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SUMMARY

When statistical assumptions do not hold and coherent structures are present in spatially

extended systems such as fluid flows, flame fronts and field theories, a dynamical description

of turbulent phenomena becomes necessary. In the dynamical systems approach, theory of

turbulence for a given system, with given boundary conditions, is given by (a) the geometry

of its ∞-dimensional phase space and (b) the associated measure, i.e., the likelihood that

asymptotic dynamics visits a given phase space region.

In this thesis this vision is pursued in the context of Kuramoto-Sivashinsky system,

one of the simplest physically interesting spatially extended nonlinear systems. With

periodic boundary conditions, continuous translational symmetry endows phase space with

additional structure that often dictates the type of observed solutions. At the same time,

the notion of recurrence becomes relative: asymptotic dynamics visits the neighborhood

of any equivalent, translated point, infinitely often. Identification of points related by the

symmetry group action, termed symmetry reduction, although conceptually simple as the

group action is linear, is hard to implement in practice, yet it leads to dramatic simplification

of dynamics.

Here we propose a scheme, based on the method of moving frames of Cartan, to efficiently

project solutions of high-dimensional truncations of partial differential equations computed

in the original space to a reduced phase space. The procedure simplifies the visualization

of high-dimensional flows and provides new insight into the role the unstable manifolds of

equilibria and traveling waves play in organizing Kuramoto-Sivashinsky flow. This in turn

elucidates the mechanism that creates unstable modulated traveling waves (periodic orbits

in reduced space) that provide a skeleton of the dynamics. The compact description of

dynamics thus achieved sets the stage for reduction of the dynamics to mappings between

a set of Poincaré sections.

vi



CHAPTER I

INTRODUCTION

1.1 Dynamicist’s vision of turbulence

This thesis is part of a wider effort [23] to describe turbulence from a dynamical systems
perspective that goes back to the seminal paper of Hopf [49]. The relation of dynamics to
turbulence underlies many fundamental developments in dynamical systems theory, from
the very (re)discovery of chaos by Lorenz [63] to the Ruelle-Takens [76] view of turbulence, to
the work on inertial manifolds [15] of partial differential equations (PDEs). The emphasis
here is not on the transition to turbulence or on the derivation of reduced models of a
partial differential equation. On the contrary we ask: For a given system, with given
boundary conditions, which we are able to numerically simulate to sufficient accuracy to
resolve its finest features, how do we develop a dynamical description? Hopf’s answer [49]
is to consider the dynamics of a PDE not as the evolution of snapshots of the underlying
field but as dynamics on an ∞-dimensional phase space in which every point corresponds to
a state of the system. In this space a generic turbulent trajectory visits neighborhood of a
“regular” solution for a while, then switches to another one, and so on. For any given system,
parameter values and boundary conditions there are two ingredients to implementing this
vision: (a) the geometry of the phase space and (b) the associated natural measure, i.e.,
the likelihood that asymptotic dynamics visits a given phase space region.

To explain what we mean by geometry of phase space of a dynamical system, let us
consider a finite dimensional system of coupled ordinary differential equations of the form

dx

dt
= v(x) , (1)

where x , v ∈ RN . The trajectory f t(xo) of an initial condition xo is obtained by integrating
(1).

The simplest solution that might exist in such a system is an equilibrium point that is
left invariant by the flow, f t(xo) = xo for all times. When we examine the neighborhood
of the equilibrium we find that it can be decomposed into a (local) stable subspace along
which points converge towards the equilibrium and a (local) unstable subspace along which
points stray away from the equilibrium under time evolution (for the time being center
subspaces along which neither happens will be ignored). The global continuation of the
stable (unstable) subspace under backward (forward) time evolution is the stable (unstable)
manifold of the equilibrium. Stable and unstable manifolds are flow-invariant : the trajectory
through any point on the manifold stays on it for all times. Invariant manifolds provide
topological obstructions for any other solution: as a trajectory cannot cross an invariant
manifold, it is forced to follow its stretching and folding. In nonlinear systems studied in
this thesis, the unstable manifolds are stretched away from an equilibrium until nonlinearity
causes them to fold sharply back. This provides a basic mechanism for recurrence: trajectories
of points in the non-wandering set return arbitrarily close to the initial point. This set of
non-wandering orbits, which for dynamics that are locally expanding (there are directions
along which we depart away from any solution) and globally mixing (we are always forced to
fold back) we will loosely identify with the chaotic attractor, contains the “regular” solutions
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in Hopf’s vision: periodic orbits that close after finite time,

x(t + T ) = x(t) , (2)

where T the period. Periodic orbits provide a complete characterization of the topology of a
chaotic attractor in low dimensional systems [39], and most importantly they can be used to
quantitatively approximate the natural measure and calculate “observable” quantities, such
as Lyapunov exponents and escape rates, within the framework of periodic orbit theory [20],
briefly summarized here in Appendix B. The reason we refer here to the totality of phase
space relations between invariant solutions as “geometry” rather than “topology” is that we
are not only interested in elucidating the topological mechanisms that result in recurrences
but also in the exact phase space positions of invariant objects, such as periodic orbits, and
metric distances between different solutions.

The first successful quantitative implementation of Hopf’s vision for a spatially extended
system, to the best of the author’s knowledge, can be found in Christiansen et al. [14].
The object of study was Kuramoto-Sivashinsky system, a dissipative PDE in one spatial
dimension, as one of the simplest systems that exhibits features reminiscent of fluid turbulence
(see Chapter 5 for details). A large set of periodic orbits, embedded into the attractor and
ordered hierarchically was located. Shorter orbits provided the basic building blocks of the
attractor, while longer ones contributed quantitative corrections to periodic orbit averages.
This investigation was continued for a “more turbulent” Kuramoto-Sivashinsky system by
Y. Lan and Cvitanović [58; 60].

Recently, phase space of moderate Reynolds number wall bounded shear flows became
experimentally [47] and computationally [54; 27; 81; 80; 38] accessible. The charting
of Navier-Stokes phase space, for specific boundary conditions, with equilibria, relative
equilibria and heteroclinic connections has provided the basic elements of the geometry of
the turbulent flow and there is hope that it will eventually lead to approximation of the
natural measure using a set of “regular” solutions.

1.2 Contribution of this thesis

The research undertaken here is a part and parcel of the common effort of a large community
of scientists, engineers and mathematicians, working toward the grand goal of developing
an effective dynamical theory of turbulent phenomena in spatially extended systems such
as fluid flows, flame fronts and field theories. The literature is vast and bewildering. Let
us start by a quote from an imaginary (but typical) paper: “We have demonstrated our
method on the example of Kuramoto-Sivashinsky equation but it is completely general and
applicable to any other PDE. Application to Navier-Stokes is left as an exercise to the
reader.”

While in practice the application of the method to more complicated problems turns
out to be far from trivial, the exercise leads one to critically re-examine several steps along
the way that the above quoted imaginary paper (profound as it might be) only glossed over.
A rich, perhaps beautiful, and –surprisingly– not yet fully explored vein turns out to be
the role continuous symmetries play in detailed dynamical explorations of ‘turbulent’ flows.
They are the red thread through the journey undertaken in this thesis.
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1.2.1 Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky system in one spatial dimension

ut = F (u) = −1
2(u2)x − uxx − uxxxx , x ∈ [−L/2, L/2] (3)

has been derived in a variety of contexts (see Chapter 5) including the dynamics of reaction-
diffusion systems and fluttering flame fronts, and has been studied extensively as one of
the simplest systems that shares common features with the Navier-Stokes description of
incompressible fluids. Like Navier-Stokes equations, it contains a term that pumps energy
into the system (uxx) and a term that dissipates it (uxxxx). It is transitionally invariant
under periodic boundary condition u(x + L, t) = u(x, t) or in an unbounded domain
x ∈ (−∞,∞), a feature also present in many physical fluid flows. In refs. [14; 60; 58]
dynamics was restricted to the space of antisymmetric functions u(−x, t) = −u(x, t) by
imposing boundary condition u(−L/2, t) = u(L/2, t) = 0, cf. Sect. 5.1 for more details, thus
eliminating translational symmetry. Even though working in the antisymmetric subspace
is mathematically and computationally convenient and the dynamics are far from trivial,
many of the physically important phenomena, such as traveling waves are eliminated by
this restriction. Traveling solutions, however, are present in most of the fluid simulations
and experiments mentioned in Sect. 1.1 and ubiquitous in physics.

As soon as we relax the antisymmetric boundary conditions and choose to work with
periodic boundaries, Kuramoto-Sivashinsky equation becomes invariant under the 1-d Lie
group of O(2) translations: if u(x, t) is a solution, then u(x + d, t) is an equivalent solution
for any −L/2 < d ≤ L/2. As a result, KS can have traveling wave or relative equilibrium
solutions,

u(x, t) = uo(x − ct) (4)

where c the constant velocity of the wave and uo(x) its profile. Furthermore, it can have
modulated traveling wave or relative periodic orbit solutions,

u(x + d, T + t) = u(x, t) , (5)

where T the period and d a translation. Thus recurrence becomes relative: The periodic
orbits that organized phase space in refs. [14; 60; 58] are now not the only generic compact
solutions, we are also faced with relative periodic orbits, solutions that repeat up to a
translation. They were already noted by Poincaré in his study of the 3-body problem [10;
79]. In PDEs they are also known as modulated traveling waves and they have been found
and studied, for example in Kuramoto-Sivashinsky equation [7], Complex Ginzburg-Landau
equation [62], and plane Couette flow [80]. A recent application of relative periodic orbits
has been the discovery of “choreographies” of N -body problems [12; 11; 67].

The main purpose of this thesis will be to investigate the role played by relative equilibria
(traveling waves) and relative periodic orbits in the geometry of spatially extended systems
with continuous symmetry. Following on the earlier work, we concentrate on Kuramoto-
Sivashinsky equation as it provides a simpler system for the illustration of key ideas than
the technically much more demanding Navier-Stokes equations. Yet, in the spirit of the
above quoted imaginary paper, we emphasize that we develop methods in a way that can
be applicable in other PDEs. The choice of Kuramoto-Sivashinsky system size is such
that the dynamics in the physical space looks nothing like “fully developed turbulence.”
Instead, the dynamics is dominated by coherent structures, that is localized, persistent
structures. This is precisely the kind of dynamics in which statistical assumptions [34] fail
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and which requires a dynamical systems description in the spirit of Hopf. In Chapter 5 we
review Kuramoto-Sivashinsky equation in detail and in Chapter 7 we study its phase space,
through equilibria, traveling waves, heteroclinic connections and relative periodic orbits, for
a specific “box” size. In Appendix B –in a way of motivating the enterprize undertaken in
the main body of the thesis– we describe our attempt to organize a set of 30, 000 periodic
orbits and relative periodic orbits computed by Davidchack [25] in the context of periodic
orbit theory, without an understanding how these orbits are organized geometrically. Failure
of this attempt leaves no option but to understand the geometry of phase space first, label
the orbits, find missing ones, and then use cycle expansions. The first step in achieving
this would be a “compactification” of the phase space by quotienting out the continuous
symmetry, or “symmetry reduction.”

1.2.2 Symmetry reduction

Taking it into account a symmetry of a physical system usually leads to simplification
of the problem. Indeed, in linear theories, such as quantum mechanics, symmetry is
often exploited through separation of variables. In Hamiltonian mechanics it leads to
conserved quantities which can often be directly exploited. For instance in the central force
problem conservation of angular momentum fixes the plane of motion. In general exploiting
symmetry by identifying points in space or solutions related by a symmetry operation is the
objective of symmetry reduction. The subject has a long history in Hamiltonian mechanics
and for general systems and group actions it usually is rather technical and highly non-
trivial, see for example refs. [66; 65; 18].

We motivate the need for symmetry reduction by a preview of the results in the case
of 5-dimensional, SO(2)-symmetric Complex Lorenz equations that will be used as our
illustrative example in Chapter 4. A quick comparison of Figure 10 and the continuous
symmetry reduced Figure 14 counterpart should demonstrate the problem. Under continuous
symmetry the “stretch and fold” mechanism that determines the topology of the attractor is
hidden by the, dynamically irrelevant, motion in the group direction. More importantly the
dynamics can be described by the one dimensional first return map of Figure 15. Eliminating
time-translational invariance by means of a Poincaré section is familiar to the reader as a way
of obtaining a discrete time map from a continuous time flow. In the presence of continuous
symmetry one also needs to eliminate the less interesting linear group invariance by some
means before one can obtain the return map of Figure 15.

Here we will concentrate on dissipative dynamical systems and high-dimensional truncations
of PDEs. The main problems we are facing are: 1) the high dimensionality of phase space,
2) the structure of the phase space induced by the symmetry group action (see Sect. 2.1.1)
which usually prevents carrying out reduction globally. High dimensionality does not allow
us to use a very powerful tool in symmetry reduction, Hilbert bases. The idea is to form from
the equivariant variables (that commute with the group action, see Sect. 2.1) polynomials
invariant under the group action, and rewrite the dynamics in terms of these (see Sect. 2.3).
Unfortunately, the determination of a Hilbert basis appears computationally prohibitive
for phase-space dimensions larger than ten [13; 35]. Moreover, even if such a basis were
available, rewriting the equation of motion in a basis of invariant polynomials appears
impractical for high-dimensional flows. Here we shall circumvent these difficulties by solving
the equations in the equivariant variables, but plotting the solutions in terms of the invariant
variables.

A different approach to symmetry reduction of PDEs has been presented by Rowley and
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Marsden [75], formulated in the context of Karhunen-Loève expansion, but also applicable
to direct numerical simulations [74]. The method allows one to integrate a PDE defined
in the reduced space along with a reconstruction equation that allows the dynamics in the
original space to be recovered. As noted in ref. [75] the reconstruction equation can fail for
reasons related to the structure of phase space under the group action, and one would be
forced to cover the reduced space with local coordinate charts. As the latter procedure is
not straightforward to implement and we do not want to sacrifice the ability to move back
and forth between the initial and the reduced phase space while obtaining, to some extend,
a global picture of the reduced dynamics, we will need to take a different path.

Our approach to symmetry reduction is centered around the method of moving frames
of Cartan [8] that we present in the formulation of Fels and Olver [28] in Sect. 2.3.2. It
allows the determination of (non-polynomial) invariants of the group action by a simple
and efficient algorithm that works well in phase space dimension of order 100. Invariants
generated for Complex Lorenz equations (see Sect. 4.1.2.2) and for Kuramoto-Sivashinsky
equation (see Sect. 8.1) are singular in subsets of phase space, again due to the special
structure of the phase space under the group action. We modify these invariants so that
there is no singularity in regions of dynamical interest and visualize dynamics of invariant
objects in reduced phase space by mapping solutions computed in the original space to this
basis.

Visualization in reduced space provides insight in its geometry and facilitates the choice
of local Poincaré sections as the first step in our attempt to describe the flow by iteration of
setion-to-section maps. Choosing Poincaré sections on which the invariants determined by
the moving frame method are not singular allows for a crucial simplification of the reduction
process: it allows reduction through a linear transformation at any point on the Poincaré
section, see Sect. 4.1.2.2. This simplification allows one to perform the reduction procedure
for points of intersection of solutions with the Poincaré section very efficiently, even for very
high dimensional spaces.

For Kuramoto-Sivashinsky equation construction of discrete time maps in reduced phase
space is still a subject of ongoing work, see Chapter 9. Yet the reward of applying this
procedure for visualization is that, when continuous symmetry is quotiented out, relative
periodic orbits become periodic, traveling waves become equilibria, the dimensionality of
their unstable manifolds is reduced by the dimension of the group and our understanding
of the role solutions play is dramatically enhanced. For example, after symmetry reduction
of Kuramoto-Sivashinsky flow we are able to visualize the unstable manifold of a traveling
wave in a compact manner and connect it to the mechanisms associated to recurrence within
the “chaotic attractor”, see Chapter 8.

1.2.3 Updated version of this thesis

The Georgia Tech Ph.D. thesis is an educational project that has come to an end, but it is
also an ongoing research project. Errors and omissions are certainly present in the official
Georgia Tech submission. The author will make every effort to correct them, with the
updated, pdf-hyperlinked, printer friendly version available in ChaosBook.org, under the
link to theses. We recommend that the reader download this updated version.
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CHAPTER II

THE ROLE OF SYMMETRY

In this chapter we provide a brief overview of the role of symmetries in differential equations,
restricted to finite dimensional groups acting linearly and globally on Rn. The subject of
symmetries of dynamical systems is vast and covered in many monographs and review
articles. We summarize the results from the literature that will be needed in applications
to the problem at hand, referring the reader to the literature for proofs of well established
results.

2.1 Symmetries of dynamical systems

We consider a system of ODEs of the form

ẋ = v(x, λ) (6)

where v : Rn × Rr → Rn a C∞ mapping. When not important we will suppress the
r-dimensional vector of parameters λ in the notation.

Any compact Lie group acting on Rn can be identified with a subgroup of O(n), cf. for
example ref. [41] for a sketch of the proof. Therefore, without loss of generality we will
concentrate on subgroups Γ ⊆ O(n) in the following.

Definition 2.1 We call a group element γ ∈ O(n) a symmetry of (6) if for every solution
x(t), γx(t) is also a solution.

The question now arises on how to check for symmetries of (6) since we generally do not
have knowledge of the set of solutions. Let x(t) be a solution of 6. Then by Definition 2.1
y(t) = γx(t) is another solution and therefore satisfies (6):

ẏ(t) = v(y(t)) = v(γx(t)) .

On the other hand
ẏ(t) = γẋ = γv(x(t)) ,

for any solution x(t). Since solutions exist for any x ∈ Rn we are led to the following
condition for γ to be a symmetry of (6):

v(γx) = γv(x) (7)

for all x ∈ Rn. We say that v commutes with γ or that v is γ-equivariant. When v commutes
with all γ ∈ Γ we say that v is Γ-equivariant. In physics literature the term invariant is
most commonly used, mostly because in Hamiltonian systems symmetry is manifested as
invariance of the Hamiltonian under the symmetry operation. Clearly the finite time flow
f t(γxo) through γxo satisfies the equivariance condition f t(γxo) = γf t(xo) from definition
of symmetry and uniqueness of solutions.
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Example 2.2 The vector field in Lorenz equations (36) is equivariant under the group
Z2

∼= D1 acting on R3 by
R(π)(x, y, z) = (−x,−y, z) .

Note that this transformation can be considered either as rotation by π around the z axis
(hence the group Z2) or as reflection about the origin in a plane perpendicular to the z-axis
(hence the group D1.)

Example 2.3 The vector field in Complex Lorenz equations (50) is equivariant under the
group SO(2) acting on R5 ∼= C2 × R by

R(θ)(x, y, z) = (eiθx, eiθy, z) , θ ∈ [0, 2π) . (8)

Example 2.4 Finally, the symmetry group of the Armbruster-Guckenheimer-Holmes flow

ż1 = z̄1z2 + z1

(

µ1 + e11|z1|
2 + e12|z2|

2
)

(9a)

ż2 = ±z2
1 + z2

(

µ2 + e21|z1|
2 + e22|z2|

2
)

(9b)

is O(2) acting by

R(θ)(z1, z2) = (eiθz1, e
i2θz2) , θ ∈ [0, 2π) , (10a)

κ(z1, z2) = (z∗1 , z∗2) . (10b)

where ∗ denotes complex conjugation.

2.1.1 Phase space stratification

In order to understand the implications of equivariance for the solutions of (6) we first have
to examine the way a compact Lie group acts on Rn.

The group orbit of x ∈ Rn is the set

Γx = {γx : γ ∈ Γ} . (11)

Definition 2.5 The isotropy subgroup or stabilizer of x ∈ M as

Σx = {γ ∈ Γ : γx = x} . (12)

Thus the isotropy subgroup describes the symmetries of a point x. Note that by Definition 2.5
the isotropy subgroup is the largest subgroup (in the sense of set inclusion, cf. (16)) that
leaves x fixed.

Lemma 2.7 Points on the same group orbit of Γ have conjugate isotropy subgroups:

Σγx = γΣxγ−1 . (13)

(See ref. [41] for the proof.) Thus we can characterize a group orbit by its type, defined as
the conjugacy class of its isotropy subgroups.

Proposition 2.8 Let Γ be a compact Lie group acting on Rn. Then

1. If Γ is finite then |Γ| = |Σx||Γx|.
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2. If Γ is continuous then dim Γ = dim Σx + dim Γx.

The proof can be found in ref. [41]. Here | . | denotes the order of the group, that is the
number of group elements. We note that dim Γx = dim(Γ/Σx), where the coset space of a
subgroup Σ of Γ is defined as Γ/Σ = {γΣ|γ ∈ Γ}. Also recall that the (left) cosets of Σ in
Γ are the sets γΣ = {γσ|σ ∈ Σ}.

Therefore, when Γ is continuous each group orbit is a smooth compact manifold of
dimension dim Γx = dim Γ − dim Σx. The union of orbits of the same type is called a
stratum and is itself a smooth manifold. Thus Rn is stratified by the action of Γ into a
disjoint union of strata Si which are in an one to one correspondence to the group orbit types
(cf. ref. [13] for proof). Note that in general the strata do not have the same dimension.
There exists a unique stratum S0 of maximal dimension that is called principal stratum [35].
The principal stratum is open, dense and if Γ is connected then S0 is also connected [13].

Definition 2.9 Let Σ be a subgroup of Γ acting on Rn. The fixed-point subspace of Σ,
denoted by Fix(Σ), is the subspace of Rn containing all fixed points of Σ:

Fix(Σ) = {x ∈ Rn | σx = x , ∀σ ∈ Σ} .

Fixed-point subspaces are invariant under equivariant dynamics. The following theorem
applies:

Theorem 2.10 Let f : Rn → Rn be Γ-equivariant and let Σ be a subgroup of Γ. Then

f (Fix(Σ)) ⊆ Fix(Σ) .

This leads to:

Proposition 2.11 Let x(t) be a solution trajectory of an equivariant ODE. Then Σx(t) =
Σx(0) for all t.

Proof can be found in ref. [41].

Let A(x) = ∂v(x)
∂x and use the chain rule:

A(γx)γ = γA(x) , γ ∈ Γ . (14)

Then, for γ ∈ Σx we have
A(x)γ = γA(x) , γ ∈ Σx. (15)

i.e.the stability matrix at x commutes with Σx.
We can define a partial ordering � on conjugacy classes of subgroups of Γ. Let H = {Hi}

and K = {Kj} be two such conjugacy classes. Then

H � K ⇔ Hi ⊆ Kj (16)

for some representatives Hi, Kj . We refer to the partially ordered set that results from this
ordering as the subgroup lattice.

Definition 2.12 The isotropy lattice of Γ is the set of all conjugacy classes of isotropy
subgroups partially ordered by �.
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I1

I2

I3

A

B

C

Figure 1: D3 leaves the equilateral triangle setwise fixed. The reflection symmetry axes have

been denoted Ii.

Definition 2.13 Let Σ be a subgroup of Γ. The normalizer of Σ in Γ is N(Σ) = {γ ∈
Γ | γΣγ−1 = Σ}.

Lemma 2.14 The largest subgroup of Γ that acts in Fix (Σ) is N(Σ).

For proof cf. ref. [13].

Example 2.15 Consider D3, the symmetry group of the equilateral triangle Figure 1, acting
on R2 ∼= C by

ζz = ei 2π
3 z , (17a)

κz = z̄ . (17b)

There are, up to conjugacy, three subgroups: 1 = {e}, D1(κ) = {e , κ}, which is
isomorphic to the subgroups generated by κζ and by κζ2, and C3 = {e, ζ, ζ2}. The subgroup
lattice is shown in Figure 2(a). There are three classes, each corresponding to a distinct
geometrical operation: {e}, {κ, κζ, κζ2} and {ζ, ζ2}.

Example 2.16 We now examine how the vertex A of the triangle transforms under the
action of D3. Under ζ and ζ2 it is mapped to the vertices B and C, respectively. Thus
all vertices belong to the same group orbit and have conjugate isotropy subgroups, from
Lemma 2.7. Under κ vertex A remains fixed. Thus the isotropy subgroup of point A is
ΣA = D1(κ). By Lemma 2.7 we have ΣB = ζ D1(κ) ζ−1 = D1(κζ) and ΣC = ζ−1 D1(κ) ζ =
D1(κζ2). Next, note that D1(κ) fixes any point on the symmetry axis I1, while ζ and ζ2

map it to I2 and I3, respectively. The origin is the only point fixed by any group operation,
i.e. has isotropy subgroup D3. Finally, any point that is not on one of the symmetry axes
I1, I2, I3 has trivial isotropy subgroup. Thus we arrive to the following conclusions:

The isotropy subgroups are: Σ{0} = D3, ΣI∗1
= D1(κ) ≃ ΣI∗2

≃ ΣI∗3
, ΣR2\{∪Ii} = 1,

where I∗i = Ii\{0}. The fixed point subspaces of D3, D1(κ), D1(κζ) and D1(κζ2) are the
origin, I1, I2 and I3, respectively. The fixed point subspace of C3 is the origin but, since
C3 is a proper subgroup of D3, it does not qualify as isotropy subgroup of the origin (cf.
Definition 2.5.) Thus C3 is not in the isotropy lattice of D3 acting on R2, cf. Figure 2(b).

There are three strata in correspondence with the orbit types (and with isotropy subgroups):
the origin (type D3), {∪I∗i } (type D1(κ)), and the principal stratum R2\{∪Ii} (type 1).

If we now consider a two dimensional system of ODEs equivariant under the action
(17) of D3 we can conclude immediately that the fixed-point subspaces are flow invariant by
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(a)

D3

D1(κ) C3

1 (b)

D3

D1(κ)

1

Figure 2: (a) D3 subgroup lattice, (b) D3 isotropy lattice

Proposition 2.11. Thus the origin has to be a fixed point of the flow. Moreover the principal
stratum R2\{∪Ii} is partitioned by the symmetry axes Ii that are flow invariant into six
disjoined pieces on the same group orbit of D3.

Example 2.17 Consider Σ = SO(2) acting on R5 by

x 7→ R(θ)x , (18)

where

R(θ) =













cos(θ) − sin(θ) 0 0 0
sin(θ) cos(θ) 0 0 0

0 0 cos(θ) − sin(θ) 0
0 0 sin(θ) cos(θ) 0
0 0 0 0 1













, θ ∈ [0, 2π) . (19)

Note that this is the same action as in (8) but now we do not make the identification
R5 ∼= C2×R. As we will see in Chapter 4 the following have direct applications in symmetry
reduction of Complex Lorenz equations. Choose coordinates x1, x2, y1, y2, z on R5, related
to the complex coordinates of (8) by x = x1 + ix2, y = y1 + iy2. The fixed-point subspace of
the action of SO(2) is the z-axis. The isotropy subgroup of the z-axis is thus SO(2), while
the isotropy subgroup of M∗ ≡ R5\{x1 = x2 = y1 = y2 = 0} is the identity element.

Example 2.18 Consider the action of O(2) on Cn by

R(θ)zk = eikθzk , θ ∈ [0, 2π) , (20)

κz = z , z = (z1, . . . zn) , (21)

where zk ∈ C. The subgroup lattice is drawn in Figure 3. The subgroup Dm, m > 0, of
O(2) is generated by the reflection κ and a rotation Rm ≡ R(2π/m). The cyclic subgroup
Cq, q > 0 of SO(2) is generated by a discrete rotation Rq. If q divides m then we have the
following subgroup classes ordering relations: Cq ≺ Cm ≺ Dm and Dq ≺ Dm. Note that
C1

∼= 1.
The fixed-point subspace of O(2) and SO(2) is the origin and thus SO(2) is not in the

isotropy lattice. The fixed-point subspace of Cq is given by the condition

zk = 0 unless k = qj , j = 1, . . . ⌊n/q⌋ (22)

and is thus a 2⌊n/q⌋-dimensional subspace (here we count real dimensions.) For the fixed-
point subspace of Dq we have condition (22) and additionally that

Im(zk) = 0 for k = 1, . . . , n . (23)
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(a)

O(2)

SO(2) Dm

Cq (b)

O(2)

Dm

Cq

Figure 3: (a) O(2) subgroup lattice, (b) O(2) isotropy lattice for the action defined by (21). In

both figures dashed lines indicate containment only when q divides m, while the relations Cq ≺ Cm

and Dq ≺ Dm when q divides m are not drawn. For the isotropy lattice m, q ≤ n.

Therefore Fix (Dq) is an ⌊n/q⌋-dimensional subspace. Note that for q > n condition (22)
cannot be satisfied and all zk’s have to be equal to zero. This implies that the fixed-point
subspace of Dq and Cq for q > n is the origin and as a result those subgroups are not in the
isotropy lattice. Finally, Fix (1)=Rn.

Points on the group orbit of a point x ∈ Fix (Dm (κ,Rm)) have, by Lemma 2.7 conjugate
isotropy subgroups: ΣR(θ)x = R(θ)Dm (κ,Rm)R(−θ) ≃ Dn (κR(θ), Rm). The fixed-point
subspace of Dn (κR(θ), Rm) is obtained by rotation R(θ) of Fix (Dm (κ,Rm)).

On the other hand Fix (Cm) is invariant as a set under the action of O(2). To understand
this observe that for any 0 ≤ m ≤ n, N(Cm) = O(2) since SO(2) is abelian while κCmκ−1 =
Cm since κRm/kκ−1 = R−m/k ∈ Cm, ∀ k = 1 . . . m. Therefore O(2) acts on Fix (Cm),
i.e. the group orbit of any point on Fix (Cm) remains on Fix (Cm). On the other hand
N(Dm(κ,Rm)) = Dm(κ,Rm) and thus only Dm(κ,Rm) acts (trivially) on Fix (Dm(κ,Rm)).

It’s interesting to note the way in which fixed-point subspaces are nested: if Dm ⊂ Dq

then Fix (Dm) ⊃ Fix (Dq). If Cm ≺ Cq then Fix (Cm) ⊃ Fix (Cq) and finally if Cm ⊂ Dq

then Fix (Cm) ⊃ Fix (Dq).

A general procedure exists [35] to determine which subgroups in the subgroup lattice of a
group Γ are isotropy subgroups when Γ acts faithfully on Rn. For each subgroup K (or more
precisely for each subgroup class represented by K) determine the dimension of the fixed-
point subspace. Then we trace the subgroup lattice: For each subgroup K we compare
dim(Fix(K)) to dim(Fix(H)) for every H ⊆ Γ for which K ⊂ H. If dim(Fix(K)) =
dim(Fix(H)) then K is not an isotropy subgroup. The determination of the dimension
of the fixed-point subspace of a subgroup K can be done by means of the following trace
formula if an explicit representation ρ(K) of K is known or if one is able to determine the
character of the representation by other means:

dim(Fix(K)) =
1

|K|

∑

κ∈K

trace (ρ(κ)) . (24)

2.1.2 Group action types

In this section we state some definitions of different types of group actions.

Definition 2.19 A group Γ acts freely on M if all isotropy subgroups are trivial: Σx={e}
for all x ∈ M. Γ acts locally freely if all isotropy subgroups are discrete subgroups of Γ.
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Example 2.20 The action (18) of SO(2) on R5 is not free (or even locally free), while the
same action on M∗ is free. If we do not restrict θ in [0, 2π) then the group R acts locally
freely on M∗ since the isotropy subgroup is the discrete subgroup 2πZ of integer multiples
of 2π.

Example 2.21 The action (21) of O(2) is locally free on Cn \ {0} but not on Cn.

Definition 2.22 A group Γ acts faithfully (or effectively) on M if and only if
⋃

x∈M Σx =
{e}.

An immediate consequence of Lemma 2.14 is that N(Σ)/Σ acts faithfully on Fix (Σ).

Example 2.23 The actions (18) of SO(2) and (21) of O(2) are faithful.

Definition 2.24 A group Γ acts semi-regularly on M if all its orbits have the same dimension.
If in addition for each point x ∈ M there exists an arbitrarily small neighborhood U such
that each orbit of Γ intersects U in a pathwise connected subset, then the group acts regularly.

Example 2.25 Action (18) of SO(2) is regular on M∗ but not on R5.

Example 2.26 Since the action (21) of O(2) on Cn \ {0} is free it is also semi-regular.
Indeed, from Proposition 2.8 all group orbits of points x ∈ Cn \ {0} are 1-dimensional.

The group orbits of an effective and regular or semi-regular action of a Lie group Γ on
a manifold M form a foliation of M.

2.2 Symmetries of solutions

In the preceding section we concentrated on symmetries of the space on which a group acts.
Solutions of a differential equation do not necessarily have the full symmetry group Γ of the
differential equation. The discussion flows better if we start from the simplest solutions,
equilibria, and then consider more complicated solutions.

2.2.1 Equilibria

An equilibrium with full symmetry lies in Fix (Γ), the orbit type is 1 and thus the multiplicity
of the solution is one. Note that if dimFix (Γ) = 0, since fixed-point subspaces are flow
invariant, the solution has to be an equilibrium.

An equilibrium x with isotropy subgroup Σx ( Γ has less than full symmetry. According
to Proposition 2.8 this equilibrium with orbit type Γ/Σx does not come alone. If Γ is finite
there are |Γ|/|Σx| equilibria in the group orbit of Γ. If Γ is continuous then there is a,
possibly disconnected, manifold of equilibria of dimension dim Γ − dimΣx passing through
x.

2.2.2 Periodic orbits

Let xp be a periodic orbit of (6) with period Tp. Then, by equivariance, γxp is another
periodic orbit, for any γ ∈ Γ. From uniqueness of solutions xp and γxp are either identical
or disjoined.
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If they are identical we must have,

γxp(t + θ) = xp(t) (25)

for some θ ∈ S1 = [0, T ]. In Golubitsky and Stewart [40] (γ, θ) ∈ Γ × S1 is called a spatio-
temporal symmetry of the solution xp. Spatio-temporal symmetries for which θ = 0 are
called spatial symmetries. The term spatial and spatio-temporal should not be confused
with the terms used in the context of PDEs, here spatial refers to phase space. See
Golubitsky and Stewart [40] for more details.

If the periodic solutions are disjoint their multiplicity (if Γ is finite), or the dimension
of the manifold swept under the group action (if Γ is continuous) can be determined by
application of Proposition 2.8 for any periodic point.

2.2.3 Relative equilibria

Let Γ be compact. A group orbit of a point x that is flow invariant is called a relative
equilibrium. That is, there is dynamics only in the direction of the group action and in
a frame moving along the group orbit with velocity given by the right hand side of (6)
the relative equilibrium appears as an equilibrium. Alternatively we may view a relative
equilibrium as a group invariant periodic orbit, satisfying

x(t) = γtx0 (26)

for a curve γt ∈ Γ.
Relative equilibria are a hallmark of systems with continuous symmetry. Unless a

discrete subgroup enforces it, there is no reason we should expect not to have dynamics in
the direction of group action and we expect to have relative equilibria. For the connection
of this statement to the genericity of bifurcations with continuous symmetry see ref. [40].

2.2.4 Relative periodic orbits

For Γ compact, a relative periodic orbit is a trajectory satisfying the condition

x(t + T ) = γx(t) , (27)

for all t and for some group element γ ∈ Γ and period T . In ref. [56], Krupa proves that
the closure of a relative periodic orbit is a torus and provides a bound for its dimension.
Another way to view relative periodic orbits is as periodic orbits of the reduced dynamics,
see Sect. 2.3 bellow. Therefore, unless there is a reason that enforces v(t) in (6) to be
orthogonal to the direction of the group action, one expects to find relative periodic orbits
in systems with continuous symmetry for the same reasons one expects periodic orbits in
generic dynamical systems with discrete or no symmetry.

2.3 Symmetry reduction

The purpose of symmetry reduction in differential equations is to project the dynamics to
a space in which the symmetry group G acts trivially. Such a space is called orbit space
because each group orbit of a point in original space is mapped to a single point in orbit
space, or quotient space because the symmetry has been “divided out” or simply reduced
space. If the original space is a manifold M it is then customary to write the quotient space
as M/Γ. The resulting dynamical system is called image of the original.

13



The stratification of M induced by the group action is carried over to the quotient
space with each disconnected set in a stratum mapped to the same manifold in quotient
space. Yet, a fundamental problem with symmetry reduction is that the orbit space is in
general not a manifold. Unless the action of the group is free, group orbits do not have
the same dimension and different strata are mapped to manifolds of different dimension.
We will see this property of quotient space manifest itself in different ways depending on
the reduction method but always introducing some singularity even though there is nothing
singular about M or the flow of the dynamical system on it.

2.3.1 Hilbert basis approach

The most common approach to symmetry reduction is through the use of a Hilbert basis
of invariant polynomials. One computes a (non-unique) basis of linearly independent
polynomials, invariant under the action of the symmetry group (cf. ref. [35] for a discussion
of methods) and either rewrites the dynamics in this basis or maps the solutions to the
polynomials. We will describe how this approach works for the example of Complex Lorenz
equations in Sect. 4.1. The reader is referred to the book of Gilmore and Lettelier [39] for
a very detailed discussion of symmetry reduction. For the action (18) of SO(2) on R5 a
Hilbert basis [39] is

u1 = x2
1 + x2

2 ,

u2 = y2
1 + y2

2 ,

u3 = x1y2 − x2y1 ,

u4 = x1y1 + x2y2 ,

u5 = z .

(28)

The polynomials in a Hilbert basis are linearly independent, but functionally dependent
through relation called syzygies. For polynomials (28) the syzygy is

u1u2 − u2
3 − u2

4 = 0 . (29)

When one takes syzygies into account in rewriting the dynamical system, singularities
are introduced. Moreover when one lifts the dynamics from the quotient space M/G to the
original space M the transformations have singularities at the fixed-point subspaces of the
isotropy subgroups in M, in the optimal case, cf. ref. [39]. Those singularities do not seem
to restrict our ability to use invariant polynomials to obtain symmetry reduced projections
of the dynamics as we will see in Chapter 4.

What restricts the utility of Hilbert basis methods is that the determination of a Hilbert
basis becomes computationally prohibitive as the dimension of the system or of the group
increases [35; 13] and typically computations are constrained to dimension smaller than ten.
As our goal is to quotient continuous symmetries of high-dimensional flows, specifically those
arising from truncations of the Kuramoto-Sivashinsky and Navier-Stokes flows and thus we
need an efficient framework.

2.3.2 Moving frames

In this section we present the method of moving frames of Cartan [8] in the formulation
of Fels and Olver [28; 29], also cf. ref. [70] for a pedagogical exposition and the proofs of
theorems listed here. Its purpose is to generate functionally independent invariants for the
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action of a group Γ on a manifold M under certain assumptions, and is not restricted to
reduction problems.

In the following let Γ be r-dimensional and act on a n-dimensional manifold M.

Definition 2.27 A moving frame is a smooth Γ-equivariant mapping ρ : M → Γ.

One distinguishes between left moving frames for which the equivariance condition is ρ(γx) =
γρ(x) , x ∈ M , γ ∈ Γ and right moving frames for which the equivariance condition is
ρ(γx) = ρ(x)γ−1 , x ∈ M , γ ∈ Γ.

The following existence theorem for moving frames will be very important.

Theorem 2.28 A moving frame exists in a neighborhood of a point x ∈ M if and only if
Γ acts freely and regularly near x.

For groups acting regularly we can define a slice for the group orbits.

Proposition 2.29 Let Γ act regularly on a n-dimensional manifold M with r-dimensional
orbits. Define a (local) slice to be an (n − r)-dimensional submanifold K of M such that
K intersects each orbit transversally and at most once. If a Lie group Γ acts regularly on a
manifold M, then one can construct a local slice passing through any point x ∈ M.

Theorem 2.30 Assume the conditions of Proposition 2.29 hold and let K ⊂ M be a slice.
For x ∈ M, let γ = ρ(x) be the unique group element that maps x to the slice: gx = ρ(x)x ∈
K. Then ρ : M → Γ is a right moving frame.

A slice K can be defined by means of level sets of functions Ki(x) = ci, where x ∈ V
and i = 1, . . . , r. If the Ki(x) coincide with the local coordinates xi on the manifold V ,
i.e. Ki(x) = xi, then we call K a coordinate slice.

Example 2.31 Consider the standard action of SO(2) on R2:

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ) (30)

which is regular on R2\{0}. Thus we can define a slice by, for instance, the positive y axis:
x = 0, y > 0. We can now construct a moving frame as follows. We write out explicitly the
group transformations:

x = x cos θ − y sin θ , (31a)

y = x sin θ + y cos θ . (31b)

Then set x = 0 and solve (31a) for the group parameter to obtain the moving frame

θ = tan−1 x

y
(32)

which brings any point back to the slice.1 Substituting (32) in the remaining equation, we
get the SO(2)-invariant expression

y =
√

x2 + y2 . (33)

1Implementation note: Here it is important that tan−1 distinguishes quadrants on the (x, y) plane so that

we get the correct geometric operation.
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The above normalization procedure for the computation of invariants applied in the
example of SO(2) can be applied in much more general situations as follows. Assume
Γ acts (locally) freely on M and thus Γ-orbits have the same dimension, say r, as Γ.
Choose a coordinate slice K = {x1 = c1, . . . , xr = cr} defined by the first r coordinates
(relabel coordinates as necessary). Introduce local coordinates g = (g1, . . . , gr) on Γ in the
neighborhood of the identity. The group transformations are

x = g · x = w(g, x) . (34)

Equating the first r components of the function w to the constants in the definition of the
slice Ki(x) = ci yields the normalization equations for K:

x1 = w1(g, x) = c1, . . . , xr = wr(g, x) = cr . (35)

From the definition of slice and the Implicit Function Theorem the normalization equations
(35) can always be solved for the group parameters in terms of x, yielding the moving
frame associated with K: g = γ(x). Substitution of the moving frame equation back in
(34) will yield the n − r fundamental invariants, in the sense that any other invariant can
be expressed as a function of xr+1 . . . xn and they are functionally independent. Thus they
serve to distinguish orbits in the neighborhood of the slice, i.e. two points lie on the same
group orbit if and only if all the fundamental invariants agree. For proof cf. refs. [28; 29].
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CHAPTER III

DESYMMETRIZATON OF LORENZ EQUATIONS

This chapter is based on a series of examples developed for ChaosBook.org [20], in
collaboration with Jonathan Halcrow and Predrag Cvitanovíc. Its intent is pedagogical:
as a warmup to Kuramoto-Sivashinsky equation, which has both discrete and continuous
symmetries, we carry out a discrete symmetry reduction of the 3-dimensional Lorenz flow,
and illustrate in the process some of the key ideas in a rather simple setting.

We start with the full phase space and end with what the ultimate goal would be for
the (yet unattained) Kuramoto-Sivashinsky and Navier-Stokes symmetry reductions, a 1-
dimensional return map description of the dynamics. We explain why Lorenz equilibria are
heteroclinically connected (it is not due to the symmetry), and how to generate all periodic
orbits of Lorenz flow up to given length. This we do, in contrast to the rest of the thesis,
without any group-theoretical jargon.

Even though no dynamical system has been studied more exhaustively than the Lorenz
equations, this analysis is new. The desymmetrization follows Gilmore and Lettelier [39],
but the key new idea is taken from Christiansen et al. [14]: the arc-length parametrization
of the unstable manifold maintains the 1-to-1 relation of the full d-dimensional phase space
dynamics and its 1-dimensional return-map representation, in contrast to 1-dimensional
projections of the (d−1)-dimensional Poincaré section return maps previously deployed in
the literature. In other words, to high accuracy no information about the flow is lost by its
1-dimensional return map description.

3.1 Lorenz strange attractor

Edward Lorenz arrived at the equation

ẋ = v(x) =





ẋ
ẏ
ż



 =





σ(y − x)
ρx − y − xz

xy − bz



 (36)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b = 8/3, and
varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium E0 = (0, 0, 0) at the origin
is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a pair of equilibria at

xE1,2 = (±
√

b(ρ − 1),±
√

b(ρ − 1), ρ − 1) , (37)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows, but
here is a brief synopsis: the E0 1−d unstable manifold closes into a homoclinic orbit at
ρ = 13.56 . . . . Beyond that, an infinity of associated periodic orbits are generated, until
ρ = 24.74 . . . , where E1,2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice σ =
10, b = 8/3, ρ = 28 . For these parameter values the long-time dynamics is confined to the
strange attractor depicted in Figure 4.
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Figure 4: (a) Lorenz flow cut by y = x Poincaré section plane P through the z axis and both E1,2

equilibria. Points where flow pierces into section are marked by dots. To aid visualization of the

flow near the E0 equilibrium, the flow is cut by the second Poincaré section, P ′, through y = −x and

the z axis. (b) Poincaré sections P and P ′ laid side-by-side. The singular nature of these sections

close to E0 will be elucidated in Sect. 3.2.1 and Figure 7 (b).

3.2 Sections of Lorenz flow

The plane P fixed by the x = y diagonal and the z-axis depicted in Figure 4 is a natural
choice of a Poincaré section of the Lorenz flow, as it contains all three equilibria, xE0 =
(0, 0, 0) and the (37) pair E1,2. A section has to be supplemented with an orientation
condition: here points where flow pierces into the section are marked by dots.

E1,2 are centers of out-spirals, and close to them the section is transverse to the flow.
However, close to E0 trajectories pass the z-axis either by crossing the section P or staying
on the viewer’s side. We are free to deploy as many sections as we wish: in order to capture
the whole flow in this neighborhood we add the second Poincaré section, P ′, through the
y = −x diagonal and the z-axis. Together the two sections, Figure 4 (b), capture the
whole flow near E0. The dynamics on the sections appear very singular. We explain this
singularity in Sect. 3.2.1, and postpone construction of a Poincaré return map to Sect. 3.4.

3.2.1 Stability of Lorenz flow equilibria

For the Lorenz flow (36) the stability matrix is

ALor =





−σ σ 0
ρ − z −1 x

y x −b



 . (38)

A glance at Figure 4 suggests that the flow is organized by its 3 equilibria, so let’s have
a closer look at their stable/unstable manifolds.

The E0 equilibrium stability matrix (38) evaluated at xE0 = (0, 0, 0) is block-diagonal.
The z-axis is an eigenvector with a contracting eigenvalue λ(2) = −b. From (44) it follows
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Figure 5: (a) Blow-up of the linearized Lorenz flow near E1 equilibrium, see Figure 4 (a). The

unstable eigenplane of E1 is spanned by Re e(1) and Im e(1). The stable eigenvector e(3). The descent

of the E0 unstable manifold (green) defines the innermost edge of the strange attractor. As it is

clear from Figure 6 (a), it also defines its outermost edge. (b) Lorenz flow near the E0 equilibrium:

unstable eigenvector e(1), stable eigenvectors e(2), e(3). Trajectories initiated at distances 10−8 · · ·

10−12, 10−13 away from the z-axis exit finite distance from E0 along the (e(1), e(2)) eigenvectors plane.

Due to the strong λ(1) expansion, the E0 equilibrium is, for all practical purposes, unreachable, and

the E1 → E0 heteroclinic connection never observed in simulations such as Figure 4.

that all [x, y] areas shrink at rate −(σ + 1). Indeed, the [x, y] submatrix

A− =

(

−σ σ
ρ −1

)

(39)

has a real expanding/contracting eigenvalue pair λ(1,3) = −(σ + 1)/2 ±
√

(σ − 1)2/4 + ρσ,
with the right eigenvectors e(1), e(3) in the [x, y] plane, given by (either) column of the
projection operator

Pi =
A− − λ(j)1

λ(i) − λ(j)
=

1

λ(i) − λ(j)

(

−σ − λ(j) σ

ρ −1 − λ(j)

)

, i 6= j ∈ {1, 3} . (40)

E1,2 equilibria have no symmetry, so their eigenvalues are given by the roots of a cubic
equation, the secular determinant det (A − λ1) = 0:

λ3 + λ2(σ + b + 1) + λb(σ + ρ) + 2σb(ρ − 1) = 0 . (41)

For ρ > 24.74, E1,2 have one stable real eigenvalue and one unstable complex conjugate
pair, leading to a spiral-out instability and the strange attractor depicted in Figure 4.

As all numerical plots of the Lorenz flow are here carried out for the Lorenz parameter
choice σ = 10, b = 8/3, ρ = 28 , we note the values of these eigenvalues for future reference,

E0 : (λ(1), λ(2), λ(3)) = ( 11.83 , − 2.666, −22.83 )

E1 : (µ(1) ± i ω(1), λ(3)) = ( 0.094 ± i 10.19, −13.85 ) ,
(42)
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as well as the rotation period TE1 = 2π/ω(1) about E1, and the associated expansion/contraction
multipliers Λ(i) = exp(µ(j)TE1) per spiral-out turn:

TE1 = 0.6163 , (Λ(1),Λ(3)) = ( 1.060 , 1.957 × 10−4 ) . (43)

We learn that the typical turnover time scale in this problem is of order T ≈ TE1 ≈ 1
(and not, let us say, 1000, or 10−2). Combined with the contraction rate (44), this tells us
that the Lorenz flow strongly contracts phase space volumes, by factor of ≈ 10−4 per mean
turnover time.

In the E1 neighborhood the unstable manifold trajectories slowly spiral out, with very
small radial per-turn expansion multiplier Λ(1) ≃ 1.06, and very strong contraction multiplier
Λ(3) ≃ 10−4 onto the unstable manifold, Figure 5 (a). This contraction confines, for all
practical purposes, the Lorenz attractor to a 2−d surface evident in the section Figure 4.

In the xE0 = (0, 0, 0) equilibrium neighborhood the extremely strong λ(3) ≃ −23
contraction along the e(3) direction confines the hyperbolic dynamics near E0 to the plane
spanned by the unstable eigenvector e(1), with λ(1) ≃ 12, and the slowest contraction rate
eigenvector e(2) along the z-axis, with λ(2) ≃ −3. In this plane the strong expansion along
e(1) overwhelms the slow λ(2) ≃ −3 contraction down the z-axis, making it extremely
unlikely for a random trajectory to approach E0, Figure 5 (b). Thus linearization suffices to
describe analytically the singular dip in the Poincaré sections of Figure 4, and the empirical
scarcity of trajectories close to E0.

3.3 Lorenz flow: Global portrait

As the E1 unstable manifold spirals out, the strip that starts out in the section above E1

in Figure 4 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to E0.

As in the neighborhood of the E0 equilibrium the dynamics is linear (see Figure 5 (a)),
there is no need to integrate numerically the final segment of the heteroclinic connection -
it is sufficient to bring a trajectory a small distance away from E0, continue analytically to
a small distance beyond E0, then resume the numerical integration.

What happens next? Trajectories to the left of z-axis shoot off along the e(1) direction,
and those to the right along −e(1). As along the e(1) direction xy > 0, the nonlinear term
in the ż equation (36) bends both branches of the E0 unstable manifold W u(E0) upwards.
Then . . . - never mind. Best to postpone the completion of this narrative to Sect. 3.4, where
the discrete symmetry of Lorenz flow will help us streamline the analysis. As we shall show,
what we already know about the 3 equilibria and their stable/unstable manifolds suffices
to completely pin down the topology of Lorenz flow.

3.3.1 Lorenz flow phase space contraction

The Lorenz flow is volume contracting,

∂ivi =

3
∑

i=1

λ(i)(x, t) = −σ − b − 1 , (44)

at a constant, coordinate- and ρ-independent rate, set by Lorenz to ∂ivi = −13.66 . As for
periodic orbits and for long time averages there is no contraction/expansion along the flow,
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λ(‖) = 0, and the sum of λ(i) is constant by (44), there is only one independent exponent
λ(i) to compute.

3.4 Desymmetrization of the Lorenz flow

The vector field in Lorenz equations (36) is equivariant under the action of cyclic group
D1 = {e,R(1/2)} acting on R3 by a π rotation about the z axis,

R(1/2)(x, y, z) = (−x,−y, z) .

Lorenz equation (36) is invariant under the action of order-2 group D1 = {e,R(1/2)},
where R(1/2) is [x, y]-plane, constant z rotation by π about the z-axis:

(x, y, z) → R(1/2)(x, y, z) = (−x,−y, z) . (45)

(R(1/2))2 = 1 condition decomposes the phase space into two linearly irreducible subspaces
M = M+ ⊕M−, the z-axis M+ and the [x, y] plane M−, with projection operators onto
the two subspaces given by

P+ =
1

2
(1 + R(1/2)) =





0 0 0
0 0 0
0 0 1



 , P− =
1

2
(1 − R(1/2)) =





1 0 0
0 1 0
0 0 0



 . (46)

As the flow is D1-invariant, so is its linearization ẋ = Ax. Evaluated at E0, A commutes
with R(1/2), and, as we have already seen in Sect. 3.2.1, the E0 stability matrix decomposes
into [x, y] and z blocks.

The 1−d M+ subspace is the fixed-point subspace of D1, with the z-axis points left
point-wise invariant under the group action

Fix(D1) = {x ∈ M+ : g x = x for g ∈ {e,R(1/2)}} . (47)

However, a point x(t) in Fix(D1) moves with time, but remains within x(t) ⊆ Fix(D1) for
all times; the subspace M+ = Fix(D1) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x, y) = (0, 0) the full phase space Lorenz equation (36) is reduced
to the exponential contraction to the E0 equilibrium,

ż = −b z . (48)

However, for flows in higher-dimensional phase spaces the flow-invariant M+ subspace can
itself be high-dimensional, with interesting dynamics of its own. Even in this simple case
this subspace plays an important role as a topological obstruction, with the number of winds
of a trajectory around it providing a natural symbolic dynamics.

The M− subspace is, however, not flow-invariant, as the nonlinear terms ż = xy − bz
in the Lorenz equation (36) send all initial conditions within M− = (x(0), y(0), 0) into the
full, z(t) 6= 0 phase space M. The R(1/2) symmetry is nevertheless very useful.

By taking as a Poincaré section any R(1/2)-invariant, infinite-extent, non-self-intersect-
ing surface that contains the z axis, the phase space is divided into a half-space fundamental
domain M̃ = M/D1 and its 180o rotation R(1/2)M̃. An example is afforded by the P plane
section of the Lorenz flow in Figure 4. Take the fundamental domain M̃ to be the half-space
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Figure 6: Two views of the Lorenz attractor plotted in [x′, y′, z], the doubled-polar angle

coordinates (49), with points related by π-rotation in the [x, y] plane identified. Stable eigenvectors

of E0: e(3) and e(2), along the z axis (48). Unstable manifold orbit Wu(E0) (green) is a continuation

of the unstable e(1) of E0.

between the viewer and P. Then the full Lorenz flow is captured by re-injecting back into
M̃ any trajectory that exits it, by a rotation of π around the z axis.

As any such R(1/2)-invariant section does the job, a choice of a ‘fundamental domain’ is
here largely mater of taste. For purposes of visualization it is convenient to make the double-
cover nature of the full phase space by M̃ explicit, through any phase space redefinition
that maps a pair of points related by symmetry into a single point. In case at hand, this can
be easily accomplished by expressing (x, y) in polar coordinates (x, y) = (r cos θ, r sin θ),
and then plotting the flow in the ‘doubled-polar angle representation:’

(x′, y′) = (r cos 2θ, r sin 2θ) = ((x2 − y2)/r, 2xy/r) , (49)

as in Figure 6 (a). In contrast to the original D1-equivariant coordinates [x, y, z], the
Lorenz flow expressed in the new coordinates [x′, y′, z] is D1-invariant, see Sect. 2.3. In
this representation the M̃ = M/D1 fundamental domain flow is a smooth, continuous flow,
with (any choice of) the fundamental domain stretched out to seamlessly cover the entire
[x′, y′] plane.

We emphasize: such nonlinear coordinate transformations are not required to implement
the symmetry quotienting M/D1, unless there are computational gains in a nonlinear
coordinate change suggested by the symmetry. We offer them here only as a visualization
aid that might help the reader disentangle 2−d projections of higher-dimensional flows. All
numerical calculations are usually carried in the initial, full phase space formulation of a
flow, with symmetry-related points identified by linear symmetry transformations.
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Figure 7: A Poincaré section of the Lorenz flow in the doubled-polar angle representation,

Figure 6, given by the [y′, z] plane that contains the z-axis and the equilibrium E1. x′ axis points

toward the viewer. (a) The Poincaré section of the Lorenz flow by the section plane; compare with

Figure 4. Crossings into the section are marked red (solid) and crossings out of the section are

marked blue (dashed). Outermost points of both in- and out-sections are given by the E0 unstable

manifold Wu(E0) intersections. (b) The Poincaré return map sn+1 = P (sn) parameterized by

Euclidean arclength s measured along the E1 unstable manifold, from xE1
to Wu(E0) section point,

uppermost right point of the blue segment in Figure 7 (b). The critical point (the ‘crease’) of the

map is given by the section of the heteroclinic orbit W s(E0) that descends all the way to E0, in

infinite time and with infinite slope.

3.5 Periodic orbits of Lorenz flow

The relation between the full phase space periodic orbits, and the fundamental domain (49)
reduced orbits of the Lorenz flow: Full phase space cycle pairs p, Rp map into a single cycle
p̃ in the fundamental domain, and any self-dual cycle p = Rp = p̃Rp̃ is a repeat of a p̃.

In this chapter we use Lorenz flows to motivate modeling of higher-dimensional flows
by iteration of 1-dimensional maps. For these two flows the 1-dimensional maps capture
essentially all of the higher-dimensional flow dynamics, both qualitatively and quantitatively.
1-dimensional maps suffice to explain the two key aspects of qualitative dynamics; temporal
ordering, or itinerary with which a trajectory visits phase space regions, and the spatial
ordering between trajectory points, which is the key to determining the admissibility of an
orbit with a prescribed itinerary. In a generic dynamical system not every symbol sequence
is realized as a dynamical trajectory; as one looks further and further, one discovers more
and more rules which prohibit families of itineraries. For 1-dimensional “stretch & fold”
maps the kneading theory provides the definitive answer as to which temporal itineraries
are admissible as trajectories of the dynamical system.

3.6 Lorenz flow: Stretch & crease

We now deploy the symmetry of Lorenz flow to streamline and complete analysis of the
Lorenz strange attractor commenced in Sect. 3.4. There we showed that the dihedral
D1 = {e,R} symmetry identifies the two equilibria E1 and E2, and the traditional ‘two-
eared’ Lorenz flow Figure 4 is replaced by the ‘single-eared’ flow of Figure 6. Furthermore,
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symmetry identifies two sides of any plane through the z axis, replacing a full-space Poincaré
section plane by a half-plane, and the two directions of a full-space eigenvector of E0 by a
one-sided eigenvector, see Figure 6 (a).

Example 3.3 explained the genesis of the xE1 equilibrium unstable manifold, its orientation
and thickness, its collision with the z-axis, and its heteroclinic connection to the xE0 =
(0, 0, 0) equilibrium. All that remains is to describe how the E0 neighborhood connects
back to the E1 unstable manifold. Figure 6 now shows clearly how the Lorenz dynamics is
pieced together from the 2 equilibria and their unstable manifolds:

Having completed the descent to E0, the infinitesimal neighborhood of the heteroclinic
E1 → E0 trajectory is ejected along the unstable manifold of E0 and is re-injected into the
unstable manifold of E1. Both sides of the narrow strip enclosing the E0 unstable manifold
lie above it, and they get folded onto each other with a knife-edge crease (contracted
exponentially for infinite time to the E0 heteroclinic point), with the heteroclinic out-
trajectory defining the outer edge of the strange attractor. This leads to the folding of the
outer branch of the Lorenz strange attractor, illustrated in Figure 7 (b), with the outermost
edge following the unstable manifold of E0.

Now the stage is set for construction of Poincaré sections and associated Poincaré return
maps. There are two natural choices; the section at E0, lower part of Figure 7 (a), and the
section (blue) above E1. The first section, together with the blowup of the E0 neighborhood,
Figure 5 (b), illustrates clearly the scarcity of trajectories (vanishing natural measure) in
the neighborhood of E0. The flat section above E1 (which is a smooth conjugacy by the
flow of the knife-sharp section at E0) is more convenient for our purposes. Its return map
is given by Figure 7 (b).

The rest is straight sailing: to accuracy 10−4 the return map is unimodal, its critical
point’s forward trajectory yields the kneading sequence, and the admissible binary sequences,
so any number of periodic points can be accurately determined from this 1-dimensional
return map, and the 3−d cycles then verified by integrating the Lorenz differential equations
(36), or further refined.

What have we learned from the the Lorenz 3-dimensional flow? If a flow is locally
unstable but globally bounded, any open ball of initial points will be stretched out and
then folded back. If the equilibria are hyperbolic, the trajectories will be attracted along
some eigendirections and ejected along others. Hence qualitatively a typical trajectory will
wander through phase space, being alternatively attracted into equilibria neighborhoods,
and then ejected again. What is important is the motion along the unstable manifolds –that
is where 1-dimensional maps come from.
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CHAPTER IV

DESYMMETRIZATON OF LASER EQUATIONS

4.1 Complex Lorenz equations

Complex Lorenz equations were introduced by Gibbon and McGuinness [37] as a low-
dimensional model of baroclinic instability in the atmosphere. As the name suggests they
turned out to be a complex generalization of Lorenz equations:

ẋ = −σx + σy ,

ẏ = (r − z)x − ay ,

ż =
1

2
(xy∗ + x∗y) − bz ,

(50)

where now x, y are complex variables, z is real, while the parameters σ, b are real and
r = r1 + ir2, a = 1 − ie are complex. Ning and Haken [69] have shown that equations
isomorphic to Complex Lorenz equations also appear as a truncation of Maxwell-Bloch
equations describing a single mode, detuned, ring laser, but the authors choose e + r2 = 0
so that a detuned stationary solution exists. Bakasov and Abraham [3] criticize this choice
as being “degenerate” and show that one can use Complex Lorenz equations with r2 = 0
and e 6= 0 to describe detuned lasers. From our point of view the choice of Ning and Haken
leads to non-generic bifurcations as we now explain.

Complex Lorenz flow is equivariant under the action (8) of SO(2). We rewrite the system
in real variables x = x1 + i x2 , y = y1 + i x2 as

ẋ1 = −σx1 + σy1 ,

ẋ2 = −σx2 + σy2 ,

ẏ1 = (r1 − z)x1 − r2x2 − y1 − ey2 ,

ẏ2 = r2x1 + (r1 − z)x2 + ey1 − y2 ,

ż = −bz + x1y1 + x2y2 .

(51)

The stability matrix is

ACLe =













−σ 0 σ 0 0
0 −σ 0 −σ 0

r1 − z −r2 −1 −e −x1

r2 r1 − z e −1 −x2

y1 y2 x1 x2 −b













. (52)

The origin is an equilibrium of (51) for any value of the parameters. As shown in ref. [32]
it is stable for 0 < r1 < r1c and unstable for r1c < r1, where

r1c = 1 +
(e + r2)(e − σr2)

(σ + 1)2
. (53)

At bifurcation a pair of eigenvalues crosses the imaginary axis with imaginary part:

ωc =
σ(e + r2)

σ + 1
. (54)
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(a) (b)

Figure 8: Two different projections of the Complex Lorenz equations dynamics (50) for
r1 = 28, b = 8/3, σ = 10, a = 1 and e = r2 = 0. The dynamics in the real subspace U0 and
in U5π/6 is shown in red, blue respectively. The green circle is the SO(2)-orbit of equilibrium
E1.

Thus we can expect that after a center manifold or Liapunov-Schmidt reduction one
can apply the equivariant Hopf bifurcation theorem with SO(2) symmetry and verify the
existence of a relative equilibrium after bifurcation. In ref. [32] the authors perform a direct
bifurcation analysis and show that, for e+r2 6= 0, a Hopf cycle Q1 is created which also turns
out to be an SO(2)-orbit, i.e. a relative equilibrium. For e+ r2 = 0 the cycle degenerates to
an SO(2)-orbit of equilibria, since ωc = 0 and the conditions of equivariant Hopf theorem
do not apply.

The secondary bifurcation from the relative equilibrium is expected according to Krupa’s
theorem [56] to result in relative periodic orbits. In the non-generic case of an SO(2)-orbit
of equilibria again according to Krupa [56] theorem, one gets bifurcation to periodic orbits.
A secondary bifurcation has been studied in ref. [69]. Since we are interested in Complex
Lorenz equations precisely for its symmetry properties we will concentrate on the case that
results to generic bifurcations. Before we proceed with this, we briefly examine the special
case e = r2 = 0.

4.1.1 The e = r2 = 0 case

When e = r2 = 0 we immediately observe the real subspace x2 = y2 = 0 is flow invariant
and the usual Lorenz equations are recovered. From equivariance, any subspace Uθ on the
SO(2)-orbit of the real subspace is invariant as well, for example the imaginary subspace
x1 = y1 = 0. The Uθ’s are parameterized by the angle of SO(2) rotations with the restriction
θ ∈ [0, π). We demonstrate the situation for the standard Lorenz equations parameters in
Figure 8. A continuum of identical, disjoint “Lorenz mask” attractors exists.

Yet, we cannot choose all initial conditions in one of the flow invariant subspaces Uθ.
Indeed, if we use the real subspace as reference we can choose coordinates (x1, y1, z, θ) for
the subspace U of R5 foliated by the Uθ’s, which makes it clear that this is a 4-dimensional
subspace. Points that do not lie on U can be thought of as “mis-rotated”: we start with a
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(a) (b)

Figure 9: A trajectory of the Complex Lorenz equations dynamics for r1 = 28, b =
8/3, σ = 10, a = 1 and e = r2 = 0 with initial conditions on the complement of U in
R5. (a) Projection on the complex x-plane, (b) Projection on the complex y-plane. The
trajectory approaches some Uθ.

point on the real subspace and rotate by an angle θ on the (x1, x2)-plane and by an angle
φ 6= θ on the (y1, y2) plane. One then would like to know where the asymptotic dynamics for
those initial conditions not in U end up. Since the only equilibria of the equations are the
origin and the group orbit of equilibrium E1, we get the hint that the asymptotic dynamics
has to be governed by the stable and unstable manifolds of the same equilibria that govern
dynamics in U . To see whether this is true we examine the inner product of the vector field
at any point a = (x1, x2, y1, y2, z) with the direction of rotations of the system

(a.a).v(a) = (r1 − σ − z) (x1y2 − x2y1) − r2 (x1y1 + x2y2) − e
(

y2
1 + y2

2

)

(55)

where we have used a, the Lie algebra generator of SO(2) and v(a), the vector field in (51).
We observe that for e = r2 = 0 only x1y2−x2y1 and z appear. By taking the time derivative
of x1y2 − x2y1 and using (51) we can show that

d

dt
(x1y2 − x2y1) = −(σ + 1) (x1y2 − x2y1) (56)

and, since z is bounded, the inner product in (55) goes to zero as t → ∞1. Thus,
asymptotically the vector field along any trajectory becomes orthogonal to the direction
of infinitesimal rotations and the dynamics approach one of the Uθ’s. This is demonstrated
in Figure 9.

4.1.2 The e 6= 0, r2 = 0 case

In this section we turn to the “laser case” e 6= 0, r2 = 0. We work with parameters
r1 = 28, b = 8/3, σ = 10, a = 1 that correspond to the standard Lorenz values and with
detuning set to e = 1/10. Figure 10 illustrates the need to project dynamics on orbit space:
Dynamics is organized by the interplay of the stable and unstable manifolds of equilibrium
E0 and relative equilibrium Q1 but the dynamics along the direction of rotation blur the
picture and the notion of recurrence becomes relative. We will present various approaches
to orbit space reduction in the following sections.

1We cannot have σ ≤ −1.

27



x1 x2

z

E0

Q1

01

Figure 10: Phase space portrait of Complex Lorenz equations dynamics for r1 = 28, b =
8/3, σ = 10, a = 1 e = 1/10, r2 = 0. Plotted are relative equilibrium Q1 (red), its unstable
manifold (brown), equilibrium E0, a representative of its unstable manifold (green), 3
repetitions of relative periodic orbit “01”(magenta) and a generic orbit (blue).

To find the location of the relative equilibrium it is convenient to work on polar coordinates
defined by x = ρ1e

iφ1 , y = ρ2e
iφ2 . Equations (50) with r2 = 0 take the form

ρ̇1 = −σρ1 + σρ2 cos Φ ,

ρ̇2 = −ρ2 + ρ1(r1 − z) cos Φ ,

ż = −bz + ρ1ρ2 cos Φ ,

Φ̇ = −e −
σρ2 sin Φ

ρ1
−

ρ1(r1 − z) sin Φ

ρ2
,

(57)

where Φ = φ1 − φ2 and the evolution equations for φ1, φ2 are given by

φ̇1 = −
σρ2 sinΦ

ρ1
,

φ̇2 = e +
ρ1(r1 − z) sin Φ

ρ2
.

(58)

The condition for a relative equilibrium is that all time derivatives in (57) vanish from
which we get

z(1) =
−e2 + (r1 − 1)(σ + 1)2

(σ + 1)2
,

ρ
(1)
2 =

√

b (e2 + (σ + 1)2) z(1) ,

ρ
(1)
1 =

√

bz(1) ,

Φ(1) = − cos−1

(

σ + 1
√

e2 + (σ + 1)2

)

(59)

Substituting in (58) we get φ̇1 = φ̇2 = eσ/(1 + σ) 6= 0 for e 6= 0 and thus we have indeed a
relative equilibrium, not a group orbit of equilibria.
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Calculation in polar coordinates ρ1, ρ2,Φ, z of stability eigenvalues for Q1 for the set of
parameters we use here yields

µ1,2 ± ω1,2 = 0.0938 ± 10.1945i, λ3 = −11.0009, λ4 = −13.8534 . (60)

4.1.2.1 Invariant Polynomials

(a) u3

u4

z

Q1

(b)

u1

u2

z

Q1

Figure 11: Phase space portraits of Complex Lorenz equations dynamics for r1 = 28, b =
8/3, σ = 10, a = 1, e = 1/10, r2 = 0 in orbit space. Projecting on invariant polynomials
(28).

The first approach we try is by use of invariant polynomials (28), following Gilmore and
Letellier [39] who compute invariant polynomials for the same action of SO(2) and use them
for symmetry reduction of a system conjugate to Complex Lorenz equationss with e = −r2.
For visualization purposes, rather than rewritting the dynamics, we merelly map the orbits
from original coordinates to ui’s, Figure 11. In most projections the folding mechanism is
hidden since the dynamics is squeezed near the z-axis.

Nevertheless we can now easily identify a suitable Poincaré section, guided by the Lorenz
equations example Chapter 3, as one that contains the z-axis and the relative equilibrium,
here defined by the condition u1 = u4. Repeating the procedure followed in Sect. 3.6
we construct the first return map using as coordinate the Euclidean length along the
intersection of the unstable manifold of Q1 with the Poincaré surface of section, measured
from Q1, see Figure 12.

4.1.2.2 Moving frame

As the next choice we explore the invariants generated by the moving frame method. The
action (18) of SO(2) on R5, is regular on R5\{x1 = x2 = y1 = y2 = 0}. Thus we can define
a slice by, for instance x1 = 0, x2 > 0. We can now construct a moving frame for the action
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Figure 12: Return map to the Poincaré surface of section u1 = u4 for Complex Lorenz
equations with r1 = 28, b = 8/3, σ = 10, a = 1, e = 1/10, r2 = 0, projecting on invariant
polynomials (28). The return map coordinate is the Euclidean length along the Poincaré
section of the unstable manifold of E1.

(18) of SO(2) as follows. We write out explicitly the group transformations:

x1 = x1 cos θ − x2 sin θ , (61a)

x2 = x1 sin θ + x2 cos θ , (61b)

y1 = y1 cos θ − y2 sin θ , (61c)

y2 = y1 sin θ + y2 cos θ , (61d)

z = z . (61e)

Then set x1 = 0 and solve (61a) for the group parameter to obtain the moving frame

θ = tan−1 x1

x2
(62)

which brings any point back to the slice.2 Substituting (62) in the remaining equations we
get the invariants

x2 =
√

x2
1 + x2

2 ,

y1 =
x2y1 − x1y2
√

x2
1 + x2

2

,

y2 =
x1y1 + x2y2
√

x2
1 + x2

2

.

(63)

Note the relation to the invariant polynomials (28) and also that no syzygy is present.
On the other hand observe that the denominator is singular on the subspace US defined

by x1 = x2 = 0 even though the group action is non-regular only in a subset of US , the z-axis
x1 = x2 = y1 = y2 = 0. The transformations (63) can thus be characterized as non-optimal,
in the sense that we have singularity in a proper superset of Fix (SO(2)). The reason the
transformations fail on US and not only on the z-axis can be traced back to the way we

2Implementation note: Here it is important that tan−1 distinguishes quadrants on the (x1, x2) so the
transformation results to the correct geometric interpretation.
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Figure 13: Phase space portraits of Complex Lorenz equations dynamics for r1 = 28, b =
8/3, σ = 10, a = 1, e = 1/10, r2 = 0 in orbit space. Projecting on invariants given in (63).

construct them. The action of the group can be thought of as a direct sum of irreducible
actions and the corresponding invariant (irreducible) subspaces are the (x1, x2) and (y1, y2)
planes. The fact the group acts on each irreducible subspace (that is, it leaves it invariant
as a set) implies that we could define a moving frame in any one of them independently and
the singular subspace would only depend on the points on which the action is not regular on
this irreducible subspace. By choosing an angle in the (x1, x2) irreducible subspace as the
moving frame map, the singular set is the point x1 = x2 = 0 in this irreducible subspace,
since the group action is not regular, or alternatively, a polar angle is not defined at that
point. Going back to the full 5-dimensional space the singular set of the transformations is
still given by x1 = x2 = 0.

The projections in Figure 13 reveal more about the topology of the attractor but also
present large “jumps.” Note that the invariants (63) are related to the invariant polynomials
(28) by division by

√

x2
1 + x2

2 (except the one that is not present.) This is the reason we get
more clear dynamics: All invariants have the same “dimensions” as the original coordinates.
At the same time division by

√

x2
1 + x2

2 causes the jumps in the y components whenever
the magnitude of x comes close to zero. The fact that we do not go through x = 0 is
coincidental and specific to the problem at hand.

The problem is mostly aesthetical in the present case, but for Kuramoto-Sivashinsky
system it will be important to prevent the denominator from vanishing. We observe that
generic dynamics cannot enter Fix (SO(2)), i.e. the z-axis, since fixed-point subspaces are
flow invariant. Since SO(2) representation in the Complex Lorenz equations example
is a direct sum of irreducible representations we cannot take more than one irreducible
subspace into account when setting up the normalization equations, at least not in a
convenient way. We can however restore democracy between modes and extend validity
of the transformations to any point where the group acts freely, by modifying the invariants
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as follows:

x2 = (x2
1 + x2

2)/r ,

y1 = −(x2y1 − x1y2)/r ,

y2 = (x1y1 + x2y2)/r ,

z = z ,

r =
√

x2
1 + x2

2 + y2
1 + y2

2 .

(64)

This set of invariants lacks a geometric interpretation but results in much cleaner phase
portraits, cf. Figure 14.
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Figure 14: Phase space portraits of Complex Lorenz equations dynamics for r1 = 28, b =
8/3, σ = 10, a = 1, e = 1/10, r2 = 0 in orbit space. Projecting on invariants given in (64).
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Figure 15: Return map to the Poincaré surface of section x2 = y2 for Complex Lorenz
equations with r1 = 28, b = 8/3, σ = 10, a = 1, e = 1/10, r2 = 0, projecting on invariants
given in (64). The return map coordinate is the Euclidean length along the Poincaré section
of the unstable manifold of E1.
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4.1.2.3 A geometric approach

Even though the computation of invariants with the method of the moving frames is efficient,
it is still computationaly prohibitive for very high dimensional flows. We will demonstrate in
the example of Complex Lorenz equations how one can use the geometric interpretation of
the moving coframe method along with the restriction of the dynamics to a Poincaré section
to simply and effectively perform continuous symmetry reduction in high-dimensional flows.

We have noted that SO(2) acts regularly and freely on X∗ = R5\{x1 = x2 = y1 =
y2 = 0} and thus we are guaranteed to find the fundamental invariants by the method
of moving frames if we restrict attention to X∗. Nevertheless the transformations (63)
obtained by the moving frame method are singular in the subspace x1 = x2 = 0. Therefore
we would like to ensure that we apply our reduction procedure only on points away from
this subspace. A way to achieve this is by a judicious choice of Poincaré section in original
space, i.e. before reduction. Since we are ultimatelly interested in reducing the dynamics to
a Poincaré return map this is enough for our purposes. Of course locating a Poincaré section
is a non-trivial task but as we will see in the following, for the procedure to work we will
have to reduce the candidate Poincaré sections to those that are invariant (as a set) under
the group action. Furthermore we already have gained the insight from the simpler Lorenz
equations problem that a good choice of section is one that passes through the equilibria
that organize the flow. Here we are naturally led to choose a section that passes through the
relative equilibrium Q1 such as the section P defined by x2 − y2 = 0 in the variables of (63)
or by x2

1 + x2
2 − (x1y1 + x2y2) = 0 in original space and a suitable orientation condition so

that trajectories intersect the section away from x1 = x2 = 0 subspace. Here the orientation
condition has be chosen so that trajectories intersect P moving from the “outside” of the
section in Figure 16 to the “inside”. Since P has been defined by a condition in invariant
variables (63) it turns out to be SO(2)-invariant in the full space. Therefore the group orbit
of any point on P lies on P. In Figure 16 the group orbits of the points of intersection of
relative periodic orbit “01” have been visualized as circles on P.

The next step is to choose a representative out of each group orbit by means of a section
K that intersects each group orbit exactly once. The existense of a section is guaranteed since
a slice as in Proposition 2.29 exists, this was the whole point of restricting the problem to a
Poincaré section on which the group acts freely. Here we choose x1 = 0 for K. Geometrically
this is equivalent to rotating each point of intersection on K by an appropriate angle so that it
lies on K, exactly as prescribed by the moving frame (62). This rotation, a linear operation
for any given point, can be applied efficiently even in high dimensional space when the
rotation group representation is a direct sum of irreducible representations, as is frequently
the case with truncations of PDEs. Of course, the transformation is still non-linear through
the dependence on the angle and equivalent to the explicit transformations (63).

Implementing symmetry reduction in any of the above ways, the reward is the same: The
dynamics are reduced to a return map to the Poincaré section, which due to the very strong
contraction is approximately 1-dimensional. The dynamics on the Poincaré section are
parametrized by the Euclidean distance of points along the unstable manifold, as we did for
the Lorenz example. The return map is unimodal and allows for systematic determination
of all cycles of a given length. Here we were able to determine all cycles up to length 7,
using the return map of Figure 15 to generate guesses, and the multiple-shooting algorithm
of Sect. 6.3.1 to refine them to machine accuracy.
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Figure 16: Use of Poincaré surface of section P and slice K for symmetry reduction of
Complex Lorenz equations dynamics with r1 = 28, b = 8/3, σ = 10, a = 1, e = 1/10,
r2 = 0. Group orbits of the points of intersection of relative periodic orbit “01” have been
visualized as circles.

4.1.3 Stability of relative equilibria

In the moving frame method the reduced phase space is identified (at least locally) with the
slice K. This provides a means of calculating stability of relative equilibriain reduced phase
space. Assume that, as was the case for Complex Lorenz equations, the slice is orthogonal
to the group action for any x on K. We observe that for the point xo on relative equilibrium
Q1 that lies on the slice K we can decompose v(x) in (6) in a part vq parallel to the group
action and a part v⊥ on the slice

v(xo) = vq(xo) + v⊥(xo) . (65)

To compute stability eigenvalues of relative equilibrium we only need to consider the
linearization of v⊥ which is identified with v in reduced space. It is convenient to introduce
the operator

P⊥ = 1 −
(a.x) ⊗ (a.x)

(a.x)2
(66)

that projects a vector to the slice. Then for the stability matrix Mij we have

Mij ≡
∂

∂xj
(P⊥.v)i

=
∂

∂xj
(P⊥

invn)

= P⊥
in

∂vn

∂xj
+

∂P⊥
in

∂xj
vn (67)
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Now

P⊥
in = δin −

(a.x)i(a.x)n
(a.x)2

= δin −
aiq.xqanℓ.xℓ

(a.x)2
(68)

and

∂P⊥
in

∂xj
= −

∂

∂xj

(

aiq.xqanℓ.xℓ

(a.x)2

)

= −

(

aiqδjqanℓxℓ

(a.x)2
+

aiqxqanℓδjℓ

(a.x)2
−

aiqxqanℓxℓ

(a.x)4
∂

∂xj
(a.x)2

)

= −

(

aijanℓxℓ

(a.x)2
+

aiqxqanj

(a.x)2
− 2

aiqxqanℓxℓ

(a.x)4
amjampxp

)

= −
1

(a.x)2

(

anℓxℓ

(

aij −
aiqxq

(a.x)2
amjampxp

)

+ aiqxq

(

anj −
anℓxℓ

(a.x)2
amjampxp

))

= −
1

(a.x)2

(

anℓxℓ

(

δim −
aiqxq

(a.x)2
ampxp

)

amj + aiqxq

(

δnm −
anℓxℓ

(a.x)2
ampxp

)

amj

)

= −
1

(a.x)2

(

anℓxℓP
⊥
imamj + aiqxqP

⊥
nmamj

)

(69)

Therefore (67) takes the form

Mij = P⊥
in

∂vn

∂xj
−

1

(a.x)2

(

anℓxℓP
⊥
imamj + aiqxqP

⊥
nmamj

)

vn (70)

or in matrix form

M = P⊥A−
1

(a.x)2

(

[v. (a.x)]
(

P⊥
a

)

+ (a.x) ⊗
[

v.
(

P⊥
a

)])

(71)

where Aij = ∂vi
∂xj

. This expression allows to calculate stability of relative equilibria working

in the equivariant variables, without explicit knowledge of the form the differential assumes
in reduced space. Applying (71) for relative equilibrium Q1 of Complex Lorenz equations
we obtain the same eigenvalues (60) we computed in polar coordinates along with a zero
eigenvalue due to the fact that we still work in the equivariant variables.

4.1.4 Integration on the slice

If we replace our differential equations (6) with the system

dx

dt
= P⊥v(x) , (72)

solutions will stay on the slice K for any initial condition on K as there is no component of
P⊥v(x) in the direction of the continuous symmetry.

For Complex Lorenz equations a trajectory of (72) on the unstable manifold of Q1 is
shown in Figure 17. Our claim that the trajectory will stay on the slice is not verified by
this figure, even though this could be attributed to numerical issues.
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Figure 17: Attempt to restrict Complex Lorenz equations dynamics on the slice K through
(72). (a) A trajectory initiated on the unstable manifold of Q1, (b) relative periodic orbit
“0011” (r1 = 28, b = 8/3, σ = 10, a = 1, e = 1/10, r2 = 0).

In figure Figure 18 we evaluate the accuracy of integration of (72) by integrating initial
conditions for several relative periodic orbits both in phase space and on the section and
compute the distance |x(t)−x⊥(t)| in invariant variables (64) (the norm is Euclidean). The
distance does not grow exponentially indicating that numerical solution of (72) is accurate.
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Figure 18: Distance of x⊥(t) to x(t) in invariant variables(64) for selected relative periodic
orbits of Complex Lorenz equations (r1 = 28, b = 8/3, σ = 10, a = 1, e = 1/10, r2 = 0).

37



CHAPTER V

KURAMOTO-SIVASHINSKY SYSTEM

5.1 Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky [henceforth KS] system was derived by Kuramoto and Tsuzuki [57]
as a phase equation for reaction-diffusion systems described by Complex Ginzburg-Landau
equation and independently by Sivashinsky [77] to describe instabilities in laminar flame
fronts. It also appears in a variety of contexts including thin falling films and interfacial
instabilities between concurrent viscous fluids [4; 61]. Our motivation for its study is that it
is one of the simplest nonlinear PDEs that exhibit features reminiscent of fluid turbulence
and thus it is a convenient system to test new ideas.

In the formulation adopted here, the time evolution of the ‘flame front velocity’ u =
u(x, t) is given by

ut = F (u) = −1
2(u2)x − uxx − uxxxx , x ∈ [−L/2, L/2] , (73)

with appropriate boundary conditions, as discussed in Sect. 5.1.1. Here t ≥ 0 is the time,
and x is the spatial coordinate. The subscripts x and t denote partial derivatives with
respect to x and t.

5.1.1 Boundary conditions and system size

Ideally we would like to work in a system of infinite spatial extend, i.e. in the limit L → ∞.
Although solutions of KS equations in this limit have appeared, cf. for example refs. [48;
30], it is more convenient, both computationally and theoretically, to work with periodic
boundary conditions

u(x, t) = u(x + L, t) , (74)

and this is the usual choice in the literature and the one followed in this thesis. Justification
of this choice will be given in Sect. 5.1.2, in conjunction with the discussion of the symmetries
of the system.

Another common choice of boundary conditions is

u(0, t) = u(L, t) = 0 , (75)

which restricts the system to the subspace of odd functions. This choice will also be
discussed in Sect. 5.1.2.

In what follows we shall state results of all calculations either in units of the system size
L or the ‘dimensionless system size’ L̃ = L/2π. All numerical results presented in this thesis
are for L̃ = 22/2π = 3.5014 . . ., unless otherwise noted. The system size leads to a system
that is just “turbulent” enough to have interesting dynamics, cf. Sect. 7.1, while being still
rather tractable and can be used as a test bed for continuous symmetry reduction and a
dynamical systems approach, see also Sect. 5.1.3.
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5.1.2 Symmetries of Kuramoto-Sivashinsky system

In an unbounded domain, x ∈ (−∞,∞), KS equation is equivariant under the action of the
non-compact Euclidean group E(1): If u(x, t) is a solution, then τ(ℓ)u(x, t) = u(x + ℓ, t)
is an equivalent solution for any shift ℓ ∈ R, as is the reflection (‘parity’ or ‘inversion’) κ
defined by

κu(x) = −u(−x) . (76)

Imposing periodic boundary conditions we restrict attention to the subspace [−L,L] in
which only the compact subgroup O(2) of E(1) acts by:

τℓ/L u(x, t) = u(x + ℓ, t) , ℓ ∈ [−L/2, L/2] (77)

and reflections (76). Here we use subscript notation for shifts to differentiate with the
case of E(1). Moreover, we only consider perturbations within this subspace, i.e. we do
not consider subharmonic perturbations. The system size L affects the representation of
O(2), cf. Sect. 5.1.4. Reflection generates the dihedral subgroup D1 = {1, κ} of O(2).
Boundary conditions (75) restrict the system to Fix (D1) and thus in that case symmetry
D1 is impossed to all solutions. To avoid technical difficulties associated with the action
of O(2) on an infinite dimensional space we will discuss the isotropy subgroups of O(2) in
Sect. 5.1.6, after we truncate (79) to finite order.

The KS equation is also Galilean invariant: if u(x, t) is a solution, then u(x − ct, t) − c,
with c an arbitrary constant speed, is also a solution. As one can verify by integrating (73)

with respect to x over the periodic domain [−L/2, L/2] the quantity
∫ L/2
−L/2 u dx is conserved

and we can, without loss of generality, set it equal to zero. This corresponds to the choice
c = 0, therefore eliminating Galilean invariance.

5.1.3 Why L = 22 on periodic domain?

For Kuramoto-Sivashinsky system with periodic boundary conditions one expects to find
traveling wave (relative equilibrium) and modulated amplitude traveling wave (relative
periodic orbit) solutions, exactly the kind of solutions that we set out to understand
and organize. Indeed, a very detailed bifurcation study of such solutions for Kuramoto-
Sivashinsky equation has been carried out by Brown and Kevrekidis [7], see discussion
in Sect. 5.1.8. In our work the emphasis is on working with a specific system size, with
specific boundary conditions, and determining and labeling all unstable periodic and relative
periodic solutions (up to a given topological length). A bifurcation analysis is not practical
for such a task as global bifurcations that lead to creation and disappearance of (relative)
periodic orbits are hard to track. Therefore one needs to understand the geometry of phase
space in order to detect and organize the compact solutions systematically.

The Kuramoto-Sivashinsky system of size L = 22 appears amenable to such a geometric
study, yet it provides new challenges. As we will see in Chapter 7, many of the invariant
objects (equilibria, relative equilibria, periodic orbits, relative periodic orbits) have more
than one unstable eigendirections, a situation that has not been dealt with in previous
Kuramoto-Sivashinsky equation studies in terms of periodic orbits [14; 58; 60], and which
very often occurs in the studies of plane Couette flow [38; 45; 46; 44]. Nevertheless,
the system is not large enough to exhibit many unstable, essentially non-separated (quasi-
continuous) eigenvalues. Systems with quasi-continuous spectra are known as spatio-temporally
chaotic in the sense that they are disordered both in space and in time [64] and a dynamical
description of such systems presents many more challenges than we would like to be faced
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with while we try for the first time to understand the organization of a flow in terms
of (modulated) traveling wave solutions. The L = 22 system remains within reach of a
dynamical description, see Chapters 7 and 8, while offering valuable insight on how to deal
with other, larger, more turbulent or realistic systems.

5.1.4 Fourier space

O(2) equivariance makes it convenient to work in Fourier space,

u(x, t) =

+∞
∑

k=−∞

ak(t)e
ikx/L̃ , (78)

with the 1-dimensional PDE (73) replaced by an infinite set of ODEs for the complex Fourier
coefficients ak(t):

ȧk = vk(a) = (q2
k − q4

k) ak − i
qk

2

+∞
∑

m=−∞

amak−m , (79)

where qk = k/L̃. Since u(x, t) is real,

ak = a∗−k , (80)

and we can replace the sum by a k > 0 sum. Note that ȧ0 = 0 in (79) as a result of Galilean

invariance and a0 is a conserved quantity fixed to a0 = 0 by the condition
∫ L/2
−L/2 u dx=0. In

the Fourier basis O(2) acts absolutely irreducibly on each complex plane (Re (ak), Im (ak))
and the linear part of (79) is conveniently diagonalized. Indeed, the translation operator
action on the Fourier coefficients (78), represented here by a complex valued vector a =
{ak ∈ C | k = 1, 2, . . .}, is given by

τℓ/L a = g(ℓ) a , (81)

where g(ℓ) = diag(eiqk ℓ) is a complex valued diagonal matrix, which amounts to the k-
th mode complex plane rotation by an angle k ℓ/L̃. The reflection acts on the Fourier
coefficients by complex conjugation and a change of sign,

κa = −a∗ . (82)

5.1.5 Truncation

Dynamical phase space representation of a PDE is ∞-dimensional, but the KS flow is
strongly contracting and its non-wondering set, and, within it, the set of invariant solutions
investigated here, is embedded into a finite-dimensional inertial manifold [31] in a non-
trivial, nonlinear way. The existence of an inertial manifold for Kuramoto-Sivashinsky
equationwith both odd and periodic boundary conditions has been proved and several
bounds for its dimension have been found, cf. ref. [50] and references therein. The best
current bound in dimension of inertial manifold for KS equation with periodic boundary
condition is, to the author’s knowledge, given in refs. [73; 50]: O(L2.46) for L ∈ [2π, 6π].

The fact that the asymptotic dynamics lies on a finite dimensional manifold justifies
truncation of the infinite tower of equations (79) to finite order N . According to the bound
O(L2.46) ≃ 2000 for L = 22 and we would expect to need even more Fourier modes, since the
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Fourier basis is not directly connected to coordinates on the inertial manifold of KSe and
would therefore be less optimal than an approach that approximates such coordinates, for
example [52; 51]. Nevertheless such a bound seems rather inflated compared to numerical
simulations of the asymptotic dynamics that typically require O(10)−O(100) Fourier modes.
In practice we keep 16 ≤ N ≤ 128 Fourier modes in numerical simulations and check the
robustness of the results against increase of N .

5.1.6 Isotropy lattice and invariant subspaces

Let N be the number of Fourier modes retained in (79) and observe that the action of O(2)
on RN by (81) and (82) is, up to the minus sign in (82), identical to the action (21) of
O(2) on CN studied in Sect. 2.1.1. The isotropy lattice remains unchanged but fixed-point
subspaces of the dihedral subgroups are affected. Fixed-point subspaces of Cq, given by the
condition

ak = 0 unless k = qj , j = 1, . . . ⌊n/q⌋ , (83)

remain unchanged but the fixed-point subspaces of the dihedral subgroups Fix (Dm) are
now given by the conditions

ak = 0 unless k = mj , j = 1, . . . ⌊n/m⌋ , (84)

Re (ak) = 0 for k = 1, . . . ,n . (85)

In relation to physical space we observe that Fix (D1) is the subspace of antisymmetric
functions Re(zk) = 0, ∀k or u(−x) = −u(x) while for the action (21) the corresponding
subspace would be that of symmetric functions.

5.1.7 Equilibria and their bifurcations

Equilibria (or the steady solutions) are the fixed profile time-invariant solutions,

u(x, t) = uq(x) . (86)

Due to the translational symmetry, the KS system also allows for relative equilibria (traveling
waves, rotating waves), characterized by a fixed profile uq(x) moving with constant speed
c, i.e.

u(x, t) = uq(x − ct) . (87)

Here suffix q labels a particular invariant solution. Because of the reflection symmetry (76),
the relative equilibria come in counter-traveling pairs uq(x − ct), −uq(−x + ct).

The relative equilibrium condition for the Kuramoto-Sivashinsky PDE (73) is the ODE

1
2(u2)x + uxx + uxxxx = c ux (88)

which can be analyzed as a dynamical system in its own right. Integrating once we get

1
2u2 − cu + ux + uxxx = E . (89)

This equation can be interpreted as a 3-dimensional dynamical system with spatial coordinate
x playing the role of ‘time,’ and the integration constant E can be interpreted as ‘energy,’
see Sect. 5.2 and Figure 19.
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Figure 19: The energy (102) of the equilibria and relative equilibria that exist up to
L = 22, L̃ = 3.5014 . . ., plotted as a function of the system size L̃ = L/2π (additional
equilibria, not present at L = 22 are given in ref. [42]). Solid curves denote n-cell solutions
E2 and E3, dotted curves the GLMRT equilibrium E1, and dashed curves the relative
equilibria TW±1 and TW±2. The parameter α of refs. [55; 42] is related to the system size
by L̃ =

√

α/4.

In the Fourier representation the relative equilibria time dependence is

ak(t)e
−itcqk = ak(0) . (90)

Differentiating with respect to time, we obtain the Fourier space version of the relative
equilibrium condition (88),

vk(a) − iqkcak = 0 , (91)

which we solve for (time independent) ak and c, see Chapter 7.
In a periodic box of size L both equilibria and relative equilibria are periodic solutions

embedded in 3-d space, conveniently represented as loops in (u, ux, uxx) space, see Figure 21 (d).
In this representation the continuous translation symmetry is automatic – a rotation in the
[0, L] periodic domain only moves the points along the loop. For an equilibrium the points
are stationary in time; for relative equilibrium they move in time, but in either case, the
loop remains invariant. Unfortunately this visualization has not helped our understanding
of Kuramoto-Sivashinsky equation state space.

The equilibria and relative equilibria of KS equation and their bifurcations have been
the object of extensive study and a literature survey cannot be exhaustive. The results of
relevance for this thesis can be found in refs. [68; 72; 42; 55; 2]. Although these results were
obtained by direct bifurcation analysis rather than with methods of equivariant bifurcation
theory, the relation of bifurcations to O(2) symmetry has been recognized in the literature
particularly in refs. [55; 2]. The relation of the bifurcations found numerically (and in
some cases analytically) in ref. [55] to the predictions of equivariant bifurcation theory is
discussed in Krupa [56] but without explicit calculations. In this section we describe some
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of the elementary and well known bifurcations in KS equation from the point of view of
equivariant bifurcation theory.

Since the origin (u(x,t)=0 in physical space) is the fixed-point subspace of O(2) it is, by
Proposition 2.11, flow invariant and thus an equilibrium. From commutation relation (15)
we conclude that the linear stability matrix (see Sect. 6.2) A(0) and the representation
of the symmetry group O(2) share a complete set of eigenvectors, the Fourier modes.
Moreover, since O(2) acts absolutely irreducibly on each Fourier plane A(0) is diagonal

(in real Fourier basis) with eigenvalues λ
(k)
0 = (q2

k − q4
k), from (79). For L < 2π the origin

is linearly stable and due to the hyperviscous damping uxxxx it is the global attractor [55].
At L = 2π the origin loses stability and due to the diagonal form of A(0) the kernel of
the linearization is immediately seen to be the k = 1 irreducible subspace. Taking into
account the orthogonality of the Fourier basis, the Lyapunov-Schmidt reduction [40] is
automatic and we can work in the k = 1 subspace (cf. “Restriction Lemma” in ref. [55]
for technical details). In this subspace all requirements of Equivariant Branching Lemma
[40] are satisfied: O(2) acts absolutely irreducibly, v1(a) is equivariant (Lyapunov-Schmidt

reduction respects symmetry), the eigenvalue crossing condition holds d
dLλ

(1)
0 (2π) 6= 0, and

finally D1 is an axial subgroup since Fix (D1) is the imaginary axis in the complex a1 plane.
Therefore there is a unique solution branch of equilibria in Fix (D1), i.e. with symmetry D1.
This is known as the unimodal branch in the literature. The stability of the bifurcating
equilibrium can not be determined from symmetry arguments and one has to take into
account the evolution equations (79). The unimodal equilibrium is stable at bifurcation [55].
Under the action of τ we get a continuous family of equilibria for any equilibrium in D1.

The bifurcation scenario repeats itself each time L = 2πk: The k’th mode eigenvector of
the origin looses stability and an equilibrium with symmetry Dk is born, giving rise to the k-
modal branch. The Lyapunov-Schmidt reduction and application of Equivariant branching
lemma carries through in exactly the same way. In ref. [55] the observation is made that one
can get the k-modal branch from the unimodal through the substitution u(x) 7→ u(kx) and
therefore the k-modal branches are called k-fold replications of the unimodal branch, cf.
also ref. [56]. Note that the k-modal branch with k > 1 “inherits” the unstable directions of
the origin and thus are born unstable at the bifurcation. In ref. [42] states in the k-modal
branch are called k-cell states. Condition (85) implies that in these states only the Fourier
modes aj where j is a multiple of k are non zero. Each k-modal branch merges with the
2k-modal branch, see Figure 19 and refs. [55; 42]. Note that, according to Example 2.18,
Fix (D1) ⊃ Fix (Dk) for all k, so all unimodal equilibria are antisymmetric.

The replication observed in primary bifurcations is not carried to the secondary bifurcations
that are much richer. From here on we only consider bifurcations that play a role in the
dynamics for our system size, L = 22, see Figure 19. The E2 and E3 indicated in that
diagram belong in the bimodal and trimodal branches, respectively.

The 1-cell state loses stability and bifurcates to a branch of stable relative equilibria,
which later on becomes unstable through a Hopf bifurcation [55; 42]. This is the branch
indicated as TW±1 in Figure 19. Since relative equilibria are not in Fix (D1) and they are
invariant, as a set, under translations (81), they have to come in copies under the action of
D1. The sign in TW±1 indicates direction of rotation, see (87).

At point C in Figure 19 the 2-cell state bifurcates to a type of equilibrium solution
found by La Quey, Mahajan, Rutherford and Tang [72] and generalized by Greene and Kim
who refer to them as GLMRT equilibria. In ref. [55] this branch of solutions is refered to
as bi-tri branch as it is later on terminated at the trimodal branch. Bi-tri equilibria live in
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Fix (D1) and have components in all Fourier modes. At the point where the bi-tri branch
meets the trimodal branch a new branch is born that is still in Fix (D1). This is seen as a
continuation of the bi-tri branch in ref. [55]. The equilibrium labeled E1 in Figure 19 is in
this branch.

Finally the relative equilibrium that is labeled TW±2 belongs to a branch bifurcating
from the bi-tri branch in a Hopf bifurcation. Once again the relative equilibria come in D1

related, counter-traveling pairs.

5.1.8 Relative periodic orbits and periodic orbits

As a result of invariance under τℓ/L, KS equation can have relative periodic orbit solutions
with a profile up(x), period Tp, and a nonzero shift ℓp

τℓp/Lu(x, Tp) = u(x + ℓp, Tp) = u(x, 0) = up(x) . (92)

Relative periodic orbits (92) are periodic in vp = ℓp/Tp co-rotating frame (see Figure 34), but
in the stationary frame their trajectories are quasiperiodic. Due to the reflection symmetry
(76) of KS equation, every relative periodic orbit up(x) with shift ℓp has a symmetric partner
−up(−x) with shift −ℓp. In Fourier space we have:

g(ℓp)f
Tp(ap) − ap = 0 , (93)

with g as in (81).
KS equation can also have periodic solutions characterized by a profile up(x), and period

Tp. In terms of symmetry it is easier to think of them in (truncated) Fourier space. For
any discrete1 subgroup in the isotropy lattice we can have periodic solutions with spatial
symmetry Dk or Ck. For all γ in Dk or Ck.

γap(t) = ap(t) , ∀t ∈ [0, Tp] . (94)

Such a solution lives in Fix (Dk) of Fix (Ck). The periodic orbits found in refs. [14; 60],
for example, are all in Fix (D1), as a result of restricting the dynamics to that subspace by
the choice of antisymmetric boundary conditions. In our case, for L = 22, the dynamics
in Fix (D1) are dominated by attracting (within the subspace) heteroclinic connections and
thus we have no periodic orbits of this type, or in any other of the Fix (Dk) subspaces, see
Chapter 7. Moreover spatial symmetries have to be in the isotropy lattice, see Chapter 3
of ref. [40] so there are no more possibilities for orbits with just spatial symmetry.

The second type of periodic orbits would have spatio-temporal symmetry with spatial
part a discrete subgroup in the isotropy lattice Σap(t) = Dk or Ck and trivial spatial
symmetry. Yet, due to algebraic restrictions on possible spatio-temporal symmetries, see
Chapter 3 of ref. [40], the spatial part has to be cyclic and thus we are left with D1 and
Ck as our possibilities. For our system size, L = 22, we have found no periodic orbits with
isotropy subgroup Ck, see Chapter 7. We have found periodic orbits with isotropy subgroup
D1, period Tp, which satisfy

κa(t + Tp) = a(t) , (95)

where Tp = Tp/2 by the relation κ2 = e. We choose to label those periodic orbits with the
half-period Tp because this will be the period in the O(2)-reduced space, where the segment

1Recall from Example 2.18 that O(2) fixes the origin, so we cannot have periodic orbits with spatial
symmetry O(2).
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of the orbit for time [Tp,Tp] is a repeat of the prime segment for [0, Tp]. Thus we will refer to
those orbits as pre-periodic of period Tp. Periodic orbits (95) live in the principal stratum
and thus their group orbit under translations (81) is a manifold of equivalent solutions.
Returning to physical space we have

κu(x + ℓ, Tp) = −u(−x − ℓ, Tp) = u(x + ℓ, 0) = up(x) , (96)

the family of equivalent solutions parameterized by ℓ (as the choice of the reflection point
is arbitrary, the shift can take any value in −L/2 < ℓ ≤ L/2). Such pre-periodic orbits are
a hallmark of any dynamical system with a discrete symmetry, where they have a natural
interpretation as periodic orbits in the fundamental domain [22; 20].

Brown and Kevrekidis [7] study bifurcations branches of relative periodic orbits for a
wide range of system sizes L for Kuramoto-Sivashinsky equation. For our system size they
identify two relative periodic orbit branches. They are created when either a heteroclinic
cycle (see Chapter 7) or relative equilibrium becomes unstable, see also refs. [56; 1; 2]. In
ref. [7] partially hyperbolic invariant tori are also found for larger systems, see Chapter 9.

5.2 Energy transfer rates

In physical settings where the observation times are much longer than the dynamical
‘turnover’ and Lyapunov times (statistical mechanics, quantum physics, turbulence) periodic
orbit theory [20] provides highly accurate predictions of measurable long-time averages such
as the dissipation and the turbulent drag [38]. Physical predictions have to be independent
of a particular choice of ODE representation of the PDE under consideration and, most
importantly, invariant under all symmetries of the dynamics. In this section we discuss a
set of such physical observables for the 1-d KS invariant under reflections and translations.
They offer a representation of dynamics in which the symmetries are explicitly quotiented
out. We shall use these observable in Sect. 7.2 in order to visualize a set of solutions on
these coordinates. They implement symmetry reduction, but their utility, as we will see in
Sect. 7.2, has been limited.

The space average of a function a = a(x, t) = a(u(x, t)) on the interval L,

〈a〉 =
1

L

∮

dx a(x, t) , (97)

is in general time dependent. Its mean value is given by the time average

a = lim
t→∞

1

t

∫ t

0
dτ 〈a〉 = lim

t→∞

1

t

∫ t

0

1

L

∮

dτ dx a(x, τ) . (98)

The mean value of a = a(uq) ≡ aq evaluated on q equilibrium or relative equilibrium
u(x, t) = uq(x − ct) is

aq = 〈a〉q = aq . (99)

Evaluation of the infinite time average (98) on a function of a periodic orbit or relative
periodic orbit up(x, t) = up(x, t + Tp) requires only a single Tp traversal,

ap =
1

Tp

∫ Tp

0
dτ 〈a〉 . (100)

Equation (73) can be written as

ut = −Vx , V (x, t) = 1
2u2 + ux + uxxx . (101)
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If u is ‘flame-front velocity’ then E, defined in (89), can be interpreted as the mean energy
density. So, even though KS is a phenomenological small-amplitude equation, the time-
dependent quantity

E =
1

L

∮

dxV (x, t) =
1

L

∮

dx
u2

2
(102)

has a physical interpretation [42] as the average ‘energy’ density of the flame front. This
analogy to the mean kinetic energy density for the Navier-Stokes motivates what follows.

The energy (102) is intrinsic to the flow, independent of the particular ODE basis set
chosen to represent the PDE. However, as the Fourier amplitudes are eigenvectors of the
translation operator, in the Fourier space the energy is a diagonalized quadratic norm,

E =
∞
∑

k=−∞

Ek , Ek = 1
2 |ak|

2 , (103)

and explicitly invariant term by term under translations (81) and reflections (76).
Take time derivative of the energy density (102), substitute (73) and integrate by parts.

Total derivatives vanish by the spatial periodicity on the L domain:

Ė = 〈ut u〉 = −
〈(

u2/2 + uux + uuxxx

)

x
u
〉

=
〈

ux u2/2 + ux
2 + ux uxxx

〉

. (104)

The first term in (104) vanishes by integration by parts, 3
〈

ux u2
〉

=
〈

(u3)x
〉

= 0 , and
integrating the third term by parts yet again one gets [42] that the energy variation is

Ė = P − D , P =
〈

ux
2
〉

, D =
〈

uxx
2
〉

. (105)

The power P pumped in by anti-diffusion uxx is balanced by the energy dissipation rate D
due hyper-viscosity uxxxx in the KS equation (73).

The time averaged energy density E computed on a typical orbit goes to a constant, so
the expectation values (106) of drive and dissipation exactly balance each out:

Ė = lim
t→∞

1

t

∫ t

0
dτ Ė = P − D = 0 . (106)

In particular, the equilibria and relative equilibria fall onto the diagonal in Figure 32, and
so do time averages computed on periodic orbits and relative periodic orbits:

Ep =
1

Tp

∫ Tp

0
dτ E(τ) , P p =

1

Tp

∫ Tp

0
dτ P (τ) = Dp . (107)

In the Fourier basis (103) the conservation of energy on average takes form

0 =
∞
∑

k=−∞

(q2
k − q4

k)Ek , Ek(t) = 1
2 |ak(t)|

2 . (108)

The large k convergence of this series is insensitive to the system size L; Ek have to decrease
much faster than q−4

k . Deviation of Ek from this bound for small k determines the active
modes. For equilibria the L-independent bound on E is given by Michaelson [68]. The best
current bound [36; 6] on the long-time limit of E as a function of the system size L scales
as E ∝ L2.
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One can go on constructing similar quantities in order to obtain a symmetry invariant
basis for the system by considering higher moments. Yet, the procedure is tedious and the
physical significance of higher moments unclear so we will not pursue this further. We will
nevertheless use the E, P and D basis for visualization in Chapter 7 to emphasize both its
utility as a readily available symmetry invariant representation and its limitations and need
for a better basis.
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CHAPTER VI

SIMULATING THE KURAMOTO-SIVASHINSKY SYSTEM

6.1 Numerical integration

Truncating the infinite tower of equations (79) by setting ak = 0 for k > N allows one to
numerically integrate it. There are three technical issues that need some attention in order
to accurately and efficiently simulate Kuramoto-Sivashinsky: evaluation of the nonlinear
part, number of modes retained and stiffness.

6.1.1 Pseudospectral method

The linear part of Kuramoto-Sivashinsky equation is conveniently diagonal in the Fourier
basis, see (79). The nonlinear part can be evaluated directly from the finite order truncation
of (79), see Sect. 6.2 for an implementation. By using a pseudo-spectral method though,
one can take advantage of the efficiency of the Fast Fourier Transform in evaluating the
nonlinear part. For Kuramoto-Sivashinsky equation this is done by applying a discrete
Fourier transform to (73) and taking into account that the Fourier operator is linear so that
we can rewrite (79) in the following way

ȧk = (q2
k − q4

k) ak − i
qk

2
F
[

(

F−1 [a]
)2
]

k
, (109)

where F is the discrete Fourier transform,

ak = F [u]k =

N−1
∑

n=0

u(xn)e−iqkxn , u(xn) = F−1[a]n =
1

N

N−1
∑

k=0

ake
iqkxn , (110)

with xn = 2πL̃n/N and aN−k = a∗k from the reality condition (80) and thus calculation of
the discrete Fourier transform involves N − 1 real variables.

Since we have set a0 = 0 to eliminate Galilean invariance and the modes with k < 0
are redundant from (80), we can evaluate then nonlinear part in (79) in N/2 − 1 complex
variables. The operation would correspond to multiplication of a real (N − 2) × (N − 2)
matrix by a N − 2-dimensional vector, while calculating just the forward Fourier transform
would require the multiplication of a (N−1)×(N−1) matrix by a N−1-dimensional vector.
In any case the operation count is O(N2), but with the pseudo-spectral method we need two
of them. The power of the pseudo-spectral method lies in the existence of the Fast Fourier
Transform (FFT) algorithm that performs the discrete Fourier transform in O(Nlog2N)
operations therefore providing substantial performance advantage to the pseudo-spectral
method. The FFT algorithm has been rediscovered many times, apparently starting with
Gauss, see ref. [71] for references and a presentation of the algorithm. In our implementation
we have used the FFTW package ref. [33].

6.1.2 Stiffness

The second issue one has to deal with in integrating (79) is due to the linear part. The term
k4 that appears in the linear part means that the timescales on which the first and the N ’th
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mode evolve is very different even for N of the order of 10. This is termed stiffness, see
ref. [71] for a nice discussion. In practice, unless taken care of by the integration method, it
forces us to follow the evolution of the equation in the fastest time-scale in order to maintain
stability of the integration routine, thus imposing an impractically small stepsize. There
are different approaches to dealing with stiffness, see ref. [53] for a comparison of algorithms
that can be used to integrate stiff PDEs.

The algorithm that we have found very efficient and accurate in our numerical explorations
is Exponential Time Differencing with fourth order Runge-Kutta timesteping (ETDRK4)
introduced in ref. [16] and further developed in ref. [53], which we have followed in our
implementation. The essence of the method is that it treats the linear and nonlinear part
separately, applying an integrating factor to the linear part to eliminate the effect of stiffness.

As the method requires the computation of prefactors that depend on the linear part of
the equation, we found it inconvenient to implement an adaptive stepsize control. Instead,
we check the results of integration against decreasing the timestep, especially the robustness
of relative periodic and periodic orbits found in Chapter 7.

6.1.3 Truncation

Another decision one has to make is how many modes to retain in (109). One has to keep
in mind that we want accurate solutions to the original PDE, we do not just consider a
truncation to finite N on its own right. Due to the hyperviscous damping uxxxx, long time
solutions of KS equation are smooth, ak drop off fast with k, and truncations of (79) to
16 ≤ N ≤ 128 terms yield accurate solutions for system sizes considered here. Robustness
of the long-time dynamics of KS as a function of the number of Fourier modes kept in
truncations of (79) is, however, a subtle issue. Adding an extra mode to a truncation of the
system introduces a small perturbation in the space of dynamical systems. However, due
to the lack of structural stability both as a function of truncations N , and the system size
L̃, a small variation in a system parameter can (and often will) throw the dynamics into a
different asymptotic state. For example, asymptotic attractor which appears to be chaotic
in a N -dimensional phase space truncation can collapse into an attractive cycle for (N+1)-
dimensions. Therefore we always evaluate the robustness of our results by increasing the
number of modes. For instance, when we compute an unstable periodic orbit we check that
its period and stability eigenvalues remain within the desired accuracy when recomputed
in a higher-dimensional truncation.

For system size L = 22 all results presented here were computed using a 128-point spatial
discretization, corresponding to N = 64 complex Fourier modes (with a0 = 0 though). Note
that going back and forth in Fourier and physical space in (109) one has to worry about
the effect of aliasing on the results of the integration. Since our computations are relatively
cheap we circumvent this difficulty by keeping enough modes so that at least half of the
modes remain close to zero during a calculation. We also confirm our results against direct
evaluation of the truncation of (79), see Sect. 6.2.

6.2 Calculating stability of equilibria

To calculate stability of equilibrium, the matrix

A(aq) =
∂v

∂a

∣

∣

∣

∣

a=aq

(111)
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has to be evaluated, either numerically or analytically. In Kuramoto-Sivashinsky we can
obtain A(aq) efficiently for numerical purposes by using the linearity of the Fourier transform,
as we did to get (109), see ref. [21].

In what follows we derive an analytical expression for it, as one might find it useful for
the study of bifurcation problems, or, in our case, to cross-check the results of the pseudo-
spectral method. To do so, we have to split Kuramoto-Sivashinsky equation into real and
imaginary parts. Truncating the infinite tower of equations (79) by setting ak = 0 for
k > N , using the identity (80) and splitting the resulting equations into real and imaginary
part by setting ak = bk + ick, we have

ḃk = q2
k

(

1 − q2
k

)

bk

+
qk

2

(

k−1
∑

m=1

cmbk−m +

N
∑

m=k+1

cmbm−k −

N−k
∑

m=1

cmbk+m

)

+
qk

2

(

k−1
∑

m=1

bmck−m −

N
∑

m=k+1

bmcm−k +

N−k
∑

m=1

bmck+m

)

(112)

ċk = q2
k

(

1 − q2
k

)

ck

+
qk

2

(

k−1
∑

m=1

cmck−m −

N
∑

m=k+1

cmcm−k −

N−k
∑

m=1

cmck+m

)

−
qk

2

(

k−1
∑

m=1

bmbk−m +

N
∑

m=k+1

bmbm−k +

N−k
∑

m=1

bmbk+m

)

(113)

where now only terms ck, bk with 0 < k < N appear. Observe that

N−k
∑

m=1

cmbk+m =

N
∑

m=k+1

bmcm−k , (114)

etc. and thus (112) and (113) simplify to

ḃk = q2
k

(

1 − q2
k

)

bk

+
qk

2

(

k−1
∑

m=1

cmbk−m − 2
N−k
∑

m=1

cmbk+m

)

+
qk

2

(

k−1
∑

m=1

bmck−m + 2
N−k
∑

m=1

bmck+m

)

(115)

ċk = q2
k

(

1 − q2
k

)

ck

+
qk

2

(

k−1
∑

m=1

cmck−m − 2

N−k
∑

m=1

cmck+m

)

−
qk

2

(

k−1
∑

m=1

bmbk−m + 2

N−k
∑

m=1

bmbk+m

)

. (116)
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As discussed in Sect. 6.1.1 such expressions are not as efficient as using a pseudo-spectral
implementation, but we use them for comparison purposes, to detect possible issues in our
pseudo-spectral integrator due to aliasing or the FFT implementation.

To calculate the matrix Aij(a) ≡ ∂vi(x)
∂xj

we need to consider the four matrices ∂ḃk
∂bj

, ∂ḃk
∂cj

, ∂ċk
∂bj

, ∂ċk
∂cj

.

We begin with

∂ċk

∂cj
= q2

k

(

1 − q2
k

)

δkj −
qk

2

∂

∂cj

(

k−1
∑

m=1

cmck−m − 2

N−k
∑

m=1

cmck+m

)

. (117)

Conceder the second term:

−
qk

2

∂

∂cj

(

k−1
∑

m=1

cmck−m − 2

N−k
∑

m=1

cmck+m

)

= −
qk

2

k−1
∑

m=1

(δm,jck−m + cmδk−m,j)

+qk

N−k
∑

m=1

(δm,jck+m + cmδk+m,j) (118)

We need to consider two cases separately:

• k ≤ j

−
qk

2

∂

∂cj

(

k−1
∑

m=1

cmck−m − 2

N−k
∑

m=1

cmck+m

)

= −
qk

2
(0 + 0) + qk(ck+j + cj−k)

= qk(ck+j − ck−j) (119)

• k > j

−
qk

2

∂

∂cj

(

k−1
∑

m=1

cmck−m − 2

N−k
∑

m=1

cmck+m

)

= −
qk

2
(ck−j + ck−j) + qk(ck+j + 0)

= qk(ck+j − ck−j) (120)

and thus
∂ċk

∂cj
= q2

k

(

1 − q2
k

)

+ qk(ck+j − ck−j) (121)

Following the above procedure

∂ċk

∂bj
= qk(bk+j + bk−j) , (122)

∂ḃk

∂bj
= q2

k

(

1 − q2
k

)

δkj − qk(ck+j + ck−j) , (123)

∂ḃk

∂cj
= qk(bk+j − bk−j) . (124)
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6.3 Shooting for relative periodic orbits

In this section we describe how we obtain relative periodic orbits from initial guesses for
points on them. This is by no means the only or the most efficient method, but it is easy
to implement and suffices to find the Kuramoto-Sivashinsky orbits in Sect. 7.1. A different
approach that does not need auxiliary conditions is given in refs. [21; 17], and yet another
one that is designed to be compatible with the continuation package AUTO, is given in
ref. [7]. For an introduction to methods for locating periodic orbits a good place to start
is ref. [20]. The formulation of the auxiliary conditions for the multiple-shooting method
presented here draws from ref. [80]. Here we will present the one-parameter Lie group case.
The generalization to multi-parameter groups and other systems is straightforward.

6.3.1 Multipoint shooting for relative periodic orbits

Assume that we have an initial guess for a relative periodic orbit of period Tp and phase
shift φp. Let the guess be given as N initial conditions xi, i = 1 . . . N for each segment of

the relative periodic orbit, along with the flight times Ti, such that
∑N

i Ti = Tp, and the
phase shift φp. For the true relative periodic orbit we have

f T̃i(x̃i) = x̃i+1 , i = 1, . . . N − 1,

R(φ̃p)f
T̃N (x̃N ) = x̃1 . (125)

Assuming that our guess is in the linear neighborh of the relative periodic orbit we
can Taylor expand (125) around the guess to linear order in the small quantities ∆xi =

x̃i − xi, ∆Ti = T̃i − Ti, ∆φp = φ̃p − φp to get

JTi (xi)∆xi + vTi
∆Ti − ∆xi+1 = xi+1 − fTi (xi)

R(φp)JTN (xN )∆xN + R(φp)vTN
∆TN + aR(φp)fTN (xN )∆φ − ∆x1 = x1 − R(φp)fTN (xN ) , (126)

where vTi denotes v evaluated at fTi (xi), a denotes the generator of the group and the
matrix

J t(xi) =
∂f t(xi)

∂x
(127)

is evaluated by integrating, along with the flow, the equation

J̇ t = AJ t , (128)

with initial condition J0 = 1. Interpreting ∆xi, ∆Ti, ∆φp as corrections to our guess
solution we iteratively improve our approximation of x̃p. To exclude variations along the

two unit eigendirections of R(φ̃p)J
T̃p(x̃) we impose the conditions

v(xi) · ∆xi = 0 , (129)

(axN ) · ∆xN = 0 . (130)

Conditions (129) ensures that the correction will be transverse to the eigendirection
associated with time translational invariance, while condition (129) prohibits correction
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along the direction of infinitesimal group action. In matrix form we have the system
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Solving this linear system and iterating the procedure we refine the initial guess to desired
accuracy, provided the initial guess is sufficiently close to the true solution. If we are in the
linear neighborh of the solution we are guarranted to find it. In practice we can increase
the chances of convergence by taking more segments along the orbit. The limit of N → ∞
leads one to consider variational methods, see for example refs. [78; 59].

By setting N = 1 in (126) we observe that we have to interprete R(φp)J
Tp(xp) as the

fundamental matrix for relative periodic orbits, with eigenvalues playing the role of Floquet
multipliers.
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CHAPTER VII

KURAMOTO-SIVASHINSKY PHASE SPACE

In this chapter we explore numerically the phase space of the Kuramoto-Sivashinsky system
for L = 22 system size. The results presented are a collaborative effort with P. Cvitanović
and R.L. Davidchack [21].

7.1 Geometry of L = 22 phase space
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Figure 20: A typical chaotic orbit of the Kuramoto-Sivashinsky flow, system size L = 22.

We now turn to exploring Hopf’s vision numerically, on a specific Kuramoto-Sivashinsky
system of size L = 22. For this system size the competition between states with wavenumbers
2 and 3 leads to the empirically observed ‘sustained turbulence.’ A typical long orbit is
shown in Figure 20.

Because of the strong k4 contraction, for a small system size one expects that the long-
time dynamics is confined to low-dimensional inertial manifold. Indeed, numerically the
leading Lyapunov exponents of the L = 22 chaotic attractor are

(λi) = (0.048, 0, 0,−0.003,−0.189,−0.256,−0.290, · · · ) ,

so the chaotic dynamics mostly takes place close to a 4-dimensional manifold, with strong
contraction in other dimensions. The two zero exponents are due to the time [43] and
space translational symmetries of the Kuramoto-Sivashinsky equation, and it was shown
in refs. [14; 60] that within particular curvilinear coordinate frames, the dynamics on the
attractor can sometimes be reduced to local 1- or 2-dimensional maps. Hence a relatively
small number of Fourier modes, typically 128 used in numerical calculations presented here,
suffices to obtain numerically accurate (within 10−5) invariant solutions.
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We next investigate the properties of equilibria and relative equilibria and determine
numerically a large set of the short periods relative periodic orbits for KS in a periodic cell
of size L = 22.

7.1.1 Equilibria and relative equilibria

In addition to the trivial equilibrium u = 0 (denoted E0), we find three equilibria with
dominant wavenumber k (denoted Ek) for k = 1, 2, 3. All equilibria, shown in Fig. 21,
are symmetric with respect to the reflection symmetry (76). In addition, E2 and E3 are
symmetric with respect to translation (77), by L/2 and L/3, respectively. E2 and E3

essentially lie, respectively, in the 2nd and 3rd Fourier component complex plane, with small
k = 2j, k = 3j harmonics deformations.
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Figure 21: (a) E1, (b) E2, and (c) E3 equilibria. The E0 equilibrium is the u(x) = 0
solution. (d) (u, ux, uxx) representation of (red) E1, (green) E2, (blue) E3 equilibria, (purple)
TW+1, and (orange) TW−1 relative equilibria. L = 22 system size.

The stability of the equilibria is characterized by the eigenvalues λ(j) of the stability
matrix. The leading 10 eigenvalues for each equilibrium are listed in Table 1. We have
computed (available upon request) the corresponding eigenvectors as well. As an equilibrium
with Re λj > 0 is unstable in the direction of the corresponding eigenvector e(j), the
eigenvectors provide flow-intrinsic (PDE discretization independent) coordinates which we
use for visualization of unstable manifolds and homo/heteroclinic connections between
equilibria.

The eigenvalues of E0 are determined by the linear part of the KS equation (79): λk =

55



(k/L̃)2−(k/L̃)4. For L = 22, there are three pairs of unstable eigenvalues, corresponding, in
decreasing order, to three unstable modes k = 2, 3, and 1. For each mode, the corresponding
eigenvectors lie in the plane spanned by Re ak and Im ak. Table 1 lists the symmetries of
the eigenvectors of equilibria E1 to E3.

2 1.5 1 0.5 0

i

0.3

0.2

0.1

0

0.1

0.2

0.3

i

E3

E2

E1

E0

Figure 22: Leading equilibrium stability eigenvalues, L = 22 system size.

Consistent with the bifurcation diagram of Figure 19, we find two pairs of relative
equilibria (87) with velocities c = ±0.73699 and ±0.34954 which we label TW±1 and TW±2,
for ‘traveling waves.’ The profiles of the two relative equilibria and their time evolution with
eventual decay into the chaotic attractor are shown in Figure 23. The leading eigenvalues of
TW±1 and TW±2 are listed in Table 1; those with µ > −2.5 are also plotted in Figure 22.

Table 2 lists equilibrium energy E, the local Poincaré section return time T , radially
expanding Floquet multiplier Λe, and the least contracting Floquet multiplier Λc for all L =
22 equilibria and relative equilibria. The return time T = 2π/ω(e) is given by the imaginary
part of the leading complex eigenvalue of a given equilibrium or relative equilibrium, the
expansion multiplier per one turn of the most unstable spiral-out by Λe ≈ exp(µ(e)T ), and
the contraction rate along the slowest contracting stable eigendirection by Λc ≈ exp(µ(c)T ).
We learn that the shortest ‘turn-over’ time is ≈ 10−20, and that if there exist horseshoe sets
of unstable periodic orbits associated with these equilibria, they have unstable multipliers
of order of Λe ∼ 5 − 10, and that they are surprisingly thin in the folding direction, with
contracting multipliers of order of 10−2, as also observed in ref. [60].

7.1.1.1 Unstable manifolds of equilibria and their heteroclinic connections

As shown in Table 1, the E1 equilibrium has two unstable planes within which the solutions
are spiralling out (i.e., two pairs of complex conjugate eigenvalues). The E2 has one
such plane, while the E3 has two real positive degenerate eigenvalues, so the solutions are
moving radially away from the equilibrium within the plane spanned by the corresponding
eigenvectors.

To construct an invariant manifold containing solutions corresponding to the pair of
unstable complex conjugate eigenvalues, λ = µ ± iω, µ > 0, we start with a set of initial
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Table 1: Leading eigenvalues λ(j) = µ(j) ± iω(j) and symmetries of the corresponding
eigenvectors of KS equilibria and relative equilibria for L = 22 system size. We have used
as our reference states the ones that lie within the antisymmetric subspace Fix (D1), and
also listed the symmetries of the L/4 translated ones.

E1 µ(j) ω(j) Symmetry τ1/4En Symmetry

λ(1,2) 0.1308 0.3341 - -

λ(3,4) 0.0824 0.3402 Fix (D1) τ1/4Fix (D1)

λ(5) 0 - -

λ(6,7)
−0.2287 0.1963 Fix (D1) τ1/4Fix (D1)

λ(8)
−0.2455 - -

λ(9)
−2.0554 Fix (D1) τ1/4Fix (D1)

λ(10)
−2.0619 - -

E2

λ(1,2) 0.1390 0.2384 Fix (D1) τ1/4Fix (D1)

λ(3) 0 τ1/2 τ1/2

λ(4,5)
−0.0840 0.1602 τ1/4Fix (D1) Fix (D1)

λ(6)
−0.1194 τ1/2 τ1/2

λ(7,8)
−0.2711 0.3563 Fix (D1) , τ1/4Fix (D1) , τ1/2 Fix (D1) , τ1/4Fix (D1) , τ1/2

λ(9)
−2.0130 τ1/4Fix (D1) Fix (D1)

λ(10)
−2.0378 Fix (D1) τ1/4Fix (D1)

E3

λ(1) 0.0933 Fix (D1) τ1/4Fix (D1)

λ(2) 0.0933 - -

λ(3) 0 τ1/3 τ1/3

λ(4)
−0.4128 Fix (D1) , τ1/3 τ1/4Fix (D1) , τ1/3

λ(5,6)
−0.6108 0.3759 Fix (D1) τ1/4Fix (D1)

λ(7,8)
−0.6108 0.3759 - -

λ(9)
−1.6641 - -

λ(10)
−1.6641 Fix (D1) τ1/4Fix (D1)

TW±1

λ(1,2) 0.1156 0.8173 - -

λ(3,4) 0.0337 0.4189 - -

λ(5) 0 - -

λ(6)
−0.2457 - -

λ(7,8)
−0.3213 0.9813 - -

TW±2

λ(1) 0.3370 - -

λ(2) 0 - -

λ(3,4)
−0.0096 0.6288 - -

λ(5,6)
−0.2619 0.5591 - -

λ(7,8)
−0.3067 0.0725 - -

conditions near equilibrium Ek,

a(0) = aEk
+ ǫ exp(δ)e(j) , (131)

where δ takes the set of values uniformly distributed in the interval [0, 2πµ/ω], e(j) is a unit
vector in the unstable plane, and ǫ > 0 is small.

The manifold starting within the first unstable plane of E1, with eigenvalues 0.1308 ±
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Figure 23: Relative equilibria: TW+1 with velocity c = 0.737 and TW+2 with velocity
c = 0.350. The upper panels show the relative equilibria profiles. The lower panels show
evolution of slightly perturbed relative equilibria and their decay into generic turbulence.
Each relative equilibrium has a reflection symmetric partner related by u(x) → −u(−x)
travelling with velocity −c.

Table 2: Properties of equilibria and relative equilibria that determine the system
dynamics in their vicinity. T is characteristic time scale of the dynamics, Λe and Λc are the
leading expansion and contraction rates, and E is the energy (102).

E T Λe Λc

E1 0.2609 18.81 4.79 0.04
E2 0.4382 26.35 5.99 0.03
E3 1.5876 10.71 9.92 0.01
TW±1 0.4649
TW±2 0.6048

i 0.3341, is shown in Figure 24. It appears to fall directly into the chaotic attractor.
The behavior of the manifold starting within the second unstable plane of E1, eigenvalues
0.0824±i 0.3402, is remarkably different: as can be seen in Figure 25, almost all orbits within
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Figure 24: The left panel shows the unstable manifold of equilibrium E1 starting within
the plane corresponding to the first pair of unstable eigenvalues. The coordinate axes v1,
v2, and v3 are constructed from vectors Re e(1), Im e(1), and Re e(6) by Gram-Schmidt
orthogonalization. The right panel shows spatial representation of two orbits A and B.
The change of color from blue to red indicates increasing values of u(x).
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Figure 25: The left panel shows the unstable manifold of equilibrium E1 starting within
the plane corresponding to the second pair of unstable eigenvalues. The coordinate axes v1,
v2, and v3 are constructed from vectors Re e(3), Im e(3), and Re e(6) by Gram-Schmidt
orthogonalization. The right panel shows spatial representation of three orbits. Orbits B
and C pass close to the equilibrium E3.

the manifold converge to the equilibrium E2. The manifold also contains a heteroclinic
connection from E1 to E3, and is bordered by the λ(1)-eigendirection unstable manifold of
E3.

The two-dimensional unstable manifold of E2 is shown in Figure 26. All orbits within
the manifold converge to E2 shifted by L/4. So this manifold can be viewed as a homoclinic
connection. It also contains a pair of heteroclinic connections from E2 to E3.
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Figure 26: The left panel shows the two-dimensional unstable manifold of equilibrium
E2. The coordinate axes v1, v2, and v3 are constructed from vectors Re e(1), Im e(1), and
e(7) by Gram-Schmidt orthogonalization. The right panel shows spatial representation of
three orbits. Orbits B and C pass close to the equilibrium E3. See Figure 27 for a different
visualization.

(a) (b)

E3

E2

Figure 27: (a) (blue/green) The unstable manifold of E2 equilibrium. (black line)
The circle of E2 equilibria related by the translation invariance. (purple line) The
circle of E3 equilibria. (red) The heteroclinic connection from the E2 equilibrium to the
E3 equilibrium splits the manifold into two parts, colored (blue) and (green). See Figure 26
for a different visualization. (b) E2 equilibrium to E3 equilibrium heteroclinic connection.
Here we omit the unstable manifold of E2, keeping only a few neighboring trajectories in
order to indicate the unstable manifold of E3. The E2 and E3 families of equilibria arising
from the continuous translational symmetry of KS on a periodic domain are indicated by
the two circles.

The equilibrium E3 has a pair of real unstable eigenvalues equal to each other. Therefore,
within the plane spanned by the corresponding eigenvectors, the orbits move radially away
from the equilibrium. In order to trace out the unstable manifold, we start with a set of
initial conditions within the unstable plane

a(0) = aE3 + ǫ(v1 cos φ + v2 sin φ) , φ ∈ [0, 2π] , (132)
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where v1 and v2 are orthonormal vectors within the plane spanned by the two unstable
eigenvectors, seeded as in (131). The unstable manifold of E3 is shown in Figure 28. The
3-fold symmetry of the manifold is related to the symmetry of E3 with respect to translation
by L/3. The manifold contains heteroclinic orbits connecting E3 to three different points
of the circle of equilibria E2 translated set of solutions. Note also that the segments of
orbits B and C between E3 and E2 in Figures 25 and 26 represent the same heteroclinic
connections as orbits B and C in Figure 28.
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Figure 28: The left panel shows the two-dimensional unstable manifold of equilibrium
E3. The coordinate axes v1, v2, and v3 are constructed from vectors e(1), e(2), and e(4)

by Gram-Schmidt orthogonalization. The black line shows a family of E2 equilibria related
by translational symmetry. The right panel shows spatial representation of three orbits.
Orbits B and C are two different heteroclinic orbits connecting E3 to the same point on
the E2 line.

An understanding of the ubiquity of heteroclinic connections in KSe, as opposed to their
non-genericity in a general high-dimensional system, is provided in ref. [55]. For our system
size there are exactly two representatives of the E2 family that lie in the intersection of
Fix (D1) and τ1/4Fix (D1) related to each other by an L/4 shift. Denote them by E2 and
τ1/4E2 respectively. The unstable eigenplane of E2 lies on Fix (D1) while that of τ1/4E2

lies on τ1/4Fix (D1), cf. Table 1. The E3 family members that live in Fix (D1) have one
of their unstable eigenvectors (the one related to the heteroclinic connection to E2 family)
on Fix (D1), while the other does not lie on the symmetry-invariant subspace. Similarly,
for the E1 family we observe that the equilibria in Fix (D1) have an unstable plane on
Fix (D1) (again related to the heteroclinic connection) and a second one with no symmetry.
Thus τ1/4E2 appears as a sink on Fix (D1), while all other equilibria appear as sources.
This explains the heteroclinic connections from E1 ,E2 and E3 to τ1/4E2. By equivariance
the dynamics within τ1/4Fix (D1) must look the same and taking into account Table 1 we
understand that within τ1/4Fix (D1) we have connections from τ1/4E2 (and members of E1

and E3 families) to E2 and the formation of a heteroclinic loop. Due to the translational
invariance of KS there is a heteroclinic loop for any two points of the E2 family related by
an L/4-shift.
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Figure 29: Heteroclinic connections on Fix (D1): (red) The unstable manifold of
E1 equilibrium. (blue/green) The unstable manifold of E2 equilibrium. (black) Heteroclinic
connections from E3 equilibrium to τ1/4E2 equilibrium. The unstable manifolds of τ1/2E1

and τ1/2E2 have been ommited for clarity. Projection from 128 dimensions onto the plane
given by the vectors E2 − τ1/4E2 and E3 − τ1/2E3.

7.1.2 Relative periodic orbits

The relative periodic orbits satisfy the condition (92) u(x + ℓp, Tp) = u(x, 0), where Tp is
the period and ℓp the phase shift. We have limited our search to orbits with Tp < 200 and
found over 300 relative periodic orbits with ℓp > 0. Each relative periodic orbit with phase
shift ℓp 6= 0 has a reflection symmetric partner up(x) → −up(−x) with phase shift −ℓp.

The search has not been exhaustive, and there are likely to be more orbits with Tp < 200.
However, the orbits we have found provide a representative sample of typical periodic and
relative periodic orbits and approximate well the chaotic attractor (since they were located
using seeds obtained from close returns within the chaotic dynamics).

Figure 30 (a) shows the relative periodic orbits in the plane (T, ℓ). Not much is learned
from such plot other than that for longer periods the relative periodic orbits are scattered
over the whole (T, ℓ) plane.

The stability of the orbits is determined by their Floquet exponents, defined as

sj = µ(j)/Tp , (133)

where Λj = eµ(j)±iω(j)
are the eigenvalues of the fundamental matrix g(ℓp)J(ap, Tp) (see

sec 6.3.1).
As was already the case for the Lyapunov exponents discussed in Sect. 7.1, for all periodic

and relative periodic orbits we have found, only four Floquet exponents are dynamically
relevant, with the remaining ones indicating strong contraction towards the 4-dimensional
manifold containing the chaotic attractor. Out of the four leading exponents, two equal
zero, due to the time and space translational invariance of the orbits. Of the remaining
two, one is always positive, while the second one is either positive or negative.

The scatter of the largest Floquet exponents of periodic and relative periodic orbits
is shown in Figure 30 (b). In this case some tendency of accumulation toward the largest
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Figure 30: (a) All relative periodic orbits of Kuramoto-Sivashinsky system determined
here, with periods Tp and shifts ℓp > 0. (b) The largest Floquet exponents (133) of all
relative periodic orbits and pre-periodic orbits with reflection. The horizontal line at 0.048
indicates the numerical value of the largest Lyapunov exponent of the chaotic attractor.

Floquet exponent 0.048 of the chaotic attractor can be noted. This, however, is in part an
artifact of initializing the relative periodic orbit searches by near recurrences in long-time
phase space trajectories.

The small period relative periodic orbits outline the coarse structure of the chaotic
attractor, while the longer period relative periodic orbits resolve the finer details of the
dynamics. The first four orbits with the shortest periods we have found are shown in
Figure 31(a-d). The shortest relative periodic orbit with Tp = 16.4 is also the most unstable,
with one positive Floquet exponent equal 0.328. The other short orbits are less unstable,
with the largest Floquet exponent in the range 0.018 – 0.073, typical of the long time
attractor average.

We have found relative periodic orbits which stay close to the unstable manifold of E2.
As is illustrated in Figure 31(e-h), all such orbits have shift ℓp ≈ L/4, similar to the shift
of orbits within the unstable manifold of E2, which start at E2 and converge to τ1/4E2 (see
Figure 26). This observation suggests that the ‘cage’ of unstable manifolds of equilibria
plays an important role in organizing the chaotic dynamics of the Kuramoto-Sivashinsky
equation. Yet they do not tell the whole story. As we will see in Chapter 8 the unstable
manifolds of the relative equilibria play an important role as well.

7.1.3 Pre-periodic orbits

As discussed in Sect. 5.1.8, a relative periodic orbit will be periodic, i.e., ℓp = 0, if it either
(a) lives within the Fix (D1) antisymmetric subspace, −u(−x, 0) = u(x, 0), or (b) returns
to its reflection after a period: u(x, Tp) = −u(−x, 0), and is thus periodic with period 2Tp.
The dynamics of Kuramoto-Sivashinsky system in the antisymmetric subspace and periodic
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Figure 31: Selected relative periodic and pre-periodic orbits of Kuramoto-Sivashinsky
system with L = 22: (a) Tp = 16.3, ℓp = 2.86; (b) Tp = 32.8, ℓp = 10.96; (c) Tp = 33.5,
ℓp = 4.04; (d) Tp = 34.6, ℓp = 9.60; (e) Tp = 47.6, ℓp = 5.68; (f) Tp = 59.9, ℓp = 5.44; (g)
Tp = 71.7, ℓp = 5.503; (h) Tp = 84.4, ℓp = 5.513; (i) Tp = 10.3; (j) Tp = 32.4; (k) Tp = 33.4;
(l) Tp = 35.2. Horizontal and vertical white lines indicate periodicity and phase shift of the
orbits, respectively.

orbits with symmetry (a) have been investigated previously [14; 58; 60]. The KS equation
with L = 22 does not have any periodic orbits of this type.

As discussed in Sect. 5.1.8 the only periodic orbits that we found for the system have
isotropy subgroup D1. We have found over 50 pre-periodic orbits with Tp < 100 which
possess the symmetry of type (b). Some of the shortest such orbits we have found are
shown in Figure 31(i-l). Several were found as repeats of pre-periodic orbits during searches
for relative periodic orbits with non-zero shifts, while most have been found as solutions of
the pre-periodic orbit condition (96) with reflection, which takes form

− g(−ℓ)a∗(Tp) = a(0) . (134)

in the Fourier space representation (compare it to the condition (93) for relative periodic
orbits).
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7.2 Energy transfer rates
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Figure 32: (a) Power input P vs. dissipation rate D (b) energy E vs. power input P , for
several equilibria and relative equilibria, a relative periodic orbit, and a typical ‘turbulent’
long-time trajectory. System size L = 22.
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Figure 33: Two projections of the (E,P, Ė) representation of the flow. E1 (red), E2

(green), E3 (blue), heteroclinic connections from E2 to E3 (green), from E1 to E3 (red) and
from E3 to E2 (shades of blue), superimposed over a generic long-time ‘turbulent’ trajectory
(grey). System size L = 22.

In Figure 32 we plot (105), the time-dependent Ė in the power input P vs. dissipation
rate D plane, for L = 22 equilibria and relative equilibria, a selected relative periodic orbit,
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and for a typical ‘turbulent’ long-time trajectory.
Projections from the ∞-dimensional phase space onto the 3-dimensional (E,P,D) representation

of the flow, such as Figures 32 and 33, can be misleading. The most one can say is that if
points are clearly separated in an (E,P,D) plot (for example, in Figure 32 E1 equilibrium
is outside the recurrent set), they are also separated in the full phase space. Converse is
not true – states of very different topology can have similar energies.

An example is the relative periodic orbit (Tp, ℓp) = (32.8, 10.96) (see Figure 31(b))
which appears well embedded within the turbulent flow. The mean power Pp evaluated as
in (107), see Figure 32, is numerically quite close to the long-time turbulent time average P .
Similarly close prediction of mean dissipation rate in the plane Couette flow from a single-
period periodic orbit computed by Kawahara and Kida [54] has lead to optimistic hopes
that ‘turbulence’ is different from low-dimensional chaos, insofar that the determination
of one special periodic orbit could yield all long-time averages. Regrettably, not true –
as always, here too one needs a hierarchy of periodic orbits of increasing length to obtain
accurate predictions [20].

(a)
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v3

(b)
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Figure 34: The relative periodic orbit with (Tp, ℓp) = (33.5, 4.04) from Figure 31 (c) which
appears well embedded within the turbulent flow: (a) A stationary phase space projection,
traced for four periods Tp. The coordinate axes v1, v2, and v3 are those of Figure 26; (b)
In the co-moving mean velocity frame, traced for one period Tp.

For any given relative periodic orbit a convenient visualization is offered by the mean
velocity frame, i.e., a reference frame that rotates with velocity vp = ℓp/Tp. In the mean
velocity frame a relative periodic orbit becomes a periodic orbit, as in Figure 34 (b).
However, each relative periodic orbit has its own mean velocity frame and thus sets of
relative periodic orbits are difficult to visualize simultaneously.

66



CHAPTER VIII

KURAMOTO-SIVASHINSKY REDUCED PHASE SPACE

8.1 Visualization

To visualize the reduced phase space of KS flow we will use a moving frame to compute
the first few fundamental invariants of the action of SO(2) and, following the example
of Complex Lorenz equations of Sect. 4.1.2.2, modify these invariants to overcome these
singularities. This will help us understand what the invariant objects of importance in
organizing the phase space are. The final goal is to choose Poincaré sections that capture
the dynamics but on which we can define local slices, implement symmetry reduction on
the Poincaré sections applying a moving frame on the points of intersection of trajectories
with the Poincaré sections and finally construct return maps of the dynamics. At this point
we do not quotient out the discrete symmetry. This can always do afterwards by utilizing
a fundamental domain, as in Chapter 3.

We begin by computing invariants for the “standard action” (20) of SO(2) on CN ∼= R2N

which we write here as
(

bk

ck

)

=

(

cos(kθ) − sin(kθ)
sin(kθ) cos(kθ)

)(

bk

ck

)

, k = 1, . . . N . (135)

with ak = bk + ick , bk, ck ∈ R. The choice of a slice is arbitrary and thus, after some
experimentation, we choose one that results in convenient algebra. Define the slice by

K1(a) = c1 = 0 , b1 > 0 (136)

which leads to the normalization equation

c1 = sin θ b1 + cos θ c1 = 0 . (137)

from which we obtain the moving frame

θ = − tan−1 c1

b1
, (138)

where, as noted in Chapter 4, tan−1 distinguishes quadrants. Substituting the moving frame
into the rest of (138) we get the fundamental invariants for the action of SO(2) in Fourier
space of Kuramoto-Sivashinsky equation. The simplifications of expressions were performed
using computer algebra system Mathematica. Computation of 255 invariants for n = 128
took approximately 20 minutes on a typical processor. We list the first 11 invariants on
Table 3. It is important to note that computation in each irreducible subspace (for each
k in (138)) can be carried out independently and thus we can parallelize the computations
and also avoid recomputing invariants when increasing N . For the present visualization
purposes, though, the invariants listed in Table 3 are more than enough.

As was the case in Complex Lorenz equations example in Chapter 4, there is an obvious
singularity at b1 = c1 = 0 that can be corrected by substituting r1 with r =

∑N
i=1(b

2
i + c2

i )
in the denominators. Here we will instead use r =

∑3
i=1(b

2
i + c2

i ) since dynamics in our case
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Table 3: First 11 fundamental invariants for the standard action (138) of SO(2) on R2N .

u1 = r1 =
q

b21 + c21
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b2(b2

1
−c2

1)+2b1c1c2

r2
1
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−2b1b2c1+(b2
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−c2

1)c2

r2
1
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b1b3(b2

1
−3c2

1)−c1(−3b2
1
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1)c3
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1
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1
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1
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1
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1
+15b2

1
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1
−c6

1)c6

r6
1

like to visit E2 and E3 and this choice is enough to prevent the denominator from vanishing
at any region of phase space of dynamical interest. Even with this modification one has to
note that problems are still present: the invariants of Table 3 vanish at E2 and E3 (in general
they vanish on b1 = c1 = 0). In principle this is not a problem since we want to carry out
reduction in the principal stratum. In practice this causes two important equilibria to be
mapped to the origin and leads to phase space portraits as in Figure 35. The neighborhood
of E2 and E3 which is where we would like to get some intuition about the behavior of
relative periodic orbits, has been squeezed into a kink shaped structure. Inspection of the
invariants in Table 3 reveals that the problem is caused by b1 and c1 (which vanish at E2,
E3) appearing in all monomials in the numerators. This is related to the fact that we have
chosen the slice in the k = 1-irreducible subspace which introduces b1 and c1 through the
substitution of (138) into (137). Note that the slice does not exist when b1 = c1 = 0, as
there the group action fails to be regular when restricted on the k = 1-irreducible subspace.
We still lack group-theoretical understanding of this behavior. We could overcome this
difficulty by using the second, third, or sixth Fourier mode to setup the moving frame but
then the expressions we get after substitution cannot be fully simplified and we loose the
ability to manipulate the denominators. We will use a higher mode to setup the moving
frame in the numerical implementation, though, after we define suitable Poincaré sections,
see Chapter 9.

For visualization purposes we overcome the problem by modifying the invariants of
Table 3 as follows. We observe that the invariants come as either symmetric or antisymmetric
under the action of D1 ⊂ O(2). We modify the symmetric invariants by adding a term
√

b2
i + c2

i where i labels the corresponding irreducible subspace (Fourier mode). The new

invariants are listed in Table 4. One has to note that such a modification is not unique
as any linear combination of invariants is an invariant. The basic requirement is that the
invariants remain linearly independent, which can be easily verified for the present choice.
The motivation behind this choice, apart from its simplicity (the magnitudes of Fourier
modes are SO(2)-invariant) is that if we set up a slice by ci = 0 then the invariant that we

get associated with the i’th irreducible subspace is
√

b2
i + c2

i = 0 (and the trivial invariant

0). A linear combination of invariants resulting from more than one moving frame is a
natural choice since the problem is caused by only taking into account the i = 1-mode in
setting up the moving frame. Computing a full set of invariants using a moving frame in
every irreducible subspace would be time consuming. For the group action we examine here
the algebra required to obtain explicit expressions was not carried out by and thus we only
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Figure 35: Phase space portrait of L = 22 Kuramoto-Sivashinsky dynamics projected to
invariants given in Table 3. The trajectories shown are 20 short relative periodic orbits.

use the simplest available invariants, the Fourier magnitudes. An other choice would be to
replace the D1-invariant by the magnitudes instead of forming a linear combination, but we
have found that the resulting phase space portraits are not as useful.

Phase space projections on the invariants of Table 4 are shown in Figures 36 to 37.
Visualizing the unstable manifold of TW±1 is not a straightforward task, since it is 4-
dimensional, see Table 1. Nevertheless, we observe that the ratio of real parts of the leading
stability eigenvalues for the case of TW±1 is approximately 3.4 and thus we expect that the
continuation of the strongly unstable eigenspace will play the dominant role. Thus we can
get an idea of the importance of the unstable manifold of TW±1 for the dynamics by plotting
the continuation of the λ(1,2) eigenplane under the flow, until just after it appears to fold
back to itself. The way in which sample relative periodic orbits follow the unstable manifold
in Figure 36 for some time before they visit different regions of state space reveals the
importance of this object in organizing the flow, even though the immediate neighborhood
of TW±1 is not visited by the “turbulent” dynamics or the relative periodic orbits. At this
time these observations are of a rather speculative character as projections are frequently
misleading, for instance the relative periodic orbit labeled T = 40.14 in Figure 36 is not
tracking the unstable manifolds as well as implied by the figures, a fact that can be seen in
different projections. One could observe this already in Figure 36, as the velocity on relative
periodic orbit T = 40.14 is not aligned with the velocity of trajectories on the manifold.
In order to be able to decide whether a relative periodic orbit is really influenced by an
unstable manifold we need a notion of distance of the two objects. This distance will be
easier to measure once we reduce the dynamics to discrete time maps on suitable Poincaré
sections, see Chapter 9.

In Figure 37(b) we can see that the parts of the relative periodic orbits that do not
follow the unstable manifold of Q1 are “captured” by the unstable manifold of E2. One
has to remember that this manifold is restricted in the antisymmetric subspace while the
relative periodic orbits live in the full space (more accurately, in the principal stratum).
Nevertheless the invariant objects in the antisymmetric subspace provide a boundary for
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Table 4: Modified invariants for the standard action of SO(2) on R6
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Figure 36: Two different projections of L=22 Kuramoto-Sivashinsky dynamics on
invariants given in Table 4. We plot a few selected relative periodic orbits and part of
the unstable manifold of TW−1 in black, with trajectories originating along the eigenspace
corresponding to λ(1).

those orbits, in the same sense, that the z-axis in Lorenz flow of Chapter 3 acts as a
topological obstruction to the flow. This behavior illustrates our point of view that the
dynamics can be described through maps between a set of Poincaré sections, each associated
with a (relative) equilibrium and parameterized by intrinsic coordinates such as the length
along its unstable manifold. Further pursuing this goal will be subject of future work, see
Chapter 9.
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Figure 37: Two different projections of L=22 Kuramoto-Sivashinsky dynamics on
invariants given in Table 4. We plot a few selected relative periodic orbits and (a) part of
the unstable manifold of TW−1 in black, with trajectories originating along the eigenspace
corresponding to λ(1), (b) part of the unstable manifold of E1, in black.
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CHAPTER IX

CONCLUSION AND FUTURE WORK

9.1 Phase space geometry of spatially extended systems

This thesis contribution to the dynamical system’s approach to spatially extended systems
is to provide a framework for elucidating state space geometry in the presence of continuous
symmetries. The presence of symmetry enriches phase space structure and profoundly
influences dynamical behavior. A a striking example is provided by the robust homoclinic
(or heteroclinic) connections in Kuramoto-Sivashinsky flow (discussed in Chapter 7) that
provide a recurrence mechanism by connecting neighborhoods of saddles along a homoclinic
(or heteroclinic) loop and organizing a group of relative periodic orbits around them.

The phase space structure remains unclear until points related by continuous symmetry
are identified and the dynamics is visualized in reduced phase space. Once this reduction
procedure was carried out for Kuramoto-Sivashinsky flow we were able to identify (in
Chapter 8) the “stretching and folding” of the unstable manifold of a relative equilibrium
as the mechanism responsible for organizing a different group of relative periodic orbits.
Moreover we were able to demonstrate that relative periodic orbits follow the unstable
manifold of TW±1 for a while until carried over to the unstable manifold of E2 therefore
revealing the interplay of unstable manifolds of different objects, living in subspaces with
different symmetry, in shaping the geometry of the attractor.

The understanding of the geometry of Kuramoto-Sivashinsky equation for L = 22 is
by no means complete. The obvious next step is to identify suitable Poincaré sections for
the study of unstable manifolds and the relative periodic orbits clustered around them.
Contrary to the Complex Lorenz equations example of Chapter 4 where a global section
was found and the dynamics was described as a first return map to the section, in the
case of Kuramoto-Sivashinsky equation we will need more than one sections. Each section
will be used to capture the dynamics of the unstable manifold of a (relative) equilibrium
until it starts folding back to itself. Parameterizing the intersection of a manifold with the
Poincaré section by Euclidean length along it, a forward map from section to section will
be constructed and convolution of those maps will result in a return map. This approach
meshes very well with the construction of a Markov partition of the dynamics, if such a
partition is within reach. A potential obstacle is that unstable manifolds of objects of
interest for Kuramoto-Sivashinsky dynamics are often high-dimensional, e.g. 4-dimensional
for TW±1, and their visualization and parametrization is a non trivial task. Nevertheless,
since the separation of the leading eigenvalues is large, we expect that the continuation of
the strongly unstable eigenspace will play the dominant role. Furthermore, we still need to
investigate the role played by trajectories originating in the λ(1,2) eigenspace of E1 that are
not in the antisymmetric subspace and are therefore expected to play a role in organizing
the relative periodic orbits.

9.2 Symmetry reduction

For this geometric understanding to be possible we had to develop a a symmetry reduction
procedure for our specific needs and with the following constraints in mind: 1) the method
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must work efficiently in high-dimensional phase space, 2) reduction can be local but the
local pieces have to be joined together in a way that the global geometry of the attractor is
elucidated.

For visualization purposes the method of moving frames is efficient in providing symbolic
expressions for invariants up to moderate dimension. When the representation of the
symmetry group is a direct sum of irreducible representations, as usually is the case with
discretizations of PDEs, we can define a moving frame in one irreducible subspace and
construct invariants for the rest of the irreducible subspaces, as necessary for visualization.
The invariants thus obtained are singular but the singularities can be removed, or merely
moved away from regions of dynamical interest. Then solutions computed in the equivariant
variables can be visualized in the invariant basis without any discontinuities introduced.

This leads us to the next step, which is reduction using the geometrical interpretation of
moving frames as a group operation that brings points back to a local slice of group orbits.
This is a linear operation for any given point and can be implemented efficiently even
for high-dimensional discretizations of PDEs. The crucial step is to avoid transformation
singularities by restricting attention to local, group-invariant Poincaré sections that do not
contain any points on which the transformations become singular.

As noted in the introduction, a method of symmetry reduction for PDEs has been
presented by Rowley and Marsden [75], that allows one to integrate a PDE defined in the
reduced space along with a reconstruction equation to recover the dynamics of the original
problem. This procedure identifies the reduced space M/Γ with a subset of M, called a slice,
in the same spirit we identified the reduced space with a cross-section. The reconstruction
equation is guaranteed to work locally, in the neighborhood of the initial condition but can
fail globally. In ref. [75] choosing a new slice is proposed as a method to overcome this
difficulty and the different slices are to be treated as local coordinate charts on M/Γ. Yet,
this can obscure the study of global aspects of dynamics. It will be interesting to investigate
how this difficulty is connected to the singularities present in the moving frame method and
whether the insight gained here can help one avoid singularities while still identifying the
reduced space with a single slice.

9.3 What are the cycles good for?

Up to this point we have concentrated in the geometry of the phase space and haven’t
addressed the second constituent of the dynamicist’s view of turbulence, the natural measure.
The periodic and relative periodic orbits found for Kuramoto-Sivashinsky equation form a
skeleton of the dynamics in a geometrical sense but also, through trace formulas and spectral
determinants [20], provide a means to accurately evaluate the spectra of evolution operators
and evaluate the asymptotic values of observables.

Quoting ref. [20], “the strategy is 1) count, 2) weigh, 3) add up.” The weights are
given by the stability of the cycles, we can use trace formulas to add them up (in our case
the continuous symmetry version in ref. [19]) but we have to start from the beginning and
complete step number one. Counting means that we are able to organize and label all
cycles up to a given length, establishing a hierarchy that will then be exploited in highly
convergent trace formulas or spectral determinants. The need to organize the periodic and
relative periodic orbits found for Kuramoto-Sivashinsky equation is underlined in Sect. B.2,
where we try to utilize a set of 20, 000 periodic and relative periodic orbits computed by
Davidchack [25], by means of periodic orbit theory, but without any understanding of their
organization.
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APPENDIX A

LYNDON WORDS

Consider a k-symbol alphabet A. Let α = uv and β = vu, were u and v any word. The
words α and β belong to an equivalence class known as a necklace and represented by
its lexicographically lesser member. For instance, for the binary alphabet consisting of
letters 0 and 1 the words {0001, 0010, 0100, 1000} form a necklace represented by 0001.
An aperiodic necklace is called a Lyndon word.

Lyndon words are of relevance to us because we are often interested in listing all symbolic
itineraries that correspond to prime cycles up to length n. For complete k-ary symbolic
dynamics this is equivalent to the problem of generating all Lyndon words of length at most
n. As n increases the efficiency of the algorithm becomes quickly an issue. An algorithm
for generating Lyndon words has been found by Duval [26] and shown to be efficient in
ref. [5]. Efficient here means that the running time is proportional to the number of words
generated. In Table A we provide pseudocode for Duval’s algorithm. For an explanation of
the algorithm the reader is referred to ref. [26]. For efficient algorithms to generate necklaces
cf. ref. [9] and references within.
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Table 5: Duval’s algorithm for efficient generation of Lyndon words up to length n. Here
α and ω are the first and last letters of the alphabet A and the function s(x) returns the
next letter in the alphabet for every letter x 6= ω. The auxiliary variable w is considered a
list of length n.

set i to 1
set w[1] to α
while i 6= 0

for j = 1 to n − i
set w[i + j] to w[j]

end for
append w[1, ..., i − 1] to list of Lyndon words
set i = n
while i > 0 and w[i] = ω

set i to i − 1
end while
if i > 0 then set w[i] to s(w[i])

end while
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APPENDIX B

STABILITY ORDERING FOR KURAMOTO-SIVASHINSKY CYCLES

In this chapter we describe a failed attempt to extract quantitative information from
Kuramoto-Sivashinsky equation cycles by organizing them according to their stability.
Details on cycle expansions can be found in [20]. Here we only provide some sketchy
background to stability ordering by piecing together excerpts from [20].

B.1 Stability ordering of cycle expansions

For generic flows it is often not clear what partition of the phase space generates the
“optimal” symbolic dynamics. Stability ordering does not require understanding dynamics
in such detail: if you can find the cycles, you can use stability ordered cycle expansions.
Stability truncation is thus easier to implement for a generic dynamical system than the
curvature expansions [20] that rely on knowledge of the topology of the flow.

Cycles can be detected numerically by searching a long trajectory for near recurrences.
The long trajectory method for detecting cycles preferentially finds the least unstable
cycles, regardless of their topological length. Another practical advantage of the method
(in contrast to Newton method searches) is that it only finds cycles in a given connected
ergodic component of phase space, ignoring isolated cycles or other ergodic regions elsewhere
in the phase space.

Stability ordering was introduced by Dahlqvist and Russberg [24]. The crucial observation
is that stability is multiplicative, so shadowing is approximately preserved by including all
terms with pseudocycle stability

|Λp1 · · ·Λpk
| ≤ Λmax (139)

and ignoring all more unstable pseudocycles. For bound flows all trajectories remain
confined for all times, implying the conservation of material flow:

1/ζ(0, 0) = 1 +
∑′

π

(−1)k

|Λp1 · · ·Λpk
|

= 0 (140)

which we will try to verify for Kuramoto-Sivashinsky equation.

B.2 Stability ordering for KS cycles

In this section we attempt to numerically check the flow conservation sum rule (140) for
Kuramoto-Sivashinsky equation with L = 22 using a set of 10, 000 periodic and 10, 000
relative periodic orbits computed by Davidchack [25]. In reduced space both relative
periodic orbits and pre-periodic orbits are periodic so they should enter in the same way in
dynamical zeta function calculations. the dynamical zeta function 1/ζ(0, 0) was evaluated
from (140) with stability cutoff Λmax as in (139). After Λmax ≃ 1200 dynamical zeta
function grows, indicating that we are missing some cycles. To find them we will really
have to understand the geometry of the flow.
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Figure 38: Consistency check of flow conservation relation (140) for Kuramoto-
Sivashinsky equation (73) for L = 22. Here the dynamical zeta function 1/ζ(0, 0) was
evaluated from (140) with stability cutoff Λmax as in (139). The maximum stability cutoff
shown corresponds to using the 5000 least unstable cycles (periodic orbits and relative
periodic orbits) in the set.
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