup (13.11), with the Lagrange mul-
tiplier λ = Δt interpreted as the time increment needed to place f (x) onto the
section, f (x)→ f (x) + v( f (x))Δt.

A global surface of section is a fixed surface U(x+Δx)−U(x0) ≈ ∂U(x)Δx+
U(x) − U(x0) that hopefully transects all or a significant portion of recurrent
parts of the flow. It is not as ‘natural’ as the local section (13.10), but hard to
avoid in practice, and one is interested not only in the fixed point itself, but
in the global reach of its unstable manifold as well. The simplest choice is a

example 13.5
hyperplane (13.13). The cost function and the variational equations are then

I2(Δx, λ) =
1
2
Δx[1 − J(x)]Δx + (x − f (x))Δx

+ λ (∂U(x)Δx + U(x) − U(x0)) , (13.19)(
1 − J(x) ∂U(x)
∂U(x) 0

) (
Δx
λ

)
= −

(
x − f (x)

U(x) − U(x0)

)
(13.20)

Further continuous symmetries can be handled in the same fashion. Sup-
pose, for example, that we are searching for periodic orbits of a Hamiltonian
flow. There, periodic orbits not only have the time-translation symmetry, but
energy-translation symmetry as well. What is energy-translation symmetry? If
there exists a periodic orbit at x with energy H(x) = E, and period T , it is very
likely that it belongs to a family of orbits (x + εΔx(E), T + εΔt(E)) continu-
ous under variation of E. As with the time-translation symmetry, this implies
a unit Floquet multiplier: indeed, we know from Section 7.3 that symplectic
eigenvalues come in pairs, so unit multiplier in the time direction implies a unit
multiplier in its dual, the energy direction, (Λ t,ΛE , · · ·) = (1, 1, · · ·). But ex-
tending the number of constraints is no longer a problem: add more Lagrange
multipliers. Consider the following system

I3(Δx, λ1, λ2) = Δx[1 − J(x)]Δx/2 + (x − f (x))Δx

+ λ1 (U(x + Δx) − U(x0)) + λ2 (H(x + Δx) − E0)(13.21)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 − J(x) ∂U(x) ∂H(x)
∂U(x) 0 0
∂H(x) 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ Δx
λ1

λ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x − f (x)

U(x) − U(x0)
H(x) − E0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (13.22)
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This is the Newton iteration setup for how to search for a periodic orbit of
a Hamiltonian flow with a global surface of section U(x) = U(x 0) and fixed
energy E0. Note that these instructions do not put every iteration on a surface
U(x) = U(x0) and energy H(x) = E0, unless the surface is a plane U(x) = a ·
(x− x0), but instead assure that the iterations will gradually approach (provided
they converge) to the surfaces.

For periodic orbits multi-point shooting generalizes in the same way as
(13.7), but with n additional equations – one for each point on a Poincaré
section. The Newton setup looks like this⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −Jn

−J1 1
· · · 1

· · · 1
−Jn−1 1

v1

. . .

vn

a
. . .

a

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δx1

Δx2

·
·
Δxn

Δt1
·
Δtn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F1

−F2

·
·
−Fn

0
.
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Solving this equation resembles the corresponding task for maps. However, in
the process we will need to invert an [(d + 1)n × (d + 1)n] matrix rather than a
[d × d] matrix.

Résumé

There is no general computational algorithm that is guaranteed to find all so-
lutions (up to a given period Tmax) to the periodic orbit condition

f t+T (x) = f t(x) , T > 0

for a general flow or mapping. Due to the exponential divergence of nearby
trajectories in chaotic dynamical systems, direct solution of the periodic orbit
condition can be numerically very unstable.

A prerequisite for a systematic and complete cycle search is a good (but
hard to come by) understanding of the topology of the flow. Usually one starts
by - possibly analytic - determination of the equilibria of the flow. Their lo-
cations, stabilities, stability eigenvectors and invariant manifolds offer skeletal
information about the topology of the flow. Next step is numerical long-time
evolution of “typical” trajectories of the dynamical system under investigation.
Such numerical experiments build up the “natural measure,” and reveal regions
most frequently visited. The periodic orbit searches can then be initialized by

section 16.4.1
taking nearly recurring orbit segments and deforming them into a closed orbits.
With a sufficiently good initial guess the Newton-Raphson formula(

1 − J v(x)
a 0

) (
δx
δT

)
=

(
f (x) − x

0

)
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yields improved estimate x′ = x + δx, T ′ = T + δT . Iteration then yields
the period T and the location of a periodic point x p in the Poincaré surface
(xp − x0) · a = 0, where a is a vector normal to the Poincaré section at x 0.

The problem one faces with high-dimensional flows is that their topology
is hard to visualize, and that even with a decent starting guess for a point on
a periodic orbit, methods like the Newton-Raphson method are likely to fail.
Methods that start with initial guesses for a number of points along the cycle,

chapter 27
such as the multipoint shooting method of Section 13.3, are more robust. The
relaxation (or variational) methods take this strategy to its logical extreme, and
start by a guess of not a few points along a periodic orbit, but a guess of the
entire orbit. As these methods are intimately related to variational principles
and path integrals, we postpone their introduction to Chapter 27.

Further reading

13.1 Close recurrence searches. For low-dimensional maps
of flows (for high-dimensional flows, forget about it) picking
initial guesses for periodic orbits from close recurrences of a
long ergodic trajectory seems like an obvious idea. Never-
theless, Ref. [13.1] is frequently cited. Such methods have
been deployed by many, among them G. Tanner, L. Rondoni,
G. Morris, C.P. Dettmann, and R.L. Davidchack [13.2, 14, 15,
10, 11] (see also Section 20.5). Sometimes one can determine
most of the admissible itineraries and their weights without
working too hard, but method comes with no guarantee.

13.2 Piecewise linear maps. The Lozi map (3.21) is linear,
and 100,000’s of cycles can be easily computed by [2×2] ma-
trix multiplication and inversion.

13.3 Cycles, searches, and symmetries. A few comments
about the role of symmetries in actual extraction of cycles. In
the N-disk billiard example, a fundamental domain is a sliver

of the N-disk configuration space delineated by a pair of ad-
joining symmetry axes. The flow may further be reduced to
a return map on a Poincaré surface of section. While in prin-
ciple any Poincaré surface of section will do, a natural choice
in the present context are crossings of symmetry axes, see Ex-
ample 7.6. In actual numerical integrations only the last cross-
ing of a symmetry line needs to be determined. The cycle is
run in global coordinates and the group elements associated
with the crossings of symmetry lines are recorded; integra-
tion is terminated when the orbit closes in the fundamental
domain. Periodic orbits with non-trivial symmetry subgroups
are particularly easy to find since their points lie on crossings
of symmetry lines, see Example 7.6.

13.4 Newton gone wild. Skowronek and Gora [13.23] offer
an interesting discussion of Newton iterations gone wild while
searching for roots of polynomials as simple as x2 + 1 = 0.
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Exercises

(13.1) Cycles of the Ulam map. Test your cycle-searching
routines by computing a bunch of short cycles and their
stabilities for the Ulam map f (x) = 4x(1 − x) .

(13.2) Cycles stabilities for the Ulam map, exact. In Ex-
ercise 13.1 you should have observed that the numerical
results for the cycle Floquet multipliers (4.45) are excep-
tionally simple: the Floquet multiplier of the x0 = 0 fixed
point is 4, while the eigenvalue of any other n-cycle is
±2n. Prove this. (Hint: the Ulam map can be conju-
gated to the tent map (11.4). This problem is perhaps too
hard, but give it a try - the answer is in many introductory
books on nonlinear dynamics.)

(13.3) Stability of billiard cycles. Compute stabilities of few
simple cycles.

(a) A simple scattering billiard is the two-disk billiard.
It consists of a disk of radius one centered at the
origin and another disk of unit radius located at
L + 2. Find all periodic orbits for this system and
compute their stabilities. (You might have done
this already in Exercise 1.2; at least now you will
be able to see where you went wrong when you
knew nothing about cycles and their extraction.)

(b) Find all periodic orbits and stabilities for a billiard
ball bouncing between the diagonal y = x and one
of the hyperbola branches y = −1/x.

(13.4) Cycle stability. Add to the pinball simulator of Exer-
cise 8.1 a routine that evaluates the expanding eigenvalue
for a given cycle.

(13.5) Pinball cycles. Determine the stability and length of
all fundamental domain prime cycles of the binary sym-
bol string lengths up to 5 (or longer) for R : a = 6 3-disk
pinball.

(13.6) Newton-Raphson method. Implement the Newton-
Raphson method in 2− d and apply it to determination
of pinball cycles.

(13.7) Fundamental domain fixed points. Use the formula
(8.11) for billiard Jacobian matrix to compute the periods

Tp and the expanding eigenvalues Λp of the fundamental
domain 0 (the 2-cycle of the complete 3-disk space) and
1 (the 3-cycle of the complete 3-disk space) fixed points:

Tp Λp

0: R − 2 R − 1 + R
√

1 − 2/R

1: R −
√

3 − 2R√
3
+ 1 − 2R√

3

√
1 −
√

3/R

(13.23)

We have set the disk radius to a = 1.

(13.8) Fundamental domain 2-cycle. Verify that for the 10-
cycle the cycle length and the trace of the Jacobian matrix
are given by

L10 = 2

√
R2 −

√
3R + 1 − 2,

tr J10 = Λ10 + 1/Λ10 (13.24)

= 2L10 + 2 +
1
2

L10(L10 + 2)2

√
3R/2 − 1

.

The 10-cycle is drawn in Fig. 12.12. The unstable eigen-
value Λ10 follows from (7.22).

(13.9) A test of your pinball simulator: 10-cycle. Test
your Exercise 8.3 pinball simulator stability evaluation
by checking numerically the exact analytic 10-cycle sta-
bility formula (13.24).

(13.10) Rössler flow cycles. (continuation of Exercise 4.4)
Determine all cycles for the Rössler flow (2.17), as well
as their stabilities, up to

(a) 3 Poincaré sections returns

(b) (optional) 5 Poincaré sections returns (Hint: im-
plement (13.14), the multipoint shooting methods
for flows; you can cross-check your shortest cycles
against the ones listed in the table.)
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Table: The Rössler flow (2.17): The itinerary p, a peri-
odic point xp = (0, yp, zp) and the expanding eigenvalue
Λp for all cycles up to the topological length 7.
(J. Mathiesen, G. Simon, A. Basu)

np p yp zp Λe

1 1 6.091768 1.299732 -2.403953
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923

011 2.932877 5.670806 5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4.162799 3.303903 -23.19958

01111 3.278914 4.890452 36.88633
6 001011 2.122094 7.886173 -6.857665

010111 4.059211 3.462266 61.64909
011111 3.361494 4.718206 -92.08255

7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284

(13.11) Cycle stability, helium. Add to the helium integrator
of Exercise 2.10 a routine that evaluates the expanding
eigenvalue for a given cycle.

(13.12) Colinear helium cycles. Determine the stability and
length of all fundamental domain prime cycles up to sym-
bol sequence length 5 or longer for collinear helium of
Fig. 7.2.

(13.13) Uniqueness of unstable cycles∗∗∗ . Prove that there
exists only one 3-disk prime cycle for a given finite ad-
missible prime cycle symbol string. Hints: look at the
Poincaré section mappings; can you show that there is
exponential contraction to a unique periodic point with
a given itinerary? Exercise 27.1 might be helpful in this
effort.

(13.14) Inverse iteration method for a Hamiltonian repeller.

Table: All periodic orbits up to 6 bounces for the Hamil-
tonian Hénon mapping (13.25) with a = 6. Listed are
the cycle itinerary, its expanding eigenvalue Λp, and its
“center of mass.” The “center of mass” is listed because
it turns out the “center of mass” is often a simple rational
or a quadratic irrational.

p Λp
∑

xp,i

0 0.715168×101 -0.607625
1 -0.295285×101 0.274292
10 -0.989898×101 0.333333
100 -0.131907×103 -0.206011
110 0.558970×102 0.539345
1000 -0.104430×104 -0.816497
1100 0.577998×104 0.000000
1110 -0.103688×103 0.816497
10000 -0.760653×104 -1.426032
11000 0.444552×104 -0.606654
10100 0.770202×103 0.151375
11100 -0.710688×103 0.248463
11010 -0.589499×103 0.870695
11110 0.390994×103 1.095485
100000 -0.545745×105 -2.034134
110000 0.322221×105 -1.215250
101000 0.513762×104 -0.450662
111000 -0.478461×104 -0.366025
110100 -0.639400×104 0.333333
101100 -0.639400×104 0.333333
111100 0.390194×104 0.548583
111010 0.109491×104 1.151463
111110 -0.104338×104 1.366025

Consider the Hénon map (3.19) for area-preserving
(“Hamiltonian”) parameter value b = −1. The coordi-
nates of a periodic orbit of length np satisfy the equation

xp,i+1 + xp,i−1 = 1 − ax2
p,i , i = 1, ..., np , (13.25)

with the periodic boundary condition xp,0 = xp,np . Verify
that the itineraries and the stabilities of the short periodic
orbits for the Hénon repeller (13.25) at a = 6 are as listed
above.

Hint: you can use any cycle-searching routine you wish,
but for the complete repeller case (all binary sequences
are realized), the cycles can be evaluated simply by in-
verse iteration, using the inverse of (13.25)

x′′p,i = S p,i

√
1 − x′p,i+1 − x′p,i−1

a
, i = 1, ..., np .

Here S p,i are the signs of the corresponding periodic
point coordinates, S p,i = xp,i/|xp,i|. (G. Vattay)

(13.15) Ulam map periodic points. (continued from Exer-
cise 11.8)

(a) compute the five periodic points of cycle 10011 for
the Ulam map (11.5) f (x) = 4x(1 − x) . using your
Newton or other routine.

(b) compute the five periodic points of cycle 10000

(c) plot the above two cycles on the graph of the Ulam
map, verify that their topological ordering is as in
the ‘canonical’ full tent map Exercise 11.8.
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(d) (optional) This works only for the Ulam map: com-
pute periodic points by conjugating the full tent
map periodic points of Exercise 11.8 using Exer-
cise 6.4.

(13.16) Newton setups for flows.

(a) We have formulated three Newton setups for flows:
the ‘local’ setup (13.11), the ‘hyperplane’ setup
(13.14), and the ‘global’ setup (13.20). Derive

(13.20) and verify that if the surface of section is
a hyperplane, it reduces to (13.14). (Hint: it is not
inconceivable that (13.14) is wrong as it stands.)

(b) (optional) Derive (13.22), the Newton setup for
Hamiltonian flows.

(13.17) “Center of mass” puzzle∗∗. Why is the “center of
mass,” tabulated in Exercise 13.14, often a rational num-
ber?
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Part II

Chaos rules

Qunadry: all these cycles, but what to do with them? What you have now is a
topologically invariant road map of the state space, with the chaotic region
pinned down by a rigid skeleton, a tree of cycles (periodic orbits) of increasing

lengths and self-similar structure. In Chapter 15 we shall turn this topological
dynamics into a multiplicative operation on the state space partitions by means of
transition matrices of Chapter 14, the simplest examples of evolution operators. This
will enable us to count the distinct orbits, and in the process touch upon all the main
themes of this book, going the whole distance from diagnosing chaotic dynamics to
computing zeta functions.

(1) Partition the state space and describe all allowed ways of getting from ‘here’ to
‘there’ by means of transition graphs (transition matrices). These generate the
totality of admissible itineraries. (Chapter 14)

(2) Learn to count (Chapter 15)

(3) Learn how to measure what’s important (Chapter 16)

(4) Learn how to evolve the measure, compute averages (Chapter 17)

(5) Learn what a ‘Fourier transform’ is for a nonlinear world, not a circle (Chap-
ter 18),

(6) and how the short-time / long-time duality is encoded by spectral determinant
expression for evolution operator spectrum in terms of periodic orbits. (Chap-
ter 19)

(7) Learn how use short period cycles to describe chaotic world at times much be-
yond the Lyapunov time (Chapter 20).

Next ponder how symmetries simplify spectral determinants (Chapter 21), develop
some feeling for the traces of evolution operators (Chapter 22), why all this works
(Chapter 23), when does it not work (Chapter 24), what does it have to do with foun-
dations of statistical mechanics (Chapter 25) and turbulence (Chapter 24).
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I think I’ll go on a walkabout
find out what it’s all about [...] take a ride to the other side

—Red Hot Chili Peppers, ‘Walkabout’

In Chapters 11 and 12 we learned that invariant manifolds partition the state
space in invariant way, and how to name distinct orbits. We have estab-
lished and related the temporally and spatially ordered topological dynam-

ics for a class of ‘stretch & fold’ dynamical systems, and discussed pruning of
inadmissible trajectories.

Here we shall use these results to generate the totality of admissible itineraries.
This task will be particularly easy for repellers with complete Smale horse-
shoes and for subshifts of finite type, for which the admissible itineraries are
generated by finite transition matrices, and the topological dynamics can be
visualized by means of finite transition graphs. We shall then turn topological
dynamics into a linear multiplicative operation on the state space partitions by
means of transition matrices, the simplest examples of ‘evolution operators.’
They will enable us – in Chapter 15 – to count the distinct orbits.

14.1 Matrix representations of topological
dynamics

The allowed transitions between the regions of a partition {M 1,M2, · · · ,Mm}
are encoded in the [m×m]-dimensional transition matrix whose elements take
values

Ti j =

{
1 if the transitionM j →Mi is possible
0 otherwise .

(14.1)

The transition matrix is an explicit linear representation of topological dynam-
ics. If the partition is a dynamically invariant partition constructed from sta-
ble/unstable manifolds, it encodes the topological dynamics as an invariant
law of motion, with the allowed transitions at any instant independent of the
trajectory history, requiring no memory.

Several related matrices as well will be needed in what follows. Often it
is convenient to distinguish between two or more paths connecting the same
two regions; that is encoded by the adjacency matrix with non-negative integer
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entries,

Ai j =

{
k if a transitionM j →Mi is possible in k ways
0 otherwise .

(14.2)

More generally, we shall encounter [m×m] matrices which assign different real
or complex weights to different transitions,

Li j =

{
Li j ∈ R or C ifM j →Mi is allowed
0 otherwise .

(14.3)

As in statistical physics, we shall refer to these as transfer matrices.
Mi is accessible from M j in k steps if (Lk)i j � 0. A matrix L is called

reducible if there exists one or more index pairs {i, j} such that (L k)i j = 0 for
all k, otherwise the matrix is irreducible. This means that a trajectory start-

Fig. 14.1 Points from the region M21 reach
regions {M10,M11,M12}, and no other re-
gions, in one time step. Labeling exemplifies
the ‘shift map’ of Example 11.7 and (11.20).

ing in any partition region eventually reaches all of the partition regions, i.e.,
the partition is dynamically transitive or indecomposable, as assumed in (2.2).
The notion of topological transitivity is crucial in ergodic theory: a mapping
is transitive if it has a dense orbit. If that is not the case, state space decom-
poses into disconnected pieces, each of which can be analyzed separately by
a separate irreducible matrix. Region M i is said to be transient if no trajec-
tory returns to it. RegionM j is said to be absorbing if no trajectory leaves it,
L j j � 0, Li j = 0 for all i � j. Hence it suffices to restrict our considerations to
irreducible matrices.

If L has strictly positive entries, Li j > 0, the matrix is called positive; if Li j ≥
0, the matrix is called non-negative. Matrix L is said to be eventually positive
or Perron-Frobenius if Lk is positive for some power k (as a consequence, the
matrix is transitive as well). A non-negative matrix whose columns conserve
probability,

∑
i Li j = 1, is called Markov, probability or stochastic matrix.

21

1010

1111

1010

1212

21212121

1111

1212

Fig. 14.2 Topological dynamics: shrink each
state space partition region Fig. 14.1 to a
node, and indicate the possibility of reaching
a region by a directed link. The links stand for
transition matrix elements T10,21 = T11,21 =

T12,21 = 1; remaining Ti j,21 = 0.

Example 14.1 Markov chain.
The Google PageRank of a webpage is computed by a Markov chain, with a rather
large Markov matrix M.

A subshift (11.22) of finite type is a topological dynamical system (Σ, σ),
where the shift σ acts on the space of all admissible itineraries (sk)

Σ =
{
(sk)k∈Z : Tsk+1 sk = 1 for all k

}
, sk ∈ {a, b, c, · · · , z} . (14.4)

The task of generating the totality of admissible itineraries is particularly easy
for subshifts of finite type, for which the admissible itineraries are generated
by finite transition matrices, and the topological dynamics can be visualized
by means of finite transition graphs.

14.2 Transition graphs: wander from node to
node

Let us abstract from a state space partition such as Fig. 14.1 its topological
essence: indicate a partition regionMa by a node, and indicate the possibility
Markov - 2feb2009 ChaosBook.org version13.5, Sep 7 2011
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of reaching the regionMb, Lba � 0 by a directed link, as in Fig. 14.2. Do this
for all nodes. The result is a transition graph.

A transition graph (or digraph, or simply ‘graph’) consists of a set of nodes
(or vertices, or states), one for each letter in the alphabet A = {a, b, c, · · · , z},
connected by a set of directed links (edges, arcs, arrows). 1 A directed link 1 ‘digraph’ is short for ‘directed graph’

starts out from node j and terminates at node i whenever the matrix element
(14.3) takes value Li j � 0. A link connects two nodes, or originates and ter-
minates on the same node (a ‘self-loop’). For example, if a partition includes
regions labeled {· · · ,M101,M110, · · ·}, the transition matrix element connect-
ing the two is drawn as L101,110 = 110101 , whereas L0,0 = 0 . Here a dotted
link indicates that the shift σ(x011···) = x11··· involves symbol 0, and a full one
a shift σ(x110···) = x10··· that involves 1. A j → · · · → k walk (path, itinerary)
traverses a connected set of directed links, starting at node j and ending at node
k. A loop (periodic orbit, cycle) is a walk that ends at the starting node (which
can be any node along the loop), for example

t011 = L110,011L011,101L101,110 =

101

011

110

. (14.5)

Our convention for ordering indices is that the successive steps in a visitation
sequence j→ i→ k are generated by matrix multiplication from the left, T k j =∑

TkiTi j. Two graphs are isomorphic if one can be obtained from the other
by relabeling links and nodes. As we are interested in recurrent (transitive,
indecomposable) dynamics, we restrict our attention to irreducible or strongly
connected graphs, i.e., graphs for which there is a path from any node to any
other node.

A transition graph describes compactly the ways in which the state space
regions map into each other, accounts for finite memory effects in dynamics,
and generates the totality of admissible trajectories as the set of all possible
walks along its links.

Construction of a good transition graph is, like combinatorics, unexplain-
able. The only way to learn is by some diagrammatic gymnastics, so we work
our way through a sequence of exercises in lieu of plethora of baffling defini-
tions.

Example 14.2 Full binary shift.
Consider a full shift on two-state partition A = {0, 1}, with no pruning restrictions.
The transition matrix and the corresponding transition graph are

T =
( 1 1

1 1

)
= 0 1 . (14.6)

Dotted links correspond to shifts originating in region 0, and the full ones to shifts
originating in 1. The admissible itineraries are generated as walks on this transition
graph. (continued in Example 14.8)

Example 14.3 Complete N-ary dynamics:
If all transition matrix entries equal unity (one can reach any region from any other

ChaosBook.org version13.5, Sep 7 2011 Markov - 2feb2009
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region in one step),

Tc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 . . . 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (14.7)

the symbolic dynamics is called complete, or a full shift. The corresponding transition
graph is obvious, but a bit tedious to draw for arbitrary N.

Example 14.4 Pruning rules for a 3-disk alphabet:
As the disks are convex, there can be no two consecutive reflections off the same

disk, hence the covering symbolic dynamics consists of all sequences which include
no symbol repetitions 11, 22, 33. This is a finite set of finite length pruning rules,
hence, the dynamics is a subshift of finite type (see (11.23) for definition), with the
transition matrix / graph given by

T =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 1 1
1 0 1
1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ = 3 1

2

. (14.8)

The complete unrestricted symbolic dynamics is too simple to be illuminat-
ing, so we turn next to the simplest example of pruned symbolic dynamics,
the finite subshift obtained by prohibition of repeats of one of the symbols, let
us say 11 . This situation arises, for example, in studies of the circle maps,
where this kind of symbolic dynamics describes “golden mean” rotations.

exercise 15.6
exercise 15.8

Example 14.5 ‘Golden mean’ pruning.
Consider a subshift on two-state partition A = {0, 1}, with the simplest grammar G
possible, a single pruned block b = 11 (consecutive repeat of symbol 1 is inadmis-
sible): the stateM0 maps both onto M0 and M1, but the state M1 maps only onto
M0. The transition matrix and the corresponding transition graph are

T =
( 1 1

1 0

)
= 0 1 . (14.9)

Admissible itineraries correspond to walks on this finite transition graph. (continued
in Example 14.9)

In the complete N-ary symbolic dynamics case (see Example 14.3) the choice
of the next symbol requires no memory of the previous ones. However, any
further refinement of the state space partition requires finite memory.

Example 14.6 Finite memory transition graphs.
For the binary labeled repeller with complete binary symbolic dynamics, we might

chose to partition the state space into four regions {M00,M01,M10,M11}, a 1-step
refinement of the initial partition {M0,M1}. Such partitions are drawn in Fig. 12.3,
as well as Fig. 1.9. Topologically f acts as a left shift (12.11), and its action on the
rectangle [.01] is to move the decimal point to the right, to [0.1], forget the past, [.1],
and land in either of the two rectangles {[.10], [.11]}. Filling in the matrix elements
for the other three initial states we obtain the 1-step memory transition matrix/graph
acting on the 4-regions partition

exercise 11.7
Markov - 2feb2009 ChaosBook.org version13.5, Sep 7 2011
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T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11

0 T11,01 0 T11,11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
01

10

1100 . (14.10)

(continued in Example 15.7)

By the same token, for M-step memory the only nonvanishing matrix ele-
ments are of the form T s1 s2...sM+1 ,s0 s1...sM , sM+1 ∈ {0, 1}. This is a sparse matrix,
as the only non vanishing entries in the a = s0 s1 . . . sM column of Tba are in the
rows b = s1 . . . sM0 and b = s1 . . . sM1. If we increase the number of steps

exercise 15.1

00 010

100

101

011

110

111

Fig. 14.3 Transition graph (graph whose
links correspond to the nonzero elements of
a transition matrix Tba) describes which re-
gions b can be reached from the region a in
one time step. The 7 nodes correspond to the
7 regions of the partition (14.11). The links
represent non-vanishing transition matrix el-
ements, such as T101,110 = 110101 . Dotted
links correspond to a shift by symbol 0, and
the full ones by symbol 1.

remembered, the transition matrix grows large quickly, as the N-ary dynamics
with M-step memory requires an [N M+1 × NM+1] matrix. Since the matrix is
very sparse, it pays to find a compact representation for T . Such representation
is afforded by transition graphs, which are not only compact, but also give us
an intuitive picture of the topological dynamics.

Example 14.7 A 7-state transition graph.
Consider a state space partitioned into 7 regions

{M00,M011,M010,M110,M111,M101,M100} . (14.11)

Let the evolution in time map the regions into each other by acting on the labels as
shift (12.11): M011 → {M110,M111} , M00 → {M00,M011,M010} · · · , with nonvan-
ishing L110,011, L011,00, . . ., etc.. This is compactly summarized by the transition graph
of Fig. 14.3. (continued as Example 15.6)

14.3 Transition graphs: stroll from link to link

exercise 15.1
A

B C

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

0001

0000

Fig. 14.4 The self-similarity of the complete
binary symbolic dynamics represented by a
binary tree: trees originating in nodes B, C,
· · · (actually - any node) are the same as the
tree originating in node A. Level m = 4 par-
tition is labeled by 16 binary strings, coded
by dotted (0) and full (1) links read down the
tree, starting from A. See also Fig. 11.14.

What do finite graphs have to do with infinitely long trajectories? To un-
derstand the main idea, let us construct a graph that enumerates all possible
itineraries for the case of complete binary symbolic dynamics. In this con-
struction the nodes will be unlabeled, links labeled, signifying different kinds
of transitions.

Example 14.8 Complete binary topological dynamics.
Mark a dot ‘·’ on a piece of paper. Draw two short lines out of the dot, end each

with a dot. The full line will signify that the first symbol in an itinerary is ‘1,’ and
the dotted line will signifying ‘0.’ Repeat the procedure for each of the two new
dots, and then for the four dots, and so on. The result is the binary tree of Fig. 14.4.
Starting at the top node, the tree enumerates exhaustively all distinct finite itineraries
of lengths n = 1, 2, 3, · · ·

{0, 1} {00, 01, 10, 11}
{000, 001, 010, 011, 100, 101, 111, 110} · · · .

The n = 4 nodes in Fig. 14.4 correspond to the 16 distinct binary strings of length 4,
and so on. By habit we have drawn the tree as the alternating binary tree of Fig. 11.14,
but that has no significance as far as enumeration of itineraries is concerned - a binary
tree with labels in the natural order, as increasing binary ‘decimals’ would serve just
as well.

ChaosBook.org version13.5, Sep 7 2011 Markov - 2feb2009
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The trouble with an infinite tree is that it does not fit on a piece of paper. On the other
hand, we are not doing much - at each node we are turning either left or right. Hence
all nodes are equivalent. In other words, the tree is self-similar; the trees originating
in nodes B and C are themselves copies of the entire tree. The result of identifying
B = A, C = A is a single node, 2-link transition graph with adjacency matrix (14.2)

A = ( 2 ) = A=B=CA=B=C . (14.12)

An itinerary generated by the binary tree Fig. 14.4, no matter how long, corresponds
to a walk on this graph.

This is the most compact encoding of the complete binary symbolic dynam-
ics. Any number of more complicated transition graphs such as the 2-node
(14.6) and the 4-node (14.10) graphs generate all itineraries as well, and might
be sometimes preferable.

exercise 15.6
exercise 15.5 We turn next to the simplest example of pruned symbolic dynamics, the

finite subshift obtained by prohibition of repeats of one of the symbols, let us
say 00 .

Example 14.9 ‘Golden mean’ pruning.
(a link-to-link version of Example 14.5) Now the admissible itineraries are enumer-
ated by the pruned binary tree of Fig. 14.5. Identification of nodes A = C = E leads
to the finite 2-node, 3-links transition graph

0110

0111

0101

1101

1111

1110

1010

1011

A

E

B C

Fig. 14.5 The self-similarity of the 00
pruned binary tree: trees originating from
nodes C and E are the same as the entire tree.

T =
( 0 1

1 1

)
= A=C=EA=C=EB . (14.13)

As 0 is always followed by 1, the walks on this graph generate only the admissi-
ble itineraries. This is the same graph as the 2-node graph (14.9). (continued in
Example 15.4)

14.3.1 Converting pruning blocks into transition graphs

Suppose now that, by hook or crook, you have been so lucky fishing for prun-
ing rules that you now know the grammar (11.23) in terms of a finite set of
pruning blocks G = {b1, b2, · · ·bk}, of lengths ≤ m. Our task is to generate all
admissible itineraries. What to do?

We have already seen the main ingredients of a general algorithm: (1) tran-
sition graph encodes self-similarities of the tree of all itineraries, and (2) if we
have a pruning block of length m, we need to descend m levels before we can
start identifying the self-similar sub-trees.

Finite grammar transition graph algorithm.

(1) Starting with the root of the tree, delineate all branches that correspond
to all pruning blocks; implement the pruning by removing the last node
in each pruning block (marked ‘×’ in Fig. 14.6 (a)).

Markov - 2feb2009 ChaosBook.org version13.5, Sep 7 2011
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Fig. 14.6 Conversion of the pruning front of
Fig. 12.11 (b) into a finite transition graph.
(a) Starting with the initial node “.”, delin-
eate all pruning blocks on the binary tree. A
solid line stands for “1” and a dashed line for
“0”. The ends of forbidden strings are marked
with ×. Label all internal nodes by reading
the bits connecting “.”, the base of the tree,
to the node. (b) Indicate all admissible start-
ing blocks by arrows. (c) Recursively drop
the leading bits in the admissible blocks; if
the truncated string corresponds to an inter-
nal node in (a), connect them. (d) Delete the
transient, non-circulating nodes; all admissi-
ble sequences are generated as walks on this
finite transition graph. (e) Identify all distinct
loops and construct the determinant (15.20).

(2) Label all nodes internal to pruning blocks by the itinerary connecting
the root point to the internal node, Fig. 14.6 (b). Why? So far we have
pruned forbidden branches by looking m b steps into future for a given
pruning block, let’s say b = 10110. However, the blocks with a right
combination of past and future [1.0110], [10.110], [101.10] and [1011.0]
are also pruned. In other words, any node whose near past coincides
with the beginning of a pruning block is potentially dangerous - a branch
further down the tree might get pruned.

(3) Add to each internal node all remaining branches allowed by the alpha-
bet, and label them, Fig. 14.6 (c). Why? Each one of them is the begin-
ning point of an infinite tree, a tree that should be similar to another one
originating closer to the root of the whole tree.

(4) Pick one of the free external nodes closest to the root of the entire tree,
forget the most distant symbol in its past. Does the truncated itinerary
correspond to an internal node? If yes, identify the two nodes. If not,
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forget the next symbol in the past, repeat. If no such truncated past
corresponds to any internal node, identify with the root of the tree.
This is a little bit abstract, so let’s say the free external node in question is
[1010.]. Three time steps back the past is [010.]. That is not dangerous,
as no pruning block in this example starts with 0. Now forget the third
step in the past: [10.] is dangerous, as that is the start of the pruning
block [10.110]. Hence the free external node [1010.] should be identified
with the internal node [10.].

(5) Repeat until all free nodes have been tied back into the internal nodes.

(6) Clean up: check whether every node can be reached from every other
node. Remove the transient nodes, i.e., the nodes to which dynamics
never returns.

(7) The result is a transition graph. There is no guarantee that this is the
smartest, most compact transition graph possible for given pruning (if
you have a better algorithm, teach us), but walks around it do generate
all admissible itineraries, and nothing else.

Example 14.10 Heavy pruning.

We complete this training by examples by implementing the pruning of Fig. 12.11 (b).
The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (14.14)

Blocks 01101, 10110 contain the forbidden block 101, so they are redundant as prun-
ing rules. Draw the pruning tree as a section of a binary tree with 0 and 1 branches
and label each internal node by the sequence of 0’s and 1’s connecting it to the root
of the tree (Fig. 14.6 (a). These nodes are the potentially dangerous nodes - begin-
nings of blocks that might end up pruned. Add the side branches to those nodes
(Fig. 14.6 (b). As we continue down such branches we have to check whether the
pruning imposes constraints on the sequences so generated: we do this by knocking
off the leading bits and checking whether the shortened strings coincide with any
of the internal pruning tree nodes: 00 → 0; 110 → 10; 011 → 11; 0101 → 101
(pruned); 1000 → 00→ 00→ 0; 10011 → 0011 → 011 → 11; 01000 → 0.
The trees originating in identified nodes are identical, so the tree is “self-similar.”
Now connect the side branches to the corresponding nodes, Fig. 14.6 (d). Nodes “.”
and 1 are transient nodes; no sequence returns to them, and as you are interested here
only in infinitely recurrent sequences, delete them. The result is the finite transition
graph of Fig. 14.6 (d); the admissible bi-infinite symbol sequences are generated as
all possible walks on this graph.

Résumé

The set of all admissible itineraries is encoded multiplicatively by transition
matrices, diagrammatically by transition graphs. Pruning rules for inadmissi-
ble sequences are implemented by constructing corresponding transition ma-
trices and/or transition graphs.
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Further reading

14.1 Transition graphs. We enjoyed studying Lind and Mar-
cus [14.1] introduction to symbolic dynamics and transition
graphs. Finite transition graphs or finite automata are dis-
cussed in Refs. [14.2–4]. They belong to the category of reg-
ular languages. Transition graphs for unimodal maps are dis-
cussed in Refs. [14.8–10]. (see also Remark 11.1)

14.2 Inflating transition graphs. In the above examples the
symbolic dynamics has been encoded by labeling links in the
transition graph. Alternatively one can encode the dynamics
by labeling the nodes, as in Example 14.6, where the 4 nodes
refer to 4 Markov partition regions {M00,M01,M10,M11},
and the 8 links to the 8 non-zero entries in the 2-step mem-
ory transition matrix (14.10).

14.3 The unbearable growth of transition graphs. A
construction of finite Markov partitions is described in
Refs. [14.11, 12], as well as in the innumerably many other
references.
If two regions in a Markov partition are not disjoint but share
a boundary, the boundary trajectories require special treatment
in order to avoid overcounting, see Section 21.3.1. If the im-
age of a trial partition region cuts across only a part of another
trial region and thus violates the Markov partition condition
(11.2), a further refinement of the partition is needed to distin-
guish distinct trajectories.

The finite transition graph construction sketched above is not
necessarily the minimal one; for example, the transition graph
of Fig. 14.6 does not generate only the “fundamental” cycles
(see Chapter 20), but shadowed cycles as well, such as t00011

in (15.20). For methods of reduction to a minimal graph, con-
sult Refs. [14.8, 45, 9]. Furthermore, when one implements
the time reversed dynamics by the same algorithm, one usu-
ally gets a graph of a very different topology even though both
graphs generate the same admissible sequences, and have the
same determinant. The algorithm described here makes some
sense for 1−d dynamics, but is unnatural for 2−d maps whose
dynamics it treats as 1-dimensional. In practice, generic prun-
ing grows longer and longer, and more plentiful pruning rules.
For generic flows the refinements might never stop, and al-
most always we might have to deal with infinite Markov parti-
tions, such as those that will be discussed in Section 15.5. Not
only do the transition graphs get more and more unwieldy,
they have the unpleasant property that every time we add a
new rule, the graph has to be constructed from scratch, and it
might look very different form the previous one, even though
it leads to a minute modification of the topological entropy.
The most determined effort to construct such graphs may be
the one of Ref. [14.13]. Still, this seems to be the best tech-
nology available, unless the reader alerts us to something su-
perior.
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Exercises

(14.1) Time reversibility.∗∗ Hamiltonian flows are time re-
versible. Does that mean that their transition graphs are
symmetric in all node → node links, their transition
matrices are adjacency matrices, symmetric and diago-
nalizable, and that they have only real eigenvalues?

(14.2) Alphabet {0,1}, prune 1000 , 00100 , 01100 . This
example is motivated by the pruning front description
of the symbolic dynamics for the Hénon-type mapsRe-
mark 12.3.

step 1. 1000 prunes all cycles with a 000 subsequence
with the exception of the fixed point 0; hence we factor
out (1− t0) explicitly, and prune 000 from the rest. This
means that x0 is an isolated fixed point - no cycle stays
in its vicinity for more than 2 iterations. In the notation
of Section 14.3.1, the alphabet is {1, 2, 3; 0}, and the re-

maining pruning rules have to be rewritten in terms of
symbols 2=10, 3=100:

step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 .
This means that the 3-cycle 3 = 100 is pruned and no
long cycles stay close enough to it for a single 100 re-
peat. As in example 1?!, prohibition of 33 is imple-
mented by dropping the symbol “3” and extending the
alphabet by the allowed blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune 213 , 23 13 ,
13 13 , where 13 = 13, 23 = 23 are now used as sin-

gle letters. Pruning of the repetitions 13 13 (the 4-cycle
13 = 1100 is pruned) yields the

result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary
dynamics. The other remaining possible blocks 213 ,
2313 are forbidden by the rules of step 3.
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I’m gonna close my eyes
And count to ten
I’m gonna close my eyes
And when I open them again
Everything will make sense to me then

—Tina Dico, ‘Count To Ten’

We are now in a position to apply the periodic orbit theory to the first
and the easiest problem in theory of chaotic systems: cycle counting.
This is the simplest illustration of the raison d’etre of periodic orbit

theory; we derive a duality transformation that relates local information - in
this case the next admissible symbol in a symbol sequence - to global averages,
in this case the mean rate of growth of the number of cycles with increasing
cycle period. In Chapter 14 we have transformed, by means of the transition
matrices / graphs, the topological dynamics of Chapter 11 into a multiplicative
operation. Here we show that the nth power of a transition matrix counts all
itineraries of length n. The asymptotic growth rate of the number of admissible
itineraries is therefore given by the leading eigenvalue of the transition matrix;
the leading eigenvalue is in turn given by the leading zero of the characteristic
determinant of the transition matrix, which is - in this context - called the top-
ological zeta function.

For flows with finite transition graphs this determinant is a finite topolog-
ical polynomial which can be read off the graph. However, (a) even some-
thing as humble as the quadratic map generically requires an infinite partition
(Section 15.5), but (b) the finite partition approximants converge exponentially
fast.

The method goes well beyond the problem at hand, and forms the core of the
entire treatise, making tangible the abstract notion of “spectral determinants”
yet to come.

15.1 How many ways to get there from here?

In the 3-disk system of Example 11.1 the number of admissible trajectories
doubles with every iterate: there are Kn = 3 · 2n distinct itineraries of length
n. If disks are too close and a subset of trajectories is pruned, this is only
an upper bound and explicit formulas might be hard to discover, but we still
might be able to establish a lower exponential bound of the form K n ≥ Cenĥ.
Bounded exponentially by 3en ln 2 ≥ Kn ≥ Cenĥ, the number of trajectories
must grow exponentially as a function of the itinerary length, with rate given
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by the topological entropy:

h = lim
n→∞

1
n

ln Kn . (15.1)

We shall now relate this quantity to the spectrum of the transition matrix, with
the growth rate of the number of topologically distinct trajectories given by the
leading eigenvalue of the transition matrix.

The transition matrix element Ti j ∈ {0, 1} in (14.1) indicates whether the
transition from the starting partition j into partition i in one step is allowed or
not, and the (i, j) element of the transition matrix iterated n times

exercise 15.1

(T n)i j =
∑

k1,k2,...,kn−1

Tik1 Tk1k2 . . .Tkn−1 j (15.2)

receives a contribution 1 from every admissible sequence of transitions, so
(T n)i j is the number of admissible n symbol itineraries starting with j and
ending with i.

Example 15.1 3-disk itinerary counting.
The (T 2)13 = T12T23 = 1 element of T 2 for the 3-disk transition matrix (14.8)⎛⎜⎜⎜⎜⎜⎜⎝ 0 1 1

1 0 1
1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
2

=

⎛⎜⎜⎜⎜⎜⎜⎝ 2 1 1
1 2 1
1 1 2

⎞⎟⎟⎟⎟⎟⎟⎠ . (15.3)

corresponds to path 3→ 2→ 1, the only 2-step path from 3 to 1, while (T2)33 =

T31T13 +T32T23 = 2 counts the two returning, periodic paths 31 and 32. Note that the
trace tr T 2 = (T 2)11+ (T 2)22+ (T 2)33 = 2T13T31+2T21T12+2T32T23 has a contribution
from each 2-cycle 12, 13, 23 twice, one contribution from each periodic point.

The total number of admissible itineraries of n symbols is

Kn =
∑

i j

(T n)i j = ( 1, 1, . . . , 1 ) T n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (15.4)

We can also count the number of prime cycles and pruned periodic points,
but in order not to break up the flow of the argument, we relegate these pretty
results to Section 15.7. Recommended reading if you ever have to compute
lots of cycles.

A finite [N×N] matrix T has eigenvalues {λ0, λ1, · · · , λm−1} and (right) eigen-
vectors {ϕ0, ϕ1, · · · , ϕm−1} satisfying Tϕα = λαϕα. Expressing the initial vector
in (15.4) in this basis (which might be incomplete, with m ≤ N eigenvectors),

T n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = T n
m−1∑
α=0

bαϕα =
m−1∑
α=0

bαλ
n
αϕα ,

and contracting with ( 1, 1, . . . , 1 ), we obtain

Kn =

m−1∑
α=0

cαλ
n
α .
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The constants cα depend on the choice of initial and final partitions: In this
exercise 15.3

example we are sandwiching T n between the vector ( 1, 1, . . . , 1 ) and its trans-
pose, but any other pair of vectors would do, as long as they are not orthogonal
to the leading eigenvector ϕ0. In an experiment the vector ( 1, 1, . . . , 1 ) would
be replaced by a description of the initial state, and the right vector would
describe the measurement time n later.

Perron theorem states that a Perron-Frobenius matrix has a nondegenerate
(isolated) positive real eigenvalue λ0 > 1 (with a positive eigenvector) which
exceeds the moduli of all other eigenvalues. Therefore as n increases, the sum
is dominated by the leading eigenvalue of the transition matrix, λ 0 > |Re λα|,
α = 1, 2, · · · ,m − 1, and the topological entropy (15.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[
1 +

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= lnλ0 + lim
n→∞

[
ln c0

n
+

1
n

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= lnλ0 . (15.5)

What have we learned? The transition matrix T is a one-step, short time opera-
tor, advancing the trajectory from one partition to the next admissible partition.
Its eigenvalues describe the rate of growth of the total number of trajectories at
the asymptotic times. Instead of painstakingly counting K1,K2,K3, . . . and es-
timating (15.1) from a slope of a log-linear plot, we have the exact topological
entropy if we can compute the leading eigenvalue of the transition matrix T .
This is reminiscent of the way free energy is computed from transfer matrices
for 1-dimensional lattice models with finite range interactions. Historically, it
is this analogy with statistical mechanics that led to introduction of evolution
operator methods into the theory of chaotic systems.

15.2 Topological trace formula

There are two standard ways of computing eigenvalues of a matrix - by eval-
uating the trace tr T n =

∑
λn
α, or by evaluating the determinant det (1 − zT ).

We start by evaluating the trace of transition matrices. The main lesson will
be that the trace receives contributions only from itineraries that return to the
initial partition, i.e., periodic orbits.

Consider an M-step memory transition matrix, like the 1-step memory ex-
ample (14.10). The trace of the transition matrix counts the number of parti-
tions that map into themselves. More generally, each closed walk through n
concatenated entries of T contributes to tr T n the product (15.2) of the matrix
entries along the walk. Each step in such a walk shifts the symbolic string by
one symbol; the trace ensures that the walk closes on a periodic string c. Define
tc to be the local trace, the product of matrix elements along a cycle c, each
term being multiplied by a book keeping variable z. In chapters that follow,
the ‘local trace’ tc will take a continuum of values, so for the remainder of this
chapter we stick to the ‘tc’ notation rather than to the 0 or zn values specific to
the counting problem.
ChaosBook.org version13.5, Sep 7 2011 count - 29jan2009
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The quantity zntr T n is then the sum of tc for all cycles of period n. The tc

= (product of matrix elements along cycle c is manifestly cyclically invariant,
t100 = t010 = t001, so a prime cycle p of period n p contributes np times, once for
each periodic point along its orbit. For the purposes of periodic orbit counting,
the local trace takes values

tp =

{
znp if p is an admissible cycle
0 otherwise,

(15.6)

i.e., (setting z = 1) the local trace is tp = 1 if the cycle is admissible, and t p = 0
otherwise.

Example 15.2 Traces for binary symbolic dynamics.
For example, for the [8×8] transition matrix Ts1 s2 s3 ,s0 s1 s2 version of (14.10), or any
refined partition [2n×2n] transition matrix, n arbitrarily large, the periodic point 100
contributes t100 = z3T100,010T010,001T001,100 to z3tr T 3. This product is manifestly cycli-
cally invariant, t100 = t010 = t001, so a prime cycle p = 001 of period 3 contributes 3
times, once for each periodic point along its orbit.

exercise 11.7
For the binary labeled non–wandering set the first few traces are given by (consult
Tables 15.1 and 15.2)

z tr T = t0 + t1,

z2tr T 2 = t2
0 + t2

1 + 2t10,

z3tr T 3 = t3
0 + t3

1 + 3t100 + 3t101,

z4tr T 4 = t4
0 + t4

1 + 2t2
10 + 4t1000 + 4t1001 + 4t1011. (15.7)

In the binary case the trace picks up only two contributions on the diagonal, T0···0,0···0+

T1···1,1···1, no matter how much memory we assume. We can even take infinite memory
M → ∞, in which case the contributing partitions are shrunk to the fixed points,
tr T = T0,0 + T1,1.
If there are no restrictions on symbols, the symbolic dynamics is complete, and all
binary sequences are admissible (or allowable) itineraries. As this type of symbolic
dynamics pops up frequently, we list the shortest binary prime cycles in Table 15.1.

exercise 11.2

Hence tr T n = Nn counts the number of admissible periodic points of period
n. The nth order trace (15.7) picks up contributions from all repeats of prime
cycles, with each cycle contributing n p periodic points, so Nn, the total number
of periodic points of period n is given by

znNn = zntr T n =
∑
np |n

npt
n/np
p =

∑
p

np

∞∑
r=1

δn,nprt
r
p . (15.8)

Here m|n means that m is a divisor of n. An example is the periodic orbit
counting in Table 15.2.

In order to get rid of the awkward divisibility constraint n = n pr in the above
sum, we introduce the generating function for numbers of periodic points

∞∑
n=1

znNn = tr
zT

1 − zT
. (15.9)
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Table 15.1 Prime cycles for the binary symbolic dynamics up to length 9. The numbers
of prime cycles are given in Table 15.3.

np p

1 0
1

2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p

7 0001001
0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p

8 00001111
00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p

9 000001101
000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p

9 001001111
001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111
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Table 15.2 The total numbers Nn of periodic points of period n for binary symbolic
dynamics. The numbers of contributing prime cycles illustrates the preponderance of
long prime cycles of period n over the repeats of shorter cycles of periods np, where
n = rnp. Further enumerations of binary prime cycles are given in Tables 15.1 and 15.3.
(L. Rondoni)

n Nn # of prime cycles of period np

1 2 3 4 5 6 7 8 9 10

1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99

The right hand side is the geometric series sum of Nn = tr T n. Substituting
(15.8) into the left hand side, and replacing the right hand side by the eigen-
value sum tr T n =

∑
λn
α, we obtain our first example of a trace formula, the

topological trace formula∑
α=0

zλα
1 − zλα

=
∑

p

nptp

1 − tp
. (15.10)

A trace formula relates the spectrum of eigenvalues of an operator - here the
transition matrix - to the spectrum of periodic orbits of a dynamical system.
It is a statement of duality between the short-time, local information - in this
case the next admissible symbol in a symbol sequence - to long-time, global
averages, in this case the mean rate of growth of the number of cycles with
increasing cycle period.

The zn sum in (15.9) is a discrete version of the Laplace transform (see
Section 18.1.2), and the resolvent on the left hand side is the antecedent of the
more sophisticated trace formulas (18.10) and (18.23).We shall now use this
result to compute the spectral determinant of the transition matrix.

15.3 Determinant of a graph

Our next task is to determine the zeros of the spectral determinant of an [m×m]
transition matrix

det (1 − zT ) =
m−1∏
α=0

(1 − zλα) . (15.11)

We could now proceed to diagonalize T on a computer, and get this over with.
It pays, however, to dissect det (1 − zT ) with some care; understanding this
count - 29jan2009 ChaosBook.org version13.5, Sep 7 2011
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computation in detail will be the key to understanding the cycle expansion
computations of Chapter 20 for arbitrary dynamical averages. For T a finite
matrix, (15.11) is just the characteristic polynomial for T . However, we shall
be able to compute this object even when the dimension of T and other such
operators becomes infinite, and for that reason we prefer to refer to (15.11)
loosely as the “spectral determinant.”

There are various definitions of the determinant of a matrix; we will view
the determinant as a sum over all possible permutation cycles composed of the
traces tr T k, in the spirit of the determinant–trace relation (1.16):

exercise 4.1

det (1 − zT ) = exp (tr ln(1 − zT )) = exp

⎛⎜⎜⎜⎜⎜⎝−∑
n=1

zn

n
tr T n

⎞⎟⎟⎟⎟⎟⎠
= 1 − z tr T − z2

2

(
(tr T )2 − tr T 2

)
− . . . (15.12)

This is sometimes called a cumulant expansion. Formally, the right hand is
a Taylor series in z about z = 0. If T is an [m×m] finite matrix, then the
characteristic polynomial is at most of order m. In that case the coefficients of
zn must vanish exactly for n > m.

We now proceed to relate the determinant in (15.12) to the corresponding
transition graph of Chapter 14: toward this end, we start with the usual text-
book expression for a determinant as the sum of products of all permutations

det M =
∑
{π}

(−1)πM1,π1 M2,π2 · · ·Mm,πm (15.13)

where M = 1 − zT is a [m×m] matrix, {π} denotes the set of permutations of
m symbols, πk is the permutation π applied to k, and (−1)π = ±1 is the parity
of permutation π. The right hand side of (15.13) yields a polynomial in T of
order m in z: a contribution of order n in z picks up m− n unit factors along the
diagonal, the remaining matrix elements yielding

(−z)n(−1)πTs1πs1 · · ·Tsnπsn (15.14)

where π is the permutation of the subset of n distinct symbols s1 · · · sn in-
dexing T matrix elements. As in (15.7), we refer to any combination t c =

Ts1 skTs3 s2 · · ·Ts2 s1 , for a given itinerary c = s1 s2 · · · sk, as the local trace as-
sociated with a closed loop c on the transition graph. Each term of the form
(15.14) may be factored in terms of local traces t c1 tc2 · · · tck , that is loops on
the transition graph. These loops are non-intersecting, as each node may only
be reached by one link, and they are indeed loops, as if a node is reached by a
link, it has to be the starting point of another single link, as each s j must appear
exactly once as a row and column index.

So the general structure is clear, a little more thinking is only required to get
the sign of a generic contribution. We consider only the case of loops of length
1 and 2, and leave to the reader the task of generalizing the result by induction.
Consider first a term in which only loops of unit length appear in (15.14), i.e.,
only the diagonal elements of T are picked up. We have k = m loops and an
even permutation π so the sign is given by (−1) k, where k is the number of
loops. Now take the case in which we have i single loops and j loops of length
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n = 2 j + i. The parity of the permutation gives (−1) j and the first factor in
(15.14) gives (−1)n = (−1)2 j+i. So once again these terms combine to (−1)k,
where k = i + j is the number of loops. Let f be the maximal number of

exercise 15.4
non-intersecting loops. We may summarize our findings as follows:

The characteristic polynomial of a transition matrix is given by
the sum of all possible partitions π of the corresponding transi-
tion graph into products of k non-intersecting loops, with each
loop trace tp carrying a minus sign:

det (1 − zT ) =
f∑

k=0

∑′

π

(−1)ktp1 · · · tpk (15.15)

Any self-intersecting loop is shadowed by a product of two loops that share
the intersection point. As both the long loop t ab and its shadow tatb in the case
at hand carry the same weight zna+nb , the cancelation is exact, and the loop
expansion (15.15) is finite. In the case that the local traces count prime cycles
(15.6), tp = 0 or zn , we refer to det (1 − zT ) as the topological polynomial.

We refer to the set of all non-self-intersecting loops {t p1 , tp2 , · · · tp f } as the
fundamental cycles (for an explicit example, see the loop expansion of Ex-
ample 15.6). This is not a very good definition, as transition graphs are not
unique –the most we know is that for a given finite-grammar language, there
exist transition graph(s) with the minimal number of loops. Regardless of how
cleverly a transition graph is constructed, it is always true that for any finite
transition graph the number of fundamental cycles f is finite. If the graph has
m nodes, no fundamental cycle is of period longer than m, as any longer cycle
is of necessity self-intersecting.

The above loop expansion of a determinant in terms of traces is most easily
grasped by working through a few examples. The complete binary dynamics
transition graph of Fig. 14.4 is a little bit too simple, but let us start humbly
and consider it anyway.

Example 15.3 Topological polynomial for complete binary dynamics:
(continuation of Example 14.2) There are only two non-intersecting loops, yielding

det (1 − zT ) = 1 − t0 − t1 − (t01 − t0t1) = 1 − 2z (15.16)

0 1 = 1 − 0 − 1 −
(

0 1 − 1 0

)
.

Due to the symmetry under 0↔ 1 interchange, this is a redundant graph (the 2-cycle
t01 is exactly shadowed by the 1-cycles). Another way to see is that itineraries are
labeled by the {0, 1} links, node labels can be omitted. As both nodes have 2 in-
links and 2 out-links, they can be identified, and a more economical presentation is
in terms of the [1×1] adjacency matrix (14.12)

det (1 − zA) = 1 − t0 − t1 = 1 − 2z (15.17)

A=B=CA=B=C

= 1 − 0 − 1 .
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The leading (and only) zero of this characteristic polynomial yields the topological
entropy eh = 2. As there are Kn = 2n binary strings of length N, this comes as no
surprise.

Similarly, for the complete symbolic dynamics of N symbols the transition
graph has one node and N links, yielding

det (1 − zT ) = 1 − Nz , (15.18)

which gives the topological entropy h = ln N.

Example 15.4 Golden mean pruning:
The “golden mean” pruning of Example 14.5 has one grammar rule: the substring
11 is forbidden. The corresponding transition graph non-intersecting loops are of

exercise 15.5
length 1 and 2, so the topological polynomial is given by

det (1 − zT ) = 1 − t0 − t01 = 1 − z − z2 (15.19)

0 1 = 1 − 0 − 0 1 .

The leading root of this polynomial is the golden mean, so the entropy (15.5) is the
logarithm of the golden mean, h = ln 1+

√
5

2 .

fast track

Section 15.4, p. 255

Example 15.5 Nontrivial pruning:
The non-self-intersecting loops of the transition graph of Fig. 14.6 (d) are indicated
in Fig. 14.6 (e). The determinant can be written down by inspection, as the sum of
all possible partitions of the graph into products of non-intersecting loops, with each
loop carrying a minus sign:

det (1 − zT ) = 1 − t0 − t0011 − t0001 − t00011

+t0t0011 + t0011t0001 . (15.20)

With tp = znp , where np is the period of the p-cycle, the smallest root of

0 = 1 − z − 2z4 + z8 (15.21)

yields the topological entropy h = − ln z, z = 0.658779 . . ., h = 0.417367 . . ., sig-
nificantly smaller than the entropy of the covering symbolic dynamics, the complete
binary shift with topological entropy h = ln 2 = 0.693 . . .

exercise 15.9

Example 15.6 Loop expansion of a transition graph.
(continued from Example 14.7) Consider a state space covered by 7 neighborhoods

(14.11), with the topological time evolution given by the transition graph of Fig. 14.3.
The determinant det (1 − zT ) of the transition graph in Fig. 14.3 can be read off the
graph, and expanded as a polynomial in z, with coefficients given by products of
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Fig. 15.1 (a) The region labels in the nodes
of transition graph Fig. 14.3 can be omit-
ted, as the links alone keep track of the sym-
bolic dynamics. (b)-(j) The fundamental cy-
cles (15.23) for the transition graph (a), i.e.,
the set of its non-self-intersecting loops. Each
loop represents a local trace tp, as in (14.5).

(a) (b)

010

1

(c)

1

011

001

(d)

0011

01

1

(e)

0

0111

(f)

00111

01

(g)

001101

1

(h)

001011

1

(i)

0010111

(j)

0011101

non-intersecting loops (traces of powers of T ) of the transition graph Fig. 15.1:

det (1 − zT ) = 1 − (t0 + t1)z − (t01 − t0t1) z2 − (t001 + t011 − t01t0 − t01t1) z3

− (t0011 + t0111 − t001t1 − t011t0 − t011t1 + t01t0t1) z4

− (t00111 − t0111t0 − t0011t1 + t011t0t1) z5 (15.22)

− (t001011 + t001101 − t0011t01 − t001t011) z6

− (t0010111 + t0011101 − t001011t1 − t001101t1 − t00111t01 + t0011t01t1 + t001t011t1) z7 .

Twelve cycles up to period 7 are fundamental cycles:

0, 1, 01, 001, 011, 0011, 0111, 00111, 001011, 001101, 0010111, 0011101 , (15.23)

out of the total of 41 prime cycles (listed in Table 15.1) up to cycle period 7. The
topological polynomial tp → znp

1/ζtop(z) = 1 − 2 z + z7

is interesting; the shadowing fails first at the cycle length n = 7, so the topological
entropy is only a bit smaller than the binary h = ln 2. Not exactly obvious from the
partition (14.11).
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15.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the transition
graph is infinite? If we are never sure that looking further into the future will
reveal no further forbidden blocks? There is still a way to define the deter-
minant, and this idea is central to the whole treatise: the determinant is then
defined by its cumulant expansion (15.12)

exercise 4.1

det (1 − zT ) = 1 −
∞∑

n=1

ĉnzn . (15.24)

Example 15.7 Complete binary det (1 − zT ) expansion.
(continuation of Example 14.6) consider the loop expansion of the binary 1-step

memory transition graph (14.10)

01

10

1100 = 1 − 0 − 1 −
(

0 1 − 1 0

)
= 1 − t0 − t1 − [(t01 − t1t0)] − [(t001 − t01t0) + (t011 − t01t1)]

−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)]

= 1 −
∑

f

t f −
∑

n

ĉn = 1 − 2z . (15.25)

For finite dimensional matrices the expansion is a finite polynomial, and
(15.24) is an identity; however, for infinite dimensional operators the cumulant
expansion coefficients ĉn define the determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary tran-
sition matrix. In order to obtain an expression for the spectral determinant
(15.11) in terms of cycles, substitute (15.8) into (15.24) and sum over the re-
peats of prime cycles using ln(1 − x) = −

∑
r xr/r ,

det (1 − zT ) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

tr
p

r

⎞⎟⎟⎟⎟⎟⎟⎠ = exp

⎛⎜⎜⎜⎜⎜⎜⎝∑
p

ln(1 − tp)

⎞⎟⎟⎟⎟⎟⎟⎠
=

∏
p

(1 − tp) , (15.26)

where for the topological entropy the weight assigned to a prime cycle p of
period np is tp = znp if the cycle is admissible, or tp = 0 if it is pruned.
This determinant is called the topological or the Artin-Mazur zeta function,
conventionally denoted by

1/ζtop(z) =
∏

p

(1 − znp ) = 1 −
∑
n=1

ĉnzn . (15.27)

Counting cycles amounts to giving each admissible prime cycle p weight t p =

znp and expanding the Euler product (15.27) as a power series in z. As the pre-
cise expression for the coefficients ĉn in terms of local traces tp is more general
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than the current application to counting, we shall postpone its derivation to
Chapter 20.

The topological entropy h can now be determined from the leading zero
z = e−h of the topological zeta function. For a finite [m×m] transition matrix,
the number of terms in the characteristic equation (15.15) is finite, and we refer
to this expansion as the topological polynomial of order ≤ m. The utility of
defining the determinant by its cumulant expansion is that it works even when
the partition is infinite, m→ ∞; an example is given in Section 15.5, and many
more later on.

fast track

Section 15.5, p. 256

15.4.1 Topological zeta function for flows

We now apply the method that we shall use in deriving (18.23) to
the problem of deriving the topological zeta functions for flows. The time-
weighted density of prime cycles of period t is

Γ(t) =
∑

p

∑
r=1

Tp δ(t − rTp) . (15.28)

The Laplace transform smooths the sum over Dirac delta spikes (see (18.22))
and yields the topological trace formula∑

p

∑
r=1

Tp

∫ ∞

0+

dt e−st δ(t − rTp) =
∑

p

Tp

∞∑
r=1

e−sTpr (15.29)

and the topological zeta function for flows:

1/ζtop(s) =
∏

p

(
1 − e−sTp

)
, (15.30)

related to the trace formula by∑
p

Tp

∞∑
r=1

e−sTpr = − ∂
∂s

ln 1/ζtop(s) .

This is the continuous time version of the discrete time topological zeta func-
tion (15.27) for maps; its leading zero s = −h yields the topological entropy
for a flow.

15.5 Topological zeta function for an infinite
partition

(K.T. Hansen and P. Cvitanović)

To understand the need for topological zeta function (15.24), we turn
a dynamical system with (as far as we know - there is no proof) an infinite
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partition, or an infinity of ever-longer pruning rules. Consider the 1−d quadratic
map (11.3)

f (x) = Ax(1 − x) , A = 3.8 .

Numerically the kneading sequence (the itinerary of the critical point x = 1/2
(11.13)) is

exercise 15.20

K = 1011011110110111101011110111110 . . .

where the symbolic dynamics is defined by the partition of Fig. 11.12. How
this kneading sequence is converted into a series of pruning rules is a dark
art.For the moment it suffices to state the result, to give you a feeling for what
a “typical” infinite partition topological zeta function looks like. For example,
approximating the dynamics by a transition graph corresponding to a repeller
of the period 29 attractive cycle close to the A = 3.8 strange attractor yields a
transition graph with 29 nodes and the characteristic polynomial

Fig. 15.2 The logarithm ln |z(n)
0 − z0 | of the

difference between the leading zero of the n-
th polynomial approximation to topological
zeta function and our best estimate (15.33),
as a function of order of the polynomial n
(the topological zeta function evaluated for
the closest value of A to A = 3.8 for which
the quadratic map has a stable cycle of period
n). (from K.T. Hansen [15.19])

1/ζ(29)
top = 1 − z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11 − z12 − z13 + z14 − z15 + z16 − z17 − z18 + z19 + z20

−z21 + z22 − z23 + z24 + z25 − z26 + z27 − z28 . (15.31)

The smallest real root of this approximate topological zeta function is

z = 0.62616120 . . . (15.32)

Constructing finite transition graphs of increasing length corresponding to A→
3.8 we find polynomials with better and better estimates for the topological
entropy. For the closest stable period 90 orbit we obtain our best estimate of
the topological entropy of the repeller:

Fig. 15.3 The 90 zeroes of the topological
zeta function for the quadratic map for A =
3.8 approximated by the nearest topological
zeta function with a stable cycle of length 90.
(from K.T. Hansen [15.19])

h = − ln 0.62616130424685 . . . = 0.46814726655867 . . . . (15.33)

Figure 15.2 illustrates the convergence of the truncation approximations to the
topological zeta function as a plot of the logarithm of the difference between
the zero of a polynomial and our best estimate (15.33), plotted as a function
of the period of the stable periodic orbit. The error of the estimate (15.32) is
expected to be of order z29 ≈ e−14 because going from period 28 to a longer
truncation typically yields combinations of loops with 29 and more nodes giv-
ing terms ±z29 and of higher order in the polynomial. Hence the convergence
is exponential, with an exponent of −0.47 = −h, the topological entropy itself.
In Fig. 15.3 we plot the zeroes of the polynomial approximation to the topo-
logical zeta function obtained by accounting for all forbidden strings of length
90 or less. The leading zero giving the topological entropy is the point closest
to the origin. Most of the other zeroes are close to the unit circle; we conclude
that for infinite state space partitions the topological zeta function has a unit
circle as the radius of convergence. The convergence is controlled by the ratio
of the leading to the next-to-leading eigenvalues, which is in this case indeed
λ1/λ0 = 1/eh = e−h.
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15.6 Shadowing

The topological zeta function is a pretty function, but the infinite product
(15.26) should make you pause. For finite transition matrices the left hand
side is a determinant of a finite matrix, therefore a finite polynomial; so why is
the right hand side an infinite product over the infinitely many prime periodic
orbits of all periods?

The way in which this infinite product rearranges itself into a finite poly-
nomial is instructive, and crucial for all that follows. You can already take a
peek at the full cycle expansion (20.7) of Chapter 20; all cycles beyond the
fundamental t0 and t1 appear in the shadowing combinations such as

ts1 s2···sn − ts1 s2···sm tsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly, if
we are counting cycles as we do in (15.16) and (15.25), or if the dynamics
is piecewise linear, as in Exercise 19.3. As we argue in Section 1.5.4, for
nice hyperbolic flows whose symbolic dynamics is a subshift of finite type, the
shadowing combinations almost cancel, and the spectral determinant is domi-
nated by the fundamental cycles from (15.15), with longer cycles contributing
only small “curvature” corrections.

These exact or nearly exact cancelations depend on the flow being smooth
and the symbolic dynamics being a subshift of finite type. If the dynamics
requires an infinite state space partition, with pruning rules for blocks of in-
creasing length, most of the shadowing combinations still cancel, but the few
corresponding to new forbidden blocks do not, leading to a finite radius of
convergence for the spectral determinant, as depicted in Fig. 15.3.

One striking aspect of the pruned cycle expansion (15.31) compared to the
trace formulas such as (15.9) is that coefficients are not growing exponentially
- indeed they all remain of order 1, so instead having a radius of convergence
e−h, in the example at hand the topological zeta function has the unit circle as
the radius of convergence. In other words, exponentiating the spectral prob-
lem from a trace formula to a spectral determinant as in (15.24) increases the
analyticity domain: the pole in the trace (15.10) at z = e−h is promoted to a
smooth zero of the spectral determinant with a larger radius of convergence.

This sensitive dependence of spectral determinants on whether or not the
symbolic dynamics is a subshift of finite type is bad news. If the system is
generic and not structurally stable (see Section 12.2), a smooth parameter vari-
ation is in no sense a smooth variation of topological dynamics - infinities of
periodic orbits are created or destroyed, and transition graphs go from being
finite to infinite and back. That will imply that the global averages that we in-
tend to compute are generically nowhere differentiable functions of the system
parameters, and averaging over families of dynamical systems can be a highly
nontrivial enterprise; a simple illustration is the parameter dependence of the
diffusion constant computed in a remark in Chapter 25.

You might well ask: What is wrong with computing the entropy from (15.1)?
Does all this theory buy us anything? An answer: If we count K n level by level,
we ignore the self-similarity of the pruned tree - examine for example Fig. 14.5,
or the cycle expansion of (15.35) - and the finite estimates of h n = ln Kn/n
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converge nonuniformly to h, and on top of that with a slow rate of convergence,
|h − hn| ≈ O(1/n) as in (15.5). The determinant (15.11) is much smarter, as
by construction it encodes the self-similarity of the dynamics, and yields the
asymptotic value of h with no need for any finite n extrapolations.

fast track

Section 16, p. 269

15.7 Counting cycles

In what follows, we shall occasionally need to compute all cycles up
to topological period n, so it is important to know their exact number. The
formulas are fun to derive, but a bit technical for plumber on the street, and
probably best skipped on the first reading.

15.7.1 Counting periodic points

The number of periodic points of period n is denoted N n. It can be computed
from (15.24) and (15.9) as a logarithmic derivative of the topological zeta func-
tion ∑

n=1

Nnzn = tr

(
−z

d
dz

ln(1 − zT )

)
= −z

d
dz

ln det (1 − zT )

=
−z d

dz (1/ζtop)

1/ζtop
. (15.34)

Observe that the trace formula (15.10) diverges at z → e−h, because the de-
nominator has a simple zero there.

Example 15.8 Complete N-ary dynamics:
To check formula (15.34) for the finite-grammar situation, consider the complete N-
ary dynamics (14.7) for which the number of periodic points of period n is simply
tr T n

c = Nn. Substituting

∞∑
n=1

zn

n
tr T n

c =

∞∑
n=1

(zN)n

n
= − ln(1 − zN) ,

into (15.24) we verify (15.18). The logarithmic derivative formula (15.34) in this
case does not buy us much either, it simply recovers∑

n=1

Nnzn =
Nz

1 − Nz
.

Example 15.9 Nontrivial pruned dynamics:
Consider the pruning of Fig. 14.6 (e). Substituting (15.34) we obtain∑

n=1

Nnzn =
z + 8z4 − 8z8

1 − z − 2z4 + z8
. (15.35)
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Table 15.3 Number of prime cycles for various alphabets and grammars up to period 10.
The first column gives the cycle period, the second gives the formula (15.37) for the
number of prime cycles for complete N-symbol dynamics, and columns three through
five give the numbers of prime cycles for N = 2, 3 and 4.

n Mn(N) Mn(2) Mn(3) Mn(4)

1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 − N)/5 6 48 204
6 (N6 − N3 − N2 + N)/6 9 116 670
7 (N7 − N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 − N5 − N2 + N)/10 99 5880 104754

The topological zeta function is not merely a tool for extracting the asymptotic
growth of Nn; it actually yields the exact numbers of periodic points. In case at
hand it yields a nontrivial recursive formula N1 = N2 = N3 = 1, Nn = 2n + 1 for
n = 4, 5, 6, 7, 8, and Nn = Nn−1 + 2Nn−4 − Nn−8 for n > 8.

15.7.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to evalu-
ate the number of prime cycles Mn for a dynamical system whose symbolic dy-
namics is built from N symbols. The problem of finding M n is classical in com-
binatorics (counting necklaces made out of n beads of N different kinds) and is
easily solved. There are Nn possible distinct strings of length n composed of N
letters. These Nn strings include all Md prime d-cycles whose period d equals
or divides n. A prime cycle is a non-repeating symbol string: for example,
p = 011 = 101 = 110 = . . . 011011 . . . is prime, but 0101 = 010101 . . . = 01
is not. A prime d-cycle contributes d strings to the sum of all possible strings,
one for each cyclic permutation. The total number of possible periodic symbol
sequences of period n is therefore related to the number of prime cycles by

Nn =
∑
d|n

dMd , (15.36)

where Nn equals tr T n. The number of prime cycles can be computed recur-
sively

Mn =
1
n

⎛⎜⎜⎜⎜⎜⎜⎝Nn −
d<n∑
d|n

dMd

⎞⎟⎟⎟⎟⎟⎟⎠ ,
or by the Möbius inversion formula

exercise 15.10

Mn = n−1
∑
d|n

μ
(n
d

)
Nd . (15.37)
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where the Möbius function μ(1) = 1, μ(n) = 0 if n has a squared factor, and
μ(p1 p2 . . . pk) = (−1)k if all prime factors are different.

We list the number of prime cycles up to period 10 for 2-, 3- and 4-letter
complete symbolic dynamics in Table 15.3, obtained by Möbius inversion
(15.37).

exercise 15.11

Example 15.10 Counting N-disk periodic points:

A simple example of pruning is the exclusion of “self-bounces” in the N-disk
game of pinball. The number of points that are mapped back onto themselves after n
iterations is given by Nn = tr T n. The pruning of self-bounces eliminates the diagonal
entries, TN−disk = Tc − 1, so the number of the N-disk periodic points is

Nn = tr T n
N−disk = (N − 1)n + (−1)n(N − 1) . (15.38)

Here Tc is the complete symbolic dynamics transition matrix (14.7). For the N-disk
pruned case (15.38), Möbius inversion (15.37) yields

MN−disk
n =

1
n

∑
d|n

μ
(n
d

)
(N − 1)d +

N − 1
n

∑
d|n

μ
( n

d

)
(−1)d

= M(N−1)
n for n > 2 . (15.39)

There are no fixed points, so MN−disk
1 = 0. The number of periodic points of period

2 is N2 − N, hence there are MN−disk
2 = N(N − 1)/2 prime cycles of period 2; for

periods n > 2, the number of prime cycles is the same as for the complete (N−1)-ary
dynamics of Table 15.3.

Example 15.11 Pruning individual cycles:

Consider the 3-disk game of pinball. The prohibition of repeating a symbol
affects counting only for the fixed points and the 2-cycles. Everything else is the
same as counting for a complete binary dynamics (15.39). To obtain the topological
zeta function, just divide out the binary 1- and 2-cycles (1 − zt0)(1 − zt1)(1 − z2t01)
and multiply with the correct 3-disk 2-cycles (1 − z2t12)(1 − z2t13)(1 − z2t23):

exercise 15.14
exercise 15.15

1/ζ3−disk = (1 − 2z)
(1 − z2)3

(1 − z)2(1 − z2)
= (1 − 2z)(1 + z)2 = 1 − 3z2 − 2z3 . (15.40)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it in
(21.25). As we shall see in Chapter 21, symmetries lead to factorizations of topolog-
ical polynomials and topological zeta functions.

Example 15.12 Alphabet {a, cbk; b}:
(continuation of Exercise 15.16) In the cycle counting case, the dynamics in terms
of a→ z, cbk → z + z2 + z3 + · · · = z/(1 − z) is a complete binary dynamics with the
explicit fixed point factor (1 − tb) = (1 − z):

exercise 15.19

1/ζtop = (1 − z)
(
1 − z − z

1 − z

)
= 1 − 3z + z2 .
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Table 15.4 List of 3-disk prime cycles up to period 10. Here n is the cycle period, Mn is
the number of prime cycles, Nn is the number of periodic points, and S n the number of
distinct prime cycles under D3 symmetry (see Chapter 21 for further details). Column 3
also indicates the splitting of Nn into contributions from orbits of periods that divide n.
The prefactors in the fifth column indicate the degeneracy mp of the cycle; for example,
3·12 stands for the three prime cycles 12, 13 and 23 related by 2π/3 rotations. Among
symmetry-related cycles, a representative p̂ which is lexically lowest is listed. The
cycles of period 9 grouped with parentheses are related by time reversal symmetry, but
not by any D3 transformation.

n Mn Nn S n mp · p̂

1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213 + 3·121323
7 18 126=18·7 3 6·1212123 + 6·1212313 + 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213 + 3·12121313 + 6·12121323

+ 6·12123123 + 6·12123213 + 3·12132123
9 56 510=2·3+56·9 10 6·121212123 + 6·(121212313 + 121212323)

+ 6·(121213123 + 121213213) + 6·121231323
+ 6·(121231213 + 121232123) + 2·121232313
+ 6·121321323

10 99 1022 18

Table 15.5 The 4-disk prime cycles up to period 8. The symbols is the same as shown
in Table 15.4. Orbits related by time reversal symmetry (but no C4v symmetry) already
appear at cycle period 5. Cycles of period 7 and 8 have been omitted.

n Mn Nn S n mp · p̂

1 0 0 0
2 6 12=6·2 2 4·12 + 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213 + 4·1214 + 2·1234 + 4·1243
5 48 240=48·5 6 8·(12123 + 12124) + 8·12313

+ 8·(12134 + 12143) + 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213 + 8·121214 + 8·121234

+ 8·121243 + 8·121313 + 8·121314
+ 4·121323 + 8·(121324 + 121423)
+ 4·121343 + 8·121424 + 4·121434
+ 8·123124 + 8·123134 + 4·123143
+ 4·124213 + 8·124243

7 312 2184 39
8 810 6564 108
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Résumé

The main result of this chapter is the cycle expansion (15.27) of the topological
zeta function (i.e., the spectral determinant of the transition matrix):

1/ζtop(z) = 1 −
∑
k=1

ĉkzk .

For subshifts of finite type, the transition matrix is finite, and the topological
zeta function is a finite polynomial evaluated by the loop expansion (15.15)
of det (1 − zT ). For infinite grammars the topological zeta function is defined
by its cycle expansion. The topological entropy h is given by the leading zero
z = e−h. This expression for the entropy is exact; in contrast to the initial
definition (15.1), no n→ ∞ extrapolations of ln K n/n are required.

What have we accomplished? We have related the number of topologically
distinct paths from one state space region to another region to the leading
eigenvalue of the transition matrix T . The spectrum of T is given by topologi-
cal zeta function, a certain sum over traces tr T n, and in this way the periodic
orbit theory has entered the arena through the trace formula (15.10), already at
the level of the topological dynamics.

The main lesson of learning how to count well, a lesson that will be con-
stantly reaffirmed, is that while trace formulas are a conceptually essential step
in deriving and understanding periodic orbit theory, the spectral determinant is
the right object to use in actual computations. Instead of summing all of the
exponentially many periodic points required by trace formulas at each level of
truncation, spectral determinants incorporate only the small incremental cor-
rections to what is already known - and that makes them a more powerful tool
for computations.

Contrary to claims one all too often encounters in the literature, “exponential
proliferation of trajectories” is not the problem; what limits the convergence
of cycle expansions is the proliferation of the grammar rules, or the “algo-
rithmic complexity,” as illustrated by Section 15.5, and Fig. 15.3 in particular.
Nice, finite grammar leads to nice, discrete spectrum; infinite grammar leads
to analyticity walls in the complex spectral plane.

Historically, these topological zeta functions were the inspiration for ap-
plying the transfer matrix methods of statistical mechanics to the problem of
computation of dynamical averages for chaotic flows. The key result was the
dynamical zeta function to be derived in Chapter 18, a weighted generalization
of the topological zeta function.

Further reading

15.1 Artin-Mazur zeta functions. Motivated by A.
Weil’s zeta function for the Frobenius map [15.8], Artin and
Mazur [15.11] introduced the zeta function (15.27) that counts

periodic points for diffeomorphisms (see also Ref. [15.9] for
their evaluation for maps of the interval). Smale [15.10] con-
jectured rationality of the zeta functions for Axiom A diffeo-
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morphisms, later proved by Guckenheimer [15.11] and Man-
ning [15.12]. See Remark 19.4 on page 324 for more zeta
function history.

15.2 “Entropy.” The ease with which the topological entropy
can be motivated obscures the fact that our construction does
not lead to an invariant characterization of the dynamics, as
the choice of symbolic dynamics is largely arbitrary: the same
caveat applies to other entropies.In order to obtain invariant
characterizations we will have to work harder. Mathemati-
cians like to define the (impossible to evaluate) supremum
over all possible partitions. The key point that eliminates the
need for such searches is the existence of generators, i.e., par-
titions that under the dynamics are able to probe the whole
state space on arbitrarily small scales. A generator is a fi-
nite partitionM = {M1 . . .MN} with the following property:
consider the partition built upon all possible intersections of
sets f n(Mi), where f is dynamical evolution and n takes all
possible integer values (positive as well as negative), then the
closure of such a partition coincides with the ‘algebra of all
measurable sets.’ For a thorough (and readable) discussion
of generators and how they allow a computation of the Kol-
mogorov entropy, see Ref. [15.1].

15.3 Perron-Frobenius matrices. For a proof of the Perron
theorem on the leading eigenvalue see Ref. [15.26]. Appendix
A4.1 of Ref. [15.2] offers a clear discussion of the spectrum
of the transition matrix.

15.4 Determinant of a graph. Many textbooks offer deriva-
tions of the loop expansions of characteristic polynomials for
transition matrices and their transition graphs, see for example
Refs. [15.3–5].

15.5 Ordering periodic orbit expansions. In Section 20.5
we will introduce an alternative way of hierarchically orga-
nizing cumulant expansions, in which the order is dictated by
stability rather than cycle period: such a procedure may be
better suited to perform computations when the symbolic dy-
namics is not well understood.

15.6 T is not trace class. Note to the erudite reader: the tran-
sition matrix T (in the infinite partition limit (15.24)) is not
trace class. Still the trace is well defined in the n →∞ limit.

15.7 Counting prime cycles. Duval has an efficient algo-
rithm for generating Lyndon words (non-periodic necklaces,
i.e., prime cycle itineraries).

Exercises

(15.1) A transition matrix for 3-disk pinball.

a) Draw the transition graph corresponding to the 3-
disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transi-
tion matrix results in two coupled linear differ-
ence equations, - one for the diagonal and one for
the off diagonal elements. (Hint: relate tr T n to
tr T n−1 + . . ..)

b) Solve the above difference equation and obtain the
number of periodic orbits of length n. Compare
your result with Table 15.4.

c) Find the eigenvalues of the transition matrix T for
the 3-disk system with ternary symbolic dynam-
ics and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamics {0, 1}.

(15.2) 3-disk prime cycle counting. A prime cycle p
of length np is a single traversal of the orbit; its label is a

non-repeating symbol string of np symbols. For example,
12 is prime, but 2121 is not, since it is 21 = 12 repeated.
Verify that a 3-disk pinball has 3, 2, 3, 6, 9, · · · prime
cycles of length 2, 3, 4, 5, 6, · · ·.

(15.3) Sum of Ai j is like a trace. Let A be a matrix with
eigenvalues λk. Show that

Γn :=
∑

i, j

[An]i j =
∑

k

ckλ
n
k .

(a) Under what conditions do ln |tr An| and ln |Γn| have
the same asymptotic behavior as n → ∞, i.e., their
ratio converges to one?

(b) Do eigenvalues λk need to be distinct, λk � λl for
k � l? How would a degeneracy λk = λl affect your
argument for (a)?

(15.4) Loop expansions. Prove by induction the sign rule in
the determinant expansion (15.15):

det (1 − zT) =
∑
k≥0

∑
p1+···+pk

(−1)ktp1 tp2 · · · tpk .
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(15.5) Transition matrix and cycle counting. Suppose you
are given the transition graph

0 1a

b

c
This diagram can be encoded by a matrix T , where the
entry Ti j means that there is a link connecting node i to
node j. The value of the entry is the weight of the link.

a) Walks on the graph are given a weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

T =

[
a c
b 0

]
.

b) Enumerate all the walks of length three on the tran-
sition graph. Now compute T3 and look at the en-
tries. Is there any relation between the terms in T3

and all the walks?

c) Show that T n
i j is the number of walks from point i to

point j in n steps. (Hint: one might use the method
of induction.)

d) Estimate the number Kn of walks of length n for
this simple transition graph.

e) The topological entropy h measures the rate of ex-
ponential growth of the total number of walks Kn

as a function of n. What is the topological entropy
for this transition graph?

(15.6) Alphabet {0,1}, prune 00 . The transition graph Ex-
ample 14.9 implements this pruning rule which implies
that “0” must always be bracketed by “1”s; in terms of a
new symbol 2 := 10, the dynamics becomes unrestricted
symbolic dynamics with with binary alphabet {1,2}. The
cycle expansion (15.15) becomes

1/ζ = (1 − t1)(1 − t2)(1 − t12)(1 − t112) . . .

= 1 − t1 − t2 − (t12 − t1t2) (15.41)

−(t112 − t12t1) − (t122 − t12t2) . . .

In the original binary alphabet this corresponds to:

1/ζ = 1 − t1 − t10 − (t110 − t1t10) (15.42)

−(t1110 − t110t1) − (t11010 − t110t10) . . .

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For uni-
modal maps this symbolic dynamics is realized by the
tent map of Exercise 11.6.

(15.7) “Golden mean” pruned map. (continuation of Exer-
cise 11.6) Show that the total number of periodic orbits
of length n for the “golden mean” tent map is

(1 +
√

5)n + (1 −
√

5)n

2n
.

Continued in Exercise 19.2. See also Exercise 15.8.

(15.8) A unimodal map with golden mean pruning. Con-
sider the unimodal map

for which the critical point maps into the right hand fixed
point in three iterations, S + = 1001. Show that the ad-
missible itineraries are generated by the above transition
graph, with transient neighborhood of 0 fixed point, and
00 pruned from the recurrent set. (K.T. Hansen)

(15.9) Glitches in shadowing. (medium difficulty) Note
that the combination t00011 minus the “shadow” t0t0011 in
(15.20) cancels exactly, and does not contribute to the
topological zeta function (15.21). Are you able to con-
struct a smaller transition graph than Fig. 14.6 (e)?

(15.10) Whence Möbius function? To understand the origin
of the Möbius function (15.37), consider the function

f (n) =
∑
d|n

g(d) (15.43)

where d|n stands for sum over all divisors d of n. Invert
recursively this infinite tower of equations and derive the
Möbius inversion formula

g(n) =
∑
d|n

μ(n/d) f (d) . (15.44)

(15.11) Counting prime binary cycles. In order to get com-
fortable with Möbius inversion reproduce the results of
the second column of Table 15.3.
Write a program that determines the number of prime cy-
cles of length n. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

(15.12) Counting subsets of cycles. The techniques devel-
oped above can be generalized to counting subsets of cy-
cles. Consider the simplest example of a dynamical sys-
tem with a complete binary tree, a repeller map (11.4)
with two straight branches, which we label 0 and 1. Ev-
ery cycle weight for such map factorizes, with a factor t0
for each 0, and factor t1 for each 1 in its symbol string.
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Prove that the transition matrix traces (15.7) collapse to
tr(T k) = (t0 + t1)k, and 1/ζ is simply∏

p

(
1 − tp

)
= 1 − t0 − t1 (15.45)

Substituting (15.45) into the identity

∏
p

(
1 + tp

)
=

∏
p

1 − tp
2

1 − tp

we obtain∏
p

(
1 + tp

)
=

1 − t2
0 − t2

1

1 − t0 − t1

= 1 + t0 + t1 +
2t0t1

1 − t0 − t1

= 1 + t0 + t1

+

∞∑
n=2

n−1∑
k=1

2

(
n − 2
k − 1

)
tk
0tn−k

1 .

Hence for n ≥ 2 the number of terms in the cumulant ex-
pansion with k 0’s and n−k 1’s in their symbol sequences
is 2

(
n−2
k−1

)
.

In order to count the number of prime cycles in each
such subset we denote with Mn,k (n = 1, 2, . . . ; k =
{0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the number
of prime n-cycles whose labels contain k zeros. Show
that

M1,0 = M1,1 = 1 , n ≥ 2 , k = 1, . . . , n − 1

nMn,k =
∑
m
∣∣∣ n

k

μ(m)

(
n/m
k/m

)

where the sum is over all m which divide both n and k.
(continued as Exercise 20.7)

(15.13) Logarithmic periodicity of ln Nn. (medium difficulty)
Plot (ln Nn, nh) for a system with a nontrivial finite tran-
sition graph. Do you see any periodicity? If yes, why?

(15.14) Symmetric 4-disk pinball topological zeta function.
Show that the 4-disk pinball topological zeta function
(the pruning affects only the fixed points and the 2-
cycles) is given by

1/ζ4−disk
top = (1 − 3z)

(1 − z2)6

(1 − z)3(1 − z2)3

= (1 − 3z)(1 + z)3

= 1 − 6z2 − 8z3 − 3z4 . (15.46)

(15.15) Symmetric N-disk pinball topological zeta function.
Show that for an N-disk pinball, the topological zeta
function is given by

1/ζN−disk
top = (1 − (N − 1)z) ×

(1 − z2)N(N−1)/2

(1 − z)N−1(1 − z2)(N−1)(N−2)/2

= (1 − (N − 1)z) (1 + z)N−1 . (15.47)

The topological zeta function has a root z−1 = N − 1, as
we already know it should from (15.38) or (15.18). We
shall see in Section 21.4 that the other roots reflect the
symmetry factorizations of zeta functions.

(15.16) Alphabet {a, b, c}, prune ab . Write down the topo-
logical zeta function for this pruning rule.

(15.17) Alphabet {0,1}, prune n repeats of “0” 000 . . . 00 .
This is equivalent to the n symbol alphabet {1, 2, . . .,
n} unrestricted symbolic dynamics, with symbols corre-
sponding to the possible 10. . .00 block lengths: 2:=10,
3:=100, . . ., n:=100. . .00. Show that the cycle expansion
(15.15) becomes

1/ζ = 1 − t1 − t2 . . . − tn − (t12 − t1t2) . . .

−(t1n − t1tn) . . . .

(15.18) Alphabet {0,1}, prune 1000 , 00100 , 01100 .
Show that the topological zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (15.48)

with the unrestricted 4-letter alphabet {1, 2, 23, 113}.
Here 2 and 3 refer to 10 and 100 respectively, as in Exer-
cise 15.17.

(15.19) Alphabet {0,1}, prune 1000 , 00100 , 01100 ,
10011 . (This grammar arises from Hénon map prun-

ing, see Remark 12.3.) The first three pruning rules were
incorporated in the preceeding exercise.

(a) Show that the last pruning rule 10011 leads (in a
way similar to Exercise 15.18) to the alphabet {21k , 23,
21k113; 1, 0}, and the cycle expansion

1/ζ = (1 − t0)(1 − t1 − t2 − t23 + t1t23 − t2113) . (15.49)

Note that this says that 1, 23, 2, 2113 are the fundamen-
tal cycles; not all cycles up to length 7 are needed, only
2113.

(b) Show that the topological zeta function is

1/ζtop = (1 − z)(1 − z − z2 − z5 + z6 − z7) (15.50)

and that it yields the entropy h = 0.522737642 . . ..
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(15.20) Alphabet {0,1}, prune only the fixed point 0 . This
is equivalent to the infinite alphabet {1, 2, 3, 4, . . .}
unrestricted symbolic dynamics. The prime cycles are
labeled by all non-repeating sequences of integers, or-
dered lexically: tn, n > 0; tmn, tmmn, . . . , n > m > 0;
tmnr, r > n > m > 0, . . . (see Section 24.3). Now the
number of fundamental cycles is infinite as well:

1/ζ = 1 −
∑
n>0

tn −
∑

n>m>0

(tmn − tntm)

−
∑

n>m>0

(tmmn − tmtmn)

−
∑

n>m>0

(tmnn − tmntn) (15.51)

−
∑

r>n>m>0

(tmnr + tmrn − tmntr

− tmrtn − tmtnr + tmtntr) · · ·

. As shown in Table 24.1, this grammar plays an impor-
tant role in description of fixed points of marginal stabil-
ity.
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Transporting densities 16
Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

—W. Shakespeare: The Winter’s Tale

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapters 2, 3, 7 and 8 we learned how to track an individual trajectory, and
saw that such a trajectory can be very complicated. In Chapter 4 we studied
a small neighborhood of a trajectory and learned that such neighborhood

can grow exponentially with time, making the concept of tracking an individual
trajectory for long times a purely mathematical idealization.

While the trajectory of an individual representative point may be highly con-
voluted, as we shall see, the density of these points might evolve in a manner
that is relatively smooth. The evolution of the density of representative points
is for this reason (and other that will emerge in due course) of great interest.

So are the behaviors of other properties carried by the evolving swarm of

(a)

(b)

01

12

22

02

00

20

21

11
10

Fig. 16.1 (a) First level of partitioning: A
coarse partition of M into regions M0, M1,
andM2. (b) n = 2 level of partitioning: A re-
finement of the above partition, with each re-
gionMi subdivided intoMi0,Mi1, andMi2.

representative points.
We shall now show that the global evolution of the density of representa-

tive points is conveniently formulated in terms of linear action of evolution
operators. We shall also show that the important, long-time “natural” invari-
ant densities are unspeakably unfriendly and essentially uncomputable every-
where singular functions with support on fractal sets. Hence, in Chapter 17
we rethink what is it that the theory needs to predict (“expectation values” of
“observables”), relate these to the eigenvalues of evolution operators, and in
chapters 18 to 20 show how to compute these without ever having to compute
a “natural” invariant density ρ0.

16.1 Measures

Do I then measure, O my God, and know not what I measure?
—St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system
is that of measure, which we denote by dμ(x) = ρ(x)dx. An intuitive way
to define and construct a physically meaningful measure is by a process of
coarse-graining. Consider a sequence 1, 2, ..., n, ... of increasingly refined
partitions of state space, Fig. 16.1, into regionsM i defined by the characteristic
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function

χi(x) =

{
1 if x ∈ Mi ,
0 otherwise .

(16.1)

A coarse-grained measure is obtained by assigning the “mass,” or the fraction
of trajectories contained in the ith regionM i ⊂ M at the nth level of partition-
ing of the state space:

Δμi =

∫
M

dμ(x)χi(x) =
∫
Mi

dμ(x) =
∫
Mi

dx ρ(x) . (16.2)

The function ρ(x) = ρ(x, t) denotes the density of representative points in state
space at time t. This density can be (and in chaotic dynamics, often is) an arbi-
trarily ugly function, and it may display remarkable singularities; for instance,
there may exist directions along which the measure is singular with respect to
the Lebesgue measure (namely the uniform measure on the state space). We
shall assume that the measure is normalized

(n)∑
i

Δμi = 1 , (16.3)

where the sum is over subregions i at the nth level of partitioning. The in-
finitesimal measure ρ(x) dx can be thought of as an infinitely refined partition
limit of Δμi = |Mi|ρ(xi) , xi ∈ Mi, with normalization∫

M
dx ρ(x) = 1 . (16.4)

Here |Mi| is the volume of regionM i, and all |Mi| → 0 as n→ ∞.
So far, any arbitrary sequence of partitions will do. What are intelligent

ways of partitioning state space? We already know the answer from Chap-
ter 11, but let us anyway develope some intuition about how the dynamics
transports densities.

chapter 11

16.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with time.
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Fig. 16.2 The evolution rule f tcan be used to
map a region Mi of the state space into the
region f t(Mi).

Consider a swarm of representative points making up the measure contained
in a regionMi at time t = 0. As the flow evolves, this region is carried into
f t(Mi), as in Fig. 16.2. No trajectory is created or destroyed, so the conserva-
tion of representative points requires that∫

f t(Mi)
dx ρ(x, t) =

∫
Mi

dx0 ρ(x0, 0) .

Transform the integration variable in the expression on the left hand side to the
initial points x0 = f −t(x),∫

Mi

dx0 ρ( f t(x0), t)
∣∣∣det Jt(x0)

∣∣∣ = ∫
Mi

dx0 ρ(x0, 0) .
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The density changes with time as the inverse of the Jacobian (4.40)

ρ(x, t) =
ρ(x0, 0)
|det Jt(x0)|

, x = f t(x0) , (16.5)

which makes sense: the density varies inversely with the infinitesimal volume
occupied by the trajectories of the flow.

The relation (16.5) is linear in ρ, so the manner in which a flow transports
densities may be recast into the language of operators, by writing

exercise 16.1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0

Λ1

Fig. 16.3 A piecewise-linear skew ‘full tent
map’ (16.11) (Λ0 = 4/3, Λ1 = −4).

ρ(x, t) =
(
Lt ◦ ρ

)
(x) =

∫
M

dx0 δ
(
x − f t(x0)

)
ρ(x0, 0) . (16.6)

Let us check this formula. As long as the zero is not smack on the border of
∂M, integrating Dirac delta functions is easy:

∫
M dx δ(x) = 1 if 0 ∈ M, zero

otherwise. The integral over a 1-dimensional Dirac delta function picks up the
Jacobian of its argument evaluated at all of its zeros:∫

dx δ(h(x)) =
∑

{x:h(x)=0}

1
|h′(x)|

, (16.7)

and in d dimensions the denominator is replaced by

∫
dx δ(h(x)) =

(x−x )h’(x )* *

x*

h(x)

x (16.8)

=
∑

j

∫
M j

dx δ(h(x)) =
∑

{x:h(x)=0}

1∣∣∣det ∂h(x)
∂x

∣∣∣ .
Now you can check that (16.6) is just a rewrite of (16.5):

exercise 16.2(
Lt ◦ ρ

)
(x) =

∑
x0= f−t (x)

ρ(x0)
| f t′ (x0)|

(1-dimensional)

=
∑

x0= f−t (x)

ρ(x0)
|det Jt(x0)|

(d-dimensional) . (16.9)

For a deterministic, invertible flow x has only one preimage x 0; allowing for
multiple preimages also takes account of noninvertible mappings such as the
‘stretch & fold’ maps of the interval, to be discussed briefly in the next exam-
ple, and in more detail in Section 11.3.

We shall refer to the integral operator with singular kernel (16.6) as the
Perron-Frobenius operator:

exercise 16.3
example 23.7Lt(x, y) = δ

(
x − f t(y)

)
. (16.10)

If you do not like the word “kernel” you might prefer to think of L t(x, y) as
a matrix with indices x, y, and index summation in matrix multiplication re-
placed by an integral over y,

(
Lt ◦ ρ

)
(x) =

∫
dyLt(x, y)ρ(y) . (In the next ex-

remark 19.4
ample Perron-Frobenius operator is a matrix, and (16.14) illustrates a matrix
approximation to the Perron-Frobenius operator.) The Perron-Frobenius oper-
ator assembles the density ρ(x, t) at time t by going back in time to the density
ρ(x0, 0) at time t = 0.
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Example 16.1 Perron-Frobenius operator for a piecewise-linear map:
Assume the expanding 1−d map f (x) of Fig. 16.3, a piecewise-linear 2–branch map
with slopes Λ0 > 1 and Λ1 = −Λ0/(Λ0 − 1) < −1 :

exercise 16.7

f (x) =

{
f0(x) = Λ0 x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ1(1 − x) , x ∈ M1 = (1/Λ0, 1] .

(16.11)

Both f (M0) and f (M1) map onto the entire unit intervalM = [0, 1]. We shall refer
to any unimodal map whose critical point maps onto the “left” unstable fixed point
x0 as the “Ulam” map. Assume a piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0

ρ1 if x ∈ M1
. (16.12)

As can be easily checked using (16.9), the Perron-Frobenius operator acts on this
piecewise constant function as a [2×2] Markov matrix L with matrix elements

exercise 16.1
exercise 16.5

(
ρ0

ρ1

)
→ Lρ =

⎛⎜⎜⎜⎜⎝ 1
|Λ0 |

1
|Λ1 |

1
|Λ0 |

1
|Λ1 |

⎞⎟⎟⎟⎟⎠ (
ρ0

ρ1

)
, (16.13)

stretching both ρ0 and ρ1 over the whole unit intervalΛ. In this example the density is
constant after one iteration, so L has only a unit eigenvalue es0 = 1/|Λ0|+1/|Λ1| = 1,
with constant density eigenvector ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respec-
tively, the fractions of state space taken up by the |M0|, |M1| intervals. This simple
explicit matrix representation of the Perron-Frobenius operator is a consequence of
the piecewise linearity of f , and the restriction of the densities ρ to the space of piece-
wise constant functions. The example gives a flavor of the enterprize upon which we
are about to embark in this book, but the full story is much subtler: in general, there
will exist no such finite-dimensional representation for the Perron-Frobenius oper-
ator. (continued in Example 17.4)

fast track

Section 16.4, p. 274

16.3 Why not just leave it to a computer?

Another subtlety in the [dynamical systems ] theory is that topological
and measure-theoretic concepts of genericity lead to different results.

— John Guckenheimer

(R. Artuso and P. Cvitanović)
To a student with a practical bent the above Example 16.1 suggests a strategy
for constructing evolution operators for smooth maps, as limits of partitions of
state space into regionsMi, with a piecewise-linear approximations f i to the
dynamics in each region, but that would be too naive; much of the physically
interesting spectrum would be missed. As we shall see, the choice of function

chapter 23
space for ρ is crucial, and the physically motivated choice is a space of smooth
functions, rather than the space of piecewise constant functions.

All of the insight gained in this chapter and in what is to follow is nothing
but an elegant way of thinking of the evolution operator, L, as a matrix (this
point of view will be further elaborated in Chapter 23). There are many text-
book methods of approximating an operator L by sequences of finite matrix
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approximations L, but in what follows the great achievement will be that we
shall avoid constructing any matrix approximation to L altogether. Why a new
method? Why not just run it on a computer, as many do with such relish in
diagonalizing quantum Hamiltonians?

The simplest possible way of introducing a state space discretization, Fig. 16.4,
is to partition the state space M with a non-overlapping collection of sets
Mi, i = 1, . . . ,N, and to consider densities (16.2) piecewise constant on each
Mi:

ρ(x) =
N∑

i=1

ρi
χi(x)
|Mi|

where χi(x) is the characteristic function (16.1) of the setM i. This piecewise
constant density is a coarse grained presentation of a fine grained density ρ̂(x),
with (16.2)

Fig. 16.4 State space discretization approach
to computing averages.

ρi =

∫
Mi

dx ρ̂(x).

The Perron-Frobenius operator does not preserve the piecewise constant form,
but we may reapply coarse graining to the evolved measure

ρ′i =

∫
Mi

dx (L ◦ ρ)(x)

=

N∑
j=1

ρ j

|M j|

∫
Mi

dx
∫
M j

dy δ(x − f (y)) ,

or

ρ′i =
N∑

j=1

ρ j
|M j ∩ f −1(Mi)|

|M j|
.

In this way

Li j =
|Mi ∩ f −1(M j)|

|Mi|
, ρ′ = ρL (16.14)

is a matrix approximation to the Perron-Frobenius operator, and its leading left
eigenvector is a piecewise constant approximation to the invariant measure. It
is an old idea of Ulam that such an approximation for the Perron-Frobenius
operator is a meaningful one.

remark 16.3
The problem with such state space discretization approaches is that they are

blind, the grid knows not what parts of the state space are more or less impor-
tant. This observation motivated the development of the invariant partitions of
chaotic systems undertaken in Chapter 11, we exploited the intrinsic topology
of a flow to give us both an invariant partition of the state space and a measure
of the partition volumes, in the spirit of Fig. 1.11.

Furthermore, a piecewise constant ρ belongs to an unphysical function space,
and with such approximations one is plagued by numerical artifacts such as
spurious eigenvalues. In Chapter 23 we shall employ a more refined approach
to extracting spectra, by expanding the initial and final densities ρ, ρ ′ in some
basis ϕ0, ϕ1, ϕ2, · · · (orthogonal polynomials, let us say), and replacing L(y, x)
by its ϕα basis representation Lαβ = 〈ϕα|L|ϕβ〉. The art is then the subtle art
of finding a “good” basis for which finite truncations of Lαβ give accurate es-
timates of the eigenvalues of L.

chapter 23
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Regardless of how sophisticated the choice of basis might be, the basic prob-
lem cannot be avoided - as illustrated by the natural measure for the Hénon
map (3.19) sketched in Fig. 16.5, eigenfunctions of L are complicated, singu-
lar functions concentrated on fractal sets, and in general cannot be represented
by a nice basis set of smooth functions. We shall resort to matrix representa-
tions of L and the ϕα basis approach only insofar this helps us prove that the
spectrum that we compute is indeed the correct one, and that finite periodic
orbit truncations do converge.

in depth:

Chapter 1, p. 1

16.4 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

ρ(x, t) = ρ(x, 0) = ρ(x) . (16.15)

Conversely, if such a density exists, the transformation f t(x) is said to be
measure-preserving. As we are given deterministic dynamics and our goal
is the computation of asymptotic averages of observables, our task is to iden-
tify interesting invariant measures for a given f t(x). Invariant measures remain
unaffected by dynamics, so they are fixed points (in the infinite-dimensional
function space of ρ densities) of the Perron-Frobenius operator (16.10), with
the unit eigenvalue:

exercise 16.3

Ltρ(x) =
∫
M

dy δ(x − f t(y))ρ(y) = ρ(x). (16.16)

In general, depending on the choice of f t(x) and the function space for ρ(x),
there may be no, one, or many solutions of the eigenfunction condition (16.16).
For instance, a singular measure dμ(x) = δ(x − xq)dx concentrated on an equi-
librium point xq = f t(xq), or any linear combination of such measures, each
concentrated on a different equilibrium point, is stationary. There are thus in-
finitely many stationary measures that can be constructed. Almost all of them
are unnatural in the sense that the slightest perturbation will destroy them.

From a physical point of view, there is no way to prepare initial densities
which are singular, so we shall focus on measures which are limits of transfor-
mations experienced by an initial smooth distribution ρ(x) under the action of
f ,

ρ0(x) = lim
t→∞

∫
M

dy δ(x − f t(y))ρ(y, 0) ,
∫
M

dy ρ(y, 0) = 1 . (16.17)

Intuitively, the “natural” measure should be the measure that is the least sensi-
tive to the (in practice unavoidable) external noise, no matter how weak.
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16.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us useful in-
sight into the foundation of statistical mechanics?
Yang: I don’t think so.

—Kerson Huang, C.N. Yang interview

In computer experiments, as the Hénon example of Fig. 16.5, the long time
evolution of many “typical” initial conditions leads to the same asymptotic dis-
tribution. Hence the natural (also called equilibrium measure, SRB measure,
Sinai-Bowen-Ruelle measure, physical measure, invariant density, natural den-
sity, or even “natural invariant”) is defined as the limit

exercise 16.8
exercise 16.9

ρx0
(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
limt→∞

1
t

∫ t

0
dτ δ(y − f τ(x0)) flows

limn→∞
1
n

∑n−1
k=0 δ

(
y − f k(x0)

)
maps ,

(16.18)

where x0 is a generic initial point. Generated by the action of f , the natu-
ral measure satisfies the stationarity condition (16.16) and is thus invariant by
construction.

Staring at an average over infinitely many Dirac deltas is not a prospect
we cherish. From a computational point of view, the natural measure is the
visitation frequency defined by coarse-graining, integrating (16.18) over the
Mi region

Δμi = lim
t→∞

ti
t
, (16.19)

where ti is the accumulated time that a trajectory of total duration t spends in
theMi region, with the initial point x0 picked from some smooth density ρ(x).

Let a = a(x) be any observable. In the mathematical literature a(x) is a
function belonging to some function space, for instance the space of integrable
functions L1, that associates to each point in state space a number or a set of
numbers. In physical applications the observable a(x) is necessarily a smooth
function. The observable reports on some property of the dynamical system.
Several examples will be given in Section 17.1.

The space average of the observable a with respect to a measure ρ is given
by the d-dimensional integral over the state spaceM:

〈a〉ρ =
1
|ρM|

∫
M

dx ρ(x)a(x)

|ρM| =
∫
M

dx ρ(x) = mass inM . (16.20)

For now we assume that the state spaceM has a finite dimension and a finite
volume. By definition, 〈a〉ρ is a function(al) of ρ. For ρ = ρ0 natural measure
we shall drop the subscript in the definition of the space average; 〈a〉 ρ = 〈a〉.

Inserting the right-hand-side of (16.18) into (16.20), we see that the natural
measure corresponds to a time average of the observable a along a trajectory
of the initial point x0,

ax0 = lim
t→∞

1
t

∫ t

0
dτ a( f τ(x0)) . (16.21)
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Analysis of the above asymptotic time limit is the central problem of ergodic
theory. The Birkhoff ergodic theorem asserts that if an invariant measure ρ

remark 16.1
appendix 28 exists, the limit a(x0) for the time average (16.21) exists for (almost) all initial

x0. Still, Birkhoff theorem says nothing about the dependence on x 0 of time
averages ax0 (or, equivalently, that the construction of natural measures (16.18)
leads to a “single” density, independent of x0). This leads to one of the possible
definitions of an ergodic evolution: f is ergodic if for any integrable observable
a in (16.21) the limit function is constant. If a flow enjoys such a property the
time averages coincide (apart from a set of ρ measure 0) with space averages

lim
t→∞

1
t

∫ t

0
dτ a( f τ(x0)) = 〈a〉 . (16.22)

For future reference, we note a further property that is stronger than ergod-
icity: if the space average of a product of any two variables decorrelates with
time,

lim
t→∞

〈
a(x)b( f t(x))

〉
= 〈a〉 〈b〉 , (16.23)

the dynamical system is said to be mixing. The terminology may be under-
section 22.4

stood better once we consider as the pair of observables in (16.23) characteris-
tic functions of two setsA and B: then (16.23) may be written as

lim
t→∞

μ
(
A∩ f t(B)

)
μ(A)

= μ(B)

so that the set B spreads “uniformly” over the whole state space as t increases.
Mixing is a fundamental notion in characterizing statistical behavior for dy-
namical systems: suppose we start with an arbitrary smooth nonequilibrium
distribution ρ(x)ν(x): the after time t the average of an observable a is given
by ∫

M
dx ρ(x)ν( f t(x))a(x)

and this tends to the equilibrium average 〈a〉ρ if f is mixing.

-0.4

0

0.4

y

-1.5

0

1.5

x

μ

-0.4

0

0.4

y

μ

Fig. 16.5 Natural measure (16.19) for the
Hénon map (3.19) strange attractor at param-
eter values (a, b) = (1.4, 0.3). See Fig. 3.9 for
a sketch of the attractor without the natural
measure binning. (Courtesy of J.-P. Eck-
mann)

Example 16.2 The Hénon attractor natural measure:
A numerical calculation of the natural measure (16.19) for the Hénon attractor (3.19)
is given by the histogram in Fig. 16.5. The state space is partitioned into many equal-
size areas Mi, and the coarse grained measure (16.19) is computed by a long-time
iteration of the Hénon map, and represented by the height of the column over area
Mi. What we see is a typical invariant measure - a complicated, singular function
concentrated on a fractal set.

If an invariant measure is quite singular (for instance a Dirac δ concentrated
on a fixed point or a cycle), its existence is most likely of no physical import;
no smooth initial density will converge to this measure if its neighborhood is
repelling. In practice the average (16.18) is problematic and often hard to con-
trol, as generic dynamical systems are neither uniformly hyperbolic nor struc-
turally stable: it is not known whether even the simplest model of a strange
attractor, the Hénon attractor of Fig. 16.5, is “strange,” or merely a transient to
a very long stable cycle.

exercise 17.1
measure - 13jan2009 ChaosBook.org version13.5, Sep 7 2011



16.5. DENSITY EVOLUTION FOR INFINITESIMAL TIMES 277

16.4.2 Determinism vs. stochasticity

While dynamics can lead to very singular ρ’s, in any physical setting we cannot
do better than to measure ρ averaged over some regionM i; the coarse-graining
is not an approximation but a physical necessity. One is free to think of a
measure as a probability density, as long as one keeps in mind the distinction
between deterministic and stochastic flows. In deterministic evolution the
evolution kernels are not probabilistic; the density of trajectories is transported
deterministically. What this distinction means will became apparent later: for

chapter 19
deterministic flows our trace and determinant formulas will be exact, while
for quantum and stochastic flows they will only be the leading saddle point
(stationary phase, steepest descent) approximations.

Clearly, while deceptively easy to define, measures spell trouble. The good
news is that if you hang on, you will never need to compute them, at least not
in this book. How so? The evolution operators to which we next turn, and the
trace and determinant formulas to which they will lead us, will assign the cor-
rect weights to desired averages without recourse to any explicit computation
of the coarse-grained measure Δρ i.

16.5 Density evolution for infinitesimal times

Consider the evolution of a smooth density ρ(x) = ρ(x, 0) under an infinitesi-
mal step δτ, by expanding the action of Lδτ to linear order in δτ:

Lδτρ(y) =

∫
M

dx δ
(
y − f δτ(x)

)
ρ(x)

=

∫
M

dx δ(y − x − δτv(x)) ρ(x)

=
ρ(y − δτv(y))∣∣∣∣det

(
1 + δτ∂v(y)

∂x

)∣∣∣∣ =
ρ(y) − δτvi(y)∂iρ(y)

1 + δτ
∑d

i=1 ∂ivi(y)

ρ(x, δτ) = ρ(x, 0) − δτ
∂

∂x
(v(x)ρ(x, 0)) . (16.24)

Here we have used the infinitesimal form of the flow (2.6), the Dirac delta
exercise 4.1

Jacobian (16.9), and the ln det = tr ln relation. By the Einstein summation
convention, repeated indices imply summation, v i(y)∂i =

∑d
i=1 vi(y)∂i. Moving

ρ(y, 0) to the left hand side and dividing by δτ, we discover that the rate of
the deformation of ρ under the infinitesimal action of the Perron-Frobenius
operator is nothing but the continuity equation for the density:

∂tρ + ∂ · (ρv) = 0 . (16.25)

The family of Perron-Frobenius operators operators
{
Lt}

t∈R+ forms a semi-
group parameterized by time

(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .
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From (16.24), time evolution by an infinitesimal step δτ forward in time is
generated by

Aρ(x) = + lim
δτ→0+

1
δτ

(
Lδτ − I

)
ρ(x) = −∂i(vi(x)ρ(x)) . (16.26)

We shall refer to

A = −∂ · v +
d∑
i

vi(x)∂i (16.27)

as the time-evolution generator. If the flow is finite-dimensional and invert-
ible, A is a generator of a full-fledged group. The left hand side of (16.26) is
the definition of time derivative, so the evolution equation for ρ(x) is(

∂

∂t
−A

)
ρ(x) = 0 . (16.28)

The finite time Perron-Frobenius operator (16.10) can be formally expressed
by exponentiating the time evolution generatorA as

Lt = etA . (16.29)

The generator A is reminiscent of the generator of translations. Indeed, for
a constant velocity field dynamical evolution is nothing but a translation by
(time× velocity):

exercise 16.10
e−tv ∂

∂x a(x) = a(x − tv) . (16.30)

16.5.1 Resolvent of L
Here we limit ourselves to a brief remark about the notion of the “spectrum”
of a linear operator.

The Perron-Frobenius operator L acts multiplicatively in time, so it is rea-
sonable to suppose that there exist constants M > 0, β ≥ 0 such that ||L t|| ≤
Metβ for all t ≥ 0. What does that mean? The operator norm is defined in the
same spirit in which one defines matrix norms:We are assuming that no value
of Ltρ(x) grows faster than exponentially for any choice of function ρ(x), so
that the fastest possible growth can be bounded by e tβ, a reasonable expecta-
tion in the light of the simplest example studied so far, the exact escape rate
(17.20). If that is so, multiplying L t by e−tβ we construct a new operator
e−tβLt = et(A−β) which decays exponentially for large t, ||et(A−β)|| ≤ M. We
say that e−tβLt is an element of a bounded semigroup with generatorA − βI.
Given this bound, it follows by the Laplace transform∫ ∞

0
dt e−stLt =

1
s −A

, Re s > β , (16.31)

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to cause
separation into constituents)∣∣∣∣∣∣∣∣∣∣ 1

s −A

∣∣∣∣∣∣∣∣∣∣ ≤ ∫ ∞

0
dt e−stMetβ =

M
s − β

.
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If one is interested in the spectrum of L, as we will be, the resolvent operator
is a natural object to study; it has no time dependence, and it is bounded. The
main lesson of this brief aside is that for continuous time flows, the Laplace
transform is the tool that brings down the generator in (16.29) into the resolvent
form (16.31) and enables us to study its spectrum.

16.6 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow defined
by Hamilton’s equations of motion (7.1). A reader versed in quantum mechan-
ics will have observed by now that with replacement A → − i

�
Ĥ , where Ĥ is

the quantum Hamiltonian operator, (16.28) looks rather like the time depen-
dent Schrödinger equation, so this is probably the right moment to figure out
what all this means in the case of Hamiltonian flows.

The Hamilton’s evolution equations (7.1) for any time-independent quantity
Q = Q(q, p) are given by

dQ
dt
=
∂Q
∂qi

dqi

dt
+
∂Q
∂pi

dpi

dt
=
∂H
∂pi

∂Q
∂qi
− ∂Q
∂pi

∂H
∂qi

. (16.32)

As equations with this structure arise frequently for symplectic flows, it is
convenient to introduce a notation for them, the Poisson bracket

remark 16.4

{A, B} = ∂A
∂pi

∂B
∂qi
− ∂A
∂qi

∂B
∂pi

. (16.33)

In terms of Poisson brackets the time-evolution equation (16.32) takes the com-
pact form

dQ
dt
= {H,Q} . (16.34)

The full state space flow velocity is ẋ = v = (q̇, ṗ), where the dot signifies
time derivative.

The discussion of Section 16.5 applies to any deterministic flow. If the den-
sity itself is a material invariant, combining

∂t I + v · ∂I = 0 .

and (16.25) we conclude that ∂ ivi = 0 and det Jt(x0) = 1. An example of such
incompressible flow is the Hamiltonian flow of Section 7.2. For incompress-
ible flows the continuity equation (16.25) becomes a statement of conservation
of the state space volume (see Section 7.2), or the Liouville theorem

∂tρ + vi∂iρ = 0 . (16.35)

Hamilton’s equations (7.1) imply that the flow is incompressible, ∂ ivi = 0,
so for Hamiltonian flows the equation for ρ reduces to the continuity equation
for the phase space density:

∂tρ + ∂i(ρvi) = 0 , i = 1, 2 . . . ,D . (16.36)
ChaosBook.org version13.5, Sep 7 2011 measure - 13jan2009
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Consider the evolution of the phase space density ρ of an ensemble of non-
interacting particles; the particles are conserved, so

d
dt
ρ(q, p, t) =

(
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
ρ(q, p, t) = 0 .

Inserting Hamilton’s equations (7.1) we obtain the Liouville equation, a special
case of (16.28):

∂

∂t
ρ(q, p, t) = −Aρ(q, p, t) = {H, ρ(q, p, t)} , (16.37)

where { , } is the Poisson bracket (16.33). The generator of the flow (16.27)
is in this case a generator of infinitesimal symplectic transformations,

A = q̇i
∂

∂qi
+ ṗi

∂

∂pi
=
∂H
∂pi

∂

∂qi
−
∂H
∂qi

∂

∂pi
. (16.38)

For example, for separable Hamiltonians of form H = p 2/2m+V(q), the equa-
tions of motion are

q̇i =
pi

m
, ṗi = −

∂V(q)
∂qi

. (16.39)

and the action of the generator
exercise 16.11

A = − pi

m
∂

∂qi
+ ∂iV(q)

∂

∂pi
. (16.40)

can be interpreted as a translation (16.30) in configuration space, followed by
acceleration by force ∂V(q) in the momentum space.

The time-evolution generator (16.27) for the case of symplectic flows is
called the Liouville operator. You might have encountered it in statistical
mechanics, while discussing what ergodicity means for 10 23 hard balls. Here
its action will be very tangible; we shall apply the Liouville operator to sys-
tems as small as 1 or 2 hard balls and to our surprise learn that this suffices
to already get a bit of a grip on foundations of the nonequilibrium statistical
mechanics.

Résumé

In physically realistic settings the initial state of a system can be specified only
to a finite precision. If the dynamics is chaotic, it is not possible to calculate
accurately the long time trajectory of a given initial point. Depending on the
desired precision, and given a deterministic law of evolution, the state of the
system can then be tracked for a finite time.

The study of long-time dynamics thus requires trading in the evolution of a
single state space point for the evolution of a measure, or the density of repre-
sentative points in state space, acted upon by an evolution operator. Essentially
this means trading in nonlinear dynamical equations on a finite dimensional
space x = (x1, x2 · · · xd) for a linear equation on an infinite dimensional vector
space of density functions ρ(x). For finite times and for maps such densities
are evolved by the Perron-Frobenius operator,

ρ(x, t) =
(
Lt ◦ ρ

)
(x) ,
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and in a differential formulation they satisfy the continuity equation:

∂tρ + ∂ · (ρv) = 0 .

The most physical of stationary measures is the natural measure, a measure
robust under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the no-
tion of an individual deterministic trajectory loses meaning, is much shorter
than the observation time, the “sharp” observables are those dual to time, the
eigenvalues of evolution operators. This is very much the same situation as
in quantum mechanics; as atomic time scales are so short, what is measured
is the energy, the quantum-mechanical observable dual to the time. For long
times the dynamics is described in terms of stationary measures, i.e., fixed
points of the appropriate evolution operators. Both in classical and quantum
mechanics one has a choice of implementing dynamical evolution on densities
(“Schrödinger picture,” Section 16.5) or on observables (“Heisenberg picture,”
Section 17.2 and Chapter 18).

In what follows we shall find the second formulation more convenient, but
the alternative is worth keeping in mind when posing and solving invariant den-
sity problems. However, as classical evolution operators are not unitary, their
eigenstates can be quite singular and difficult to work with. In what follows we
shall learn how to avoid dealing with these eigenstates altogether. As a mat-
ter of fact, what follows will be a labor of radical deconstruction; after having
argued so strenuously here that only smooth measures are “natural,” we shall
merrily proceed to erect the whole edifice of our theory on periodic orbits, i.e.,
objects that are δ-functions in state space. The trick is that each comes with
an interval, its neighborhood – periodic points only serve to pin these inter-
vals, just as the millimeter marks on a measuring rod partition continuum into
intervals.

Further reading

16.1 Ergodic theory: An overview of ergodic theory is out-
side the scope of this book: the interested reader may find it
useful to consult Refs. [16.1, 3–5]. The existence of time av-
erage (16.21) is the basic result of ergodic theory, known as
the Birkhoff theorem, see for example Refs. [16.1, 25], or the
statement of theorem 7.3.1 in Ref. [16.12]. The natural mea-
sure (16.19) of Section 16.4.1 is often referred to as the SRB
or Sinai-Ruelle-Bowen measure [16.29, 28, 32].
There is much literature on explicit form of natural measure
for special classes of 1−d maps [16.19, 14, 15] - J. M. Aguir-
regabiria [16.16], for example, discusses several families of
maps with known smooth measure, and behavior of measure

under smooth conjugacies. As no such explicit formulas exist
for higher dimensions and general dynamical systems, we do
not discuss such measures here.

16.2 Time evolution as a Lie group: Time evolution of Sec-
tion 16.5 is an example of a 1-parameter Lie group. Consult,
for example, chapter 2. of Ref. [16.13] for a clear and ped-
agogical introduction to Lie groups of transformations. For
a discussion of the bounded semigroups of page 278 see, for
example, Marsden and Hughes [16.6].

16.3 Discretization of the Perron-Frobenius operator op-
erator It is an old idea of Ulam [16.18] that such an ap-
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proximation for the Perron-Frobenius operator is a meaning-
ful one. The piecewise-linear approximation of the Perron-
Frobenius operator (16.14) has been shown to reproduce the
spectrum for expanding maps, once finer and finer Markov
partitions are used [16.19, 23, 20]. The subtle point of choos-
ing a state space partitioning for a “generic case” is discussed
in Ref. [16.21, 22].

16.4 The sign convention of the Poisson bracket: The Pois-
son bracket is antisymmetric in its arguments and there is a
freedom to define it with either sign convention. When such
freedom exists, it is certain that both conventions are in use
and this is no exception. In some texts [16.8, 7] you will see
the right hand side of (16.33) defined as {B,A} so that (16.34)

is dQ
dt = {Q,H}. Other equally reputable texts [16.24] employ

the convention used here. Landau and Lifshitz [16.8] denote
a Poisson bracket by [A, B], notation that we reserve here for
the quantum-mechanical commutator. As long as one is con-
sistent, there should be no problem.

16.5 “Anon it lives”? “Anon it lives” refers to a statue of King
Leontes’s wife, Hermione, who died in a fit of grief after he
unjustly accused her of infidelity. Twenty years later, the ser-
vant Paulina shows Leontes this statue of Hermione. When he
repents, the statue comes to life. Or perhaps Hermione actu-
ally lived and Paulina has kept her hidden all these years. The
text of the play seems deliberately ambiguous. It is probably
a parable for the resurrection of Christ. (John F. Gibson)

Exercises

(16.1) Integrating over Dirac delta functions. Let us verify
a few of the properties of the delta function and check
(16.9), as well as the formulas (16.7) and (16.8) to be
used later.

(a) If f : Rd → Rd, show that∫
Rd

dx δ ( f (x)) =
∑

x∈ f−1(0)

1
|det ∂x f | .

(b) The delta function can be approximated by a se-
quence of Gaussians∫

dx δ(x) f (x) = lim
σ→0

∫
dx

e−
x2
2σ

√
2πσ

f (x) .

Use this approximation to see whether the formal
expression ∫

R

dx δ(x2)

makes sense.

(16.2) Derivatives of Dirac delta functions. Consider
δ(k)(x) = ∂k

∂xk δ(x) .

Using integration by parts, determine the value of∫
R

dx δ′(y) , where y = f (x) − x (16.41)∫
dx δ(2) (y) =

∑
{x:y(x)=0}

1
|y′|

{
3

(y′′)2

(y′)4
− y′′′

(y′)3

}
(16.42)

∫
dx b(x)δ(2)(y) =

∑
{x:y(x)=0}

1
|y′|

{
b′′

(y′)2
− b′y′′

(y′)3

+b

(
3

(y′′)2

(y′)4
− y′′′

(y′)3

)}
.(16.43)

These formulas are useful for computing effects of weak
noise on deterministic dynamics [16.9].

(16.3) Lt generates a semigroup. Check that the Perron-
Frobenius operator has the semigroup property,∫

M
dzLt2 (y, z)Lt1 (z, x) = Lt2+t1 (y, x) , t1, t2 ≥ 0 .

(16.44)
As the flows in which we tend to be interested are invert-
ible, the L’s that we will use often do form a group, with
t1, t2 ∈ R.

(16.4) Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in the
interval [0, 1] for the tent map

f (x) = a(1 − 2|x − 0.5|)

for several values of a.

(b) Determine analytically the a dependence of the es-
cape rate γ(a).

(c) Compare your results for (a) and (b).

(16.5) Invariant measure. We will compute the invariant
measure for two different piecewise linear maps.
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α0 1 0 1

(a) Verify the matrix L representation (17.19).

(b) The maximum value of the first map is 1. Compute
an invariant measure for this map.

(c) Compute the leading eigenvalue of L for this map.

(d) For this map there is an infinite number of invariant
measures, but only one of them will be found when
one carries out a numerical simulation. Determine
that measure, and explain why your choice is the
natural measure for this map.

(e) In the second map the maximum occurs at α =
(3 −

√
5)/2 and the slopes are ±(

√
5 + 1)/2. Find

the natural measure for this map. Show that it is
piecewise linear and that the ratio of its two values
is (
√

5 + 1)/2.
(medium difficulty)

(16.6) Escape rate for a flow conserving map. AdjustΛ0, Λ1

in (17.17) so that the gap between the intervalsM0,M1

vanishes. Show that the escape rate equals zero in this
situation.

(16.7) Eigenvalues of the Perron-Frobenius operator for the
skew full tent map. Show that for the skew full tent
map

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0

Λ1

f (x) =

{
f0(x) = Λ0 x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1 (1 − x) , x ∈ M1 = (1/Λ0, 1] .
(16.45)

the eigenvalues are available analytically, compute the
first few.

(16.8) “Kissing disks”∗ (continuation of exercises 8.1 and
8.2). Close off the escape by setting R = 2, and look in
real time at the density of the Poincaré section iterates
for a trajectory with a randomly chosen initial condition.
Does it look uniform? Should it be uniform? (Hint -
phase space volumes are preserved for Hamiltonian flows
by the Liouville theorem). Do you notice the trajectories
that loiter near special regions of phase space for long
times? These exemplify “intermittency,” a bit of unpleas-
antness to which we shall return in Chapter 24.

(16.9) Invariant measure for the Gauss map. Consider the
Gauss map:

f (x) =

{
1
x −

[
1
x

]
x � 0

0 x = 0
(16.46)

where [ ] denotes the integer part.

(a) Verify that the density

ρ(x) =
1

log 2
1

1 + x

is an invariant measure for the map.

(b) Is it the natural measure?

(16.10) A as a generator of translations. Verify that for
a constant velocity field the evolution generator A in
(16.30) is the generator of translations,

etv ∂
∂x a(x) = a(x + tv) .

(16.11) Incompressible flows. Show that (16.9) implies that
ρ0(x) = 1 is an eigenfunction of a volume-preserving
flow with eigenvalue s0 = 0. In particular, this implies
that the natural measure of hyperbolic and mixing Hamil-
tonian flows is uniform. Compare this results with the
numerical experiment of Exercise 16.8.
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For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

—Walt Whitman,
Leaves of Grass: Song of the Universal

We discuss first the necessity of studying the averages of observables in
chaotic dynamics. A time average of an observable is computed by
integrating its value along a trajectory. The integral along trajectory

can be split into a sum of over integrals evaluated on trajectory segments; if
exponentiated, this yields a multiplicative weight for successive trajectory seg-
ments. This elementary observation will enable us to recast the formulas for
averages in a multiplicative form that motivates the introduction of evolution
operators and further formal developments to come. The main result is that
any dynamical average measurable in a chaotic system can be extracted from
the spectrum of an appropriately constructed evolution operator. In order to
keep our toes closer to the ground, in Section 17.3 we try out the formalism on
the first quantitative diagnosis that a system’s got chaos, Lyapunov exponents.

17.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely speci-
fied initial condition, no matter how precise, will fill out the entire accessible
state space after a finite Lyapunov time (1.1). Hence for chaotic dynamics one
cannot follow individual trajectories for a long time; what is attainable is a
description of the geometry of the set of possible outcomes, and evaluation of
long time averages. Examples of such averages are transport coefficients for
chaotic dynamical flows, such as escape rate, mean drift and diffusion rate;
power spectra; and a host of mathematical constructs such as generalized di-
mensions, entropies and Lyapunov exponents. Here we outline how such av-
erages are evaluated within the evolution operator framework. The key idea
is to replace the expectation values of observables by the expectation values
of generating functionals. This associates an evolution operator with a given
observable, and relates the expectation value of the observable to the leading
eigenvalue of the evolution operator.
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17.1.1 Time averages

Let a = a(x) be any observable, a function that associates to each point in state
space a number, a vector, or a tensor. The observable reports on a property of
the dynamical system. It is a device, such as a thermometer or laser Doppler
velocitometer. The device itself does not change during the measurement. The
velocity field ai(x) = vi(x) is an example of a vector observable; the length of
this vector, or perhaps a temperature measured in an experiment at instant τ
are examples of scalar observables. We define the integrated observable A t as
the time integral of the observable a evaluated along the trajectory of the initial
point x0,

At(x0) =
∫ t

0
dτ a( f τ(x0)) . (17.1)

If the dynamics is given by an iterated mapping and the time is discrete, t→ n,
the integrated observable is given by

An(x0) =
n−1∑
k=0

a( f k(x0)) (17.2)

(we suppress possible vectorial indices for the time being).

Example 17.1 Integrated observables.
If the observable is the velocity, ai(x) = vi(x), its time integral At

i(x0) is the trajectory
At

i(x0) = xi(t).
For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)] pass-
ing through a phase space point x0 = [q(0), p(0)] is:

At(x0) =
∫ t

0
dτ q̇(τ) · p(τ) . (17.3)

The time average of the observable along a orbit is defined by

a(x0) = lim
t→∞

1
t

At(x0) . (17.4)

If a does not behave too wildly as a function of time – for example, if a i(x) is
the Chicago temperature, bounded between −80 oF and +130oF for all times –
At(x0) is expected to grow not faster than t, and the limit (17.4) exists. For an
example of a time average - the Lyapunov exponent - see Section 17.3.

The time average depends on the orbit, but not on the initial point on that
orbit: if we start at a later state space point f T (x0) we get a couple of extra
finite contributions that vanish in the t→ ∞ limit:

a( f T (x0)) = lim
t→∞

1
t

∫ t+T

T
dτ a( f τ(x0))

= a(x0) − lim
t→∞

1
t

(∫ T

0
dτ a( f τ(x0)) −

∫ t+T

t
dτ a( f τ(x0))

)
= a(x0) .

The integrated observable At(x0) and the time average a(x0) take a particu-
larly simple form when evaluated on a periodic orbit. Define

exercise 4.6
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(a)

x

M (b)

Fig. 17.1 (a) A typical chaotic trajectory ex-
plores the phase space with the long time vis-
itation frequency building up the natural mea-
sure ρ0(x). (b) time average evaluated along
an atypical trajectory such as a periodic or-
bit fails to explore the entire accessible state
space. (A. Johansen)

Ap =

⎧⎪⎨⎪⎩ apTp =
∫ Tp

0
dτ a( f τ(x0)) for a flow

apnp =
∑np

i=1 a( f i(x0)) for a map
, x0 ∈ Mp , (17.5)

where p is a prime cycle, T p is its period, and np is its discrete time period
in the case of iterated map dynamics. A p is a loop integral of the observable
along a single traversal of a prime cycle p, so it is an intrinsic property of the
cycle, independent of the starting point x0 ∈ Mp. (If the observable a is not
a scalar but a vector or matrix we might have to be more careful in defining
an average which is independent of the starting point on the cycle). If the
trajectory retraces itself r times, we just obtain Ap repeated r times. Evaluation
of the asymptotic time average (17.4) requires therefore only a single traversal
of the cycle:

ap = Ap/Tp . (17.6)

However, a(x0) is in general a wild function of x0; for a hyperbolic system
it takes the same value 〈a〉 for almost all initial x0, but a different value (17.6)
on any periodic orbit, i.e., on a dense set of points (Fig. 17.1 (b)).

Example 17.2 Deterministic diffusion.
The phase space of an open system such as the Sinai gas (an infinite 2-dimensional

periodic array of scattering disks, see Section 25.1) is dense with initial points that
correspond to periodic runaway trajectories. The mean distance squared traversed
by any such trajectory grows as x(t)2 ∼ t2, and its contribution to the diffusion rate
D ∝ x(t)2/t, (17.4) evaluated with a(x) = x(t)2, diverges. Seemingly there is a
paradox; even though intuition says the typical motion should be diffusive, we have
an infinity of ballistic trajectories. (continued in Example 17.3)

For chaotic dynamical systems, this paradox is resolved by robust averaging,
i.e., averaging also over the initial x, and worrying about the measure of the
“pathological” trajectories.

17.1.2 Space averages

The space average of a quantity a that may depend on the point x of state
space M and on the time t is given by the d-dimensional integral over the d
coordinates of the dynamical system:

〈a〉(t) =
1
|M|

∫
M

dx a( f t(x))

|M| =
∫
M

dx = volume ofM . (17.7)
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The spaceM is assumed to have finite volume (open systems like the 3-disk
game of pinball are discussed in Section 17.1.3).

What is it we really do in experiments? We cannot measure the time average
(17.4), as there is no way to prepare a single initial condition with infinite
precision. The best we can do is to prepare some initial density ρ(x) perhaps
concentrated on some small (but always finite) neighborhood, so one should
abandon the uniform space average (17.7), and consider instead

〈a〉ρ(t) =
1
|M|

∫
M

dx ρ(x) a( f t(x)) . (17.8)

For the ergodic and mixing systems that we shall consider here any smooth ini-
tial density will tend to the asymptotic natural measure t → ∞ limit ρ(x, t) →
ρ0(x), so we can just as well take the initial ρ(x) = const. and define the expec-
tation value 〈a〉 of an observable a to be the asymptotic time and space average
over the state spaceM

〈a〉 = 1
|M|

∫
M

dx a(x) = lim
t→∞

1
|M|

∫
M

dx
1
t

∫ t

0
dτ a( f τ(x)) . (17.9)

We use the same 〈· · ·〉 notation as for the space average (17.7), and distinguish
the two by the presence of the time variable in the argument: if the quantity
〈a〉(t) being averaged depends on time, then it is a space average, if it does not,
it is the expectation value 〈a〉.

The expectation value is a space average of time averages, with every x ∈ M
used as a starting point of a time average. The advantage of averaging over
space is that it smears over the starting points which were problematic for the
time average (like the periodic points). While easy to define, the expectation
value 〈a〉 turns out not to be particularly tractable in practice. Here comes
a simple idea that is the basis of all that follows: Such averages are more
conveniently studied by investigating instead of 〈a〉 the space averages of form〈

eβ·A
t〉
=

1
|M|

∫
M

dx eβ·A
t(x). (17.10)

In the present context β is an auxiliary variable of no physical significance
whose role is to enable us to recover the desired space average by differentia-
tion, 〈

At
〉
=

∂

∂β

〈
eβ·A

t〉∣∣∣∣∣
β=0

.

In most applications β is a scalar, but if the observable is a d-dimensional
vector ai(x) ∈ Rd, so is β ∈ Rd; if the observable is a d × d tensor, β is also a
rank-2 tensor, and so on. Here we will mostly limit the considerations to scalar
values of β.

If the limit a(x0) for the time average (17.4) exists for “almost all” initial
x0 and the system is ergodic and mixing (in the sense of Section 1.3.1), we
expect the time average along almost all trajectories to tend to the same value
a, and the integrated observable At to tend to ta. The space average (17.10) is
an integral over exponentials, and such integral also grows exponentially with
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time. So as t→ ∞ we would expect the space average of exp(β ·A t(x)) to grow
exponentially with time 〈

eβ·A
t〉→ (const) ets(β) ,

and its rate of growth to be given by the limit

s(β) = lim
t→∞

1
t

ln
〈
eβ·A

t〉
. (17.11)

Now we understand one reason for why it is smarter to compute
〈
exp(β · At)

〉
rather than 〈a〉: the expectation value of the observable (17.9) and the moments
of the integrated observable (17.1) can be computed by evaluating the deriva-
tives of s(β)

∂s
∂β

∣∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At

〉
= 〈a〉 ,

∂2s
∂β2

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
AtAt

〉
−

〈
At

〉 〈
At

〉)
= lim

t→∞

1
t

〈
(At − t 〈a〉)2

〉
,

(17.12)

and so forth. We have written out the formulas for a scalar observable; the
exercise 17.2

vector case is worked out in the Exercise 17.2. If we can compute the function
s(β), we have the desired expectation value without having to estimate any
infinite time limits from finite time data.

Suppose we could evaluate s(β) and its derivatives. What are such formulas
good for? A typical application is to the problem of determining transport
coefficients from underlying deterministic dynamics.

Example 17.3 Deterministic diffusion.
(continued from Example 17.2) Consider a point particle scattering elastically off a

d-dimensional array of scatterers. If the scatterers are sufficiently large to block any
infinite length free flights, the particle will diffuse chaotically, and the transport co-
efficient of interest is the diffusion constant

〈
x(t)2

〉
≈ 4Dt. In contrast to D estimated

numerically from trajectories x(t) for finite but large t, the above formulas yield the
asymptotic D without any extrapolations to the t → ∞ limit. For example, for ai = vi

and zero mean drift 〈vi〉 = 0, in d dimensions the diffusion constant is given by the
curvature of s(β) at β = 0,

section 25.1

D = lim
t→∞

1
2dt

〈
x(t)2

〉
=

1
2d

d∑
i=1

∂2 s

∂β2
i

∣∣∣∣∣∣
β=0

, (17.13)

so if we can evaluate derivatives of s(β), we can compute transport coefficients that
characterize deterministic diffusion. As we shall see in Chapter 25, periodic orbit
theory yields an explicit closed form expression for D.

fast track

Section 17.2, p. 291
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17.1.3 Averaging in open systems

If theM is a compact region or set of regions to which the dynamics is
confined for all times, (17.9) is a sensible definition of the expectation value.
However, if the trajectories can exitM without ever returning,∫

M
dy δ(y − f t(x0)) = 0 for t > texit , x0 ∈ M ,

we might be in trouble. In particular, for a repeller the trajectory f t(x0) will
eventually leave the regionM, unless the initial point x0 is on the repeller, so
the identity∫

M
dy δ(y − f t(x0)) = 1 , t > 0 , iff x0 ∈ non-wandering set (17.14)

might apply only to a fractal subset of initial points a set of zero Lebesgue mea-
sure (non-wandering setis defined in Section 2.1.1). Clearly, for open systems
we need to modify the definition of the expectation value to restrict it to the
dynamics on the non-wandering set, the set of trajectories which are confined
for all times.

Note by M a state space region that encloses all interesting initial points,
say the 3-disk Poincaré section constructed from the disk boundaries and all
possible incidence angles, and denote by |M| the volume ofM. The volume
of the state space containing all trajectories which start out within the state
space regionM and recur within that region at the time t

0 0.5 1

x

0

0.5

1

f(x)

Fig. 17.2 A piecewise-linear repeller (17.17):
All trajectories that land in the gap between
the f0 and f1 branches escape (Λ0 = 4, Λ1 =

−2).

|M(t)| =
∫
M

dxdy δ
(
y − f t(x)

)
∼ |M|e−γt (17.15)

is expected to decrease exponentially, with the escape rate γ. The integral over

section 1.4.3

x takes care of all possible initial points; the integral over y checks whether
their trajectories are still withinM by the time t. For example, any trajectory

section 22.1

that falls off the pinball table in Fig. 1.1 is gone for good.
The non-wandering set can be very difficult object to describe; but for any fi-

nite time we can construct a normalized measure from the finite-time covering
volume (17.15), by redefining the space average (17.10) as〈

eβ·A
t〉
=

∫
M

dx
1

|M(t)|
eβ·A

t(x) ∼
1
|M|

∫
M

dx eβ·A
t(x)+γt . (17.16)

in order to compensate for the exponential decrease of the number of surviving
trajectories in an open system with the exponentially growing factor e γt. What
does this mean? Once we have computed γ we can replenish the density lost to
escaping trajectories, by pumping in eγt in such a way that the overall measure
is correctly normalized at all times, 〈1〉 = 1.

Example 17.4 A piecewise-linear repeller:
(continuation of Example 16.1) What is gained by reformulating the dynamics in
terms of “operators?” We start by considering a simple example in which the operator
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is a [2×2] matrix. Assume the expanding 1−d map f (x) of Fig. 17.2, a piecewise-linear
2–branch repeller with slopes Λ0 > 1 and Λ1 < −1 :

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f0 = Λ0 x if x ∈ M0 = [0, 1/Λ0]

f1 = Λ1(x − 1) if x ∈ M1 = [1 + 1/Λ1, 1]
. (17.17)

Both f (M0) and f (M1) map onto the entire unit interval M = [0, 1]. Assume a
piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0

ρ1 if x ∈ M1
. (17.18)

There is no need to define ρ(x) in the gap between M0 and M1, as any point that
lands in the gap escapes.
The physical motivation for studying this kind of mapping is the pinball game: f is
the simplest model for the pinball escape, Fig. 1.8, with f0 and f1 modelling its two
strips of survivors.
As can be easily checked using (16.9), the Perron-Frobenius operator acts on this
piecewise constant function as a [2×2] “transfer” matrix with matrix elements

exercise 16.1
exercise 16.5(

ρ0

ρ1

)
→ Lρ =

⎛⎜⎜⎜⎜⎝ 1
|Λ0 |

1
|Λ1 |

1
|Λ0 |

1
|Λ1 |

⎞⎟⎟⎟⎟⎠ (
ρ0

ρ1

)
, (17.19)

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density
at every iteration. In this example the density is constant after one iteration, so L has
only one non-zero eigenvalue es0 = 1/|Λ0|+1/|Λ1 |, with constant density eigenvector
ρ0 = ρ1. The quantities 1/|Λ0 |, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1|
intervals, so the exact escape rate (1.3) – the log of the fraction of survivors at each
iteration for this linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (17.20)

Voila! Here is the rationale for introducing operators – in one time step we have
solved the problem of evaluating escape rates at infinite time. This simple explicit
matrix representation of the Perron-Frobenius operator is a consequence of the piece-
wise linearity of f , and the restriction of the densities ρ to the space of piecewise
constant functions. The example gives a flavor of the enterprise upon which we are
about to embark in this book, but the full story is much subtler: in general, there will
exist no such finite-dimensional representation for the Perron-Frobenius operator.
(continued in Example 23.5)

We now turn to the problem of evaluating
〈
eβ·A

t
〉
.

17.2 Evolution operators

The above simple shift of focus, from studying 〈a〉 to studying
〈
exp

(
β · At)〉

is the key to all that follows. Make the dependence on the flow explicit by
rewriting this quantity as〈

eβ·A
t〉
=

1
|M|

∫
M

dx
∫
M

dy δ
(
y − f t(x)

)
eβ·A

t(x) . (17.21)

Here δ
(
y − f t(x)

)
is the Dirac delta function: for a deterministic flow an initial
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Fig. 17.3 Space averaging pieces together the
time average computed along the t → ∞ orbit
of Fig. 17.1 by a space average over infinitely
many short t trajectory segments starting at
all initial points at once.

point x maps into a unique point y at time t. Formally, all we have done above
is to insert the identity

1 =
∫
M

dy δ
(
y − f t(x)

)
, (17.22)

into (17.10) to make explicit the fact that we are averaging only over the trajec-
tories that remain inM for all times. However, having made this substitution
we have replaced the study of individual trajectories f t(x) by the study of the
evolution of density of the totality of initial conditions. Instead of trying to
extract a temporal average from an arbitrarily long trajectory which explores
the phase space ergodically, we can now probe the entire state space with short
(and controllable) finite time pieces of trajectories originating from every point
inM.

As a matter of fact (and that is why we went to the trouble of defining the
generator (16.27) of infinitesimal transformations of densities) infinitesimally
short time evolution induced by the generator A of (16.27) suffices to deter-
mine the spectrum and eigenvalues of L t.

We shall refer to the kernel of the operation (17.21) as the evolution operator

Lt(y, x) = δ
(
y − f t(x)

)
eβ·A

t(x) . (17.23)

The simplest example is the β = 0 case, i.e., the Perron-Frobenius operator in-
troduced in Section 16.2. Another example - designed to deliver the Lyapunov
exponent - will be the evolution operator (17.36). The action of the evolution
operator on a function φ is given by

(Ltφ)(y) =
∫
M

dx δ
(
y − f t(x)

)
eβ·A

t(x)φ(x) . (17.24)

In terms of the evolution operator, the space average of the generating function
(17.21) is given by〈

eβ·A
t〉
=

1
|M|

∫
M

dx
∫
M

dy φ(y)Lt(y, x)φ(x) .

where φ(x) is the constant function φ(x) = 1. If the linear operator L t can be
thought of as a matrix, high powers of a matrix are dominated by its fastest
growing matrix elements, and the limit (17.11)

s(β) = lim
t→∞

1
t

ln
〈
Lt

〉
.
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yields the leading eigenvalue of s0(β), and, through it, all desired expectation
values (17.12).

The evolution operator is different for different observables, as its definition
depends on the choice of the integrated observable A t in the exponential. Its
job is deliver to us the expectation value of a, but before showing that it accom-
plishes that, we need to verify the semigroup property of evolution operators.

By its definition, the integral over the observable a is additive along the
trajectory

x(t1+t2)

x(0) = x(0)
x(t1)

+

x(t1+t2)

x(t1)

At1+t2 (x0) =

∫ t1

0
dτ a( f τ(x)) +

∫ t1+t2

t1

dτ a( f τ(x))

= At1 (x0) + At2 ( f t1 (x0)) .

As At(x) is additive along the trajectory, the evolution operator generates a
exercise 16.3

semigroup
section 16.5

Lt1+t2 (y, x) =
∫
M

dzLt2 (y, z)Lt1(z, x) , (17.25)

as is easily checked by substitution

Lt2Lt1 a(y) =
∫
M

dx δ(y − f t2 (x))eβ·A
t2 (x)(Lt1 a)(x) = Lt1+t2 a(y) .

This semigroup property is the main reason why (17.21) is preferable to (17.9)
as a starting point for evaluation of dynamical averages: it recasts averaging in
form of operators multiplicative along the flow.

17.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)
Let us apply the newly acquired tools to the fundamental diagnostics in this
subject: Is a given system “chaotic”? And if so, how chaotic? If all points in a

example 2.3
neighborhood of a trajectory converge toward the same trajectory, the attractor
is a fixed point or a limit cycle. However, if the attractor is strange, any two

section 1.3.1
trajectories

x(t) = f t(x0) and x(t) + δx(t) = f t(x0 + δx0) (17.26)

that start out very close to each other separate exponentially with time, and in
a finite time their separation attains the size of the accessible state space. This
sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt|δx0| (17.27)

where λ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent.
ChaosBook.org version13.5, Sep 7 2011 average - 20oct2008
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17.3.1 Lyapunov exponent as a time average

We can start out with a small δx and try to estimate λ from (17.27), but now that
we have quantified the notion of linear stability in Chapter 4 and defined the
dynamical time averages in Section 17.1.1, we can do better. The problem

δ  x

  xδ

  xδ

2

x(t )1

1

x(0)

0

x(t )2

Fig. 17.4 A long-time numerical calculation
of the leading Lyapunov exponent requires
rescaling the distance in order to keep the
nearby trajectory separation within the lin-
earized flow range.

with measuring the growth rate of the distance between two points is that as
the points separate, the measurement is less and less a local measurement. In
study of experimental time series this might be the only option, but if we have
the equations of motion, a better way is to measure the growth rate of vectors
transverse to a given orbit.

The mean growth rate of the distance |δx(t)|/|δx0| between neighboring tra-
jectories (17.27) is given by the Lyapunov exponent
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x0

x0

f (   )t

x(t)+     x

Fig. 17.5 The symmetric matrix J =
(
Jt)T Jt

maps a swarm of initial points in an infinitesi-
mal spherical neighborhood of x0 into a cigar-
shaped neighborhood finite time t later, with
semiaxes determined by the local stretch-
ing/shrinking |Λ1 |, but local individual trajec-
tory rotations by the complex phase of Jt ig-
nored.

λ = lim
t→∞

1
t

ln |δx(t)|/|δx0| (17.28)

(For notational brevity we shall often suppress the dependence of quantities
such as λ = λ(x0), δx(t) = δx(x0, t) on the initial point x0 and the time t).
One can take (17.28) as is, take a small initial separation δx0, track distance
between two nearby trajectories until |δx(t1)| gets significantly bigger, then
record t1λ1 = ln(|δx(t1)|/|δx0|), rescale δx(t1) by factor |δx0|/|δx(t1)|, and con-
tinue add infinitum, as in Fig. 17.4, with the leading Lyapunov exponent given
by

λ = lim
t→∞

1
t

∑
i

tiλi . (17.29)

However, we can do better. Given the equations of motion, for infinitesimal δx
we know the δxi(t)/δx j(0) ratio exactly, as this is by definition the Jacobian
matrix (4.37)

lim
δx(0)→0

δxi(t)
δx j(0)

=
∂xi(t)
∂x j(0)

= Jt
i j(x0) ,

so the leading Lyapunov exponent can be computed from the linear approxi-
mation (4.23)

λ(x0) = lim
t→∞

1
t

ln

∣∣∣Jt(x0)δx0

∣∣∣
|δx0|

= lim
t→∞

1
2t

ln
(
n̂T

(
Jt

)T
Jtn̂

)
. (17.30)

In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector n̂ = δx 0/|δx0| matters. The eigen-
values of J are either real or come in complex conjugate pairs. As J is in
general not symmetric and not diagonalizable, it is more convenient to work
with the symmetric and diagonalizable matrix M =

(
Jt

)T
Jt, with real positive

eigenvalues {|Λ1|2 ≥ . . . ≥ |Λd|2}, and a complete orthonormal set of eigen-
vectors of {u1, . . . , ud}. Expanding the initial orientation n̂ =

∑
(n̂ · ui)ui in the

Mui = |Λi|2ui eigenbasis, we have

n̂T Mn̂ =
d∑

i=1

(n̂ · ui)2|Λi|2 = (n̂ · u1)2e2μ1t
(
1 + O(e−2(μ1−μ2)t)

)
, (17.31)

where tμi = ln |Λi(x0, t)|, with real parts of characteristic exponents (4.18) or-
dered by μ1 > μ2 ≥ μ3 · · ·. For long times the largest Lyapunov exponent
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dominates exponentially (17.30), provided the orientation n̂ of the initial sepa-
ration was not chosen perpendicular to the dominant expanding eigen-direction
u1. The Lyapunov exponent is the time average

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

t

Fig. 17.6 A numerical estimate of the lead-
ing Lyapunov exponent for the Rössler flow
(2.17) from the dominant expanding eigen-
value formula (17.30). The leading Lyapunov
exponent λ ≈ 0.09 is positive, so numerics
supports the hypothesis that the Rössler at-
tractor is strange. (J. Mathiesen)

λ(x0) = lim
t→∞

1
t

{
ln |n̂ · u1| + ln |Λ1(x0, t)| + O(e−2(λ1−λ2)t)

}
= lim

t→∞

1
t

ln |Λ1(x0, t)| , (17.32)

where Λ1(x0, t) is the leading eigenvalue of J t(x0). By choosing the initial
displacement such that n̂ is normal to the first (i-1) eigen-directions we can
define not only the leading, but all Lyapunov exponents as well:

λi(x0) = lim
t→∞

1
t

ln |Λi(x0, t)| , i = 1, 2, · · · , d . (17.33)

The leading Lyapunov exponent now follows from the Jacobian matrix by
numerical integration of (4.9).

The equations can be integrated accurately for a finite time, hence the infi-
nite time limit of (17.30) can be only estimated from plots of 1

2 ln(n̂T Mn̂) as
function of time, such as Fig. 17.6 for the Rössler flow (2.17).

As the local expansion and contraction rates vary along the flow, the tempo-
ral dependence exhibits small and large humps. The sudden fall to a low level
is caused by a close passage to a folding point of the attractor, an illustration
of why numerical evaluation of the Lyapunov exponents, and proving the very
existence of a strange attractor is a very difficult problem. The approximately
monotone part of the curve can be used (at your own peril) to estimate the
leading Lyapunov exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (17.32) directly. First of all, the
state space is dense with atypical trajectories; for example, if x0 happened to
lie on a periodic orbit p, λ would be simply ln |Λ p|/Tp, a local property of
cycle p, not a global property of the dynamical system. Furthermore, even
if x0 happens to be a “generic” state space point, it is still not obvious that
ln |Λ(x0, t)|/t should be converging to anything in particular. In a Hamiltonian
system with coexisting elliptic islands and chaotic regions, a chaotic trajec-
tory gets captured in the neighborhood of an elliptic island every so often and
can stay there for arbitrarily long time; as there the orbit is nearly stable, dur-
ing such episode ln |Λ(x0, t)|/t can dip arbitrarily close to 0+. For state space
volume non-preserving flows the trajectory can traverse locally contracting re-
gions, and ln |Λ(x0, t)|/t can occasionally go negative; even worse, one never
knows whether the asymptotic attractor is periodic or “strange,” so any finite
estimate of λ might be dead wrong.

exercise 17.1

17.3.2 Evolution operator evaluation of Lyapunov
exponents

A cure to these problems was offered in Section 17.2. We shall now replace
time averaging along a single orbit by action of a multiplicative evolution op-
erator on the entire state space, and extract the Lyapunov exponent from its
ChaosBook.org version13.5, Sep 7 2011 average - 20oct2008



296 CHAPTER 17. AVERAGING

leading eigenvalue. If the chaotic motion fills the whole state space, we are
indeed computing the asymptotic Lyapunov exponent. If the chaotic motion
is transient, leading eventually to some long attractive cycle, our Lyapunov
exponent, computed on non-wandering set, will characterize the chaotic tran-
sient; this is actually what any experiment would measure, as even very small
amount of external noise will suffice to destabilize a long stable cycle with a
minute immediate basin of attraction.

Example 17.5 Lyapunov exponent, discrete time 1−d dynamics.
Due to the chain rule (4.46) for the derivative of an iterated map, the stability of a
1−d mapping is multiplicative along the flow, so the integral (17.1) of the observable
a(x) = ln | f ′(x)|, the local trajectory divergence rate, evaluated along the trajectory
of x0 is additive:

An(x0) = ln
∣∣∣ f n′(x0)

∣∣∣ = n−1∑
k=0

ln | f ′(xk)| . (17.34)

The Lyapunov exponent is then the expectation value (17.9) given by a spatial inte-
gral (17.8) weighted by the natural measure

λ = 〈ln | f ′(x)|〉 =
∫
M

dx ρ0(x) ln | f ′(x)| . (17.35)

The associated (discrete time) evolution operator (17.23) is

L(y, x) = δ(y − f (x)) eβ ln | f ′(x)| . (17.36)

Here we have restricted our considerations to 1 − d maps, as for higher-
dimensional flows only the Jacobian matrices are multiplicative, not the indi-
vidual eigenvalues. Construction of the evolution operator for evaluation of the
Lyapunov spectra in the general case requires more cleverness than warranted
at this stage in the narrative: an extension of the evolution equations to a flow
in the tangent space.

All that remains is to determine the value of the Lyapunov exponent

λ =
〈
ln | f ′(x)|

〉
=
∂s(β)
∂β

∣∣∣∣∣
β=0
= s′(0) (17.37)

from (17.12), the derivative of the leading eigenvalue s 0(β) of the evolution
operator (17.36).

example 20.1
The only question is: how?

Résumé

The expectation value 〈a〉 of an observable a(x) measured A t(x) =
∫ t

0
dτa(x(τ))

and averaged along the flow x→ f t(x) is given by the derivative

〈a〉 = ∂s
∂β

∣∣∣∣∣
β=0

of the leading eigenvalue ets(β) of the corresponding evolution operator L t.
Instead of using the Perron-Frobenius operator (16.10) whose leading eigen-

function, the natural measure, once computed, yields expectation value (16.20)
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of any observable a(x), we construct a specific, hand-tailored evolution oper-
ator L for each and every observable. However, by time we arrive to Chap-

chapter 20
ter 20, the scaffolding will be removed, both L’s and their eigenfunctions will
be gone, and only the explicit and exact periodic orbit formulas for expectation
values of observables will remain.

The next question is: how do we evaluate the eigenvalues of L? We saw in
Example 17.4, in the case of piecewise-linear dynamical systems, that these
operators reduce to finite matrices, but for generic smooth flows, they are
infinite-dimensional linear operators, and finding smart ways of computing
their eigenvalues requires some thought. In Chapter 11 we undertook the first
step, and replaced the ad hoc partitioning (16.14) by the intrinsic, topologi-
cally invariant partitioning. In Chapter 15 we applied this information to our
first application of the evolution operator formalism, evaluation of the topo-
logical entropy, the growth rate of the number of topologically distinct orbits.
This small victory will be refashioned in Chapters 18 and 19 into a systematic
method for computing eigenvalues of evolution operators in terms of periodic
orbits.

Further reading

17.1 “Pressure.” The quantity
〈
exp(β · At)

〉
is called a “par-

tition function” by Ruelle [17.1]. Mathematicians decorate it
with considerably more Greek and Gothic letters than is the
case in this treatise. Ruelle [17.1] and Bowen [17.2] had
given name “pressure” P(a) to s(β) (where a is the observ-
able introduced here in Section 17.1.1), defined by the “large
system” limit (17.11). As we shall apply the theory also to
computation of the physical gas pressure exerted on the walls
of a container by a bouncing particle, we prefer to refer to s(β)
as simply the leading eigenvalue of the evolution operator in-
troduced in Section 16.5. The “convexity” properties such as
P(a) ≤ P(|a|) will be pretty obvious consequence of the def-
inition (17.11). In the case that L is the Perron-Frobenius
operator (16.10), the eigenvalues {s0(β), s1(β), · · ·} are called
the Ruelle-Pollicott resonances [17.3–5], with the leading one,
s(β) = s0(β) being the one of main physical interest. In
order to aid the reader in digesting the mathematics literature,
we shall try to point out the notational correspondences when-
ever appropriate. The rigorous formalism is replete with lims,
sups, infs, Ω-sets which are not really essential to understand-
ing of the theory, and are avoided in this presentation.

17.2 Microcanonical ensemble. In statistical mechanics
the space average (17.7) performed over the Hamiltonian
system constant energy surface invariant measure ρ(x)dx =

dqdp δ(H(q, p)−E) of volume ω(E) =
∫
Mdqdp δ(H(q, p)−E)

〈a(t)〉 = 1
ω(E)

∫
M

dqdp δ(H(q, p) − E)a(q, p, t) (17.38)

is called the microcanonical ensemble average.

17.3 Lyapunov exponents. The Multiplicative Ergodic The-
orem of Oseledec [17.6] states that the limits (17.30–17.33)
exist for almost all points x0 and all tangent vectors n̂. There
are at most d distinct values of λ as we let n̂ range over the tan-
gent space. These are the Lyapunov exponents [17.8] λi(x0).
We are doubtful of the utility of Lyapunov exponents as
means of predicting any observables of physical significance,
but that is the minority position - in the literature one en-
counters many provocative speculations, especially in the con-
text of foundations of statistical mechanics (“hydrodynamic”
modes) and the existence of a Lyapunov spectrum in the ther-
modynamic limit of spatiotemporal chaotic systems.
There is much literature on numerical computation of the
Lyapunov exponents, see for example Refs. [17.14, 15, 17].
For early numerical methods to compute Lyapunov vectors,
see Refs. [17.16, 17]. The drawback of the Gram-Schmidt
method is that the vectors so constructed are orthogonal by
fiat, whereas the stable / unstable eigenvectors of the Jaco-
bian matrix are in general not orthogonal. Hence the Gram-
Schmidt vectors are not covariant, i.e., the linearized dynam-
ics does not transport them into the eigenvectors of the Jaco-
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bian matrix computed further downstream. For computation
of covariant Lyapunov vectors, see Refs. [17.18, 20].

17.4 State space discretization. Ref. [17.21] discusses
numerical discretizatons of state space, and construction of
Perron-Frobenius operators as stochastic matrices, or directed

weighted graphs, as coarse-grained models of the global dy-
namics, with transport rates between state space partitions
computed using this matrix of transition probabilities; a rig-
orous discussion of some of the former features is included in
Ref. [17.22].

Exercises

(17.1) How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent λ by
iterating some 100,000 times or so the Hénon map[

x′

y′

]
=

[
1 − ax2 + y
bx

]
for a = 1.4, b = 0.3.

(b) Would you describe the result as a ’strange attrac-
tor’? Why?

(c) How robust is the Lyapunov exponent for the
Hénon attractor? Evaluate numerically the Lya-
punov exponent by iterating the Hénon map for
a = 1.39945219, b = 0.3. How much do you trust
now your result for the part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the ’strange’ attractor
vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to
estimate the length of typical transient before the
dynamics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a ’strange attrac-
tor’? Do you still have confidence in claims such
as the one made for the part (b) of this exercise?

(17.2) Expectation value of a vector observable.
Check and extend the expectation value formulas (17.12)
by evaluating the derivatives of s(β) up to 4-th order for
the space average

〈
exp(β · At)

〉
with ai a vector quantity:

(a)

∂s
∂βi

∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈
At

i

〉
= 〈ai〉 , (17.39)

(b)

∂2 s
∂βi∂β j

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
At

iA
t
j

〉
− 〈

At
i

〉 〈
At

j

〉)
= lim

t→∞

1
t

〈
(At

i − t 〈ai〉)(At
j − t

〈
aj

〉
)
〉
.

Note that the formalism is smart: it automatically
yields the variance from the mean, rather than sim-
ply the 2nd moment

〈
a2

〉
.

(c) compute the third derivative of s(β).

(d) compute the fourth derivative assuming that the
mean in (17.39) vanishes, 〈ai〉 = 0. The 4-th or-
der moment formula

K(t) =

〈
x4(t)

〉
〈
x2(t)

〉2
− 3 (17.40)

that you have derived is known as kurtosis: it mea-
sures a deviation from what the 4-th order moment
would be were the distribution a pure Gaussian (see
(25.22) for a concrete example). If the observable
is a vector, the kurtosis K(t) is given by∑

i j

[〈
AiAiAjAj

〉
+ 2

(〈
AiAj

〉 〈
AjAi

〉
− 〈AiAi〉

〈
AjAj

〉)]
(
∑

i 〈AiAi〉)2

(17.3) Pinball escape rate from numerical simulation∗. Es-
timate the escape rate for R : a = 6 3-disk pinball by
shooting 100,000 randomly initiated pinballs into the 3-
disk system and plotting the logarithm of the number of
trapped orbits as function of time. For comparison, a
numerical simulation of ref. [17.3] yields γ = .410 . . ..

(17.4) Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-
ponent λe of the Rössler attractor (2.17).

(b) Plot your own version of Fig. 17.6. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of Fig. 4.3.)
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(c) Give your best estimate of λe. The literature gives
surprisingly inaccurate estimates - see whether you
can do better.

(d) Estimate the contracting Lyapunov exponent λc.

Even though it is much smaller than λe, a glance
at the stability matrix (4.4) suggests that you can
probably get it by integrating the infinitesimal vol-
ume along a long-time trajectory, as in (4.41).
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The trace formula is not a formula, it is an idea.

—Martin Gutzwiller

Dynamics is posed in terms of local equations, but the ergodic averages
require global information. How can we use a local description of a
flow to learn something about the global behavior? In Chapter 17 we

have related global averages to the eigenvalues of appropriate evolution oper-
ators. Here we show that the traces of evolution operators can be evaluated as
integrals over Dirac delta functions, and in this way the spectra of evolution
operators become related to periodic orbits. If there is one idea that one should
learn about chaotic dynamics, it happens in this chapter, and it is this: there is
a fundamental local↔ global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis; for dynamics on
well-tiled manifolds, Selberg traces and zetas; and for generic nonlinear dy-
namical systems the duality is embodied in the trace formulas that we will now
derive. These objects are to dynamics what partition functions are to statistical
mechanics.

The above phrasing is a bit too highfalutin, so it perhaps pays to go again
through the quick sketch of Sections 1.5 and 1.6. We have a state space that we
would like to tessellate by periodic orbits, one short orbit per neighborhood, as
in Fig. 18.1 (a). How big is the neighborhood of a given cycle?

Along stable directions neighbors of the periodic orbit get closer with time,
so we only have to keep track of those who are moving away along the unstable
directions. The fraction of those who remain in the neighborhood for one
recurrence time T p is given by the overlap ratio along the initial sphere and
the returning ellipsoid, Fig. 18.1 (b), and along the expanding eigen-direction
e(i) of Jp(x) this is given by the expanding Floquet multiplier 1/|Λ p,i|. A bit
more thinking leads to the conclusion that one also cares about how long it
takes to return (the long returns contributing less to the time averages), so the
weight tp of the p-neighborhood t p = e−sTp/|Λp| decreases exponentially both
with the shortest recurrence period and the product (5.7) of expanding Floquet
multipliers Λp =

∏
e Λp,e . With emphasis on expanding - the flow could be

a 60,000-dimensional dissipative flow, and still the neighborhood is defined
by the handful of expanding eigen-directions. Now the long-time average of
a physical observable -let us say power D dissipated by viscous friction of a
fluid flowing through a pipe- can be estimated by its mean value (17.6) D p/Tp
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Fig. 18.1 (a) Smooth dynamics tesselated by
the skeleton of periodic points, together with
their linearized neighborhoods. (b) Jacobian
matrix Jp maps spherical neighborhood of
x0 → ellipsoidal neighborhood time Tp later,
with the overlap ratio along the expanding
eigdirection e(i) of Jp(x) given by the expand-
ing eigenvalue 1/|Λp,i |. (a) (b)

J

+   x δ

δp

x0

0x +      x

computed on each neighborhood, and weighted by the above estimate

〈D〉 ≈
∑

p

Dp

Tp

e−sTp

|Λp|
.

Wrong in detail, this estimate is the crux of many a Phys. Rev. Letter, and
in its essence the key result of this chapter, the ‘trace formula.’ Here we redo
the argument in a bit greater depth, and derive the correct formula (20.20) for
a long time average 〈D〉 as a weighted sum over periodic orbits. It will take
three chapters, but it is worth it - the reward is an exact (i.e., not heuristic)
and highly convergent and controllable formula for computing averages over
chaotic flows.

18.1 A trace formula for maps

Our extraction of the spectrum of L commences with the evaluation of the
trace. As the case of discrete time mappings is somewhat simpler, we first
derive the trace formula for maps, and then, in Section 18.2, for flows. The
final formula (18.23) covers both cases.

To compute an expectation value using (17.21) we have to integrate over
all the values of the kernel Ln(x, y). Were Ln a matrix sum over its matrix
elements would be dominated by the leading eigenvalue as n → ∞ (we went
through the argument in some detail in Section 15.1). As the trace ofL n is also
dominated by the leading eigenvalue as n → ∞, we might just as well look at
the trace for which we have a very explicit formula

exercise 15.3

trLn =

∫
dxLn(x, x) =

∫
dx δ(x − f n(x)) eβ·A

n(x) . (18.1)

On the other hand, by its matrix motivated definition, the trace is the sum over
eigenvalues,

trLn =

∞∑
α=0

esαn . (18.2)

We find it convenient to write the eigenvalues as exponents e sα rather than as
multipliers λα, and we assume that spectrum of L is discrete, s0, s1, s2, · · ·,
ordered so that Re sα ≥ Re sα+1.
trace - 16sep2008 ChaosBook.org version13.5, Sep 7 2011
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For the time being we choose not to worry about convergence of such sums,
ignore the question of what function space the eigenfunctions belong to, and
compute the eigenvalue spectrum without constructing any explicit eigenfunc-
tions. We shall revisit these issues in more depth in Chapter 23, and discuss
how lack of hyperbolicity leads to continuous spectra in Chapter 24.

18.1.1 Hyperbolicity assumption

We have learned in Section 16.2 how to evaluate the delta-function integral
(18.1).

section 16.2
According to (16.8) the trace (18.1) picks up a contribution whenever x −

f n (x) = 0, i.e., whenever x belongs to a periodic orbit. For reasons which
we will explain in Section 18.2, it is wisest to start by focusing on discrete
time systems. The contribution of an isolated prime cycle p of period n p for a
map f can be evaluated by restricting the integration to an infinitesimal open
neighborhoodM p around the cycle,

tr pLnp =

∫
Mp

dx δ(x − f np (x))

=
np∣∣∣∣det

(
1 − Mp

)∣∣∣∣ = np

d∏
i=1

1
|1 − Λp,i|

. (18.3)

For the time being we set here and in (16.9) the observable e βAp = 1. Peri-
odic orbit Jacobian matrix Mp is also known as the monodromy matrix, and its
eigenvalues Λp,1, Λp,2, . . ., Λp,d as the Floquet multipliers.

section 5.1.2
We sort the eigenvalues Λp,1, Λp,2, . . ., Λp,d of the p-cycle [d× d] mon-

odromy matrix Mp into expanding, marginal and contracting sets {e,m, c}, as
in (5.6). As the integral (18.3) can be evaluated only if M p has no eigenvalue
of unit magnitude, we assume that no eigenvalue is marginal (we shall show
in Section 18.2 that the longitudinal Λ p,d+1 = 1 eigenvalue for flows can be
eliminated by restricting the consideration to the transverse monodromy ma-
trix Mp), and factorize the trace (18.3) into a product over the expanding and
the contracting eigenvalues∣∣∣∣det

(
1 − Mp

)∣∣∣∣−1
=

1
|Λp|

∏
e

1
1 − 1/Λp,e

∏
c

1
1 − Λp,c

, (18.4)

where Λp =
∏

e Λp,e is the product of expanding eigenvalues. Both Λ p,c and
1/Λp,e are smaller than 1 in absolute value, and as they are either real or come
in complex conjugate pairs we are allowed to drop the absolute value brackets
| · · · | in the above products.

The hyperbolicity assumption requires that the stabilities of all cycles in-
cluded in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding |Λ p,e| > 1

|Λp,c| < e−λcTp any p, any contracting |Λ p,c| < 1 , (18.5)

where λe, λc > 0 are strictly positive bounds on the expanding, contracting
cycle Lyapunov exponents. If a dynamical system satisfies the hyperbolicity
ChaosBook.org version13.5, Sep 7 2011 trace - 16sep2008
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assumption (for example, the well separated 3-disk system clearly does), the
Lt spectrum will be relatively easy to control. If the expansion/contraction
is slower than exponential, let us say |Λ p,i| ∼ Tp

2, the system may exhibit
“phase transitions,” and the analysis is much harder - we shall discuss this in
Chapter 24.

Example 18.1 Elliptic stability.
Elliptic stability, i.e., a pair of purely imaginary exponents Λm = e±iθ is excluded by

the hyperbolicity assumption. While the contribution of a single repeat of a cycle

1
(1 − eiθ)(1 − e−iθ)

=
1

2(1 − cos θ)
(18.6)

does not make (16.9) diverge, if Λm = ei2πp/r is rth root of unity, 1/
∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣
diverges. For a generic θ repeats cos(rθ) behave badly and by ergodicity 1 − cos(rθ)
is arbitrarily small, 1 − cos(rθ) < ε, infinitely often. This goes by the name of “small
divisor problem,” and requires a separate treatment.

It follows from (18.4) that for long times, t = rT p → ∞, only the product
of expanding eigenvalues matters,

∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ → |Λp|r. We shall use this
fact to motivate the construction of dynamical zeta functions in Section 19.3.
However, for evaluation of the full spectrum the exact cycle weight (18.3) has
to be kept.

18.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points
have Floquet multipliers |Λp,i| � 1 strictly bounded away from unity, the trace
Ln is given by the sum over all periodic points i of period n:

trLn =

∫
dxLn(x, x) =

∑
xi∈Fix f n

eβ·Ai

|det (1 − Mn(xi))|
. (18.7)

Here Fix f n = {x : f n(x) = x} is the set of all periodic points of period n, and
Ai is the observable (17.5) evaluated over n discrete time steps along the cycle
to which the periodic point xi belongs. The weight follows from the properties
of the Dirac delta function (16.8) by taking the determinant of ∂ i(x j − f n(x) j).
If a trajectory retraces itself r times, its monodromy matrix is M r

p, where Mp

is the [d×d] monodromy matrix (4.6) evaluated along a single traversal of the
prime cycle p. As we saw in (17.5), the integrated observable A n is additive
along the cycle: If a prime cycle p trajectory retraces itself r times, n = rn p,
we obtain Ap repeated r times, Ai = An(xi) = rAp, xi ∈ Mp.

A prime cycle is a single traversal of the orbit, and its label is a non-repeating
symbol string. There is only one prime cycle for each cyclic permutation class.
For example, the four periodic points 0011 = 1001 = 1100 = 0110 belong to

chapter 11
the same prime cycle p = 0011 of length 4. As both the stability of a cycle and
the weight Ap are the same everywhere along the orbit, each prime cycle of
length np contributes np terms to the sum, one for each periodic point. Hence
(18.7) can be rewritten as a sum over all prime cycles and their repeats

trLn =
∑

p

np

∞∑
r=1

erβ·Ap∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣δn,npr , (18.8)
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with the Kronecker delta δn,npr projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward still for the
continuous time flows, where it would yield a series of Dirac delta spikes. In
both cases a Laplace transform rids us of the time periodicity constraint.

In the sum over all cycle periods,

∞∑
n=1

zntrLn = tr
zL

1 − zL
=

∑
p

np

∞∑
r=1

znprerβ·Ap∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (18.9)

the constraint δn,npr is replaced by weight zn . Such discrete time Laplace
transform of trLn is usually referred to as a “generating function.” Why this
transform? We are actually not interested in evaluating the sum (18.8) for any
particular fixed period n; what we are interested in is the long time n → ∞
behavior. The transform trades in the large time n behavior for the small z be-
havior. Expressing the trace as in (18.2), in terms of the sum of the eigenvalues
of L, we obtain the trace formula for maps:

∞∑
α=0

zesα

1 − zesα
=

∑
p

np

∞∑
r=1

znpr erβ·Ap∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (18.10)

This is our second example of the duality between the spectrum of eigenval-
ues and the spectrum of periodic orbits, announced in the introduction to this
chapter. (The first example was the topological trace formula (15.10).)

fast track

Section 18.2, p. 306

Example 18.2 A trace formula for transfer operators:
For a piecewise-linear map (17.17), we can explicitly evaluate the trace formula. By
the piecewise linearity and the chain rule Λp = Λ

n0
0 Λ

n1
1 , where the cycle p contains

n0 symbols 0 and n1 symbols 1, the trace (18.7) reduces to

trLn =

n∑
m=0

(
n
m

)
1

|1 − Λm
0Λ

n−m
1 | =

∞∑
k=0

(
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

)n

, (18.11)

with eigenvalues

esk =
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

. (18.12)

As the simplest example of spectrum for such dynamical system, consider the sym-
metric piecewise-linear 2-branch repeller (17.17) for which Λ = Λ1 = −Λ0. In this
case all odd eigenvalues vanish, and the even eigenvalues are given by esk = 2/Λk+1,
k even.

exercise 16.7
Asymptotically the spectrum (18.12) is dominated by the lesser of the two fixed point
slopes Λ = Λ0 (if |Λ0| < |Λ1|, otherwise Λ = Λ1), and the eigenvalues esk fall off
exponentially as 1/Λk, dominated by the single less unstable fixed-point.

example 23.1
For k = 0 this is in agreement with the explicit transfer matrix (17.19) eigenvalues
(17.20). The alert reader should experience anxiety at this point. Is it not true that
we have already written down explicitly the transfer operator in (17.19), and that it is
clear by inspection that it has only one eigenvalue es0 = 1/|Λ0 |+1/|Λ1|? The example
at hand is one of the simplest illustrations of necessity of defining the space that the
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operator acts on in order to define the spectrum. The transfer operator (17.19) is
the correct operator on the space of functions piecewise constant on the state space
partition {M0,M1}; on this space the operator indeed has only the eigenvalue es0 . As
we shall see in Example 23.1, the full spectrum (18.12) corresponds to the action of
the transfer operator on the space of real analytic functions.
The Perron-Frobenius operator trace formula for the piecewise-linear map (17.17)
follows from (18.9)

tr
zL

1 − zL =
z
(

1
|Λ0−1| +

1
|Λ1−1|

)
1 − z

(
1

|Λ0−1| +
1

|Λ1−1|

) , (18.13)

verifying the trace formula (18.10).

18.2 A trace formula for flows

Amazing! I did not understand a single word.

—Fritz Haake

(R. Artuso and P. Cvitanović)
Our extraction of the spectrum of L t commences with the evaluation of the
trace

trLt = tr eAt =

∫
dxLt(x, x) =

∫
dx δ

(
x − f t(x)

)
eβ·A

t(x) . (18.14)

We are not interested in any particular time t, but into the long-time behavior
as t → ∞, so we need to transform the trace from the “time domain” into the
“frequency domain.” A generic flow is a semi-flow defined forward in time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an evolution operator
yields the resolvent (16.31). This is a delicate step, since the evolution operator
becomes the identity in the t → 0+ limit. In order to make sense of the trace
we regularize the Laplace transform by a lower cutoff ε smaller than the period
of any periodic orbit, and write∫ ∞

ε

dt e−st trLt = tr
e−(s−A)ε

s − A
=

∞∑
α=0

e−(s−sα)ε

s − sα
, (18.15)

where A is the generator of the semigroup of dynamical evolution, see Sec-
tion 16.5. Our task is to evaluate trL t from its explicit state space representa-
tion.

18.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself exactly at each cycle
period, the eigenvalue of the Jacobian matrix corresponding to the eigenvector
along the flow necessarily equals unity for all periodic orbits. Hence for flows

section 5.2.1
the trace integral trLt requires a separate treatment for the longitudinal direc-
tion. To evaluate the contribution of an isolated prime cycle p of period T p,
restrict the integration to an infinitesimally thin tubeM p enveloping the cycle
trace - 16sep2008 ChaosBook.org version13.5, Sep 7 2011
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(see Fig. 1.12), and consider a local coordinate system with a longitudinal co-
ordinate dx‖ along the direction of the flow, and d−1 transverse coordinates
x⊥ ,

tr pLt =

∫
Mp

dx⊥dx‖ δ
(
x⊥ − f t

⊥(x)
)
δ
(
x‖ − f t(x‖)

)
. (18.16)

(we set β = 0 in the exp(β · At) weight for the time being). Pick a point on the
prime cycle p, and let

v(x‖) =

⎛⎜⎜⎜⎜⎜⎜⎝ d∑
i=1

vi(x)2

⎞⎟⎟⎟⎟⎟⎟⎠
1/2

(18.17)

be the magnitude of the tangential velocity at any point x = (x ‖, 0, · · · , 0) on
the cycle p. The velocity v(x) must be strictly positive, as otherwise the orbit
would stagnate for infinite time at v(x) = 0 points, and that would get us
nowhere.

As 0 ≤ τ < Tp, the trajectory x‖(τ) = f τ(xp) sweeps out the entire cycle,
and for larger times x‖ is a cyclic variable of periodicity T p,

x‖(τ) = x‖(τ + rTp) r = 1, 2, · · · (18.18)

We parametrize both the longitudinal coordinate x ‖(τ) and the velocity v(τ) =
v(x‖(τ)) by the flight time τ, and rewrite the integral along the periodic orbit as∮

p
dx‖ δ

(
x‖ − f t(x‖)

)
=

∮
p

dτ v(τ) δ
(
x‖(τ) − x‖(τ + t

)
) . (18.19)

By the periodicity condition (18.18) the Dirac δ function picks up contribu-
tions for t = rT p, so the Laplace transform can be split as∫ ∞

0
dt e−st δ

(
x‖(τ) − x‖(τ + t)

)
=

∞∑
r=1

e−sTpr Ir

Ir =

∫ ε

−ε
dt e−st δ

(
x‖(τ) − x‖(τ + rTp + t

)
) .

Taylor expanding and applying the periodicity condition (18.18), we have
x‖(τ + rTp + t) = x‖(τ) + v(τ)t + . . .,

Ir =

∫ ε

−ε
dt e−st δ

(
x‖(τ) − x‖(τ + rTp + t

)
) =

1
v(τ)

,

so the remaining integral (18.19) over τ is simply the cycle period
∮

p
dτ = Tp.

The contribution of the longitudinal integral to the Laplace transform is thus∫ ∞

0
dt e−st

∮
p

dx‖ δ
(
x‖ − f t(x‖)

)
= Tp

∞∑
r=1

e−sTpr . (18.20)

This integration is a prototype of what needs to be done for each marginal
direction, whenever existence of a conserved quantity (energy in Hamiltonian
flows, angular momentum, translational invariance, etc.) implies existence of a
smooth manifold of equivalent (equivariant) solutions of dynamical equations.
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18.2.2 Stability in the transverse directions

Think of the τ = 0 point in above integrals along the cycle p as a choice of a
particular Poincaré section. As we have shown in Section 5.3, the transverse
Floquet multipliers do not depend on the choice of a Poincaré section, so ig-
noring the dependence on x ‖(τ) in evaluating the transverse integral in (18.16)
is justified. For the transverse integration variables the Jacobian matrix is de-
fined in a reduced Poincaré surface of section P of fixed x ‖. Linearization of
the periodic flow transverse to the orbit yields∫

P
dx⊥δ

(
x⊥ − f

rTp

⊥ (x)
)
=

1∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (18.21)

where Mp is the p-cycle [d−1×d−1] transverse monodromy matrix. As in (18.5)
we have to assume hyperbolicity, i.e., that the magnitudes of all transverse
eigenvalues are bounded away from unity.

Substitution (18.20), (18.21) in (18.16) leads to an expression for trL t as a
sum over all prime cycles p and their repetitions∫ ∞

ε

dt e−st trLt =
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (18.22)

The ε → 0 limit of the two expressions for the resolvent, (18.15) and (18.22),
now yields the classical trace formula for flows

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (18.23)

(If you are worried about the convergence of the resolvent sum, keep the ε
exercise 18.1

regularization.)
This formula is still another example of the duality between the (local) cy-

cles and (global) eigenvalues. If T p takes only integer values, we can replace
e−s → z throughout, so the trace formula for maps (18.10) is a special case of
the trace formula for flows. The relation between the continuous and discrete
time cases can be summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (18.24)

We could now proceed to estimate the location of the leading singularity
of tr (s − A)−1 by extrapolating finite cycle length truncations of (18.23) by
methods such as Padé approximants. However, it pays to first perform a simple
resummation which converts this divergence of a trace into a zero of a spectral
determinant. We shall do this in Section 19.2, but first a brief refresher of how
all this relates to the formula for escape rate (1.8) offered in the introduction
might help digest the material.

fast track

Section 19, p. 313
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18.3 An asymptotic trace formula

In order to illuminate the manipulations of Section 18.1 and relate them
to something we already possess intuition about, we now rederive the heuris-
tic sum of Section 1.5.1 from the exact trace formula (18.10). The Laplace
transforms (18.10) or (18.23) are designed to capture the time → ∞ asymp-
totic behavior of the trace sums. By the hyperbolicity assumption (18.5), for
t = Tpr large the cycle weight approaches∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣→ |Λp|r , (18.25)

where Λp is the product of the expanding eigenvalues of M p. Denote the cor-
responding approximation to the nth trace (18.7) by

Γn =

(n)∑
i

1
|Λi|

, (18.26)

and denote the approximate trace formula obtained by replacing the cycle
weights

∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ by |Λp|r in (18.10) by Γ(z). Equivalently, think of this
as a replacement of the evolution operator (17.23) by a transfer operator (as
in Example 18.2). For concreteness consider a dynamical system whose sym-
bolic dynamics is complete binary, for example the 3-disk system Fig. 1.6. In
this case distinct periodic points that contribute to the nth periodic points sum
(18.8) are labeled by all admissible itineraries composed of sequences of letters
si ∈ {0, 1}:

Γ(z) =

∞∑
n=1

znΓn =

∞∑
n=1

zn
∑

xi∈Fix f n

eβ·A
n(xi)

|Λi|

= z

{
eβ·A0

|Λ0|
+

eβ·A1

|Λ1|

}
+ z2

{
e2β·A0

|Λ0|2
+

eβ·A01

|Λ01|
+

eβ·A10

|Λ10|
+

e2β·A1

|Λ1|2

}
+z3

{
e3β·A0

|Λ0|3
+

eβ·A001

|Λ001|
+

eβ·A010

|Λ010|
+

eβ·A100

|Λ100|
+ . . .

}
(18.27)

Both the cycle averages Ai and the stabilities Λi are the same for all points
xi ∈ Mp in a cycle p. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑

p

nptp

1 − tp
, tp = znp eβ·Ap/|Λp| . (18.28)

This is precisely our initial heuristic estimate (1.9). Note that we could not
perform such sum over r in the exact trace formula (18.10) as

∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ �∣∣∣∣det
(
1 − Mp

)∣∣∣∣r; the correct way to resum the exact trace formulas is to first
expand the factors 1/|1 − Λ p,i|, as we shall do in (19.9).

section 19.2
If the weights eβAn(x) are multiplicative along the flow, and the flow is hyper-

bolic, for given β the magnitude of each |eβAn(xi)/Λi| term is bounded by some
constant Mn. The total number of cycles grows as 2n (or as ehn, h = topo-
logical entropy, in general), and the sum is convergent for z sufficiently small,
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|z| < 1/2M. For large n the nth level sum (18.7) tends to the leading L n eigen-
value ens0 . Summing this asymptotic estimate level by level

Γ(z) ≈
∞∑

n=1

(zes0)n
=

zes0

1 − zes0
(18.29)

we see that we should be able to determine s0 by determining the smallest
value of z = e−s0 for which the cycle expansion (18.28) diverges.

If one is interested only in the leading eigenvalue ofL, it suffices to consider
the approximate trace Γ(z). We will use this fact in Section 19.3 to motivate the
introduction of dynamical zeta functions (19.14), and in Section 19.5 we shall
give the exact relation between the exact and the approximate trace formulas.

Résumé

The description of a chaotic dynamical system in terms of cycles can be visu-
alized as a tessellation of the dynamical system, Fig. 18.1, with a smooth flow
approximated by its periodic orbit skeleton, each regionM i centered on a peri-
odic point xi of the topological length n, and the size of the region determined
by the linearization of the flow around the periodic point. The integral over
such topologically partitioned state space yields the classical trace formula

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ .
Now that we have a trace formula, we might ask for what is it good? As it
stands, it is little more than a scary divergent formula which relates the un-
speakable infinity of global eigenvalues to the unthinkable infinity of local un-
stable cycles. However, it is a good stepping stone on the way to construction
of spectral determinants (to which we turn next), and a first hint that when the
going is good, the theory might turn out to be convergent beyond our wildest
dreams (Chapter 23). In order to implement such formulas, we will have to
determine “all” prime cycles. The first step is topological: enumeration of all
admissible cycles undertaken in Chapter 12. The more onerous enterprize of
actually computing the cycles we first approach traditionally, as a numerical
task in Chapter 13, and then more boldly as a part and parcel of variational
foundations of classical and quantum dynamics in Chapter 27.

Further reading

18.1 Who’s dunne it? Continuous time flow traces weighted
by cycle periods were introduced by Bowen [18.1] who
treated them as Poincaré section suspensions weighted by the
“time ceiling” function (3.5). They were used by Parry and

Pollicott [18.2].

18.2 Flat and sharp traces. In the above formal derivation
of trace formulas we cared very little whether our sums were
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well posed. In the Fredholm theory traces like (18.14) require
compact operators with continuous function kernels. This is
not the case for our Dirac delta evolution operators: neverthe-
less, there is a large class of dynamical systems for which our
results may be shown to be perfectly legal. In the mathemati-
cal literature expressions like (18.7) are called flat traces (see
the review [18.4] and Chapter 23). Other names for traces ap-
pear as well: for instance, in the context of 1−d mappings,
sharp traces refer to generalizations of (18.7) where contribu-

tions of periodic points are weighted by the Lefschetz sign ±1,
reflecting whether the periodic point sits on a branch of nth it-
erate of the map which crosses the diagonal starting from be-
low or starting from above [18.10]. Such traces are connected
to the theory of kneading invariants (see Ref. [18.4] and refer-
ences therein). Traces weighted by ±1 sign of the derivative of
the fixed point have been used to study the period doubling re-
peller, leading to high precision estimates of the Feigenbaum
constant δ, Refs. [18.5, 6, 6].

Exercises

(18.1) t → 0+ regularization of eigenvalue sums∗∗. In tak-
ing the Laplace transform (18.23) we have ignored the
t → 0+ divergence, as we do not know how to regular-
ize the delta function kernel in this limit. In the quantum
(or heat kernel) case this limit gives rise to the Weyl or
Thomas-Fermi mean eigenvalue spacing.Regularize the
divergent sum in (18.23) and assign to such volume term
some interesting role in the theory of classical resonance
spectra. E-mail the solution to the authors.

(18.2) General weights. (easy) Let f t be a flow and Lt the
operator

Ltg(x) =
∫

dy δ(x − f t(y))w(t, y)g(y)

where w is a weight function. In this problem we will try
and determine some of the properties w must satisfy.

(a) Compute LsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t + s, x) .

(b) Restrict t and s to be integers and show that the
most general form of w is

w(n, x) = g(x)g( f (x))g( f 2(x)) · · · g( f n−1(x)) ,

for some g that can be multiplied. Could g be a
function from Rn1 �→ Rn2 ? (ni ∈ N.)
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“It seems very pretty,” she said when she had finished it, “but it’s
rather hard to understand!” (You see she didn’t like to confess, even
to herself, that she couldn’t make it out at all.) “Somehow it seems to
fill my head with ideas — only I don’t exactly know what they are!”

—Lewis Carroll, Through the Looking Glass

The problem with the trace formulas (18.10), (18.23) and (18.28) is that
they diverge at z = e−s0 , respectively s = s0, i.e., precisely where one
would like to use them. While this does not prevent numerical esti-

mation of some “thermodynamic” averages for iterated mappings, in the case
of the Gutzwiller trace formula this leads to a perplexing observation that
crude estimates of the radius of convergence seem to put the entire phys-
ical spectrum out of reach. We shall now cure this problem by thinking,
at no extra computational cost; while traces and determinants are formally
equivalent, determinants are the tool of choice when it comes to comput-
ing spectra. Determinants tend to have larger analyticity domains because if

chapter 23
trL/(1 − zL) = − d

dz ln det (1 − zL) diverges at a particular value of z, then
det (1− zL) might have an isolated zero there, and a zero of a function is easier
to determine numerically than its poles.

19.1 Spectral determinants for maps

The eigenvalues zk of a linear operator are given by the zeros of the determi-
nant

det (1 − zL) =
∏

k

(1 − z/zk) . (19.1)

For finite matrices this is the characteristic determinant; for operators this is
the Hadamard representation of the spectral determinant (sparing the reader
from pondering possible regularization factors). Consider first the case of
maps, for which the evolution operator advances the densities by integer steps
in time. In this case we can use the formal matrix identity

exercise 4.1

ln det (1 − M) = tr ln(1 − M) = −
∞∑

n=1

1
n

tr Mn , (19.2)

to relate the spectral determinant of an evolution operator for a map to its traces
(18.8), and hence to periodic orbits:

det (1 − zL) = exp

⎛⎜⎜⎜⎜⎜⎝− ∞∑
n

zn

n
trLn

⎞⎟⎟⎟⎟⎟⎠
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= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

znprerβ·Ap∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (19.3)

Going the other way, the trace formula (18.10) can be recovered from the
spectral determinant by taking a derivative

tr
zL

1 − zL
= −z

d
dz

ln det (1 − zL) . (19.4)

fast track

Section 19.2, p. 314

Example 19.1 Spectral determinants of transfer operators:

For a piecewise-linear map (17.17) with a finite Markov partition, an ex-
plicit formula for the spectral determinant follows by substituting the trace formula
(18.11) into (19.3):

det (1 − zL) =
∞∏

k=0

(
1 − t0

Λk
0

− t1

Λk
1

)
, (19.5)

where ts = z/|Λs |. The eigenvalues are necessarily the same as in (18.12), which we
already determined from the trace formula (18.10).
The exponential spacing of eigenvalues guarantees that the spectral determinant
(19.5) is an entire function. It is this property that generalizes to piecewise smooth
flows with finite Markov partitions, and singles out spectral determinants rather than
the trace formulas or dynamical zeta functions as the tool of choice for evaluation of
spectra.

19.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for diffeomor-
phisms seems quite remote for flows. However we will mention a
wild idea in this direction. [· · ·] define l(γ) to be the minimal period
of γ [· · ·] then define formally (another zeta function!) Z(s) to be the
infinite product

Z(s) =
∏
γ∈Γ

∞∏
k=0

(
1 − [

exp l(γ)
]−s−k

)
.

—Stephen Smale, Differentiable Dynamical Systems

We write the formula for the spectral determinant for flows by analogy to
(19.3)

det (s −A) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (19.6)
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and then check that the trace formula (18.23) is the logarithmic derivative of
the spectral determinant

tr
1

s − A
=

d
ds

ln det (s −A) . (19.7)

With z set to z = e−s as in (18.24), the spectral determinant (19.6) has the
same form for both maps and flows. We refer to (19.6) as spectral determinant,
as the spectrum of the operatorA is given by the zeros of

det (s −A) = 0 . (19.8)

We now note that the r sum in (19.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the spectral determinant into
an infinite product over periodic orbits as follows:

Let Mp be the p-cycle [d×d] transverse Jacobian matrix, with eigenvalues
Λp,1,Λp,2, . . .,Λp,d. Expanding the expanding eigenvalue factors 1/(1 − 1/Λ p,e)
and the contracting eigenvalue factors 1/(1 − Λ p,c) in (18.4) as geometric se-
ries, substituting back into (19.6), and resumming the logarithms, we find that
the spectral determinant is formally given by the infinite product

det (s − A) =

∞∏
k1=0

· · ·
∞∏

lc=0

1
ζk1···lc

1/ζk1···lc =
∏

p

⎛⎜⎜⎜⎜⎜⎜⎝1 − tp

Λ
l1
p,e+1Λ

l2
p,e+2 · · ·Λ

lc
p,d

Λ
k1
p,1Λ

k2
p,2 · · ·Λ

ke
p,e

⎞⎟⎟⎟⎟⎟⎟⎠ (19.9)

tp = tp(z, s, β) =
1
|Λp|

eβ·Ap−sTpznp . (19.10)

In such formulas tp is a weight associated with the p cycle (letter t refers to
the “local trace” evaluated along the p cycle trajectory), and the index p runs
through all distinct prime cycles. Why the factor znp ? It is associated with
the trace formula (18.10) for maps, whereas the factor e −sTp is specific to the
continuous time trace formuls (18.23); according to (18.24) we should use ei-
ther one or the other. But we have learned in Section 3.1 that flows can be
represented either by their continuous-time trajectories, or by their topological
time Poincaré section return maps. In cases when we have good control over
the topology of the flow, it is often convenient to insert the z np factor into cy-
cle weights, as a formal parameter which keeps track of the topological cycle
lengths. These factors will assist us in expanding zeta functions and determi-

chapter 20
nants, eventually we shall set z = 1. The subscripts e, c indicate that there are e
expanding eigenvalues, and c contracting eigenvalues. The observable whose
average we wish to compute contributes through the A t(x) term in the p cycle
multiplicative weight eβ·Ap . By its definition (17.1), the weight for maps is a
product along the periodic points

eAp =

np−1∏
j=0

ea( f j(xp)) ,

and the weight for flows is an exponential of the integral (17.5) along the cycle

eAp = exp

(∫ Tp

0
a(x(τ))dτ

)
.
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This formula is correct for scalar weighting functions; more general matrix
valued weights require a time-ordering prescription as in the Jacobian matrix
of Section 4.1.

Example 19.2 Expanding 1−d map:

For expanding 1−d mappings the spectral determinant (19.9) takes the form

det (1 − zL) =
∏

p

∞∏
k=0

(
1 − tp/Λ

k
p

)
, tp =

eβAp

|Λp|
znp . (19.11)

Example 19.3 Two-degree of freedom Hamiltonian flows:
For a 2-degree of freedom Hamiltonian flows the energy conservation eliminates on
phase space variable, and restriction to a Poincaré section eliminates the marginal
longitudinal eigenvalue Λ = 1, so a periodic orbit of 2-degree of freedom hyper-
bolic Hamiltonian flow has one expanding transverse eigenvalue Λ, |Λ| > 1, and one
contracting transverse eigenvalue 1/Λ. The weight in (18.4) is expanded as follows:

1∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ =
1

|Λ|r(1 − 1/Λr
p)2
=

1
|Λ|r

∞∑
k=0

k + 1
Λkr

p

. (19.12)

The spectral determinant exponent can be resummed,

−
∞∑

r=1

1
r

e(βAp−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ =
∞∑

k=0

(k + 1) log

(
1 − eβAp−sTp

|Λp|Λk
p

)
,

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewrit-
ten as an infinite product over prime cycles

det (s −A) =
∏

p

∞∏
k=0

(
1 − tp/Λ

k
p

)k+1
. (19.13)

exercise 23.4

Now we are finally poised to deal with the problem posed at the beginning
of Chapter 18; how do we actually evaluate the averages introduced in Sec-
tion 17.1? The eigenvalues of the dynamical averaging evolution operator are
given by the values of s for which the spectral determinant (19.6) of the evo-
lution operator (17.23) vanishes. If we can compute the leading eigenvalue
s0(β) and its derivatives, we are done. Unfortunately, the infinite product for-
mula (19.9) is no more than a shorthand notation for the periodic orbit weights
contributing to the spectral determinant; more work will be needed to bring
such formulas into a tractable form. This shall be accomplished in Chapter 20,
but here it is natural to introduce still another variant of a determinant, the
dynamical zeta function.

19.3 Dynamical zeta functions

It follows from Section 18.1.1 that if one is interested only in the leading eigen-
value of Lt, the size of the p cycle neighborhood can be approximated by
1/|Λp|r, the dominant term in the rT p = t → ∞ limit, where Λp =

∏
e Λp,e is
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the product of the expanding eigenvalues of the Jacobian matrix M p. With this
replacement the spectral determinant (19.6) is replaced by the dynamical zeta
function

1/ζ = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

tr
p

⎞⎟⎟⎟⎟⎟⎟⎠ (19.14)

that we have already derived heuristically in Section 1.5.2. Resumming the
logarithms using

∑
r tr

p/r = − ln(1 − tp) we obtain the Euler product represen-
tation of the dynamical zeta function:

1/ζ =
∏

p

(
1 − tp

)
. (19.15)

In order to simplify the notation, we usually omit the explicit dependence of
1/ζ, tp on z, s, β whenever the dependence is clear from the context.

The approximate trace formula (18.28) plays the same role vis-à-vis the
dynamical zeta function (19.7)

Γ(s) =
d
ds

ln ζ−1 =
∑

p

Tptp

1 − tp
, (19.16)

as the exact trace formula (18.23) plays vis-à-vis the spectral determinant
(19.6). The heuristically derived dynamical zeta function of Section 1.5.2 now
re-emerges as the 1/ζ0···0(z) part of the exact spectral determinant; other factors
in the infinite product (19.9) affect the non-leading eigenvalues of L.

In summary, the dynamical zeta function (19.15) associated with the flow
f t(x) is defined as the product over all prime cycles p. The quantities, T p, np

and Λp, denote the period, topological length and product of the expanding
Floquet multipliers of prime cycle p, A p is the integrated observable a(x) eval-
uated on a single traversal of cycle p (see (17.5)), s is a variable dual to the
time t, z is dual to the discrete “topological” time n, and t p(z, s, β) denotes the
local trace over the cycle p. We have included the factor z np in the definition of
the cycle weight in order to keep track of the number of times a cycle traverses
the surface of section. The dynamical zeta function is useful because the term

1/ζ(s) = 0 (19.17)

when s = s0, Here s0 is the leading eigenvalue of Lt = etA, which is often
all that is necessary for application of this equation. The above argument com-
pletes our derivation of the trace and determinant formulas for classical chaotic
flows. In chapters that follow we shall make these formulas tangible by work-
ing out a series of simple examples.

The remainder of this chapter offers examples of zeta functions.

fast track

Chapter 20, p. 327

19.3.1 A contour integral formulation

The following observation is sometimes useful, in particular for zeta
functions with richer analytic structure than just zeros and poles, as in the case
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of intermittency (Chapter 24): Γn , the trace sum (18.26), can be expressed in
terms of the dynamical zeta function (19.15)

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)
. (19.18)

as a contour integral

Γn =
1

2πi

∮
γ−r

z−n

(
d
dz

log ζ−1(z)

)
dz , (19.19)

where a small contour γ−r encircles the origin in negative (clockwise) direction.
exercise 19.7

If the contour is small enough, i.e., it lies inside the unit circle |z| = 1, we may
write the logarithmic derivative of ζ−1(z) as a convergent sum over all periodic
orbits. Integrals and sums can be interchanged, the integrals can be solved
term by term, and the trace formula (18.26) is recovered. For hyperbolic maps,

chapter 20
cycle expansions or other techniques provide an analytical continuation of the
dynamical zeta function beyond the leading zero; we may therefore deform the
original contour into a larger circle with radius R which encircles both poles
and zeros of ζ−1(z), as depicted in Fig. 19.1. Residue calculus turns this into a
sum over the zeros zα and poles zβ of the dynamical zeta function, that is

Γn =

zeros∑
|zα|<R

1
zn
α

−
poles∑
|zβ |<R

1
zn
β

+
1

2πi

∮
γ−R

dz z−n d
dz

log ζ−1, (19.20)

where the last term gives a contribution from a large circle γ−R . It would be a
miracle if you still remembered this, but in Section 1.4.3 we interpreted Γ n as
fraction of survivors after n bounces, and defined the escape rate γ as the rate
of the find exponential decay of Γn. We now see that this exponential decay is
dominated by the leading zero or pole of ζ −1(z).

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

Fig. 19.1 The survival probability Γn can be
split into contributions from poles (x) and ze-
ros (o) between the small and the large circle
and a contribution from the large circle.

19.3.2 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of the
topological zeta function (15.27) to a function that assigns different weights to

chapter 15

different cycles:

ζ(z) = exp
∞∑

n=1

zn

n

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑
xi∈Fix f n

tr
n−1∏
j=0

g( f j(xi))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
Here we sum over all periodic points xi of period n, and g(x) is any (matrix

exercise 18.2

valued) weighting function, where the weight evaluated multiplicatively along
the trajectory of xi.

By the chain rule (4.45) the stability of any n-cycle of a 1−d map is given
by Λp =

∏n
j=1 f ′(xi), so the 1−d map cycle stability is the simplest exam-

ple of a multiplicative cycle weight g(xi) = 1/| f ′(xi)|, and indeed - via the
Perron-Frobenius evolution operator (16.9) - the historical motivation for Ru-
elle’s more abstract construction.
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In particular, for a piecewise-linear map with a finite Markov partition such
as the map of Example 16.1, the dynamical zeta function is given by a fi-
nite polynomial, a straightforward generalization of the topological transition
matrix determinant (14.1). As explained in Section 15.3, for a finite [N×N]
dimensional matrix the determinant is given by

∏
p

(1 − tp) =
N∑

n=1

zncn ,

where cn is given by the sum over all non-self-intersecting closed paths of
length n together with products of all non-intersecting closed paths of total
length n.

Example 19.4 A piecewise linear repeller:
Due to piecewise linearity, the stability of any n-cycle of the piecewise linear repeller
(17.17) factorizes as Λs1 s2 ...sn = Λ

m
0Λ

n−m
1 , where m is the total number of times the

letter s j = 0 appears in the p symbol sequence, so the traces in the sum (18.28) take
the particularly simple form

tr T n = Γn =

(
1
|Λ0|
+

1
|Λ1|

)n

.

The dynamical zeta function (19.14) evaluated by resumming the traces,
exercise 19.3

1/ζ(z) = 1 − z/|Λ0| − z/|Λ1| , (19.21)

is indeed the determinant det (1−zT ) of the transfer operator (17.19), which is almost
as simple as the topological zeta function (15.34).

chapter 15More generally, piecewise-linear approximations to dynamical systems yield
polynomial or rational polynomial cycle expansions, provided that the sym-
bolic dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so dreaded by quantum
chaologians is a bogus anxiety; we are dealing with exponentially many cycles
of increasing length and instability, but all that really matters in this example
are the stabilities of the two fixed points. Clearly the information carried by
the infinity of longer cycles is highly redundant; we shall learn in Chapter 20
how to exploit this redundancy systematically.

19.4 False zeros

Compare (19.21) with the Euler product (19.15). For simplicity consider two
equal scales, |Λ0| = |Λ1| = eλ. Our task is to determine the leading zero
z = eγ of the Euler product. It is a novice error to assume that the infinite Euler
product (19.15) vanishes whenever one of its factors vanishes. If that were
true, each factor (1 − znp/|Λp|) would yield

0 = 1 − enp(γ−λp), (19.22)

so the escape rate γ would equal the Floquet exponent of a repulsive cycle, one
eigenvalue γ = γp for each prime cycle p. This is false! The exponentially
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growing number of cycles with growing period conspires to shift the zeros of
the infinite product. The correct formula follows from (19.21)

0 = 1 − eγ−λ+h , h = ln 2. (19.23)

This particular formula for the escape rate is a special case of a general rela-
tion between escape rates, Lyapunov exponents and entropies that is not yet
included into this book. Physically this means that the escape induced by the
repulsion by each unstable fixed point is diminished by the rate of backscatter
from other repelling regions, i.e., the entropy h; the positive entropy of orbits
shifts the “false zeros” z = eλp of the Euler product (19.15) to the true zero
z = eλ−h.

19.5 Spectral determinants vs. dynamical zeta
functions

In Section 19.3 we derived the dynamical zeta function as an approximation
to the spectral determinant. Here we relate dynamical zeta functions to spec-
tral determinants exactly, by showing that a dynamical zeta function can be
expressed as a ratio of products of spectral determinants.

The elementary identity for d-dimensional matrices

1 =
1

det (1 − M)

d∑
k=0

(−1)ktr
(
∧k M

)
, (19.24)

inserted into the exponential representation (19.14) of the dynamical zeta func-
tion, relates the dynamical zeta function to weighted spectral determinants.

Example 19.5 Dynamical zeta function in terms of determinants, 1− d
maps:
For 1−d maps the identity

1 =
1

(1 − 1/Λ)
− 1
Λ

1
(1 − 1/Λ)

substituted into (19.14) yields an expression for the dynamical zeta function for 1−d
maps as a ratio of two spectral determinants

1/ζ =
det (1 − zL)

det (1 − zL(1))
(19.25)

where the cycle weight in L(1) is given by replacement tp → tp/Λp. As we shall
see in Chapter 23, this establishes that for nice hyperbolic flows 1/ζ is meromorphic,
with poles given by the zeros of det (1 − zL(1)). The dynamical zeta function and
the spectral determinant have the same zeros, although in exceptional circumstances
some zeros of det (1− zL(1)) might be cancelled by coincident zeros of det (1− zL(1)).
Hence even though we have derived the dynamical zeta function in Section 19.3 as
an “approximation” to the spectral determinant, the two contain the same spectral
information.
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Example 19.6 Dynamical zeta function in terms of determinants, 2− d
Hamiltonian maps:
For 2-dimensional Hamiltonian flows the above identity yields

1
|Λ| =

1
|Λ|(1 − 1/Λ)2

(1 − 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1 − zL) det (1 − zL(2))

det (1 − zL(1))
. (19.26)

This establishes that for nice 2−d hyperbolic flows the dynamical zeta function is
meromorphic.

Example 19.7 Dynamical zeta functions for 2−d Hamiltonian flows:
The relation (19.26) is not particularly useful for our purposes. Instead we insert the
identity

1 =
1

(1 − 1/Λ)2
− 2
Λ

1
(1 − 1/Λ)2

+
1
Λ2

1
(1 − 1/Λ)2

into the exponential representation (19.14) of 1/ζk , and obtain

R

a L a

1 2

Fig. 19.2 A game of pinball consisting of two
disks of equal size in a plane, with its only
periodic orbit (A. Wirzba).

1/ζk =
det (1 − zL(k))det (1 − zL(k+2))

det (1 − zL(k+1))2
. (19.27)

Even though we have no guarantee that det (1−zL(k)) are entire, we do know that the
upper bound on the leading zeros of det (1 − zL(k+1)) lies strictly below the leading
zeros of det (1 − zL(k)), and therefore we expect that for 2-dimensional Hamiltonian
flows the dynamical zeta function 1/ζk generically has a double leading pole coincid-
ing with the leading zero of the det (1− zL(k+1)) spectral determinant. This might fail
if the poles and leading eigenvalues come in wrong order, but we have not encoun-
tered such situations in our numerical investigations. This result can also be stated as
follows: the theorem establishes that the spectral determinant (19.13) is entire, and
also implies that the poles in 1/ζk must have the right multiplicities to cancel in the
det (1 − zL) =

∏
1/ζk+1

k product.

19.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral determin-
ant (19.13) tell us? Consider one of the simplest conceivable hyperbolic

s

s

Re

2π/Τ

−2π/Τ

4π/Τ

6π/Τ

−λ/Τ−2λ/Τ−3λ/Τ−4λ/Τ

−4π/Τ

s

{3,2}

{0,−3}

Im

Fig. 19.3 The classical resonances α = {k, n}
(19.28) for a 2-disk game of pinball.

flows: the game of pinball of Fig. 19.2 consisting of two disks of equal size
in a plane. There is only one periodic orbit, with the period T and expanding
eigenvalue Λ given by elementary considerations (see Exercise 13.7), and the
resonances det (sα −A) = 0, α = {k, n} plotted in Fig. 19.3:

sα = −(k + 1)λ + n
2πi
T

, n ∈ Z , k ∈ Z+ , multiplicity k + 1, (19.28)

can be read off the spectral determinant (19.13) for a single unstable cycle:

det (s −A) =
∞∏

k=0

(
1 − e−sT /|Λ|Λk

)k+1
. (19.29)

In the above λ = ln |Λ|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvalue sα gives the decay rate of αth eigenstate, and the
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imaginary part gives the “node number” of the eigenstate. The negative real
part of sα indicates that the resonance is unstable, and the decay rate in this
simple case (zero entropy) equals the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negative Re sα are not a problem,
but as there are eigenvalues arbitrarily far in the imaginary direction, this might
seem like all too many eigenvalues. However, they are necessary - we can
check this by explicit computation of the right hand side of (18.23), the trace
formula for flows:

∞∑
α=0

esαt =

∞∑
k=0

∞∑
n=−∞

(k + 1)e−(k+1)λt+i2πnt/T

=

∞∑
k=0

(k + 1)

(
1
|Λ|Λk

)t/T ∞∑
n=−∞

ei2πnt/T

=

∞∑
k=0

k + 1
|Λ|rΛkr

∞∑
r=−∞

δ(r − t/T)

= T
∞∑

r=−∞

δ(t − rT)
|Λ|r(1 − 1/Λr)2

. (19.30)

Hence, the two sides of the trace formula (18.23) are verified. The formula is
fine for t > 0; for t → 0+, however, sides are divergent and need regularization.

The reason why such sums do not occur for maps is that for discrete time
we work with the variable z = es, so an infinite strip along Im s maps into
an annulus in the complex z plane, and the Dirac delta sum in the above is
replaced by the Kronecker delta sum in (18.8). In the case at hand there is only
one time scale T , and we could just as well replace s by the variable z = e−sT .
In general, a continuous time flow has an infinity of irrationally related cycle
periods, and the resonance arrays are more irregular, cf. Fig. 20.1.

Résumé

The eigenvalues of evolution operators are given by the zeros of corresponding
determinants, and one way to evaluate determinants is to expand them in terms
of traces, using the matrix identity log det = tr log. Traces of evolution oper-
ators can be evaluated as integrals over Dirac delta functions, and in this way
the spectra of evolution operators are related to periodic orbits. The spectral
problem is now recast into a problem of determining zeros of either the spec-
tral determinant

det (s −A) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

e(β·Ap−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

or the leading zeros of the dynamical zeta function

1/ζ =
∏

p

(
1 − tp

)
, tp =

1
|Λp|

eβ·Ap−sTp .

The spectral determinant is the tool of choice in actual calculations, as it has
superior convergence properties (this will be discussed in Chapter 23 and is
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illustrated, for example, by Table 20.2). In practice both spectral determinants
and dynamical zeta functions are preferable to trace formulas because they
yield the eigenvalues more readily; the main difference is that while a trace
diverges at an eigenvalue and requires extrapolation methods, determinants
vanish at s corresponding to an eigenvalue sα, and are analytic in s in an open
neighborhood of sα.

The critical step in the derivation of the periodic orbit formulas for spec-
tral determinants and dynamical zeta functions is the hyperbolicity assumption
(18.5) that no cycle stability eigenvalue is marginal, |Λ p,i| � 1. By dropping
the prefactors in (1.5), we have given up on any possibility of recovering the
precise distribution of the initial x (return to the past is rendered moot by the
chaotic mixing and the exponential growth of errors), but in exchange we gain
an effective description of the asymptotic behavior of the system. The pleasant
surprise (to be demonstrated in Chapter 20) is that the infinite time behavior
of an unstable system turns out to be as easy to determine as its short time
behavior.

Further reading

19.1 Piecewise monotone maps. A partial list of cases
for which the transfer operator is well defined: the expand-
ing Hölder case, weighted subshifts of finite type, expanding
differentiable case, see Bowen [19.28]: expanding holomor-
phic case, see Ruelle [19.9]; piecewise monotone maps of
the interval, see Hofbauer and Keller [19.13] and Baladi and
Keller [19.16].

19.2 Smale’s wild idea. Smale’s wild idea quoted on
page 314 was technically wrong because 1) the Selberg zeta
function yields the spectrum of a quantum mechanical Lapla-
cian rather than the classical resonances, 2) the spectral deter-
minant weights are different from what Smale conjectured, as
the individual cycle weights also depend on the stability of the
cycle, 3) the formula is not dimensionally correct, as k is an
integer and s represents inverse time. Only for spaces of con-
stant negative curvature do all cycles have the same Lyapunov
exponent λ = ln |Λp|/Tp. In this case, one can normalize time
so that λ = 1, and the factors e−sTp/Λk

p in (19.9) simplify to
s−(s+k)Tp , as intuited in Smale’s quote on page 314 (where l(γ)
is the cycle period denoted here by Tp). Nevertheless, Smale’s
intuition was remarkably on the target.

19.3 Is this a generalization of the Fourier analysis?
Fourier analysis is a theory of the space↔ eigenfunction du-
ality for dynamics on a circle. The way in which periodic
orbit theory generalizes Fourier analysis to nonlinear flows is

discussed in Ref. [19.3], a very readable introduction to the
Selberg Zeta function.

19.4 Zeta functions, antecedents. For a function to be de-
serving of the appellation “zeta function,” one expects it to
have an Euler product representation (19.15), and perhaps also
satisfy a functional equation. Various kinds of zeta functions
are reviewed in Refs. [19.6–8]. Historical antecedents of the
dynamical zeta function are the fixed-point counting functions
introduced by Weil [19.9], Lefschetz [19.10] and Artin and
Mazur [19.11], and the determinants of transfer operators of
statistical mechanics [19.29].
In his review article Smale [19.27] already intuited, by anal-
ogy to the Selberg Zeta function, that the spectral determinant
is the right generalization for continuous time flows. In dy-
namical systems theory, dynamical zeta functions arise natu-
rally only for piecewise linear mappings; for smooth flows the
natural object for the study of classical and quantal spectra are
the spectral determinants. Ruelle derived the relation (19.3)
between spectral determinants and dynamical zeta functions,
but since he was motivated by the Artin-Mazur zeta function
(15.27) and the statistical mechanics analogy, he did not con-
sider the spectral determinant to be a more natural object than
the dynamical zeta function. This has been put right in papers
on “flat traces” [19.18, 23].
The nomenclature has not settled down yet; what we call
evolution operators here is elsewhere called transfer opera-
tors [19.32], Perron-Frobenius operators [19.4] and/or Ruelle-
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Araki operators.
Here we refer to kernels such as (17.23) as evolution oper-
ators. We follow Ruelle in usage of the term “dynamical zeta
function,” but elsewhere in the literature the function (19.15)
is often called the Ruelle zeta function. Ruelle [19.33] points
out that the corresponding transfer operator T was never con-
sidered by either Perron or Frobenius; a more appropriate
designation would be the Ruelle-Araki operator. Determi-

nants similar to or identical with our spectral determinants are
sometimes called Selberg Zetas, Selberg-Smale zetas [19.8],
functional determinants, Fredholm determinants, or even - to
maximize confusion - dynamical zeta functions [19.12]. A
Fredholm determinant is a notion that applies only to trace
class operators - as we consider here a somewhat wider class
of operators, we prefer to refer to their determinants loosely
as “spectral determinants.”

Exercises

(19.1) Escape rate for a 1−d repeller, numerically. Con-
sider the quadratic map

f (x) = Ax(1 − x) (19.31)

on the unit interval. The trajectory of a point starting
in the unit interval either stays in the interval forever or
after some iterate leaves the interval and diverges to mi-
nus infinity. Estimate numerically the escape rate (22.8),
the rate of exponential decay of the measure of points
remaining in the unit interval, for either A = 9/2 or
A = 6. Remember to compare your numerical estimate
with the solution of the continuation of this exercise, Ex-
ercise 20.2.

(19.2) Spectrum of the “golden mean” pruned map.
(medium - Exercise 15.7 continued)

(a) Determine an expression for trLn, the trace of
powers of the Perron-Frobenius operator (16.10)
acting on the space of real analytic functions for
the tent map of Exercise 15.7.

(b) Show that the spectral determinant for the Perron-
Frobenius operator is

det (1 − zL) = (19.32)∏
k even

(
1 − z
Λk+1

− z2

Λ2k+2

)
×

∏
k odd

(
1 +

z
Λk+1

+
z2

Λ2k+2

)
.

(19.3) Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta func-
tion

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)

for the piecewise-linear map (17.17) with the left
branch slope Λ0, the right branch slope Λ1.

x

f(x)

s10s00

s01 s11

(b) What if there are four different slopes s00, s01, s10,
and s11 instead of just two, with the preimages
of the gap adjusted so that junctions of branches
s00, s01 and s11, s10 map in the gap in one iteration?
What would the dynamical zeta function be?

(19.4) Dynamical zeta functions from transition graphs.
Extend Section 15.3 to evaluation of dynamical zeta
functions for piecewise linear maps with finite transition
graphs. This generalizes the results of Exercise 19.3.

(19.5) Zeros of infinite products. Determination of the quan-
tities of interest by periodic orbits involves working with
infinite product formulas.

(a) Consider the infinite product

F(z) =
∞∏

k=0

(1 + fk(z))

where the functions fk are “sufficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of
infinite products.

(b) If z∗ is a root of the function F, show that the infi-
nite product diverges when evaluated at z∗.
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(c) How does one compute a root of a function repre-
sented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition of F(z) to the infinite
product

F(z) =
∏

p

(1 − znp

Λnp
)

(e) Are the roots of the factors in the above product the
zeros of F(z)?

(Per Rosenqvist)

(19.6) Dynamical zeta functions as ratios of spectral determinants.
(medium) Show that the zeta function

1/ζ(z) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∑
r=1

1
r

znp

|Λp|r

⎞⎟⎟⎟⎟⎟⎟⎠
can be written as the ratio

1/ζ(z) = det (1 − zL(0))/det (1 − zL(1)) ,

where det (1 − zL(s)) =
∏

p
∏∞

k=0(1 − znp/|Λp|Λk+s
p ).

(19.7) Contour integral for survival probability. Perform
explicitly the contour integral appearing in (19.19).

(19.8) Dynamical zeta function for maps. In this prob-
lem we will compare the dynamical zeta function and the
spectral determinant. Compute the exact dynamical zeta
function for the skew full tent map (16.45)

1/ζ(z) =
∏
p∈P

(
1 − znp

|Λp|

)
.

What are its roots? Do they agree with those computed
in Exercise 16.7?

(19.9) Dynamical zeta functions for Hamiltonian maps.
Starting from

1/ζ(s) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

tr
p

⎞⎟⎟⎟⎟⎟⎟⎠
for a 2-dimensional Hamiltonian map. Using the equality

1 =
1

(1 − 1/Λ)2
(1 − 2/Λ + 1/Λ2) ,

show that

1/ζ = det (1 − L) det (1 − L(2))/det (1 − L(1))
2 .

In this expression det (1− zL(k)) is the expansion one gets
by replacing tp → tp/Λ

k
p in the spectral determinant.

(19.10) Riemann ζ function. The Riemann ζ function is
defined as the sum

ζ(s) =
∞∑

n=1

1
ns
, s ∈ C .

(a) Use factorization into primes to derive the Euler
product representation

ζ(s) =
∏

p

1
1 − p−s

.

The dynamical zeta function Exercise 19.15 is
called a “zeta” function because it shares the form
of the Euler product representation with the Rie-
mann zeta function.

(b) (Not trivial:) For which complex values of s is the
Riemann zeta sum convergent?

(c) Are the zeros of the terms in the product, s =
− ln p, also the zeros of the Riemann ζ function?
If not, why not?

(19.11) Finite truncations. (easy) Suppose we have a 1-
dimensional system with complete binary dynamics,
where the stability of each orbit is given by a simple mul-
tiplicative rule:

Λp = Λ
np,0

0 Λ
np,1

1 , np,0 = #0 in p , np,1 = #1 in p ,

so that, for example, Λ00101 = Λ
3
0Λ

2
1.

(a) Compute the dynamical zeta function for this sys-
tem; perhaps by creating a transfer matrix analo-
gous to (17.19), with the right weights.

(b) Compute the finite p truncations of the cycle ex-
pansion, i.e. take the product only over the p up to
given length with np ≤ N, and expand as a series
in z ∏

p

(
1 − znp

|Λp|

)
.

Do they agree? If not, how does the disagreement
depend on the truncation length N?
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[19.5] P. Cvitanović, P.E. Rosenqvist, H.H. Rugh, and G. Vattay, “A Fredholm
determinant for semi-classical quantization,” CHAOS 3, 619 (1993).

[19.6] A. Voros, in: Zeta Functions in Geometry (Proceedings, Tokyo 1990),
eds. N. Kurokawa and T. Sunada, Advanced Studies in Pure Mathematics
21, Math. Soc. Japan, Kinokuniya, Tokyo (1992), p.327-358.
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Recycle... It’s the Law!
—Poster, New York City Department of Sanitation

The Euler product representations of spectral determinants (19.9) and dyn-
amical zeta functions (19.15) are really only a shorthand notation - the
zeros of the individual factors are not the zeros of the zeta function, and

convergence of such objects is far from obvious. Now we shall give meaning
to the dynamical zeta functions and spectral determinants by expanding them
as cycle expansions, series representations ordered by increasing topological
cycle length, with products in (19.9), (19.15) expanded as sums over pseu-
docycles, products of t p’s. The zeros of correctly truncated cycle expansions
yield the desired eigenvalues, and the expectation values of observables are
given by the cycle averaging formulas obtained from the partial derivatives of
dynamical zeta functions (or spectral determinants).

20.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (19.15) evaluated? We start by com-
puting the lengths and Floquet multipliers of the shortest cycles. This always
requires numerical work, such as the Newton method searches for periodic so-
lutions; we shall assume that the numerics is under control, and that all short
cycles up to a given (topological) length have been found. Examples of the
data required for application of periodic orbit formulas are the lists of cycles
given in Table 27.3 and Exercise 13.14. It is important not to miss any short cy-
cles, as the calculation is as accurate as the shortest cycle dropped - including
cycles longer than the shortest omitted does not improve the accuracy (more
precisely, improves it, but painfully slowly).

Expand the dynamical zeta function (19.15) as a formal power series,

1/ζ =
∏

p

(1 − tp) = 1 −
∑′

{p1 p2 ...pk}
(−1)k+1tp1 tp2 . . . tpk (20.1)

where the prime on the sum indicates that the sum is over all distinct non-
repeating combinations of prime cycles. As we shall frequently use such sums,
let us denote by tπ = (−1)k+1tp1 tp2 . . . tpk an element of the set of all distinct
products of the prime cycle weights t p. The formal power series (20.1) is now
compactly written as

1/ζ = 1 −
∑′

π

tπ . (20.2)



328 CHAPTER 20. CYCLE EXPANSIONS

For k > 1, tπ are weights of pseudocycles; they are sequences of shorter cy-
cles that shadow a cycle with the symbol sequence p1 p2 . . . pk along segments
p1, p2, . . ., pk.

∑′ denotes the restricted sum, for which any given prime cycle
p contributes at most once to a given pseudocycle weight t π.

The pseudocycle weight, i.e., the product of weights (19.10) of prime cycles
comprising the pseudocycle,

tπ = (−1)k+1 1
|Λπ|

eβAπ−sTπznπ , (20.3)

depends on the pseudocycle topological length n π, integrated observable Aπ,
period Tπ, and stability Λπ

nπ = np1 + . . . + npk , Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk , Λπ = Λp1Λp2 · · ·Λpk . (20.4)

Throughout this text, the terms “periodic orbit” and “cycle” are used inter-
changeably; while “periodic orbit” is more precise, “cycle” (which has many
other uses in mathematics) is easier on the ear than “pseudo-periodic-orbit.”
While in Soviet times acronyms were a rage (and in France they remain so),
we shy away from acronyms such as UPOs (Unstable Periodic Orbits).

20.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a system described by a
complete binary symbolic dynamics. In this case the Euler product (19.15) is
given by

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011) (20.5)

(1 − t0001)(1 − t0011)(1 − t0111)(1 − t00001)(1 − t00011)

(1 − t00101)(1 − t00111)(1 − t01011)(1 − t01111) . . .

(see Table 15.1), and the first few terms of the expansion (20.2) ordered by
increasing total pseudocycle length are:

1/ζ = 1 − t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .
+t0t1 + t0t01 + t01t1 + t0t001 + t0t011 + t001t1 + t011t1
−t0t01t1 − . . . (20.6)

We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudocycles, and ordered by increasing
cycle length and instability, as a cycle expansion.

The next step is the key step: regroup the terms into the dominant fundamen-
tal contributions t f and the decreasing curvature corrections ĉ n, each ĉn split
into prime cycles p of length n p=n grouped together with pseudocycles whose
full itineraries build up the itinerary of p. For the binary case this regrouping
is given by

1/ζ = 1 − t0 − t1 − [(t01 − t1t0)] − [(t001 − t01t0) + (t011 − t01t1)]
recycle - 30aug2006 ChaosBook.org version13.5, Sep 7 2011
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−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)] − . . .
= 1 −

∑
f

t f −
∑

n

ĉn . (20.7)

All terms in this expansion up to length n p = 6 are given in Table 20.1. We
refer to such regrouped series as curvature expansions. .

Such separation into “fundamental” and “curvature” parts of cycle expan-
sions is possible only for dynamical systems whose symbolic dynamics has
finite grammar. The fundamental cycles t0, t1 have no shorter approximants;
they are the “building blocks” of the dynamics in the sense that all longer or-
bits can be approximately pieced together from them. The fundamental part of
a cycle expansion is given by the sum of the products of all non-intersecting
loops of the associated transition graph. The terms grouped in brackets are

section 15.3
section 20.4the curvature corrections; the terms grouped in parenthesis are combinations

of longer cycles and corresponding sequences of “shadowing” pseudocycles.
If all orbits are weighted equally (t p = znp ), such combinations cancel ex-
actly, and the dynamical zeta function reduces to the topological polynomial
(15.27). If the flow is continuous and smooth, orbits of similar symbolic dy-
namics will traverse the same neighborhoods and will have similar weights,
and the weights in such combinations will almost cancel. The utility of cycle
expansions of dynamical zeta functions and spectral determinants, in contrast
to direct averages over periodic orbits such as the trace formulas discussed in
Section 22.5, lies precisely in this organization into nearly canceling combina-
tions: cycle expansions are dominated by short cycles, with long cycles giving
exponentially decaying corrections.

In the case where we know of no finite grammar symbolic dynamics that
would help us organize the cycles, the best thing to use is a stability cutoff
which we shall discuss in Section 20.5. The idea is to truncate the cycle ex-
pansion by including only the pseudocycles such that |Λ p1 · · ·Λpk | ≤ Λmax,
with the cutoff Λmax equal to or greater than the most unstable Λ p in the data
set.

20.2 Construction of cycle expansions

20.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluated numerically by
first computing the weights t p = tp(β, s) of all prime cycles p of topological
length np ≤ N for given fixed β and s. Denote by subscript (i) the ith prime
cycle computed, ordered by the topological length n (i) ≤ n(i+1). The dynamical
zeta function 1/ζN truncated to the np ≤ N cycles is computed recursively, by
multiplying

1/ζ(i) = 1/ζ(i−1)(1 − t(i)z
n(i) ) , (20.8)
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Table 20.1 The binary curvature expansion (20.7) up to length 6, listed in such way that
the sum of terms along the pth horizontal line is the curvature ĉp associated with a
prime cycle p, or a combination of prime cycles such as the t100101 + t100110 pair.

- t0
- t1

- t10 + t1t0

- t100 + t10t0
- t101 + t10t1

- t1000 + t100t0
- t1001 + t100t1 + t101t0 - t1t10t0
- t1011 + t101t1

- t10000 + t1000t0
- t10001 + t1001t0 + t1000t1 - t0t100t1
- t10010 + t100t10
- t10101 + t101t10
- t10011 + t1011t0 + t1001t1 - t0t101t1
- t10111 + t1011t1

- t100000 + t10000t0
- t100001 + t10001t0 + t10000t1 - t0t1000t1
- t100010 + t10010t0 + t1000t10 - t0t100t10
- t100011 + t10011t0 + t10001t1 - t0t1001t1
- t100101 - t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 - t0t10t101 - t1t10t100
- t101110 + t10110t1 + t1011t10 - t1t101t10
- t100111 + t10011t1 + t10111t0 - t0t1011t1
- t101111 + t10111t1

and truncating the expansion at each step to a finite polynomial in z n, n ≤ N.
The result is the Nth order polynomial approximation

1/ζN = 1 −
N∑

n=1

cnzn . (20.9)

In other words, a cycle expansion is a Taylor expansion in the dummy variable
z raised to the topological cycle length. If both the number of cycles and their
individual weights grow not faster than exponentially with the cycle length,
and we multiply the weight of each cycle p by a factor z np , the cycle expansion
converges for sufficiently small |z|.

If the dynamics is given by iterated mapping, the leading zero of (20.9) as
function of z yields the leading eigenvalue of the appropriate evolution oper-
ator. For continuous time flows, z is a dummy variable that we set to z = 1, and
the leading eigenvalue of the evolution operator is given by the leading zero of
(20.9) as function of s.

20.2.2 Evaluation of traces, spectral determinants

Due to the lack of factorization of the full pseudocycle weight,

det
(
1 − Mp1 p2

)
� det

(
1 − Mp1

)
det

(
1 − Mp2

)
,

the cycle expansions for the spectral determinant (19.9) are somewhat less
transparent than is the case for the dynamical zeta functions.
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We commence the cycle expansion evaluation of a spectral determinant by
computing recursively the trace formula (18.10) truncated to all prime cycles
p and their repeats such that n pr ≤ N:

tr
zL

1 − zL

∣∣∣∣∣
(i)
= tr

zL
1 − zL

∣∣∣∣∣
(i−1)
+ n(i)

n(i)r≤N∑
r=1

e(β·A(i)−sT(i))r∣∣∣∣∏ (
1 − Λr

(i), j

)∣∣∣∣ zn(i)r

tr
zL

1 − zL

∣∣∣∣∣
N
=

N∑
n=1

Cnzn , Cn = trLn . (20.10)

This is done numerically: the periodic orbit data set consists of the list of
the cycle periods T p, the cycle Floquet multipliers Λp,1,Λp,2, . . . ,Λp,d, and
the cycle averages of the observable A p for all prime cycles p such that n p ≤
N. The coefficient of znpr is then evaluated numerically for the given (β, s)
parameter values. Now that we have an expansion for the trace formula (18.9)
as a power series, we compute the Nth order approximation to the spectral
determinant (19.3),

det (1 − zL)|N = 1 −
N∑

n=1

Qnzn , Qn = nth cumulant , (20.11)

as follows. The logarithmic derivative relation (19.4) yields(
tr

zL
1 − zL

)
det (1 − zL) = −z

d
dz

det (1 − zL)

(C1z +C2z2 + · · ·)(1 − Q1z − Q2z2 − · · ·) = Q1z + 2Q2z2 + 3Q3z3 · · ·

so the nth order term of the spectral determinant cycle (or in this case, the
cumulant) expansion is given recursively by the trace formula expansion coef-
ficients

Qn =
1
n

(Cn −Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (20.12)

Given the trace formula (20.10) truncated to z N , we now also have the spectral
determinant truncated to zN .

The same program can also be reused to compute the dynamical zeta func-
tion cycle expansion (20.9), by replacing

∏(
1 − Λr

(i), j

)
in (20.10) by the prod-

uct of expanding eigenvalues Λ (i) =
∏

e Λ(i),e (see Section 19.3).
The calculation of the leading eigenvalue of a given continuous flow evolu-

tion operator is now straightforward. After the prime cycles and the pseudo-
cycles have been grouped into subsets of equal topological length, the dummy
variable can be set equal to z = 1. With z = 1, expansion (20.11) is the cycle
expansion for (19.6), the spectral determinant det (s − A) . We vary s in cycle
weights, and determine the eigenvalue sα by finding s = sα for which (20.11)
vanishes. As an example, the convergence of a leading eigenvalue for a nice
hyperbolic system is illustrated in Table 20.2 by the listing of pinball escape
rate γ estimates computed from truncations of (20.7) and (20.11) to different
maximal cycle lengths.

chapter 23
ChaosBook.org version13.5, Sep 7 2011 recycle - 30aug2006



Table 20.2 3-disk repeller escape rates computed from the cycle expansions of the spec-
tral determinant (19.6) and the dynamical zeta function (19.15), as function of the max-
imal cycle length N. The first column indicates the disk-disk center separation to disk
radius ratio R:a, the second column gives the maximal cycle length used, and the third
the estimate of the classical escape rate from the fundamental domain spectral det-
erminant cycle expansion. As for larger disk-disk separations the dynamics is more
uniform, the convergence is better for R:a = 6 than for R:a = 3. For comparison,
the fourth column lists a few estimates from from the fundamental domain dynamical
zeta function cycle expansion (20.7), and the fifth from the full 3-disk cycle expansion
(20.36). The convergence of the fundamental domain dynamical zeta function is signif-
icantly slower than the convergence of the corresponding spectral determinant, and the
full (unfactorized) 3-disk dynamical zeta function has still poorer convergence. (P.E.
Rosenqvist.)

R:a N . det (s −A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192

1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606
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Fig. 20.1 Examples of the complex s plane
scans: contour plots of the logarithm of the
absolute values of (a) 1/ζ(s), (b) spectral det-
erminant det (s − A) for the 3-disk system,
separation a : R = 6, A1 subspace are evalu-
ated numerically. The eigenvalues of the evo-
lution operator L are given by the centers of
elliptic neighborhoods of the rapidly narrow-
ing rings. While the dynamical zeta function
is analytic on a strip Im s ≥ −1, the spectral
determinant is entire and reveals further fam-
ilies of zeros. (P.E. Rosenqvist)

The pleasant surprise is that the coefficients in these cycle expansions can be
proven to fall off exponentially or even faster, due to analyticity of det (s −A)

chapter 23
or 1/ζ(s) for s values well beyond those for which the corresponding trace
formula diverges.

20.2.3 Newton algorithm for determination of the
evolution operator eigenvalues

The cycle expansions of spectral determinants yield the eigenvalues of
the evolution operator beyond the leading one. A convenient way to search
for these is by plotting either the absolute magnitude ln |det (s − A)| or the
phase of spectral determinants and dynamical zeta functions as functions of
the complex variable s. The eye is guided to the zeros of spectral determin-
ants and dynamical zeta functions by means of complex s plane contour plots,
with different intervals of the absolute value of the function under investigation
assigned different colors; zeros emerge as centers of elliptic neighborhoods of
rapidly changing colors. Detailed scans of the whole area of the complex s
plane under investigation and searches for the zeros of spectral determinants,
Fig. 20.1, reveal complicated patterns of resonances even for something so
simple as the 3-disk game of pinball. With a good starting guess (such as
a location of a zero suggested by the complex s scan of Fig. 20.1), a zero
1/ζ(s) = 0 can now be easily determined by standard numerical methods, such
as the iterative Newton algorithm (13.4), with the mth Newton estimate given
by

sm+1 = sm −
(
ζ(sm)

∂

∂s
ζ−1(sm)

)−1

= sm −
1/ζ(sm)
〈T〉ζ

. (20.13)

The denominator 〈T〉ζ required for the Newton iteration is given below, by the
cycle expansion (20.22). We need to evaluate it anyhow, as 〈T〉 ζ enters our
cycle averaging formulas.
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20.3 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that we have given so far
- the level sum (22.18), the dynamical zeta function (20.2), the spectral deter-
minant (20.11):

1 =

(n)∑
i

ti , ti = ti(β, s(β)) , ni = n , (20.14)

0 = 1 −
∑′

π

tπ , tπ = tπ(z, β, s(β)) (20.15)

0 = 1 −
∞∑

n=1

Qn , Qn = Qn(β, s(β)) , (20.16)

is an implicit equation for the eigenvalue s = s(β) of form F(β, s(β)) = 0. The
eigenvalue s = s(β) as a function of β is sketched in Fig. 20.2; the eigenvalue
condition is satisfied on the curve F = 0. The cycle averaging formulas for the
slope and the curvature of s(β) are obtained as in (17.12) by taking derivatives
of the eigenvalue condition. Evaluated along F = 0, the first derivative leads

s

β F(  ,s(  ))=0 lineβ β

__ds
dβ

Fig. 20.2 The eigenvalue condition is satis-
fied on the curve F = 0 the (β, s) plane. The
expectation value of the observable (17.12) is
given by the slope of the curve.

to

0 =
d

dβ
F(β, s(β))

=
∂F
∂β
+

ds
dβ

∂F
∂s

∣∣∣∣∣
s=s(β)

=⇒ ds
dβ
= −∂F

∂β
/
∂F
∂s

, (20.17)

and the second derivative of F(β, s(β)) = 0 yields

d2s
dβ2
= −

⎡⎢⎢⎢⎢⎢⎣∂2F
∂β2

+ 2
ds
dβ

∂2F
∂β∂s

+

(
ds
dβ

)2
∂2F
∂s2

⎤⎥⎥⎥⎥⎥⎦ /∂F
∂s

. (20.18)

Denoting by

〈A〉F = − ∂F
∂β

∣∣∣∣∣
β,s=s(β)

, 〈T〉F =
∂F
∂s

∣∣∣∣∣
β,s=s(β)

,

〈
(A − 〈A〉)2

〉
F
=

∂2F
∂β2

∣∣∣∣∣∣
β,s=s(β)

(20.19)

respectively the mean cycle expectation value of A, the mean cycle period, and
the second derivative of F computed for F(β, s(β)) = 0, we obtain the cycle
averaging formulas for the expectation value of the observable (17.12), and its
variance:

〈a〉 = 〈A〉F
〈T〉F

(20.20)〈
(a − 〈a〉)2

〉
=

1
〈T〉F

〈
(A − 〈A〉)2

〉
F
. (20.21)

These formulas are the central result of the periodic orbit theory. As we
shall now show, for each choice of the eigenvalue condition function F(β, s) in
(22.18), (20.2) and (20.11), the above quantities have explicit cycle expansions.
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20.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (20.15), the cycle averaging for-
mulas (20.17), (20.21) require evaluation of the derivatives of dynamical zeta
function at a given eigenvalue. Substituting the cycle expansion (20.2) for
dynamical zeta function we obtain

〈A〉ζ := − ∂
∂β

1
ζ
=

∑′
Aπtπ (20.22)

〈T〉ζ :=
∂

∂s
1
ζ
=

∑′
Tπtπ , 〈n〉ζ := −z

∂

∂z
1
ζ
=

∑′
nπtπ ,

where the subscript in 〈· · ·〉ζ stands for the dynamical zeta function average
over prime cycles, Aπ, Tπ, and nπ are evaluated on pseudocycles (20.4), and
pseudocycle weights tπ = tπ(z, β, s(β)) are evaluated at the eigenvalue s(β). In
most applications β = 0, and s(β) of interest is typically the leading eigenvalue
s0 = s0(0) of the evolution generatorA.

For bounded flows the leading eigenvalue (the escape rate) vanishes, s(0) =
0, the exponent βAπ − sTπ in (20.3) vanishes, so the cycle expansions take a
simple form

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · · + Apk

|Λp1 · · ·Λpk |
, (20.23)

and similarly for 〈T〉ζ , 〈n〉ζ . For example, for the complete binary symbolic
dynamics the mean cycle period 〈T〉ζ is given by

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(
T01

|Λ01|
− T0 + T1

|Λ0Λ1|

)
(20.24)

+

(
T001

|Λ001|
− T01 + T0

|Λ01Λ0|

)
+

(
T011

|Λ011|
− T01 + T1

|Λ01Λ1|

)
+ . . . .

Note that the cycle expansions for averages are grouped into the same shadow-
ing combinations as the dynamical zeta function cycle expansion (20.7), with
nearby pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value of the observable
〈a〉 follow by substitution into (20.21). Assuming zero mean drift 〈a〉 = 0, the
cycle expansion (20.11) for the variance

〈
(A − 〈A〉)2

〉
ζ

is given by

〈
A2

〉
ζ
=

∑′
(−1)k+1

(
Ap1 + Ap2 · · · + Apk

)2

|Λp1 · · ·Λpk |
. (20.25)

20.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple struc-
ture, with the shadowing apparent already by a term-by-term inspection of Ta-
ble 20.2. For “nice” hyperbolic systems the shadowing ensures exponential
convergence of the dynamical zeta function cycle expansions. This, however,
is not the best achievable convergence. As has been explained in Chapter 23,
for such systems the spectral determinant constructed from the same cycle data
base is entire, and its cycle expansion converges faster than exponentially. In
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practice, the best convergence is attained by the spectral determinant cycle ex-
pansion (20.16) and its derivatives. The ∂/∂s, ∂/∂β derivatives are in this case
computed recursively, by taking derivatives of the spectral determinant cycle
expansion contributions (20.12) and (20.10).

The cycle averaging formulas are exact, and highly convergent for nice hy-
perbolic dynamical systems. An example of its utility is the cycle expansion
formula for the Lyapunov exponent of Example 20.1. Further applications of
cycle expansions will be discussed in Chapter 22.

20.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a flow, in
continuous time, and sometimes it might be easier to compute it in discrete
time, from a Poincaré return map. Return times (3.1) might vary wildly, and
it is not at all clear that the continuous and discrete time averages are related
in any simple way. The relationship turns on to be both elegantly simple, and
totally general.

exercise 20.14
The mean cycle period 〈T〉ζ fixes the normalization of the unit of time; it can

be interpreted as the average near recurrence or the average first return time.
For example, if we have evaluated a billiard expectation value 〈a〉 in terms of
continuous time, and would like to also have the corresponding average 〈a〉 dscr
measured in discrete time, given by the number of reflections off billiard walls,
the two averages are related by

〈a〉dscr = 〈a〉 〈T〉ζ / 〈n〉ζ , (20.26)

where 〈n〉ζ the average of the number of bounces n p along the cycle p is given
by is (20.22).

Example 20.1 Cycle expansion formula for Lyapunov exponents:

In Section 17.3 we defined the Lyapunov exponent for a 1−d mapping, related it to
the leading eigenvalue of an evolution operator and promised to evaluate it. Now we
are finally in position to deliver on our promise.
The cycle averaging formula (20.23) yields an exact explict expression for the Lya-
punov exponent in terms of prime cycles:

λ =
1
〈n〉ζ

∑′
(−1)k+1 log |Λp1 | + · · · + log |Λpk |

|Λp1 · · ·Λpk |
. (20.27)

For a repeller, the 1/|Λp|weights are replaced by normalized measure (22.10) exp(γnp)/|Λp|,
where γ is the escape rate.

We state without proof that for 2−d Hamiltonian flows such as our game of
pinball there is only one expanding eigenvalue and (20.27) applies as it stands.
However, in dimensions higher than one, a correct calculation of Lyapunov
exponents requires a bit of sophistication.

20.4 Cycle expansions for finite alphabets

A finite transition graph like the one given in Fig. 14.6 (d) is a compact
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encoding of the transition matrix for a given subshift. It is a sparse matrix,
and the associated determinant (15.20) can be written down by inspection: it is
the sum of all possible partitions of the graph into products of non-intersecting
loops, with each loop carrying a minus sign:

det (1 − T ) = 1 − t0 − t0011 − t0001 − t00011 + t0t0011 + t0011t0001 (20.28)

The simplest application of this determinant is to the evaluation of the topo-
logical entropy; if we set tp = znp , where np is the length of the p-cycle, the
determinant reduces to the topological polynomial (15.21).

The determinant (20.28) is exact for the finite graph Fig. 14.6 (e), as well
as for the associated finite-dimensional transfer operator of Example 17.4. For
the associated (infinite dimensional) evolution operator, it is the beginning of
the cycle expansion of the corresponding dynamical zeta function:

1/ζ = 1 − t0 − t0011 − t0001 + t0001t0011

−(t00011 − t0t0011 + . . . curvatures) . . . (20.29)

The cycles 0, 0001 and 0011 are the fundamental cycles introduced in (20.7);
they are not shadowed by any combinations of shorter cycles, and are the basic
building blocks of the dynamics.All other cycles appear together with their
shadows (for example, the t00011− t0t0011 combination) and yield exponentially
small corrections for hyperbolic systems.

For the cycle counting purposes both tab and the pseudocycle combination
ta+b = tatb in (20.2) have the same weight zna+nb , so all curvature combinations
tab − tatb vanish exactly, and the topological polynomial (15.27) offers a quick
way of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functions reduce to polyno-
mials, we are assured that there are just a few fundamental cycles and that
all long cycles can be grouped into curvature combinations. For example, the
fundamental cycles in Exercise 9.6 are the three 2-cycles which bounce back
and forth between two disks and the two 3-cycles which visit every disk. It is
only after these fundamental cycles have been included that a cycle expansion
is expected to start converging smoothly, i.e., only for n larger than the lengths
of the fundamental cycles are the curvatures ĉ n (in expansion (20.7)), a mea-
sure of the deviations between long orbits and their short cycle approximants,
expected to fall off rapidly with n.

20.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is not even the first
chance.

—John Wilkins

(C.P. Dettmann and P. Cvitanović)
Most dynamical systems of interest have no finite grammar, so at any order in
z a cycle expansion may contain unmatched terms which do not fit neatly into
the almost cancelling curvature corrections. Similarly, for intermittent systems
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that we shall discuss in Chapter 24, curvature corrections are in general not
small, so again the cycle expansions may converge slowly. For such systems
schemes which collect the pseudocycle terms according to some criterion other
than the topology of the flow may converge more quickly than expansions
based on the topological length.

All chaotic systems exhibit some degree of shadowing, and a good trun-
cation criterion should do its best to respect the shadowing at least approxi-
mately. If a long cycle is shadowed by two or more shorter cycles and the flow
is smooth, the period and the action will be additive in sense that the period of
the longer cycle is approximately the sum of the shorter cycle periods. Sim-
ilarly, stability is multiplicative, so shadowing is approximately preserved by
including all terms with pseudocycle stability∣∣∣Λp1 · · ·Λpk

∣∣∣ ≤ Λmax (20.30)

and ignoring all more unstable pseudocycles.
Two such schemes for ordering cycle expansions which approximately re-

spect shadowing are truncations by the pseudocycle period (or action) and the
stability ordering that we shall discuss here. In these schemes a dynamical zeta
function or a spectral determinant is expanded keeping all terms for which the
period, action or stability for a combination of cycles (pseudocycle) is less than
a given cutoff.

The two settings in which the stability ordering may be preferable to the
ordering by topological cycle length are the cases of bad grammar and of in-
termittency.

20.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of the state space gen-
erates the “optimal” symbolic dynamics. Stability ordering does not require
understanding dynamics in such detail: if you can find the cycles, you can use
stability ordered cycle expansions. Stability truncation is thus easier to im-
plement for a generic dynamical system than the curvature expansions (20.7)
which rely on finite subshift approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near
recurrences. The long trajectory method for detecting cycles preferentially
finds the least unstable cycles, regardless of their topological length. Another
practical advantage of the method (in contrast to Newton method searches) is
that it only finds cycles in a given connected ergodic component of state space,
ignoring isolated cycles or other ergodic regions elsewhere in the state space.

Why should stability ordered cycle expansion of a dynamical zeta function
converge better than the rude trace formula (22.9)? The argument has essen-
tially already been laid out in Section 15.6: in truncations that respect shad-
owing most of the pseudocycles appear in shadowing combinations and nearly
cancel, while only the relatively small subset affected by the longer and longer
pruning rules is not shadowed. So the error is typically of the order of 1/Λ,
smaller by factor ehT than the trace formula (22.9) error, where h is the entropy
and T typical cycle length for cycles of stability Λ.
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20.5.2 Smoothing

The breaking of exact shadowing cancellations deserves further com-
ment. Partial shadowing which may be present can be (partially) restored by
smoothing the stability ordered cycle expansions by replacing the 1/Λ weight
for each term with pseudocycle stability Λ = Λ p1 · · ·Λpk by f (Λ)/Λ. Here,
f (Λ) is a monotonically decreasing function from f (0) = 1 to f (Λmax) = 0.
No smoothing corresponds to a step function.

A typical “shadowing error” induced by the cutoff is due to two pseudo-
cycles of stability Λ separated by ΔΛ, and whose contribution is of opposite
signs. Ignoring possible weighting factors the magnitude of the resulting term
is of order 1/Λ − 1/(Λ + ΔΛ) ≈ ΔΛ/Λ2. With smoothing there is an extra
term of the form f ′(Λ)ΔΛ/Λ, which we want to minimise. A reasonable guess
might be to keep f ′(Λ)/Λ constant and as small as possible, that is

f (Λ) = 1 −
(
Λ

Λmax

)2

The results of a stability ordered expansion (20.30) should always be tested
for robustness by varying the cutoff Λmax. If this introduces significant varia-
tions, smoothing is probably necessary.

20.5.3 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to a cycle
expansion than short but highly unstable cycles. In such situation truncation
by length may require an exponentially large number of very unstable cycles
before a significant longer cycle is first included in the expansion. This situ-
ation is best illustrated by intermittent maps that we shall study in detail in
Chapter 24, the simplest of which is the Farey map

f (x) =

{
f0 = x/(1 − x) 0 ≤ x ≤ 1/2
f1 = (1 − x)/x 1/2 ≤ x ≤ 1 ,

(20.31)

a map which will reappear in the intermittency Chapter 24.
For this map the symbolic dynamics is of complete binary type, so lack of

shadowing is not due to lack of a finite grammar, but rather to the intermittency
caused by the existence of the marginal fixed point x 0 = 0, for which the stabil-
ity equalsΛ0 = 1. This fixed point does not participate directly in the dynamics
and is omitted from cycle expansions. Its presence is felt in the stabilities of
neighboring cycles with n consecutive repeats of the symbol 0’s whose sta-
bility falls of only as Λ ∼ n2, in contrast to the most unstable cycles with n
consecutive 1’s which are exponentially unstable, |Λ 01n | ∼ [(

√
5 + 1)/2]2n.

The symbolic dynamics is of complete binary type. A quick count in the
style of Section 15.7.2 leads to a total of 74,248,450 prime cycles of length 30
or less, not including the marginal point x0 = 0. Evaluating a cycle expansion
to this order would be no mean computational feat. However, the least unstable
cycle omitted has stability of roughly Λ1030 ∼ 302 = 900, and so amounts to a
0.1% correction. The situation may be much worse than this estimate suggests,
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Fig. 20.3 Comparison of cycle expan-
sion truncation schemes for the Farey map
(20.31); the deviation of the truncated cycles
expansion for |1/ζN (0)| from the exact flow
conservation value 1/ζ(0) = 0 is a measure
of the accuracy of the truncation. The jagged
line is logarithm of the stability ordering trun-
cation error; the smooth line is smoothed ac-
cording to Section 20.5.2; the diamonds in-
dicate the error due the topological length
truncation, with the maximal cycle length N
shown. They are placed along the stability
cutoff axis at points determined by the con-
dition that the total number of cycles is the
same for both truncation schemes.
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because the next, 1031 cycle contributes a similar amount, and could easily
reinforce the error. Adding up all such omitted terms, we arrive at an estimated
error of about 3%, for a cycle-length truncated cycle expansion based on more
than 109 pseudocycle terms! On the other hand, truncating by stability at say
Λmax = 3000, only 409 prime cycles suffice to attain the same accuracy of
about 3% error, Fig. 20.3.

As the Farey map maps the unit interval onto itself, the leading eigenvalue of
the Perron-Frobenius operator should equal s 0 = 0, so 1/ζ(0) = 0. Deviation
from this exact result serves as an indication of the convergence of a given
cycle expansion. The errors of different truncation schemes are indicated in
Fig. 20.3. We see that topological length truncation schemes are hopelessly
bad in this case; stability length truncations are somewhat better, but still rather
bad. In simple cases like this one, where intermittency is caused by a single
marginal fixed point, the convergence can be improved by going to infinite
alphabets.

20.6 Dirichlet series

The most patient reader will thank me for compressing so much non-
sense and falsehood into a few lines.

—Gibbon

A Dirichlet series is defined as

f (s) =
∞∑
j=1

a je
−λ j s (20.32)

where s, a j are complex numbers, and {λ j} is a monotonically increasing se-
ries of real numbers λ1 < λ2 < · · · < λ j < · · ·. A classical example of a
Dirichlet series is the Riemann zeta function for which a j = 1, λ j = ln j. In
the present context, formal series over individual pseudocycles such as (20.2)
ordered by the increasing pseudocycle periods are often Dirichlet series. For
example, for the pseudocycle weight (20.3), the Dirichlet series is obtained by
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ordering pseudocycles by increasing periods λπ = Tp1 + Tp2 + . . . + Tpk , with
the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk )∣∣∣Λp1Λp2 . . .Λpk

∣∣∣ dπ ,

where dπ is a degeneracy factor, in the case that dπ pseudocycles have the same
weight.

If the series
∑
|a j| diverges, the Dirichlet series is absolutely convergent for

Re s > σa and conditionally convergent for Re s > σc, whereσa is the abscissa
of absolute convergence

σa = lim
N→∞

sup
1
λN

ln
N∑

j=1

|a j| , (20.33)

and σc is the abscissa of conditional convergence

σc = lim
N→∞

sup
1
λN

ln

∣∣∣∣∣∣∣∣
N∑

j=1

a j

∣∣∣∣∣∣∣∣ . (20.34)

We shall encounter another example of a Dirichlet series in the semiclassical
quantization, the quantum chaos part of ChaosBook.org.

Résumé

A cycle expansion is a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (19.15) expanded as sums
over pseudocycles, products of the prime cycle weights t p.

If a flow is hyperbolic and has a topology of a Smale horseshoe (a sub-
shift of finite type), the dynamical zeta functions are holomorphic, the spectral
determinants are entire, and the spectrum of the evolution operator is dis-
crete. The situation is considerably more reassuring than what practitioners
of quantum chaos fear; there is no “abscissa of absolute convergence” and no
“entropy barier,” the exponential proliferation of cycles is no problem, spectral
determinants are entire and converge everywhere, and the topology dictates the
choice of cycles to be used in cycle expansion truncations.

In that case, the basic observation is that the motion in dynamical systems
of few degrees of freedom is in this case organized around a few fundamental
cycles, with the cycle expansion of the Euler product

1/ζ = 1 −
∑

f

t f −
∑

n

ĉn,

regrouped into dominant fundamental contributions t f and decreasing curva-
ture corrections ĉn. The fundamental cycles t f have no shorter approximants;
they are the “building blocks” of the dynamics in the sense that all longer
orbits can be approximately pieced together from them. A typical curvature
contribution to ĉn is a difference of a long cycle {ab} minus its shadowing ap-
proximation by shorter cycles {a} and {b}:

tab − tatb = tab(1 − tatb/tab)
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The orbits that follow the same symbolic dynamics, such as {ab} and a “pseu-
docycle” {a}{b}, lie close to each other, have similar weights, and for longer
and longer orbits the curvature corrections fall off rapidly. Indeed, for systems
that satisfy the “axiom A” requirements, such as the 3-disk billiard, curvature
expansions converge very well.

Once a set of the shortest cycles has been found, and the cycle periods,
stabilities and integrated observable computed, the cycle averaging formulas
such as the ones associated with the dynamical zeta function

〈a〉 = 〈A〉ζ / 〈T〉ζ

〈A〉ζ = − ∂
∂β

1
ζ
=

∑′
Aπtπ , 〈T〉ζ =

∂

∂s
1
ζ
=

∑′
Tπtπ

yield the expectation value (the chaotic, ergodic average over the non-wandering
set) of the observable a(x).
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Further reading

20.1 Pseudocycle expansions. Bowen’s introduction of
shadowing ε-pseudoorbits [20.28] was a significant contribu-
tion to Smale’s theory. Expression “pseudoorbits” seems to
have been introduced in the Parry and Pollicott’s 1983 pa-
per [20.16]. Following them M. Berry [20.9] had used the
expression “pseudoorbits” in his 1986 paper on Riemann zeta
and quantum chaos. Cycle and curvature expansions of dyn-
amical zeta functions and spectral determinants were intro-
duced in Refs. [20.10, 2]. Some literature [20.12] refers to
the pseudoorbits as “composite orbits,” and to the cycle ex-
pansions as “Dirichlet series” (see also Remark 20.6 and Sec-
tion 20.6).

20.2 Cumulant expansion. To a statistical mechanician the
curvature expansions are very reminiscent of cumulant expan-
sions. Indeed, (20.12) is the standard Plemelj-Smithies cumu-
lant formula for the Fredholm determinant.The difference is
that in cycle expansions each Qn coefficient is expressed as a
sum over exponentially many cycles.

20.3 Exponential growth of the number of cycles. Going
from Nn ≈ Nn periodic points of length n to Mn prime cycles
reduces the number of computations from Nn to Mn ≈ Nn−1/n.
Use of discrete symmetries (Chapter 21) reduces the number
of nth level terms by another factor. While the reformula-
tion of the theory from the trace (18.28) to the cycle expan-
sion (20.7) thus does not eliminate the exponential growth in
the number of cycles, in practice only the shortest cycles are
used, and for them the computational labor saving can be sig-
nificant.

20.4 Shadowing cycle-by-cycle. A glance at the low or-
der curvatures in the Table 20.1 leads to the temptation of
associating curvatures to individual cycles, such as ĉ0001 =

t0001 − t0t001. Such combinations tend to be numerically small
(see for example Ref. [20.3], table 1). However, splitting
ĉn into individual cycle curvatures is not possible in gen-
eral [20.12]; the first example of such ambiguity in the binary
cycle expansion is given by the t100101, t100110 0 ↔ 1 symmet-
ric pair of 6-cycles; the counterterm t001t011 in Table 20.1 is
shared by the two cycles.

20.5 Stability ordering. The stability ordering was intro-
duced by Dahlqvist and Russberg [20.13] in a study of chaotic
dynamics for the (x2y2)1/a potential. The presentation here
runs along the lines of Dettmann and Morriss [20.14] for the
Lorentz gas which is hyperbolic but the symbolic dynamics
is highly pruned, and Dettmann and Cvitanović [20.15] for a
family of intermittent maps. In the applications discussed in
the above papers, the stability ordering yields a considerable
improvement over the topological length ordering. In quan-
tum chaos applications cycle expansion cancelations are af-
fected by the phases of pseudocycles (their actions), hence
period ordering rather than stability is frequently employed.

20.6 Are cycle expansions Dirichlet series?
Even though some literature [20.12] refers to cycle expan-
sions as “Dirichlet series,” they are not Dirichlet series. Cy-
cle expansions collect contributions of individual cycles into
groups that correspond to the coefficients in cumulant expan-
sions of spectral determinants, and the convergence of cycle
expansions is controlled by general properties of spectral det-
erminants. Dirichlet series order cycles by their periods or
actions, and are only conditionally convergent in regions of
interest. The abscissa of absolute convergence is in this con-
text called the “entropy barrier”; contrary to the frequently
voiced anxieties, this number does not necessarily has much
to do with the actual convergence of the theory.
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Exercises

(20.1) Cycle expansions. Write programs that implement bi-
nary symbolic dynamics cycle expansions for (a) dynam-
ical zeta functions, (b) spectral determinants. Combined
with the cycles computed for a 2-branch repeller or a 3-
disk system they will be useful in problem that follow.

(20.2) Escape rate for a 1−d repeller. (continuation of Exer-
cise 19.1 - easy, but long)
Consider again the quadratic map (19.31)

f (x) = Ax(1 − x)

on the unit interval, for definitiveness take either A = 9/2
or A = 6. Describing the itinerary of any trajectory by the
binary alphabet {0, 1} (’0’ if the iterate is in the first half
of the interval and ’1’ if is in the second half), we have a
repeller with a complete binary symbolic dynamics.

(a) Sketch the graph of f and determine its two fixed
points 0 and 1, together with their stabilities.

(b) Sketch the two branches of f−1. Determine all the
prime cycles up to topological length 4 using your
pocket calculator and backwards iteration of f (see
Section 13.2.1).

(c) Determine the leading zero of the zeta function
(19.15) using the weights tp = znp/|Λp| where Λp

is the stability of the p cycle.

(d) Show that for A = 9/2 the escape rate of the
repeller is 0.361509 . . . using the spectral deter-
minant, with the same cycle weight. If you have
taken A = 6, the escape rate is in 0.83149298 . . .,
as shown in Solution 20.2. Compare the coeffi-
cients of the spectral determinant and the zeta func-
tion cycle expansions. Which expansion converges
faster?

(Per Rosenqvist)

(20.3) Escape rate for the Ulam map. (Medium; repeat of
Exercise 13.1) We will try to compute the escape rate for
the Ulam map (11.5)

f (x) = 4x(1 − x),

using the method of cycle expansions. The answer should
be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map. Show
that Λ0 = 4, Λ1 = −2, Λ01 = −4, Λ001 = −8 and
Λ011 = 8.

(b) Show that

Λε1 ...εn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for
this system

ζ−1 = 1 − t0 − t1 − (t01 − t0t1) − · · ·

You might note that the convergence as function of
the truncation cycle length is slow. Try to fix that
by treating theΛ0 = 4 cycle separately. (continued
as Exercise 20.13)

(20.4) Pinball escape rate, semi-analytical. Estimate the 3-
disk pinball escape rate for R : a = 6 by substitut-
ing analytical cycle stabilities and periods (Exercise 13.7
and Exercise 13.8) into the appropriate binary cycle ex-
pansion. Compare with the numerical estimate Exer-
cise 17.3.

(20.5) Pinball escape rate, from numerical cycles. Compute
the escape rate for R : a = 6 3-disk pinball by substitut-
ing list of numerically computed cycle stabilities of Ex-
ercise 13.5 into the binary cycle expansion.

(20.6) Pinball resonances, in the complex plane. Plot
the logarithm of the absolute value of the dynamical zeta
function and/or the spectral determinant cycle expansion
(20.5) as contour plots in the complex s plane. Do you
find zeros other than the one corresponding to the com-
plex one? Do you see evidence for a finite radius of con-
vergence for either cycle expansion?

(20.7) Counting the 3-disk psudocycles. (continuation of
Exercise 15.12.) Verify that the number of terms in the
3-disk pinball curvature expansion (20.35) is given by

∏
p

(
1 + tp

)
=

1 − 3z4 − 2z6

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 +
z4(6 + 12z + 2z2)

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5

+20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example, c6 has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(20.36).
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(20.8) 3–disk unfactorized zeta cycle expansions. Check
that the curvature expansion (20.2) for the 3-disk pinball,
assuming no symmetries between disks, is given by

1/ζ = (1 − z2t12)(1 − z2t13)(1 − z2t23)

(1 − z3t123)(1 − z3t132)(1 − z4t1213)

(1 − z4t1232)(1 − z4t1323)(1 − z5t12123) · · ·
= 1 − z2t12 − z2t23 − z2t31 − z3(t123 + t132)

−z4[(t1213 − t12t13) + (t1232 − t12t23)

+(t1323 − t13t23)] (20.35)

−z5[(t12123 − t12t123) + · · ·] − · · ·

The symmetrically arranged 3-disk pinball cycle expan-
sion of the Euler product (20.2) (see Table 15.5 and
Fig. 9.5) is given by:

1/ζ = (1 − z2t12)3(1 − z3t123)2(1 − z4t1213)3

(1 − z5t12123)6(1 − z6t121213)6

(1 − z6t121323)3 . . . (20.36)

= 1 − 3z2 t12 − 2z3 t123 − 3z4 (t1213 − t2
12)

−6z5 (t12123 − t12t123)

−z6 (6 t121213 + 3 t121323 + t3
12 − 9 t12t1213 − t2

123)

−6z7 (t1212123 + t1212313 + t1213123 + t2
12t123

−3 t12t12123 − t123t1213)

−3z8 (2 t12121213 + t12121313 + 2 t12121323

+2 t12123123 + 2 t12123213 + t12132123

+ 3 t2
12t1213 + t12t2

123 − 6 t12t121213

− 3 t12t121323 − 4 t123t12123 − t2
1213) − · · ·

20.7 Unsymmetrized cycle expansions. The above 3-
disk cycle expansions might be useful for cross-checking
purposes, but, as we shall see in Chapter 21, they are not
recommended for actual computations, as the factorized
zeta functions yield much better convergence.

(20.9) 4–disk unfactorized dynamical zeta function cycle ex-
pansions. For the symmetrically arranged 4-disk
pinball the symmetry group is C4v, of order 8. The de-
generate cycles can have multiplicities 2, 4 or 8 (see Ta-
ble 15.3):

1/ζ = (1 − z2t12)4(1 − z2t13)2(1 − z3t123)8

(1 − z4t1213)8(1 − z4t1214)4(1 − z4t1234)2

(1 − z4t1243)4(1 − z5t12123)8(1 − z5t12124)8

(1 − z5t12134)8(1 − z5t12143)8

(1 − z5t12313)8(1 − z5t12413)8 · · · (20.37)

and the cycle expansion is given by

1/ζ = 1 − z2(4 t12 + 2 t13) − 8z3 t123

−z4(8 t1213 + 4 t1214 + 2 t1234 + 4 t1243

−6 t2
12 − t2

13 − 8 t12t13)

−8z5(t12123 + t12124 + t12134 + t12143 + t12313

+t12413 − 4 t12t123 − 2 t13t123)

−4z6(2 S 8 + S 4 + t3
12 + 3 t2

12 t13 + t12t2
13

−8 t12t1213 − 4 t12t1214

−2 t12t1234 − 4 t12t1243

−4 t13t1213 − 2 t13t1214 − t13t1234

−2 t13t1243 − 7 t2
123) − · · ·

where in the coefficient to z6 the abbreviations S 8 and S 4

stand for the sums over the weights of the 12 orbits with
multiplicity 8 and the 5 orbits of multiplicity 4, respec-
tively; the orbits are listed in Table 15.5.

(20.10) Tail resummations. A simple illustration of such
tail resummation is the ζ function for the Ulam map
(11.5) for which the cycle structure is exceptionally sim-
ple: the eigenvalue of the x0 = 0 fixed point is 4, while
the eigenvalue of any other n-cycle is ±2n. Typical cycle
weights used in thermodynamic averaging are t0 = 4τz,
t1 = t = 2τz, tp = tnp for p � 0. The simplicity of the cy-
cle eigenvalues enables us to evaluate the ζ function by
a simple trick: we note that if the value of any n-cycle
eigenvalue were tn, (19.21) would yield 1/ζ = 1 − 2t.
There is only one cycle, the x0 fixed point, that has a dif-
ferent weight (1− t0), so we factor it out, multiply the rest
by (1 − t)/(1 − t), and obtain a rational ζ function

1/ζ(z) =
(1 − 2t)(1 − t0)

(1 − t)
(20.38)

Consider how we would have detected the pole at z = 1/t
without the above trick. As the 0 fixed point is isolated
in its stability, we would have kept the factor (1 − t0) in
(20.7) unexpanded, and noted that all curvature combina-
tions in (20.7) which include the t0 factor are unbalanced,
so that the cycle expansion is an infinite series:∏

p

(
1 − tp

)
= (1 − t0)(1 − t − t2 − t3 − t4 − . . .) (20.39)

(we shall return to such infinite series in Chapter 24).
The geometric series in the brackets sums up to (20.38).
Had we expanded the (1 − t0) factor, we would have
noted that the ratio of the successive curvatures is exactly
cn+1/cn = t; summing we would recover the rational ζ
function (20.38).

(20.11) Escape rate for the Rössler flow. (continuation of
Exercise 13.10) Try to compute the escape rate for the
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Rössler flow (2.17) using the method of cycle expansions.
The answer should be zero, as nothing escapes. Ideally
you should already have computed the cycles and have
an approximate grammar, but failing that you can cheat a
bit and peak into Exercise 13.10.

(20.12) State space volume contraction, recycled. (contin-
uation of Exercise 4.3) The plot of instantaneous state
space volume contraction as a function of time in Exer-
cise 4.3 (d) illustrates one problem of time-averaging in
chaotic flows - the observable might vary wildly across
each recurrence to a given Poincaré section. Evaluated on
a given short cycle, the average is crisp and arbitrarily ac-
curate. Recompute 〈∂ · v〉 by means of cycle expansion,
study its convergence. 1/t convergence of mindless time-
averaging is now replaced by exponential convergence in
the cycle length.

(20.13) Ulam map is conjugate to the tent map. (contin-
uation of Exercise 20.3 / repeat of Exercise 6.4 and Ex-
ercise 13.2; requires real smarts, unless you look it up)

Explain the magically simple form of cycle stabilities of
Exercise 20.3 by constructing an explicit smooth conju-
gacy (6.1)

gt(y0) = h ◦ f t ◦ h−1(y0)

that conjugates the Ulam map (11.5) into the tent map
(11.4).

(20.14) Continuous vs. discrete mean return time. Show that
the expectation value 〈a〉 time-averaged over continuous
time flow is related to the corresponding average 〈a〉dscr
measured in discrete time (e.g. , Poincaré section returns)
by (20.26):

〈a〉dscr = 〈a〉 〈T〉ζ / 〈n〉ζ . (20.40)

(Hint: consider the form of their cycle expansions.) The
mean discrete period 〈n〉ζ averaged over cycles, and the
mean continuous time period 〈T〉ζ need to be evalu-
ated only once, thereafter one can compute either 〈a〉 or
〈a〉dscr, whichever is more convenient.
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Résumé 360

Further reading 361

Exercises 361

References 362

No endeavor that is worthwhile is simple in prospect; if it is right, it
will be simple in retrospect.

—Edward Teller

The utility of discrete symmetries in reducing spectrum calculations is fa-
miliar from quantum mechanics. Here we show that the classical spec-
tral determinants factor in essentially the same way as the quantum ones.

In the process we 1.) learn that the classical dynamics, once recast into the lan-
guage of evolution operators, is much closer to quantum mechanics than is ap-
parent in the Newtonian, ODE formulation (linear evolution operators/PDEs,
group-theoretical spectral decompositions, . . .), 2.) that once the symmetry
group is quotiented out, the dynamics simplifies, and 3.) it’s a triple home run:
simpler symbolic dynamics, fewer cycles needed, much better convergence of
cycle expansions. Once you master this, going back is unthinkable.

The main result of this chapter can be stated as follows:
If the dynamics possesses a discrete symmetry, the contribution of a cycle p

of multiplicity mp to a dynamical zeta function factorizes into a product over
the dα-dimensional irreducible representations Dα of the symmetry group,

(1 − tp)mp =
∏
α

det
(
1 − Dα(hp̃)tp̃

)dα
, tp = t

g/mp

p̃ ,

where tp̃ is the cycle weight evaluated on the relative periodic orbit p̃, g = |G| is
the order of the group, h p̃ is the group element relating the fundamental domain
cycle p̃ to a segment of the full space cycle p, and m p is the multiplicity of the p
cycle. As dynamical zeta functions have particularly simple cycle expansions,
a geometrical shadowing interpretation of their convergence, and suffice for
determination of leading eigenvalues, we shall use them to explain the group-
theoretic factorizations; the full spectral determinants can be factorized using
the same techniques. p-cycle into a cycle weight t p.

This chapter is meant to serve as a detailed guide to the computation of
dynamical zeta functions and spectral determinants for systems with discrete
symmetries. Familiarity with basic group-theoretic notions is assumed, with
the definitions relegated to Appendix C.1. We develop here the cycle expan-
sions for factorized determinants, and exemplify them by working two cases
of physical interest: C2 = D1, C3v = D3 symmetries. C2v = D2 × D2 and
C4v = D4 symmetries are discussed in Appendix 30.



350 CHAPTER 21. DISCRETE FACTORIZATION

21.1 Preview

As we saw in Chapter 9, discrete symmetries relate classes of periodic orbits
and reduce dynamics to a fundamental domain. Such symmetries simplify and
improve the cycle expansions in a rather beautiful way; in classical dynamics,
just as in quantum mechanics, the symmetrized subspaces can be probed by
linear operators of different symmetries. If a linear operator commutes with
the symmetry, it can be block-diagonalized, and, as we shall now show, the
associated spectral determinants and dynamical zeta functions factorize.

21.1.1 Reflection symmetric 1-d maps

Consider f , a map on the interval with reflection symmetry f (−x) = − f (x).
A simple example is the piecewise-linear sawtooth map of Fig. 9.2. Denote
the reflection operation by Rx = −x. The symmetry of the map implies that if
{xn} is a trajectory, than also {Rxn} is a trajectory because Rxn+1 = R f (xn) =
f (Rxn) . The dynamics can be restricted to a fundamental domain, in this case
to one half of the original interval; every time a trajectory leaves this interval,
it can be mapped back using R. Furthermore, the evolution operator commutes
with R, L(y, x) = L(Ry,Rx). R satisfies R2 = e and can be used to decom-
pose the state space into mutually orthogonal symmetric and antisymmetric
subspaces by means of projection operators

PA1 =
1
2

(e + R) , PA2 =
1
2

(e − R) ,

LA1 (y, x) = PA1L(y, x) =
1
2

(L(y, x) +L(−y, x)) ,

LA2 (y, x) = PA2L(y, x) =
1
2

(L(y, x) − L(−y, x)) . (21.1)

To compute the traces of the symmetrization and antisymmetrization projec-
tion operators (21.1), we have to distinguish three kinds of cycles: asymmetric
cycles a, symmetric cycles s built by repeats of irreducible segments s̃, and
boundary cycles b. Now we show that the spectral determinant can be written
as the product over the three kinds of cycles: det (1−L) = det (1−L) adet (1−
L) s̃det (1 − L)b.

Asymmetric cycles: A periodic orbits is not symmetric if {xa} ∩ {Rxa} = ∅,
where {xa} is the set of periodic points belonging to the cycle a. Thus R gen-
erates a second orbit with the same number of points and the same stability
properties. Both orbits give the same contribution to the first term and no con-
tribution to the second term in (21.1); as they are degenerate, the prefactor
1/2 cancels. Resuming as in the derivation of (19.15) we find that asymmet-
ric orbits yield the same contribution to the symmetric and the antisymmetric
subspaces:

det (1 − L±)a =
∏

a

∞∏
k=0

(
1 − ta
Λk

a

)
, ta =

zna

|Λa|
.
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Symmetric cycles: A cycle s is reflection symmetric if operating with R on
the set of periodic points reproduces the set. The period of a symmetric cy-
cle is always even (ns = 2ns̃) and the mirror image of the x s periodic point is
reached by traversing the irreducible segment s̃ of length n s̃, f ns̃ (xs) = Rxs.
δ(x − f n(x)) picks up 2ns̃ contributions for every even traversal, n = rn s̃, r
even, and δ(x + f n(x)) for every odd traversal, n = rn s̃, r odd. Absorb the
group-theoretic prefactor in the Floquet multiplier by defining the stability
computed for a segment of length n s̃,

Λ s̃ = −
∂ f ns̃ (x)
∂x

∣∣∣∣∣
x=xs

.

Restricting the integration to the infinitesimal neighborhoodM s of the s cycle,
we obtain the contribution to trLn

±:

zntrLn
± →

∫
Ms

dx zn 1
2

(δ(x − f n(x)) ± δ(x + f n(x)))

= ns̃

⎛⎜⎜⎜⎜⎜⎜⎝even∑
r=2

δn,rns̃

tr
s̃

1 − 1/Λr
s̃

±
odd∑
r=1

δn,rns̃

tr
s̃

1 − 1/Λr
s̃

⎞⎟⎟⎟⎟⎟⎟⎠
= ns̃

∞∑
r=1

δn,rns̃

(±ts̃)r

1 − 1/Λr
s̃

.

Substituting all symmetric cycles s into det (1 −L±) and resuming we obtain:

det (1 − L±) s̃ =
∏

s̃

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 ∓ ts̃

Λk
s̃

⎞⎟⎟⎟⎟⎠
Boundary cycles: In the example at hand there is only one cycle which is nei-
ther symmetric nor antisymmetric, but lies on the boundary of the fundamental
domain, the fixed point at the origin. Such cycle contributes simultaneously to
both δ(x − f n(x)) and δ(x + f n(x)):

zntrLn
± →

∫
Mb

dx zn 1
2

(δ(x − f n(x)) ± δ(x + f n(x)))

=

∞∑
r=1

δn,r tr
b

1
2

(
1

1 − 1/Λr
b

± 1
1 + 1/Λr

b

)
zn trLn

+ →
∞∑

r=1

δn,r
tr
b

1 − 1/Λ2r
b

; zn trLn
− →

∞∑
r=1

δn,r
1
Λr

b

tr
b

1 − 1/Λ2r
b

.

Boundary orbit contributions to the factorized spectral determinants follow by
resummation:

det (1 − L+)b =

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 − tb
Λ2k

b

⎞⎟⎟⎟⎟⎠ , det (1 − L−)b =

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 − tb
Λ2k+1

b

⎞⎟⎟⎟⎟⎠
Only the even derivatives contribute to the symmetric subspace, and only the
odd ones to the antisymmetric subspace, because the orbit lies on the boundary.
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Finally, the symmetry reduced spectral determinants follow by collecting
the above results:

F+(z) =
∏

a

∞∏
k=0

(
1 − ta
Λk

a

)∏
s̃

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 − ts̃

Λk
s̃

⎞⎟⎟⎟⎟⎠ ∞∏
k=0

⎛⎜⎜⎜⎜⎝1 − tb
Λ2k

b

⎞⎟⎟⎟⎟⎠
F−(z) =

∏
a

∞∏
k=0

(
1 − ta
Λk

a

)∏
s̃

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 + ts̃

Λk
s̃

⎞⎟⎟⎟⎟⎠ ∞∏
k=0

⎛⎜⎜⎜⎜⎝1 − tb
Λ2k+1

b

⎞⎟⎟⎟⎟⎠ (21.2)

We shall work out the symbolic dynamics of such reflection symmetric systems
in some detail in Section 21.5. As reflection symmetry is essentially the only
discrete symmetry that a map of the interval can have, this example completes
the group-theoretic factorization of determinants and zeta functions for 1−d
maps. We now turn to discussion of the general case.

exercise 21.1

21.2 Discrete symmetries

A dynamical system is invariant under a symmetry group G = {e, g 2, . . . , g|G|}
if the equations of motion are invariant under all symmetries g ∈ G. For a map
xn+1 = f (xn) and the evolution operator L(y, x) defined by (17.23) this means

f (x) = g−1 f (gx)

L(y, x) = L(gy, gx) . (21.3)

Bold face letters for group elements indicate a suitable representation on state
space. For example, if a 2-dimensional map has the symmetry x 1 → −x1,
x2 → −x2, the symmetry group G consists of the identity and C, a rotation
by π around the origin. The map f must then commute with rotations by π,
f (Rx) = C f (x), with R given by the [2 × 2] matrix

R =

(
−1 0
0 −1

)
. (21.4)

R satisfies R2 = e and can be used to decompose the state space into mutually
orthogonal symmetric and antisymmetric subspaces by means of projection
operators (21.1). More generally the projection operator onto the α irreducible
subspace of dimension dα is given by Pα = (dα/|G|)

∑
χα(h)h−1, where χα(h) =

tr Dα(h) are the group characters, and the transfer operatorL splits into a sum
of inequivalent irreducible subspace contributions

∑
α trLα,

Lα(y, x) =
dα
|G|

∑
h∈G

χα(h)L(h−1y, x) . (21.5)

The prefactor dα in the above reflects the fact that a dα-dimensional represen-
tation occurs dα times.

21.2.1 Cycle degeneracies

Taking into account these degeneracies, the Euler product (19.15) takes the
form ∏

p

(1 − tp) =
∏

p̂

(1 − tp̂)mp̂ . (21.6)
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The Euler product (19.15) for the D 3 symmetric 3-disk problem is given in
(20.36).

21.3 Dynamics in the fundamental domain

If the dynamics is invariant under a discrete symmetry, the state space M can
be completely tiled by the fundamental domain M̃ and its images aM̃, bM̃, . . .
under the action of the symmetry group G = {e, a, b, . . .},

M =
∑
a∈G

Ma =
∑
a∈G

aM̃ .

In the above example (21.4) with symmetry group G = {e,C}, the state space
M = {x1-x2 plane} can be tiled by a fundamental domain M̃ = {half-plane x1 ≥
0}, and CM̃ = {half-plane x1 ≤ 0}, its image under rotation by π.

If the space M is decomposed into g tiles, a function φ(x) over M splits into
a g-dimensional vector φa(x) defined by φa(x) = φ(x) if x ∈ Ma, φa(x) = 0
otherwise. Let h = ab−1 conflicts with be the symmetry operation that maps
the endpoint domain Mb into the starting point domain Ma, and let D(h)ba,
the left regular representation, be the [g × g] matrix whose b, a-th entry equals
unity if a = hb and zero otherwise; D(h)ba = δbh,a. Since the symmetries
act on state space as well, the operation h enters in two guises: as a [g ×
g] matrix D(h) which simply permutes the domain labels, and as a [d × d]
matrix representation h of a discrete symmetry operation on the d state space
coordinates. For instance, in the above example (21.4) h ∈ C 2 and D(h) can be
either the identity or the interchange of the two domain labels,

D(e) =

(
1 0
0 1

)
, D(C) =

(
0 1
1 0

)
. (21.7)

Note that D(h) is a permutation matrix, mapping a tile Ma into a different tile
Mha � Ma if h � e. Consequently only D(e) has diagonal elements, and
tr D(h) = gδh,e. However, the state space transformation h � e leaves invariant
sets of boundary points; for example, under reflection σ across a symmetry
axis, the axis itself remains invariant. The boundary periodic orbits that belong
to such pointwise invariant sets will require special care in trL evaluations.

One can associate to the evolution operator (17.23) a [g×g] matrix evolution
operator defined by

Lba(y, x) = D(h)baL(y, x) ,

if x ∈ Ma and y ∈ Mb, and zero otherwise. Now we can use the invariance
condition (21.3) to move the starting point x into the fundamental domain x =
ax̃, L(y, x) = L(a−1y, x̃), and then use the relation a−1b = h−1 to also relate
the endpoint y to its image in the fundamental domain, L̃(ỹ, x̃) := L(h−1ỹ, x̃).
With this operator which is restricted to the fundamental domain, the global
dynamics reduces to

Lba(y, x) = D(h)baL̃(ỹ, x̃) .

While the global trajectory runs over the full space M, the restricted trajectory
is brought back into the fundamental domain M̃ any time it crosses into adjoin-
ing tiles; the two trajectories are related by the symmetry operation h which
maps the global endpoint into its fundamental domain image.
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Now the traces (19.3) required for the evaluation of the eigenvalues of the
transfer operator can be evaluated on the fundamental domain alone

trL =
∫

M
dxL(x, x) =

∫
M̃

dx̃
∑

h

tr D(h) L(h−1 x̃, x̃) (21.8)

The fundamental domain integral
∫

dx̃ L(h−1 x̃, x̃) picks up a contribution from
every global cycle (for which h = e), but it also picks up contributions from
shorter segments of global cycles. The permutation matrix D(h) guarantees
by the identity tr D(h) = 0, h � e, that only those repeats of the fundamen-
tal domain cycles p̃ that correspond to complete global cycles p contribute.
Compare, for example, the contributions of the 12 and 0 cycles of Fig. 12.12.
tr D(h)L̃ does not get a contribution from the 0 cycle, as the symmetry op-
eration that maps the first half of the 12 into the fundamental domain is a
reflection, and tr D(σ) = 0. In contrast, σ2 = e, tr D(σ2) = 6 insures that
the repeat of the fundamental domain fixed point tr (D(h) L̃)2 = 6t2

0, gives the
correct contribution to the global trace trL2 = 3 · 2t12.

Let p be the full orbit, p̃ the orbit in the fundamental domain and h p̃ an
element of Hp, the symmetry group of p. Restricting the volume integrations
to the infinitesimal neighborhoods of the cycles p and p̃, respectively, and
performing the standard resummations, we obtain the identity

(1 − tp)mp = det
(
1 − D(hp̃)tp̃

)
, (21.9)

valid cycle by cycle in the Euler products (19.15) for det (1 − L). Here “det”
refers to the [g × g] matrix representation D(h p̃); as we shall see, this determi-
nant can be evaluated in terms of standard characters, and no explicit represen-
tation of D(hp̃) is needed. Finally, if a cycle p is invariant under the symmetry
subgroup Hp ⊆ G of order hp, its weight can be written as a repetition of a
fundamental domain cycle

tp = t
hp

p̃ (21.10)

computed on the irreducible segment that corresponds to a fundamental do-
main cycle. For example, in Fig. 12.12 we see by inspection that t 12 = t2

0 and
t123 = t3

1.

21.3.1 Boundary orbits

Before we can turn to a presentation of the factorizations of dynamical zeta
functions for the different symmetries we have to discuss an effect that arises
for orbits that run on a symmetry line that borders a fundamental domain. In
our 3-disk example, no such orbits are possible, but they exist in other sys-
tems, such as in the bounded region of the Hénon-Heiles potential and in 1-d
maps. For the symmetrical 4-disk billiard, there are in principle two kinds of
such orbits, one kind bouncing back and forth between two diagonally opposed
disks and the other kind moving along the other axis of reflection symmetry;
the latter exists for bounded systems only. While there are typically very few
boundary orbits, they tend to be among the shortest orbits, and their neglect can
seriously degrade the convergence of cycle expansions, as those are dominated
by the shortest cycles.
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While such orbits are invariant under some symmetry operations, their neigh-
borhoods are not. This affects the Jacobian matrix M p of the linearization per-
pendicular to the orbit and thus the eigenvalues. Typically, e.g. if the symmetry
is a reflection, some eigenvalues of M p change sign. This means that instead
of a weight 1/det (1 − Mp) as for a regular orbit, boundary cycles also pick up
contributions of form 1/det (1 − hM p), where h is a symmetry operation that
leaves the orbit pointwise invariant; see for example Section 21.1.1.

Consequences for the dynamical zeta function factorizations are that some-
times a boundary orbit does not contribute. A derivation of a dynamical zeta
function (19.15) from a determinant like (19.9) usually starts with an expan-
sion of the determinants of the Jacobian. The leading order terms just contain
the product of the expanding eigenvalues and lead to the dynamical zeta func-
tion (19.15). Next to leading order terms contain products of expanding and
contracting eigenvalues and are sensitive to their signs. Clearly, the weights
tp in the dynamical zeta function will then be affected by reflections in the
Poincaré surface of section perpendicular to the orbit. In all our applications it
was possible to implement these effects by the following simple prescription.

If an orbit is invariant under a little group H p = {e, b2, . . . , bh}, then the
corresponding group element in (21.9) will be replaced by a projector. If the
weights are insensitive to the signs of the eigenvalues, then this projector is

gp =
1
h

h∑
i=1

bi . (21.11)

In the cases that we have considered, the change of sign may be taken into ac-
count by defining a sign function ε p(g) = ±1, with the “-” sign if the symmetry
element g flips the neighborhood. Then (21.11) is replaced by

gp =
1
h

h∑
i=1

ε(bi) bi . (21.12)

We have illustrated the above in Section 21.1.1 by working out the full factor-
ization for the 1-dimensional reflection symmetric maps.

21.4 Factorizations of dynamical zeta
functions

In Chapter 9 we have shown that a discrete symmetry induces degeneracies
among periodic orbits and decomposes periodic orbits into repetitions of irre-
ducible segments; this reduction to a fundamental domain furthermore leads to
a convenient symbolic dynamics compatible with the symmetry, and, most im-
portantly, to a factorization of dynamical zeta functions. This we now develop,
first in a general setting and then for specific examples.

21.4.1 Factorizations of dynamical dynamical zeta
functions

According to (21.9) and (21.10), the contribution of a degenerate class of
global cycles (cycle p with multiplicity m p = g/hp) to a dynamical zeta func-
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tion is given by the corresponding fundamental domain cycle p̃:

(1 − t
hp

p̃ )g/hp = det
(
1 − D(hp̃)tp̃

)
(21.13)

Let D(h) =
⊕

α dαDα(h) be the decomposition of the matrix representation
D(h) into the dα dimensional irreducible representations α of a finite group G.
Such decompositions are block-diagonal, so the corresponding contribution to
the Euler product (19.9) factorizes as

det (1 − D(h)t) =
∏
α

det (1 − Dα(h)t)dα , (21.14)

where now the product extends over all distinct dα-dimensional irreducible
representations, each contributing dα times. For the cycle expansion purposes,
it has been convenient to emphasize that the group-theoretic factorization can
be effected cycle by cycle, as in (21.13); but from the transfer operator point of
view, the key observation is that the symmetry reduces the transfer operator to
a block diagonal form; this block diagonalization implies that the dynamical
zeta functions (19.15) factorize as

1
ζ
=

∏
α

1

ζdα
α

,
1
ζα
=

∏
p̃

det
(
1 − Dα(hp̃)tp̃

)
. (21.15)

Determinants of d-dimensional irreducible representations can be evaluated
using the expansion of determinants in terms of traces,

det (1 + M) = 1 + tr M +
1
2

(
(tr M)2 − tr M2

)
+

1
6

(
(tr M)3 − 3 (tr M)(tr M2) + 2 tr M3

)
+ · · · + 1

d!

(
(tr M)d − · · ·

)
, (21.16)

and each factor in (21.14) can be evaluated by looking up the characters χ α(h) =
tr Dα(h) in standard tables [21.17]. In terms of characters, we have for the 1-
dimensional representations

det (1 − Dα(h)t) = 1 − χα(h)t ,

for the 2-dimensional representations

det (1 − Dα(h)t) = 1 − χα(h)t +
1
2

(
χα(h)2 − χα(h2)

)
t2,

and so forth.
In the fully symmetric subspace tr DA1 (h) = 1 for all orbits; hence a straight-

forward fundamental domain computation (with no group theory weights) al-
ways yields a part of the full spectrum. In practice this is the most interesting
subspectrum, as it contains the leading eigenvalue of the transfer operator.

exercise 21.2

21.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinant (19.3) proceeds in essentially the
same manner as the factorization of dynamical zeta functions outlined above.
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By (21.5) and (21.8) the trace of the transfer operator L splits into the sum of
inequivalent irreducible subspace contributions

∑
α trLα, with

trLα = dα
∑
h∈G

χα(h)
∫

M̃
dx̃L(h−1 x̃, x̃) .

This leads by standard manipulations to the factorization of (19.9) into

F(z) =
∏
α

Fα(z)dα

Fα(z) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p̃

∞∑
r=1

1
r

χα(hr
p̃)znp̃r

|det
(
1 − M̃r

p̃

)
|

⎞⎟⎟⎟⎟⎟⎟⎠ , (21.17)

where M̃p̃ = hp̃Mp̃ is the fundamental domain Jacobian. Boundary orbits
require special treatment, discussed in Section 21.3.1, with examples given in
the next section as well as in the specific factorizations discussed below.

The factorizations (21.15), (21.17) are the central formulas of this chapter.
We now work out the group theory factorizations of cycle expansions of dyn-
amical zeta functions for the cases of C2 and D3 symmetries. The cases of the
D2, D4 symmetries are worked out in Appendix 30 below.

21.5 C2 factorization

As the simplest example of implementing the above scheme consider the C 2

symmetry. For our purposes, all that we need to know here is that each orbit
or configuration is uniquely labeled by an infinite string {s i}, si = +,− and that
the dynamics is invariant under the +↔ − interchange, i.e., it is C 2 symmetric.
The C2 symmetry cycles separate into two classes, the self-dual configurations
+−, + + −−, + + + − −−, + − − + − + +−, · · ·, with multiplicity mp = 1,
and the asymmetric configurations +, −, + + −, − − +, · · ·, with multiplicity
mp = 2. For example, as there is no absolute distinction between the “up” and
the “down” spins, or the “left” or the “right” lobe, t+ = t−, t++− = t+−−, and so
on.

exercise 21.5
The symmetry reduced labeling ρ i ∈ {0, 1} is related to the standard si ∈

{+,−} Ising spin labeling by

If si = si−1 then ρi = 1

If si � si−1 then ρi = 0 (21.18)

For example, + = · · · + + + + · · · maps into · · · 111 · · · = 1 (and so does −),
−+ = · · · −+−+ · · ·maps into · · · 000 · · · = 0, − + +− = · · · −−++−−++ · · ·
maps into · · ·0101 · · · = 01, and so forth. A list of such reductions is given in
Table 12.1.

Depending on the maximal symmetry groupH p that leaves an orbit p invari-
ant (see Sections 21.2 and 21.3 as well as Section 21.1.1), the contributions to
the dynamical zeta function factor as

A1 A2
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Hp = {e} : (1 − tp̃)2 = (1 − tp̃)(1 − tp̃)

Hp = {e, σ} : (1 − t2
p̃) = (1 − tp̃)(1 + tp̃) , (21.19)

For example:

H++− = {e} : (1 − t++−)2 = (1 − t001)(1 − t001)

H+− = {e, σ} : (1 − t+−) = (1 − t0) (1 + t0), t+− = t2
0

This yields two binary cycle expansions. The A1 subspace dynamical zeta
function is given by the standard binary expansion (20.7). The antisymmetric
A2 subspace dynamical zeta function ζA2 differs from ζA1 only by a minus sign
for cycles with an odd number of 0’s:

1/ζA2 = (1 + t0)(1 − t1)(1 + t10)(1 − t100)(1 + t101)(1 + t1000)

(1 − t1001)(1 + t1011)(1 − t10000)(1 + t10001)

(1 + t10010)(1 − t10011)(1 − t10101)(1 + t10111) . . .

= 1 + t0 − t1 + (t10 − t1t0) − (t100 − t10t0) + (t101 − t10t1)

−(t1001 − t1t001 − t101t0 + t10t0t1) − . . . . . . (21.20)

Note that the group theory factors do not destroy the curvature corrections (the
cycles and pseudo cycles are still arranged into shadowing combinations).

If the system under consideration has a boundary orbit (cf. Section 21.3.1)
with group-theoretic factor h p = (e + σ)/2, the boundary orbit does not con-
tribute to the antisymmetric subspace

A1 A2

boundary: (1 − t p) = (1 − tp̃)(1 − 0t p̃) (21.21)

This is the 1/ζ part of the boundary orbit factorization of Section 21.1.1.

21.6 D3 factorization: 3-disk game of pinball

The next example, the D3 symmetry, can be worked out by a glance at Fig. 12.12 (a).
For the symmetric 3-disk game of pinball the fundamental domain is bounded
by a disk segment and the two adjacent sections of the symmetry axes that
act as mirrors (see Fig. 12.12 (b)). The three symmetry axes divide the space
into six copies of the fundamental domain. Any trajectory on the full space
can be pieced together from bounces in the fundamental domain, with symme-
try axes replaced by flat mirror reflections. The binary {0, 1} reduction of the
ternary three disk {1, 2, 3} labels has a simple geometric interpretation: a col-
lision of type 0 reflects the projectile to the disk it comes from (back–scatter),
whereas after a collision of type 1 projectile continues to the third disk. For
example, 23 = · · · 232323 · · ·maps into · · · 000 · · · = 0 (and so do 12 and 13),
123 = · · ·12312 · · · maps into · · · 111 · · · = 1 (and so does 132), and so forth.
A list of such reductions for short cycles is given in Table 12.2.

D3 has two 1-dimensional irreducible representations, symmetric and an-
tisymmetric under reflections, denoted A1 and A2, and a pair of degenerate
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2-dimensional representations of mixed symmetry, denoted E. The contribu-
tion of an orbit with symmetry g to the 1/ζ Euler product (21.14) factorizes
according to

det (1 − D(h)t) =
(
1 − χA1 (h)t

) (
1 − χA2 (h)t

) (
1 − χE(h)t + χA2 (h)t2

)2
(21.22)

with the three factors contributing to the D3 irreducible representations A1,
A2 and E, respectively, and the 3-disk dynamical zeta function factorizes into
ζ = ζA1ζA2ζ

2
E . Substituting the D3 characters [21.17]

D3 A1 A2 E

e 1 1 2
C,C2 1 1 −1
σv 1 −1 0

into (21.22), we obtain for the three classes of possible orbit symmetries (indi-
cated in the first column)

hp̃ A1 A2 E

e : (1 − tp̃)6 = (1 − tp̃)(1 − tp̃)(1 − 2t p̃ + t2
p̃)2

C,C2 : (1 − t3
p̃)2 = (1 − tp̃)(1 − tp̃)(1 + tp̃ + t2

p̃)2

σv : (1 − t2
p̃)3 = (1 − tp̃)(1 + tp̃)(1 + 0t p̃ − t2

p̃)2. (21.23)

where σv stands for any one of the three reflections.
The Euler product (19.15) on each irreducible subspace follows from the

factorization (21.23). On the symmetric A1 subspace the ζA1 is given by the
standard binary curvature expansion (20.7). The antisymmetric A 2 subspace
ζA2 differs from ζA1 only by a minus sign for cycles with an odd number of
0’s, and is given in (21.20). For the mixed-symmetry subspace E the curvature
expansion is given by

1/ζE = (1 + zt1 + z2t2
1)(1 − z2t2

0)(1 + z3t100 + z6t2
100)(1 − z4t2

10)

(1 + z4t1001 + z8t2
1001)(1 + z5t10000 + z10t2

10000)

(1 + z5t10101 + z10t2
10101)(1 − z5t10011)2 . . .

= 1 + zt1 + z2(t2
1 − t2

0) + z3(t001 − t1t2
0)

+z4
[
t0011 + (t001 − t1t2

0)t1 − t2
01

]
+z5

[
t00001 + t01011 − 2t00111 + (t0011 − t2

01)t1 + (t2
1 − t2

0)t100

]
+ · · ·(21.24)

We have reinserted the powers of z in order to group together cycles and pseu-
docycles of the same length. Note that the factorized cycle expansions retain
the curvature form; long cycles are still shadowed by (somewhat less obvious)
combinations of pseudocycles.

Referring back to the topological polynomial (15.40) obtained by setting
tp = 1, we see that its factorization is a consequence of the D3 factorization of
the ζ function:

1/ζA1 = 1 − 2z , 1/ζA2 = 1 , 1/ζE = 1 + z , (21.25)
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as obtained from (20.7), (21.20) and (21.24) for t p = 1.
Their symmetry is K = {e, σ}, so according to (21.11), they pick up the

group-theoretic factor h p = (e + σ)/2. If there is no sign change in t p, then
evaluation of det (1 − e+σ

2 tp̃) yields

A1 A2 E

boundary: (1 − t p)3 = (1 − tp̃)(1 − 0t p̃)(1 − tp̃)2 , tp = tp̃ .(21.26)

However, if the cycle weight changes sign under reflection, tσp̃ = −tp̃, the
boundary orbit does not contribute to the subspace symmetric under reflection
across the orbit;

A1 A2 E

boundary: (1 − t p)3 = (1 − 0tp̃)(1 − tp̃)(1 − tp̃)2 , tp = tp̃ .(21.27)

Résumé

If a dynamical system has a discrete symmetry, the symmetry should be ex-
ploited; much is gained, both in understanding of the spectra and ease of their
evaluation. Once this is appreciated, it is hard to conceive of a calculation
without factorization; it would correspond to quantum mechanical calculations
without wave–function symmetrizations.

While the reformulation of the chaotic spectroscopy from the trace sums
to the cycle expansions does not reduce the exponential growth in number of
cycles with the cycle length, in practice only the short orbits are used, and for
them the labor saving is dramatic. For example, for the 3-disk game of pinball
there are 256 periodic points of length 8, but reduction to the fundamental
domain non-degenerate prime cycles reduces the number of the distinct cycles
of length 8 to 30.

In addition, cycle expansions of the symmetry reduced dynamical zeta func-
tions converge dramatically faster than the unfactorized dynamical zeta func-
tions. One reason is that the unfactorized dynamical zeta function has many
closely spaced zeros and zeros of multiplicity higher than one; since the cycle
expansion is a polynomial expansion in topological cycle length, accommodat-
ing such behavior requires many terms. The dynamical zeta functions on sep-
arate subspaces have more evenly and widely spaced zeros, are smoother, do
not have symmetry-induced multiple zeros, and fewer cycle expansion terms
(short cycle truncations) suffice to determine them. Furthermore, the cycles in
the fundamental domain sample state space more densely than in the full space.
For example, for the 3-disk problem, there are 9 distinct (symmetry unrelated)
cycles of length 7 or less in full space, corresponding to 47 distinct periodic
points. In the fundamental domain, we have 8 (distinct) periodic orbits up to
length 4 and thus 22 different periodic points in 1/6-th the state space, i.e., an
increase in density by a factor 3 with the same numerical effort.

We emphasize that the symmetry factorization (21.23) of the dynamical zeta
function is intrinsic to the classical dynamics, and not a special property of
quantal spectra. The factorization is not restricted to the Hamiltonian systems,
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or only to the configuration space symmetries; for example, the discrete sym-
metry can be a symmetry of the Hamiltonian phase space [21.4]. In conclu-
sion, the manifold advantages of the symmetry reduced dynamics should thus
be obvious; full state space cycle expansions, such as those of Exercise 20.8,
are useful only for cross-checking purposes.

Further reading

21.1 Symmetry reductions in periodic orbit theory. This
chapter is based on a collaborative effort with B. Eckhardt,
Ref. [21.1]. The group-theoretic factorizations of dynamic-
al zeta functions that we develop here were first introduced
and applied in Ref. [21.2]. They are closely related to the
symmetrizations introduced by Gutzwiller [21.3] in the con-
text of the semiclassical periodic orbit trace formulas, put
into more general group-theoretic context by Robbins [21.4],
whose exposition, together with Lauritzen’s [21.5] treatment
of the boundary orbits, has influenced the presentation given
here. The symmetry reduced trace formula for a finite symme-
try group G = {e, g2, . . . , g|G| } with |G| group elements, where
the integral over Haar measure is replaced by a finite group
discrete sum |G|−1 ∑

g∈G = 1 , was derived in Ref. [21.1]. A re-
lated group-theoretic decomposition in context of hyperbolic
billiards was utilized in Ref. [21.6], and for the Selberg’s zeta
function in Ref. [21.7]. One of its loftier antecedents is the
Artin factorization formula of algebraic number theory, which
expresses the zeta-function of a finite extension of a given

field as a product of L-functions over all irreducible repre-
sentations of the corresponding Galois group.
The techniques of this chapter have been applied to com-
putations of the 3-disk classical and quantum spectra in
Refs. [21.8, 9], and to a “Zeeman effect” pinball and the x2y2

potentials in Ref. [21.10]. In a larger perspective, the factor-
izations developed above are special cases of a general ap-
proach to exploiting the group-theoretic invariances in spectra
computations, such as those used in enumeration of periodic
geodesics [21.6, 11, 12] for hyperbolic billiards [21.13] and
Selberg zeta functions [21.14].

21.2 Other symmetries. In addition to the symmetries ex-
ploited here, time reversal symmetry and a variety of other
non-trivial discrete symmetries can induce further relations
among orbits; we shall point out several of examples of cycle
degeneracies under time reversal. We do not know whether
such symmetries can be exploited for further improvements
of cycle expansions.

Exercises

(21.1) Sawtooth map desymmetrization. Work out the some
of the shortest global cycles of different symmetries and
fundamental domain cycles for the sawtooth map of
Fig. 9.2. Compute the dynamical zeta function and the
spectral determinant of the Perron-Frobenius operator for
this map; check explicitly the factorization (21.2).

(21.2) 2 − d asymmetric representation. The above
expressions can sometimes be simplified further using
standard group-theoretical methods. For example, the
1
2

(
(tr M)2 − tr M2

)
term in (21.16) is the trace of the an-

tisymmetric part of the M ×M Kronecker product. Show

that if α is a 2-dimensional representation, this is the A2

antisymmetric representation, and

2-dim: det (1−Dα(h)t) = 1−χα(h)t+χA2 (h)t2. (21.28)

(21.3) Characters of D3. (continued from Exercise 9.5) D3 �
C3v, the group of symmetries of an equilateral tri-
angle: has three irreducible representations, two one-
dimensional and the other one of multiplicity 2.

(a) All finite discrete groups are isomorphic to a per-
mutation group or one of its subgroups, and ele-
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ments of the permutation group can be expressed
as cycles. Express the elements of the group D3

as cycles. For example, one of the rotations is
(123), meaning that vertex 1 maps to 2, 2 → 3,
and 3→ 1.

(b) Use your representation from Exercise 9.5 to com-
pute the D3 character table.

(c) Use a more elegant method from the group-theory
literature to verify your D3 character table.

(d) Two D3 irreducible representations are one dimen-
sional and the third one of multiplicity 2 is formed
by [2× 2] matrices. Find the matrices for all six
group elements in this representation.

(Hint: get yourself a good textbook, like Hamer-
mesh [21.2] or Tinkham [21.15], and read up on classes
and characters.)

(21.4) 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for the
0 and 1 cycles, i.e. which symmetry do they have,
what is the degeneracy in full space and how do
they factorize (how do they look in the A1, A2 and
the E representations).

b) Find the shortest cycle with no symmetries and fac-
torize it as in a)

c) Find the shortest cycle that has the property that its
time reversal is not described by the same symbolic
dynamics.

d) Compute the dynamical zeta functions and the
spectral determinants (symbolically) in the three
representations; check the factorizations (21.15)
and (21.17).

(Per Rosenqvist)

(21.5) C2 factorizations: the Lorenz and Ising systems. In
the Lorenz system the labels + and − stand for the left or
the right lobe of the attractor and the symmetry is a rota-
tion by π around the z-axis. Similarly, the Ising Hamil-
tonian (in the absence of an external magnetic field) is
invariant under spin flip. Work out the factorizations for
some of the short cycles in either system.

(21.6) Ising model. The Ising model with two states εi =

{+,−} per site, periodic boundary condition, and Hamil-
tonian

H(ε) = −J
∑

i

δεi ,εi+1 ,

is invariant under spin-flip: + ↔ −. Take advantage of
that symmetry and factorize the dynamical zeta function
for the model, i.e., find all the periodic orbits that con-
tribute to each factor and their weights.

(21.7) One orbit contribution. If p is an orbit in the funda-
mental domain with symmetry h, show that it contributes
to the spectral determinant with a factor

det

(
1 − D(h)

tp

λk
p

)
,

where D(h) is the representation of h in the regular rep-
resentation of the group.
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Part III

Chaos: what to do about it?

What you know now is to partition topologically and invariantly the state space,
compute a hierarchy of cycles, compute spectral determinants and their
eigenvalues. What next?

(1) Why cycle? (Chapter 22)

(2) Why does it work? (Chapter 23)

(3) When does it not work? (Chapter 24)

(4) When does it work? Deterministic diffusion and foundations of ‘far for equilib-
rium’ statistical mechanics (Chapter 25)
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“Progress was a labyrinth ... people plunging blindly in and then rush-
ing wildly back, shouting that they had found it ... the invisible king
the élan vital the principle of evolution ... writing a book, starting a
war, founding a school....”

—F. Scott Fitzgerald, This Side of Paradise

In the preceding chapters we have moved rather briskly through the evolu-
tion operator formalism. Here we slow down in order to develop some
fingertip feeling for the traces of evolution operators.

22.1 Escape rates

We start by verifying the claim (17.11) that for a nice hyperbolic flow the trace
of the evolution operator grows exponentially with time. Consider again the
game of pinball of Fig. 1.1. Designate byM a state space region that encloses
the three disks, say the surface of the table × all pinball directions. The fraction
of initial points whose trajectories start out within the state space regionM and
recur within that region at the time t is given by

Γ̂M(t) =
1
|M|

∫ ∫
M

dxdy δ
(
y − f t(x)

)
. (22.1)

This quantity is eminently measurable and physically interesting in a variety
of problems spanning nuclear physics to celestial mechanics. The integral over
x takes care of all possible initial pinballs; the integral over y checks whether
they are still within M by the time t. If the dynamics is bounded, and M
envelops the entire accessible state space, Γ̂M(t) = 1 for all t. However, if
trajectories exitM the recurrence fraction decreases with time. For example,
any trajectory that falls off the pinball table in Fig. 1.1 is gone for good.

These observations can be made more concrete by examining the pinball
phase space of Fig. 1.9. With each pinball bounce the initial conditions that
survive get thinned out, each strip yielding two thinner strips within it. The
total fraction of survivors (1.2) after n bounces is given by

Γ̂n =
1
|M|

(n)∑
i

|Mi| , (22.2)

where i is a binary label of the ith strip, and |M i| is the area of the ith strip.
The phase space volume is preserved by the flow, so the strips of survivors
are contracted along the stable eigen-directions, and ejected along the unstable
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eigen-directions. As a crude estimate of the number of survivors in the ith
strip, assume that the spreading of a ray of trajectories per bounce is given by
a factor Λ, the mean value of the expanding eigenvalue of the corresponding
Jacobian matrix of the flow, and replace |M i| by the phase space strip width
estimate |Mi|/|M| ∼ 1/Λi. This estimate of a size of a neighborhood (given
already on p. 81) is right in spirit, but not without drawbacks. One problem is
that in general the eigenvalues of a Jacobian matrix for a finite segment of a
trajectory have no invariant meaning; they depend on the choice of coordinates.
However, we saw in Chapter 18 that the sizes of neighborhoods are determined
by Floquet multipliers of periodic points, and those are invariant under smooth
coordinate transformations.

In the approximation Γ̂n receives 2n contributions of equal size

Γ̂1 ∼
1
Λ
+

1
Λ
, · · · , Γ̂n ∼

2n

Λn
= e−n(λ−h) = e−nγ , (22.3)

up to pre-exponential factors. We see here the interplay of the two key ingre-
dients of chaos first alluded to in Section 1.3.1: the escape rate γ equals local
expansion rate (the Lyapunov exponent λ = lnΛ), minus the rate of global
reinjection back into the system (the topological entropy h = ln 2).

As at each bounce one loses routinely the same fraction of trajectories, one
expects the sum (22.2) to fall off exponentially with n. More precisely, by
the hyperbolicity assumption of Section 18.1.1 the expanding eigenvalue of
the Jacobian matrix of the flow is exponentially bounded from both above and
below,

1 < |Λmin| ≤ |Λ(x)| ≤ |Λmax| , (22.4)

and the area of each strip in (22.2) is bounded by |Λ −n
max| ≤ |Mi| ≤ |Λ−n

min|.
Replacing |Mi| in (22.2) by its over (under) estimates in terms of |Λmax|, |Λmin|
immediately leads to exponential bounds (2/|Λmax|)n ≤ Γ̂n ≤ (2/|Λmin|)n , i.e.,

ln |Λmax| − ln 2 ≥ − 1
n

ln Γ̂n ≥ ln |Λmin| − ln 2 . (22.5)

The argument based on (22.5) establishes only that the sequence γ n = − 1
n lnΓn

has a lower and an upper bound for any n. In order to prove that γ n converge
to the limit γ, we first show that for hyperbolic systems the sum over survivor
intervals (22.2) can be replaced by the sum over periodic orbit stabilities. By
(22.4) the size ofMi strip can be bounded by the stability Λ i of ith periodic
point:

C1
1
|Λi|

<
|Mi|
|M|

< C2
1
|Λi|

, (22.6)

for any periodic point i of period n, with constants C j dependent on the dy-
namical system but independent of n. The meaning of these bounds is that for
longer and longer cycles in a system of bounded hyperbolicity, the shrinking
of the ith strip is better and better approximated by the derivatives evaluated
on the periodic point within the strip. Hence the survival probability can be
bounded close to the periodic point stability sum

Ĉ1 Γn <

(n)∑
i

|Mi|
|M|

< Ĉ2 Γn , (22.7)
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where Γn =
∑(n)

i 1/|Λi| is the asymptotic trace sum (18.26). In this way we have
established that for hyperbolic systems the survival probability sum (22.2) can
be replaced by the periodic orbit sum (18.26).

exercise 22.1
exercise 16.4We conclude that for hyperbolic, locally unstable flows the fraction (22.1)

of initial x whose trajectories remain trapped withinM up to time t is expected
to decay exponentially,

ΓM(t) ∝ e−γt ,

where γ is the asymptotic escape rate defined by

γ = − lim
t→∞

1
t

ln ΓM(t) . (22.8)

22.2 Natural measure in terms of periodic
orbits

We now refine the reasoning of Section 22.1. Consider the trace (18.7) in the
asymptotic limit (18.25):

trLn =

∫
dx δ(x − f n(x)) eβAn(x) ≈

(n)∑
i

eβAn(xi)

|Λi|
.

The factor 1/|Λi| was interpreted in (22.2) as the area of the ith phase space
strip. Hence trLn is a discretization of the integral

∫
dxeβAn(x) approximated

by a tessellation into strips centered on periodic points x i, Fig. 1.11, with the
volume of the ith neighborhood given by estimate |M i| ∼ 1/|Λi|, and eβAn(x)

estimated by eβAn(xi), its value at the ith periodic point. If the symbolic dynam-
ics is a complete, any rectangle [s−m · · · s0.s1s2 · · · sn] of Section 12.3.1 always
contains the periodic point s−m · · · s0s1 s2 · · · sn; hence even though the peri-
odic points are of measure zero (just like rationals in the unit interval), they are
dense on the non-wandering set. Equipped with a measure for the associated
rectangle, periodic orbits suffice to cover the entire non-wandering set. The
average of eβAn

evaluated on the non-wandering set is therefore given by the
trace, properly normalized so 〈1〉 = 1:

〈
eβAn〉

n
≈

∑(n)
i eβAn(xi)/|Λi|∑(n)

i 1/|Λi|
=

(n)∑
i

μi eβAn(xi) . (22.9)

Here μi is the normalized natural measure

(n)∑
i

μi = 1 , μi = enγ/|Λi| , (22.10)

correct both for the closed systems as well as the open systems of Section 17.1.3.
Unlike brute numerical slicing of the integration space into an arbitrary lat-

tice (for a critique, see Section 16.3), the periodic orbit theory is smart, as
it automatically partitions integrals by the intrinsic topology of the flow, and
assigns to each tile the invariant natural measure μ i.
ChaosBook.org version13.5, Sep 7 2011 getused - 14jun2006
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22.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)
Our goal in Section 17.1 was to evaluate the space and time averaged expec-
tation value (17.9). An average over all periodic orbits can accomplish the
job only if the periodic orbits fully explore the asymptotically accessible state
space.

Why should the unstable periodic points end up being dense? The cycles
are intuitively expected to be dense because on a connected chaotic set a typi-
cal trajectory is expected to behave ergodically, and pass infinitely many times
arbitrarily close to any point on the set, including the initial point of the tra-
jectory itself. The argument is more or less the following. Take a partition
of M in arbitrarily small regions, and consider particles that start out in re-
gion Mi, and return to it in n steps after some peregrination in state space.
In particular, a particle might return a little to the left of its original position,
while a close neighbor might return a little to the right of its original position.
By assumption, the flow is continuous, so generically one expects to be able
to gently move the initial point in such a way that the trajectory returns pre-
cisely to the initial point, i.e., one expects a periodic point of period n in cell
i. As we diminish the size of regionsMi, aiming a trajectory that returns to
Mi becomes increasingly difficult. Therefore, we are guaranteed that unstable
orbits of larger and larger period are densely interspersed in the asymptotic
non-wandering set.

The above argument is heuristic, by no means guaranteed to work, and it
must be checked for the particular system at hand. A variety of ergodic but
insufficiently mixing counter-examples can be constructed - the most familiar
being a quasiperiodic motion on a torus.

22.3 Flow conservation sum rules

If the dynamical system is bounded, all trajectories remain confined for all
times, escape rate (22.8) vanishes γ = −s0 = 0, and the leading eigenvalue of
the Perron-Frobenius operator (16.10) is simply exp(−tγ) = 1. Conservation
of material flow thus implies that for bound flows cycle expansions of dynam-
ical zeta functions and spectral determinants satisfy exact flow conservation
sum rules:

1/ζ(0, 0) = 1 +
∑′

π

(−1)k

|Λp1 · · ·Λpk |
= 0

F(0, 0) = 1 −
∞∑

n=1

cn(0, 0) = 0 (22.11)

obtained by setting s = 0 in (20.15), (20.16) cycle weights t p = e−sTp/|Λp| →
1/|Λp| . These sum rules depend neither on the cycle periods T p nor on the
observable a(x) under investigation, but only on the cycle stabilities Λ p,1, Λp,2,
· · ·, Λp,d, and their significance is purely geometric: they are a measure of how
well periodic orbits tessellate the state space. Conservation of material flow
getused - 14jun2006 ChaosBook.org version13.5, Sep 7 2011
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provides the first and very useful test of the quality of finite cycle length trun-
cations, and is something that you should always check first when constructing
a cycle expansion for a bounded flow.

The trace formula version of the flow conservation flow sum rule comes in
two varieties, one for the maps, and another for the flows. By flow conservation
the leading eigenvalue is s0 = 0, and for maps (20.14) yields

trLn =
∑

i∈Fix f n

1
|det (1 − Mn(xi)) |

= 1 + es1n + . . . . (22.12)

For flows one can apply this rule by grouping together cycles from t = T to
t = T + ΔT

1
ΔT

T≤rTp≤T+ΔT∑
p,r

Tp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ =
1
ΔT

∫ T+ΔT

T
dt

(
1 + es1t + . . .

)
= 1 +

1
ΔT

∞∑
α=1

esαT

sα

(
esαΔT − 1

)
≈ 1 + es1T + · · · .(22.13)

As is usual for the fixed level trace sums, the convergence of (22.12) is con-
troled by the gap between the leading and the next-to-leading eigenvalues of
the evolution operator.

22.4 Correlation functions

The time correlation function CAB(t) of two observables A and B along the
trajectory x(t) = f t(x0) is defined as

CAB(t; x0) = lim
T→∞

1
T

∫ T

0
dτA(x(τ + t))B(x(τ)) , x0 = x(0) .(22.14)

If the system is ergodic, with invariant continuous measure ρ 0(x)dx, then cor-
relation functions do not depend on x0 (apart from a set of zero measure), and
may be computed by a state space average as well

CAB(t) =
∫
M

dx0 ρ0(x0)A( f t(x0))B(x0) . (22.15)

For a chaotic system we expect that time evolution will loose the information
contained in the initial conditions, so that C AB(t) will approach the uncorre-
lated limit 〈A〉 · 〈B〉. As a matter of fact the asymptotic decay of correlation
functions

ĈAB := CAB − 〈A〉 〈B〉 (22.16)

for any pair of observables coincides with the definition of mixing, a funda-
mental property in ergodic theory. We now assume 〈B〉 = 0 (otherwise we
may define a new observable by B(x) − 〈B〉). Our purpose is now to con-
nect the asymptotic behavior of correlation functions with the spectrum of the
Perron-Frobenius operator L. We can write (22.15) as

C̃AB(t) =
∫
M

dx
∫
M

dy A(y)B(x)ρ0(x)δ(y − f t(x)) ,

ChaosBook.org version13.5, Sep 7 2011 getused - 14jun2006



372 CHAPTER 22. WHY CYCLE?

and recover the evolution operator

C̃AB(t) =
∫
M

dx
∫
M

dy A(y)Lt(y, x)B(x)ρ0(x)

We recall that in Section 16.1 we showed that ρ(x) is the eigenvector of L
corresponding to probability conservation∫

M
dyLt(x, y)ρ(y) = ρ(x) .

Now, we can expand the x dependent part in terms of the eigenbasis of L:

B(x)ρ0(x) =
∞∑
α=0

cαρα(x) ,

where ρ0(x) is the natural measure. Since the average of the left hand side is
zero the coefficient c0 must vanish. The action of L then can be written as

C̃AB(t) =
∑
α�0

e−sαtcα

∫
M

dy A(y)ρα(y). (22.17)

We see immediately that if the spectrum has a gap, i.e., if the second largest
exercise 22.2

leading eigenvalue is isolated from the largest eigenvalue (s 0 = 0) then (22.17)
implies exponential decay of correlations

C̃AB(t) ∼ e−νt .

The correlation decay rate ν = s1 then depends only on intrinsic properties
of the dynamical system (the position of the next-to-leading eigenvalue of the
Perron-Frobenius operator), while the choice of a particular observable influ-
ences only the prefactor.

Correlation functions are often accessible from time series measurable in
laboratory experiments and numerical simulations: moreover they are linked
to transport exponents.

22.5 Trace formulas vs. level sums

Trace formulas (18.10) and (18.23) diverge precisely where one would
like to use them, at s equal to eigenvalues sα. Instead, one can proceed as
follows; according to (18.27) the “level” sums (all symbol strings of length n)
are asymptotically going like es0n

∑
i∈Fix f n

eβAn(xi)

|Λi|
→ es0n ,

so an nth order estimate s(n) of the leading eigenvalue is given by

1 =
∑

i∈Fix f n

eβAn(xi)e−s(n)n

|Λi|
(22.18)
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which generates a “normalized measure.” The difficulty with estimating this
n→ ∞ limit is at least twofold:

1. due to the exponential growth in number of intervals, and the exponential
decrease in attainable accuracy, the maximal n attainable experimentally or
numerically is in practice of order of something between 5 to 20.

2. the pre-asymptotic sequence of finite estimates s (n) is not unique, because
the sums Γn depend on how we define the escape region, and because in general
the areas Mi in the sum (22.2) should be weighted by the density of initial
conditions x0. For example, an overall measuring unit rescalingM i → αMi

introduces 1/n corrections in s(n) defined by the log of the sum (22.8): s (n) →
s(n) − lnα/n. This can be partially fixed by defining a level average〈

eβA(s)
〉

(n)
:=

∑
i∈Fix f n

eβAn(xi)esn

|Λi|
(22.19)

and requiring that the ratios of successive levels satisfy

1 =

〈
eβA(s(n))

〉
(n+1)〈

eβA(s(n))
〉

(n)
.

This avoids the worst problem with the formula (22.18), the inevitable 1/n cor-
rections due to its lack of rescaling invariance. However, even though much
published pondering of “chaos” relies on it, there is no need for such gym-
nastics: the dynamical zeta functions and spectral determinants are already
invariant not only under linear rescalings, but under all smooth nonlinear con-
jugacies x → h(x), and require no n → ∞ extrapolations to asymptotic times.
Comparing with the cycle expansions (20.7) we see what the difference is;
while in the level sum approach we keep increasing exponentially the number
of terms with no reference to the fact that most are already known from shorter
estimates, in the cycle expansions short terms dominate, longer ones enter only
as exponentially small corrections.

The beauty of the trace formulas is that they are coordinatization indepen-
dent: both

∣∣∣∣det
(
1 − Mp

)∣∣∣∣ = |det (1 − MTp (x))| and eβAp = eβATp (x) contribution
to the cycle weight tp are independent of the starting periodic point point x.
For the Jacobian matrix Mp this follows from the chain rule for derivatives,
and for eβAp from the fact that the integral over eβAt(x) is evaluated along a
closed loop. In addition,

∣∣∣∣det
(
1 − Mp

)∣∣∣∣ is invariant under smooth coordinate
transformations.

Résumé

We conclude this chapter by a general comment on the relation of the finite
trace sums such as (22.2) to the spectral determinants and dynamical zeta func-
tions. One might be tempted to believe that given a deterministic rule, a sum
like (22.2) could be evaluated to any desired precision. For short finite times
this is indeed true: every regionM i in (22.2) can be accurately delineated, and
there is no need for fancy theory. However, if the dynamics is unstable, local
variations in initial conditions grow exponentially and in finite time attain the
ChaosBook.org version13.5, Sep 7 2011 getused - 14jun2006
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size of the system. The difficulty with estimating the n → ∞ limit from (22.2)
is then at least twofold:

1. due to the exponential growth in number of intervals, and the exponential
decrease in attainable accuracy, the maximal n attainable experimentally or
numerically is in practice of order of something between 5 to 20;

2. the pre-asymptotic sequence of finite estimates γn is not unique, because
the sums Γ̂n depend on how we define the escape region, and because in general
the areas |Mi| in the sum (22.2) should be weighted by the density of initial x 0.

In contrast, the dynamical zeta functions and spectral determinants are in-
variant under all smooth nonlinear conjugacies x → h(x), not only linear
rescalings, and require no n→ ∞ extrapolations.

Further reading

22.1 Nonhyperbolic measures. μi = 1/|Λi| is the natural
measure only for the strictly hyperbolic systems. For non-
hyperbolic systems, the measure might develop cusps. For
example, for Ulam type maps (unimodal maps with quadratic
critical point mapped onto the “left” unstable fixed point x0,
discussed in more detail in Chapter 24), the measure develops
a square-root singularity on the 0 cycle:

μ0 =
1

|Λ0|1/2
. (22.20)

The thermodynamics averages are still expected to converge
in the “hyperbolic” phase where the positive entropy of un-
stable orbits dominates over the marginal orbits, but they fail
in the “non-hyperbolic” phase. The general case remains un-
clear [22.12, 2, 3, 5].

22.2 Trace formula periodic orbit averaging. The cycle
averaging formulas are not the first thing that one would intu-
itively write down; the approximate trace formulas are more
accessibly heuristically. The trace formula averaging (22.13)
seems to have be discussed for the first time by Hannay and
Ozorio de Almeida [22.8, 9]. Another novelty of the cycle
averaging formulas and one of their main virtues, in contrast
to the explicit analytic results such as those of Ref. [22.4], is
that their evaluation does not require any explicit construction
of the (coordinate dependent) eigenfunctions of the Perron-
Frobenius operator (i.e., the natural measure ρ0).

22.3 Role of noise in dynamical systems. In any physical ap-
plication the dynamics is always accompanied by additional

external noise. The noise can be characterized by its strength
σ and distribution. Lyapunov exponents, correlation decay
and dynamo rate can be defined in this case the same way as
in the deterministic case. You might fear that noise completely
destroys the results derived here. However, one can show that
the deterministic formulas remain valid to accuracy compa-
rable with noise width if the noise level is small. A small
level of noise even helps as it makes the dynamics more er-
godic, with deterministically non-communicating parts of the
state space now weakly connected due to the noise, making
periodic orbit theory applicable to non-ergodic systems. For
small amplitude noise one can expand

a = a0 + a1σ
2 + a2σ

4 + ... ,

around the deterministic averages a0. The expansion co-
efficients a1, a2, ... can also be expressed via periodic or-
bit formulas. The calculation of these coefficients is one
of the challenges facing periodic orbit theory, discussed in
Refs. [22.9–11].

22.4 Escape rates. A lucid introduction to escape from re-
pellers is given by Kadanoff and Tang [22.9]. For a review of
transient chaos see Refs. [22.10, 12]. The ζ–function formu-
lation is given by Ruelle [22.13] and W. Parry and M. Pol-
licott [22.14] and discussed in Ref. [22.15]. Altmann and
Tel [22.16] give a detailed study of escape rates, with citations
to more recent literature.
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Exercises

(22.1) Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining
trapped in the interval [0, 1] for the logistic map

f (x) = A(1 − (2x − 1)2), (22.21)

and determine the A dependence of the escape rate
γ(A) numerically.

(b) Work out a numerical method for calculating the
lengths of intervals of trajectories remaining stuck
for n iterations of the map.

(c) What is your expectation about the A dependence
near the critical value Ac = 1?

(22.2) Four-scale map correlation decay rate. Consider the
piecewise-linear map

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f00 = Λ0 x
f01 = s01(x − b) + 1
f11 = Λ1(x − b) + 1
f10 = s10(x − 1)

with a 4-interval state space Markov partition

M = {M00,M01,M10,M11}
= {[0, b/Λ0], (b/Λ0, b](b, c](c, 1]} .

(a) compute s01, s10, c.

(b) Show that the 2-cycle Floquet multiplier does not
depend on b,

Λ01 = s01 s10 = −
Λ0Λ1

(Λ0 − 1)(Λ1 + 1)
.

(c) Write down the [2×2] Perron-Frobenius operator
acting on the space of densities piecewise constant
over the four partitions.

(d) Construct the corresponding transition graph.

(e) Write down the corresponding spectral determin-
ant.

(f) Show that the escape rate vanishes, γ = − ln(z0) =
0.

(g) Determine the spectrum of the Perron-Frobenius
operator on the space of densities piecewise con-
stant over the four partitions. Show that the second
largest eigenvalue of the is 1

z1
= −1 + 1

Λ0
− 1
Λ1

.

(h) Is this value consistent with the tent map value pre-
viously computed in Exercise 16.4 (with the appro-
priate choice of {Λ0,Λ1, c}).

(i) (optional) Is this next-to leading eigenvalue still
correct if the Perron-Frobenius operator acts on the
space of analytic functions?

(22.3) Lyapunov exponents for 1-dimensional maps. Ex-
tend your cycle expansion programs so that the first and
the second moments of observables can be computed.
Use it to compute the Lyapunov exponent for some or
all of the following maps:

(a) the piecewise-linear skew tent, flow conserving
map

f (x) =

{
Λ0 x if 0 ≤ x < Λ−1

0 ,
Λ1(1 − x) if Λ−1

0 ≤ x ≤ 1.
,

Λ1 = Λ0/(Λ0 − 1).

(b) the Ulam map f (x) = 4x(1 − x) .

(c) the skew Ulam map

f (x) = Λ0 x(1 − x)(1 − bx) , (22.22)

1/Λ0 = xc(1− xc)(1− bxc) . In our numerical work
we fix (arbitrarily, the value chosen in Ref. [22.3])
b = 0.6, so

f (x) = 0.1218 x(1 − x)(1 − 0.6 x)

with a peak f (xc) = 1 at xc = 0.7.

(d) the repeller of f (x) = Ax(1− x), for either A = 9/2
or A = 6 (this is a continuation of Exercise 20.2).

(e) for the 2-branch flow conserving map

f0(x) =
1

2h

(
h − p +

√
(h − p)2 + 4hx

)
f1(x) =

1
2h

(h + p − 1) (22.23)

+
1

2h

√
(h + p − 1)2 + 4h(x − p) ,
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with a 2-interval state space Markov partitionM =
{M0,M1} = {[0, p], (p, 1]} . This is a nonlinear per-
turbation of the h = 0 Bernoulli shift map (23.6);
the first 15 eigenvalues of the Perron-Frobenius
operator are listed in Ref. [22.1] for p = 0.8,
h = 0.1. Use these parameter values when com-
puting the Lyapunov exponent.

Cases (a) and (b) can be computed analytically; cases (c),
(d) and (e) require numerical computation of cycle stabil-
ities. Just to see whether the theory is worth the trouble,
also cross check your cycle expansions results for cases

(c) and (d) with Lyapunov exponent computed by direct
numerical averaging along trajectories of randomly cho-
sen initial points:

(f) trajectory-trajectory separation (17.27) (hint:
rescale δx every so often, to avoid numerical over-
flows),

(g) iterated stability (17.32).

How good is the numerical accuracy compared with the
periodic orbit theory predictions?
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Bloch: “Space is the field of linear operators.”
Heisenberg: “Nonsense, space is blue and birds fly through it.”

—Felix Bloch, Heisenberg and the early days of quantum me-
chanics

(R. Artuso, H.H. Rugh and P. Cvitanović)

As we shall see, the trace formulas and spectral determinants work well,
sometimes very well. The question is: Why? And it still is. The heuris-
tic manipulations of Chapters 18 and 6 were naive and reckless, as we

are facing infinite-dimensional vector spaces and singular integral kernels.
We now outline the key ingredients of proofs that put the trace and deter-

minant formulas on solid footing. This requires taking a closer look at the
evolution operators from a mathematical point of view, since up to now we
have talked about eigenvalues without any reference to what kind of a function
space the corresponding eigenfunctions belong to. We shall restrict our consid-
erations to the spectral properties of the Perron-Frobenius operator for maps,
as proofs for more general evolution operators follow along the same lines.
What we refer to as a “the set of eigenvalues” acquires meaning only within
a precisely specified functional setting: this sets the stage for a discussion of
the analyticity properties of spectral determinants. In Example 23.1 we com-
pute explicitly the eigenspectrum for the three analytically tractable piecewise
linear examples. In Section 23.3 we review the basic facts of the classical Fred-
holm theory of integral equations. The program is sketched in Section 23.4,
motivated by an explicit study of eigenspectrum of the Bernoulli shift map, and
in Section 23.5 generalized to piecewise real-analytic hyperbolic maps acting
on appropriate densities. We show on a very simple example that the spectrum
is quite sensitive to the regularity properties of the functions considered.
For expanding and hyperbolic finite-subshift maps analyticity leads to a very
strong result; not only do the determinants have better analyticity properties
than the trace formulas, but the spectral determinants are singled out as entire
functions in the complex s plane.

remark 23.1
The goal of this chapter is not to provide an exhaustive review of the rigorous
theory of the Perron-Frobenius operators and their spectral determinants, but
rather to give you a feeling for how our heuristic considerations can be put
on a firm basis. The mathematics underpinning the theory is both hard and
profound.

If you are primarily interested in applications of the periodic orbit theory,
you should skip this chapter on the first reading.
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23.1 Linear maps: exact spectra

We start gently; in Example 23.1 we work out the exact eigenvalues and eigen-
functions of the Perron-Frobenius operator for the simplest example of unsta-
ble, expanding dynamics, a linear 1−d map with one unstable fixed point. .
Ref. [23.6] shows that this can be carried over to d-dimensions. Not only that,
but in Example 23.5 we compute the exact spectrum for the simplest example
of a dynamical system with an infinity of unstable periodic orbits, the Bernoulli
shift.

Example 23.1 The simplest eigenspectrum - a single fixed point:
In order to get some feeling for the determinants defined so formally in Section 19.2,
let us work out a trivial example: a repeller with only one expanding linear branch

f (x) = Λx , |Λ| > 1 ,

and only one fixed point xq = 0. The action of the Perron-Frobenius operator (16.10)
is

Lφ(y) =
∫

dx δ(y − Λx) φ(x) =
1
|Λ|

φ(y/Λ) . (23.1)

From this one immediately gets that the monomials yk are eigenfunctions:

Lyk =
1
|Λ|Λk

yk , k = 0, 1, 2, . . . (23.2)

What are these eigenfunctions? Think of eigenfunctions of the Schrödinger
equation: k labels the kth eigenfunction xk in the same spirit in which the num-
ber of nodes labels the kth quantum-mechanical eigenfunction. A quantum-
mechanical amplitude with more nodes has more variability, hence a higher
kinetic energy. Analogously, for a Perron-Frobenius operator, a higher k eigen-
value 1/|Λ|Λk is getting exponentially smaller because densities that vary more
rapidly decay more rapidly under the expanding action of the map.

Example 23.2 The trace formula for a single fixed point:
The eigenvalues Λ−k−1 fall off exponentially with k, so the trace of L is a convergent
sum

trL = 1
|Λ|

∞∑
k=0

Λ−k =
1

|Λ|(1 − Λ−1)
=

1
| f (0)′ − 1|

,

in agreement with (18.7). A similar result follows for powers of L, yielding the
single-fixed point version of the trace formula for maps (18.10):

∞∑
k=0

zesk

1 − zesk
=

∞∑
r=1

zr

|1 − Λr | , esk =
1
|Λ|Λk

. (23.3)

The left hand side of (23.3) is a meromorphic function, with the leading zero
at z = |Λ|. So what?
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Example 23.3 Meromorphic functions and exponential convergence:
As an illustration of how exponential convergence of a truncated series is related
to analytic properties of functions, consider, as the simplest possible example of a
meromorphic function, the ratio

h(z) =
z − a
z − b

with a, b real and positive and a < b. Within the spectral radius |z| < b the function
h can be represented by the power series

h(z) =
∞∑

k=0

σkzk ,

where σ0 = a/b, and the higher order coefficients are given by σj = (a − b)/bj+1.
Consider now the truncation of order N of the power series

hN (z) =
N∑

k=0

σkzk =
a
b
+

z(a − b)(1 − zN/bN)
b2(1 − z/b)

.

Let ẑN be the solution of the truncated series hN (ẑN ) = 0. To estimate the distance
between a and ẑN it is sufficient to calculate hN (a). It is of order (a/b)N+1, so finite
order estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading pole (the leading
eigenvalue of L) from a finite truncation of a trace formula converges expo-
nentially, and (2) the non-leading eigenvalues of L lie outside of the radius of
convergence of the trace formula and cannot be computed by means of such
cycle expansion. However, as we shall now see, the whole spectrum is reach-
able at no extra effort, by computing it from a determinant rather than a trace.

Example 23.4 The spectral determinant for a single fixed point:
The spectral determinant (19.3) follows from the trace formulas of Example 23.2:

det (1 − zL) =
∞∏

k=0

(
1 − z
|Λ|Λk

)
=

∞∑
n=0

(−t)n Qn , t =
z
|Λ| , (23.4)

where the cummulants Qn are given explicitly by the Euler formula
exercise 23.3

Qn =
1

1 − Λ−1

Λ−1

1 − Λ−2
· · · Λ

−n+1

1 − Λ−n
. (23.5)

The main lesson to glean from this simple example is that the cummulants
Qn decay asymptotically faster than exponentially, as Λ−n(n−1)/2. For example,
if we approximate series such as (23.4) by the first 10 terms, the error in the
estimate of the leading zero is ≈ 1/Λ50!

So far all is well for a rather boring example, a dynamical system with a
single repelling fixed point. What about chaos? Systems where the number of
unstable cycles increases exponentially with their length? We now turn to the
simplest example of a dynamical system with an infinity of unstable periodic
orbits.
ChaosBook.org version13.5, Sep 7 2011 converg - 9nov2008
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Example 23.5 Eigenfunction of Bernoulli shift map.
(continued from Example 11.7) The Bernoulli shift map Fig. 23.1

f (x) =

{
f0(x) = 2x , x ∈ I0 = [0, 1/2)
f1(x) = 2x − 1 , x ∈ I1 = (1/2, 1]

(23.6)

models the 50-50% probability of a coin toss. The associated Perron-Frobenius oper-
ator (16.9) assembles ρ(y) from its two preimages

Fig. 23.1 The Bernoulli shift map.

Lρ(y) =
1
2
ρ
( y
2

)
+

1
2
ρ

(
y + 1

2

)
. (23.7)

For this simple example the eigenfunctions can be written down explicitly: they
coincide, up to constant prefactors, with the Bernoulli polynomials Bn(x). These
polynomials are generated by the Taylor expansion of the generating function

G(x, t) =
text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
, B0(x) = 1 , B1(x) = x − 1

2
, . . .

The Perron-Frobenius operator (23.7) acts on the generating function G as

LG(x, t) =
1
2

(
text/2

et − 1
+

tet/2ext/2

et − 1

)
=

t
2

ext/2

et/2 − 1
=

∞∑
k=1

Bk(x)
(t/2)k

k!
,

hence each Bk(x) is an eigenfunction of L with eigenvalue 1/2k.
The full operator has two components corresponding to the two branches. For the
n times iterated operator we have a full binary shift, and for each of the 2n branches
the above calculations carry over, yielding the same trace (2n − 1)−1 for every cy-
cle on length n. Without further ado we substitute everything back and obtain the
determinant,

det (1 − zL) = exp

⎛⎜⎜⎜⎜⎜⎝−∑
n=1

zn

n
2n

2n − 1

⎞⎟⎟⎟⎟⎟⎠ =∏
k=0

(
1 − z

2k

)
, (23.8)

verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2,
. . ., 1/2n, . . . .

The Bernoulli map spectrum looks reminiscent of the single fixed-point
spectrum (23.2), with the difference that the leading eigenvalue here is 1, rather
than 1/|Λ|. The difference is significant: the single fixed-point map is a re-
peller, with escape rate (1.7) given by the L leading eigenvalue γ = ln |Λ|,
while there is no escape in the case of the Bernoulli map. As already noted in
discussion of the relation (19.23), for bound systems the local expansion rate

section 19.4
(here ln |Λ| = ln 2) is balanced by the entropy (here ln 2, the log of the number
of preimages Fs), yielding zero escape rate.

So far we have demonstrated that our periodic orbit formulas are correct for
two piecewise linear maps in 1 dimension, one with a single fixed point, and
one with a full binary shift chaotic dynamics. For a single fixed point, eigen-
functions are monomials in x. For the chaotic example, they are orthogonal
polynomials on the unit interval. What about higher dimensions? We check
our formulas on a 2−d hyperbolic map next.

Example 23.6 The simplest of 2−d maps - a single hyperbolic fixed point:
We start by considering a very simple linear hyperbolic map with a single hyperbolic
fixed point,

f (x) = ( f1(x1, x2), f2(x1, x2)) = (Λsx1,Λu x2) , 0 < |Λs | < 1 , |Λu| > 1 .
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The Perron-Frobenius operator (16.10) acts on the 2−d density functions as

Lρ(x1, x2) =
1

|ΛsΛu|
ρ(x1/Λs, x2/Λu) (23.9)

What are good eigenfunctions? Cribbing the 1− d eigenfunctions for the stable,
contracting x1 direction from Example 23.1 is not a good idea, as under the iteration
of L the high terms in a Taylor expansion of ρ(x1, x2) in the x1 variable would get
multiplied by exponentially exploding eigenvalues 1/Λk

s . This makes sense, as in the
contracting directions hyperbolic dynamics crunches up initial densities, instead of
smoothing them. So we guess instead that the eigenfunctions are of form

ϕk1k2 (x1, x2) = xk2
2 /xk1+1

1 , k1, k2 = 0, 1, 2, . . . , (23.10)

a mixture of the Laurent series in the contraction x1 direction, and the Taylor series
in the expanding direction, the x2 variable. The action of Perron-Frobenius operator
on this set of basis functions

Lϕk1k2 (x1, x2) =
σ

|Λu|
Λ

k1
s

Λ
k2
u

ϕk1k2 (x1, x2) , σ = Λs/|Λs |

is smoothing, with the higher k1, k2 eigenvectors decaying exponentially faster, by
Λ

k1
s /Λ

k2+1
u factor in the eigenvalue. One verifies by an explicit calculation (undoing

the geometric series expansions to lead to (19.9)) that the trace of L indeed equals
1/|det (1 − M)| = 1/|(1 − Λu)(1 − Λs)| , from which it follows that all our trace and
spectral determinant formulas apply. The argument applies to any hyperbolic map
linearized around the fixed point of form f (x1...., xd) = (Λ1 x1,Λ2 x2, . . . ,Λd xd).

So far we have checked the trace and spectral determinant formulas derived
heuristically in Chapters 18 and 19, but only for the case of 1−d and 2−d linear
maps. But for infinite-dimensional vector spaces this game is fraught with
dangers, and we have already been mislead by piecewise linear examples into
spectral confusions: contrast the spectra of Example 16.1 and Example 17.4
with the spectrum computed in Example 18.2.

We show next that the above results do carry over to a sizable class of piece-
wise analytic expanding maps.

23.2 Evolution operator in a matrix
representation

The standard, and for numerical purposes sometimes very effective way to
look at operators is through their matrix representations. Evolution operators
are moving density functions defined over some state space, and as in gen-
eral we can implement this only numerically, the temptation is to discretize the
state space as in Section 16.3. The problem with such state space discretization
approaches that they sometimes yield plainly wrong spectra (compare Exam-
ple 17.4 with the result of Example 18.2), so we have to think through carefully
what is it that we really measure.

An expanding map f (x) takes an initial smooth density φ n(x), defined on
a subinterval, stretches it out and overlays it over a larger interval, resulting
in a new, smoother density φn+1(x). Repetition of this process smoothes the
ChaosBook.org version13.5, Sep 7 2011 converg - 9nov2008
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initial density, so it is natural to represent densities φn(x) by their Taylor series.
Expanding

φn(y) =
∞∑

k=0

φ(k)
n (0)

yk

k!
, φn+1(y)k =

∞∑
�=0

φ(�)
n+1(0)

y�

�!
,

φ(�)
n+1(0) =

∫
dx δ(�)(y − f (x))φn(x)

∣∣∣
y=0

, x = f −1(0) ,

and substitute the two Taylor series into (16.6):

φn+1(y) = (Lφn) (y) =
∫
M

dx δ(y − f (x)) φn(x) .

The matrix elements follow by evaluating the integral

L�k =
∂�

∂y�

∫
dxL(y, x)

xk

k!

∣∣∣∣∣∣
y=0

. (23.11)

we obtain a matrix representation of the evolution operator∫
dxL(y, x)

xk

k!
=

∑
k′

yk′

k′!
Lk′k , k, k′ = 0, 1, 2, . . .

which maps the xk component of the density of trajectories φn(x) into the yk′

component of the density φn+1(y) one time step later, with y = f (x).
We already have some practice with evaluating derivatives δ (�)(y) = ∂�

∂y� δ(y)
from Section 16.2. This yields a representation of the evolution operator cen-
tered on the fixed point, evaluated recursively in terms of derivatives of the
map f :

(L)�k =

∫
dx δ(�)(x − f (x))

xk

k!

∣∣∣∣∣∣
x= f (x)

(23.12)

=
1
| f ′|

(
d
dx

1
f ′(x)

)� xk

k!

∣∣∣∣∣∣∣
x= f (x)

.

The matrix elements vanish for � < k, so L is a lower triangular matrix. The
diagonal and the successive off-diagonal matrix elements are easily evaluated
iteratively by computer algebra

Lkk =
1
|Λ|Λk

, Lk+1,k = −
(k + 2)! f ′′

2k!|Λ|Λk+2
, · · · .

For chaotic systems the map is expanding, |Λ| > 1. Hence the diagonal terms
drop off exponentially, as 1/|Λ|k+1, the terms below the diagonal fall off even
faster, and truncating L to a finite matrix introduces only exponentially small
errors.

The trace formula (23.3) takes now a matrix form

tr
zL

1 − zL
= tr

L
1 − zL

. (23.13)

converg - 9nov2008 ChaosBook.org version13.5, Sep 7 2011



23.2. EVOLUTION OPERATOR IN A MATRIX REPRESENTATION 383

In order to illustrate how this works, we work out a few examples.
In Example 23.7 we show that these results carry over to any analytic single-

branch 1−d repeller. Further examples motivate the steps that lead to a proof
that spectral determinants for general analytic 1−d expanding maps, and - in
Section 23.5, for 1−d hyperbolic mappings - are also entire functions.

Example 23.7 Perron-Frobenius operator in a matrix representation:
As in Example 23.1, we start with a map with a single fixed point, but this time
with a nonlinear piecewise analytic map f with a nonlinear inverse F = f−1, sign of
the derivative σ = σ(F′) = F′/|F′| , and the Perron-Frobenius operator acting on
densities analytic in an open domain enclosing the fixed point x = wq,

Lφ(y) =
∫

dx δ(y − f (x))φ(x) = σ F′(y) φ(F(y)) .

Assume that F is a contraction of the unit disk in the complex plane, i.e.,

0 0.5 1
w

0

0.5

1

f(w)

w *

Fig. 23.2 A nonlinear one-branch repeller
with a single fixed point wq.

|F(z)| < θ < 1 and |F′(z)| < C < ∞ for |z| < 1 , (23.14)

and expand φ in a polynomial basis with the Cauchy integral formula

φ(z) =
∞∑

n=0

znφn =

∮
dw
2πi

φ(w)
w − z

, φn =

∮
dw
2πi

φ(w)
wn+1

Combining this with (23.22), we see that in this basis Perron-Frobenius operator L
is represented by the matrix

Lφ(w) =
∑
m,n

wmLmnφn , Lmn =

∮
dw
2πi

σ F′(w)(F(w))n

wm+1
. (23.15)

Taking the trace and summing we get:

tr L =
∑
n≥0

Lnn =

∮
dw
2πi

σ F′(w)
w − F(w)

.

This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).
Hence

exercise 23.6
tr L = σ F′(w∗)

1 − F′(w∗)
=

1
| f ′(w∗) − 1| .

This super-exponential decay of cummulants Q k ensures that for a repeller
consisting of a single repelling point the spectral determinant (23.4) is entire
in the complex z plane.

In retrospect, the matrix representation method for solving the density evo-
lution problems is eminently sensible — after all, that is the way one solves
a close relative to classical density evolution equations, the Schrödinger equa-
tion. When available, matrix representations for L enable us to compute many
more orders of cumulant expansions of spectral determinants and many more
eigenvalues of evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas such as (19.25) imply
that the dynamical zeta function is a meromorphic function. The practical im-
port of this observation is that it guarantees that finite order estimates of zeroes
of dynamical zeta functions and spectral determinants converge exponentially,
or - in cases such as (23.4) - super-exponentially to the exact values, and so the
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cycle expansions to be discussed in Chapter 20 represent a true perturbative
approach to chaotic dynamics.

Before turning to specifics we summarize a few facts about classical theory
of integral equations, something you might prefer to skip on first reading. The
purpose of this exercise is to understand that the Fredholm theory, a theory that
works so well for the Hilbert spaces of quantum mechanics does not necessar-
ily work for deterministic dynamics - the ergodic theory is much harder.

fast track
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23.3 Classical Fredholm theory

He who would valiant be ’gainst all disaster
Let him in constancy follow the Master.

—John Bunyan, Pilgrim’s Progress

The Perron-Frobenius operator

Lφ(x) =
∫

dy δ(x − f (y))φ(y)

has the same appearance as a classical Fredholm integral operator

Kϕ(x) =
∫
M

dyK(x, y)ϕ(y) , (23.16)

and one is tempted to resort to classical Fredholm theory in order to establish
analyticity properties of spectral determinants. This path to enlightenment is
blocked by the singular nature of the kernel, which is a distribution, whereas
the standard theory of integral equations usually concerns itself with regular
kernels K(x, y) ∈ L2(M2). Here we briefly recall some steps of Fredholm
theory, before working out the example of Example 23.5.

The general form of Fredholm integral equations of the second kind is

ϕ(x) =
∫
M

dyK(x, y)ϕ(y) + ξ(x) (23.17)

where ξ(x) is a given function in L2(M) and the kernel K(x, y) ∈ L2(M2)
(Hilbert-Schmidt condition). The natural object to study is then the linear in-
tegral operator (23.16), acting on the Hilbert space L 2(M): the fundamental
property that follows from the L2(Q) nature of the kernel is that such an oper-
ator is compact, that is close to a finite rank operator.A compact operator has
the property that for every δ > 0 only a finite number of linearly independent
eigenvectors exist corresponding to eigenvalues whose absolute value exceeds
δ, so we immediately realize (Fig. 23.5) that much work is needed to bring
Perron-Frobenius operators into this picture.

We rewrite (23.17) in the form

Tϕ = ξ , T = 11 − K . (23.18)
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The Fredholm alternative is now applied to this situation as follows: the equa-
tion Tϕ = ξ has a unique solution for every ξ ∈ L2(M) or there exists a
non-zero solution of Tϕ0 = 0, with an eigenvector of K corresponding to the
eigenvalue 1. The theory remains the same if instead of T we consider the
operator Tλ = 11 − λK with λ � 0. As K is a compact operator there is at
most a denumerable set of λ for which the second part of the Fredholm alter-
native holds: apart from this set the inverse operator ( 11 − λT )−1 exists and is
bounded (in the operator sense). When λ is sufficiently small we may look for
a perturbative expression for such an inverse, as a geometric series

( 11 − λK)−1 = 11 + λK + λ2K2 + · · · = 11 + λW , (23.19)

whereK n is a compact integral operator with kernel

Kn(x, y) =
∫
Mn−1

dz1 . . . dzn−1K(x, z1) · · ·K(zn−1, y) ,

andW is also compact, as it is given by the convergent sum of compact oper-
ators. The problem with (23.19) is that the series has a finite radius of conver-
gence, while apart from a denumerable set of λ’s the inverse operator is well
defined. A fundamental result in the theory of integral equations consists in
rewriting the resolving kernelW as a ratio of two analytic functions of λ

W(x, y) =
D(x, y; λ)

D(λ)
.

If we introduce the notation

K
(

x1 . . . xn

y1 . . . yn

)
=

∣∣∣∣∣∣∣∣
K(x1, y1) . . . K(x1, yn)

. . . . . . . . .
K(xn, y1) . . . K(xn, yn)

∣∣∣∣∣∣∣∣
we may write the explicit expressions

D(λ) = 1 +
∞∑

n=1

(−1)n λ
n

n!

∫
Mn

dz1 . . . dznK
(

z1 . . . zn

z1 . . . zn

)
= exp

⎛⎜⎜⎜⎜⎜⎝− ∞∑
m=1

λm

m
trKm

⎞⎟⎟⎟⎟⎟⎠ (23.20)

D(x, y; λ) = K
(

x
y

)
+

∞∑
n=1

(−λ)n

n!

∫
Mn

dz1 . . .dznK
(

x z1 . . . zn

y z1 . . . zn

)
The quantity D(λ) is known as the Fredholm determinant (see (19.24)):it is an
entire analytic function of λ, and D(λ) = 0 if and only if 1/λ is an eigenvalue
ofK .

Worth emphasizing again: the Fredholm theory is based on the compact-
ness of the integral operator, i.e., on the functional properties (summability) of
its kernel. As the Perron-Frobenius operator is not compact, there is a bit of
wishful thinking involved here.
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23.4 Analyticity of spectral determinants

They savored the strange warm glow of being much more ignorant
than ordinary people, who were only ignorant of ordinary things.

—Terry Pratchett

Spaces of functions integrable L1, or square-integrable L2 on interval [0, 1]
are mapped into themselves by the Perron-Frobenius operator, and in both
cases the constant function φ0 ≡ 1 is an eigenfunction with eigenvalue 1. If we
focus our attention on L1 we also have a family of L1 eigenfunctions,

φθ(y) =
∑
k�0

exp(2πiky)
1
|k|θ

(23.21)

with complex eigenvalue 2−θ, parameterized by complex θ with Re θ > 0. By
varying θ one realizes that such eigenvalues fill out the entire unit disk. Such
essential spectrum, the case k = 0 of Fig. 23.5, hides all fine details of the
spectrum.

What’s going on? Spaces L1 and L2 contain arbitrarily ugly functions, al-
lowing any singularity as long as it is (square) integrable - and there is no way
that expanding dynamics can smooth a kinky function with a non-differentiable
singularity, let’s say a discontinuous step, and that is why the eigenspectrum
is dense rather than discrete. Mathematicians love to wallow in this kind of
muck, but there is no way to prepare a nowhere differentiable L 1 initial den-
sity in a laboratory. The only thing we can prepare and measure are piecewise
smooth (real-analytic) density functions.

For a bounded linear operatorA on a Banach spaceΩ, the spectral radius is
the smallest positive number ρspec such that the spectrum is inside the disk of
radius ρspec, while the essential spectral radius is the smallest positive number
ρess such that outside the disk of radius ρess the spectrum consists only of
isolated eigenvalues of finite multiplicity (see Fig. 23.5).

exercise 23.5
We may shrink the essential spectrum by letting the Perron-Frobenius oper-

ator act on a space of smoother functions, exactly as in the one-branch repeller
case of Section 23.1. We thus consider a smaller space, Ck+α, the space of
k times differentiable functions whose k’th derivatives are Hölder continuous
with an exponent 0 < α ≤ 1: the expansion property guarantees that such
a space is mapped into itself by the Perron-Frobenius operator. In the strip
0 < Re θ < k + α most φθ will cease to be eigenfunctions in the space Ck+α;
the function φn survives only for integer valued θ = n. In this way we arrive
at a finite set of isolated eigenvalues 1, 2−1, · · · , 2−k, and an essential spectral
radius ρess = 2−(k+α).

We follow a simpler path and restrict the function space even further, namely
to a space of analytic functions, i.e., functions for which the Taylor expansion
is convergent at each point of the interval [0, 1]. With this choice things turn
out easy and elegant. To be more specific, let φ be a holomorphic and bounded
function on the disk D = B(0,R) of radius R > 0 centered at the origin. Our
Perron-Frobenius operator preserves the space of such functions provided (1+
R)/2 < R so all we need is to choose R > 1. If F s , s ∈ {0, 1}, denotes the
s inverse branch of the Bernoulli shift (23.6), the corresponding action of the
converg - 9nov2008 ChaosBook.org version13.5, Sep 7 2011



23.4. ANALYTICITY OF SPECTRAL DETERMINANTS 387

Perron-Frobenius operator is given by L sh(y) = σ F ′s (y) h ◦ Fs(y), using the
Cauchy integral formula along the ∂D boundary contour:

Lsh(y) = σ
∮
∂D

dw
2πi

h(w)F ′s(y)

w − Fs (y)
. (23.22)

For reasons that will be made clear later we have introduced a sign σ = ±1 of
the given real branch |F ′(y)| = σ F ′(y). For both branches of the Bernoulli shift
s = 1, but in general one is not allowed to take absolute values as this could
destroy analyticity. In the above formula one may also replace the domain
D by any domain containing [0, 1] such that the inverse branches maps the
closure of D into the interior of D. Why? simply because the kernel remains
non-singular under this condition, i.e., w − F(y) � 0 whenever w ∈ ∂D and
y ∈ Cl D. The problem is now reduced to the standard theory for Fredholm
determinants, Section 23.3. The integral kernel is no longer singular, traces
and determinants are well-defined, and we can evaluate the trace of L F by
means of the Cauchy contour integral formula:

tr LF =

∮
dw
2πi

σF′(w)
w − F(w)

.

Elementary complex analysis shows that since F maps the closure of D into
its own interior, F has a unique (real-valued) fixed point x ∗ with a multiplier
strictly smaller than one in absolute value. Residue calculus therefore yields

exercise 23.6

tr LF =
σF′(x∗)

1 − F′(x∗)
=

1
| f ′(x∗) − 1|

,

justifying our previous ad hoc calculations of traces using Dirac delta func-
tions.

Example 23.8 Perron-Frobenius operator in a matrix representation:
As in Example 23.1, we start with a map with a single fixed point, but this time with
a nonlinear piecewise analytic map f with a nonlinear inverse F = f−1, sign of the
derivative σ = σ(F′) = F′/|F′|

Lφ(z) =
∫

dx δ(z − f (x))φ(x) = σ F′(z) φ(F(z)) .

Assume that F is a contraction of the unit disk, i.e.,

|F(z)| < θ < 1 and |F′(z)| < C < ∞ for |z| < 1 , (23.23)

and expand φ in a polynomial basis by means of the Cauchy formula

φ(z) =
∑
n≥0

znφn =

∮
dw
2πi

φ(w)
w − z

, φn =

∮
dw
2πi

φ(w)
wn+1

Combining this with (23.22), we see that in this basis L is represented by the matrix

Lφ(w) =
∑
m,n

wmLmnφn , Lmn =

∮
dw
2πi

σ F′(w)(F(w))n

wm+1
. (23.24)

Taking the trace and summing we get:

tr L =
∑
n≥0

Lnn =

∮
dw
2πi

σ F′(w)
w − F(w)

.

ChaosBook.org version13.5, Sep 7 2011 converg - 9nov2008



388 CHAPTER 23. WHY DOES IT WORK?

This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).
Hence

tr L = σ F′(w∗)
1 − F′(w∗)

=
1

| f ′(w∗) − 1| .

We worked out a very specific example, yet our conclusions can be general-
ized, provided a number of restrictive requirements are met by the dynamical
system under investigation:

exercise 23.6

1) the evolution operator is multiplicative along the flow,
2) the symbolic dynamics is a finite subshift,
3) all cycle eigenvalues are hyperbolic (exponentially bounded in
magnitude away from 1),
4) the map (or the flow) is real analytic, i.e., it has a piecewise
analytic continuation to a complex extension of the state space.

These assumptions are romantic expectations not satisfied by the dynamical
systems that we actually desire to understand. Still, they are not devoid of
physical interest; for example, nice repellers like our 3-disk game of pinball do
satisfy the above requirements.

Properties 1 and 2 enable us to represent the evolution operator as a finite
matrix in an appropriate basis; properties 3 and 4 enable us to bound the size
of the matrix elements and control the eigenvalues. To see what can go wrong,
consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by the following
weighted evolution operator

Lt(y, x) = |Λt(x)|βδ
(
y − f t(x)

)
,

where Λt(x) is an eigenvalue of the Jacobian matrix transverse to the flow.
Semiclassical quantum mechanics suggest operators of this form with β =
1/2.The problem with such operators arises from the fact that when consid-
ering the Jacobian matrices Jab = JaJb for two successive trajectory seg-
ments a and b, the corresponding eigenvalues are in general not multiplica-
tive, Λab � ΛaΛb (unless a, b are iterates of the same prime cycle p, so
JaJb = Jra+rb

p ). Consequently, this evolution operator is not multiplicative
along the trajectory. The theorems require that the evolution be represented
as a matrix in an appropriate polynomial basis, and thus cannot be applied
to non-multiplicative kernels, i.e., kernels that do not satisfy the semi-group
propertyLt′Lt = Lt′+t.

Property 2 is violated by the 1−d tent map (see Fig. 23.3 (a))

f (x) = α(1 − |1 − 2x|) , 1/2 < α < 1 .

All cycle eigenvalues are hyperbolic, but in general the critical point x c = 1/2
is not a pre-periodic point, so there is no finite Markov partition and the sym-
bolic dynamics does not have a finite grammar (see Section 12.4 for defini-
tions). In practice, this means that while the leading eigenvalue of L might be
computable, the rest of the spectrum is very hard to control; as the parameter α
is varied, the non-leading zeros of the spectral determinant move wildly about.
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(a)
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f(x)

(b)
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1

f(x)

I I0 1

Fig. 23.3 (a) A (hyperbolic) tent map without
a finite Markov partition. (b) A Markov map
with a marginal fixed point.

Property 3 is violated by the map (see Fig. 23.3 (b))

f (x) =

{
x + 2x2 , x ∈ I0 = [0, 1

2 ]
2 − 2x , x ∈ I1 = [ 1

2 , 1]
.

Here the interval [0, 1] has a Markov partition into two subintervals I 0 and I1,
and f is monotone on each. However, the fixed point at x = 0 has marginal
stability Λ0 = 1, and violates condition 3. This type of map is called “inter-
mittent” and necessitates much extra work. The problem is that the dynamics
in the neighborhood of a marginal fixed point is very slow, with correlations
decaying as power laws rather than exponentially. We will discuss such flows
in Chapter 24.

Property 4 is required as the heuristic approach of Chapter 18 faces two
major hurdles:

(1) The trace (18.8) is not well defined because the integral kernel is singu-
lar.

(2) The existence and properties of eigenvalues are by no means clear.

Actually, property 4 is quite restrictive, but we need it in the present ap-
proach, so that the Banach space of analytic functions in a disk is preserved by
the Perron-Frobenius operator.

In attempting to generalize the results, we encounter several problems. First,
in higher dimensions life is not as simple. Multi-dimensional residue calculus
is at our disposal but in general requires that we find poly-domains (direct
product of domains in each coordinate) and this need not be the case. Second,
and perhaps somewhat surprisingly, the ‘counting of periodic orbits’ presents
a difficult problem. For example, instead of the Bernoulli shift consider the
doubling map (11.8) of the circle, x �→ 2x mod 1, x ∈ R/Z. Compared to the
shift on the interval [0, 1] the only difference is that the endpoints 0 and 1 are
now glued together. Because these endpoints are fixed points of the map, the
number of cycles of length n decreases by 1. The determinant becomes:

det(1 − zL) = exp

⎛⎜⎜⎜⎜⎜⎝−∑
n=1

zn

n
2n − 1
2n − 1

⎞⎟⎟⎟⎟⎟⎠ = 1 − z. (23.25)

The value z = 1 still comes from the constant eigenfunction, but the Bernoulli
polynomials no longer contribute to the spectrum (as they are not periodic).
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Proofs of these facts, however, are difficult if one sticks to the space of analytic
functions.

Third, our Cauchy formulas a priori work only when considering purely
expanding maps. When stable and unstable directions co-exist we have to
resort to stranger function spaces, as shown in the next section.

23.5 Hyperbolic maps

I can give you a definion of a Banach space, but I do not know what
that means.

—Federico Bonnetto, Banach space

(H.H. Rugh)
Proceeding to hyperbolic systems, one faces the following paradox: If f is
an area-preserving hyperbolic and real-analytic map of, for example, a 2-
dimensional torus then the Perron-Frobenius operator is unitary on the space
of L2 functions, and its spectrum is confined to the unit circle. On the other
hand, when we compute determinants we find eigenvalues scattered around
inside the unit disk. Thinking back to the Bernoulli shift Example 23.5 one
would like to imagine these eigenvalues as popping up from the L 2 spectrum
by shrinking the function space. Shrinking the space, however, can only make
the spectrum smaller so this is obviously not what happens. Instead one needs
to introduce a ‘mixed’ function space where in the unstable direction one re-
sorts to analytic functions, as before, but in the stable direction one instead
considers a ‘dual space’ of distributions on analytic functions. Such a space
is neither included in nor includes L2 and we have thus resolved the paradox.
However, it still remains to be seen how traces and determinants are calculated.

The linear hyperbolic fixed point Example 23.6 is somewhat misleading, as
we have made explicit use of a map that acts independently along the stable and
unstable directions. For a more general hyperbolic map, there is no way to im-
plement such direct product structure, and the whole argument falls apart. Her
comes an idea; use the analyticity of the map to rewrite the Perron-Frobenius
operator acting as follows (where σ denotes the sign of the derivative in the
unstable direction):

Lh(z1, z2) =
∮ ∮

σ h(w1,w2)
(z1 − f1(w1,w2)( f2(w1,w2) − z2)

dw1

2πi
dw2

2πi
. (23.26)

Here the function φ should belong to a space of functions analytic respectively
outside a disk and inside a disk in the first and the second coordinates; with
the additional property that the function decays to zero as the first coordinate
tends to infinity. The contour integrals are along the boundaries of these disks.
It is an exercise in multi-dimensional residue calculus to verify that for the
above linear example this expression reduces to (23.9). Such operators form
the building blocks in the calculation of traces and determinants. One can
prove the following:
Theorem: The spectral determinant for 2−d hyperbolic analytic maps is entire.

remark 23.8
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The proof, apart from the Markov property that is the same as for the purely
expanding case, relies heavily on the analyticity of the map in the explicit con-
struction of the function space. The idea is to view the hyperbolicity as a cross
product of a contracting map in forward time and another contracting map in
backward time. In this case the Markov property introduced above has to be
elaborated a bit. Instead of dividing the state space into intervals, one divides
it into rectangles. The rectangles should be viewed as a direct product of in-
tervals (say horizontal and vertical), such that the forward map is contracting
in, for example, the horizontal direction, while the inverse map is contract-
ing in the vertical direction. For Axiom A systems (see Remark 23.8) one may
choose coordinate axes close to the stable/unstable manifolds of the map. With
the state space divided into N rectangles {M1,M2, . . . ,MN},Mi = Ih

i × Iv
i one

needs a complex extension Dh
i × Dv

i , with which the hyperbolicity condition
(which simultaneously guarantees the Markov property) can be formulated as
follows:

Analytic hyperbolic property: Either f (M i)∩ Int(M j) = ∅, or for each pair
wh ∈ Cl(Dh

i ), zv ∈ Cl(Dv
j) there exist unique analytic functions of wh, zv: wv =

wv(wh, zv) ∈ Int(Dv
i ), zh = zh(wh, zv) ∈ Int(Dh

j), such that f (wh,wv) = (zh, zv).
Furthermore, if wh ∈ Ih

i and zv ∈ Iv
j , then wv ∈ Iv

i and zh ∈ Ih
j (see Fig. 23.4).

Fig. 23.4 For an analytic hyperbolic map,
specifying the contracting coordinate wh at
the initial rectangle and the expanding coordi-
nate zv at the image rectangle defines a unique
trajectory between the two rectangles. In par-
ticular, wv and zh (not shown) are uniquely
specified.

In plain English, this means for the iterated map that one replaces the coordi-
nates zh, zv at time n by the contracting pair zh,wv, where wv is the contracting
coordinate at time n + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (23.26) acts on functions analytic outside
Dh

i in the horizontal direction (and tending to zero at infinity) and inside D v
i in

the vertical direction. The contour integrals are precisely along the boundaries
of these domains.

A map f satisfying the above condition is called analytic hyperbolic and the
theorem states that the associated spectral determinant is entire, and that the
trace formula (18.8) is correct.

Examples of analytic hyperbolic maps are provided by small analytic per-
turbations of the cat map, the 3-disk repeller, and the 2−d baker’s map.

23.6 The physics of eigenvalues and
eigenfunctions

We appreciate by now that any honest attempt to look at the spectral
properties of the Perron-Frobenius operator involves hard mathematics, but the
effort is rewarded by the fact that we are finally able to control the analytic-
ity properties of dynamical zeta functions and spectral determinants, and thus
substantiate the claim that these objects provide a powerful and well-founded
perturbation theory.

Often (see Chapter 17) physically important part of the spectrum is just the
leading eigenvalue, which gives us the escape rate from a repeller, or, for a
general evolution operator, formulas for expectation values of observables and
their higher moments. Also the eigenfunction associated to the leading eigen-
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value has a physical interpretation (see Chapter 16): it is the density of the
natural measures, with singular measures ruled out by the proper choice of the
function space. This conclusion is in accord with the generalized Perron-
Frobenius theorem for evolution operators. In the finite dimensional setting,
such a theorem is formulated as follows:

remark 23.7

• Perron-Frobenius theorem: Let Li j be a nonnegative matrix, such that
some n exists for which (Ln)i j > 0 ∀i, j: then

(1) The maximal modulus eigenvalue is non-degenerate real, and pos-
itive

(2) The corresponding eigenvector (defined up to a constant) has non-
negative coordinates

We may ask what physical information is contained in eigenvalues beyond the
leading one: suppose that we have a probability conserving system (so that
the dominant eigenvalue is 1), for which the essential spectral radius satisfies
0 < ρess < θ < 1 on some Banach space B. Denote by P the projection
corresponding to the part of the spectrum inside a disk of radius θ. We denote
by λ1, λ2 . . . , λM the eigenvalues outside of this disk, ordered by the size of
their absolute value, with λ1 = 1. Then we have the following decomposition

Lϕ =
M∑

i=1

λiψiLiψ
∗
i ϕ + PLϕ (23.27)

when Li are (finite) matrices in Jordan canomical form (L0 = 0 is a [1×1]
matrix, as λ0 is simple, due to the Perron-Frobenius theorem), whereas ψ i is
a row vector whose elements form a basis on the eigenspace corresponding
to λi, and ψ∗i is a column vector of elements of B∗ (the dual space of linear
functionals over B) spanning the eigenspace of L∗ corresponding to λi. For
iterates of the Perron-Frobenius operator, (23.27) becomes

Lnϕ =

M∑
i=1

λn
i ψiL

n
i ψ
∗
i ϕ + PLnϕ . (23.28)

If we now consider, for example, correlation between initial ϕ evolved n steps
and final ξ,

〈ξ|Ln|ϕ〉 =
∫
M

dy ξ(y) (Lnϕ) (y) =
∫
M

dw (ξ ◦ f n)(w)ϕ(w) , (23.29)

it follows that

〈ξ|Ln|ϕ〉 = λn
1ω1(ξ, ϕ) +

L∑
i=2

λn
i ω

(n)
i (ξ, ϕ) + O(θn) , (23.30)

where
ω(n)

i (ξ, ϕ) =
∫
M

dy ξ(y)ψiL
n
i ψ
∗
i ϕ .

The eigenvalues beyond the leading one provide two pieces of information:
they rule the convergence of expressions containing high powers of the evolu-
tion operator to leading order (the λ1 contribution). Moreover if ω1(ξ, ϕ) = 0

exercise 23.7
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then (23.29) defines a correlation function: as each term in (23.30) vanishes
exponentially in the n → ∞ limit, the eigenvalues λ2, . . . , λM determine the
exponential decay of correlations for our dynamical system. The prefactors ω
depend on the choice of functions, whereas the exponential decay rates (given
by logarithms of λi) do not: the correlation spectrum is thus a universal prop-
erty of the dynamics (once we fix the overall functional space on which the
Perron-Frobenius operator acts).

Example 23.9 Bernoulli shift eigenfunctions:
Let us revisit the Bernoulli shift example (23.6) on the space of analytic functions on

a disk: apart from the origin we have only simple eigenvalues λk = 2−k, k = 0, 1, . . ..
The eigenvalue λ0 = 1 corresponds to probability conservation: the corresponding
eigenfunction B0(x) = 1 indicates that the natural measure has a constant density
over the unit interval. If we now take any analytic function η(x) with zero average
(with respect to the Lebesgue measure), it follows that ω1(η, η) = 0, and from (23.30)
the asymptotic decay of the correlation function is (unless also ω1(η, η) = 0)

Cη,η(n) ∼ exp(−n log 2) . (23.31)

Thus, − log λ1 gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be
treated exactly, as for analytic functions we can employ the Euler-MacLaurin sum-
mation formula

η(z) =
∫ 1

0
dw η(w) +

∞∑
m=1

η(m−1)(1) − η(m−1)(0)
m!

Bm(z) . (23.32)

As we are considering functions with zero average, we have from (23.29) and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

Cη,η(n) =
∞∑

m=1

(2−m)n(η(m)(1) − η(m)(0))
m!

∫ 1

0
dz η(z)Bm(z) .

The decomposition (23.32) is also useful in realizing that the linear functionals ψ∗i
are singular objects: if we write it as

η(z) =
∞∑

m=0

Bm(z)ψ∗m[η] ,

we see that these functionals are of the form

ψ∗i [ε] =
∫ 1

0
dwΨi(w)ε(w) ,

where

Ψi(w) =
(−1)i−1

i!

(
δ(i−1)(w − 1) − δ(i−1)(w)

)
, (23.33)

when i ≥ 1 and Ψ0(w) = 1. This representation is only meaningful when the function
ε is analytic in neighborhoods of w,w − 1.

23.7 Troubles ahead

The above discussion confirms that for a series of examples of increasing gen-
erality formal manipulations with traces and determinants are justified: the
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Perron-Frobenius operator has isolated eigenvalues, the trace formulas are ex-
plicitly verified, and the spectral determinant is an entire function whose zeroes
yield the eigenvalues. Real life is harder, as we may appreciate through the
following considerations:

essential spectrum

isolated eigenvaluespectral radius

Fig. 23.5 Spectrum of the Perron-Frobenius
operator acting on the space of Ck+α Hölder-
continuous functions: only k isolated eigen-
values remain between the spectral radius,
and the essential spectral radius which
bounds the “essential,” continuous spectrum.

• Our discussion tacitly assumed something that is physically entirely rea-
sonable: our evolution operator is acting on the space of analytic func-
tions, i.e., we are allowed to represent the initial density ρ(x) by its Tay-
lor expansions in the neighborhoods of periodic points. This is however

exercise 23.1

far from being the only possible choice: mathematicians often work with
the function space Ck+α, i.e., the space of k times differentiable func-
tions whose k’th derivatives are Hölder continuous with an exponent
0 < α ≤ 1: then every yη with Re η > k is an eigenfunction of the
Perron-Frobenius operator and we have

Lyη =
1
|Λ|Λη

yη , η ∈ C .

This spectrum differs markedly from the analytic case: only a small
number of isolated eigenvalues remain, enclosed between the spectral
radius and a smaller disk of radius 1/|Λ|k+1, see Fig. 23.5. In literature
the radius of this disk is called the essential spectral radius.
In Section 23.4 we discussed this point further, with the aid of a less
trivial 1−d example. The physical point of view is complementary to the
standard setting of ergodic theory, where many chaotic properties of a
dynamical system are encoded by the presence of a continuous spectrum,
used to prove asymptotic decay of correlations in the space of L 2 square-
integrable functions.

exercise 23.2
• A deceptively innocent assumption is hidden beneath much that was dis-

cussed so far: that (23.1) maps a given function space into itself. The
expanding property of the map guarantees that: if f (x) is smooth in a
domain D then f (x/Λ) is smooth on a larger domain, provided |Λ| > 1.
For higher-dimensional hyperbolic flows this is not the case, and, as we
saw in Section 23.5, extensions of the results obtained for expanding 1−d
maps are highly nontrivial.

• It is not at all clear that the above analysis of a simple one-branch, one
fixed point repeller can be extended to dynamical systems with Cantor
sets of periodic points: we showed this in Section 23.4.

Résumé

Examples of analytic eigenfunctions for 1−d maps are seductive, and make
the problem of evaluating ergodic averages appear easy; just integrate over the
desired observable weighted by the natural measure, right? No, generic natural
measure sits on a fractal set and is singular everywhere. The point of this book
is that you never need to construct the natural measure, cycle expansions will
do that job.
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A theory of evaluation of dynamical averages by means of trace formulas
and spectral determinants requires a deep understanding of their analyticity
and convergence. We worked here through a series of examples:

(1) exact spectrum (but for a single fixed point of a linear map)

(2) exact spectrum for a locally analytic map, matrix representation

(3) rigorous proof of existence of discrete spectrum for 2−d hyperbolic maps

In the case of especially well-behaved “Axiom A” systems, where both the
symbolic dynamics and hyperbolicity are under control, it is possible to treat
traces and determinants in a rigorous fashion, and strong results about the an-
alyticity properties of dynamical zeta functions and spectral determinants out-
lined above follow.

Most systems of interest are not of the “axiom A” category; they are neither
purely hyperbolic nor (as we have seen in Chapters 11 and 12 ) do they have
finite grammar. The importance of symbolic dynamics is generally grossly un-
appreciated; the crucial ingredient for nice analyticity properties of zeta func-
tions is the existence of a finite grammar (coupled with uniform hyperbolicity).

The dynamical systems which are really interesting - for example, smooth
bounded Hamiltonian potentials - are presumably never fully chaotic, and the
central question remains: How do we attack this problem in a systematic and
controllable fashion?
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Theorem: Conjecture 3 with technical hypothesis is true in a lot of
cases.

— M. Shub

Further reading

23.1 Surveys of rigorous theory. We recommend the ref-
erences listed in Remark 1.1 for an introduction to the math-
ematical literature on this subject. For a physicist, Driebe’s
monograph [23.19] might be the most accessible introduction
into mathematics discussed briefly in this chapter. There are a
number of reviews of the mathematical approach to dynamical
zeta functions and spectral determinants, with pointers to the
original references, such as Refs. [23.1, 2]. An alternative ap-
proach to spectral properties of the Perron-Frobenius operator
is given in Ref. [23.3].
Ergodic theory, as presented by Sinai [23.14] and others,
tempts one to describe the densities on which the evolution
operator acts in terms of either integrable or square-integrable
functions. For our purposes, as we have already seen, this
space is not suitable. An introduction to ergodic theory is
given by Sinai, Kornfeld and Fomin [23.15]; more advanced
old-fashioned presentations are Walters [23.12] and Denker,
Grillenberger and Sigmund [23.16]; and a more formal one is
given by Peterson [23.17]. W. Tucker [23.28–30] has proven
rigorously via interval arithmetic that the Lorentz attractor is
strange for the original parameters, and has a long stable peri-
odic orbit for the slightly different parameters.

23.2 Fredholm theory. Our brief summary of Fredholm the-
ory is based on the exposition of Ref. [23.4]. A technical intro-
duction of the theory from an operator point of view is given
in Ref. [23.5]. The theory is presented in a more general form
in Ref. [23.6].

23.3 Bernoulli shift. For a more in-depth discussion, con-
sult chapter 3 of Ref. [23.19]. The extension of Fredholm
theory to the case or Bernoulli shift on Ck+α (in which the
Perron-Frobenius operator is not compact – technically it is
only quasi-compact. That is, the essential spectral radius is
strictly smaller than the spectral radius) has been given by Ru-
elle [23.7]: a concise and readable statement of the results is
contained in Ref. [23.8]. We see from (23.31) that for the
Bernoulli shift the exponential decay rate of correlations co-
incides with the Lyapunov exponent: while such an identity
holds for a number of systems, it is by no means a general
result, and there exist explicit counterexamples.

23.4 Hyperbolic dynamics. When dealing with hyperbolic
systems one might try to reduce to the expanding case by pro-
jecting the dynamics along the unstable directions. As men-
tioned in the text this can be quite involved technically, as such
unstable foliations are not characterized by strong smoothness
properties. For such an approach, see Ref. [23.3].

23.5 Spectral determinants for smooth flows. The theorem
on page 390 also applies to hyperbolic analytic maps in d di-
mensions and smooth hyperbolic analytic flows in (d + 1) di-
mensions, provided that the flow can be reduced to a piecewise
analytic map by a suspension on a Poincaré section, comple-
mented by an analytic “ceiling” function (3.5) that accounts
for a variation in the section return times. For example, if
we take as the ceiling function g(x) = esT (x), where T (x) is
the next Poincaré section time for a trajectory staring at x, we
reproduce the flow spectral determinant (19.13). Proofs are
beyond the scope of this chapter.

23.6 Explicit diagonalization. For 1−d repellers a diagonal-
ization of an explicit truncated Lmn matrix evaluated in a judi-
ciously chosen basis may yield many more eigenvalues than a
cycle expansion (see Refs. [23.10, 11]). The reasons why one
persists in using periodic orbit theory are partially aesthetic
and partially pragmatic. The explicit calculation of Lmn de-
mands an explicit choice of a basis and is thus non-invariant,
in contrast to cycle expansions which utilize only the invari-
ant information of the flow. In addition, we usually do not
know how to construct Lmn for a realistic high-dimensional
flow, such as the hyperbolic 3-disk game of pinball flow of
Section 1.3, whereas periodic orbit theory is true in higher di-
mensions and straightforward to apply.

23.7 Perron-Frobenius theorem. A proof of the Perron-
Frobenius theorem may be found in Ref. [23.12]. For positive
transfer operators, this theorem has been generalized by Ru-
elle [23.13].

23.8 Axiom A systems. The proofs in Section 23.5
follow the thesis work of H.H. Rugh [23.9, 18, 19]. For a
mathematical introduction to the subject, consult the excel-
lent review by V. Baladi [23.1]. It would take us too far afield
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to give and explain the definition of Axiom A systems (see
Refs. [23.27, 28]). Axiom A implies, however, the existence
of a Markov partition of the state space from which the prop-
erties 2 and 3 assumed on page 380 follow.

23.9 Left eigenfunctions. We shall never use an explicit
form of left eigenfunctions, corresponding to highly singular
kernels like (23.33). Many details have been elaborated in a
number of papers, such as Ref. [23.20], with a daring physical

interpretation.

23.10 Ulam’s idea. The approximation of Perron-Frobenius
operator defined by (16.14) has been shown to reproduce the
spectrum for expanding maps, once finer and finer Markov
partitions are used [23.21]. The subtle point of choosing a
state space partitioning for a “generic case” is discussed in
Ref. [23.22].
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Exercises

(23.1) What space does L act on? Show that (23.2) is a
complete basis on the space of analytic functions on a
disk (and thus that we found the complete set of eigen-
values).

(23.2) What space does L act on? What can be said about
the spectrum of (23.1) on L1[0, 1]? Compare the result
with Fig. 23.5.

(23.3) Euler formula. Derive the Euler formula (23.5),
|u| < 1:

∞∏
k=0

(1 + tuk) = 1 +
t

1 − u
+

t2u
(1 − u)(1 − u2)

+
t3u3

(1 − u)(1 − u2)(1 − u3)
· · ·

=

∞∑
k=0

tk u
k(k−1)

2

(1 − u) · · · (1 − uk)
.

(23.4) 2−d product expansion∗∗. We conjecture that the
expansion corresponding to Exercise 23.3 is in the 2−d
case given by

∞∏
k=0

(1 + tuk)k+1

=

∞∑
k=0

Fk(u)
(1 − u)2(1 − u2)2 · · · (1 − uk)2

tk

= 1 +
1

(1 − u)2
t +

2u
(1 − u)2(1 − u2)2

t2

+
u2(1 + 4u + u2)

(1 − u)2(1 − u2)2(1 − u3)2
t3 + · · ·

Fk(u) is a polynomial in u, and the coefficients fall off
asymptotically as Cn ≈ un3/2

. Verify; if you have a proof
to all orders, e-mail it to the authors. (See also Solu-
tion 23.3).

(23.5) Bernoulli shift on L spaces. Check that the family
(23.21) belongs to L1([0, 1]). What can be said about the
essential spectral radius on L2([0, 1])? A useful reference
is [23.24].

(23.6) Cauchy integrals. Rework all complex analysis steps
used in the Bernoulli shift example on analytic functions
on a disk.

(23.7) Escape rate. Consider the escape rate from a strange
repeller: find a choice of trial functions ξ and ϕ such that
(23.29) gives the fraction on particles surviving after n it-
erations, if their initial density distribution is ρ0(x). Dis-
cuss the behavior of such an expression in the long time
limit.
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Sometimes They Come Back
—Stephen King

(R. Artuso, P. Dahlqvist, G. Tanner and P. Cvitanović)

In the theory of chaotic dynamics developed so far we assumed that the
evolution operators have discrete spectra {z0, z1, z2, . . .} given by the zeros
of

1/ζ(z) = (· · ·)
∏

k

(1 − z/zk) .

The assumption was based on the tacit premise that the dynamics is every-
where exponentially unstable. Real life is nothing like that - state spaces are
generically infinitely interwoven patterns of stable and unstable behaviors. The
stable (in the case of Hamiltonian flows, integrable) orbits do not communicate
with the ergodic components of the phase space, and can be treated by classical
methods. In general, one is able to treat the dynamics near stable orbits as well
as chaotic components of the phase space dynamics well within a periodic
orbit approach. Problems occur at the borderline between chaos and regular
dynamics where marginally stable orbits and manifolds present difficulties and
still unresolved challenges.

We shall use the simplest example of such behavior - intermittency in 1-
dimensional maps - to illustrate effects of marginal stability. The main message
will be that spectra of evolution operators are no longer discrete, dynamical
zeta functions exhibit branch cuts of the form

1/ζ(z) = (· · ·) + (1 − z)α(· · ·) ,

and correlations decay no longer exponentially, but as power laws.

24.1 Intermittency everywhere

In many fluid dynamics experiments one observes transitions from regular be-
haviors to behaviors where long time intervals of regular behavior (“laminar
phases”) are interrupted by fast irregular bursts. The closer the parameter is to
the onset of such bursts, the longer are the intervals of regular behavior. The
distributions of laminar phase intervals are well described by power laws.

This phenomenon is called intermittency, and it is a very general aspect of
dynamics, a shadow cast by non-hyperbolic, marginally stable state space re-
gions. Complete hyperbolicity assumed in (18.5) is the exception rather than
the rule, and for almost any dynamical system of interest (dynamics in smooth



402 CHAPTER 24. INTERMITTENCY

Fig. 24.1 Typical phase space for an area-
preserving map with mixed phase space dy-
namics; here the standard map for k = 1.2 .

potentials, billiards with smooth walls, the infinite horizon Lorentz gas, etc.)
one encounters mixed state spaces with islands of stability coexisting with hy-
perbolic regions, see Fig. 24.1 andExample 7.6. Wherever stable islands are
interspersed with chaotic regions, trajectories which come close to the stable
islands can stay ‘glued’ for arbitrarily long times. These intervals of regular
motion are interrupted by irregular bursts as the trajectory is re-injected into
the chaotic part of the phase space. How the trajectories are precisely ‘glued’
to the marginally stable region is often hard to describe. What coarsely looks
like a border of an island will under magnification dissolve into infinities of is-
land chains of decreasing sizes, broken tori and bifurcating orbits, as illustrated
in Fig. 24.1.

Intermittency is due to the existence of fixed points and cycles of marginal
stability (5.6), or (in studies of the onset of intermittency) to the proximity of a
nearly marginal complex or unstable orbits. In Hamiltonian systems intermit-
tency goes hand in hand with the existence of (marginally stable) KAM tori.
In more general settings, the existence of marginal or nearly marginal orbits
is due to incomplete intersections of stable and unstable manifolds in a Smale
horseshoe type dynamics (see Fig. 12.11). Following the stretching and
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Fig. 24.2 A complete binary repeller with a
marginal fixed point.

folding of the invariant manifolds in time one will inevitably find state space
points at which the stable and unstable manifolds are almost or exactly tangen-
tial to each other, implying non-exponential separation of nearby points in state
space or, in other words, marginal stability. Under small parameter perturba-
tions such neighborhoods undergo tangent bifurcations - a stable/unstable pair
of periodic orbits is destroyed or created by coalescing into a marginal orbit,
so the pruning which we shall encounter in Chapter 12, and the intermittency
discussed here are two sides of the same coin.

section 12.4

How to deal with the full complexity of a typical Hamiltonian system with
mixed phase space is a very difficult, still open problem. Nevertheless, it is
possible to learn quite a bit about intermittency by considering rather simple
examples. Here we shall restrict our considerations to 1-dimensional maps
which in the neighborhood of a single marginally stable fixed point at x=0
take the form

x �→ f (x) = x + O(x1+s) , (24.1)

and are expanding everywhere else. Such a map may allow for escape, like
the map shown in Fig. 24.2 or the dynamics may be bounded, like the Farey
inter - 12sep2003 ChaosBook.org version13.5, Sep 7 2011
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Fig. 24.3 (a) A tent map trajectory. (b) A
Farey map trajectory.

map (20.31)

x �→ f (x) =

{
x/(1 − x) x ∈ [0, 1/2[
(1 − x)/x x ∈ [1/2, 1]

introduced in Section 20.5.
Figure 24.3 compares a trajectory of the tent map (11.4) side by side with

a trajectory of the Farey map. In a stark contrast to the uniformly chaotic
trajectory of the tent map, the Farey map trajectory alternates intermittently
between slow regular motion close to the marginally stable fixed point, and
chaotic bursts.

section 20.5.3
The presence of marginal stability has striking dynamical consequences:

correlation decay may exhibit long range power law asymptotic behavior and
diffusion processes can assume anomalous character. Escape from a repeller
of the form Fig. 24.2 may be algebraic rather than exponential. In long time
explorations of the dynamics intermittency manifests itself by enhancement of
natural measure in the proximity of marginally stable cycles.

The questions we shall address here are: how does marginal stability affect
zeta functions or spectral determinants? And, can we deduce power law decays
of correlations from cycle expansions?

In Example 23.5 we saw that marginal stability violates one of the conditions
which ensure that the spectral determinant is an entire function. Already the
simple fact that the cycle weight 1/|1 − Λr

p| in the trace (18.3) or the spectral
determinant (19.3) diverges for marginal orbits with |Λ p| = 1 tells us that we
have to treat these orbits with care.

In the following we will incorporate marginal stability orbits into cycle-
expansions in a systematic manner. To get to know the difficulties lying ahead,
we will start in Section 24.2 with a piecewise linear map, with the asymptotics
(24.1). We will construct a dynamical zeta function in the usual way with-
out worrying too much about its justification and show that it has a branch
cut singularity. We will calculate the rate of escape from our piecewise linear
ChaosBook.org version13.5, Sep 7 2011 inter - 12sep2003
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map and find that it is characterized by decay, rather than exponential decay,
a power law. We will show that dynamical zeta functions in the presence of
marginal stability can still be written in terms of periodic orbits, exactly as
in Chapters 17 and 22, with one exception: the marginally stable orbits have
to be explicitly excluded. This innocent looking step has far reaching con-
sequences; it forces us to change the symbolic dynamics from a finite to an
infinite alphabet, and entails a reorganization of the order of summations in
cycle expansions, Section 24.2.4.

Branch cuts are typical also for smooth intermittent maps with isolated
marginally stable fixed points and cycles. In Section 24.3, we discuss the cy-
cle expansions and curvature combinations for zeta functions of smooth maps
tailored to intermittency. The knowledge of the type of singularity one en-
counters enables us to develop the efficient resummation method presented in
Section 24.3.1.

Finally, in Section 24.4, we discuss a probabilistic approach to intermittency
that yields approximate dynamical zeta functions and provides valuable infor-
mation about more complicated systems, such as billiards.

24.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertoire of interesting
dynamics, it is also at the root of many sorrows such as slow convergence of
cycle expansions. In order to get to know the kind of problems which arise
when studying dynamical zeta functions in the presence of marginal stabil-
ity we will consider an artfully concocted piecewise linear model first. From
there we will move on to the more general case of smooth intermittant maps,
Section 24.3.

24.2.1 A toy map

x
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Fig. 24.4 A piecewise linear intermittent map
of (24.2) type: more specifically, the map
piecewise linear over intervals (24.8) of the
toy example studied below, a = .5, b = .6,
s = 1.0.

The Bernoulli shift map (23.6) is an idealized, but highly instructive, example
of a hyperbolic map. To study intermittency we will now construct a likewise
piecewise linear model, an intermittent map stripped down to its bare essen-
tials.

Consider a map x �→ f (x) on the unit intervalM = [0, 1] with two monotone
branches

f (x) =

{
f0(x) for x ∈ M0 = [0, a]
f1(x) for x ∈ M1 = [b, 1]

. (24.2)

The two branches are assumed complete, that is f0(M0) = f1(M1) = M.
The map allows escape if a < b and is bounded if a = b (see Fig. 24.2 and
Fig. 24.4). We take the right branch to be expanding and linear:

f1(x) =
1

1 − b
(x − b) .

Next, we will construct the left branch in a way, which will allow us to model
the intermittent behavior (24.1) near the origin. We chose a monotonically
decreasing sequence of points qn in [0, a] with q1 = a and qn → 0 as n → ∞.
inter - 12sep2003 ChaosBook.org version13.5, Sep 7 2011
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This sequence defines a partition of the left intervalM0 into an infinite number
of connected intervalsMn, n ≥ 2 with

Mn = ]qn, qn−1] and M0 =

∞⋃
n=2

Mn. (24.3)

The map f0(x) is now specified by the following requirements

• f0(x) is continuous.

• f0(x) is linear on the intervalsMn for n ≥ 2.

• f0(qn) = qn−1, that isMn = f −n+1
0 ([a, 1]) .

This fixes the map for any given sequence {qn}. The last condition ensures
the existence of a simple Markov partition. The slopes of the various linear
segments are

f ′0(x) =
f0(qn−1)− f0(qn)

qn−1−qn
= |Mn−1 |

|Mn| for x ∈ Mn, n ≥ 3

f ′0(x) =
f0(q1)− f0(q2)

q1−q2
= 1−a

|M2| for x ∈ M2

f ′0(x) = 1
1−b = |M|

|M1| for x ∈ M1

(24.4)

with |Mn| = qn−1 − qn for n ≥ 2. Note that we do not require as yet that the
map exhibit intermittent behavior.

We will see that the family of periodic orbits with code 10n plays a key
role for intermittent maps of the form (24.1). An orbit 10 n enters the intervals
M1 →Mn+1 →Mn → . . .→M2 successively and the family approaches the
marginal stable fixed point at x = 0 for n→ ∞. The stability of a cycle 10 n for
n ≥ 1 is given by the chain rule (4.45),

Λ10n = f ′0(xn+1) f ′0(xn) . . . f ′0(x2) f ′1(x1) =
1

|Mn+1|
1 − a
1 − b

, (24.5)

with xi ∈ Mi.
The properties of the map (24.2) are completely determined by the sequence

{qn}. By choosing qn = 2−n, for example, we recover the uniformly hyperbolic
Bernoulli shift map (23.6). An intermittent map of the form (24.3) having the
asymptotic behavior (24.1) can be constructed by choosing an algebraically
decaying sequence {qn} behaving asymptotically like

qn ∼
1

n1/s
, (24.6)

where s is the intermittency exponent in (24.1). Such a partition leads to inter-
vals whose length decreases asymptotically like a power-law, that is,

|Mn| ∼
1

n1+1/s
. (24.7)

As can be seen from (24.5), the Floquet multipliers of periodic orbit families
approaching the marginal fixed point, such as the 10 n family increase in turn
only algebraically with the cycle length.

It may now seem natural to construct an intermittent toy map in terms of a
partition |Mn| = 1/n1+1/s, that is, a partition which follows (24.7) exactly. Such
ChaosBook.org version13.5, Sep 7 2011 inter - 12sep2003
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a choice leads to a dynamical zeta function which can be written in terms of so-
called Jonquière functions (or polylogarithms) which arise naturally also in the
context of the Farey map (20.31), and the anomalous diffusion of Section 25.3.
We will, however, not go along this route here; instead, we will engage in a

remark 25.7
bit of reverse engineering and construct a less obvious partition which will
simplify the algebra considerably later without loosing any of the key features
typical for intermittent systems. We fix the intermittent toy map by specifying
the intervalsMn in terms of Gamma functions according to

|Mn| = C
Γ(n + m − 1/s − 1)

Γ(n + m)
for n ≥ 2, (24.8)

where m = [1/s] denotes the integer part of 1/s and C is a normalization
constant fixed by the condition

∑∞
n=2 |Mn| = q1 = a, that is,

C = a

⎡⎢⎢⎢⎢⎢⎣ ∞∑
n=m+1

Γ(n − 1/s)
Γ(n + 1)

⎤⎥⎥⎥⎥⎥⎦−1

. (24.9)

Using Stirling’s formula for the Gamma function

Γ(z) ∼ e−zzz−1/2
√

2π (1 + 1/12z + . . .) ,

we verify that the intervals decay asymptotically like n−(1+1/s), as required by
the condition (24.7).

Next, let us write down the dynamical zeta function of the toy map in terms
of its periodic orbits, that is

1/ζ(z) =
∏

p

(
1 −

znp

|Λp|

)
One may be tempted to expand the dynamical zeta function in terms of the
binary symbolic dynamics of the map; we saw, however, in Section 20.5 that
such cycle expansion converges extremely slowly. The shadowing mechanism
between orbits and pseudo-orbits fails for orbits of the form 10 n with stabilities
given by (24.5), due to the marginal stability of the fixed point 0. It is therefore
advantageous to choose as the fundamental cycles the family of orbits with
code 10n or, equivalently, switch from the finite (binary) alphabet to an infinite
alphabet given by

10n−1 → n.

Due to the piecewise-linear form of the map which maps intervals M n ex-
actly ontoMn−1, all periodic orbits entering the left branch at least twice are
canceled exactly by pseudo cycles, and the cycle expanded dynamical zeta
function depends only on the fundamental series 1, 10, 100, . . .:

1/ζ(z) =
∏
p�0

(
1 − znp

|Λp|

)
= 1 −

∞∑
n=1

zn

|Λ10n−1 |

= 1 − (1 − b)z − C1 − b
1 − a

∞∑
n=2

Γ(n + m − 1/s − 1)
Γ(n + m)

zn . (24.10)
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The fundamental term (20.7) consists here of an infinite sum over algebraically
decaying cycle weights. The sum is divergent for |z| ≥ 1. We will see that this
behavior is due to a branch cut of 1/ζ starting at z = 1. We need to find
analytic continuations of sums over algebraically decreasing terms in (24.10).
Note also that we omitted the fixed point 0 in the above Euler product; we will
discussed this point as well as a proper derivation of the zeta function in more
detail in Section 24.2.4.

24.2.2 Branch cuts

Starting from the dynamical zeta function (24.10), we first have to worry about
finding an analytical continuation of the sum for |z| ≥ 1. We do, however, get
this part for free here due to the particular choice of interval lengths made in
(24.8). The sum over ratios of Gamma functions in (24.10) can be evaluated
analytically by using the following identities valid for 1/s = α > 0 (the famed
binomial theorem in disguise),

• α non-integer

(1 − z)α =
∞∑

n=0

Γ(n − α)
Γ(−α)Γ(n + 1)

zn (24.11)

• α integer

(1 − z)α log(1 − z) =

α∑
n=1

(−1)ncnzn (24.12)

+ (−1)α+1α!
∞∑

n=α+1

(n − α − 1)!
n!

zn

with

cn =

(
α
n

) n−1∑
k=0

1
α − k

.

In order to simplify the notation, we restrict the intermittency parameter to
the range 1 ≤ 1/s < 2 with [1/s] = m = 1. All what follows can easily be
generalized to arbitrary s > 0 using equations (24.11) and (24.12). The infinite
sum in (24.10) can now be evaluated with the help of (24.11) or (24.12), that
is,

∞∑
n=2

Γ(n − 1/s)
Γ(n + 1)

zn =

{
Γ(− 1

s )
[
(1 − z)1/s − 1 + 1

s z
]

for 1 < 1/s < 2;
(1 − z) log(1 − z) + z for s = 1 .

The normalization constant C in (24.8) can be evaluated explicitly using (24.9)
and the dynamical zeta function can be given in closed form. We obtain for
1 < 1/s < 2

1/ζ(z) = 1 − (1 − b)z −
a

1/s − 1
1 − b
1 − a

(
(1 − z)1/s − 1 +

1
s

z

)
. (24.13)

and for s = 1,

1/ζ(z) = 1 − (1 − b)z − a
1 − b
1 − a

(
(1 − z) log(1 − z) + z

)
. (24.14)
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It now becomes clear why the particular choice of intervalsM n made in the
last section is useful; by summing over the infinite family of periodic orbits 0 n1
explicitly, we have found the desired analytical continuation for the dynamical
zeta function for |z| ≥ 1. The function has a branch cut starting at the branch
point z = 1 and running along the positive real axis. That means, the dynamical
zeta function takes on different values when approaching the positive real axis
for Re z > 1 from above and below. The dynamical zeta function for general
s > 0 takes on the form

1/ζ(z) = 1 − (1 − b)z − a
gs(1)

1 − b
1 − a

1
zm−1

(
(1 − z)1/s − gs(z)

)
(24.15)

for non-integer s with m = [1/s] and

1/ζ(z) = 1− (1− b)z− a
gm(1)

1 − b
1 − a

1
zm−1

(
(1 − z)m log(1 − z) − gm(z)

)
(24.16)

for 1/s = m integer and gs(z) are polynomials of order m = [1/s] which can
be deduced from (24.11) or (24.12). We thus find algebraic branch cuts for
non integer intermittency exponents 1/s and logarithmic branch cuts for 1/s
integer. We will see in Section 24.3 that branch cuts of that form are generic
for 1-dimensional intermittent maps.

Branch cuts are the all important new feature of dynamical zeta functions
due to intermittency. So, how do we calculate averages or escape rates of the
dynamics of the map from a dynamical zeta function with branch cuts? We
take ‘a learning by doing’ approach and calculate the escape from our toy map
for a < b.

24.2.3 Escape rate

Our starting point for the calculation of the fraction of survivors after n time
steps, is the integral representation (19.19)

Γn =
1

2πi

∮
γ−r

z−n

(
d
dz

log ζ−1(z)

)
dz , (24.17)

where the contour encircles the origin in the clockwise direction. If the contour
lies inside the unit circle |z| = 1, we may expand the logarithmic derivative of
ζ−1(z) as a convergent sum over all periodic orbits. Integrals and sums can
be interchanged, the integrals can be solved term by term, and the formula
(18.26) is recovered. For hyperbolic maps, cycle expansion methods or other
techniques may provide an analytic extension of the dynamical zeta function
beyond the leading zero; we may therefore deform the original contour into a
larger circle with radius R which encircles both poles and zeros of ζ −1(z), see
Fig. 24.5 (a). Residue calculus turns this into a sum over the zeros zα and poles
zβ of the dynamical zeta function, that is

Γn =

zeros∑
|zα|<R

1
zn
α

−
poles∑
|zβ |<R

1
zn
β

+
1

2πi

∮
γ−R

dz z−n d
dz

log ζ−1, (24.18)

where the last term gives a contribution from a large circle γ−R . We thus find
exponential decay of Γn dominated by the leading zero or pole of ζ −1(z).
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(a)

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

(b)

Im z

- z = 1
zα

γ

γ
R 
-

γcut

r
Re z

Fig. 24.5 The survival probability Γn cal-
culated by contour integration; integrating
(24.17) inside the domain of convergence
|z| < 1 (shaded area) of 1/ζ(z) in periodic
orbit representation yields (18.26). A defor-
mation of the contour γ−r (dashed line) to a
larger circle γ−R gives contributions from the
poles and zeros (x) of 1/ζ(z) between the two
circles. These are the only contributions for
hyperbolic maps (a), for intermittent systems
additional contributions arise, given by the
contour γcut running along the branch cut (b).

Things change considerably in the intermittent case. The point z = 1 is
a branch cut singularity and there exists no Taylor series expansion of ζ −1

around z = 1. Second, the path deformation that led us to (24.18) requires
more care, as it must not cross the branch cut. When expanding the contour to
large |z| values, we have to deform it along the branch Re (z) ≥ 1, Im (z) = 0
encircling the branch cut in anti-clockwise direction, see Fig. 24.5 (b). We will
denote the detour around the cut as γcut. We may write symbolically∮

γr

=

zeros∑
−

poles∑
+

∮
γR

+

∮
γcut

where the sums include only the zeros and the poles in the area enclosed by
the contours. The asymptotics is controlled by the zero, pole or cut closest to
the origin.

Let us now go back to our intermittent toy map. The asymptotics of the sur-
vival probability of the map is here governed by the behavior of the integrand
d
dz log ζ−1 in (24.17) at the branch point z = 1. We restrict ourselves again to
the case 1 < 1/s < 2 first and write the dynamical zeta function (24.13) in the
form

1/ζ(z) = a0 + a1(1 − z) + b0(1 − z)1/s ≡ G(1 − z)

and
a0 =

b − a
1 − a

, b0 =
a

1 − 1/s
1 − b
1 − a

.

Setting u = 1 − z, we need to evaluate

1
2πi

∮
γcut

(1 − u)−n d
du

log G(u)du (24.19)

where γcut goes around the cut (i.e., the negative u axis). Expanding the inte-
grand d

du log G(u) = G′(u)/G(u) in powers of u and u1/s at u = 0, one obtains

d
du

log G(u) =
a1

a0
+

1
s

b0

a0
u1/s−1 + O(u) . (24.20)

The integrals along the cut may be evaluated using the general formula

1
2πi

∮
γcut

uα(1 − u)−ndu =
Γ(n − α − 1)
Γ(n)Γ(−α)

∼ 1
nα+1

(1 + O(1/n)) (24.21)
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which can be obtained by deforming the contour back to a loop around the
point u = 1, now in positive (anti-clockwise) direction. The contour integral
then picks up the (n−1)st term in the Taylor expansion of the function u α at
u = 1, cf. (24.11). For the continuous time case the corresponding formula is

1
2πi

∮
γcut

zαeztdz =
1
Γ(−α)

1
tα+1

. (24.22)

Plugging (24.20) into (24.19) and using (24.21) we get the asymptotic result

Γn ∼
b0

a0

1
s

1
Γ(1 − 1/s)

1
n1/s
=

a
s − 1

1 − b
b − a

1
Γ(1 − 1/s)

1
n1/s

. (24.23)

We see that, asymptotically, the escape from an intermittent repeller is de-
scribed by power law decay rather than the exponential decay we are familiar
with for hyperbolic maps; a numerical simulation of the power-law escape
from an intermittent repeller is shown in Fig. 24.6.

0 200 400 600 800 1000
10

-8

10
-6

10
-4

10
-2

n

p n

Fig. 24.6 The asymptotic escape from an in-
termittent repeller is a power law. Normally
it is preceded by an exponential, which can
be related to zeros close to the cut but beyond
the branch point z = 1, as in Fig. 24.5 (b).

For general non-integer 1/s > 0, we write

1/ζ(z) = A(u) + (u)1/sB(u) ≡ G(u)

with u = 1− z and A(u), B(u) are functions analytic in a disc of radius 1 around
u = 0. The leading terms in the Taylor series expansions of A(u) and B(u) are

a0 =
b − a
1 − a

, b0 =
a

gs(1)
1 − b
1 − a

,

see (24.15). Expanding d
du log G(u) around u = 0, one again obtains leading

order contributions according to (24.20) and the general result follows imme-
diately using (24.21), that is,

Γn ∼
a

sgs(1)
1 − b
b − a

1
Γ(1 − 1/s)

1
n1/s

. (24.24)

Applying the same arguments for integer intermittency exponents 1/s = m,
one obtains

Γn ∼ (−1)m+1 a
sgm(1)

1 − b
b − a

m!
nm

. (24.25)

So far, we have considered the survival probability for a repeller, that is we
assumed a < b. The formulas (24.24) and (24.25) do obviously not apply for
the case a = b, that is, for the bounded map. The coefficient a 0 = (b−a)/(1−a)
in the series representation of G(u) is zero, and the expansion of the logarithmic
derivative of G(u) (24.20) is no longer valid. We get instead

d
du

log G(u) =

⎧⎪⎪⎨⎪⎪⎩ 1
u

(
1 + O(u1/s−1)

)
s < 1

1
u

(
1
s + O(u1−1/s)

)
s > 1

,

assuming non-integer 1/s for convenience. One obtains for the survival prob-
ability.

Γn ∼
{

1 + O(n1−1/s) s < 1
1/s + O(n1/s−1) s > 1

.
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For s > 1, this is what we expect. There is no escape, so the survival probability
is equal to 1, which we get as an asymptotic result here. The result for s > 1 is
somewhat more worrying. It says that Γn defined as sum over the instabilities
of the periodic orbits as in (22.12) does not tend to unity for large n. However,
the case s > 1 is in many senses anomalous. For instance, the invariant density
cannot be normalized. It is therefore not reasonable to expect that periodic
orbit theories will work without complications.

24.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructed in the previous sec-
tion, we had the nice property that interval lengths did exactly coincide with
the inverse of the stability of periodic orbits of the system, that is

|Mn| = 1/|Λ10|n−1.

There is thus no problem in replacing the survival probability Γ n given by (1.2),
(22.2), that is the fraction of state spaceM surviving n iterations of the map,

Γn =
1
|M|

(n)∑
i

|Mi| .

by a sum over periodic orbits of the form (18.26). The only orbit to worry about
is the marginal fixed point 0 itself which we excluded from the zeta function
(24.10).

For smooth intermittent maps, things are less clear and the fact that we had
to prune the marginal fixed point is a warning sign that interval estimates by pe-
riodic orbit stabilities might go horribly wrong. The derivation of the survival
probability in terms of cycle stabilities in Chapter 22 did indeed rely heavily on
a hyperbolicity assumption which is clearly not fulfilled for intermittent maps.
We therefore have to carefully reconsider this derivation in order to show that
periodic orbit formulas are actually valid for intermittent systems in the first
place.

We will for simplicity consider maps, which have a finite number of say
s branches defined on intervals M s and we assume that the map maps each
interval Ms onto M, that is f (Ms ) = M. This ensures the existence of a
complete symbolic dynamics - just to make things easy (see Fig. 24.2).

The generating partition is composed of the domains M s . The nth level
partition C(n) = {Mi} can be constructed iteratively. Here i’s are words i =
s2s2 . . . sn of length n, and the intervalsM i are constructed recursively

Ms j = f −1
s (M j) , (24.26)

where s j is the concatenation of letter s with word j of length n j < n.
In what follows we will concentrate on the survival probability Γ n , postpon-

ing other quantities of interest, such as averages, to later considerations. In
establishing the equivalence of the survival probability and the periodic orbit
formula for the escape rate for hyperbolic systems we have assumed that the
map is expanding, with a minimal expansion rate | f ′(x)| ≥ Λmin > 1. This
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enabled us to bound the size of every survivor stripM i by (22.6), the stability
Λi of the periodic orbit i within theM i, and bound the survival probability by
the periodic orbit sum (22.7).

The bound (22.6)

C1
1
|Λi|

<
|Mi|
|M|

< C2
1
|Λi|

relies on hyperbolicity, and is thus indeed violated for intermittent systems.
The problem is that now there is no lower bound on the expansion rate, the
minimal expansion rate is Λmin = 1. The survivor strip M0n which includes
the marginal fixed point is thus completely overestimated by 1/|Λ 0n | = 1 which
is constant for all n.

exercise 19.7
However, bounding survival probability strip by strip is not what is required

for establishing the bound (22.7). For intermittent systems a somewhat weaker
bound can be established, saying that the average size of intervals along a
periodic orbit can be bounded close to the stability of the periodic orbit for all
but the intervalM0n . The weaker bound applies to averaging over each prime
cycle p separately

C1
1
|Λp|

<
1
np

∑
i∈p

|Mi|
|M|

< C2
1
|Λp|

, (24.27)

where the word i represents a code of the periodic orbit p and all its cyclic
permutations. It can be shown that one can find positive constants C 1, C2

independent of p. Summing over all periodic orbits leads then again to (22.7).
To study averages of multiplicative weights we follow Section 17.1 and in-

troduce a state space observable a(x) and the integrated quantity

An(x) =
n−1∑
k=0

a( f k(x)).

This leads us to introduce the generating function (17.10)

〈eβ An(x)〉,

where 〈.〉 denote some averaging over the distribution of initial points, which
we choose to be uniform (rather than the a priori unknown invariant density).
Again, all we have to show is, that constants C1, C2 exist, such that

C1
eβAp

|Λp|
<

1
np

∑
i∈p

1
|M|

∫
MQ

eβAn(x)dx < C2
eβAp

|Λp|
, (24.28)

is valid for all p. After performing the above average one gets

C1Γn(β) <
1
|M|

∫
M

eβA(x,n)dx < C2Γn(β), (24.29)

with

Γn(β) =
n∑
p

eβAp

|Λp|
. (24.30)
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and a dynamical zeta function can be derived. In the intermittent case one can
expect that the bound (24.28) holds using an averaging argument similar to the
one discussed in (24.27). This justifies the use of dynamical zeta functions for
intermittent systems.

One lesson we should have learned so far is that the natural alphabet to use
is not {0, 1} but rather the infinite alphabet {0k−11, 0 ; k ≥ 1}. The symbol 0
occurs unaccompanied by any 1’s only in the 0 marginal fixed point which is
disconnected from the rest of the transition graph, see Fig. 24.7.

chapter 12

0 0 00 0

0

1

Fig. 24.7 Transition graph corresponding to
the alphabet {0k−11; 0 , k ≥ 1}

What happens if we remove a single prime cycle from a dynamical zeta
function? In the hyperbolic case such a removal introduces a pole in the 1/ζ
and slows down the convergence of cycle expansions. The heuristic interpreta-
tion of such a pole is that for a subshift of finite type removal of a single prime
cycle leads to unbalancing of cancellations within the infinity of of shadowing
pairs. Nevertheless, removal of a single prime cycle is an exponentially small
perturbation of the trace sums, and the asymptotics of the associated trace for-
mulas is unaffected.

chapter 23In the intermittent case, the fixed point 0 does not provide any shadowing ,
and a statement such as

Λ1·0k+1 ≈ Λ1·0kΛ0,

is meaningless. It seems therefore sensible to take out the factor (1− t 0) = 1− z
from the product representation of the dynamical zeta function (19.15), that is,
to consider a pruned dynamical zeta function 1/ζ inter(z) defined by

1/ζ(z) = (1 − z)1/ζinter(z) .

We saw in the last sections, that the zeta function 1/ζ inter(z) has all the nice
properties we know from the hyperbolic case, that is, we can find a cycle ex-
pansion with - in the toy model case - vanishing curvature contributions and we
can calculate dynamical properties like escape after having understood, how to
handle the branch cut. But you might still be worried about leaving out the
extra factor 1 − z all together. It turns out, that this is not only a matter of con-
venience, omitting the marginal 0 cycle is a dire necessity. The cycle weight
Λn

0 = 1 overestimates the corresponding interval length ofM 0n in the partition
of the phase spaceM by an increasing amount thus leading to wrong results
when calculating escape. By leaving out the 0 cycle (and thus also the M 0n

contribution), we are guaranteed to get at least the right asymptotical behavior.
Note also, that if we are working with the spectral determinant (19.3), given

in product form as

det (1 − zL) =
∏

p

∞∏
m=0

(
1 −

znp

|Λp|Λm
p

)
,

for intermittent maps the marginal stable cycle has to be excluded. It introduces
an (unphysical) essential singularity at z = 1 due the presence of a factor (1 −
z)∞ stemming from the 0 cycle.
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24.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piece wise linearity
of the map led to exact cancellations of the curvature contributions leaving
only the fundamental terms. There are still infinitely many orbits included in
the fundamental term, but the cycle weights were chosen in such a way that
the zeta function could be written in closed form. For a smooth intermittent
map this all will not be the case in general; still, we will argue that we have
already seen almost all the fundamentally new features due to intermittency.
What remains are technicalities - not necessarily easy to handle, but nothing
very surprise any more.

In the following we will sketch, how to make cycle expansion techniques
work for general 1-dimensional maps with a single isolated marginal fixed
point. To keep the notation simple, we will consider two-branch maps with a
complete binary symbolic dynamics as for example the Farey map, Fig. 24.3,
or the repeller depicted in Fig. 24.2. We again assume that the behavior near
the fixed point is given by (24.1). This implies that the stability of a family
of periodic orbits approaching the marginally stable orbit, as for example the
family 10n, will increase only algebraically, that is we find again for large n

1
Λ10n

∼ 1
n1+1/s

,

where s denotes the intermittency exponent.
When considering zeta functions or trace formulas, we again have to take

out the marginal orbit 0; periodic orbit contributions of the form t 0n1 are now
unbalanced and we arrive at a cycle expansion in terms of infinitely many
fundamental terms as for our toy map. This corresponds to moving from our
binary symbolic dynamics to an infinite symbolic dynamics by making the
identification

10n−1 → n; 10n−110m−1 → nm; 10n−110m−110k−1 → nmk; . . .

see also Table 24.1. The topological length of the orbit is thus no longer de-
termined by the iterations of our two-branch map, but by the number of times
the cycle goes from the right to the left branch. Equivalently, one may define
a new map, for which all the iterations on the left branch are done in one step.
Such a map is called an induced map and the topological length of orbits in the
infinite alphabet corresponds to the iterations of this induced map.

exercise 12.1
For generic intermittent maps, curvature contributions in the cycle expanded

zeta function will not vanish exactly. The most natural way to organize the
cycle expansion is to collect orbits and pseudo orbits of the same topological
length with respect to the infinite alphabet. Denoting cycle weights in the new
alphabet as tnm... = t10n−110m−1..., one obtains

ζ−1 =
∏
p�0

(
1 − tp

)
= 1 −

∞∑
n=1

ce (24.31)

= 1 −
∞∑

n=1

tn −
∞∑

m=1

∞∑
n=1

1
2

(tmn − tmtn)
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Table 24.1 Infinite alphabet versus the original binary alphabet for the shortest periodic
orbit families. Repetitions of prime cycles (11 = 12, 0101 = 012, . . .) and their cyclic re-
peats (110 = 101, 1110 = 1101, . . .) are accounted for by cancelations and combination
factors in the cycle expansion (24.31).

∞ – alphabet binary alphabet
n = 1 n = 2 n = 3 n = 4 n = 5

1-cycles n 1 10 100 1000 10000
2-cycles mn

1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000
3n 1001 10010 100100 1001000 10010000
4n 10001 100010 1000100 10001000 100010000

3-cycles kmn
11n 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000
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−
∞∑

k=1

∞∑
m=1

∞∑
n=1

(
1
3

tkmn −
1
2

tkmtn +
1
6

tktmtn) −
∞∑

l=1

∞∑
k=1

∞∑
m=1

∞∑
n=1

. . . .

The first sum is the fundamental term, which we have already seen in the toy
model, (24.10). The curvature terms c n in the expansion are now e-fold infi-
nite sums where the prefactors take care of double counting of prime periodic
orbits.

Let us consider the fundamental term first. For generic intermittent maps,
we can not expect to obtain an analytic expression for the infinite sum of the
form

f (z) =
∞∑

n=0

hnzn. (24.32)

with algebraically decreasing coefficients

hn ∼
1
nα

with α > 0

To evaluate the sum, we face the same problem as for our toy map: the power
series diverges for z > 1, that is, exactly in the ‘interesting’ region where poles,
zeros or branch cuts of the zeta function are to be expected. By carefully
subtracting the asymptotic behavior with the help of (24.11) or (24.12), one
can in general construct an analytic continuation of f (z) around z = 1 of the
form

f (z) ∼ A(z) + (1 − z)α−1B(z) α � N (24.33)

f (z) ∼ A(z) + (1 − z)α−1 ln(1 − z) α ∈ N ,

where A(z) and B(z) are functions analytic in a disc around z = 1. We thus
again find that the zeta function (24.31) has a branch cut along the real axis
Re z ≥ 1. From here on we can switch to auto-pilot and derive algebraic
escape, decay of correlation and all the rest. We find in particular that the
asymptotic behavior derived in (24.24) and (24.25) is a general result, that is,
the survival probability is given asymptotically by

Γn ∼ C
1

n1/s
(24.34)

for all 1-dimensional maps of the form (24.1). We have to work a bit harder
if we want more detailed information like the prefactor C, exponential precur-
sors given by zeros or poles of the dynamical zeta function or higher order
corrections. This information is buried in the functions A(z) and B(z) or more
generally in the analytically continued zeta function. To get this analytic con-
tinuation, one may follow either of the two different strategies which we will
sketch next.

24.3.1 Resummation

One way to get information about the zeta function near the branch cut is to
derive the leading coefficients in the Taylor series of the functions A(z) and
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B(z) in (24.33) at z = 1. This can be done in principle, if the coefficients h n

in sums like (24.32) are known (as for our toy model). One then considers a
resummation of the form

∞∑
j=0

h jz
j =

∞∑
j=0

a j(1 − z) j + (1 − z)α−1
∞∑
j=0

b j(1 − z) j, (24.35)

and the coefficients a j and b j are obtained in terms of the h j’s by expanding
(1 − z) j and (1 − z) j+α−1 on the right hand side around z = 0 using (24.11) and
equating the coefficients.

In practical calculations one often has only a finite number of coefficients
h j, 0 ≤ j ≤ N, which may have been obtained by finding periodic orbits and
their stabilities numerically. One can still design a resummation scheme for
the computation of the coefficients a j and b j in (24.35). We replace the infinite
sums in (24.35) by finite sums of increasing degrees n a and nb, and require that

na∑
i=0

ai(1 − z)i + (1 − z)α−1
nb∑
i=0

bi(1 − z)i =

N∑
i=0

hiz
i + O(zN+1) . (24.36)

One proceeds again by expanding the right hand side around z = 0, skipping all
powers zN+1 and higher, and then equating coefficients. It is natural to require
that |nb+α−1−na| < 1, so that the maximal powers of the two sums in (24.36)
are adjacent. If one chooses na+nb+2 = N +1, then, for each cutoff length N,
the integers na and nb are uniquely determined from a linear system of equa-
tions. The price we pay is that the so obtained coefficients depend on the cutoff
N. One can now study convergence of the coefficients a j, and b j, with respect
to increasing values of N, or various quantities derived from a j and b j. Note
that the leading coefficients a0 and b0 determine the prefactor C in (24.34), cf.
(24.23). The resummed expression can also be used to compute zeros, inside
or outside the radius of convergence of the cycle expansion

∑
h jz j.

The scheme outlined in this section tacitly assumes that a representation of
form (24.33) holds in a disc of radius 1 around z = 1. Convergence is improved
further if additional information about the asymptotics of sums like (24.32) is
used to improve the ansatz (24.35).

24.3.2 Analytical continuation by integral
transformations

We will now introduce a method which provides an analytic continuation of
sums of the form (24.32) without explicitly relying on an ansatz (24.35). The
main idea is to rewrite the sum (24.32) as a sum over integrals with the help
of the Poisson summation formula and find an analytic continuation of each
integral by contour deformation. In order to do so, we need to know the n
dependence of the coefficients hn ≡ h(n) explicitly for all n. If the coefficients
are not known analytically, one may proceed by approximating the large n
behavior in the form

h(n) = n−α(C1 + C2n−1 + . . .) , n � 0 ,
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and determine the constants Ci numerically from periodic orbit data. By using
the Poisson resummation identity

∞∑
n=−∞

δ(x − n) =
∞∑

m=−∞
exp(2πimx) , (24.37)

we may write the sum as (24.32)

f (z) =
1
2

h(0) +
∞∑

m=−∞

∫ ∞

0
dx e2πimxh(x)zx. (24.38)

The continuous variable x corresponds to the discrete summation index n and
it is convenient to write z = r exp(iσ) from now on. The integrals are still not
convergent for r > 0, but an analytical continuation can be found by consider-
ing the contour integral, where the contour goes out along the real axis, makes
a quarter circle to either the positive or negative imaginary axis and goes back
to zero. By letting the radius of the circle go to infinity, we essentially rotate
the line of integration from the real onto the imaginary axis. For the m = 0
term in (24.38), we transform x→ ix and the integral takes on the form∫ ∞

0
dx h(x) rx eixσ = i

∫ ∞

0
dx h(ix) rixe−xσ.

The integrand is now exponentially decreasing for all r > 0 and σ � 0 or 2π.
The last condition reminds us again of the existence of a branch cut at Re z ≥
1. By the same technique, we find the analytic continuation for all the other
integrals in (24.38). The real axis is then rotated according to x → sign(m)ix
where sign(m) refers to the sign of m.∫ ∞

0
dx e±2πi|m|xh(x) rxeixσ = ±i

∫ ∞

0
dx h(±ix) r±ixe−x(2π|m|±σ).

Changing summation and integration, we can carry out the sum over |m| ex-
plicitly and one finally obtains the compact expression

f (z) =
1
2

h(0) + i
∫ ∞

0
dx h(ix) rixe−xσ (24.39)

+ i
∫ ∞

0
dx

e−2πx

1 − e−2πx

[
h(ix)rixe−xσ − h(−ix)r−ixexσ

]
.

The transformation from the original sum to the two integrals in (24.39) is
exact for r ≤ 1, and provides an analytic continuation for r > 0. The expression
(24.39) is especially useful for an efficient numerical calculations of a dynam-
ical zeta function for |z| > 1, which is essential when searching for its zeros
and poles.

24.3.3 Curvature contributions

So far, we have discussed only the fundamental term
∑∞

n=1 tn in (24.31), and
showed how to deal with such power series with algebraically decreasing co-
efficients. The fundamental term determines the main structure of the zeta
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function in terms of the leading order branch cut. Corrections to both the zeros
and poles of the dynamical zeta function as well as the leading and subleading
order terms in expansions like (24.33) are contained in the curvature terms in
(24.31). The first curvature correction is the 2-cycle sum

∞∑
m=1

∞∑
n=1

1
2

(tmn − tmtn) ,

with algebraically decaying coefficients which again diverge for |z| > 1. The
analytically continued curvature terms have as usual branch cuts along the pos-
itive real z axis. Our ability to calculate the higher order curvature terms de-
pends on how much we know about the cycle weights t mn. The form of the
cycle stability (24.5) suggests that tmn decrease asymptotically as

tmn ∼
1

(nm)1+1/s
(24.40)

for 2-cycles, and in general for n-cycles as

tm1m2...mn ∼
1

(m1m2 . . .mn)1+1/s
.

If we happen to know the cycle weights tm1m2...mn analytically, we may proceed
as in Section 24.3.2, transform the multiple sums into multiple integrals and
rotate the integration contours.

We have reached the edge of what has been accomplished so far in comput-
ing and what is worth the dynamical zeta functions from periodic orbit data. In
the next section, we describe a probabilistic method applicable to intermittent
maps which does not rely on periodic orbits.

24.4 BER zeta functions

So far we have focused on 1-d models as the simplest setting in which
to investigate dynamical implications of marginal fixed points. We now take
an altogether different track and describe how probabilistic methods may be
employed in order to write down approximate dynamical zeta functions for
intermittent systems.

We will discuss the method in a very general setting, for a flow in arbitrary
dimension. The key idea is to introduce a surface of section P such that all
trajectories traversing this section will have spent some time both near the
marginal stable fixed point and in the chaotic phase. An important quantity
in what follows is (3.5), the first return time τ(x), or the time of flight of a
trajectory starting in x to the next return to the surface of section P. The period
of a periodic orbit p intersecting the P section n p times is

Tp =

np−1∑
k=0

τ( f k(xp)),

ChaosBook.org version13.5, Sep 7 2011 inter - 12sep2003



420 CHAPTER 24. INTERMITTENCY

where f (x) is the Poincaré map, and x p ∈ P is a periodic point. The dynamical
zeta function (19.15)

1/ζ(z, s, β) =
∏

p

(
1 − znp eβAp−sTp

|Λp|

)
, Ap =

np−1∑
k=0

a( f k(xp)), (24.41)

associated with the observable a(x) captures the dynamics of both the flow
chapter 17

and the Poincaré map. The dynamical zeta function for the flow is obtained as
1/ζ(s, β) = 1/ζ(1, s, β), and the dynamical zeta function for the discrete time
Poincaré map is 1/ζ(z, β) = 1/ζ(z, 0, β).

Our basic assumption will be probabilistic. We assume that the chaotic
interludes render the consecutive return (or recurrence) times T (x i), T (xi+1)
and observables a(xi), a(xi+1) effectively uncorrelated. Consider the quantity
eβA(x0,n)−sT (x0,n) averaged over the surface of section P. With the above proba-
bilistic assumption the large n behavior is

〈eβA(x0,n)−sT (x0,n)〉P ∼
(∫
P

eβa(x)−sτρ(x)dx

)n

,

where ρ(x) is the invariant density of the Poincaré map. This type of behav-
ior is equivalent to there being only one zero z 0(s, β) =

∫
eβa(x)−sτ(x)ρ(x)dx of

1/ζ(z, s, β) in the z-β plane. In the language of Ruelle-Pollicott resonances this
means that there is an infinite gap to the first resonance. This in turn implies
that 1/ζ(z, s, β) may be written as

remark 17.1

1/ζ(z, s, β) = z −
∫
P

eβa(x)−sτ(x)ρ(x)dx , (24.42)

where we have neglected a possible analytic and non-zero prefactor. The dyn-
amical zeta function of the flow is now

1/ζ(s, β) = 1/ζ(1, s, β) = 1 −
∫
P

eβa(x)ρ(x)e−sτ(x)dx . (24.43)

Normally, the best one can hope for is a finite gap to the leading resonance of
the Poincaré map. with the above dynamical zeta function only approxima-
tively valid. As it is derived from an approximation due to Baladi, Eckmann,
and Ruelle, we shall refer to it as the BER zeta function 1/ζBER(s, β) in what
follows.

A central role is played by the probability distribution of return times

ψ(τ) =
∫
P
δ(τ − τ(x))ρ(x)dx (24.44)

The BER zeta function at β = 0 is then given in terms of the Laplace transform
exercise 25.6

of this distribution

1/ζBER(s) = 1 −
∫ ∞

0
ψ(τ)e−sτdτ.

exercise 24.5
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Example 24.1 Return times for the Bernoulli map.
For the Bernoulli shift map (23.6)

x �→ f (x) = 2x mod 1,

one easily derives the distribution of return times

ψn =
1
2n

n ≥ 1.

The BER zeta function becomes (by the discrete Laplace transform (18.9))

1/ζBER(z) = 1 −
∞∑

n=1

ψnzn = 1 −
∞∑

n=1

zn

2n

=
1 − z

1 − z/2
= ζ−1(z)/(1 − z/Λ0) . (24.45)

Thanks to the uniformity of the piecewise linear map measure (17.19) the “approxi-
mate” zeta function is in this case the exact dynamical zeta function, with the periodic
point 0 pruned.

Example 24.2 Return times for the model of Section 24.2.1.
For the toy model of Section 24.2.1 one gets ψ1 = |M1|, and ψn = |Mn|(1−b)/(1−a),
for n ≥ 2, leading to a BER zeta function

1/ζBER(z) = 1 − z|M1| −
∞∑

n=2

|Mn|zn,

which again coincides with the exact result, (24.10).

It may seem surprising that the BER approximation produces exact results
in the two examples above. The reason for this peculiarity is that both these
systems are piecewise linear and have complete Markov partitions. As long
as the map is piecewise linear and complete, and the probabilistic approxi-
mation is exactly fulfilled, the cycle expansion curvature terms vanish. The
BER zeta function and the fundamental part of a cycle expansion discussed in
Section 20.1.1 are indeed intricately related, but not identical in general. In
particular, note that the BER zeta function obeys the flow conservation sum
rule (22.11) by construction, whereas the fundamental part of a cycle expan-
sion as a rule does not.

Résumé

The presence of marginally stable fixed points and cycles changes the analytic
structure of dynamical zeta functions and the rules for constructing cycle ex-
pansions. The marginal orbits have to be omitted, and the cycle expansions
now need to include families of infinitely many longer and longer unstable or-
bits which accumulate toward the marginally stable cycles. Correlations for
such non-hyperbolic systems may decay algebraically with the decay rates
controlled by the branch cuts of dynamical zeta functions. Compared to pure
hyperbolic systems, the physical consequences are drastic: exponential decays
are replaced by slow power-law decays, and transport properties, such as the
diffusion may become anomalous.
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Further reading

24.1 What about the evolution operator formalism? The
main virtue of evolution operators was their semigroup prop-
erty (17.25). This was natural for hyperbolic systems where
instabilities grow exponentially, and evolution operators cap-
ture this behavior due to their multiplicative nature. Whether
the evolution operator formalism is a good way to capture the
slow, power law instabilities of intermittent dynamics is less
clear. The approach taken here leads us to a formulation in
terms of dynamical zeta functions rather than spectral det-
erminants, circumventing evolution operators altogether. It
is not known if the spectral determinants formulation would
yield any benefits when applied to intermittent chaos. Some
results on spectral determinants and intermittency can be
found in [24.2]. A useful mathematical technique to deal with
isolated marginally stable fixed point is that of inducing, that
is, replacing the intermittent map by a completely hyperbolic
map with infinite alphabet and redefining the discrete time;
we have used this method implicitly by changing from a fi-
nite to an infinite alphabet. We refer to Refs. [24.3, 20] for
detailed discussions of this technique, as well as applications
to 1-dimensional maps.

24.2 Intermittency. Intermittency was discovered by Man-
neville and Pomeau [24.1] in their study of the Lorentz sys-
tem. They demonstrated that in neighborhood of parameter
value rc = 166.07 the mean duration of the periodic motion
scales as (r − rc)1/2. In Ref. [24.5] they explained this phe-
nomenon in terms of a 1-dimensional map (such as (24.1))
near tangent bifurcation, and classified possible types of in-

termittency.
Piecewise linear models like the one considered here have
been studied by Gaspard and Wang [24.6]. The escape
problem has here been treated following Ref. [24.7], re-
summations following Ref. [24.8]. The proof of the
bound (24.27) can be found in P. Dahlqvist’s notes on
ChaosBook.org/PDahlqvistEscape.ps.gz.
Farey map (20.31) has been studied widely in the context
of intermittent dynamics, for example in Refs. [24.16, 17, 3,
18, 19, 15, 2]. The Fredholm determinant and the dynamic-
al zeta functions for the Farey map (20.31) and the related
Gauss shift map (16.46) have been studied by Mayer [24.16].
He relates the continued fraction transformation to the Rie-
mann zeta function, and constructs a Hilbert space on which
the evolution operator is self-adjoint, and its eigenvalues are
exponentially spaced, just as for the dynamical zeta functions
[24.24] for “Axiom A” hyperbolic systems.

24.3 Tauberian theorems. In this chapter we used Tauberian
theorems for power series and Laplace transforms: Feller’s
monograph [24.9] is a highly recommended introduction to
these methods.

24.4 Probabilistic methods, BER zeta functions. Proba-
bilistic description of intermittent chaos was introduced by
Geisal and Thomae [24.10]. The BER approximation stud-
ied here is inspired by Baladi, Eckmann and Ruelle [24.14],
with further developments in Refs. [24.13, 15].
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Exercises

(24.1) Integral representation of Jonquière functions.
Check the integral representation

J(z, α) =
z
Γ(α)

∫ ∞

0
dξ

ξα−1

eξ − z
for α > 0 .

(24.46)
Note how the denominator is connected to Bose-Einstein
distribution. Compute J(x+ iε)− J(x− iε) for a real x > 1.

(24.2) Power law correction to a power law. Expand (24.20)
further and derive the leading power law correction to
(24.23).

(24.3) Power-law fall off. In cycle expansions the stabilities
of orbits do not always behave in a geometric fashion.
Consider the map f

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

This map behaves as f → x as x→ 0. Define a symbolic
dynamics for this map by assigning 0 to the points that
land on the interval [0, 1/2) and 1 to the points that land
on (1/2, 1]. Show that the stability of orbits that spend
a long time on the 0 side goes as n2. In particular, show
that

Λ 00···0︸︷︷︸
n

1 ∼ n2

(24.4) Power law fall-off of Floquet multipliers in the sta-
dium billiard∗∗. From the cycle expansions point of
view, the most important consequence of the shear in Jn

for long sequences of rotation bounces nk in (8.13) is that
the Λn grows only as a power law in number of bounces:

Λn ∝ n2
k . (24.47)

Check.

(24.5) Probabilistic zeta function for maps. Derive the
probabilistic zeta function for a map with recurrence dis-
tribution ψn.

(24.6) Accelerated diffusion. Consider a map h, such that
ĥ = f̂ , but now running branches are turner into stand-
ing branches and vice versa, so that 1, 2, 3, 4 are standing
while 0 leads to both positive and negative jumps. Build
the corresponding dynamical zeta function and show that

σ2(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

(24.7) Anomalous diffusion (hyperbolic maps). Anomalous
diffusive properties are associated to deviations from lin-
earity of the variance of the phase variable we are look-
ing at: this means the diffusion constant (17.13) either
vanishes or diverges. We briefly illustrate in this exer-
cise how the local local properties of a map are crucial
to account for anomalous behavior even for hyperbolic
systems.

Consider a class of piecewise linear maps, relevant to the
problem of the onset of diffusion, defined by

fε (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λx for x ∈
[
0, x+1

]
a − Λε,γ |x − x+| for x ∈

[
x+1 , x+2

]
1 − Λ′(x − x+2 ) for x ∈

[
x+2 , x−1

]
1 − a + Λε,γ |x − x−| for x ∈

[
x−1 , x−2

]
1 + Λ(x − 1) for x ∈

[
x−2 , 1

]
(24.48)

where Λ = (1/3 − ε1/γ)−1, Λ′ = (1/3 − 2ε1/γ), Λε,γ =
ε1−1/γ, a = 1+ ε, x+ = 1/3, x+1 = x+ − ε1/γ, x+2 = x+ + ε1/γ,
and the usual symmetry properties (25.11) are satisfied.

Thus this class of maps is characterized by two escaping
windows (through which the diffusion process may take
place) of size 2ε1/γ : the exponent γ mimicks the order of
the maximum for a continuous map, while piecewise lin-
earity, besides making curvatures vanish and leading to
finite cycle expansions, prevents the appearance of stable
cycles. The symbolic dynamics is easily described once
we consider a sequence of parameter values {εm}, where
εm = Λ

−(m+1): we then partition the unit interval though
the sequence of points 0, x+1 , x+, x+2 , x−1 , x−, x−2 , 1 and la-
bel the corresponding sub–intervals 1, sa, sb, 2, db, da, 3:
symbolic dynamics is described by an unrestricted gram-
mar over the following set of symbols

{1, 2, 3, s#·1i, d#·3k} # = a, b i, k = m,m+1,m+2, . . .
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This leads to the following dynamical zeta function:

ζ−1
0 (z, α) = 1− 2z

Λ
− z
Λ′
−4 cosh(α)ε1/γ−1

m

zm+1

Λm

(
1 − z
Λ

)−1

from which, by (25.8) we get

D =
2ε1/γ−1

m Λ−m(1 − 1/Λ)−1

1 − 2
Λ
− 1
Λ′ − 4ε1/γ−1

m

(
m+1

Λm(1−1/Λ) +
1

Λm+1(1−1/Λ)2

)
(24.49)

The main interest in this expression is that it allows ex-
ploring how D vanishes in the ε �→ 0 (m �→ ∞) limit: as

a matter of fact, from (24.49) we get the asymptotic be-
havior D ∼ ε1/γ, which shows how the onset of diffusion
is governed by the order of the map at its maximum.

24.5 Onset of diffusion for continuous maps. The
zoology of behavior for continuous maps at the onset
of diffusion is described in Refs. [24.15, 16, 25]: our
treatment for piecewise linear maps was introduced in
Ref. [24.26].
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This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanović)

The advances in the theory of dynamical systems have brought a new life
to Boltzmann’s mechanical formulation of statistical mechanics. Sinai,
Ruelle and Bowen (SRB) have generalized Boltzmann’s notion of er-

godicity for a constant energy surface for a Hamiltonian system in equilibrium
to dissipative systems in nonequilibrium stationary states. In this more general
setting the attractor plays the role of a constant energy surface, and the SRB
measure of Section 16.1 is a generalization of the Liouville measure. Such
measures are purely microscopic and indifferent to whether the system is at
equilibrium, close to equilibrium or far from it. “Far for equilibrium” in this
context refers to systems with large deviations from Maxwell’s equilibrium ve-
locity distribution. Furthermore, the theory of dynamical systems has yielded
new sets of microscopic dynamics formulas for macroscopic observables such
as diffusion constants and the pressure, to which we turn now.

Fig. 25.1 Deterministic diffusion in a finite
horizon periodic Lorentz gas. (T. Schreiber)

We shall apply cycle expansions to the analysis of transport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assumptions are made,
and the all correlations are taken into account by the inclusion of cycles of all
periods. The infinite extent systems for which the periodic orbit theory yields
formulas for diffusion and other transport coefficients are spatially periodic,
the global state space being tiled with copies of a elementary cell. The motiva-
tion are physical problems such as beam defocusing in particle accelerators or
chaotic behavior of passive tracers in 2−d rotating flows, problems which can
be described as deterministic diffusion in periodic arrays.

In Section 25.1 we derive the formulas for diffusion coefficients in a simple
physical setting, the 2−d periodic Lorentz gas. This system, however, is not
the best one to illustrate the theory, due to its complicated symbolic dynamics.
Therefore we apply the theory first to diffusion induced by a 1−d maps in
Section 25.2.

25.1 Diffusion in periodic arrays

The 2−d Lorentz gas is an infinite scatterer array in which diffusion of a light
molecule in a gas of heavy scatterers is modeled by the motion of a point par-
ticle in a plane bouncing off an array of reflecting disks. The Lorentz gas is
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called “gas” as one can equivalently think of it as consisting of any number
of pointlike fast “light molecules” interacting only with the stationary “heavy
molecules” and not among themselves. As the scatterer array is built up from
only defocusing concave surfaces, it is a pure hyperbolic system, and one of
the simplest nontrivial dynamical systems that exhibits deterministic diffusion,
Fig. 25.1. We shall now show that the periodic Lorentz gas is amenable to a
purely deterministic treatment. In this class of open dynamical systems quanti-
ties characterizing global dynamics, such as the Lyapunov exponent, pressure
and diffusion constant, can be computed from the dynamics restricted to the el-
ementary cell. The method applies to any hyperbolic dynamical system that is
a periodic tiling M̂ =

⋃
n̂∈T Mn̂ of the dynamical state space M̂ by translates

Mn̂ of an elementary cellM, with T the abelian group of lattice translations.
If the scattering array has further discrete symmetries, such as reflection sym-
metry, each elementary cell may be built from a fundamental domain M̃ by the
action of a discrete (not necessarily abelian) group G. The symbol M̂ refers
here to the full state space, i.e.,, both the spatial coordinates and the momenta.
The spatial component of M̂ is the complement of the disks in the whole space.

We shall now relate the dynamics inM to diffusive properties of the Lorentz
gas in M̂.

These concepts are best illustrated by a specific example, a Lorentz gas
based on the hexagonal lattice Sinai billiard of Fig. 25.2. We distinguish two

Fig. 25.2 Tiling of M̂, a periodic lattice of
reflecting disks, by the fundamental domain
M̃. Indicated is an example of a global tra-
jectory x̂(t) together with the corresponding
elementary cell trajectory x(t) and the funda-
mental domain trajectory x̃(t). (Courtesy of
J.-P. Eckmann)

types of diffusive behavior; the infinite horizon case, which allows for infinite
length flights, and the finite horizon case, where any free particle trajectory
must hit a disk in finite time. In this chapter we shall restrict our consideration
to the finite horizon case, with disks sufficiently large so that no infinite length
free flight is possible. In this case the diffusion is normal, with x̂(t) 2 growing
like t. We shall discuss the anomalous diffusion case in Section 25.3.

As we will work with three kinds of state spaces, good manners require that
we repeat what tildes, nothings and hats atop symbols signify:

˜ fundamental domain, triangle in Fig. 25.2

elementary cell, hexagon in Fig. 25.2

ˆ full state space, lattice in Fig. 25.2 (25.1)

It is convenient to define an evolution operator for each of the 3 cases of
Fig. 25.2. x̂(t) = f̂ t(x̂) denotes the point in the global space M̂ reached by
the flow in time t. x(t) = f t(x0) denotes the corresponding flow in the elemen-
tary cell; the two are related by

n̂t(x0) = f̂ t(x0) − f t(x0) ∈ T , (25.2)

the translation of the endpoint of the global path into the elementary cellM.
The quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domain M̃;
f̃ t(x̃) is related to f t(x̃) by a discrete symmetry g ∈ G which maps x̃(t) ∈ M̃ to
x(t) ∈ M .

chapter 21
Fix a vector β ∈ Rd, where d is the dimension of the state space. We will

compute the diffusive properties of the Lorentz gas from the leading eigenvalue
of the evolution operator (17.11)

s(β) = lim
t→∞

1
t

log〈eβ·(x̂(t)−x)〉M , (25.3)

diffusion - 12jan2009 ChaosBook.org version13.5, Sep 7 2011



25.1. DIFFUSION IN PERIODIC ARRAYS 429

where the average is over all initial points in the elementary cell, x ∈ M.
If all odd derivatives vanish by symmetry, there is no drift and the second

derivatives

2dDi j =
∂

∂βi

∂

∂β j
s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈(x̂(t) − x)i(x̂(t) − x) j〉M ,

yield a diffusion matrix. This symmetric matrix can, in general, be anisotropic
(i.e., have d distinct eigenvalues and eigenvectors). The spatial diffusion con-
stant is then given by the Einstein relation (17.13)

D =
1

2d

∑
i

∂2

∂β2
i

s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
2dt
〈(q̂(t) − q)2〉M ,

where the i sum is restricted to the spatial components qi of the state space
vectors x = (q, p), i.e., if the dynamics is Hamiltonian, the sum is over the d
the degrees of freedom.

We now turn to the connection between (25.3) and periodic orbits in the
elementary cell. As the full M̂ → M̃ reduction is complicated by the non-

remark 25.5
abelian nature of G, we discuss only the abelian M̂ → M reduction.

25.1.1 Reduction from M̂ toM
The key idea follows from inspection of the relation〈

eβ·(x̂(t)−x)
〉
M
=

1
|M|

∫
x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ − f̂ t(x)) .

|M| =
∫
M dx is the volume of the elementary cell M. Due to translational

symmetry, it suffices to start with a density of trajectories defined over a sin-
gle elementary cell M. As in Section 17.2, we have used the identity 1 =∫
Mdy δ(y − x̂(t)) to motivate the introduction of the evolution operatorL t(ŷ, x).

There is a unique lattice translation n̂ such that ŷ = y − n̂, with the endpoint
y ∈ M translated back to the elementary cell, and f t(x) given by (25.2). The
difference is a translation by a constant lattice vector n̂, and the Jacobian for
changing integration from dŷ to dy equals unity. Therefore, and this is the
main point, translation invariance can be used to reduce this average to the
elementary cell:

〈eβ·(x̂(t)−x)〉M =
1
|M|

∫
x,y∈M

dxdy eβ·( f̂ t(x)−x)δ(y − f t(x)) . (25.4)

As this is a translation, the Jacobian is |∂ŷ/∂y| = 1. In this way the global f̂ t(x)
flow, infinite volume state space averages can be computed by following the
flow f t(x0) restricted to the compact, finite volume elementary cell M. The
equation (25.4) suggests that we study the evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y − f t(x)) , (25.5)

where x̂(t) = f̂ t(x) ∈ M̂ is the displacement in the full space, but x, f t(x),
y ∈ M. It is straightforward to check that this operator satisfies the semigroup
ChaosBook.org version13.5, Sep 7 2011 diffusion - 12jan2009



430 CHAPTER 25. DETERMINISTIC DIFFUSION

property (17.25), ∫
M

dzLt2 (y, z)Lt1(z, x) = Lt2+t1 (y, x) .

For β = 0, the operator (25.5) is the Perron-Frobenius operator (16.10), with
the leading eigenvalue es0 = 1 because there is no escape from this system (see
the flow conservation sum rule (22.11)).

The rest is old hat. The spectrum of L is evaluated by taking the trace
section 18.2

trLt =

∫
M

dx eβ·n̂t(x)δ(x − x(t)) .

Here n̂t(x) is the discrete lattice translation defined in (25.2). Two kinds of or-
bits periodic in the elementary cell contribute. A periodic orbit is called stand-
ing if it is also periodic orbit of the infinite state space dynamics, f̂ Tp (x) = x,
and it is called running if it corresponds to a lattice translation in the dynamics
on the infinite state space, f̂ Tp (x) = x + n̂p. We recognize the shortest repeat-
ing segment of a running orbit as our old ‘relative periodic orbit’ friend from
Chapter 9. In the theory of area–preserving maps such as the standard map of
Example 7.6 these orbits are called accelerator modes, as the diffusion takes
place along the momentum rather than the position coordinate. The traveled
distance n̂p = n̂Tp (x0) is independent of the starting point x0, as can be easily
seen by continuing the path periodically in M̂.

The final result is the spectral determinant (19.6)

det (s(β) − A) =
∏

p

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝− ∞∑
r=1

1
r

e(β·n̂p−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (25.6)

or the corresponding dynamical zeta function (19.15)

1/ζ(β, s) =
∏

p

(
1 − e(β·n̂p−sTp)

|Λp|

)
. (25.7)

The dynamical zeta function cycle averaging formula (20.21) for the diffusion
constant (17.13), zero mean drift 〈x̂ i〉 = 0 , is given by

D =
1

2d

〈
x̂2

〉
ζ

〈T〉ζ
=

1
2d

1
〈T〉ζ

∑′ (−1)k+1(n̂p1 + · · · + n̂pk )
2

|Λp1 · · ·Λpk |
. (25.8)

where the sum is over all distinct non-repeating combination of prime cycles.
The derivation is standard, still the formula is strange. Diffusion is unbounded
motion across an infinite lattice; nevertheless, the reduction to the elementary
cell enables us to compute relevant quantities in the usual way, in terms of
periodic orbits.

A sleepy reader might protest that x(T p) − x(0) is manifestly equal to zero
for a periodic orbit. That is correct; n̂ p in the above formula refers to a dis-
placement x̂(T p) on the infinite periodic lattice, while p refers to closed orbit
of the dynamics f t(x) reduced to the elementary cell, with x p a periodic point
in the closed prime cycle p.
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Even so, this is not an obvious formula. Globally periodic orbits have
x̂2

p = 0, and contribute only to the time normalization 〈T〉 ζ . The mean square
displacement

〈
x̂2

〉
ζ

gets contributions only from the periodic runaway trajec-
tories; they are closed in the elementary cell, but on the periodic lattice each
one grows like x̂(t)2 = (n̂p/Tp)2t2 = v2

pt2. So the orbits that contribute to the
trace formulas and spectral determinants exhibit either ballistic transport or no
transport at all: diffusion arises as a balance between the two kinds of motion,
weighted by the 1/|Λp| measure. If the system is not hyperbolic such weights
may be abnormally large, with 1/|Λ p| ≈ 1/Tp

α rather than 1/|Λp| ≈ e−Tpλ,
where λ is the Lyapunov exponent, and they may lead to anomalous diffusion
- accelerated or slowed down depending on whether the probabilities of the
running or the standing orbits are enhanced.

section 25.3
We illustrate the main idea, tracking of a globally diffusing orbit by the as-

sociated confined orbit restricted to the elementary cell, with a class of simple
1−d dynamical systems where all transport coefficients can be evaluated ana-
lytically.

25.2 Diffusion induced by chains of 1−d maps
(a)

(b)

Fig. 25.3 (a) f̂ (x̂), the full space sawtooth
map (25.9), Λ > 2. (b) f (x), the sawtooth
map restricted to the unit circle (25.12), Λ =
6.

In a typical deterministic diffusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers in one bounce, and then
the process is repeated. As was shown in Chapter 11, the essential part of this
process is the stretching along the unstable directions of the flow, and in the
crudest approximation the dynamics can be modeled by 1−d expanding maps.
This observation motivates introduction of a class of particularly simple 1−d
systems.

Example 25.1 Chains of piecewise linear maps.
We start by defining the map f̂ on the unit interval as

f̂ (x̂) =

{
Λx̂ x̂ ∈ [0, 1/2)
Λx̂ + 1 − Λ x̂ ∈ (1/2, 1]

, Λ > 2 , (25.9)

and then extending the dynamics to the entire real line, by imposing the translation
property

f̂ (x̂ + n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (25.10)

As the map is discontinuous at x̂ = 1/2, f̂ (1/2) is undefined, and the x = 1/2 point
has to be excluded from the Markov partition. The map is antisymmetric under the
x̂-coordinate flip

f̂ (x̂) = − f̂ (−x̂) , (25.11)

so the dynamics will exhibit no mean drift; all odd derivatives of the generating
function (17.11) with respect to β, evaluated at β = 0, will vanish.
The map (25.9) is sketched in Fig. 25.3 (a). Initial points sufficiently close to either
of the fixed points in the initial unit interval remain in the elementary cell for one
iteration; depending on the slope Λ, other points jump n̂ cells, either to the right or to
the left. Repetition of this process generates a random walk for almost every initial
condition.
The translational symmetry (25.10) relates the unbounded dynamics on the real line
to dynamics restricted to the elementary cell - in the example at hand, the unit interval
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curled up into a circle. Associated to f̂ (x̂) we thus also consider the circle map

f (x) = f̂ (x̂) −
[
f̂ (x̂)

]
, x = x̂ − [x̂] ∈ [0, 1] (25.12)

Fig. 25.3 (b), where [· · ·] stands for the integer part (25.2). For the piecewise linear
map of Fig. 25.3 we can evaluate the dynamical zeta function in closed form. Each
branch has the same value of the slope, and the map can be parameterized by a single
parameter, for example its critical value a = f̂ (1/2), the absolute maximum on the
interval [0, 1] related to the slope of the map by a = Λ/2. The largerΛ is, the stronger
is the stretching action of the map.

As noted in Section 25.1.1, the elementary cell cycles correspond to either
standing or running orbits for the map on the full line: we shall refer to n̂ p ∈ Z
as the jumping number of the p cycle, and take as the cycle weight

tp = znp eβn̂p/|Λp| . (25.13)

The diffusion constant formula (25.8) for 1−d maps is

D =
1
2

〈
n̂2

〉
ζ

〈n〉ζ
, (25.14)

where the “mean cycle time” is given by (20.22)

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1
= −

∑′
(−1)k np1 + · · · + npk

|Λp1 · · ·Λpk |
, (25.15)

and the “mean cycle displacement squared” by (20.25)〈
n̂2

〉
ζ
=

∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · · + n̂pk )
2

|Λp1 · · ·Λpk |
, (25.16)

the primed sum indicating all distinct non-repeating combinations of prime
cycles. The evaluation of these formulas for the simple system of Example 25.1
will require nothing more than pencil and paper.

Example 25.2 Unrestricted symbolic dynamics.
Whenever Λ is an integer number, the symbolic dynamics is exceedingly simple.
For example, for the case Λ = 6 illustrated in Fig. 25.3 (b), the elementary cell map
consists of 6 full branches, with uniform stretching factor Λ = 6. The branches have
different jumping numbers: for branches 1 and 2 we have n̂ = 0, for branch 3 we have
n̂ = +1, for branch 4 n̂ = −1, and finally for branches 5 and 6 we have respectively
n̂ = +2 and n̂ = −2. The same structure reappears whenever Λ is an even integer
Λ = 2a: all branches are mapped onto the whole unit interval and we have two n̂ = 0
branches, one branch for which n̂ = +1 and one for which n̂ = −1, and so on, up
to the maximal jump |n̂| = a − 1. The symbolic dynamics is thus full, unrestricted
shift in 2a symbols {0+, 1+, . . . , (a − 1)+, (a − 1)−, . . . , 1−, 0−}, where the symbol
indicates both the length and the direction of the corresponding jump.
For the piecewise linear maps with uniform stretching the weight associated with a
given symbol sequence is a product of weights for individual steps, tsq = tstq. For the
map of Fig. 25.3 there are 6 distinct weights (25.13):

t1 = t2 = z/Λ

t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .
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The piecewise linearity and the simple symbolic dynamics lead to the full cancelation
of all curvature corrections in (20.7). The exact dynamical zeta function (15.15) is
given by the fixed point contributions:

1/ζ(β, z) = 1 − t0+ − t0− − · · · − t(a−1)+ − t(a−1)−

= 1 − z
a

⎛⎜⎜⎜⎜⎜⎜⎝1 + a−1∑
j=1

cosh(β j)

⎞⎟⎟⎟⎟⎟⎟⎠ . (25.17)

The leading (and only) eigenvalue of the evolution operator (25.5) is

s(β) = log

⎧⎪⎪⎨⎪⎪⎩1
a

⎛⎜⎜⎜⎜⎜⎜⎝1 + a−1∑
j=1

cosh(β j)

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , Λ = 2a, a integer . (25.18)

The flow conservation (22.11) sum rule is manifestly satisfied, so s(0) = 0. The first
derivative s(0)′ vanishes as well by the left/right symmetry of the dynamics, imply-
ing vanishing mean drift 〈x̂〉 = 0. The second derivative s(β)′′ yields the diffusion
constant (25.14):

〈n〉ζ = 2a
1
Λ
= 1 ,

〈
x̂2

〉
ζ
= 2

02

Λ
+ 2

12

Λ
+ 2

22

Λ
+ · · · + 2

(a − 1)2

Λ
(25.19)

Using the identity
∑n

k=1 k2 = n(n + 1)(2n + 1)/6 we obtain

D =
1

24
(Λ − 1)(Λ − 2) , Λ even integer . (25.20)

Similar calculation for odd integer Λ = 2k − 1 yields
exercise 25.1

D =
1

24
(Λ2 − 1) , Λ odd integer . (25.21)

25.2.1 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1
k!

dk

dβk
s(β)

∣∣∣∣∣∣
β=0

, B2 = D , (25.22)

known for k > 2 as the Burnett coefficients. The behavior of the higher order
coefficients yields information on the relaxation to the asymptotic distribution
function generated by the diffusive process. Here x̂ t is the relevant dynamical
variable and Bk’s are related to moments

〈
x̂k

t

〉
of arbitrary order.

Were the diffusive process purely Gaussian

ets(β) =
1

√
4πDt

∫ +∞

−∞
dx̂ eβx̂e−x̂2/(4Dt) = eβ

2Dt (25.23)

the only Bk coefficient different from zero would be B2 = D. Hence, non-
vanishing higher order coefficients signal deviations of deterministic diffusion
from a Gaussian stochastic process.

Example 25.3 B4 Burnett coefficient.
For the map under consideration the first Burnett coefficient coefficient B4 is easily

evaluated. For example, using (25.18) in the case of even integer slope Λ = 2a we
obtain

exercise 25.2
B4 = −

1
4! · 60

(a − 1)(2a − 1)(4a2 − 9a + 7) . (25.24)

We see that deterministic diffusion is not a Gaussian stochastic process.
Higher order even coefficients may be calculated along the same lines.
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Fig. 25.4 (a) A partition of the unit inter-
val into six intervals, labeled by the jump-
ing number n̂(x) I = {0+, 1+, 2+ , 2−, 1−, 0−}.
The partition is Markov, as the critical point
is mapped onto the right border ofM1+ . (b)
The transition graph for this partition. (c) The
transition graph in the compact notation of
(25.26) (introduced by Vadim Moroz). (a)

0+ 0 -

0+

0 -

1+ 1 -

1+

1 -

2+ 2 -

2+

2 -

(b)

0+
1+

0--1

22+ -

0+ 0-

-11+

(c)

6
7

4
5

2 31

1 3

25.2.2 Finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the criti-
cal points are mapped in finite numbers of iterations onto partition boundary
points, or onto unstable periodic orbits. We will work out here an example
for which this occurs in two iterations, leaving other cases as exercises. The
key idea is to construct a Markov partition (11.2), with intervals mapped onto
unions of intervals.

Example 25.4 A finite Markov partition.
As an example we determine a value of the parameter 4 ≤ Λ ≤ 6 for which

f ( f (1/2)) = 0. As in the integer Λ case, we partition the unit interval into six
intervals, labeled by the jumping number n̂(x) ∈ {M0+ ,M1+ ,M2+ ,M2− ,M1− ,M0− },
ordered by their placement along the unit interval, Fig. 25.4 (a).
In general the critical value a = f̂ (1/2) will not correspond to an interval border,
but now we choose a such that the critical point is mapped onto the right border of
M1+ . Equating f (1/2) with the right border ofM1+ , x = 1/Λ, we obtain a quadratic
equation with the expanding solution Λ = 2(

√
2 + 1). For this parameter value

f (M1+ ) = M0+
⋃M1+ , f (M2− ) = M0−

⋃M1− , while the remaining intervals map
onto the whole unit intervalM. The transition matrix (14.1) is given by

φ′ = Tφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ0+

φ1+

φ2+

φ2−

φ1−

φ0−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (25.25)

One could diagonalize (25.25) on a computer, but, as we saw in Chapter 14, the
transition graph of Fig. 25.4 (b) corresponding to map Fig. 25.4 (a) offers more in-
sight into the dynamics. Figure 25.4 (b) can be redrawn more compactly as transition
graph Fig. 25.4 (c) by replacing parallel lines in a graph by their sum

2

3

2 311
= t1 + t2 + t3 . (25.26)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} .
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Applying the loop expansion (15.15) of Section 15.3, we are led to the dynamical
zeta function

1/ζ(β, z) = 1 − t0+ − t1+ − t2+0+ − t2+1+ − t2−1− − t2−0− − t1− − t0−

= 1 − 2z
Λ

(1 + cosh(β)) − 2z2

Λ2
(cosh(2β) + cosh(3β)) . (25.27)

For grammar as simple as this one, the dynamical zeta function is the sum over fixed
points of the unrestricted alphabet. As the first check of this expression for the dyn-
amical zeta function we verify that

1/ζ(0, 1) = 1 − 4
Λ
− 4
Λ2
= 0 ,

as required by the flow conservation (22.11). Conversely, we could have started
by picking the desired Markov partition, writing down the corresponding dynamical
zeta function, and then fixingΛ by the 1/ζ(0, 1) = 0 condition. For more complicated
transition graphs this approach, together with the factorization (25.35), is helpful in
reducing the order of the polynomial condition that fixes Λ.
The diffusion constant follows from (25.14)

exercise 25.3

〈n〉ζ = 4
1
Λ
+ 4

2
Λ2

,
〈
n̂2

〉
ζ
= 2

12

Λ
+ 2

22

Λ2
+ 2

32

Λ2

D =
15 + 2

√
2

16 + 8
√

2
. (25.28)

It is by now clear how to build an infinite hierarchy of finite Markov par-
titions: tune the slope in such a way that the critical value f (1/2) is mapped
into the fixed point at the origin in a finite number of iterations p f P(1/2) = 0.
By taking higher and higher values of p one constructs a dense set of Markov
parameter values, organized into a hierarchy that resembles the way in which
rationals are densely embedded in the unit interval. For example, each of the 6
primary intervals can be subdivided into 6 intervals obtained by the 2-nd iterate
of the map, and for the critical point mapping into any of those in 2 steps the
grammar (and the corresponding cycle expansion) is finite. So, if we can prove
continuity of D = D(Λ), we can apply the periodic orbit theory to the saw-
tooth map (25.9) for a random “generic” value of the parameterΛ, for example
Λ = 4.5. The idea is to bracket this value ofΛ by a sequence of nearby Markov
values, compute the exact diffusion constant for each such Markov partition,
and study their convergence toward the value of D for Λ = 4.5. Judging how
difficult such problem is already for a tent map (see Section 15.5), this is not
likely to take only a week of work.

Expressions like (25.20) may lead to an expectation that the diffusion co-
efficient (and thus transport properties) are smooth functions of parameters
controlling the chaoticity of the system. For example, one might expect that
the diffusion coefficient increases smoothly and monotonically as the slope Λ
of the map (25.9) is increased, or, perhaps more physically, that the diffusion
coefficient is a smooth function of the Lyapunov exponent λ. This turns out
not to be true: D as a function of Λ is a fractal, nowhere differentiable curve
illustrated in Fig. 25.5. The dependence of D on the map parameterΛ is rather
unexpected - even though for largerΛmore points are mapped outside the unit
cell in one iteration, the diffusion constant does not necessarily grow.
ChaosBook.org version13.5, Sep 7 2011 diffusion - 12jan2009
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Fig. 25.5 The dependence of D on the map
parameter a is continuous, but not mono-
tone. Here a stands for the slope Λ in (25.9).
(From Ref. [25.9].)
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This is a consequence of the lack of structural stability, even of purely
hyperbolic systems such as the Lozi map and the 1−d diffusion map (25.9).
The trouble arises due to non-smooth dependence of the topological entropy
on system parameters - any parameter change, no mater how small, leads to
creation and destruction of infinitely many periodic orbits. As far as diffusion
is concerned this means that even though local expansion rate is a smooth
function of Λ, the number of ways in which the trajectory can re-enter the
initial cell is an irregular function of Λ.

The lesson is that lack of structural stability implies lack of spectral stabil-
ity, and no global observable is expected to depend smoothly on the system
parameters. If you want to master the material, working through one of the
deterministic diffusion projects on ChaosBook.org/pages is strongly recom-
mended.
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25.3 Marginal stability and anomalous
diffusion

(a)

(b)

Fig. 25.6 (a) A map with marginal fixed
point. (b) The map restricted to the unit cir-
cle.

What effect does the intermittency of Chapter 24 have on transport properties?
A marginal fixed point affects the balance between the running and standing
orbits, thus generating a mechanism that may result in anomalous diffusion.

Example 25.5 Anomalous diffusion.
Consider a 1− d map of the real line on itself shown in Fig. 25.6 (a), with the

same properties as in Section 25.2, except for a marginal fixed point at x = 0. The
corresponding circle map is given in Fig. 25.6 (b). As in Section 24.2.1, a branch
with support inMi, i = 1, 2, 3, 4 has constant slope Λi, while f |M0 is of intermittent
form. To keep you nimble, this time we take a slightly different choice of slopes. The
toy example of Section 24.2.1 was cooked up so that the 1/s branch cut in dynamical
zeta function was the whole answer. Here we shall take a slightly different route, and
pick piecewise constant slopes such that the dynamical zeta function for intermittent
system can be expressed in terms of the Jonquière function

remark 25.7

J(z, s) =
∞∑

k=1

zk/ks . (25.29)

Once the 0 fixed point is pruned away, the symbolic dynamics is given by the infinite
alphabet {1, 2, 3, 4, 0i1, 0 j2, 0k3, 0l4}, i, j, k, l = 1, 2, . . . (compare with Table 24.1).
The partitioning of the subinterval M0 is induced by M0k(right) = f̂ −k

(right)(M3
⋃
M4)

(where f̂ −1
(right) denotes the inverse of the right branch of f̂ |M0 ) and the same reasoning

applies to the leftmost branch. These are regions over which the slope of f̂ |M0 is
constant. Thus we have the following stabilities and jumping numbers associated to
letters:

0k3, 0k4 Λp =
k1+α

q/2 n̂p = 1

0l1, 0l2 Λp =
l1+α

q/2 n̂p = −1

3, 4 Λp = ±Λ n̂p = 1

2, 1 Λp = ±Λ n̂p = −1 , (25.30)

where α = 1/s is determined by the intermittency exponent (24.1), while q is to be
determined by the flow conservation (22.11) for f̂ :

4
Λ
+ 2qζ(α + 1) = 1

(where ζ is the Riemann zeta function), so that q = (Λ − 4)/(2Λζ(α + 1)). The dyn-
amical zeta function picks up contributions just by the alphabet’s letters, as we have
imposed piecewise linearity, and can be expressed in terms of a Jonquière function
(25.29):

1/ζ0(z, β) = 1 − 4
Λ

z cosh β − Λ − 4
Λζ(1 + α)

z cosh β · J(z, α + 1) . (25.31)

Its first zero z(β) is determined by

4
Λ

z +
Λ − 4
Λζ(1 + α)

z · J(z, α + 1) =
1

cosh β
.
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D vanishes by the implicit function theorem, z ′′(β)|β=1 = 0 when α ≤ 1. The
physical interpretation is that a typical orbit will stick for long times near the
0 marginal fixed point, and the ‘trapping time’ will be larger for higher values
of the intermittency parameter s (recall α = 1/s). As always, we need to look
more closely at the behavior of traces of high powers of the transfer operator.

The evaluation of transport coefficient requires one more derivative with
respect to expectation values of state space observables (see Section 25.1): if
we use the diffusion dynamical zeta function (25.7), we may write the diffusion
coefficient as an inverse Laplace transform, in such a way that the distinction
between maps and flows has vanished. In the case of 1−d diffusion we thus
have

D = lim
t→∞

d2

dβ2

1
2πi

∫ a+i∞

a−i∞
ds est ζ

′(β, s)
ζ(β, s)

∣∣∣∣∣∣
β=0

(25.32)

where the ζ ′ refers to the derivative with respect to s.
The evaluation of inverse Laplace transforms for high values of the argument

is most conveniently performed using Tauberian theorems. We shall take

ω(λ) =
∫ ∞

0
dx e−λxu(x) ,

with u(x) monotone as x → ∞; then, as λ �→ 0 and x �→ ∞ respectively (and
ρ ∈ (0,∞),

ω(λ) ∼ 1
λρ

L

(
1
λ

)
if and only if

u(x) ∼ 1
Γ(ρ)

xρ−1L(x) ,

where L denotes any slowly varying function with lim t→∞ L(ty)/L(t) = 1. Now

1/ζ0
′(e−s, β)

1/ζ0(e−s, β)
=

(
4
Λ
+ Λ−4
Λζ(1+α) (J(e−s, α + 1) + J(e−s, α))

)
cosh β

1 − 4
Λ

e−s cosh β − Λ−4
Λζ(1+α) e−s(e−s, α + 1) coshβJ

.

Taking the second derivative with respect to β we obtain

d2

dβ2

(
1/ζ0

′(e−s, β)/ζ−1(e−s, β)
)
β=0

=

4
Λ
+ Λ−4
Λζ(1+α) (J(e−s, α + 1) + J(e−s, α))(

1 − 4
Λ

e−s − Λ−4
Λζ(1+α) e−sJ(e−s, α + 1)

)2
= gα(s) . (25.33)

The asymptotic behavior of the inverse Laplace transform (25.32) may then be
evaluated via Tauberian theorems, once we use our estimate for the behavior
of Jonquière functions near z = 1. The deviations from normal behavior corre-
spond to an explicit dependence of D on time. Omitting prefactors (which can
be calculated by the same procedure) we have

gα(s) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s−2 for α > 1
s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1 .
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The anomalous diffusion exponents follow:
exercise 25.6

〈(x − x0)2〉t ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tα for α ∈ (0, 1)
t/ ln t for α = 1
t for α > 1 .

(25.34)

Résumé

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is pre-
dictable only to the finite Lyapunov time T Lyap ≈ λ−1 ln |L/δx| . Beyond that,
chaos rules. We have discussed the implications in Section 1.8: chaos is good
news for prediction of long term observables such as transport in statistical
mechanics.

The classical Boltzmann equation for evolution of 1-particle density is based
on stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle
collision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
developed here, no correlations are neglected - they are all included in the cycle
averaging formula such as the cycle expansion for the diffusion constant

D =
1

2d
1
〈T〉ζ

∑′
(−1)k+1 (n̂p1 + · · · + n̂pk )

2

|Λp1 · · ·Λpk |
.

Such formulas are exact; the issue in their applications is what are the most
effective schemes of estimating the infinite cycle sums required for their eval-
uation. Unlike most statistical mechanics, here there are no phenomenological
macroscopic parameters; quantities such as transport coefficients are calcula-
ble to any desired accuracy from the microscopic dynamics.

For systems of a few degrees of freedom these results are on rigorous foot-
ing, but there are indications that they capture the essential dynamics of sys-
tems of many degrees of freedom as well.

Though superficially indistinguishable from the probabilistic random walk
diffusion, deterministic diffusion is quite recognizable, at least in low dimen-
sional settings, through fractal dependence of the diffusion constant on the
system parameters, and through non-Gaussion relaxation to equilibrium (non-
vanishing Burnett coefficients).

That Smale’s “structural stability” conjecture turned out to be wrong is not
a bane of chaotic dynamics - it is actually a virtue, perhaps the most dramatic
experimentally measurable prediction of chaotic dynamics. As long as micro-
scopic periodicity is exact, the prediction is counterintuitive for a physicist -
transport coefficients are not smooth functions of system parameters, rather
they are non-monotonic, nowhere differentiable functions.

Actual evaluation of transport coefficients is a test of the techniques devel-
oped above in physical settings. In cases of severe pruning the trace formulas
and ergodic sampling of dominant cycles might be more effective strategy than
the cycle expansions of dynamical zeta functions and systematic enumeration
of all cycles.
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Further reading

25.1 Lorentz gas. The original pinball model proposed by
Lorentz [25.4] consisted of randomly, rather than regularly
placed scatterers.

25.2 Who’s dunnit? Cycle expansions for the diffusion con-
stant of a particle moving in a periodic array have been in-
troduced by R. Artuso [25.5] (exact dynamical zeta function
for 1− d chains of maps (25.8)), by W.N. Vance [25.6],and
by P. Cvitanović, J.-P. Eckmann, and P. Gaspard [25.7] (the
dynamical zeta function cycle expansion (25.8) applied to the
Lorentz gas).

25.3 Lack of structural stability for D. Expressions like
(25.20) may lead to an expectation that the diffusion coeffi-
cient (and thus transport properties) are smooth functions of
the chaoticity of the system (parameterized, for example, by
the Lyapunov exponent λ = lnΛ). This turns out not to be
true: D as a function of Λ is a fractal, nowhere differentiable
curve shown in Fig. 25.5. The dependence of D on the map
parameter Λ is rather unexpected - even though for larger Λ
more points are mapped outside the unit cell in one iteration,
the diffusion constant does not necessarily grow. We refer the
reader to Refs. [25.15, 16] for early work on the determinis-
tic diffusion induced by 1−d maps. The sawtooth map (25.9)
was introduced by Grossmann and Fujisaka [25.17] who de-
rived the integer slope formulas (25.20) for the diffusion con-
stant. The sawtooth map is also discussed in Refs. [25.18].
The fractal dependence of diffusion constant on the map pa-
rameter is discussed in Refs. [25.9, 8, 10]. Section 1.8 gives
a brief summary of the experimental implications; for the the
current state of the art of fractal transport coefficients con-
sult the first part of Klage’s monograph [25.12]. Would be
nice if someone would eventually check these predictions in
experiments... Statistical mechanicians tend to believe that
such complicated behavior is not to be expected in systems
with very many degrees of freedom, as the addition to a large
integer dimension of a number smaller than 1 should be as
unnoticeable as a microscopic perturbation of a macroscopic
quantity. No fractal-like behavior of the conductivity for the
Lorentz gas has been detected so far [25.14]. (P. Cvitanović
and L. Rondoni)

25.4 Symmetry factorization in one dimension. In the β = 0
limit the dynamics (25.11) is symmetric under x → −x, and
the zeta functions factorize into products of zeta functions for
the symmetric and antisymmetric subspaces, as described in

Section 21.1.1:

1
ζ(0, z)

=
1

ζs(0, z)
1

ζa(0, z)
∂

∂z
1
ζ
=

1
ζs

∂

∂z
1
ζa
+

1
ζa

∂

∂z
1
ζs
. (25.35)

The leading (material flow conserving) eigenvalue z = 1 be-
longs to the symmetric subspace 1/ζs(0, 1) = 0, so the deriva-
tives (25.15) also depend only on the symmetric subspace:

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1

=
1

ζa(0, z)
z
∂

∂z
1

ζs(0, z)

∣∣∣∣∣
z=1

. (25.36)

Implementing the symmetry factorization is convenient, but
not essential, at this level of computation.

25.5 Lorentz gas in the fundamental domain. The vector
valued nature of the generating function (25.3) in the case un-
der consideration makes it difficult to perform a calculation
of the diffusion constant within the fundamental domain. Yet
we point out that, at least as regards scalar quantities, the full
reduction to M̃ leads to better estimates. A proper symbolic
dynamics in the fundamental domain has been introduced in
Ref. [25.19].
In order to perform the full reduction for diffusion one should
express the dynamical zeta function (25.7) in terms of the
prime cycles of the fundamental domain M̃ of the lattice (see
Fig. 25.2) rather than those of the elementary (Wigner-Seitz)
cell M. This problem is complicated by the breaking of the
rotational symmetry by the auxiliary vector β, or, in other
words, the non-commutativity of translations and rotations:
see Ref. [25.7].

25.6 Anomalous diffusion. Anomalous diffusion for 1− d
intermittent maps was studied in the continuous time random
walk approach in Refs. [25.10, 11]. The first approach within
the framework of cycle expansions (based on truncated dyn-
amical zeta functions) was proposed in Ref. [25.12]. Our
treatment follows methods introduced in Ref. [25.13], applied
there to investigate the behavior of the Lorentz gas with un-
bounded horizon.

25.7 Jonquière functions. In statistical mechanics Jonquière
function (25.29) appears in the theory of free Bose-Einstein
gas, see Refs. [25.22, 23].
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Exercises

(25.1) Diffusion for odd integer Λ. Show that when the slope
Λ = 2k − 1 in (25.9) is an odd integer, the diffusion con-
stant is given by D = (Λ2 − 1)/24, as stated in (25.21).

(25.2) Fourth-order transport coefficient. Verify (25.24).
You will need the identity

n∑
k=1

k4 =
1

30
n(n + 1)(2n + 1)(3n2 + 3n − 1) .

(25.3) Finite Markov partitions. Verify (25.28).

(25.4) Maps with variable peak shape: Consider the fol-
lowing piecewise linear map

fδ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3x

1−δ x ∈ M1
3
2 −

(
2
δ

∣∣∣ 4−δ
12 − x

∣∣∣) x ∈ M2

1 − 3
1−δ

(
x − 1

6 (2 + δ)
)

x ∈ M3

(25.37)

where M1 =
[
0, 1

3 (1 − δ)
]
, M2 =

[
1
3 (1 − δ), 1

6 (2 + δ)
]
,

M3 =
[

1
6 (2 + δ), 1

2

]
, and the map in [1/2, 1] is obtained

by antisymmetry with respect to x = 1/2, y = 1/2,
Write the corresponding dynamical zeta function relevant
to diffusion and then show that

D =
δ(2 + δ)
4(1 − δ)

See Refs. [25.21, 22] for further details.

(25.5) Two-symbol cycles for the Lorentz gas. Write down
all cycles labeled by two symbols, such as (0 6), (1 7),
(1 5) and (0 5).

ChaosBook.org/pages offers several project-length de-
terministic diffusion exercises.

(25.6) Accelerated diffusion. (medium difficulty) Consider
a map h, such that ĥ = f̂ of Fig. 25.6 (b), but now run-
ning branches are turned into standing branches and vice

versa, so that 1, 2, 3, 4 are standing while 0 leads to both
positive and negative jumps. Build the corresponding
dynamical zeta function and show that

σ2(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

(25.7) Recurrence times for Lorentz gas with infinite hori-
zon. Consider the Lorentz gas with unbounded hori-
zon with a square lattice geometry, with disk radius R and
unit lattice spacing. Label disks according to the (integer)
coordinates of their center: the sequence of recurrence
times {t j} is given by the set of collision times. Consider
orbits that leave the disk sitting at the origin and hit a
disk far away after a free flight (along the horizontal cor-
ridor). Initial conditions are characterized by coordinates
(φ, α) (φ determines the initial position along the disk,
while α gives the angle of the initial velocity with respect
to the outward normal: the appropriate measure is then
dφ cosα dα (φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find how
φ(T ) scales for large values of T : this is equivalent to in-
vestigating the scaling of portions of the state space that
lead to a first collision with disk (n, 1), for large values of
n (as n �→ ∞ n � T ).

(25.8) Diffusion reduced to the fundamental domain.

Maps such as Fig. 25.3 are antisymmetric. Re-
duce such antisymmetric maps as in Example 9.3, and
write down the formula (25.14) for the diffusion con-
stant D in terms of the fundamental domain cycles (rel-
ative periodic orbits) alone (P. Gaspard says it cannot be
done [25.7]).
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Part IV

The rest is noise

Qunadry: all these cycles, but how many do I need?. Any physical system suf-
fers background noise, any numerical prediction suffers computational round-
off noise, and any set of equations models nature up to a given accuracy, since

degrees of freedom are always neglected. If the noise is weak, the short-time dynamics

is not altered significantly: short periodic orbits of the deterministic flow still partition
coarsely the state space.
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He who establishes his argument by noise and command shows that
his reason is weak.

—M. de Montaigne

(G. Vattay and P. Cvitanović)

This chapter (which reader can safely skip on the first reading) is about
noise, how it affects classical dynamics, and the ways it mimics quantum
dynamics.

Why - in a monograph on deterministic and quantum chaos - start discussing
noise? First, in physical settings any dynamics takes place against a noisy
background, and whatever prediction we might have, we have to check its ro-
bustness to noise. Second, as we show in this chapter, to the leading order in
noise strength, the semiclassical Hamilton-Jacobi formalism applies to weakly
stochastic flows in toto. As classical noisy dynamics is more intuitive than
quantum dynamics, understanding effects of noise helps demystify some of
the formal machinery of semiclassical quantization. Surprisingly, symplectic
structure emerges here not as a deep principle of mechanics, but an artifact of
the leading approximation to quantum/noisy dynamics, not respected by higher
order corrections. The same is true of semiclassical quantum dynamics; higher
corrections do not respect canonical invariance. Third, the variational princi-
ple derived here turns out to be a powerful tool for determining periodic orbits,
see Chapter 27. And, last but not least, upon some reflection, the whole en-
terprize of replacing deterministic trajectories by deterministic evolution oper-
ators, chapters 16 to 20, seems fatally flowed; if we have given up infinite
precision in specifying initial conditions, why do we alow ourselves the infi-
nite precision in the specification of evolution laws, i.e., define the evolution
operator by means of the Dirac delta function δ(y − f t(x))? It will be comfort-
ing to learn that the deterministic evolution operators survive unscathed, as the
leading approximation to the noisy ones in the limit of weak noise.

We start by deriving the continuity equation for purely deterministic, noise-
less flow, and then incorporate noise in stages: diffusion equation, Langevin
equation, Fokker-Planck equation, Hamilton-Jacobi formulation, stochastic path
integrals.

26.1 Deterministic transport

(E.A. Spiegel and P. Cvitanović)
The large body of accrued wisdom on the subject of flows called fluid dynam-
ics is about physical flows of media with continuous densities. On the other
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hand, the flows in state spaces of dynamical systems frequently require more
abstract tools. To sharpen our intuition about those, it is helpful to outline the
more tangible fluid dynamical vision.

Consider first the simplest property of a fluid flow called material invariant.
A material invariant I(x) is a property attached to each point x that is preserved
by the flow, I(x) = I( f t(x)); for example, at point x(t) = f t(x)) a green particle
(more formally: a passive scalar) is embedded into the fluid. As I(x) is in-
variant, its total time derivative vanishes, İ(x) = 0. Written in terms of partial
derivatives this is the conservation equation for the material invariant

∂t I + v · ∂I = 0 . (26.1)

Let the density of representative points be ρ(x, t). The manner in which the
flow redistributes I(x) is governed by a partial differential equation whose form
is relatively simple because the representative points are neither created nor
destroyed. This conservation property is expressed in the integral statement

∂t

∫
V

dx ρI = −
∫
∂V

dσ n̂iviρI ,

where V is an arbitrary volume in the state space M, ∂V is its surface, n̂ is
its outward normal, and repeated indices are summed over throughout. The
divergence theorem turns the surface integral into a volume integral,∫

V

[
∂t(ρI) + ∂i(viρI)

]
dx = 0 ,

where ∂i is the partial derivative operator with respect to xi. Since the integra-
tion is over an arbitrary volume, we conclude that

∂t(ρI) + ∂i(ρIvi) = 0 . (26.2)

The choice I ≡ 1 yields the continuity equation for the density:

∂tρ + ∂i(ρvi) = 0 . (26.3)

We have used here the language of fluid mechanics to ease the visualization,
but, as we already saw in (16.25), our previous derivation of the continuity
equation, any deterministic state space flow satisfies the continuity equation.

26.2 Brownian diffusion

Consider tracer molecules, let us say big, laggardly green molecules, embed-
ded in a denser gas of light molecules. Assume that the density of tracer
molecules ρ compared to the background gas density is low, so we can neglect
green-green collisions. Each green molecule, jostled by frequent collisions
with the background gas, executes its own Brownian motion. The molecules
are neither created nor destroyed, so their number within an arbitrary volume
V changes with time only by the current density j i flow through its surface ∂V
(with n̂ its outward normal):

∂t

∫
V

dx ρ = −
∫
∂V

dσ n̂i ji . (26.4)
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The divergence theorem turns this into the conservation law for tracer density:

∂tρ + ∂i ji = 0 . (26.5)

The tracer density ρ is defined as the average density of a ‘material particle,’
averaged over a subvolume large enough to contain many green (and still many
more background) molecules, but small compared to the macroscopic obser-
vational scales. What is j? If the density is constant, on the average as many
molecules leave the material particle volume as they enter it, so a reasonable
phenomenological assumption is that the average current density (not the in-
dividual particle current density ρvi in (26.3)) is driven by the density gradient

ji = −D
∂ρ

∂xi
. (26.6)

This is the Fick law, with the diffusion constant D a phenomenological param-
eter. For simplicity here we assume that D is a scalar; in general D→ Di j(x, t)
is a space- and time-dependent tensor. Substituting this j into (26.5) yields the
diffusion equation

∂

∂t
ρ(x, t) = D

∂2

∂x2
ρ(x, t) . (26.7)

This linear equation has an exact solution in terms of an initial Dirac delta
density distribution, ρ(x, 0) = δ(x − x0),

ρ(x, t) =
1

(4πDt)d/2
e−

(x−x0 )2

4Dt =
1

(4πDt)d/2
e−

ẋ2

4Dt . (26.8)

The average distance covered in time t obeys the Einstein diffusion formula〈
(x − x0)2

〉
t
=

∫
dx ρ(x, t)(x − x0)2 = 2dDt . (26.9)

26.3 Weak noise

The connection between path integration and Brownian motion is so
close that they are nearly indistinguishable. Unfortunately though,
like a body and its mirror image, the sum over paths for Brownian
motion is a theory having substance, while its path integral image
exists mainly in the eye of the beholder.

—L. S. Schulman

So far we have considered tracer molecule dynamics which is purely Brown-
ian, with no deterministic “drift.” Consider next a deterministic flow ẋ = v(x)
perturbed by a stochastic term ξ(t),

ẋ = v(x) + ξ(t) . (26.10)

We shall refer to equations of this type as Langevin equations. Assume that
ξ(t)’s fluctuate around [ẋ − v(x)] with a Gaussian probability density

P(ξ, δt) =
(
δt

4πD

)d/2

e−
ξ2

4D δt , (26.11)
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and are uncorrelated in time (white noise)〈
ξ(t)ξ(t′)

〉
= 2dDδ(t − t′) . (26.12)

The normalization factors in (26.8) and (26.11) differ, as p(ξ, δt) is a probabil-
ity density for velocity ξ, and ρ(x, t) is a probability density for position x. The
material particle now drifts along the trajectory x(t), so the velocity diffusion
follows (26.8) for infinitesimal time δt only. As D → 0, the distribution tends
to the (noiseless, deterministic) Dirac delta function.

The phenomenological Fick law current (26.6) is now a sum of two compo-
nents, the material particle center-of-mass deterministic drift v(x) and the weak
noise term

ji = ρvi − D
∂ρ

∂xi
, (26.13)

Substituting this j into (26.5) yields the Fokker-Planck equation

∂tρ + ∂i(ρvi) = D ∂2ρ. (26.14)

The left hand side, dρ/dt = ∂tρ + ∂ · (ρv), is deterministic, with the continuity
equation (26.3) recovered in the weak noise limit D → 0. The right hand side
describes the diffusive transport in or out of the material particle volume. If
the density is lower than in the immediate neighborhood, the local curvature is
positive, ∂2ρ > 0, and the density grows. Conversely, for negative curvature
diffusion lowers the local density, thus smoothing the variability of ρ. Where
is the density going globally?

If the system is bound, the probability density vanishes sufficiently fast out-
side the central region, ρ(x, t) → 0 as |x| → ∞, and the total probability is
conserved ∫

dx ρ(x, t) = 1 .

Any initial density ρ(x, 0) is smoothed by diffusion and with time tends to the
invariant density

ρ0(x) = lim
t→∞

ρ(x, t) , (26.15)

an eigenfunction ρ(x, t) = est ρ0(x) of the time-independent Fokker-Planck
equation (

∂ivi − D ∂2 + sα
)
ρα = 0 , (26.16)

with vanishing eigenvalue s0 = 0. Provided the noiseless classical flow is hy-
perbolic, in the vanishing noise limit the leading eigenfunction of the Fokker-
Planck equation tends to natural measure (16.17) of the corresponding deter-
ministic flow, the leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of probability from the
region under study, the leading eigenvalue is contracting, s 0 < 0, and the den-
sity of the system tends to zero. In this case the leading eigenvalue s 0 of the
time-independent Fokker-Planck equation (26.16) can be interpreted by say-
ing that a finite density can be maintained by pumping back probability into
the system at a constant rate γ = −s0. The value of γ for which any initial
probability density converges to a finite equilibrium density is called the es-
cape rate. In the noiseless limit this coincides with the deterministic escape
rate (17.15).
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We have introduced noise phenomenologically, and used the weak noise
assumption in retaining only the first derivative of ρ in formulating the Fick
law (26.6) and including noise additively in (26.13). A full theory of stochastic
ODEs is much subtler, but this will do for our purposes.

26.4 Weak noise approximation

In the spirit of the WKB approximation, we shall now study the evolution of
the probability distribution by rewriting it as

ρ(x, t) = e
1

2D R(x,t) . (26.17)

The time evolution of R is given by

∂tR + v∂R + (∂R)2 = D∂v + D∂2R .

Consider now the weak noise limit and drop the terms proportional to D. The
remaining equation

∂tR + H(x, ∂R) = 0

is known as the Hamilton-Jacobi equation . The function R can be interpreted
as the Hamilton’s principal function, corresponding to the Hamiltonian

H(x, p) = p v(x) + p2/2 ,

with the Hamilton’s equations of motion

ẋ = ∂pH = v + p

ṗ = −∂xH = −AT p , (26.18)

where A is the stability matrix (4.3)

Ai j(x) =
∂vi(x)
∂x j

.

The noise Lagrangian is then

L(x, ẋ) = ẋ · p − H =
1
2

[ẋ − v(x)]2 . (26.19)

We have come the full circle - the Lagrangian is the exponent of our assumed
Gaussian distribution (26.11) for noise ξ 2 = [ẋ − v(x)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two points x 0 and x. Which noisy
path is the most probable path that connects them in time t? The probability
of a given path P is given by the probability of the noise sequence ξ(t) which
generates the path. This probability is proportional to the product of the noise
probability functions (26.11) along the path, and the total probability for reach-
ing x from x0 in time t is given by the sum over all paths, or the stochastic path
integral (Wiener integral)

P(x, x0, t) ∼
∑
P

∏
j

p(ξ(τ j), δτ j) =
∫ ∏

j

dξ j

(
δτ j

4πD

)d/2

e−
ξ(τ j )2

4D δτi

→ 1
Z

∑
P

exp

(
− 1

4D

∫ t

0
dτ ξ2(τ)

)
, (26.20)
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where δτi = τi − τi, and the normalization constant is

1
Z
= lim

∏
i

(
δτi

2πD

)d/2

.

The most probable path is the one maximizing the integral inside the exponen-
tial. If we express the noise (26.10) as

ξ(t) = ẋ(t) − v(x(t)) ,

the probability is maximized by the variational principle

min
∫ t

0
dτ[ẋ(τ) − v(x(τ))]2 = min

∫ t

0
L(x(τ), ẋ(τ))dτ .

By the standard arguments, for a given x, x ′ and t the probability is maximized
by a solution of Hamilton’s equations (26.18) that connects the two points
x0 → x′ in time t.

Résumé

When a deterministic trajectory is smeared out under the influence of Gaussian
noise of strength D, the deterministic dynamics is recovered in the weak noise
limit D→ 0. The effect of the noise can be taken into account by adding noise
corrections to the classical trace formula.

Further reading

26.1 Literature. The theory of stochastic processes is a vast
subject, spanning over centuries and over disciplines ranging
from pure mathematics to impure finance. We enjoyed read-
ing van Kampen classic [26.1], especially his railings against
those who blunder carelessly into nonlinear landscapes. Hav-
ing committed this careless chapter to print, we shall no doubt
be cast to a special place on the long list of van Kampen’s
sinners (and not for the first time, either). A more specialized
monograph like Risken’s [26.2] will do just as well. The stan-
dard Langevin equation is a stochastic equation for a Brown-
ian particle, in which one replaces the Newton’s equation for
force by two counter-balancing forces: random accelerations
ξ(t) which tend to smear out a particle trajectory, and a damp-
ing term which drives the velocity to zero. Here we denote
by ‘Langevin equation’ a more general family of stochastic
differential equations (26.10) with additive weak noise limit.
If a flow is linear (in Hamiltonian case, with harmonic os-

cillator potential) with an attractive fixed point, Lt
D describes

a version of the Ornstein-Uhlenbeck process [26.20], (intro-
duced already by Laplace in 1810, see Ref. [26.21]). Gaus-
sians are often rediscovered, so Onsager-Machlup seminal
paper [26.18], which studies the same attractive linear fixed
point is in literature often credited for being the first to in-
troduce a variational method - the “principle of least dissipa-
tion” - based on the Lagrangian of form (26.19). They, in
turn, credit Rayleigh [26.19] with introducing the least dissi-
pation principle in hydrodynamics. Onsager-Machlup paper
deals only with a finite set of linearly damped thermodynamic
variables, and not with a nonlinear flow or unstable periodic
orbits. In our exposition the setting is much more general:
we study fluctuations over a state space varying velocity field
v(x). Schulman’s monograph [26.11] contains a very read-
able summary of Kac’s [26.12] exposition of Wiener’s integral
over stochastic paths.
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Exercises

(26.1) Who ordered
√
π ? Derive the Gaussian integral

1
√

2π

∫ ∞

−∞
dx e−

x2
2a =

√
a , a > 0 .

assuming only that you know to integrate the exponen-
tial function e−x. Hint, hint: x2 is a radius-squared of
something. π is related to the area or circumference of
something.

(26.2) D-dimensional Gaussian integrals. Show that the
Gaussian integral in D-dimensions is given by

1
(2π)d/2

∫
ddφe−

1
2 φ

T ·M−1 ·φ+φ·J = |det M| 12 e
1
2 JT ·M·J ,(26.21)

where M is a real positive definite [d × d] matrix, i.e.,
a matrix with strictly positive eigenvalues. x, J are D-
dimensional vectors, and xT is the transpose of x.

(26.3) Convolution of Gaussians. Show that the Fourier
transform of convolution

[ f ∗ g](x) =
∫

ddy f (x − y)g(y)

of two Gaussians

f (x) = e
− 1

2 xT · 1
Δ1
·x
, g(x) = e

− 1
2 xT · 1

Δ2
·x

factorizes as

[ f ∗ g](x) =
1

(2π)d

∫
dk F(k)G(k)eik·x , (26.22)

where

F(k) =
1

(2π)d

∫
dd x f (x)e−ik·x = |detΔ1|1/2e

1
2 kT ·Δ1 ·k

G(k) =
1

(2π)d

∫
dd x g(x)e−ik·x = |detΔ2 |1/2e

1
2 kT ·Δ2 ·k .

Hence

[ f ∗ g](x) =
1

(2π)d
|detΔ1detΔ1|1/2

∫
dd p e

1
2 pT ·(Δ1+Δ2)·p+ip·x

=

∣∣∣∣∣ detΔ1detΔ2

det (Δ1 + Δ2)

∣∣∣∣∣1/2 e−
1
2 xT ·(Δ1+Δ2)−1 ·x . (26.23)
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Cycles, i.e., solutions of the periodic orbit condition (13.1)

f t+T (x) = f t(x) , T > 0 (27.1)

are prerequisite to Chapters 18 and 19 evaluation of spectra of classical evolu-
tion operators.Chapter 13 offered an introductory, hands-on guide to extraction
of periodic orbits by means of the Newton-Raphson method. Here we take a
very different tack, drawing inspiration from variational principles of classical
mechanics, and path integrals of quantum mechanics.

In Section 13.2.1 we converted orbits unstable forward in time into orbits
stable backwards in time. Indeed, all methods for finding unstable cycles are
based on the idea of constructing a new dynamical system such that (i) the po-
sition of the cycle is the same for the original system and the transformed one,
(ii) the unstable cycle in the original system is a stable cycle of the transformed
system.

The Newton-Raphson method for determining a fixed point x ∗ for a map
x′ = f (x) is an example. The method replaces iteration of f (x) by iteration of
the Newton-Raphson map (13.5)

x′i = gi(x) = xi −
(

1
M(x) − 1

)
i j

( f (x) − x) j . (27.2)

A fixed point x∗ for a map f (x) is also a fixed point of g(x), indeed a super-
stable fixed point since ∂gi(x∗)/∂x j = 0. This makes the convergence to the
fixed point super-exponential.

We also learned in Chapter 13 that methods that start with initial guesses
for a number of points along a cycle are considerably more robust and safer
than searches based on direct solution of the fixed-point condition (27.1). The
relaxation (or variational) methods that we shall now describe take this multi-
point approach to its logical extreme, and start by a guess of not a few points
along a periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the desired periodic
orbit looks like globally, and then use variational methods to drive the initial
guess toward the exact solution. Sacrificing computer memory for robustness
of the method, we replace a guess that a point is on the periodic orbit by a
guess of the entire orbit. And, sacrificing speed for safety, in Section 27.1 we
replace the Newton-Raphson iteration by a fictitious time flow that minimizes
a cost function computed as deviation of the approximate flow from the true
flow along a loop approximation to a periodic orbit.

If you have some insight into the topology of the flow and its symbolic
dynamics, or have already found a set of short cycles, you might be able to
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construct an initial approximation to a longer cycle p as a sequence of N points
(x̃(0)

1 , x̃(0)
2 , · · · , x̃(0)

N ) with the periodic boundary condition x̃ N+1 = x̃1. Suppose
you have an iterative method for improving your guess; after k iterations the
cost function

F2(x̃(k)) =
N∑
i

(
x̃(k)

i+1 − f (x̃(k)
i )

)2
(27.3)

or some other more cleverly constructed function (for classical mechanics -
action) is a measure of the deviation of the kth approximate cycle from the
true cycle. This observation motivates variational approaches to determining
cycles.

We give here three examples of such methods, two for maps, and one for
billiards. In Section 27.1 we start out by converting a problem of finding an un-
stable fixed point of a map into a problem of constructing a differential flow for
which the desired fixed point is an attracting equilibrium point. Solving differ-
ential equations can be time intensive, so in Section 27.2 we replace such flows
by discrete iterations. In Section 27.3 we show that for 2D-dimensional bil-
liard flows variation of D coordinates (where D is the number of Hamiltonian
degrees of freedom) suffices to determine cycles in the full 2D-dimensional
phase space.

27.1 Fictitious time relaxation

(O. Biham, C. Chandre and P. Cvitanović)
The relaxation (or gradient) algorithm for finding cycles is based on the obser-
vation that a trajectory of a map such as the Hénon map (3.19),

xi+1 = 1 − ax2
i + byi

yi+1 = xi , (27.4)

is a stationary solution of the relaxation dynamics defined by the flow

−1 0 1 xi

−1

0

1

Vi(x)

Fig. 27.1 “Potential” Vi(x) (27.7) for a typi-
cal point along an initial guess trajectory. For
σi = +1 the flow is toward the local maxi-
mum of Vi(x), and for σi = −1 toward the
local minimum. A large deviation of xi’s
is needed to destabilize a trajectory passing
through such local extremum of Vi(x), hence
the basin of attraction is expected to be large.

dxi

dτ
= vi, i = 1, . . . , n (27.5)

for any vector field vi = vi(x) which vanishes on the trajectory. Here τ is a
“fictitious time” variable, unrelated to the dynamical time (in this example,
the discrete time of map iteration). As the simplest example, take v i to be the
deviation of an approximate trajectory from the exact 2-step recurrence form
of the Hénon map (3.20)

vi = xi+1 − 1 + ax2
i − bxi−1. (27.6)

For fixed xi−1, xi+1 there are two values of xi satisfying vi = 0. These solutions
are the two extremal points of a local “potential” function (no sum on i)

vi =
∂

∂xi
Vi(x) , Vi(x) = xi(xi+1 − bxi−1 − 1) +

a
3

x3
i . (27.7)

Assuming that the two extremal points are real, one is a local minimum of
Vi(x) and the other is a local maximum. Now here is the idea; replace (27.5)
relax - 29mar2004 ChaosBook.org version13.5, Sep 7 2011
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by
dxi

dτ
= σivi, i = 1, . . . , n, (27.8)

where σi = ±1.
The modified flow will be in the direction of the extremal point given by the

local maximum of Vi(x) if σi = +1 is chosen, or in the direction of the one
corresponding to the local minimum if we take σ i = −1. This is not quite what
happens in solving (27.8) - all xi and Vi(x) change at each integration step - but
this is the observation that motivates the method. The differential equations
(27.8) then drive an approximate initial guess toward the exact trajectory. A
sketch of the landscape in which xi converges towards the proper fixed point
is given in Fig. 27.1. As the “potential” function (27.7) is not bounded for a
large |xi|, the flow diverges for initial guesses which are too distant from the
true trajectory. However, the basin of attraction of initial guesses that converge
to a given cycle is nevertheless very large, with the spread in acceptable ini-
tial guesses for Fig. 27.1 of order 1, in contrast to the exponential precision
required of initial guesses by the Newton-Raphson method.

−1.5 −0.5 0.5 1.5
−1.5

−0.5

0.5

1.5

Fig. 27.2 The repeller for the Hénon map at
a = 1.8, b = 0.3 .

Example 27.1 Hénon map cycles.
Our aim in this calculation is to find all periodic orbits of period n for the Hénon map
(27.4), in principle at most 2n orbits. We start by choosing an initial guess trajectory
(x1, x2, · · · , xn ) and impose the periodic boundary condition xn+1 = x1. The simplest
and a rather crude choice of the initial condition in the Hénon map example is xi = 0
for all i. In order to find a given orbit one sets σi = −1 for all iterates i which are
local minima of Vi(x), and σi = 1 for iterates which are local maxima. In practice
one runs through a complete list of prime cycles, such as the Table 15.1. The real
issue for all searches for periodic orbits, this one included, is how large is the basin
of attraction of the desired periodic orbit? There is no easy answer to this question,
but empirically it turns out that for the Hénon map such initial guess almost always
converges to the desired trajectory as long as the initial |x| is not too large compared
to 1/

√
a. Figure 27.1 gives some indication of a typical basin of attraction of the

method (see also Fig. 27.3).
The calculation is carried out by solving the set of n ordinary differential equations
(27.8) using a simple Runge-Kutta method with a relatively large step size (h = 0.1)
until |v| becomes smaller than a given value ε (in a typical calculation ε ∼ 10−7).
Empirically, in the case that an orbit corresponding to the desired itinerary does not
exist, the initial guess escapes to infinity since the “potential” Vi(x) grows without
bound.

exercise 27.3
Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 1000. All prime cycles up to period 10 for the
Hénon map, a = 1.4 and b = 0.3, are listed in Table 27.1. The number of unstable
periodic orbits for periods n ≤ 28 is given in Table 27.2. Comparing this with
the list of all possible 2-symbol alphabet prime cycles, Table 15.1, we see that the
pruning is quite extensive, with the number of periodic points of period n growing as
e0.4645·n = (1.592)n rather than as 2n .
As another example we plot all unstable periodic points up to period n = 14 for
a = 1.8, b = 0.3 in Fig. 27.2. Comparing this repelling set with the strange attractor
for the Hénon’s parameters Fig. 3.9, we note the existence of gaps in the set, cut out
by the preimages of the escaping regions.

remark 27.2
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Table 27.1 All prime cycles up to period 10 for the Hénon map, a = 1.4 and b = 0.3.
The columns list the period np, the itinerary (defined in Remark 27.4), a periodic point
(yp, xp), and the cycle Lyapunov exponent λp = ln |Λp|/np. While most of the cycles
have λp ≈ 0.5, several significantly do not. The 0 periodic point is very unstable,
isolated and transient fixed point, with no other cycles returning close to it. At period
13 one finds a pair of cycles with exceptionally low Lyapunov exponents. The cycles
are close for most of the trajectory, differing only in the one symbol corresponding
to two periodic points straddle the (partition) fold of the attractor. As the system is
not hyperbolic, there is no known lower bound on cycle Lyapunov exponents, and the
Hénon’s strange “attractor” might some day turn out to be nothing but a transient on
the way to a periodic attractor of some long period.

n p ( yp , xp ) λp

1 0 (-1.13135447 , -1.13135447) 1.18167262
1 (0.63135447 , 0.63135447) 0.65427061

2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982

011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559

0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634

8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 , -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493

9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 , -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658

10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048

13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001 (-1.0598110494 , -0.2056310390) 0.21072511
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Table 27.2 The number of unstable periodic orbits of the Hénon map for a = 1.4, b = 0.3,
of all periods n ≤ 28. Mn is the number of prime cycles of length n, and Nn is the total
number of periodic points of period n (including repeats of shorter prime cycles).

n Mn Nn

11 14 156
12 19 248
13 32 418
14 44 648
15 72 1082
16 102 1696

n Mn Nn

17 166 2824
18 233 4264
19 364 6918
20 535 10808
21 834 17544
22 1225 27108

n Mn Nn

23 1930 44392
24 2902 69952
25 4498 112452
26 6806 177376
27 10518 284042
28 16031 449520

In practice, the relaxation flow (27.8) finds (almost) all periodic orbits which ex-
ist and indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

0 1

−2

0

x
y

x
*
 

Fig. 27.3 Typical trajectories of the vector
field (27.9) for the stabilization of a hyper-
bolic fixed point of the Ikeda map (27.11) lo-
cated at (x, y) ≈ (0.53275, 0.24689). The cir-
cle indicates the position of the fixed point.
Note that the basin of attraction of this fixed
point is large, larger than the entire Ikeda at-
tractor.

The idea of the relaxation algorithm illustrated by the above Hénon map
example is that instead of searching for an unstable periodic orbit of a map,
one searches for a stable attractor of a vector field. More generally, consider a
d-dimensional map x′ = f (x) with a hyperbolic fixed point x∗. Any fixed point
x∗ is by construction an equilibrium point of the fictitious time flow

dx
dτ
= f (x) − x. (27.9)

If all eigenvalues of the Jacobian matrix J(x∗) = D f (x∗) have real parts smaller
than unity, then x∗ is a stable equilibrium point of the flow.

If some of the eigenvalues have real parts larger than unity, then one needs
to modify the vector field so that the corresponding directions of the flow are
turned into stable directions in a neighborhood of the fixed point. In the spirit
of (27.8), modify the flow by

dx
dτ
= C ( f (x) − x) , (27.10)

where C is a [d×d] invertible matrix. The aim is to turn x ∗ into a stable equi-
librium point of the flow by an appropriate choice of C. It can be shown that
a set of permutation / reflection matrices with one and only one non-vanishing
entry ±1 per row or column (for d-dimensional systems, there are d!2 d such
matrices) suffices to stabilize any fixed point. In practice, one chooses a par-
ticular matrix C, and the flow is integrated. For each choice of C, one or more
hyperbolic fixed points of the map may turn into stable equilibria of the flow.

Example 27.2 Ikeda map:
We illustrate the method with the determination of the periodic orbits of the Ikeda
map:

x′ = 1 + a(x cos w − y sin w)

y′ = a(x sin w + y cos w) (27.11)

where w = b − c
1 + x2 + y2

,
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Fig. 27.4 Typical trajectories of the vector
field (27.10) for a hyperbolic fixed point
(x, y) ≈ (−0.13529,−0.37559) of f3, where
f is the Ikeda map (27.11). The circle indi-
cates the position of the fixed point. For the
vector field corresponding to (a) C = 1, x∗
is a hyperbolic equilibrium point of the flow,
while for (b) C =

(
1
0

0
−1

)
, x∗ is an attracting

equilibrium point. (a) −0.2 −0.1
 

−0.38 

 

 

 

−0.36 

x
*
 

(b) −0.2 −0.1

−0.38 

−0.36 

x
*
 

with a = 0.9, b = 0.4, c = 6. The fixed point x∗ is located at (x, y) ≈ (0.53275, 0.24689),
with eigenvalues of the Jacobian matrix (Λ1,Λ2) ≈ (−2.3897,−0.3389), so the flow
is already stabilized with C = 1. Figure 27.3 depicts the flow of the vector field
around the fixed point x∗.
In order to determine x∗, one needs to integrate the vector field (27.9) forward in
time (the convergence is exponential in time), using a fourth order Runge-Kutta or
any other integration routine.
In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial C
matrices, different from the identity. Consider for example the hyperbolic fixed point
(x, y) ≈ (−0.13529, −0.37559) of the third iterate f3 of the Ikeda map. The flow of
the vector field for C = 1, Figure 27.4 (a), indicates a hyperbolic equilibrium point,
while for C =

(
1
0

0
−1

)
the flow of the vector field, Fig. 27.4 (b) indicates that x∗ is an

attracting equilibrium point, reached at exponential speed by integration forward in
time.

The generalization from searches for fixed points to searches for cycles is
straightforward. In order to determine a prime cycle x = (x 1, x2, . . . , xn) of a
d-dimensional map x′ = f (x), we modify the multipoint shooting method of
Section 13.3, and consider the nd-dimensional vector field

dx
dτ
= C ( f (x) − x) , (27.12)

where f (x) = ( f (xn), f (x1), f (x2), . . . , f (xn−1)), and C is an invertible [nd×nd]
matrix. For the Hénon map, it is sufficient to consider a set of 2 n diagonal
matrices with eigenvalues ±1. Risking a bit of confusion, we denote by x,
f (x) both the d-dimensional vectors in (27.10), and nd-dimensional vectors in
(27.12), as the structure of the equations is the same.

27.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)
The problem with the Newton-Raphson iteration (27.2) is that it requires very
precise initial guesses. For example, the nth iterate of a unimodal map has as
many as 2n periodic points crammed into the unit interval, so determination of
all cycles of length n requires that the initial guess for each one of them has to
be accurate to roughly 2−n. This is not much of a problem for 1-dimensional
maps, but making a good initial guess for where a cycle might lie in a d-
dimensional state space can be a challenge.

Emboldened by the success of the cyclist relaxation trick (27.8) of man-
ually turning instability into stability by a sign change, we now (i) abandon
relax - 29mar2004 ChaosBook.org version13.5, Sep 7 2011



27.2. DISCRETE ITERATION RELAXATION METHOD 459

the Newton-Raphson method altogether, (ii) abandon the continuous fictitious
time flow (27.9) with its time-consuming integration, replacing it by a map g
with a larger basin of attraction (not restricted to a linear neighborhood of the
fixed point). The idea is to construct a very simple map g, a linear transfor-
mation of the original f , for which the fixed point is stable. We replace the
Jacobian matrix prefactor in (27.2) (whose inversion can be time-consuming)
by a constant matrix prefactor

x′ = g(x) = x + ΔτC( f (x) − x), (27.13)

where Δτ is a positive real number, and C is a [d×d] permutation and reflection
matrix with one and only one non-vanishing entry ±1 per row or column. A
fixed point of f is also a fixed point of g. Since C is invertible, the inverse is
also true.

This construction is motivated by the observation that for small Δτ → dτ
the map (27.13) is the Euler method for integrating the modified flow (27.10),
with the integration step Δτ.

The argument why a suitable choice of matrix C can lead to the stabilization
of an unstable periodic orbit is similar to the one used to motivate the con-
struction of the modified vector field in Section 27.1. Indeed, the flow (27.8)
is the simplest example of this method, with the infinitesimal fictitious time
increment Δτ → dτ, the infinitesimal coordinate correction (x − x ′) → dxi,
and the [n×n] diagonal matrix C→ σ i = ±1.

For a given fixed point of f (x) we again chose a C such that the flow in the
expanding directions of M(x∗) is turned into a contracting flow. The aim is to
stabilize x∗ by a suitable choice of C. In the case where the map has multiple
fixed points, the set of fixed points is obtained by changing the matrix C (in
general different for each unstable fixed point) and varying initial conditions
for the map g. For example, for 2-dimensional dissipative maps it can be shown

remark 27.3
that the 3 matrices

C ∈
{(

1
0

0
1

)
,

(
−1
0

0
1

)
,

(
1
0

0
−1

)}
suffice to stabilize all kinds of possible hyperbolic fixed points.

If Δτ is chosen sufficiently small, the magnitude of the eigenvalues of the
fixed point x∗ in the transformed system are smaller than one, and one has a
stable fixed point. However, Δτ should not be chosen too small: Since the
convergence is geometrical with a ratio 1 − αΔτ (where the value of constant
α depends on the stability of the fixed point in the original system), small Δτ
can slow down the speed of convergence. The critical value of Δτ, which
just suffices to make the fixed point stable, can be read off from the quadratic
equations relating the stability coefficients of the original system and those of
the transformed system. In practice, one can find the optimal Δτ by iterating
the dynamical system stabilized with a given C and Δτ. In general, all starting
points converge on the attractor provided Δτ is small enough. If this is not the
case, the trajectory either diverges (if Δτ is far too large) or it oscillates in a
small section of the state space (if Δτ is close to its stabilizing value).

The search for the fixed points is now straightforward: A starting point cho-
sen in the global neighborhood of the fixed point iterated with the transformed
dynamical system g converges to the fixed point due to its stability. Numerical
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investigations show that the domain of attraction of a stabilized fixed point is
a rather extended connected area, by no means confined to a linear neighbor-
hood. At times the basin of attraction encompasses the complete state space
of the attractor, so one can be sure to be within the attracting basin of a fixed
point regardless of where on the on the attractor on picks the initial condition.

The step size |g(x) − x| decreases exponentially when the trajectory ap-
proaches the fixed point. To get the coordinates of the fixed points with a high
precision, one therefore needs a large number of iterations for the trajectory
which is already in the linear neighborhood of the fixed point. To speed up the
convergence of the final part of the approach to a fixed point we recommend a
combination of the above approach with the Newton-Raphson method (27.2).

The fixed points of the nth iterate f n are periodic points of a cycle of period
n. If we consider the map

x′ = g(x) = x + ΔτC( f n (x) − x) , (27.14)

the iterates of g converge to a fixed point provided that Δτ is sufficiently small
and C is a [d×d] constant matrix chosen such that it stabilizes the flow. As n
grows, Δτ has to be chosen smaller and smaller. In the case of the Ikeda map
Example 27.2 the method works well for n ≤ 20. As in (27.12), the multipoint
shooting method is the method of preference for determining longer cycles.
Consider x = (x1, x2, . . . , xn) and the nd-dimensional map

x′ = f (x) = ( f (xn), f (x1), . . . , f (xn−1)) .

Determining cycles with period n for the d-dimensional f is equivalent to de-
termining fixed points of the multipoint dn-dimensional f . The idea is to con-
struct a matrix C such that the fixed point of f becomes stable for the map:

x′ = x + ΔτC( f (x) − x),

where C is now a [nd×nd] permutation/reflection matrix with only one non-
zero matrix element ±1 per row or column. For any given matrix C, a certain
fraction of the cycles becomes stable and can be found by iterating the trans-
formed map which is now a nd dimensional map.

From a practical point of view, the main advantage of this method com-
pared to the Newton-Raphson method is twofold: (i) the Jacobian matrix of
the flow need not be computed, so there is no large matrix to invert, simpli-
fying considerably the implementation, and (ii) empirical basins of attractions
for individual C are much larger than for the Newton-Raphson method. The
price is a reduction in the speed of convergence.

27.3 Least action method

(P. Dahlqvist)
The methods of Sections 27.1 and 27.2 are somewhat ad hoc, as for gen-

eral flows and iterated maps there is no fundamental principle to guide us in
choosing the cost function, such as (27.3), to vary.

For Hamiltonian dynamics, we are on much firmer ground; Maupertuis least
action principle. You yawn your way through it in every mechanics course– 11 Maupertuis believed that the principle least

action provided a proof of the existence of
God.
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Table 27.3 All prime cycles up to 6 bounces for the 3-disk fundamental domain, center-
to-center separation R = 6, disk radius a = 1. The columns list the cycle itinerary,
its expanding eigenvalue Λp, and the length of the orbit (if the velocity=1 this is the
same as its period or the action). Note that the two 6 cycles 001011 and 001101 are
degenerate due to the time reversal symmetry, but are not related by any discrete spatial
symmetry. (Computed by P.E. Rosenqvist.)

p Λp Tp

0 9.898979485566 4.000000000000
1 -1.177145519638×101 4.267949192431
01 -1.240948019921×102 8.316529485168
001 -1.240542557041×103 12.321746616182
011 1.449545074956×103 12.580807741032
0001 -1.229570686196×104 16.322276474382
0011 1.445997591902×104 16.585242906081
0111 -1.707901900894×104 16.849071859224
00001 -1.217338387051×105 20.322330025739
00011 1.432820951544×105 20.585689671758
00101 1.539257907420×105 20.638238386018
00111 -1.704107155425×105 20.853571517227
01011 -1.799019479426×105 20.897369388186
01111 2.010247347433×105 21.116994322373
000001 -1.205062923819×106 24.322335435738
000011 1.418521622814×106 24.585734788507
000101 1.525597448217×106 24.638760250323
000111 -1.688624934257×106 24.854025100071
001011 -1.796354939785×106 24.902167001066
001101 -1.796354939785×106 24.902167001066
001111 2.005733106218×106 25.121488488111
010111 2.119615015369×106 25.165628236279
011111 -2.366378254801×106 25.384945785676
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but as we shall now see, it is a very hands-on numerical method for finding
cycles.

Indeed, the simplest and numerically most robust method for determining
cycles of planar billiards is given by the principle of least action, or equiva-
lently, by extremizing the length of an approximate orbit that visits a given se-
quence of disks. In contrast to the multipoint shooting method of Section 13.3
which requires variation of 2n phase space points, extremization of a cycle
length requires variation of only n bounce positions s i.

The problem is to find the extremum values of cycle length L(s) where s =
(s1, . . . , sn ), that is find the roots of ∂iL(s) = 0. Expand to first order

∂iL(s0 + δs) = ∂iL(s0) +
∑

j

∂i∂ jL(s0)δs j + . . .

and use Mi j(s0) = ∂i∂ jL(s0) in the n-dimensional Newton-Raphson iteration
exercise 27.1

scheme of Section 13.2.2

si �→ si −
∑

j

(
1

M(s)

)
i j

∂ jL(s) (27.15)

The extremization is achieved by recursive implementation of the above algo-
rithm, with proviso that if the dynamics is pruned, one also has to check that
the final extremal length orbit does not penetrate a billiard wall.

exercise 27.2
exercise 13.13 As an example, the short periods and stabilities of 3-disk cycles computed

this way are listed Table 27.3.

Résumé

Unlike the Newton-Raphson method, variational methods are very robust. As
each step around a cycle is short, they do not suffer from exponential instabili-
ties, and with rather coarse initial guesses one can determine cycles of arbitrary
length.

Further reading

27.1 Piecewise linear maps. The Lozi map (3.21) is linear,
and 100,000’s of cycles can be easily computed by [2x2] ma-
trix multiplication and inversion.

27.2 Relaxation method. The relaxation (or gradient) al-
gorithm is one of the methods for solving extremal prob-
lems [27.13]. The method described above was introduced
by Biham and Wenzel [27.1], who have also generalized it (in
the case of the Hénon map) to determination of all 2n cycles
of period n, real or complex [27.2]. The applicability and re-
liability of the method is discussed in detail by Grassberger,

Kantz and Moening [27.5], who give examples of the ways
in which the method fails: (a) it might reach a limit cycle
rather than a equilibrium saddle point (that can be remedied
by the complex Biham-Wenzel algorithm [27.2]) (b) differ-
ent symbol sequences can converge to the same cycle (i.e.,
more refined initial conditions might be needed). Further-
more, Hansen (Ref. [27.7] and chapter 4. of Ref. [27.19])
has pointed out that the method cannot find certain cycles for
specific values of the Hénon map parameters. In practice, the
relaxation method for determining periodic orbits of maps ap-
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pears to be effective almost always, but not always. It is much
slower than the multipoint shooting method of Section 13.3,
but also much quicker to program, as it does not require evalu-
ation of stability matrices and their inversion. If the complete
set of cycles is required, the method has to be supplemented
by other methods.

27.3 Hybrid Newton-Raphson/relaxation methods. The
method discussed in Section 27.2 was introduced by
Schmelcher et al [27.9]. The method was extended to flows
by means of the Poincaré surface of section technique in
Ref. [27.10]. It is also possible to combine the Newton-
Raphson method and (27.13) in the construction of a trans-
formed map [27.14]. In this approach, each step of the it-
eration scheme is a linear superposition of a step of the sta-
bility transformed system and a step of the Newton-Raphson
algorithm. Far from the linear neighborhood the weight is
dominantly on the globally acting stability transformation al-
gorithm. Close to the fixed point, the steps of the iteration are
dominated by the Newton-Raphson procedure.

27.4 Relation to the Smale horseshoe symbolic dynamics.
For a complete horseshoe Hénon repeller (a sufficiently large),
such as the one given in Fig. 27.2, the signs σi ∈ {1,−1} are in
a 1-to-1 correspondence with the Smale horsheshoe symbolic
dynamics si ∈ {0, 1}:

si =

{
0 if σi = −1 , xi < 0
1 if σi = +1 , xi > 0

. (27.16)

For arbitrary parameter values with a finite subshift sym-
bolic dynamics or with arbitrarily complicated pruning, the
relation of sign sequences {σ1, σ2, · · · , σn } to the itineraries
{s1, s2, · · · , sn } can be much subtler; this is discussed in
Ref. [27.5].

27.5 Ikeda map. Ikeda map (27.11) was introduced in
Ref. [27.12] is a model which exhibits complex dynamics ob-
served in nonlinear optical ring cavities.

27.6 Relaxation for continuous time flows. For a d-
dimensional flow ẋ = v(x), the method described above can
be extended by considering a Poincaré surface of section. The
Poincaré section yields a map f with dimension d-1, and the
above discrete iterative maps procedures can be carried out.
A method that keeps the trial orbit continuous throughout the
calculation is the Newton descent, a variational method for
finding periodic orbits of continuous time flows, is described
in Refs. [27.15, 16].

27.7 Stability ordering. The parameter Δτ in (27.13) is a key
quantity here. It is related to the stability of the desired cycle
in the transformed system: The more unstable a fixed point
is, the smaller Δτ has to be to stabilize it. With increasing
cycle periods, the unstable eigenvalue of the Jacobian matrix

increases and therefore Δτ has to be reduced to achieve sta-
bilization of all fixed points. In many cases the least unsta-
ble cycles of a given period n are of physically most impor-
tant [27.11]. In this context Δτ operates as a stability filter.
It allows the selective stabilization of only those cycles which
posses Lyapunov exponents smaller than a cut-off value. If
one starts the search for cycles within a given period n with
a value Δτ ≈ O(10−1), and gradually lowers Δτ one obtains
the sequence of all unstable orbits of order n sorted with in-
creasing values of their Lyapunov exponents. For the specific
choice of C the relation between Δτ and the stability coef-
ficients of the fixed points of the original system is strictly
monotonous. Transformed dynamical systems with other C’s
do not obey such a strict behavior but show a rough ordering
of the sequence of Floquet multipliers of the fixed points stabi-
lized in the course of decreasing values for Δτ. As explained
in Section 20.5, stability ordered cycles are needed to order
cycle expansions of dynamical quantities of chaotic systems
for which a symbolic dynamics is not known. For such sys-
tems, an ordering of cycles with respect to their stability has
been proposed [27.14,15,13], and shown to yield good results
in practical applications.

27.8 Action extremization method. The action extremiza-
tion (Section 27.3) as a numerical method for finding cy-
cles has been introduced independently by many people. We
have learned it from G. Russberg, and from M. Sieber’s and
F. Steiner’s hyperbola billiard computations [27.17, 18]. The
convergence rate is really impressive, for the Sinai billiard
some 5000 cycles are computed within CPU seconds with
rather bad initial guesses.
Variational methods are the key ingredient of the Aubry-
Mather theory of area-preserving twist maps (known in the
condensed matter literature as the Frenkel-Kontorova models
of 1-dimensional crystals), discrete-time Hamiltonian dynam-
ical systems particularly suited to explorations of the K.A.M.
theorem. Proofs of the Aubry-Mather theorem [27.20] on
existence of quasi-periodic solutions are variational. It was
quickly realized that the variational methods can also yield re-
liable, high precision computations of long periodic orbits of
twist map models in 2 or more dimensions, needed for K.A.M.
renormalization studies [27.19].
A fictitious time gradient flow similar to the one discussed
here in Section 27.1 was introduced by Anegent [27.21] for
twist maps, and used by Gole [27.22] in his proof of the
Aubry-Mather theorem. Mathematical bounds on the regions
of stability of K.A.M. tori are notoriously restrictive compared
to the numerical indications, and de la Llave, Falcolini and
Tompaidis [27.23, 24] have found the gradient flow formula-
tion advantageous both in studies of the analyticity domains
of the K.A.M. stability, as well as proving the Aubry-Mather
theorem for extended systems (for a pedagogical introduction,
see the lattice dynamics section of Ref. [27.25]).
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All of the twist-maps work is based on extremizing the
discrete dynamics version of the action S (in this con-
text sometimes called a “generating function”). However,
in their investigations in the complex plane, Falcolini and

de la Llave [27.23] do find it useful to minimize instead S S̄ ,
analogous to our cost function (27.3).
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Exercises

(27.1) Evaluation of billiard cycles by minimization∗.
Given a symbol sequence, you can construct a guess tra-
jectory by taking a point on the boundary of each disk
in the sequence, and connecting them by straight lines. If
this were a rubber band wrapped through 3 rings, it would
shrink into the physical trajectory, which minimizes the
action (in this case, the length) of the trajectory.
Write a program to find the periodic orbits for your bil-
liard simulator. Use the least action principle to extrem-
ize the length of the periodic orbit, and reproduce the pe-
riods and stabilities of 3-disk cycles, Table 27.3. (One
such method is given in Section 27.3.) After that check
the accuracy of the computed orbits by iterating them for-
ward with your simulator. What is your error | f Tp(x)−x|?

(27.2) Tracking cycles adiabatically∗. Once a cycle has been
found, orbits for different system parameters values may

be obtained by varying slowly (adiabatically) the param-
eters, and using the old orbit points as starting guesses in
the Newton method. Try this method out on the 3-disk
system. It works well for R : a sufficiently large. For
smaller values, some orbits change rather quickly and re-
quire very small step sizes. In addition, for ratios below
R : a = 2.04821419 . . . families of cycles are pruned, i.e.
some of the minimal length trajectories are blocked by
intervening disks.

(27.3) Cycles of the Hénon map. Apply the method of Sec-
tion 27.1 to the Hénon map at the Hénon’s parameters
choice a = 1.4, b = 0.3, and compute all prime cycles for
at least n ≤ 6. Estimate the topological entropy, either
from the definition (15.1), or as the zero of a truncated
topological zeta function (15.27). Do your cycles agree
with the cycles listed in Table 27.1?
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abscissa
absolute conv., 341
conditional conv., 341

accelerator mode, 430
action, 286
adjacency matrix, 236, 252
admissible

periodic points, 248
trajectories, number of, 246

algebra, 496
associative, 497
Lie, 497

alphabet, 174
alternating binary tree, 189
analyticity

domain, 313
anomalous diffusion, 437
Anosov flows, 207
anti-hermitian

generator, 147, 148
arc, 237
area preserving

Hénon map, 107
map, 531

Artin-Mazur zeta function, 255
associative algebra, 497
attractor

basin, 34
Hénon, 298
strange, 34, 38, 293

Aubry-Mather theory, 463
autonomous flow, 36
average

chaotic, 412
space, 275, 287
time, 275, 286

averaging, 22
Axiom A, 391, 396

baker’s map, 117, 201
basin of attraction, 34
basis vector, 495
BER

approximation, 422
Bernoulli, 478

polynomials, 380
shift, 181, 375, 380, 387, 396, 398, 404, 420,

435, 480, 482
shift eigenfunctions, 393
shift return times, 421

Berry-Keating conjecture, 491
bi-infinite itinerary, 186
bifurcation

generic, 117
saddle-node, 55

billiard, 113–116
map, 114
stability, 82, 115
stadium, 113, 118, 136, 423, 529, 531

binary
prime cycles, 198, 206, 248
tree, alternating, 189

Birkhoff
coordinates, 47, 114, 118
ergodic theorem, 276

block
finite sequence, 186

block, pruning, 188
Bohr

-Sommerfeld quantization, 489
Uetli Schwur, 488

Boltzmann
equation, 18, 439
stosszahlansatz, 18

Boltzmann, L., 18, 479
boundary orbits, 354
Bourbaki, N., 54
Bowen, R., 24
brain, rat, 2, 24
branch cut, 408

singularity, 409
Burnett coefficient, 433
butterfly effect, 55

C3v = D3 symmetry, 207, 358
canonical transformation, 105, 106, 505
Cartan, É. , 164
Cartwright, M.L., 136, 481
ceiling function, 310, 396
center, 64
center of mass, 230
centralizer, 126
chain-recurrent, 34
change

of coordinates, 89
chaos, 4, 5

caveats, 6
deterministic, 23
diagnostics, 40
introduced, 5

quantum, 23
skeleton of, 8, 9
successes, 6

character
representation, 513

characteristic
equation, 501
exponent, 64, 81
function, 270
polynomial, 252, 501, 515
value, 64

chicken heart palpitations, 4
circle map, 181, 238, 265, 432, 437
class, 124
class algebra, 531
Clebsch-Gordan

coefficients, 498
co-moving frame, 83
coarse-graining, 270
combinatorics

teaching, 182
compact

group, 128
invariant set, 125

complete
N-ary dynamics, 237
symbolic dynamics, 238

completeness relation, 498, 501, 516
complex eigenvalues, 507
complex Lorenz flow, 143, 165

equivariance, 150
relative periodic orbit, 152

complexity
algorithmic, 263

confession
C.N. Yang, 275
Kepler, 478
St. Augustine, 269

configuration space, 40
conjugacy, 91

invariant, 98
smooth, 90, 98, 100
topological, 183

conjugate, hermitian, 512
connection, method of, 164
conservation

equation, 446
phase space volume, 104, 106, 107, 109, 279

continuity equation, 277, 279, 446, 448
contour integral, 318
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contracting
Floquet multipliers, 81, 303
flow, 34, 38, 71
map, 76, 190
state space, Rössler, 75, 346

convergence
abscissa of, 341
radius, 313
super-exponential, 384, 453

convexity, 297
coordinate

change, 89, 91
transformations, 100

Copenhagen School, xiii, 488
correlation

decay
power law, 403

function, 393
spectrum, 393
time, 371

coset, 124
cost function, 454
covariant Lyapunov vector, 65, 80, 298
covering

symbolic dynamics, 186
critical

point, 82, 179, 183
value, 180, 432

cross-section, 155, 164
cumulant

expansion, 251, 255, 331
curvature

correction, 328
expansion, 21, 329

cycle
expansion, 14, 328

3-disk, 344
finite subshift, 336
Lyapunov exponent, 336
stability ordered, 337

fundamental, 252, 328
limit, 34, 82, 293
Lyapunov exponent, 81
marginal stability, 61, 84, 155
prime, 187, 215, 264, 304

3-disk, 216, 462
Hénon map, 455

pruning, 261
Rössler flow, 218, 228
stability, 79–85
stable, 82
superstable, 82
weight, 315

cyclic
group, 510
invariance, 215
symmetry, 248

cyclist
Lie groups, 148

damped Newton method, 220

danish pastry, 201
decay

rate, 321
rate of correlations, 393

decomposition
irreducible, 518

defining
rep, 512
vector space, 512

degenerate
eigenvalues, 500

degree of freedom, 6, 104
density, 270, 446

evolution, 17
phase space, 279

desymmetrization
3-disk, 362

desymmetrized state space, 155
determinant

for flows, 314
graph, 264
Hadamard, 313
spectral, 17, 250, 313
trace relation, 251

deterministic dynamics, 4, 32, 277
diagonalizing matrix, 515
differential equations

almost ordinary, 41
diffusion

anomalous, 437
constant, 289
equation, 447
limited aggregates, 24

dihedral group, 510
dike map, 184, 190
dimension

generalized, 7
intrisic, 6

Dirac delta, 15, 16, 256, 271, 282, 291, 292,
304, 311, 322, 387, 447

derivatives, 282
Jacobian, 277

Dirichlet series, 340
discrete

Fourier transform, 521
dissipative

map, 76, 190
divergence rate

local, 296
DLA, 24
dot product, 146
doubling map, 181, 389
drift, along group tangent, 144
dual

rep, 496, 511, 512
space, 496, 511
vector space, 512

Duffing oscillator, 36, 40, 48, 104
dynamical

transitivity, 236

zeta function, 13, 317
Euler product rep., 317

dynamical system, 31, 32
equivalent, 99
gradient, 41
smooth, 14, 21, 32, 258, 481

dynamics
deterministic, 4, 32
hyperbolic, 238
irreversible, 35
reversible, 35
spatiotemporal, 23
stochastic, 4
symbolic, 8, 174, 186
symmetry, 123, 143
topological, 174, 186, 187, 236

edge, 237
eigendirection, 60
eigenfunction

Perron-Frobenius operator, 378
Perron-Frobenius, 378

eigenvalue, 321
Perron-Frobenius operator, 378
complex, 507
degenerate, 500
exponential spacing, 314

Einstein
diffusion formula, 447

Einstein, A, 491
elliptic

stability, 107
enemy

thy, 404
English

plain, 163, 186
ensemble

microcanonical, 297
entire function, 377
entropy

barrier, 343
Kolmogorov, 117, 264
topological, 5, 246, 256, 264

equation
of variations, 59

equilibrium, 150
Lorenz flow, 37, 50
point, 36, 66, 274, 457
Rössler flow, 38, 41, 67, 177
relative, 151

equivalence
of dynamical systems, 99

equivariance, 123
complex Lorenz flow, 150

ergodic
average, 276
theorem

multiplicative, 297
theory, 276

error correlation matrix, 500
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escape rate, 9, 10, 282, 290, 291, 318, 320, 324,
331, 336, 344, 369, 374, 380, 398,
448

3-disk, 335, 344, 367
intermittency, 411
vanishing, 283, 335

essential
spectral radius, 386, 394
spectrum, 386

Euler
formula, 63, 379
limit, 69
-MacLaurin formula, 393
product, 69, 319
product rep.

dynamical zeta function, 317
Eulerian coordinates, 61
evolution

group, 41
kernel probabilistic, 277
operator, 15, 292
semigroup, 293

expanding
Floquet multipliers, 81, 303

expectation value, 288, 298
exponent

characteristic, 81
Floquet, 81

exponential
convergence, 313, 384
decay rate of correlations, 393
of a matrix, 63
proliferation, 16, 263

factor group, 124
false zeros, 319
Farey

map, 176, 403, 422
Feigenbaum

constant, 311
Fick law, 447
finite group, 510
finite subshift

cycle expansion, 336
first return time, 45, 419
fixed point, 215

maps, 56
marginally stable, 402
under G, 126, 128

fixed-point subspace, 126
Floquet

exponent, 71, 81, 106
multiplier, 64, 70, 80, 81, 193, 303
multiplier, metric invariant, 98
theorem, 81
theory, 81, 87
vector, 80

flow, 31–39
autonomous, 36
contracting, 34, 38, 71

deterministic, 277
elliptic, 82
generator of, 278
Hamiltonian, 103, 531
hyperbolic, 82, 107, 321
incompressible, 71, 279
invariant subspace, 126
inverse hyperbolic, 107
linear, 62, 74
linearized, 60
nonhyperbolic, 82
spectral determinant, 314
stability, 66
stationary, 36
stochastic, 277
stretch & fold, 180

Fokker-Planck equation, 448
form,normal, 96
Fourier transform

discrete, 521
Fréchet derivative, 60
fractal, 24

aggregates, 7
geometry of nature, 7
probabilistic, 7
science, 7

Fredholm theory, 384
freezin, 155
Frenkel-Kontorova model, 463
frequency analysis, 40
full shift, 238
function

L2 square-integrable, 394
analytic, 394
space, piecewise constant, 306

functional, 275
composition, 35
Lyapunov, 34

fundamental
cycle, 252
domain, 206
matrix, 60, 498

G-equivariant, 145
G-fixed, 126, 128
G-invariant

polynomial basis, 128, 159
G-invariant

polynomial basis, 127, 136, 138, 164
Gp-symmetric, 129
Gatto Nero

professor, 181
gauge fixing, 50
Gauss map, 283, 422
Gaussian

integral, 282, 433, 451
integral, d-dimensional, 451
probability density, 447

generating function, 305, 464
generating orbit, 189

generating partition, 187
generator

anti-hermitian, 147, 148
Lie algebra, 146
of flow, 278

Gilmore, R., 136
GL(n, F), 511
golden mean, 238, 265

pruning, 190, 238, 253, 265, 324
good taste, 189
gradient

algorithm, 454
system, 41

grammar
symbolic dynamics, 187

graph
irreducible, 237
strongly connected, 237
transition, 235

Gray codes, 189
group, 509

S 1, 510
compact, 128
cyclic, 510
dihedral, 510
dynamical, 35
evolution, 41
finite, 122, 510
general linear, 511
Lie, 144, 146, 510
matrix, 513
not a, 531
orbit, 125, 135, 145, 150
orbit, equilibrium, 167
orbit, marginal eigenvalue, 155
orbit, slice, 151, 156, 158, 162
orbit, velocity, 503
order of, 122, 510
representation, 513
semi-, 277
symmetric, 510
symmetry, reduction, 155
tangent field, 147, 149

Gutzwiller, M., 484

Hadamard determinant, 313
Hamilton

-Cayley theorem, 497, 501
-Jacobi equation, 449
principal function, 449

Hamiltonian
dynamics, 103–110
flow, 531

spectral determinant, 316
stability, 105, 506

flows, stability, 504
Hénon map, 107
repeller, periodic orbits, 229

harmonic oscillator, 100
Harter, W. G., 531
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Heisenberg, 489
Helfand moments, 433
helium, 488

collinear, 42, 56, 104
cycles, 229
stability, 229

Hénon map, 53, 55, 107
attractor, 276, 298
cycles, 229, 454
fixed points, 56, 199
Hamiltonian, 107
horseshoe, 199
inverse, 199
Lyapunov exponent, 298
natural measure, 274
prime cycles, 455, 465
pruning front, 209
stability, 72, 82
structural stability, 210
symmetries, 531
time delay map, 222
transient, 455

Hénon, M., 55
Hénon-Heiles

symbolic dynamics, 136
hermitian

conjugation, 512
matrix, 512

heroes
unsung, xiii, xviii

Hessian matrix, 105
heteroclinic orbit, 177, 178, 182, 189
Hilbert basis

SO(2), 160
Hilbert-Schmidt condition, 384
Hilbert-Weyl theorem, 128
homoclinic orbit, 178
Hopf’s last hope, 486
Hopf, Ebehardt, 484, 486
hopping operator, 518
horseshoe, 198

complete, 200
hyperbolic

flow, 82, 107, 321
non-, 18
orbit, partially, 82

hyperbolicity assumption, 11, 303

image space, 155, 160
in/out nodes, 64
inadmissible symbol sequence, 187
incommensurate, 33
incompressible flow, 71
indecomposability, 236

metric, 175
index summation, repeated, 510
indifferent

stability, 61
induced map, 414
initial

conditions, sensitivity to, 4
point x0, 11, 33, 60
state x0, 11, 33

injective, 54
integrable system, 89, 104
integrated observable, 286, 293, 296, 304, 317,

328
integration

Runge-Kutta, 41
integration by parts

lattice, 519
intermittency, 117, 389, 402

escape rate, 411
piecewise linear model, 404
resummation, 416
stability ordering, 339

invariance
cyclic, 215
of flows, 83
symplectic, 105, 110, 504

invariant, 513
matrix, 512
measure, 274
measure, Gauss map, 283
metric, 79, 98
points, 126
polynomial basis, 127, 128, 136, 138, 155,

159–162, 164
set, compact, 125
subgroup, 124
subspace, 127
tensor, 149
topological, 79
tori, 163
vector, 512

inverse
hyperbolic, 80, 107
iteration, 219
iteration, Hamiltonian repeller, 229

inversion, 122
involution, 510
inward/outward spirals, 64
irreducible

decomposition, 518
graph, 237
matrix, 236
segment, 131

irrep, 517
irreversibility, 17, 35
Ising model, 205, 357, 362
isotropy, 126, 128, 135, 136
isotypic decomposition, 136
iteration, 32

inverse, 219
Hamiltonian repeller, 229

map, 52
itinerary, 8, 9, 47, 174, 216

bi-infinite, 175, 186
future, 181, 186
past, 186

Jacobi, C.G.J., 74
Jacobian, 70, 270

matrix, 11, 60, 498
Jonquière function, 406, 423, 437, 438, 440
Jordan normal form, 501, 502

KAM
tori, 402

Karhunen-Loève, 196
Keller, J.B., 483
kernel

resolving, 385
kneading

determinant, 189
sequence, 184, 190
theory, 184
value, 184, 190

Kolmogorov entropy, 117, 264
Kraichnan, R., 486
Kramers, 489
Kronecker delta, 496, 511
kurtosis, 298, 433
Kustaanheimo-Stiefel transformation, 94

L2 function space, 394
Lagrangian

coordinates, 61
frame, 83

laminar states, 401
Langevin equation, 447, 450
Laplace

transform, 16, 256, 278, 306, 307, 311
transform, discrete, 250, 305, 421

Laplace, Pierre-Simon de, 4
Laplacian

diagonalization, 533
diagonalized, lattice, 524
inverse, lattice, 520
lattice, 519
non-local, 533

last hope, Hopf’s, 486
lattice

derivative, 518
Fourier transform, 521
integration by parts, 519
Laplacian, 519
Laplacian, diagonalized, 524
Laplacian, inverse, 520

least action principle, 216, 460
Leibniz, Gottfried Wilhelm, 4
Letellier, C., 136
level set, 104
Lie

algebra, 146, 149, 497
bracket, 150
derivative, 150
group, 144, 146, 510
product, 497

lifetime, 10
limit cycle, 34, 82, 293
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linear
flow, 62, 74
space, 495
stability, 59, 79

linearized
flow, 60

link, 237
Liouville

equation, 280
operator, 280
theorem, 104, 106, 107, 109, 279

Littlewood, J.E., 481
local

divergence rate, 296
stability, 59, 79

loop
intersecting, 252

Lorentz gas, 402, 422
Lorenz flow, 37, 50, 67, 69, 71, 129, 131, 139,

178
polar coordinates, 138, 532
proto-Lorenz, 139
symmetry, 124, 138

Lorenz, E.N., 55, 136
loxodromic, 506

quartet, 107, 110
Lozi map, 53, 55
Lyapunov

covariant vector, 65, 80, 298
exponent, 4, 71, 99, 294
exponent, cycle, 81
exponent, cycle expansion, 336
exponent, natural measure, 296
exponent, numerical, 297
exponent, numerically, 295
functional, 34
time, 5, 6, 18, 35, 285

M state space volume, 290
manifold, 32

unstable, 194
map, 32, 52–54

area preserving, 531
contracting, 76, 190
dike, 184, 190
dissipative, 76, 190
expanding, 175
fixed point, 56
Hénon, 53, 454, 531

Hamiltonian, 107
prime cycles, 455

Hamiltonian
Hénon, 107

iteration, 52
Lozi, 53, 55
once-folding, 198
order preserving, 183
orientation preserving, 531
orientation reversing, 531
quadratic, 54

return, 11, 45–47, 177, 185, 195, 199
sawtooth, 123, 128, 350
stability, 71
tent, 180
unimodal, 180

marginal
stability, 11, 61, 81, 155, 303, 389, 402

cycle, 61, 84, 155
fixed point, 402

Markov
chain, 186
matrix, 236, 272, 337
partition, 434

finite, 175, 238
infinite, 243
not unique, 193

material invariant, 446
Mather, see Aubry-Mather theory
matrix

diagonalizing, 515
exponential, 63
group, 513
hermitian, 512
invariant, 512
irreducible, 236
product, 497
rep, 496
representation, 122
stability, 60, 449

Maupertuis, P.L.M. de, 216, 460
measure, 270

continuous, 99
invariant, 274
natural, 55, 275, 281, 288, 372, 374, 427,

485, 491
mechanics

statistical, 17
memory

m-step, 174
finite, 239

method of connections, 164
metric

indecomposability, 175
invariant, 79, 98

Floquet multiplier, 98
microcanonical ensemble, 297
Mira, C., 55
Misiurewicz, M., 55
mixing, 5, 11, 276
mode, normal, 532
Moebius inversion, 260
monodromy matrix, 71, 85, 303, 505
moving frame, 155, 156

SO(2), 157
multiplicative ergodic theorem, 297
multiplier, Floquet, 64, 81, 193
multipoint shooting method, 221

N-disk, transition matrix, 238
natural measure, 55, 226, 275, 281, 288, 296,

372, 374, 392, 427, 485, 491

nature, geometry of, 7
neighborhood, 59, 85
Nero, G., 181
New York subway map, 193
Newton method, 220

convergence, 220
damped, 220
flows, 223

Newtonian dynamics, 103
node, 237
noise

Gaussian, 447, 450
white, 448

non-wandering set, 34, 200
nonequilibrium, 427
nonhyperbolic

flow, 82, 84
normal

divisor, 124
form, 96
mode, 532
washing machine, 122

obscure
foundations, 488
jargon, 163, 174

observable, 275, 281, 286, 303, 371, 412, 420,
427, 436, 483

integrated, 286, 293, 296, 304, 317, 328
simultaneous, 517
vector, 298

ODEs
almost, 41

O(n) group, 510
Onsager-Machlup, 450
open systems, 9, 290
operator

evolution, 292
hopping, 518
just a matrix, 519
Liouville, 280
Perron-Frobenius, 271, 297
resolvent, 250, 278
semigroup

bounded, 278
shift, 185, 186, 518
step, 518

orbit, 33, 52, 125
group, 150
inadmissible, 184
periodic, 33, 187, 328
relative, 153
space, 155

order preserving map, 183
ordering

spatial, 181, 200
orientation

preserving map, 531
reversing map, 531

orthogonality relation, 498, 501, 516
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Oseledec ergodic theorem, 297

Palais slice, 165
palpitations, chicken heart, 4
paradise

this side of, 367
partially hyperbolic

invariant tori, 163
orbit, 82

partition, 174, 187
state space, 270
function, 297
generating, 187
infinite, 190, 257, 264
Markov, 175

passive scalar, 446
past topological coordinate, 202
PDEs, 32
period

relative, 152
periodic

orbit, 8, 33, 87, 152, 187, 328
condition, 215, 226, 453
extraction, 215–227, 453–462
Hamiltonian repeller, 229
inverse iteration, 219
multipoint shooting, 221
Newton method, 220
relative, 152
relaxation algorithm, 454
short, 131, 136
unstable, 82

point, 8, 11, 14, 16, 33, 183, 187
admissible, 248
count, 259
unstable, 9

Perron-Frobenius
matrix, 236
operator, 271, 297, 378
theorem, 392, 396

Peter-Weyl theorem, 144
phase space, 32, 110

density, 279
vs. state space, 40

piecewise constant function, 306
piecewise linear map, 422

intermittency, 404
repeller, 291

pinball
simulator, 117

plain English, 163, 186
plane Couette flow

relative solutions, 153
stability, 503
symmetries, 124, 128, 137, 145
unstable manifold, 195

POD, 196
Poincaré invariants, 109
Poincaré return map, 45, 46

cycle, 84

polynomial, 53
stability, 73

Poincaré section, 9, 45–52, 199
3-disk, 113
Hénon trick, 55
hyperplane, 46, 195

Poincaré, H., 2, 5, 10
point

non-wandering, 34
periodic, 8, 187
wandering, 34

Poisson
bracket, 150, 279, 280, 282, 504
resummation, 16, 417

polar coordinates, 100
Pollicott, M., 297, 420
polylogarithm, 406
polynomial

characteristic, 252
topological, 256

Pomeau, Y., 55
post-processing, 156, 162
potential problems, 41
power law

correlation decay, 403
pressure, thermodynamic, 297
prime cycle, 187, 215, 264, 304

3-disk, 198, 264, 462
binary, 198, 206, 248
count, 260
Hénon map, 455, 465
ternary, 206

probabilistic zeta function, 420
probability

density, Gaussian, 447
matrix, 236
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Poincaré return map, 73
residue, 107, 110
spectral, 436
structural, 200, 207, 258, 436
window, 82

stabilizer, 126, 128, 136
stable

cycle, 82
manifold, 11, 194, 195, 199

stadium billiard, 113, 118, 136, 423, 529, 531
standard map, 108, 110, 402
standard representation space, 511
standing orbit, Lorentz gas, 430
standing wave, 36, 154
state, 174, 237

set, 174
state space, 32

discretization, 298
partition, 270
reduced, 125, 155
volumeM, 290
vs. phase space, 40

stationary
flow, 36
state, 274

stationary phase, 277, 463
statistical mechanics, 17
step operator, 518
stochastic

dynamics, 4, 277
matrix, 236

Stokes theorem, 110
stosszahlansatz, 18, 439
strange attractor, 34, 38, 293
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Laws of attribution

(1) Arnol’d’s Law: everything that is discovered is named after
someone else (including Arnol’d’s law)

(2) Berry’s Law: sometimes, the sequence of antecedents seems
endless. So, nothing is discovered for the first time.

(3) Whiteheads’s Law: Everything of importance has been said
before by someone who did not discover it.

—M.V. Berry

Writing a history of anything is a reckless undertaking, especially a history of
something that has preoccupied at one time or other any serious thinker from
ancient Sumer to today’s Hong Kong. A mathematician, to take an example,
might see it this way: “History of dynamical systems.” Nevertheless, here
comes yet another very imperfect attempt.

A.1 Chaos is born

(R. Mainieri and P. Cvitanović)

Trying to predict the motion of the Moon has preoccupied astronomers
since antiquity. Accurate understanding of its motion was important for
determining the longitude of ships while traversing open seas.

Kepler’s Rudolphine tables had been a great improvement over previous
tables, and Kepler was justly proud of his achievements. He wrote in the intro-
duction to the announcement of Kepler’s third law, Harmonice Mundi (Linz,
1619) in a style that would not fly with the contemporary Physical Review
Letters editors:

What I prophesied two-and-twenty years ago, as soon as I discovered
the five solids among the heavenly orbits–what I firmly believed long be-
fore I had seen Ptolemy’s Harmonics–what I had promised my friends in
the title of this book, which I named before I was sure of my discovery–
what sixteen years ago, I urged as the thing to be sought–that for which
I joined Tycho Brahé, for which I settled in Prague, for which I have de-
voted the best part of my life to astronomical contemplations, at length I
have brought to light, and recognized its truth beyond my most sanguine
expectations. It is not eighteen months since I got the first glimpse of
light, three months since the dawn, very few days since the unveiled sun,
most admirable to gaze upon, burst upon me. Nothing holds me; I will
indulge my sacred fury; I will triumph over mankind by the honest con-
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fession that I have stolen the golden vases of the Egyptians to build up a
tabernacle for my God far away from the confines of Egypt. If you for-
give me, I rejoice; if you are angry, I can bear it; the die is cast, the book
is written, to be read either now or in posterity, I care not which; it may
well wait a century for a reader, as God has waited six thousand years for
an observer.

Then came Newton. Classical mechanics has not stood still since Newton.
The formalism that we use today was developed by Euler and Lagrange. By the
end of the 1800’s the three problems that would lead to the notion of chaotic
dynamics were already known: the three-body problem, the ergodic hypothe-
sis, and nonlinear oscillators.

A.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits of
Kepler and set an example of how equations of motion could be solved by in-
tegrating. But the motion of the Moon is not well approximated by an ellipse
with the Earth at a focus; at least the effects of the Sun have to be taken into
account if one wants to reproduce the data the classical Greeks already pos-
sessed. To do that one has to consider the motion of three bodies: the Moon,
the Earth, and the Sun. When the planets are replaced by point particles of ar-
bitrary masses, the problem to be solved is known as the three-body problem.
The three-body problem was also a model to another concern in astronomy. In
the Newtonian model of the solar system it is possible for one of the planets to
go from an elliptic orbit around the Sun to an orbit that escaped its dominion
or that plunged right into it. Knowing if any of the planets would do so became
the problem of the stability of the solar system. A planet would not meet this
terrible end if solar system consisted of two celestial bodies, but whether such
fate could befall in the three-body case remained unclear.

After many failed attempts to solve the three-body problem, natural philoso-
phers started to suspect that it was impossible to integrate. The usual technique
for integrating problems was to find the conserved quantities, quantities that do
not change with time and allow one to relate the momenta and positions at dif-
ferent times. The first sign on the impossibility of integrating the three-body
problem came from a result of Burns that showed that there were no conserved
quantities that were polynomial in the momenta and positions. Burns’ result
did not preclude the possibility of more complicated conserved quantities. This
problem was settled by Poincaré and Sundman in two very different ways.

In an attempt to promote the journal Acta Mathematica, Mittag-Leffler got
the permission of the King Oscar II of Sweden and Norway to establish a
mathematical competition. Several questions were posed (although the king
would have preferred only one), and the prize of 2500 kroner would go to the
best submission. One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract each other ac-
cording to Newton’s laws, under the assumption that no two points ever
collide, try to find a representation of the coordinates of each point as a
series in a variable that is some known function of time and for all of
whose values the series converges uniformly.
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This problem, whose solution would considerably extend our under-
standing of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quantities
that were analytic in the momenta and positions could not exist. To show that
he introduced methods that were very geometrical in spirit: the importance
of state space flow, the role of periodic orbits and their cross sections, the
homoclinic points.

The interesting thing about Poincaré’s work was that it did not solve the
problem posed. He did not find a function that would give the coordinates
as a function of time for all times. He did not show that it was impossible
either, but rather that it could not be done with the Bernoulli technique of
finding a conserved quantity and trying to integrate. Integration would seem
unlikely from Poincaré’s prize-winning memoir, but it was accomplished by
the Finnish-born Swedish mathematician Sundman. Sundman showed that to
integrate the three-body problem one had to confront the two-body collisions.
He did that by making them go away through a trick known as regularization of
the collision manifold. The trick is not to expand the coordinates as a function
of time t, but rather as a function of 3

√
t. To solve the problem for all times he

used a conformal map into a strip. This allowed Sundman to obtain a series
expansion for the coordinates valid for all times, solving the problem that was
proposed by Weirstrass in the King Oscar II’s competition.

The Sundman’s series are not used today to compute the trajectories of any
three-body system. That is more simply accomplished by numerical methods
or through series that, although divergent, produce better numerical results.
The conformal map and the collision regularization mean that the series are
effectively in the variable 1−e−

3√t. Quite rapidly this gets exponentially close to
one, the radius of convergence of the series. Many terms, more terms than any
one has ever wanted to compute, are needed to achieve numerical convergence.
Though Sundman’s work deserves better credit than it gets, it did not live up to
Weirstrass’s expectations, and the series solution did not “considerably extend
our understanding of the solar system.’ The work that followed from Poincaré
did.

A.1.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dynam-
ics was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann had
combined the mechanics of Newton with notions of probability in order to
create statistical mechanics, deriving thermodynamics from the equations of
mechanics. To evaluate the heat capacity of even a simple system, Boltzmann
had to make a great simplifying assumption of ergodicity: that the dynamical
system would visit every part of the phase space allowed by conservation laws
equally often. This hypothesis was extended to other averages used in statisti-
cal mechanics and was called the ergodic hypothesis. It was reformulated by
Poincaré to say that a trajectory comes as close as desired to any phase space
point.

Proving the ergodic hypothesis turned out to be very difficult. By the end
of twentieth century it has only been shown true for a few systems and wrong
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for quite a few others. Early on, as a mathematical necessity, the proof of the
hypothesis was broken down into two parts. First one would show that the me-
chanical system was ergodic (it would go near any point) and then one would
show that it would go near each point equally often and regularly so that the
computed averages made mathematical sense. Koopman took the first step in
proving the ergodic hypothesis when he realized that it was possible to refor-
mulate it using the recently developed methods of Hilbert spaces. This was
an important step that showed that it was possible to take a finite-dimensional
nonlinear problem and reformulate it as a infinite-dimensional linear problem.
This does not make the problem easier, but it does allow one to use a differ-
ent set of mathematical tools on the problem. Shortly after Koopman started
lecturing on his method, von Neumann proved a version of the ergodic hypoth-
esis, giving it the status of a theorem. He proved that if the mechanical system
was ergodic, then the computed averages would make sense. Soon afterwards
Birkhoff published a much stronger version of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the development of the theory
of chaotic dynamical systems was the work on the nonlinear oscillators. The
problem is to construct mechanical models that would aid our understanding
of physical systems. Lord Rayleigh came to the problem through his interest
in understanding how musical instruments generate sound. In the first approxi-
mation one can construct a model of a musical instrument as a linear oscillator.
But real instruments do not produce a simple tone forever as the linear oscilla-
tor does, so Lord Rayleigh modified this simple model by adding friction and
more realistic models for the spring. By a clever use of negative friction he cre-
ated two basic models for the musical instruments. These models have more
than a pure tone and decay with time when not stroked. In his book The Theory
of Sound Lord Rayleigh introduced a series of methods that would prove quite
general, such as the notion of a limit cycle, a periodic motion a system goes to
regardless of the initial conditions.

A.1.4 Chaos grows up

(R. Mainieri)
The theorems of von Neumann and Birkhoff on the ergodic hypothesis were

published in 1912 and 1913. This line of enquiry developed in two directions.
One direction took an abstract approach and considered dynamical systems
as transformations of measurable spaces into themselves. Could we classify
these transformations in a meaningful way? This lead Kolmogorov to the in-
troduction of the concept of entropy for dynamical systems. With entropy as
a dynamical invariant it became possible to classify a set of abstract dynam-
ical systems known as the Bernoulli systems. The other line that developed
from the ergodic hypothesis was in trying to find mechanical systems that are
ergodic. An ergodic system could not have stable orbits, as these would break
ergodicity. So in 1898 Hadamard published a paper with a playful title of
‘... billiards ...,’ where he showed that the motion of balls on surfaces of con-
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stant negative curvature is everywhere unstable. This dynamical system was
to prove very useful and it was taken up by Birkhoff. Morse in 1923 showed
that it was possible to enumerate the orbits of a ball on a surface of constant
negative curvature. He did this by introducing a symbolic code to each or-
bit and showed that the number of possible codes grew exponentially with the
length of the code. With contributions by Artin, Hedlund, and H. Hopf it was
eventually proven that the motion of a ball on a surface of constant negative
curvature was ergodic. The importance of this result escaped most physicists,
one exception being Krylov, who understood that a physical billiard was a
dynamical system on a surface of negative curvature, but with the curvature
concentrated along the lines of collision. Sinai, who was the first to show that
a physical billiard can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It prompted
many experiments and some theoretical development by van der Pol, Duff-
ing, and Hayashi. They found other systems in which the nonlinear oscilla-
tor played a role and classified the possible motions of these systems. This
concreteness of experiments, and the possibility of analysis was too much of
temptation for Mary Lucy Cartwright and J.E. Littlewood [A.18], who set out
to prove that many of the structures conjectured by the experimentalists and
theoretical physicists did indeed follow from the equations of motion. Birkhoff
had found a ‘remarkable curve’ in a two dimensional map; it appeared to be
non-differentiable and it would be nice to see if a smooth flow could gener-
ate such a curve. The work of Cartwright and Littlewood lead to the work of
Levinson, which in turn provided the basis for the horseshoe construction of
S. Smale.

chapter 12
In Russia, Lyapunov paralleled the methods of Poincaré and initiated the

strong Russian dynamical systems school. Andronov carried on with the study
of nonlinear oscillators and in 1937 introduced together with Pontryagin the
notion of coarse systems. They were formalizing the understanding garnered
from the study of nonlinear oscillators, the understanding that many of the
details on how these oscillators work do not affect the overall picture of the
state space: there will still be limit cycles if one changes the dissipation or
spring force function by a little bit. And changing the system a little bit has the
great advantage of eliminating exceptional cases in the mathematical analysis.
Coarse systems were the concept that caught Smale’s attention and enticed him
to study dynamical systems.

A.2 Chaos with us

(R. Mainieri)
In the fall of 1961 Steven Smale was invited to Kiev where he met Arnol’d,

Anosov, Sinai, and Novikov. He lectured there, and spent a lot of time with
Anosov. He suggested a series of conjectures, most of which Anosov proved
within a year. It was Anosov who showed that there are dynamical systems
for which all points (as opposed to a non-wandering set) admit the hyperbolic
structure, and it was in honor of this result that Smale named these systems
Axiom-A. In Kiev Smale found a receptive audience that had been thinking
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about these problems. Smale’s result catalyzed their thoughts and initiated a
chain of developments that persisted into the 1970’s.

Smale collected his results and their development in the 1967 review article
on dynamical systems, entitled “Differentiable dynamical systems.” There are

chapter 12
many great ideas in this paper: the global foliation of invariant sets of the
map into disjoint stable and unstable parts; the existence of a horseshoe and
enumeration and ordering of all its orbits; the use of zeta functions to study
dynamical systems. The emphasis of the paper is on the global properties
of the dynamical system, on how to understand the topology of the orbits.
Smale’s account takes you from a local differential equation (in the form of
vector fields) to the global topological description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confusing. The
general character of entropy was understood by Weiner, who seemed to have
spoken to Shannon. In 1948 Shannon published his results on information the-
ory, where he discusses the entropy of the shift transformation. Kolmogorov
went far beyond and suggested a definition of the metric entropy of an area
preserving transformation in order to classify Bernoulli shifts. The sugges-
tion was taken by his student Sinai and the results published in 1959. In 1960
Rohlin connected these results to measure-theoretical notions of entropy. The
next step was published in 1965 by Adler and Palis, and also Adler, Konheim,
McAndrew; these papers showed that one could define the notion of topolog-
ical entropy and use it as an invariant to classify continuous maps. In 1967
Anosov and Sinai applied the notion of entropy to the study of dynamical sys-
tems. It was in the context of studying the entropy associated to a dynamical
system that Sinai introduced Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems and statistical me-
chanics; this has been a very fruitful relationship. It adds measure notions to
the topological framework laid down in Smale’s paper. Markov partitions di-
vide the state space of the dynamical system into nice little boxes that map
into each other. Each box is labeled by a code and the dynamics on the state
space maps the codes around, inducing a symbolic dynamics. From the num-
ber of boxes needed to cover all the space, Sinai was able to define the notion
of entropy of a dynamical system. In 1970 Bowen came up independently with
the same ideas, although there was presumably some flow of information back
and forth before these papers got published. Bowen also introduced the impor-
tant concept of shadowing of chaotic orbits. We do not know whether at this
point the relations with statistical mechanics were clear to everyone. They be-
came explicit in the work of Ruelle. Ruelle understood that the topology of the
orbits could be specified by a symbolic code, and that one could associate an
‘energy’ to each orbit. The energies could be formally combined in a ‘partition
function’ to generate the invariant measure of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the statis-
tical mechanics approach to chaotic systems, research turned to studying par-
ticular cases. The simplest case to consider is 1-dimensional maps. The topol-
ogy of the orbits for parabola-like maps was worked out in 1973 by Metropo-
lis, Stein, and Stein. The more general 1-dimensional case was worked out in
1976 by Milnor and Thurston in a widely circulated preprint, whose extended
version eventually got published in 1988.
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A lecture of Smale and the results of Metropolis, Stein, and Stein inspired
Feigenbaum to study simple maps. This lead him to the discovery of the uni-
versality in quadratic maps and the application of ideas from field-theory to
dynamical systems. Feigenbaum’s work was the culmination in the study of
1-dimensional systems; a complete analysis of a nontrivial transition to chaos.
Feigenbaum introduced many new ideas into the field: the use of the renormal-
ization group which lead him to introduce functional equations in the study of
dynamical systems, the scaling function which completed the link between
dynamical systems and statistical mechanics, and the presentation functions
which describe the dynamics of scaling functions.

The work in more than one dimension progressed very slowly and is still far
from completed. The first result in trying to understand the topology of the or-
bits in two dimensions (the equivalent of Metropolis, Stein, and Stein, or Mil-
nor and Thurston’s work) was obtained by Thurston. Around 1975 Thurston
was giving lectures “On the geometry and dynamics of diffeomorphisms of
surfaces.” Thurston’s techniques exposed in that lecture have not been ap-
plied in physics, but much of the classification that Thurston developed can
be obtained from the notion of a ‘pruning front’ formulated independently by
Cvitanović.

Once one develops an understanding of the topology of the orbits of a dy-
namical system, one needs to be able to compute its properties. Ruelle had
already generalized the zeta function introduced by Artin and Mazur so that
it could be used to compute the average value of observables. The difficulty
with Ruelle’s zeta function is that it does not converge very well. Starting out
from Smale’s observation that a chaotic dynamical system is dense with a set
of periodic orbits, Cvitanović used these orbits as a skeleton on which to eval-
uate the averages of observables, and organized such calculations in terms of
rapidly converging cycle expansions. This convergence is attained by using the
shorter orbits used as a basis for shadowing the longer orbits.

This account is far from complete, but we hope that it will help get a sense
of perspective on the field. It is not a fad and it will not die anytime soon.

A.2.1 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.
— Joe Keller, after being asked to define applied mathematics

The history of the periodic orbit theory is rich and curious, and the recent
advances are to equal degree inspired by a century of separate development of
three disparate subjects; 1. classical chaotic dynamics, initiated by Poincaré
and put on its modern footing by Smale [A.27], Ruelle [A.32], and many oth-
ers; 2. quantum theory initiated by Bohr, with the modern ‘chaotic’ formu-
lation by Gutzwiller [A.13, 32]; and 3. analytic number theory initiated by
Riemann and formulated as a spectral problem by Selberg [A.35, 36]. Follow-
ing totally different lines of reasoning and driven by very different motivations,
the three separate roads all arrive at formally nearly identical trace formulas,
zeta functions and spectral determinants.

That these topics should be related is far from obvious. Connection between
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dynamics and number theory arises from Selberg’s observation that description
of geodesic motion and wave mechanics on spaces of constant negative curva-
ture is essentially a number-theoretic problem. A posteriori, one can say that
zeta functions arise in both classical and quantum mechanics because in both
the dynamical evolution can be described by the action of linear evolution (or
transfer) operators on infinite-dimensional vector spaces. The spectra of these
operators are given by the zeros of appropriate determinants. One way to eval-

section 19.1
uate determinants is to expand them in terms of traces, log det = tr log, and
in this way the spectrum of an evolution operator becames related to its traces,
i.e., periodic orbits. A perhaps deeper way of restating this is to observe that
the trace formulas perform the same service in all of the above problems; they
relate the spectrum of lengths (local dynamics) to the spectrum of eigenvalues
(global averages), and for nonlinear geometries they play a role analogous to
that the Fourier transform plays for the circle.

exercise 4.1
In Gutzwiller’s words:

“The classical periodic orbits are a crucial stepping stone in the un-
derstanding of quantum mechanics, in particular when then classical sys-
tem is chaotic. This situation is very satisfying when one thinks of Poincaré
who emphasized the importance of periodic orbits in classical mechanics,
but could not have had any idea of what they could mean for quantum
mechanics. The set of energy levels and the set of periodic orbits are
complementary to each other since they are essentially related through a
Fourier transform. Such a relation had been found earlier by the mathe-
maticians in the study of the Laplacian operator on Riemannian surfaces
with constant negative curvature. This led to Selberg’s trace formula in
1956 which has exactly the same form, but happens to be exact. The
mathematical proof, however, is based on the high degree of symmetry of
these surfaces which can be compared to the sphere, although the negative
curvature allows for many more different shapes.”

A.2.2 Dynamicist’s vision of turbulence

The key theoretical concepts that form the basis of dynamical theories of turbu-
lence are rooted in the work of Poincaré, Hopf, Smale, Ruelle and Gutzwiller.
In his 1889 analysis of the three-body problem [A.22] Poincaré introduced the
geometric approach to dynamical systems and methods that lie at the core of
the theory developed here: qualitative topology of state space flows, Poincaré
sections, the key roles played by equilibria, periodic orbits, heteroclinic con-
nections, and their stable/unstable manifolds. Poincaré’s work and parallel
work by Lyapunov’s school in Russia was followed up by steady development
of dynamical systems theory through the 20th century.

In a seminal 1948 paper [A.11], Hopf visualized the function space of al-
lowable Navier-Stokes velocity fields as an infinite-dimensional phase space,
parameterized by viscosity, boundary conditions and external forces, with in-
stantaneous state of a flow represented by a point in this state space. Laminar
flows correspond to equilibrium points, globally stable for sufficiently large
viscosity. As the viscosity decreases (as the Reynolds number increases), ‘tur-
bulent’ states set in, represented by chaotic state space trajectories.

Hopf’s observation that viscosity causes a contraction of state space volumes
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under the action of dynamics led to his key conjecture: that long-term, typi-
cally observed solutions of the Navier-Stokes equations lie on finite-dimensional
manifolds embedded in the infinite-dimensional state space of allowed states.
Hopf’s manifold, known today as the ‘inertial manifold,’ is well-studied in
the mathematics of spatio-temporal PDEs. Its finite dimensionality for non-
vanishing ‘viscosity’ parameter has been rigorously established in certain set-
tings by Foias and collaborators [A.43].

Hopf noted “[t]he great mathematical difficulties of these important prob-
lems are well known and at present the way to a successful attack on them
seems hopelessly barred. There is no doubt, however, that many character-
istic features of the hydrodynamical phase flow occur in a much larger class
of similar problems governed by non-linear space-time systems. In order to
gain insight into the nature of hydrodynamical phase flows we are, at present,
forced to find and to treat simplified examples within that class.”

Hopf’s call for geometric state space analysis of simplified models first came
to fulfillment with the influential Lorenz’s truncation [A.8] of the Rayleigh-
Bénard convection state space (see Example 2.2), and was brought a bit closer
to true hydrodynamics with the Cornell group’s POD models of boundary-
layer turbulence [A.19, 12]. Further significant progress has proved possible
for systems such as the 1-spatial dimension Kuramoto-Sivashinsky flow [A.13,
14], a paradigmatic model of turbulent dynamics, and one of the most exten-
sively studied spatially extended dynamical systems.

Today, as we hope to have convinced the reader, with modern computation
and experimental insights, the way to a successful attack on the full Navier-
Stokes problem is no longer “hopelessly barred.” We address the challenge in
a way Hopf could not divine, employing methodology developed only within
the past two decades, explained in depth in this book. Hopf presciently noted
that “the geometrical picture of the phase flow is, however, not the most impor-
tant problem of the theory of turbulence. Of greater importance is the determi-
nation of the probability distributions associated with the phase flow”. Hopf’s
call for understanding of probability distributions under phase flow has indeed
proven to be a key challenge, the one in which dynamical systems theory has
made the greatest progress in the last half century, namely, the Sinai-Ruelle-
Bowen ergodic theory of ‘natural’ or SRB measures for far-from-equilibrium
systems [A.27–29, 32].

The story so far goes like this: in 1960 Edward A. Spiegel was Robert
Kraichnan’s research associate. Kraichnan told him: “Flow follows a regu-
lar solution for a while, then another one, then switches to another one; that’s
turbulence.” It was not too clear, but Kraichnan’s vision of turbulence moved
Ed. In 1962 Spiegel and Derek Moore investigated a set of 3rd order convec-
tion equations which seemed to follow one periodic solution, then another, and
continued going from periodic solution to periodic solution. Ed told Derek:
“This is turbulence!” and Derek said “This is wonderful!” and was moved. He
went to give a lecture at Caltech sometime in 1964 and came back angry as
hell. They pilloried him there: “Why is this turbulence?” they kept asking and
he could not answer, so he expunged the word ‘turbulence’ from their 1966
article [A.15] on periodic solutions. In 1970 Spiegel met Kraichnan and told
him: “This vision of turbulence of yours has been very useful to me.” Kraich-
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nan said: “That wasn’t my vision, that was Hopf’s vision.” What Hopf actually
said and where he said it remains deeply obscure to this very day. There are
papers that lump him together with Landau, as the ‘Landau-Hopf’s incorrect
theory of turbulence,’ but he did not seem to propose incommensurate frequen-
cies as building blocks of turbulence, which is what Landau’s guess was.

Starting with the introduction of ‘cycle expansions’ [A.1] in 1988, the classi-
cal, mathematically rigorous SRB, and the closely related semiclassical Gutzwiller
theory, were refashioned into effective tools for computing long time averages
of quantities measured in chaotic dynamics. The idea that chaotic dynamics is
built upon unstable periodic orbits first arose in Ruelle’s work on hyperbolic
systems, with ergodic averages associated with natural invariant measures ex-
pressed as weighted summations of the corresponding averages about the in-
finite set of unstable periodic orbits embedded in the underlying chaotic set.
For a long time the convergence of such sums bedeviled the practitioners, until
the periodic orbit theory was recast in terms of highly convergent cycle expan-
sions [A.2] for which relatively few short periodic orbits led to highly accurate
transport rates for classical systems, and quantal spectra for quantum systems.
The idea, in nutshell, is that long orbits are shadowed by shorter orbits, and
the nth term in a cycle expansion is the difference between the shorter cycles
estimate of the period n-cycles’ contribution from the exact n-cycles sum. For
hyperbolic, everywhere unstable flows, this difference falls of exponentially or
super-exponentially. Implementing the cycle expansions theory, the group of
Wintgen soon obtained a surprisingly accurate helium spectrum [A.20] from a
small set of shortest cycles, 50 years after failure of the old quantum theory to
do so, and 20 years after Gutzwiller first introduced his quantization of chaotic
systems.

In 1996 Christiansen et al. [A.44] proposed (in what is now the gold stan-
dard for an exemplary ChaosBook.org project) that the periodic orbit theory
be applied to infinite-dimensional flows, such as the Navier-Stokes, using the
Kuramoto-Sivashinsky model as a laboratory for exploring the dynamics close
to the onset of spatiotemporal chaos. The main conceptual advance in this
initial foray was the demonstration that the high-dimensional (16-64 mode
Galërkin truncations) dynamics of this dissipative flow can be reduced to an
approximately 1-dimensional Poincaré return map s → f (s), by choosing the
unstable manifold of the shortest periodic orbit as the intrinsic curvilinear co-
ordinate from which to measure near recurrences. For the first time for any
nonlinear PDE, some 1,000 unstable periodic orbits were determined numeri-
cally.

What was novel about this work? First, dynamics on a strange attractor
embedded in a high-dimensional space was reduced to an intrinsic nearly 1-
dimensional dynamics, an approximate 1− d map from the segment of the
unstable manifold bracketed by the primary turning points onto itself. Sec-
ond, the solutions found provided both a qualitative description, and highly
accurate quantitative predictions for the given PDE with the given boundary
conditions and the given system parameter values.

The 1996 project went as far as one could with methods and computation
resources available, until 2002, when new variational methods were intro-
duced [A.15, 45, ?]. Considerably more unstable, higher-dimensional regimes
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have become accessible [A.?], and the full Navier-Stokes analysis of wall-
bounded flows has become feasible [A.46].

A.2.3 Gruppenpest

How many Tylenols should I take with this?... (never took group the-
ory, still need to be convinced that there is any use to this beyond
mind-numbing formalizations.)

— Fabian Waleffe, forced to read a version of Chapter 9.

If you are not fan of Chapter 9 “World in a mirror,” and its elaborations,
you are not alone. Or, at least, you were not alone in 1930s. That is when
the articles by two young mathematical physicists, Eugene Wigner and Johann
von Neumann [A.27], and Wigner’s 1931 Gruppentheorie [A.28] started Die
Gruppenpest that plagues us to this very day.

According to John Baez [A.29], the American physicist John Slater, inventor
of the ‘Slater determinant,’ is famous for having dismissed groups as unneces-
sary to physics. He wrote:

“It was at this point that Wigner, Hund, Heitler, and Weyl entered the pic-
ture with their ‘Gruppenpest:’ the pest of the group theory [actually, the correct
translation is ‘the group plague’] ... The authors of the ‘Gruppenpest’ wrote
papers which were incomprehensible to those like me who had not studied
group theory... The practical consequences appeared to be negligible, but ev-
eryone felt that to be in the mainstream one had to learn about it. I had what
I can only describe as a feeling of outrage at the turn which the subject had
taken ... it was obvious that a great many other physicists we are disgusted as I
had been with the group-theoretical approach to the problem. As I heard later,
there were remarks made such as ‘Slater has slain the ’Gruppenpest”. I believe
that no other piece of work I have done was so universally popular.”

A. John Coleman writes in Groups and Physics - Dogmatic Opinions of a
Senior Citizen [A.30]: “The mathematical elegance and profundity of Weyl’s
book [Theory of Groups and QM] was somewhat traumatic for the English-
speaking physics community. In the preface of the second edition in 1930,
after a visit to the USA, Weyl wrote, “It has been rumored that the ‘group pest’
is gradually being cut out of quantum physics. This is certainly not true in so
far as the rotation and Lorentz groups are concerned; ....” In the autobiography
of J. C. Slater, published in 1975, the famous MIT physicist described the
“feeling of outrage” he and other physicists felt at the incursion of group theory
into physics at the hands of Wigner, Weyl et al. In 1935, when Condon and
Shortley published their highly influential treatise on the “Theory of Atomic
Spectra”, Slater was widely heralded as having “slain the Gruppenpest”. Pages
10 and 11 of Condon and Shortley’s treatise are fascinating reading in this
context. They devote three paragraphs to the role of group theory in their
book. First they say, “We manage to get along without it.” This is followed
by a lovely anecdote. In 1928 Dirac gave a seminar, at the end of which Weyl
protested that Dirac had said he would make no use of group theory but that
in fact most of his arguments were applications of group theory. Dirac replied,
“I said that I would obtain the results without previous knowledge of group
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theory!” Mackey, in the article referred to previously, argues that what Slater
and Condon and Shortley did was to rename the generators of the Lie algebra
of SO(3) as “angular momenta” and create the feeling that what they were
doing was physics and not esoteric mathematics.”

From AIP Wigner interview: AIP: “In that circle of people you were work-
ing with in Berlin, was there much interest in group theory at this time?”
WIGNER: “No. On the opposite. Schrödinger coined the expression, ‘Grup-
penpest’ must be abolished.” “It is interesting, and representative of the re-
lations between mathematics and physics, that Wigner’s paper was originally
submitted to a Springer physics journal. It was rejected, and Wigner was seek-
ing a physics journal that might take it when von Neumann told him not to
worry, he would get it into the Annals of Mathematics. Wigner was happy to
accept his offer [A.31].”

A.3 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went up for a
walk up the Uetliberg. On the top they sat down and talked about
physics. In particular they talked about the new atom model of Bohr.
There and then they made the ‘Uetli Schwur:’ If that crazy model of
Bohr turned out to be right, then they would leave physics. It did and
they didn’t.

— A. Pais, Inward Bound: of Matter and Forces in the Physical
World

In an afternoon of May 1991 Dieter Wintgen is sitting in his office at the Niels
Bohr Institute beaming with the unparalleled glee of a boy who has just com-
mitted a major mischief. The starting words of the manuscript he has just
penned are

The failure of the Copenhagen School to obtain a reasonable . . .

34 years old at the time, Dieter was a scruffy kind of guy, always in sandals
and holed out jeans, the German flavor of a 90’s left winger and a mountain
climber, working around the clock with his students Gregor and Klaus to com-
plete the work that Bohr himself would have loved to see done back in 1916:
a ‘planetary’ calculation of the helium spectrum.

Never mind that the ‘Copenhagen School’ refers not to the old quantum
theory, but to something else. The old quantum theory was no theory at all;
it was a set of rules bringing some order to a set of phenomena which defied
logic of classical theory. The electrons were supposed to describe planetary
orbits around the nucleus; their wave aspects were yet to be discovered. The
foundations seemed obscure, but Bohr’s answer for the once-ionized helium
to hydrogen ratio was correct to five significant figures and hard to ignore.
The old quantum theory marched on, until by 1924 it reached an impasse: the
helium spectrum and the Zeeman effect were its death knell.

Since the late 1890’s it had been known that the helium spectrum consists
of the orthohelium and parahelium lines. In 1915 Bohr suggested that the two
kinds of helium lines might be associated with two distinct shapes of orbits (a
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suggestion that turned out to be wrong). In 1916 he got Kramers to work on
the problem, and wrote to Rutherford: “I have used all my spare time in the
last months to make a serious attempt to solve the problem of ordinary helium
spectrum . . . I think really that at last I have a clue to the problem.” To other
colleagues he wrote that “the theory was worked out in the fall of 1916” and of
having obtained a “partial agreement with the measurements.” Nevertheless,
the Bohr-Sommerfeld theory, while by and large successful for hydrogen, was
a disaster for neutral helium. Heroic efforts of the young generation, including
Kramers and Heisenberg, were of no avail.

For a while Heisenberg thought that he had the ionization potential for he-
lium, which he had obtained by a simple perturbative scheme. He wrote en-
thusiastic letters to Sommerfeld and was drawn into a collaboration with Max
Born to compute the spectrum of helium using Born’s systematic perturba-
tive scheme. In first approximation, they reproduced the earlier calculations.
The next level of corrections turned out to be larger than the computed effect.
The concluding paragraph of Max Born’s classic “Vorlesungen über Atom-
mechanik” from 1925 sums it up in a somber tone:

(. . . ) the systematic application of the principles of the quantum the-
ory (. . . ) gives results in agreement with experiment only in those cases
where the motion of a single electron is considered; it fails even in the
treatment of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not really consistent.
(. . . ) A complete systematic transformation of the classical mechanics
into a discontinuous mechanics is the goal towards which the quantum
theory strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum the-
ory was dead. In 1926 he gave the first quantitative explanation of the helium
spectrum. He used wave mechanics, electron spin and the Pauli exclusion prin-
ciple, none of which belonged to the old quantum theory, and planetary orbits
of electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It was not the fault
of the old quantum mechanics, but rather it reflected their lack of understanding
of the subtleties of classical mechanics. Today we know what they missed
in 1913-24: the role of conjugate points (topological indices) along classical
trajectories was not accounted for, and they had no idea of the importance of
periodic orbits in nonintegrable systems.

Since then the calculation for helium using the methods of the old quantum
mechanics has been fixed. Leopold and Percival [A.5] added the topological
indices in 1980, and in 1991 Wintgen and collaborators [A.8,9] understood the
role of periodic orbits. Dieter had good reasons to gloat; while the rest of us
were preparing to sharpen our pencils and supercomputers in order to approach
the dreaded 3-body problem, they just went ahead and did it. What it took–and
much else–is described in this book.

One is also free to ponder what quantum theory would look like today if all
this was worked out in 1917. In 1994 Predrag Cvitanović gave a talk in Seattle
about helium and cycle expansions to–inter alia–Hans Bethe, who loved it so
much that after the talk he pulled Predrag aside and they trotted over to Hans’
secret place: the best lunch on campus (Business School). Predrag asked:
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“Would quantum mechanics look different if in 1917 Bohr and Kramers et
al. figured out how to use the helium classical 3-body dynamics to quantize
helium?”

Bethe was very annoyed. He responded with an exasperated look - in Bethe
Deutschinglish (if you have ever talked to him, you can do the voice over
yourself):

“It would not matter at all!”
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Further reading

A.1 Notion of global foliations. For each paper cited in dy-
namical systems literature, there are many results that went
into its development. As an example, take the notion of global
foliations that we attribute to Smale. As far as we can trace
the idea, it goes back to René Thom; local foliations were al-
ready used by Hadamard. Smale attended a seminar of Thom
in 1958 or 1959. In that seminar Thom was explaining his
notion of transversality. One of Thom’s disciples introduced
Smale to Brazilian mathematician Peixoto. Peixoto (who had
learned the results of the Andronov-Pontryagin school from
Lefschetz) was the closest Smale had ever come until then to
the Andronov-Pontryagin school. It was from Peixoto that
Smale learned about structural stability, a notion that got him
enthusiastic about dynamical systems, as it blended well with
his topological background. It was from discussions with
Peixoto that Smale got the problems in dynamical systems
that lead him to his 1960 paper on Morse inequalities. The
next year Smale published his result on the hyperbolic struc-
ture of the non-wandering set. Smale was not the first to con-
sider a hyperbolic point, Poincaré had already done that; but
Smale was the first to introduce a global hyperbolic structure.
By 1960 Smale was already lecturing on the horseshoe as a
structurally stable dynamical system with an infinity of peri-
odic points and promoting his global viewpoint. (R.
Mainieri)

A.2 Levels of ergodicity. In the mid 1970’s A. Katok and
Ya.B. Pesin tried to use geometry to establish positive Lya-
punov exponents. A. Katok and J.-M. Strelcyn carried out the
program and developed a theory of general dynamical sys-
tems with singularities. They studied uniformly hyperbolic
systems (as strong as Anosov’s), but with sets of singularities.
Under iterations a dense set of points hits the singularities.
Even more important are the points that never hit the singu-
larity set. In order to establish some control over how they
approach the set, one looks at trajectories that approach the
set by some given εn, or faster.
Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the
geometry of billiards in a very detailed way. A. Katok and
Ya.B. Pesin’s idea was much more robust: look at the dis-
continuity set, take an ε neighborhood around it. Given that
the Lebesgue measure is εα and the stability grows not faster
than (distance)n. A. Katok and J.-M. Strelcyn proved that the
Lyapunov exponent is non-zero.
In mid 1980’s Ya.B. Pesin studied the dissipative case. Now
the problem has no invariant Lebesgue measure. Assuming
uniform hyperbolicity, with singularities, and tying together

Lebesgue measure and discontinuities, and given that the sta-
bility grows not faster than (distance)n, Ya.B. Pesin proved
that the Lyapunov exponent is non-zero, and that SRB mea-
sure exists. He also proved that the Lorenz, Lozi and Byelikh
attractors satisfy these conditions.
In the systems that are uniformly hyperbolic, all trouble is in
differentials. For the Hénon attractor, already the differentials
are nonhyperbolic. The points do not separate uniformly, but
the analogue of the singularity set can be obtained by excising
the regions that do not separate. Hence there are 3 levels of
ergodic systems:

(a) Anosov flow

(b) Anosov flow + singularity set: For the Hamiltonian
systems the general case is studied by A. Katok and
J.-M. Strelcyn, and the billiards case by Ya.G. Sinai
and L. Bunimovich. The dissipative case is studied by
Ya.B. Pesin.

(c) Hénon case: The first proof was given by M. Benedicks
and L. Carleson [A.22]. A more readable proof is given
in M. Benedicks and L.-S. Young [A.25].

(based on Ya.B. Pesin’s comments)

A.3 Einstein did it? The first hint that chaos is afoot in
quantum mechanics was given in a note by A. Einstein [A.26].
The total discussion is a one sentence remark. Einstein be-
ing Einstein, this one sentence has been deemed sufficient
to give him the credit for being the pioneer of quantum
chaos [A.32, 33]. We asked about the paper two people from
that era, Sir Rudolf Peierls and Abraham Pais; neither had any
recollection of the 1917 article. However, Theo Geisel has un-
earthed a reference that shows that in early 20s Born did have
a study group meeting in his house that studied Poincaré’s
Méchanique Céleste [A.22]. In 1954 Fritz Reiche, who
had previously followed Einstein as professor of physics in
Breslau (now Wroclaw, Poland), pointed out to J.B. Keller
that Keller’s geometrical semiclassical quantization was an-
ticipated by the long forgotten paper by A. Einstein [A.26].
In this way an important paper written by the physicist who
at the time was the president of German Physical Society, and
the most famous scientist of his time, came to be referred to
for the first time by Keller [A.34], 41 years later. But be-
fore Ian Percival included the topological phase, and Wintgen
and students recycled the Helium atom, knowing Méchanique
Céleste was not enough to complete Bohr’s original program.

A.4 Berry-Keating conjecture. A very appealing proposal
in the context of semiclassical quantization is due to M. Berry

ChaosBook.org version13.5, Sep 7 2011 appendHist - 19aug2008



492 Further reading

and J. Keating [A.37]. The idea is to improve cycle expan-
sions by imposing unitarity as a functional equation ansatz.
The cycle expansions that they use are the same as the origi-
nal ones [A.2, 1] described above, but the philosophy is quite
different; the claim is that the optimal estimate for low eigen-
values of classically chaotic quantum systems is obtained by
taking the real part of the cycle expansion of the semiclas-
sical zeta function, cut off at the appropriate cycle length.
M. Sieber, G. Tanner and D. Wintgen, and P. Dahlqvist find
that their numerical results support this claim; F. Christiansen
and P. Cvitanović do not find any evidence in their numerical
results. The usual Riemann-Siegel formulas exploit the self-
duality of the Riemann and other zeta functions, but there is
no evidence of such symmetry for generic Hamiltonian flows.
Also from the point of hyperbolic dynamics discussed above,

proposal in its current form belongs to the category of crude
cycle expansions; the cycles are cut off by a single external
criterion, such as the maximal cycle time, with no regard for
the topology and the curvature corrections. While the func-
tional equation conjecture is not in its final form yet, it is very
intriguing and fruitful research inspiration.
The real life challenge are generic dynamical flows, which fit
neither of extreme idealized settings, Smale horseshoe on one
end, and the Riemann zet function on the other.

A.5 Sources. The tale of Appendix A.3, aside from a few per-
sonal recollections, is in large part lifted from Abraham Pais’
accounts of the demise of the old quantum theory [A.6, 7],
as well as Jammer’s account [A.2]. In August 1994 Dieter
Wintgen died in a climbing accident in the Swiss Alps.
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Mopping up operations are the activities that engage most scientists
throughout their careers.

— Thomas Kuhn, The Structure of Scientific Revolutions

The subject of linear algebra generates innumerable tomes of its own, and
is way beyond what we can exhaustively cover. Here we recapitulate a
few essential concepts that ChaosBook relies on. The punch line is Eq.

(B.25):
Hamilton-Cayley equation

∏
(M − λi1) = 0 associates with each distinct

root λi of a matrix M a projection onto ith vector subspace

Pi =
∏
j�i

M − λ j1
λi − λ j

.

B.1 Linear algebra

In this section we collect a few basic definitions. The reader might prefer going
straight to Section B.2.

Vector space. A set V of elements x, y, z, . . . is called a vector (or linear)
space over a field F if

(a) vector addition “+” is defined in V such that V is an abelian group under
addition, with identity element 0;

(b) the set is closed with respect to scalar multiplication and vector addition

a(x + y) = ax + ay , a, b ∈ F , x, y ∈ V

(a + b)x = ax + bx

a(bx) = (ab)x

1 x = x , 0 x = 0 . (B.1)

Here the field F is eitherR, the field of reals numbers, orC, the field of complex
numbers. Given a subset V0 ⊂ V, the set of all linear combinations of elements
of V0, or the span of V0, is also a vector space.

A basis. {e(1), · · · , e(d)} is any linearly independent subset of V whose span is
V. The number of basis elements d is the dimension of the vector space V.
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Dual space, dual basis. Under a general linear transformation g ∈ GL(n, F),
the row of basis vectors transforms by right multiplication as e ( j) =

∑
k(g−1) j

k e(k),
and the column of xa’s transforms by left multiplication as x′ = gx. Under left
multiplication the column (row transposed) of basis vectors e (k) transforms as
e( j) = (g†) j

ke(k), where the dual rep g† = (g−1)T is the transpose of the inverse
of g. This observation motivates introduction of a dual representation space V̄,
the space on which GL(n, F) acts via the dual rep g†.
Definition. If V is a vector representation space, then the dual space V̄ is the
set of all linear forms on V over the field F.
If {e(1), · · · , e(d)} is a basis of V, then V̄ is spanned by the dual basis {e(1), · · · , e(d)},
the set of d linear forms e(k) such that

e( j) · e(k) = δk
j ,

where δk
j is the Kronecker symbol, δk

j = 1 if j = k, and zero otherwise. The
components of dual representation space vectors ȳ ∈ V̄ will here be distin-
guished by upper indices

(y1, y2, . . . , yn) . (B.2)

They transform under GL(n, F) as

y′a = (g†)a
byb . (B.3)

For GL(n, F) no complex conjugation is implied by the † notation; that inter-
pretation applies only to unitary subgroups U(n) ⊂ GL(n,C). In the index
notation, g can be distinguished from g† by keeping track of the relative order-
ing of the indices,

(g)b
a → ga

b , (g†)b
a → gb

a . (B.4)

Algebra. A set of r elements tα of a vector space T forms an algebra if, in
addition to the vector addition and scalar multiplication,

(a) the set is closed with respect to multiplication T · T → T , so that for
any two elements tα, tβ ∈ T , the product tα · tβ also belongs to T :

tα · tβ =
r−1∑
γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (B.5)

(b) the multiplication operation is distributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbers ταβγ are called the structure constants. They form a matrix
rep of the algebra,

(tα)βγ ≡ ταβγ , (B.6)

whose dimension is the dimension r of the algebra itself.
Depending on what further assumptions one makes on the multiplication,

one obtains different types of algebras. For example, if the multiplication is
associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,
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the algebra is associative. Typical examples of products are the matrix product

(tα · tβ)c
a = (tα)b

a(tβ)
c
b , tα ∈ V ⊗ V̄ , (B.7)

and the Lie product

(tα · tβ)c
a = (tα)b

a(tβ)
c
b − (tα)b

c(tβ)
a
b , tα ∈ V ⊗ V̄ (B.8)

which defines a Lie algebra.

B.2 Eigenvalues and eigenvectors

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M − λ1) =
∏

(λi − λ) = 0 . (B.9)

Given a nonsingular matrix M, with all λ i � 0, acting on d-dimensional vectors
x, we would like to determine eigenvectors e (i) of M on which M acts by scalar
multiplication by eigenvalue λ i

M e(i) = λie(i) . (B.10)

If λi � λ j, e(i) and e( j) are linearly independent. There are at most d distinct
eigenvalues and eigenspaces, which we assume have been computed by some
method, and ordered by their real parts, Re λ i ≥ Re λi+1.

If all eigenvalues are distinct e( j) are d linearly independent vectors which
can be used as a (non-orthogonal) basis for any d-dimensional vector x ∈ R d

x = x1 e(1) + x2 e(2) + · · · + xd e(d) . (B.11)

From (B.10) it follows that

(M − λi1) e( j) = (λ j − λi) e( j) ,

matrix (M− λi1) annihilates e(i), the product of all such factors annihilates any
vector, and the matrix M satisfies its characteristic equation (B.9),

d∏
i=1

(M − λi1) = 0 . (B.12)

This humble fact has a name: the Hamilton-Cayley theorem. If we delete
one term from this product, we find that the remainder projects x onto the
corresponding eigenspace:∏

j�i

(M − λ j1)x =
∏
j�i

(λi − λ j)xie(i) .

Dividing through by the (λ i − λ j) factors yields the projection operators

Pi =
∏
j�i

M − λ j1
λi − λ j

, (B.13)
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which are orthogonal and complete:

PiP j = δi jP j , (no sum on j) ,
r∑

i=1

Pi = 1 . (B.14)

It follows from the characteristic equation (B.12) that λ i is the eigenvalue of M
on Pi subspace:

M Pi = λiPi (no sum on i) . (B.15)

Using M =M 1 and completeness relation (B.14) we can rewrite M as

M = λ1P1 + λ2P2 + · · · + λdPd . (B.16)

Any matrix function f (M) takes the scalar value f (λ i) on the Pi subspace,
f (M) Pi = f (λi) Pi , and is thus easily evaluated through its spectral decompo-
sition

f (M) =
∑

i

f (λi)Pi . (B.17)

This, of course, is the reason why anyone but a fool works with irreducible
reps: they reduce matrix (AKA “operator”) evaluations to manipulations with
numbers.

By (B.10) every column of P i is proportional to a right eigenvector e (i), and
its every row to a left eigenvector e(i). In general, neither set is orthogonal, but
by the idempotence condition (B.14), they are mutually orthogonal,

e(i) · e( j) = c δ j
i . (B.18)

The non-zero constant c is convention dependent and not worth fixing, unless
you feel nostalgic about Clebsch-Gordan coefficients. We shall set c = 1. Then
it is convenient to collect all left and right eigenvectors into a single matrix as
follows.

Fundamental matrix. The set of solutions x(t) = J t(x0)x0 for a system of
homogeneous linear differential equations ẋ(t) = A(t)x(t) of order 1 and di-
mension d forms a d-dimensional vector space. A basis {e (1)(t), . . . , e(d)(t)} for
this vector space is called a fundamental system. Every solution x(t) can be
written as

x(t) =
d∑

i=1

ci e(i)(t) .

The [d×d] matrix F−1
i j = e( j)

i whose columns are the right eigenvectors of J t

F(t)−1 = (e(1)(t), . . . , e(d)(t)) , F(t)T = (e(1)(t), . . . , e(d)(t)) (B.19)

is the inverse of a fundamental matrix.

Jacobian matrix. The Jacobian matrix J t(x0) is the linear approximation to
a differentiable function f t(x0), describing the orientation of a tangent plane
to the function at a given point and the amount of local rotation and shearing
caused by the transformation. The inverse of the Jacobian matrix of a function
appendStability - 27jun2011 ChaosBook.org version13.5, Sep 7 2011
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is the Jacobian matrix of the inverse function. If f is a map from d-dimensional
space to itself, the Jacobian matrix is a square matrix, whose determinant we
refer to as the ‘Jacobian.’

The Jacobian matrix can be written as transformation from basis at time t 0

to the basis at time t1,

Jt1−t0 (x0) = F(t1)F(t0)−1 . (B.20)

Then the matrix form of (B.18) is F(t)F(t)−1 = 1, i.e., for zero time the Jacobian
matrix is the identity.

exercise B.1

Example B.1 Fundamental matrix.
If A is constant in time, the system (4.2) is autonomous, and the solution is

x(t) = eA t x(0) ,

where exp(A t) is defined by the Taylor series for exp(x). As the system is linear,
the sum of any two solutions is also a solution. Therefore, given d independent ini-
tial conditions, x1(0), x2(0), . . . xd(0) we can write the solution for an arbitrary initial
condition based on its projection on to this set,

x(t) = F(t) F(0)−1 x(0) = eAt ,

where F(t) = (x1(t), x2(t), . . . , xd(t)) is a fundamental matrix of the system. (J.
Halcrow)

exercise B.1

Example B.2 Complex eigenvalues.
As M has only real entries, it will in general have either real eigenvalues, or complex
conjugate pairs of eigenvalues. That is not surprising, but also the corresponding
eigenvectors can be either real or complex. All coordinates used in defining a dy-
namical flow are real numbers, so what is the meaning of a complex eigenvector?
If λk, λk+1 eigenvalues that lie within a diagonal [2× 2] sub-block M′ ⊂ M form
a complex conjugate pair, {λk, λk+1} = {μ + iω, μ − iω}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} →
{Re e(k), Im e(k)}. In this 2−d real representation, M′ → N, the block N is a sum of the
rescaling×identity and the generator of SO(2) rotations

N =
(
μ −ω
ω μ

)
= μ

( 1 0
0 1

)
+ ω

( 0 −1
1 0

)
.

Trajectories of ẋ = N x, given by x(t) = Jt x(0), where

Jt = etN = etμ
( cos ωt − sin ωt

sin ωt cos ωt

)
, (B.21)

spiral in/out around (x, y) = (0, 0), see Fig. 4.5, with the rotation period T and the
radial expansion /contraction multiplier along the e( j) eigen-direction per a turn of
the spiral:

T = 2π/ω , Λradial = eTμ . (B.22)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000 T , or 10−2T).
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Error correlation matrix. In the Section 17.3 calculation of Lyapunov ex-
ponents we do not care about the orientation of the vector between a trajectory
and its perturbation, but only its magnitude. This magnitude is given by the
error correlation matrix∣∣∣Jt(x0)δx0

∣∣∣2 = δx0
T
(
Jt

)T
Jtδx0 . (B.23)

As J is in general not symmetric and not diagonalizable, it is sometimes more
convenient to work with the symmetric and diagonalizable matrix M =

(
Jt

)T
Jt,

with real positive eigenvalues {|Λ1|2 ≥ . . . ≥ |Λd|2}, and a complete orthonor-
mal set of eigenvectors of {u1, . . . , ud}.

Degenerate eigenvalues. While for a matrix with generic real elements all
eigenvalues are distinct with probability 1, that is not true in presence of sym-
metries, or spacial parameter values (bifurcation points). What can one say
about situation where dα eigenvalues are degenerate, λα = λi = λi+1 = · · · =
λi+dα−1? Hamilton-Cayley (B.12) now takes form

r∏
α=1

(M − λα1)dα = 0 ,
∑
α

dα = d . (B.24)

We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (B.24) can
be replaced by the minimal polynomial,

r∏
α=1

(M − λα1) = 0 , (B.25)

where the product includes each distinct eigenvalue only once. Matrix M acts
multiplicatively

M e(α,k) = λie(α,k) , (B.26)

on a dα-dimensional subspace spanned by a linearly independent set of basis
eigenvectors {e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case whose discussion
we continue in Appendix C.2.1. Luckily, if the degeneracy is due to a finite or
compact symmetry group, relevant M matrices can always be brought to such
Hermitian, diagonalizable form.

M can only be brought to upper-triangular, Jordan form. This is the
messy case, so we only illustrate the key idea in Example B.3.

Example B.3 Decomposition of 2−d vector spaces:
Enumeration of every possible kind of linear algebra eigenvalue / eigenvector com-
bination is beyond what we can reasonably undertake here. However, enumerating
solutions for the simplest case, a general [2×2] non-singular matrix

M =
(

M11 M12

M21 M22

)
.
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takes us a long way toward developing intuition about arbitrary finite-dimensional
matrices. The eigenvalues

λ1,2 =
1
2

tr M ± 1
2

√
(tr M)2 − 4 det M (B.27)

are the roots of the characteristic (secular) equation (B.9):

det (M − λ 1) = (λ1 − λ)(λ2 − λ)

= λ2 − tr M λ + det M = 0 .

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

P1 =
M − λ21
λ1 − λ2

, P2 =
M − λ11
λ2 − λ1

, λ1 � λ2 . (B.28)

Degenerate eigenvalues. If λ1 = λ2 = λ, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case whose discussion in any dimension
we continue in Appendix C.2.1. (b) M can be brought to Jordan form, with zeros
everywhere except for the diagonal, and some 1’s directly above it; for a [2× 2]
matrix the Jordan form is

M =
(
λ 1
0 λ

)
, e(1) =

( 1
0

)
, v(2) =

( 0
1

)
.

v(2) helps span the 2−d space, (M − λ)2v(2) = 0, but is not an eigenvector, as Mv(2) =

λv(2) + e(1). For every such Jordan [dα×dα] block there is only one eigenvector per
block. Noting that

Mm =

(
λm mλm−1

0 λm

)
,

we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM)

etM

(
u
v

)
= etλ

(
u + tv

v

)
(B.29)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring
the extra term into the exponent).

Example B.4 Projection operator decomposition in 2 dimensions:
Let’s illustrate how the distinct eigenvalues case works with the [2×2] matrix

M =
( 4 1

3 2

)
.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (B.27):

det (M − λ1) = λ2 − 6 λ + 5 = (5 − λ)(1 − λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by
explicit calculation:( 4 1

3 2

)2

− 6
( 4 1

3 2

)
+ 5

( 1 0
0 1

)
=

( 0 0
0 0

)
.

Associated with each root λi is the projection operator (B.28)

P1 =
1
4

(M − 1) =
1
4

( 3 1
3 1

)
(B.30)

P2 =
1
4

(M − 5 · 1) =
1
4

( 1 −1
−3 3

)
. (B.31)
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Matrices Pi are orthonormal and complete, The dimension of the ith subspace is
given by di = tr Pi ; in case at hand both subspaces are 1-dimensional. From the
characteristic equation it follows that Pi satisfies the eigenvalue equation M Pi =

λiPi . Two consequences are immediate. First, we can easily evaluate any function of
M by spectral decomposition, for example

M7 − 3 · 1 = (57 − 3)P1 + (1 − 3)P2 =

( 58591 19531
58593 19529

)
.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigen-
vector, and every row a left eigenvector. Picking first row/column we get the eigen-
vectors:

{e(1), e(2)} = {
( 1

1

)
,
( 1
−3

)
}

{e(1), e(2)} = {( 3 1 ) , ( 1 −1 )} ,

with overall scale arbitrary.The matrix is not hermitian , so {e( j)} do not form an
orthogonal basis. The left-right eigenvector dot products e( j) · e(k), however, are
orthogonal as in (B.18), by inspection.

Example B.5 Computing matrix exponentials.
If A is diagonal (the system is uncoupled), then etA is given by

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1t

λ2t
. . .

λdt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eλ1 t

eλ2 t

. . .

eλd t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
If A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigenvalues
of A and F is the matrix of corresponding eigenvectors, the result is simple: An =

(FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor series for ex

gives eAt = FeDt F−1.
But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2×2] matrices. For
any linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

B =
(
λ 0
0 μ

)
, B =

(
λ 1
0 λ

)
, B =

(
μ −ω
ω μ

)
.

These three cases, called normal forms, correspond to A having (1) distinct real
eigenvalues, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues.
It follows that

eBt =

( eλt 0
0 eμt

)
, eBt = eλt

( 1 t
0 1

)
, eBt = eat

( cos bt − sin bt
sin bt cos bt

)
,

and eAt = UeBtU−1. What we have done is classify all [2×2] matrices as belonging
to one of three classes of geometrical transformations. The first case is scaling, the
second is a shear, and the third is a combination of rotation and scaling. The gener-
alization of these normal forms to Rd is called the Jordan normal form. (J.
Halcrow)
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Table B.1 The first 27 least stable Floquet exponents λ = μ ± iω of equilibrium EQ5 for plane
Couette flow, Re = 400. The exponents are ordered by the decreasing real part. The two zero expo-
nents, to the numerical precision of our computation, arise from the two translational symmetries.
For details, see Ref. [B.1].

j μ
( j)
EQ5 ω

( j)
EQ5 s1 s2 s3

1,2 0.07212161 0.04074989 S S S
3 0.06209526 S AA
4 0.06162059 A S A

5,6 0.02073075 0.07355143 S S S
7 0.009925378 S AA

8,9 0.009654012 0.04551274 AA S
10,11 0.009600794 0.2302166 S AA
12,13 1.460798e-06 1.542103e-06 - - A
14,15 -0.0001343539 0.231129 AA S

16 -0.006178861 A S A
17,18 -0.007785718 0.1372092 AA S

19 -0.01064716 S AA
20,21 -0.01220116 0.2774336 S S S
22,23 -0.01539667 0.2775381 S AA
24,25 -0.03451081 0.08674062 A S A
26,27 -0.03719139 0.215319 S AA

B.3 Eigenspectra: what to make out of them?

Well Mack the Finger said to Louie the King
I got forty red white and blue shoe strings
And a thousand telephones that don’t ring
Do you know where I can get rid of these things?

— Bob Dylan, Highway 61 Revisited

Table B.1, taken from Ref. [B.1], is an example of how to tabulate the lead-
ing Floquet eigenvalues of the stability matrix of an equilibrium or relative
equilibrium. The isotropy subgroup G ( j)

EQ of the corresponding eigenfunction

should be indicated. If the isotropy is trivial, G ( j)
EQ = {e}, it is omitted from

the table. The isotropy subgroup G EQ of the solution itself needs to be noted,
and for relative equilibrium (10.30) the velocity c along the group orbit. In
addition, if the least stable (i.e., the most unstable) eigenvalue is complex, it
is helpful to state the period of the spiral-out motion (or spiral-in, if stable),
TEQ = 2π/ω(1)

EQ .
Table B.2, taken from Ref. [B.3], is an example of how to tabulate the lead-

ing Floquet exponents of the monodromy matrix of an periodic orbit or relative
periodic orbit. For a periodic orbit one states the period T p, Λp =

∏
Λp,e, and

the isotropy group G p of the orbit; for a relative periodic orbit (10.35) one
states in addition the shift parameters θ = (θ1, θ2, · · · θN). Λp, the product of
expanding Floquet multipliers (5.7) is useful, as 1/|Λ p| is the geometric weight
of cycle p in a cycle expansion (remember that each complex eigenvalue con-
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Table B.2 The first 13 least stable Floquet exponents λ = μ ± iω of periodic orbit p = P59.77 for
plane Couette flow, Re = 400, together with the symmetries of corresponding eigenvectors. The
eigenvalues are ordered by the decreasing real part. The one zero eigenvalue, to the numerical pre-
cision of our computation, arises from the spanwise translational SO(2) symmetry of this periodic
orbit. For details, see Ref. [B.3].

j σ
( j)
p μ

( j)
p ω

( j)
p G( j)

p

1,2 0.07212161 0.04074989 D1

3 1 0.06209526 ?
4 -1 0.06162059

5,6 0.02073075 0.07355143
7 -1 0.009925378

8,9 0.009654012 0.04551274
10,11 0.009600794 0.2302166

tributes twice). We often do care about σ( j)
p = Λp, j/|Λp, j| ∈ {+1,−1}, the sign

of the jth Floquet multiplier, or, if Λ p, j is complex, its phase T pω
( j)
p .

Surveying this multitude of equilibrium and Floquet exponents is aided by
a plot of the complex exponent plane (μ, ω). An example are the eigenvalues
of equilibrium EQ8 from Ref. [B.2], plotted in Fig. B.1. To decide how many
of the these are “physical” in the PDE case (where number of exponents is
always infinite, in principle), it is useful to look at the ( j, μ ( j)) plot. How-
ever, intelligent choice of the j-axis units can be tricky for high-dimensional
problems. For Kuramoto-Sivashinsky system the correct choice are the wave-
numbers which, due to the O(2) symmetry, come in pairs. For plane Couette
flow the good choice is not known as yet; one needs to group O(2) × O(2)
wave-numbers, as well as take care of the wall-normal node counting.

−0.05 0 0.05 0.1
−0.4

−0.2

0

0.2

0.4

EQ
8

Fig. B.1 Eigenvalues of the plane Cou-
ette flow equilibrium EQ8, plotted accord-
ing to their isotropy groups: • + + +, the
S -invariant subspace, � + − −, � − +
−, and � − − +, where ± symbols stand
for symmetric/antisymmetric under symme-
try operation s1 , s2 , and s3 respectively, de-
fined in Ref. [B.2]. For tables of nu-
merical values of stability eigenvalues see
Channelflow.org.

B.4 Stability of Hamiltonian flows

(M.J. Feigenbaum and P. Cvitanović)
The symplectic structure of Hamilton’s equations buys us much more than
the incompressibility, or the phase space volume conservation alluded to in
Section 7.1. The evolution equations for any p, q dependent quantity Q =
Q(q, p) are given by (16.32).

In terms of the Poisson brackets, the time-evolution equation for Q = Q(q, p)
is given by (16.34). We now recast the symplectic condition (7.11) in a form
convenient for using the symplectic constraints on M. Writing x(t) = x ′ =
[p′, q′] and the Jacobian matrix and its inverse

M =

⎛⎜⎜⎜⎜⎜⎝ ∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

⎞⎟⎟⎟⎟⎟⎠ , M−1 =

⎛⎜⎜⎜⎜⎜⎝ ∂q
∂q′

∂q
∂p′

∂p
∂q′

∂p
∂p′

⎞⎟⎟⎟⎟⎟⎠ , (B.32)

we can spell out the symplectic invariance condition (7.11):

∂q′k
∂qi

∂p′k
∂q j
−
∂p′k
∂qi

∂q′k
∂q j

= 0
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∂q′k
∂pi

∂p′k
∂p j
−
∂p′k
∂pi

∂q′k
∂p j

= 0

∂q′k
∂qi

∂p′k
∂p j
−
∂p′k
∂qi

∂q′k
∂p j

= δi j . (B.33)

From (7.18) we obtain

∂qi

∂q′j
=
∂p′j
∂pi

,
∂pi

∂p′j
=
∂q′j
∂qi

,
∂qi

∂p′j
= −

∂q′j
∂pi

,
∂pi

∂q′j
= −

∂p′j
∂qi

. (B.34)

Taken together, (B.34) and (B.33) imply that the flow conserves the {p, q} Pois-
son brackets

{qi, q j} =
∂qi

∂p′k

∂q j

∂q′k
−
∂q j

∂p′k

∂qi

∂q′k
= 0

{pi, p j} = 0 , {pi, q j} = δi j , (B.35)

i.e., the transformations induced by a Hamiltonian flow are canonical, preserv-
ing the form of the equations of motion. The first two relations are symmetric
under i, j interchange and yield D(D − 1)/2 constraints each; the last relation
yields D2 constraints. Hence only (2D)2 − 2D(D − 1)/2 − D2 = d(2D + 1)
elements of M are linearly independent, as it behooves group elements of the
symplectic group S p(2D).

B.5 Monodromy matrix for Hamiltonian flows

(G. Tanner)
It is not the Jacobian matrix J of the flow (4.6), but the monodromy matrix
M, which enters the trace formula. This matrix gives the time dependence of
a displacement perpendicular to the flow on the energy manifold. Indeed, we
discover some trivial parts in the Jacobian matrix J. An initial displacement
in the direction of the flow x = ω∇H(x) transfers according to δx(t) = x t(t)δt
with δt time independent. The projection of any displacement on δx on ∇H(x)
is constant, i.e., ∇H(x(t))δx(t) = δE. We get the equations of motion for the
monodromy matrix directly choosing a suitable local coordinate system on the
orbit x(t) in form of the (non singular) transformation U(x(t)):

J̃(x(t)) = U−1(x(t)) J(x(t)) U(x(0)) (B.36)

These lead to

˙̃J = L̃ J̃

with L̃ = U−1(LU − U̇) (B.37)

Note that the properties a) – c) are only fulfilled for J̃ and L̃ if U itself is
symplectic.

Choosing xE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (B.36) at any time t. Setting
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U = (xT
t , xT

E , xT
1 , . . . , xT

2d−2) gives

J̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...

... M
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; L̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...

... l
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.38)

The matrix M is now the monodromy matrix and the equation of motion are
given by

Ṁ = l M. (B.39)

The vectors x1, . . . , x2d−2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the matrix U(t) can be written
down explicitly, i.e.,

U(t) = (xt, x1, xE , x2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (B.40)

with xT = (x, y; u, v) and q = |∇H| = |ẋ|. The matrix U is non singular and
symplectic at every phase space point x, except the equilibrium points ẋ = 0.
The matrix elements for l are given (B.42). One distinguishes 4 classes of
eigenvalues of M.

• stable or elliptic, if Λ = e±iπν and ν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ.

• loxodromic, if Λ = e±μ±iω with μ and ω real. This is the most general
case, possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.e., M is a [2×2] matrix, the eigenvalues are deter-
mined by

λ =
tr (M) ±

√
tr (M)2 − 4

2
, (B.41)

i.e., tr (M) = 2 separates stable and unstable behavior.
The l matrix elements for the local transformation (B.40) are

l̃11 =
1
q

[(h2
x − h2

y − h2
u + h2

v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu − hvv)]

l̃12 =
1
q2

[(h2
x + h2

v)(hyy + huu) + (h2
y + h2

u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]

l̃21 = −(h2
x + h2

y)(huu + hvv) − (h2
u + h2

v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)

l̃22 = −l̃11, (B.42)

with hi, hi j is the derivative of the Hamiltonian H with respect to the phase
space coordinates and q = |∇H|2.
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Exercises

(B.1) Real representation of complex eigenvalues. (Verifi-
cation of Example B.2.) λk, λk+1 eigenvalues form a com-
plex conjugate pair, {λk, λk+1} = {μ + iω, μ − iω}. Show
that

(a) corresponding projection operators are complex
conjugates of each other,

P = Pk , P∗ = Pk+1 ,

where we denote Pk by P for notational brevity.

(b) P can be written as

P =
1
2

(R + iQ) ,

where R = Pk + Pk+1 and Q are matrices with real
elements.

(c) ( Pk

Pk+1

)
=

1
2

( 1 i
1 −i

) ( R
Q

)
.

(d) · · ·+λkPk+λ
∗
kPk+1+ · · · complex eigenvalue pair in

the spectral decomposition (B.16) is now replaced
by a real [2×2] matrix

· · · +
(
μ −ω
ω μ

) ( R
Q

)
+ · · ·

or whatever you find the clearest way to write this
real representation.
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Basic group-theoretic notions are recapitulated here: groups, irreducible
representations, invariants. Our notation follows birdtracks.eu.

The key result is the construction of projection operators from invariant ma-
trices. The basic idea is simple: a hermitian matrix can be diagonalized. If this
matrix is an invariant matrix, it decomposes the reps of the group into direct
sums of lower-dimensional reps. Most of computations to follow implement
the spectral decomposition

M = λ1P1 + λ2P2 + · · · + λrPr ,

which associates with each distinct root λi of invariant matrix M a projection
operator (C.17):

Pi =
∏
j�i

M − λ j1
λi − λ j

.

Sections C.3 and C.4 develop Fourier analysis as an application of the gen-
eral theory of invariance groups and their representations.

C.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanović)
We define group, representation, symmetry of a dynamical system, and invari-
ance.

Group axioms. A group G is a set of elements g1, g2, g3, . . . for which com-
position or group multiplication g2 ◦ g1 (which we often abbreviate as g2g1) of
any two elements satisfies the following conditions:

(1) If g1, g2 ∈ G, then g2 ◦ g1 ∈ G.

(2) The group multiplication is associative: g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1.

(3) The group G contains identity element e such that g ◦ e = e ◦ g = g for
every element g ∈ G.

(4) For every element g ∈ G, there exists a unique h == g−1 ∈ G such that
h ◦ g = g ◦ h = e.

A finite group is a group with a finite number of elements

G = {e, g2, . . . , g|G|} ,
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where |G|, the number of elements, is the order of the group.

Example C.1 Finite groups:
Some finite groups that frequently arise in applications:

• Cn (also denoted Zn): the cyclic group of order n.

• Dn: the dihedral group of order 2n, rotations and reflections in plane that pre-
serve a regular n-gon.

• S n: the symmetric group of all permutations of n symbols, order n!.

Example C.2 Lie groups:
Some compact continuous groups that arise in dynamical systems applications:

• S 1 (also denoted T 1): circle group of dimension 1.

• Tm = S 1 × S 1 · · · × S 1: m-torus, of dimension m.

• SO(2): rotations in the plane, dimension 1. Isomorphic to S 1.

• O(2) = SO(2)×D1: group of rotations and reflections in the plane, of dimension
1.

• U(1): group of phase rotations in the complex plane, of dimension 1. Isomorphic
to SO(2).

• SO(3): rotation group of dimension 3.

• S U(2): unitary group of dimension 3. Isomorphic to SO(3).

• GL(n): general linear group of invertible matrix transformations, dimension n2.

• SO(n): special orthogonal group of dimension n(n − 1)/2.

• O(n) = SO(n) × D1: orthogonal group of dimension n(n − 1)/2.

• S p(n): symplectic group of dimension n(n + 1)/2.

• S U(n): special unitary group of dimension n2 − 1.

Example C.3 Cyclic and dihedral groups:
The cyclic group Cn ⊂ SO(2) of order n is generated by one element. For example,

this element can be rotation through 2π/n. The dihedral group Dn ⊂ O(2), n > 2,
can be generated by two elements one at least of which must reverse orientation. For
example, take σ corresponding to reflection in the x-axis. σ2 = e; such operation σ
is called an involution. C to rotation through 2π/n, then Dn = 〈σ,C〉, and the defining
relations are σ2 = Cn = e, (Cσ)2 = e.

Groups are defined and classified as abstract objects by their multiplication
tables (for finite groups) or Lie algebras (for Lie groups). What concerns us
in applications is their action as groups of transformations on a given space,
usually a vector space (see Appendix B.1), but sometimes an affine space, or a
more general manifoldM.

Repeated index summation. Throughout this text, the repeated pairs of up-
per/lower indices are always summed over

Ga
bxb ≡

n∑
b=1

Ga
bxb , (C.1)

unless explicitly stated otherwise.
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General linear transformations. Let GL(n, F) be the group of general linear
transformations,

GL(n, F) = {g : F n → F n | det (g) � 0} . (C.2)

Under GL(n, F) a basis set of V is mapped into another basis set by multiplica-
tion with a [n×n] matrix g with entries in field F (F is either R or C),

e′ a = eb(g−1)b
a .

As the vector x is what it is, regardless of a particular choice of basis, under
this transformation its coordinates must transform as

x′a = ga
bxb .

Standard rep. We shall refer to the set of [n×n] matrices g as a standard
rep of GL(n, F), and the space of all n-tuples (x1, x2, . . . , xn)T , xi ∈ F on which
these matrices act as the standard representation space V.

Under a general linear transformation g ∈ GL(n, F), the row of basis vectors
transforms by right multiplication as e ′ = e g−1, and the column of xa’s trans-
forms by left multiplication as x′ = gx. Under left multiplication the column
(row transposed) of basis vectors eT transforms as e′T = g†eT , where the dual
rep g† = (g−1)T is the transpose of the inverse of g. This observation motivates
introduction of a dual representation space V̄, the space on which GL(n, F) acts
via the dual rep g†.

Dual space. If V is a vector representation space, then the dual space V̄ is
the set of all linear forms on V over the field F.

If {e(1), · · · , e(d)} is a (right) basis of V, then V̄ is spanned by the dual basis
(left basis) {e(1), · · · , e(d)}, the set of n linear forms e( j) such that

e(i) · e( j) = δ
j
i ,

where δb
a is the Kronecker symbol, δb

a = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will here be distinguished by
upper indices

(y1, y2, . . . , yn) . (C.3)

They transform under GL(n, F) as

y′a = (g†)b
ayb . (C.4)

For GL(n, F) no complex conjugation is implied by the † notation; that inter-
pretation applies only to unitary subgroups of GL(n,C). g can be distinguished
from g† by meticulously keeping track of the relative ordering of the indices,

gb
a → ga

b , (g†)b
a → gb

a . (C.5)
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Defining space, dual space. In what follows V will always denote the defin-
ing n-dimensional complex vector representation space, that is to say the ini-
tial, “elementary multiplet” space within which we commence our delibera-
tions. Along with the defining vector representation space V comes the dual
n-dimensional vector representation space V̄. We shall denote the correspond-
ing element of V̄ by raising the index, as in (C.3), so the components of defin-
ing space vectors, resp. dual vectors, are distinguished by lower, resp. upper
indices:

x = (x1, x2, . . . , xn) , x ∈ V

x̄ = (x1, x2, . . . , xn) , x̄ ∈ V̄ . (C.6)

Defining rep. Let G be a group of transformations acting linearly on V, with
the action of a group element g ∈ G on a vector x ∈ V given by an [n×n] matrix
g

x′a = ga
b xb a, b = 1, 2, . . . , n . (C.7)

We shall refer to ga
b as the defining rep of the group G. The action of g ∈ G

on a vector q̄ ∈ V̄ is given by the dual rep [n×n] matrix g†:

x′a = xb(g†)b
a = ga

bxb . (C.8)

In the applications considered here, the group G will almost always be assumed
to be a subgroup of the unitary group, in which case g−1 = g†, and † indicates
hermitian conjugation:

(g†)a
b = (gb

a)∗ = gb
a . (C.9)

Hermitian conjugation is effected by complex conjugation and index trans-
position: Complex conjugation interchanges upper and lower indices; trans-
position reverses their order. A matrix is hermitian if its elements satisfy

(M†)a
b = Ma

b . (C.10)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, as Mb

a = (M†)b
a = Ma

b.

Invariant vectors. The vector q ∈ V is an invariant vector if for any trans-
formation g ∈ G

q = gq . (C.11)

If a bilinear form M(x̄, y) = xa Ma
byb is invariant for all g ∈ G, the matrix

Ma
b = ga

cgb
d Mc

d (C.12)

is an invariant matrix. Multiplying with gb
e and using the unitary condition

(C.9), we find that the invariant matrices commute with all transformations
g ∈ G:

[g,M] = 0 . (C.13)
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Invariants. We shall refer to an invariant relation between p vectors in V and
q vectors in V̄ , which can be written as a homogeneous polynomial in terms of
vector components, such as

H(x, y, z̄, r̄, s̄) = hab
cdexbya serdzc , (C.14)

as an invariant in Vq ⊗ V̄ p (repeated indices, as always, summed over). In this
example, the coefficients hab

cde are components of invariant tensor h ∈ V 3⊗V̄2.

Matrix group on vector space. We will now apply these abstract group def-
initions to the set of [d × d]-dimensional non-singular matrices A,B,C, . . . ∈
GL(d) acting in a d-dimensional vector space V ∈ Rd . The product of matrices
A and B gives the matrix C,

Cx = B(Ax) = (BA)x ∈ V, ∀x ∈ V.

The identity of the group is the unit matrix 11 which leaves all vectors in V
unchanged. Every matrix in the group has a unique inverse.

Matrix representation of a group. Let us now map the abstract group G
homeomorphically on a group of matrices D(G) acting on the vector space V,
i.e., in such a way that the group properties, especially the group multiplica-
tion, are preserved:

(1) Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

(2) The group product g2 ◦g1 ∈ G is mapped onto the matrix product D(g2 ◦
g1) = D(g2)D(g1).

(3) The associativity is preserved: D(g3 ◦ (g2 ◦ g1)) = D(g3)
(
D(g2)D(g1)

)
=(

D(g3)
(
D(g2)

)
D(g1).

(4) The identity element e ∈ G is mapped onto the unit matrix D(e) = 11 and
the inverse element g−1 ∈ G is mapped onto the inverse matrix D(g−1) =
[D(g)]−1 ≡ D−1(g).

We call this matrix group D(G) a linear or matrix representation of the group
G in the representation space V. We emphasize here ‘linear’ in order to dis-
tinguish the matrix representations from other representations that do not have
to be linear, in general. Throughout this appendix we only consider linear
representations.

If the dimensionality of V is d, we say the representation is an d-dimensional
representation. We will often abbreviate the notation by writing matrices
D(g) ∈ D(G) as g, i.e., x′ = gx corresponds to the matrix operation x ′i =∑d

j=1 D(g)i jx j.

Character of a representation. The character of χα(g) of a d-dimensional
representation D(g) of the group element g ∈ G is defined as trace

χα(g) = tr D(g) =
d∑

i=1

Dii(g) .

Note that χ(e) = d, since Di j(e) = δi j for 1 ≤ i, j ≤ d.
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Faithful representations, factor group. If the mapping G on D(G) is an
isomorphism, the representation is said to be faithful. In this case the order of
the group of matrices D(G) is equal to the order |G| of the group. In general,
however, there will be several elements h ∈ G that will be mapped on the unit
matrix D(h) = 11. This property can be used to define a subgroup H ⊂ G of the
group G consisting of all elements h ∈ G that are mapped to the unit matrix of
a given representation. Then the representation is a faithful representation of
the factor group G/H.

Equivalent representations, equivalence classes. A representation of a group
is by no means unique. If the basis in the d-dimensional vector space V is
changed, the matrices D(g) have to be replaced by their transformations D ′(g),
with the new matrices D′(g) and the old matrices D(g) are related by an equiv-
alence transformation through a non-singular matrix C

D′(g) = C D(g) C−1 .

The group of matrices D′(g) form a representation D′(G) equivalent to the rep-
resentation D(G) of the group G. The equivalent representations have the same
structure, although the matrices look different. Because of the cylic nature of
the trace the character of equivalent representations is the same

χ(g) =
n∑

i=1

D′ii(g) = tr D′(g) = tr
(
CD(g)C−1

)
.

Regular representation of a finite group. The regular representation of a
group is a special representation that is defined as follows: Combine the el-
ements of a finite group into a vector {g1, g2, . . . , g|G|}. Multiplication by any
element gν permutes {g1, g2, . . . , g|G|} entries. We can represent the element
gν by the permutation it induces on the components of vector {g 1, g2, . . . , g|G|}.
Thus for i, j = 1, . . . , |G|, we define the regular representation

Di j(gν) =

{
δ jli if gνgi = gli with li = 1, . . . , |G| ,
0 otherwise .

In the regular representation the diagonal elements of all matrices are zero
except for the identity element gν = e with gνgi = gi. So in the regular repre-
sentation the character is given by

χ(g) =

{
|G| for g = e ,
0 for g � e .

C.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”:

“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every group G; rather, it will be our chief task
to investigate for each particular group whether a finite integrity basis exists
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or not; the answer, to be sure, will turn out affirmative in the most important
cases.”

It is easy to show that any rep of a finite group can be brought to unitary
form, and the same is true of all compact Lie groups. Hence, in what follows,
we specialize to unitary and hermitian matrices.

C.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such
that

CMC† =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 . . . 0
. . .

0 . . . λ1
0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0 λ3 . . .
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.15)

Here λi � λ j are the r distinct roots of the minimal characteristic (or secular)
polynomial

r∏
i=1

(M − λi1) = 0 . (C.16)

In the matrix C(M−λ21)C† the eigenvalues corresponding to λ2 are replaced
by zeroes:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 − λ2

λ1 − λ2

0
. . .

0

λ3 − λ2

λ3 − λ2

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and so on, so the product over all factors (M−λ21)(M−λ31) . . . ,with exception
of the (M−λ11) factor, has nonzero entries only in the subspace associated with
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λ1:

C
∏
j�1

(M − λ j1)C† =
∏
j�1

(λ1 − λ j)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1 0

0

0
0

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus we can associate with each distinct root λ i a projection operator Pi,

Pi =
∏
j�i

M − λ j1
λi − λ j

, (C.17)

which acts as identity on the ith subspace, and zero elsewhere. For example,
the projection operator onto the λ1 subspace is

P1 = C†

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1

0
0

. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C . (C.18)

The diagonalization matrix C is deployed in the above only as a pedagogical
device. The whole point of the projector operator formalism is that we never
need to carry such explicit diagonalization; all we need are whatever invari-
ant matrices M we find convenient, the algebraic relations they satisfy, and
orthonormality and completeness of P i: The matrices Pi are orthogonal

PiP j = δi jP j , (no sum on j) , (C.19)

and satisfy the completeness relation

r∑
i=1

Pi = 1 . (C.20)

As tr (CPiC†) = tr Pi, the dimension of the ith subspace is given by

di = tr Pi . (C.21)

It follows from the characteristic equation (C.16) and the form of the projection
operator (C.17) that λi is the eigenvalue of M on Pi subspace:

MPi = λiPi , (no sum on i) . (C.22)
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Hence, any matrix polynomial f (M) takes the scalar value f (λ i) on the Pi

subspace
f (M)Pi = f (λi)Pi . (C.23)

This, of course, is the reason why one wants to work with irreducible reps:
they reduce matrices and “operators” to pure numbers.

C.2.2 Irreducible representations

Suppose there exist several linearly independent invariant [d×d] hermitian ma-
trices M1,M2, . . ., and that we have used M1 to decompose the d-dimensional
vector space V = V1 ⊕ V2 ⊕ · · ·. Can M2,M3, . . . be used to further decompose
Vi? Further decomposition is possible if, and only if, the invariant matrices
commute:

[M1,M2] = 0 , (C.24)

or, equivalently, if projection operators P j constructed from M2 commute with
projection operators Pi constructed from M1,

PiP j = P jPi . (C.25)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operators P i constructed from M1 can be
used to project commuting pieces of M2:

M(i)
2 = PiM2Pi , (no sum on i) .

That M(i)
2 commutes with M1 follows from the orthogonality of P i:

[M(i)
2 ,M1] =

∑
j

λ j[M
(i)
2 ,P j] = 0 . (C.26)

Now the characteristic equation for M(i)
2 (if nontrivial) can be used to decom-

pose Vi subspace.
An invariant matrix M induces a decomposition only if its diagonalized form

(C.15) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements. A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to
the unit matrix.

According to (C.13), an invariant matrix M commutes with group trans-
formations [G,M] = 0. Projection operators (C.17) constructed from M are
polynomials in M, so they also commute with all g ∈ G:

[G,Pi] = 0 (C.27)

Hence, a [d×d] matrix rep can be written as a direct sum of [d i×di] matrix reps:

G = 1G1 =
∑
i, j

PiGP j =
∑

i

PiGPi =
∑

i

Gi . (C.28)
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In the diagonalized rep (C.18), the matrix g has a block diagonal form:

CgC† =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
g1 0 0
0 g2 0

0 0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , g =
∑

i

CigiCi . (C.29)

The rep gi acts only on the di-dimensional subspace Vi consisting of vectors
Piq, q ∈ V. In this way an invariant [d×d] hermitian matrix M with r distinct
eigenvalues induces a decomposition of a d-dimensional vector space V into a
direct sum of di-dimensional vector subspaces Vi:

V
M→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (C.30)

C.3 Lattice derivatives

Consider a smooth function φ(x) evaluated on a finite d-dimensional lattice

φ� = φ(x) , x = a� = lattice point , � ∈ Zd , (C.31)

where a is the lattice spacing and there are N d points in all. A vector φ
specifies a lattice configuration. Assume the lattice is hyper-cubic, and let
n̂μ ∈ {n̂1, n̂2, · · · , n̂d} be the unit lattice cell vectors pointing along the d posi-
tive directions,

∣∣∣n̂μ∣∣∣ = 1 . The lattice partial derivative is then

(∂μφ)� =
φ(x + an̂μ) − φ(x)

a
=
φ�+n̂μ − φ�

a
.

Anything else with the correct a → 0 limit would do, but this is the simplest
choice. We can rewrite the derivative as a linear operator, by introducing the
hopping operator (or “shift,” or “step”) in the direction μ(

hμ
)
� j
= δ�+n̂μ, j . (C.32)

As h will play a central role in what follows, it pays to understand what it does,
so we write it out for the 1-dimensional case in its full [N×N] matrix glory:

h =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

0 1
. . .

0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.33)

We will assume throughout that the lattice is periodic in each n̂μ direction;
this is the easiest boundary condition to work with if we are interested in large
lattices where surface effects are negligible.

Applied on the lattice configuration φ = (φ1, φ2, · · · , φN), the hopping oper-
ator shifts the lattice by one site, hφ = (φ2, φ3, · · · , φN , φ1). Its transpose shifts
the entries the other way, so the transpose is also the inverse

h−1 = hT . (C.34)
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The lattice derivative can now be written as a multiplication by a matrix:

∂μφ� =
1
a

(
hμ − 1

)
� j
φ j .

In the 1-dimensional case the [N ×N] matrix representation of the lattice
derivative is:

∂ =
1
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 1

−1 1
. . .

1
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.35)

To belabor the obvious: On a finite lattice of N points a derivative is simply
a finite [N×N] matrix. Continuum field theory is a world in which the lattice
is so fine that it looks smooth to us. Whenever someone calls something an
“operator,” think “matrix.” For finite-dimensional spaces a linear operator is a
matrix; things get subtler for infinite-dimensional spaces.

C.3.1 Lattice Laplacian

In the continuum, integration by parts moves ∂ around; on a lattice this amounts
to a matrix transposition[(

hμ − 1
)
φ
]T
·
[(

hμ − 1
)
φ
]
= φT · (h−1

μ − 1)
(
hμ − 1

)
· φ .

If you are wondering where the “integration by parts” minus sign is, it is there
in discrete case at well. It comes from the identity ∂T = −h−1∂. The combina-
tion Δ = h−1∂2

Δ = − 1
a2

d∑
μ=1

(h−1
μ − 1)

(
hμ − 1

)
= − 2

a2

d∑
μ=1

(
1 − 1

2
(h−1

μ + hμ)

)
(C.36)

is the lattice Laplacian. We shall show below that this Laplacian has the cor-
rect continuum limit. It is the simplest spatial derivative allowed for x → −x
symmetric actions. In the 1-dimensional case the [N×N] matrix representation
of the lattice Laplacian is:

Δ =
1
a2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.37)

The lattice Laplacian measures the second variation of a field φ� across three
neighboring sites. You can easily check that it does what the second derivative
is supposed to do by applying it to a parabola restricted to the lattice, φ � = φ(�),
where φ(�) is defined by the value of the continuum function φ(x) = x 2 at the
lattice point �.
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C.3.2 Inverting the Laplacian

Evaluation of perturbative corrections in (26.21) requires that we come to grips
with the “free” or “bare” propagator M. While the the Laplacian is a simple
difference operator (C.37), its inverse is a messier object. A way to compute is
to start expanding the propagator M as a power series in the Laplacian

M =
1

m2 − Δ
=

1
m2

∞∑
k=0

1
m2k
Δk . (C.38)

As Δ is a finite matrix, the expansion is convergent for sufficiently large m 2.
To get a feeling for what is involved in evaluating such series, evaluate Δ 2 in
the 1-dimensional case:

Δ2 =
1
a4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.39)

What Δ3, Δ4, · · · contributions look like is now clear; as we include higher and
higher powers of the Laplacian, the propagator matrix fills up; while the inverse
propagator is differential operator connecting only the nearest neighbors, the
propagator is integral operator, connecting every lattice site to any other lattice
site.

These matrices can be evaluated as is, on the lattice, and sometime it is
evaluated this way, but in case at hand a wonderful simplification follows from
the observation that the lattice action is translationally invariant. We will show
how this works in Section C.4.

C.4 Periodic lattices

Our task now is to transform M into a form suitable to explicit evaluation.
Consider the effect of a φ→ hφ translation on the matrix polynomial

S [hφ] = −
1
2
φT · hT M−1h · φ .

As M−1 is constructed from h and its inverse, M−1 and h commute, and the
function S [hφ] is h-invariant,

S [hφ] = S [φ] = −
1
2
φT · M−1 · φ . (C.40)

If a function (in this case, the function S [φ]) defined on a vector space (in
this case, the configuration φ) commutes with a linear operator h, then the
eigenvalues of h can be used to decompose the φ vector space into invari-
ant subspaces. For a hyper-cubic lattice the translations in different directions
commute, hμhν = hνhμ, so it is sufficient to understand the spectrum of the 1-
dimensional shift operator (C.33). To develop a feeling for how this reduction
to invariant subspaces works in practice, let us continue humbly, by expanding
the scope of our deliberations to a lattice consisting of 2 points.
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C.4.1 A 2-point lattice diagonalized

The action of the shift operator h (C.33) on a 2-point lattice φ = (φ 1, φ2) is to
permute the two lattice sites

h =
( 0 1

1 0

)
.

As exchange repeated twice brings us back to the original configuration, h 2 =

1, and the characteristic polynomial of h is

(h + 1)(h − 1) = 0 ,

with eigenvalues λ0 = 1, λ1 = −1. Construct now the symmetrization, anti-
symmetrization projection operators

P0 =
h − λ11
λ0 − λ1

=
1
2

(1 + h) =
1
2

( 1 1
1 1

)
(C.41)

P1 =
h − 1
−1 − 1

=
1
2

(1 − h) =
1
2

(
1 −1
−1 1

)
. (C.42)

Noting that P0+P1 = 1, we can project the lattice configuration φ onto the two
eigenvectors of h:

φ = 1 φ = P0 · φ + P1 · φ ,(
φ1

φ2

)
=

(φ1 + φ2)
√

2

1
√

2

( 1
1

)
+

(φ1 − φ2)
√

2

1
√

2

( 1
−1

)
(C.43)

= φ̃0n̂0 + φ̃1n̂1 . (C.44)

As P0P1 = 0, the symmetric and the antisymmetric configurations transform
separately under any linear transformation constructed from h and its powers.

In this way the characteristic equation h2 = 1 enables us to reduce the 2-
dimenional lattice configuration to two 1-dimensional ones, on which the value
of the shift operator (shift matrix) h is a number, λ ∈ {1,−1}, and the eigen-
vectors are n̂0 =

1√
2
(1, 1), n̂1 =

1√
2
(1,−1). We have inserted

√
2 factors only

for convenience, in order that the eigenvectors be normalized unit vectors. As
we shall now see, (φ̃0, φ̃1) is the 2-site periodic lattice discrete Fourier trans-
form of the field (φ1, φ2).

C.5 Discrete Fourier transforms

Now let us generalize this reduction to a 1-dimensional periodic lattice with N
sites.

Each application of h translates the lattice one step; in N steps the lattice is
back in the original configuration

hN = 1

.
.

.

.
..

.
k

N−1

N−2

0

45
3

2

1h

,
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so the eigenvalues of h are the N distinct N-th roots of unity

hN − 1 =
N−1∏
k=0

(h − ωk1) = 0 , ω = ei 2π
N . (C.45)

As the eigenvalues are all distinct and N in number, the space is decom-
posed into N 1-dimensional subspaces. The general theory (expounded in Ap-
pendix C.2) associates with the k-th eigenvalue of h a projection operator that
projects a configuration φ onto k-th eigenvector of h,

Pk =
∏
j�k

h − λ j1
λk − λ j

. (C.46)

A factor (h−λ j1) kills the j-th eigenvector ϕ j component of an arbitrary vector
in expansion φ = · · · + φ̃ jϕ j + · · ·. The above product kills everything but the
eigen-direction ϕk, and the factor

∏
j�k(λk − λ j) ensures that Pk is normalized

as a projection operator. The set of the projection operators is complete∑
k

Pk = 1 (C.47)

and orthonormal
PkP j = δk jPk (no sum on k) . (C.48)

Constructing explicit eigenvectors is usually not a the best way to fritter
one’s youth away, as choice of basis is largely arbitrary, and all of the content
of the theory is in projection operators. However, in case at hand the eigen-
vectors are so simple that we can forget the general theory, and construct the
solutions of the eigenvalue condition

hϕk = ωkϕk (C.49)

by hand:

1
√

N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

0 1
. . .

0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ωk

ω2k

ω3k

...
ω(N−1)k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ωk 1

√
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ωk

ω2k

ω3k

...
ω(N−1)k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The 1/

√
N factor is chosen in order that ϕk be normalized unit vectors

ϕ†k · ϕk =
1
N

N−1∑
k=0

1 = 1 , (no sum on k)

ϕ†k =
1
√

N

(
1, ω−k, ω−2k, · · · , ω−(N−1)k

)
. (C.50)

The eigenvectors are orthonormal

ϕ†k · ϕ j = δk j , (C.51)
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as the explicit evaluation of ϕ†k · ϕ j yields the Kronecker delta function for a
periodic lattice

δk j =
1
N

N−1∑
�=0

ei 2π
N (k− j)�

.
.

.

.
..

.

N−2

N−1

0

1

2

3
5 4

k

. (C.52)

The sum is over the N unit vectors pointing at a uniform distribution of points
on the complex unit circle; they cancel each other unless k = j (mod N), in
which case each term in the sum equals 1.

The projection operators can be expressed in terms of the eigenvectors (C.49),
(C.50) as

(Pk)��′ = (ϕk)�(ϕ
†
k)�′ =

1
N

ei 2π
N (�−�′)k , (no sum on k) . (C.53)

The completeness (C.47) follows from (C.52), and the orthonormality (C.48)
from (C.51).
φ̃k, the projection of the φ configuration on the k-th subspace is given by

(Pk · φ)� = φ̃k (ϕk)� , (no sum on k)

φ̃k = ϕ†k · φ =
1
√

N

N−1∑
�=0

e−i 2π
N k�φ� (C.54)

We recognize φ̃k as the discrete Fourier transform of φ�. Hopefully rediscover-
ing it this way helps you a little toward understanding why Fourier transforms
are full of eix·p factors (they are eigenvalues of the generator of translations)
and when are they the natural set of basis functions (only if the theory is trans-
lationally invariant).

C.5.1 Fourier transform of the propagator

Now insert the identity
∑

Pk = 1 wherever profitable:

M = 1M1 =
∑
kk′

PkMPk′ =
∑
kk′

ϕk(ϕ†k ·M · ϕk′ )ϕ
†
k′ .

The matrix
M̃kk′ = (ϕ†k ·M · ϕk′) (C.55)

is the Fourier space representation of M. According to (C.51) the matrix U k� =

(ϕk)� = 1√
N

ei 2π
N k� is a unitary matrix, and the Fourier transform is a linear,

unitary transformation UU † =
∑

Pk = 1 with Jacobian det U = 1. The form
of the invariant function (C.40) does not change under φ→ φ̃k transformation,
and from the formal point of view, it does not matter whether we compute in
the Fourier space or in the configuration space that we started out with. For
example, the trace of M is the trace in either representation

tr M =
∑
�

M�� =
∑
kk′

∑
�

(PkMPk′ )��

=
∑
kk′

∑
�

(ϕk)�(ϕ
†
k ·M · ϕk′ )(ϕ

†
k′)� =

∑
kk′

δkk′ M̃kk′ = tr M̃ .
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From this it follows that tr Mn = tr M̃n, and from the tr ln = ln tr relation that
det M = det M̃. In fact, any scalar combination of φ’s, J’s and couplings, such
as the partition function Z[J], has exactly the same form in the configuration
and the Fourier space.

OK, a dizzying quantity of indices. But what’s the pay-back?

C.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equation (C.49) to convert h matrices into scalars. If
M commutes with h, then (ϕ†k ·M · ϕk′ ) = M̃kδkk′ , and the matrix M acts as
a multiplication by the scalar M̃k on the k-th subspace. For example, for the
1-dimensional version of the lattice Laplacian (C.36) the projection on the k-th
subspace is

(ϕ†k · Δ · ϕk′ ) =
2
a2

(
1
2

(ω−k + ωk) − 1

)
(ϕ†k · ϕk′ )

=
2
a2

(
cos

(
2π
N

k

)
− 1

)
δkk′ (C.56)

In the k-th subspace the bare propagator (C.56) is simply a number, and, in
contrast to the mess generated by (C.38), there is nothing to inverting M −1:

(ϕ†k · M · ϕk′ ) = (G̃0)kδkk′ =
1
β

δkk′

m′20 −
2c
a2

∑d
μ=1

(
cos

(
2π
N kμ

)
− 1

) , (C.57)

where k = (k1, k2, · · · , kμ) is a d-dimensional vector in the N d-dimensional dual
lattice.

Going back to the partition function (26.21) and sticking in the factors of 1
into the bilinear part of the interaction, we replace the spatial J � by its Fourier
transform J̃k, and the spatial propagator (M)��′ by the diagonalized Fourier
transformed (G̃0)k

JT · M · J =
∑
k,k′

(JT · ϕk)(ϕ†k · M · ϕk′ )(ϕ
†
k′ · J) =

∑
k

J̃†k (G̃0)k J̃k . (C.58)

C.6 C4v factorization

If an N-disk arrangement has CN symmetry, and the disk visitation sequence
is given by disk labels {ε1ε2ε3 . . .}, only the relative increments ρi = εi+1 −
εi mod N matter. Symmetries under reflections across axes increase the group
to CNv and add relations between symbols: {ε i} and {N − εi} differ only by a
reflection. As a consequence of this reflection increments become decrements
until the next reflection and vice versa. Consider four equal disks placed on
the vertices of a square (Fig. C.1). The symmetry group consists of the identity
e, the two reflections σx, σy across x, y axes, the two diagonal reflections σ13,
σ24, and the three rotations C4, C2 and C3

4 by angles π/2, π and 3π/2. We
start by exploiting the C4 subgroup symmetry in order to replace the absolute
labels εi ∈ {1, 2, 3, 4} by relative increments ρ i ∈ {1, 2, 3}. By reflection across
diagonals, an increment by 3 is equivalent to an increment by 1 and a reflection;
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this new symbol will be called 1. Our convention will be to first perform
the increment and then to change the orientation due to the reflection. As an
example, consider the fundamental domain cycle 112. Taking the disk 1 →
disk 2 segment as the starting segment, this symbol string is mapped into the
disk visitation sequence 1+12+13+21 . . . = 123, where the subscript indicates
the increments (or decrements) between neighboring symbols; the period of
the cycle 112 is thus 3 in both the fundamental domain and the full space.
Similarly, the cycle 112 will be mapped into 1+12−11−23−12+13+21 = 121323
(note that the fundamental domain symbol 1 corresponds to a flip in orientation
after the second and fifth symbols); this time the period in the full space is

3

4 1

2
C4

C4

3

C4

3

y

x

= C2

13

24

Fig. C.1 Symmetries of four disks on a
square. A fundamental domain indicated by
the shaded wedge.

twice that of the fundamental domain. In particular, the fundamental domain
fixed points correspond to the following 4-disk cycles:

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2

Conversions for all periodic orbits of reduced symbol period less than 5 are
listed in Table C.1.

This symbolic dynamics is closely related to the group-theoretic structure
of the dynamics: the global 4-disk trajectory can be generated by mapping the
fundamental domain trajectories onto the full 4-disk space by the accumulated
product of the C4v group elements g1 = C, g2 = C2, g1 = σdiagC = σaxis,
where C is a rotation by π/2. In the 112 example worked out above, this yields
g112 = g2g1g1 = C2Cσaxis = σdiag, listed in the last column of Table C.1.
Our convention is to multiply group elements in the reverse order with respect
to the symbol sequence. We need these group elements for our next step, the
dynamical zeta function factorizations.

Fig. C.2 Symmetries of four disks on a rect-
angle. A fundamental domain indicated by
the shaded wedge.

The C4v group has four 1-dimensional representations, either symmetric
(A1) or antisymmetric (A2) under both types of reflections, or symmetric un-
der one and antisymmetric under the other (B 1, B2), and a degenerate pair of
2-dimensional representations E. Substituting the C 4v characters

C4v A1 A2 B1 B2 E

e 1 1 1 1 2
C2 1 1 1 1 -2

C4,C3
4 1 1 -1 -1 0

σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0

into (21.15) we obtain:
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Table C.1 C4v correspondence between the ternary fundamental domain prime cycles
p̃ and the full 4-disk {1,2,3,4} labeled cycles p, together with the C4v transformation
that maps the end point of the p̃ cycle into an irreducible segment of the p cycle. For
typographical convenience, the symbol 1 of Section C.6 has been replaced by 0, so that
the ternary alphabet is {0, 1, 2}. The degeneracy of the p cycle is mp = 8np̃/np. Orbit 2
is the sole boundary orbit, invariant both under a rotation by π and a reflection across
a diagonal. The two pairs of cycles marked by (a) and (b) are related by time reversal,
but cannot be mapped into each other by C4v transformations.

p̃ p hp̃

0 1 2 σx

1 1 2 3 4 C4

2 1 3 C2, σ13

01 12 14 σ24

02 12 43 σy

12 12 41 34 23 C3
4

001 121 232 343 414 C4

002 121 343 C2

011 121 434 σy

012 121 323 σ13

021 124 324 σ13

022 124 213 σx

112 123 e
122 124 231 342 413 C4

p̃ p hp̃

0001 1212 1414 σ24

0002 1212 4343 σy

0011 1212 3434 C2

0012 1212 4141 3434 2323 C3
4

0021 (a) 1213 4142 3431 2324 C3
4

0022 1213 e
0102 (a) 1214 2321 3432 4143 C4

0111 1214 3234 σ13

0112 (b) 1214 2123 σx

0121 (b) 1213 2124 σx

0122 1213 1413 σ24

0211 1243 2134 σx

0212 1243 1423 σ24

0221 1242 1424 σ24

0222 1242 4313 σy

1112 1234 2341 3412 4123 C4

1122 1231 3413 C2

1222 1242 4131 3424 2313 C3
4
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hp̃ A1 A2 B1 B2 E
e: (1 − tp̃)8 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)4

C2: (1 − t2
p̃)4 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 + tp̃)4

C4,C3
4: (1 − t4

p̃)2 = (1 − tp̃) (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 + t2
p̃)2

σaxes: (1 − t2
p̃)4 = (1 − tp̃) (1 + tp̃) (1 − tp̃) (1 + tp̃) (1 − t2

p̃)2

σdiag: (1 − t2
p̃)4 = (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 − tp̃) (1 − t2

p̃)2

The possible irreducible segment group elements h p̃ are listed in the first col-
umn; σaxes denotes a reflection across either the x-axis or the y-axis, and σ diag

denotes a reflection across a diagonal (see Fig. C.1). In addition, degenerate
pairs of boundary orbits can run along the symmetry lines in the full space,
with the fundamental domain group theory weights h p = (C2 + σx)/2 (axes)
and hp = (C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1 − t2
p̃)2 = (1 − tp̃)(1 − 0t p̃)(1 − tp̃)(1 − 0t p̃)(1 + tp̃)2

diagonals: (1 − t2
p̃)2 = (1 − tp̃)(1 − 0t p̃)(1 − 0t p̃)(1 − tp̃)(1 + tp̃)2(C.59)

(we have assumed that t p̃ does not change sign under reflections across sym-
metry axes). For the 4-disk arrangement considered here only the diagonal
orbits 13, 24 occur; they correspond to the 2 fixed point in the fundamental
domain.

The A1 subspace in C4v cycle expansion is given by

1/ζA1 = (1 − t0)(1 − t1)(1 − t2)(1 − t01)(1 − t02)(1 − t12)

(1 − t001)(1 − t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 − t112)

(1 − t122)(1 − t0001)(1 − t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 − t1 − t2 − (t01 − t0t1) − (t02 − t0t2) − (t12 − t1t2)

−(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) − (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (C.60)

(for typographical convenience, 1 is replaced by 0 in the remainder of this
section). For 1-dimensional representations, the characters can be read off the
symbol strings: χA2 (hp̃) = (−1)n0 , χB1(hp̃) = (−1)n1 , χB2(hp̃) = (−1)n0+n1 ,
where n0 and n1 are the number of times symbols 0, 1 appear in the p̃ symbol
string. For B2 all tp with an odd total number of 0’s and 1’s change sign:

1/ζB2 = (1 + t0)(1 + t1)(1 − t2)(1 − t01)(1 + t02)(1 + t12)

(1 + t001)(1 − t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 − t112)

(1 + t122)(1 − t0001)(1 + t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 + t1 − t2 − (t01 − t0t1) + (t02 − t0t2) + (t12 − t1t2)

+(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) − (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (C.61)
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The form of the remaining cycle expansions depends crucially on the special
role played by the boundary orbits: by (C.59) the orbit t 2 does not contribute
to A2 and B1,

1/ζA2 = (1 + t0)(1 − t1)(1 + t01)(1 + t02)(1 − t12)

(1 − t001)(1 − t002)(1 + t011)(1 + t012)(1 + t021)(1 + t022)(1 − t112)

(1 − t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 + t0 − t1 + (t01 − t0t1) + t02 − t12

−(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+t022 − t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . . (C.62)

and

1/ζB1 = (1 − t0)(1 + t1)(1 + t01)(1 − t02)(1 + t12)

(1 + t001)(1 − t002)(1 − t011)(1 + t012)(1 + t021)(1 − t022)(1 − t112)

(1 + t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 − t0 + t1 + (t01 − t0t1) − t02 + t12

+(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−t022 + t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . . (C.63)

In the above we have assumed that t2 does not change sign under C4v reflec-
tions. For the mixed-symmetry subspace E the curvature expansion is given
by

1/ζE = 1 + t2 + (−t0
2 + t1

2) + (2t002 − t2t0
2 − 2t112 + t2t1

2)

+(2t0011 − 2t0022 + 2t2t002 − t01
2 − t02

2 + 2t1122 − 2t2t112

+t12
2 − t0

2t1
2) + (2t00002 − 2t00112 + 2t2t0011 − 2t00121 − 2t00211

+2t00222 − 2t2t0022 + 2t01012 + 2t01021 − 2t01102 − t2t01
2 + 2t02022

−t2t02
2 + 2t11112 − 2t11222 + 2t2t1122 − 2t12122 + t2t12

2 − t2t0
2t1

2

+2t002(−t0
2 + t1

2) − 2t112(−t0
2 + t1

2)) (C.64)

A quick test of the ζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the topo-

logical polynomial; substituting t p = znp into the expansion yields

1/ζA1 = 1 − 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1 + z ,

in agreement with (15.46).
exercise 20.9

C.7 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle has C 2v

symmetry (Fig. C.2b). C2v consists of {e, σx, σy,C2}, i.e., the reflections across
the symmetry axes and a rotation by π.

This system affords a rather easy visualization of the conversion of a 4-disk
dynamics into a fundamental domain symbolic dynamics. An orbit leaving the
fundamental domain through one of the axis may be folded back by a reflection
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Table C.2 C2v correspondence between the ternary {0, 1, 2} fundamental domain prime
cycles p̃ and the full 4-disk {1,2,3,4} cycles p, together with the C2v transformation
that maps the end point of the p̃ cycle into an irreducible segment of the p cycle. The
degeneracy of the p cycle is mp = 4np̃/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each other by C2v transformations. The full
space orbit listed here is generated from the symmetry reduced code by the rules given
in Section C.7, starting from disk 1.

p̃ p g

0 1 4 σy

1 1 2 σx

2 1 3 C2

01 14 32 C2

02 14 23 σx

12 12 43 σy

001 141 232 σx

002 141 323 C2

011 143 412 σy

012 143 e
021 142 e
022 142 413 σy

112 121 343 C2

122 124 213 σx

p̃ p g

0001 1414 3232 C2

0002 1414 2323 σx

0011 1412 e
0012 1412 4143 σy

0021 1413 4142 σy

0022 1413 e
0102 1432 4123 σy

0111 1434 3212 C2

0112 1434 2343 σx

0121 1431 2342 σx

0122 1431 3213 C2

0211 1421 2312 σx

0212 1421 3243 C2

0221 1424 3242 C2

0222 1424 2313 σx

1112 1212 4343 σy

1122 1213 e
1222 1242 4313 σy

on that axis; with these symmetry operations g0 = σx and g1 = σy we associate
labels 1 and 0, respectively. Orbits going to the diagonally opposed disk cross
the boundaries of the fundamental domain twice; the product of these two
reflections is just C2 = σxσy, to which we assign the label 2. For example, a
ternary string 0 0 1 0 2 0 1 . . . is converted into 12143123. . ., and the associated
group-theory weight is given by . . . g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in Ta-
ble C.2. Note that already at length three there is a pair of cycles (012 = 143
and 021 = 142) related by time reversal, but not by any C 2v symmetries.

The above is the complete description of the symbolic dynamics for 4 suf-
ficiently separated equal disks placed at corners of a rectangle. However, if
the fundamental domain requires further partitioning, the ternary description
is insufficient. For example, in the stadium billiard fundamental domain one
has to distinguish between bounces off the straight and the curved sections of
the billiard wall; in that case five symbols suffice for constructing the covering
symbolic dynamics.

The group C2v has four 1-dimensional representations, distinguished by their
behavior under axis reflections. The A1 representation is symmetric with re-
spect to both reflections; the A2 representation is antisymmetric with respect
to both. The B1 and B2 representations are symmetric under one and antisym-
metric under the other reflection. The character table is
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C2v A1 A2 B1 B2

e 1 1 1 1
C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1

Substituted into the factorized determinant (21.14), the contributions of pe-
riodic orbits split as follows

gp̃ A1 A2 B1 B2

e: (1 − tp̃)4 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)
C2: (1 − t2

p̃)2 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)
σx: (1 − t2

p̃)2 = (1 − tp̃) (1 + tp̃) (1 − tp̃) (1 + tp̃)
σy: (1 − t2

p̃)2 = (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 − tp̃)

Cycle expansions follow by substituting cycles and their group theory factors
from Table C.2. For A1 all characters are +1, and the corresponding cycle
expansion is given in (C.60). Similarly, the totally antisymmetric subspace
factorization A2 is given by (C.61), the B2 factorization of C4v. For B1 all tp

with an odd total number of 0’s and 2’s change sign:

1/ζB1 = (1 + t0)(1 − t1)(1 + t2)(1 + t01)(1 − t02)(1 + t12)

(1 − t001)(1 + t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 + t112)

(1 − t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 − t1 + t2 + (t01 − t0t1) − (t02 − t0t2) + (t12 − t1t2)

−(t001 − t0t01) + (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) + (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (C.65)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1 − t0)(1 + t1)(1 + t2)(1 + t01)(1 + t02)(1 − t12)

(1 + t001)(1 + t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 + t112)

(1 + t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 + t1 + t2 + (t01 − t0t1) + (t02 − t0t2) − (t12 − t1t2)

+(t001 − t0t01) + (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) + (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (C.66)

Note that all of the above cycle expansions group long orbits together with
their pseudoorbit shadows, so that the shadowing arguments for convergence
still apply.

The topological polynomial factorizes as

1
ζA1

= 1 − 3z ,
1
ζA2

=
1
ζB1

=
1
ζB2

= 1 + z,

consistent with the 4-disk factorization (15.46).
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C.8 Hénon map symmetries

We note here a few simple symmetries of the Hénon map (3.19). For b � 0 the
Hénon map is reversible: the backward iteration of (3.20) is given by

xn−1 = −
1
b

(1 − ax2
n − xn+1) . (C.67)

Hence the time reversal amounts to b → 1/b, a → a/b2 symmetry in the
parameter plane, together with x → −x/b in the coordinate plane, and there is
no need to explore the (a, b) parameter plane outside the strip b ∈ {−1, 1}. For
b = −1 the map is orientation and area preserving ,

xn−1 = 1 − ax2
n − xn+1 , (C.68)

the backward and the forward iteration are the same, and the non-wandering
set is symmetric across the xn+1 = xn diagonal. This is one of the simplest
models of a Poincaré return map for a Hamiltonian flow. For the orientation
reversing b = 1 case we have

xn−1 = 1 − ax2
n + xn+1 , (C.69)

and the non-wandering set is symmetric across the xn+1 = −xn diagonal.

Further reading

C.1 Literature This material is covered in any introduction
to linear algebra [C.1–3] or group theory [C.15, 2]. The
exposition given in Sections C.2.1 and C.2.2 is taken from
Refs. [C.14,15,5]. Who wrote this down first we do not know,
but we like Harter’s exposition [C.23, 24, 21] best. Harter’s
theory of class algebrasoffers a more elegant and systematic
way of constructing the maximal set of commuting invariant
matrices Mi than the sketch offered in this section.

C.2 Labeling conventions While there is a variety of labeling

conventions [C.19, 25] for the reduced C4v dynamics, we pre-
fer the one introduced here because of its close relation to the
group-theoretic structure of the dynamics: the global 4-disk
trajectory can be generated by mapping the fundamental do-
main trajectories onto the full 4-disk space by the accumulated
product of the C4v group elements.

C.3 C2v symmetry C2v is the symmetry of several systems
studied in the literature, such as the stadium billiard [C.10],
and the 2-dimensional anisotropic Kepler potential [C.3].

Exercises

(C.1) Am I a group? Show that multiplication table
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e a b c d f

e e a b c d f
a a e d b f c
b b d e f c a
c c b f e a d
d d f c a e b
f f c a d b e

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of Appendix C.1.)

From W.G. Harter [C.21]

(C.2) Three coupled pendulums with a C2 symmetry.
Consider 3 pendulums in a row: the 2 outer ones of the
same mass m and length l, the one midway of same length
but different mass M, with the tip coupled to the tips of
the outer ones with springs of stiffness k. Assume dis-
placements are small, xi/l� 1.

(a) Show that the acceleration matrix ẍ = −a x is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẍ1

ẍ2

ẍ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a + b −a 0
−c 2c + b −c
0 −a a + b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where a = k/ml, c = k/Ml and b = g/l.

(b) Check that [a,R] = 0, i.e., that the dynamics is in-
variant under C2 = {e,R}, where R interchanges the outer
pendulums,

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(c) Construct the corresponding projection operators P+
and P−, and show that the 3-pendulum system decom-
poses into a 1−d subspace, with eigenvalue (ω(−))2 = a+b,
and a 2−d subspace, with acceleration matrix (trust your
own algebra, if it strays from what is stated here)

a(+) =

[
a + b −

√
2a

−
√

2c c + b

]
.

The exercise is simple enough that you can do it with-
out using the symmetry, so: construct P+,P− first, use
them to reduce a to irreps, then proceed with computing
remaining eigenvalues of a.

(d) Does anything interesting happen if M = m?

The point of the above exercise is that almost always the
symmetry reduction is only partial: a matrix representa-
tion of dimension d gets reduced to a set of subspaces
whose dimensions d(α) satisfy

∑
d(α) = d. Beyond that,

love many, trust few, and paddle your own canoe.

From W.G. Harter [C.21]

(C.3) Lorenz system in polar coordinates: dynamics.
(continuation of Exercise 9.8.)

1. Show that (9.25) has two equilibria:

(r0, z0) = (0, 0) , θ0 undefined

(r1, θ1, z1) = (
√

2b(ρ − 1), π/4, ρ − 1) .(C.70)

2. Verify numerically that the eigenvalues and eigen-
vectors of the two equilibria are (we list here the
precise numbers to help you check your programs):

EQ1 = (0, 12, 27) equilibrium: (and its R(1/2)-
rotation EQ2) has one stable real eigenvalue
λ(1) = −13.854578,
and the unstable complex conjugate pair
λ(2,3) = μ(2) ± iω(2) = 0.093956 ± i10.194505.
The unstable eigenplane is defined by eigenvectors
Re e(2) = (−0.4955,−0.2010,−0.8450)
Im e(2) = (0.5325,−0.8464, 0)
with period T = 2π/ω(2) = 0.6163306,
radial expansion multiplier
Λr = exp(2πμ(2)/ω(2)) = 1.059617,
and the contracting multiplier
Λc = exp(2πμ(1)/ω(2)) ≈ 1.95686 × 10−4

along the stable eigenvector of EQ1,
e(3) = (0.8557, −0.3298,−0.3988).

EQ0 = (0, 0, 0) equilibrium: The stable eigen-
vector e(1) = (0, 0, 1) of EQ0, has contraction rate
λ(2) = −b = −2.666 . . ..
The other stable eigenvector is
e(2) = (−0.244001, −0.969775, 0), with contracting
eigenvalue
λ(2) = −22.8277. The unstable eigenvector
e(3) = (−0.653049, 0.757316, 0) has eigenvalue
λ(3) = 11.8277.

3. Plot the Lorenz strange attractor both in the Lorenz
coordinates Fig. 2.5, and in the doubled-polar an-
gle coordinates (9.21) for the Lorenz parameter
values σ = 10, b = 8/3, ρ = 28. Topologically,
does it resemble the Lorenz butterfly, the Rössler
attractor, or neither? The Poincaré section of the
Lorenz flow fixed by the z-axis and the equilibrium
in the doubled polar angle representation, and the
corresponding Poincaré return map (sn, sn + 1) are
plotted in Fig. 11.8.

4. Construct the Poincaré return map (sn, sn+1),
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where s is arc-length measured along the unsta-
ble manifold of EQ0, lower Poincaré section of
Fig. 11.8 (b). Elucidate its relation to the Poincaré
return map of Fig. 11.9. (plot by J. Halcrow)

5. Show that if a periodic orbit of the polar represen-
tation Lorenz is also periodic orbit of the Lorenz
flow, their Floquet multipliers are the same. How
do the Floquet multipliers of relative periodic or-
bits of the representations relate to each other?

6. What does the volume contraction formula (4.42)
look like now? Interpret.

(C.4) Laplacian is a non-local operator.
While the Laplacian is a simple tri-diagonal difference
operator (C.37), its inverse (the “free” propagator of sta-
tistical mechanics and quantum field theory) is a messier
object. A way to compute is to start expanding propaga-
tor as a power series in the Laplacian

1
m21 − Δ =

1
m2

∞∑
n=0

1
m2n
Δn . (C.71)

As Δ is a finite matrix, the expansion is convergent for
sufficiently large m2. To get a feeling for what is involved
in evaluating such series, show that Δ2 is:

Δ2 =
1
a4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.72)

What Δ3, Δ4, · · · contributions look like is now clear; as
we include higher and higher powers of the Laplacian,
the propagator matrix fills up; while the inverse propa-
gator is differential operator connecting only the nearest
neighbors, the propagator is integral operator, connecting
every lattice site to any other lattice site.

This matrix can be evaluated as is, on the lattice, and
sometime it is evaluated this way, but in case at hand
a wonderful simplification follows from the observation
that the lattice action is translationally invariant, Exer-
cise C.5.

(C.5) Lattice Laplacian diagonalized. Insert the iden-
tity

∑
P(k) = 1 wherever you profitably can, and use the

eigenvalue equation (C.49) to convert shift h matrices
into scalars. If M commutes with h, then (ϕ†k ·M · ϕk′ ) =
M̃(k)δkk′ , and the matrix M acts as a multiplication by the
scalar M̃(k) on the kth subspace. Show that for the 1-
dimensional version of the lattice Laplacian (C.37) the
projection on the kth subspace is

(ϕ†k · Δ · ϕk′ ) =
2
a2

(
cos

(
2π
N

k

)
− 1

)
δkk′ . (C.73)

In the kth subspace the propagator is simply a number,
and, in contrast to the mess generated by (C.71), there is
nothing to evaluating:

ϕ†k ·
1

m21 − Δ ·ϕk′ =
δkk′

m2 − 2
(ma)2 (cos 2πk/N − 1)

, (C.74)

where k is a site in the N-dimensional dual lattice, and
a = L/N is the lattice spacing.

(C.6) Fix Predrag’s lecture od Feb 5, 2008. Are the C3

frequencies on pp. 4,5 correct? If not, write the correct
expression for the beat frequency.
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