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Overture

If | have seen less far than other men it is because | have stood behind

giants. 1.1 Why ChaosBook? 1
—Edoardo Specchio 1.2 Chaos ahead 2

1.3 Thefutureasin amirror 3

EREADING Classic theoretical physics textbooks leaves a sense that there 14 A gameofpinball !
are holes large enough to steam a Eurostar train through them. Here 19 Chaosfor cydisis 10
1.6 Changeintime 15

we learn about harmonic oscillators and Keplerian ellipses - but where

is the chapter on chaotic oscillators, the tumbling Hyperion? We have just 17

From chaos to statistical mechanics 17

quantized hydrogen, where is the chapter on the classical 3-body problem and 18 Chaos: what isit good for? 18
its implications for quantization of helium? We have learned that an instanton 1.9 What is not in ChaosBook 20
is a solution of field-theoretic equations of motion, but shouldn’t a strongly =~ Résumé 21
nonlinear field theory have turbulent solutions? How are we to think about  Further reading 23
systems where things fall apart; the center cannot hold; every trajectory is A guideto exercises 25
unstable? Exercises 26

This chapter offers a quick survey of the main topics covered in the book.  References 26

We start out by making promises—we will right wrongs, no longer shall you
suffer the slings and arrows of outrageous Science of Perplexity. We relegate
a historical overview of the development of chaotic dynamics to Appendix 28,
and head straight to the starting line: A pinball game is used to motivate and
illustrate most of the concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you should be able to fol-
low the thread of the argument without constant excursions to sources. Hence
there are no literature references in the text proper, all learned remarks and
bibliographical pointers are relegated to the “Further reading” section at the
end of each chapter.

3

<=8

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with science, we
acquire a firmer hold over the vicissitudes of life and meet them with
greater calm, but in reality we have done no more than to find a way
to escape from our sorrows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuccess- <2
ful) crack at the 3-body problem, lunar dynamics. Nature is rich in systems )
governed by simple deterministic laws whose asymptotic dynamics are com-
plex beyond belief, systems which are locally unstable (almost) everywhere
but globally recurrent. How do we describe their long term dynamics?

Throughout the book

indicates that the section is on
a pedestrian level - you are ex-
pected to know/learn this mate-
rial

indicates that the section is on a
somewhat advanced, cyclist level

indicates that the section requires
a hearty stomach and is probably
best skipped on first reading

fast track points you where to
skip to

tells you where to go for more
depth on a particular topic

[chapter 3] on margin links to a
related chapter
[exercise 1.2] on margin links to

an exercise that might clarify a
point in the text

indicates that a figure is still
missing—you are urged to fetch it

In the hyperlinked ChaosBook.pdf these
destinations are only a click away.



2 CHAPTER 1. OVERTURE

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. 1t would hardly merit a learned treatise, were it not for the fact that
this determinant that we are to compute is fashioned out of infinitely many
infinitely small pieces. The feel is of statistical mechanics, and that is how
the problem was solved; in the 1960’s the pieces were counted, and in the
1970’s they were weighted and assembled in a fashion that in beauty and in
depth ranks along with thermodynamics, partition functions and path integrals
amongst the crown jewels of theoretical physics.

This book is not a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, short-time dynamically in-
variant compact sets (equilibria, periodic orbits, partially hyperbolic invariant
tori) and the global long-time evolution of densities of trajectories. Chaotic
dynamics is generated by the interplay of locally unstable motions, and the
interweaving of their global stable and unstable manifolds. These features are
robust and accessible in systems as noisy as slices of rat brains. Poincarg,
the first to understand deterministic chaos, already said as much (modulo rat
brains). Once this topology is understood, a powerful theory yields the ob-
servable consequences of chaotic dynamics, such as atomic spectra, transport
coefficients, gas pressures.

That is what we will focus on in ChaosBook. The book is a self-contained
graduate textbook on classical and quantum chaos. Your professor does not
know this material, so you are on your own. We will teach you how to evaluate
a determinant, take a logarithm—stuft like that. Ideally, this should take 100
pages or so. Well, we fail-so far we have not found a way to traverse this
material in less than a semester, or 200-300 page subset of this text. Nothing
to be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats: The Second Coming

The study of chaotic dynamics is no recent fashion. It did not start with the
widespread use of the personal computer. Chaotic systems have been studied
for over 200 years. During this time many have contributed, and the field fol-
lowed no single line of development; rather one sees many interwoven strands
of progress.

In retrospect many triumphs of both classical and quantum physics were a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though ‘non-generic,” have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations—an
expectation tempered by our recently acquired ability to numerically scan the
state space of non-integrable dynamical systems. The initial impression might
be that all of our analytic tools have failed us, and that the chaotic systems
are amenable only to numerical and statistical investigations. Nevertheless,
a beautiful theory of deterministic chaos, of predictive quality comparable to
that of the traditional perturbation expansions for nearly integrable systems,

intro - 9apr2009 ChaosBook.org version13.5, Sep 7 2011



1.3. THE FUTURE AS IN A MIRROR 3

already exists.

In the traditional approach the integrable motions are used as zeroth-order
approximationsto physical systems, and weak nonlinearities are then accounted
for perturbatively. For strongly nonlinear, non-integrable systems such expan-
sions fail completely; at asymptotic times the dynamics exhibits amazingly
rich structure which is not at all apparent in the integrable approximations.
However, hidden in this apparent chaos is a rigid skeleton, a self-similar tree
of cycles (periodic orbits) of increasing lengths. The insight of the modern dy-
namical systems theory is that the zeroth-order approximations to the harshly
chaotic dynamics should be very different from those for the nearly integrable
systems: a good starting approximation here is the stretching and folding of
baker’s dough, rather than the periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling
for how and why unstable cycles come about, we start by playing a game
of pinball. The reminder of the chapter is a quick tour through the material
covered in ChaosBook. Do not worry if you do not understand every detail at
the first reading—the intention is to give you a feeling for the main themes of
the book. Details will be filled out later. If you want to get a particular point
clarified right now, [section 1.4] on the margin points at the appropriate section.

1.3 The future as in a mirror

All you need to know about chaos is contained in the introduction of
[ChaosBook]. However, in order to understand the introduction you
will first have to read the rest of the book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who has
tried pool, billiards or snooker—the game is about beating chaos—so we start
our story about what chaos is, and what to do about it, with a game of pinball.
This might seem a trifle, but the game of pinball is to chaotic dynamics what
a pendulum is to integrable systems: thinking clearly about what ‘chaos’ in a
game of pinball is will help us tackle more difficult problems, such as com-
puting the diffusion constant of a deterministic gas, the drag coefficient of a
turbulent boundary layer, or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among
the pinball machine’s disks, and only high-school level Euclidean geometry
is needed to describe its trajectory. A physicist’s pinball game is the game
of pinball stripped to its bare essentials: three equidistantly placed reflecting
disks in a plane, Fig. 1.1. A physicist’s pinball is free, frictionless, point-
like, spin-less, perfectly elastic, and noiseless. Point-like pinballs are shot at
the disks from random starting positions and angles; they spend some time
bouncing between the disks and then escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz was
confident that given the initial conditions one knew everything a deterministic
system would do far into the future. He wrote [1.2], anticipating by a century
and a half the oft-quoted Laplace’s “Given for one instant an intelligence which

ChaosBook.org version13.5, Sep 7 2011 intro - 9apr2009

section 1.4

Fig. 1.1 A physicist’s bare bones game of
pinball.
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Fig. 1.2 Sensitivity to initial conditions: two
pinballs that start out very close to each other
separate exponentially with time.

1 «stochastic’ is derived from Greek ‘sto-
chos,” meaning a target, as in shooting arrows
at a target, and not always hitting it; targeted
flow, with a small component of uncertainty.
Today it stands for deterministic drift + dif-
fusion. ‘Random’ stands for pure diffusion,
with a Gaussian profile. ‘Probabilistic’ might
have a distribution other than a Gaussian one.
Boltzmann’s ‘Ergodic’ refers to the determin-
istic microscopic dynamics of many colliding
molecules. ‘Chaotic’ is the same thing, but
usually for a few degrees of freedom.

dx(t)

5x(0)
x(0) x(t)

Fig. 1.3 Unstable trajectories separate with
time.

section 17.3

4 CHAPTER 1. OVERTURE

could comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is just
as certain as that three times three is nine. [...]  If, for example, one
sphere meets another sphere in free space and if their sizes and their paths
and directions before collision are known, we can then foretell and cal-
culate how they will rebound and what course they will take after the
impact. Very simple laws are followed which also apply, no matter how
many spheres are taken or whether objects are taken other than spheres.
From this one sees then that everything proceeds mathematically—that is,
infallibly—in the whole wide world, so that if someone could have a suf-
ficient insight into the inner parts of things, and in addition had remem-
brance and intelligence enough to consider all the circumstances and to
take them into account, he would be a prophet and would see the future
in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of
physical system that we shall use here as a paradigm of ‘chaos.” His claim
is wrong in a deep and subtle way: a state of a physical system can never
be specified to infinite precision, and by this we do not mean that eventually
the Heisenberg uncertainty principle kicks in. In the classical, deterministic
dynamics there is no way to take all the circumstances into account, and a
single trajectory cannot be tracked, only a ball of nearby initial points makes
physical sense. !

1.3.1 Whatis ‘chaos’?

I accept chaos. | am not sure that it accepts me.
—Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully
determined by its initial conditions.

In contrast, radioactive decay, Brownian motion and heat flow are examples
of stochastic systems, for which the initial conditions determine the future only
partially, due to noise, or other external circumstances beyond our control: the
present state reflects the past initial conditions plus the particular realization of
the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling the deterministic from the
stochastic is the main challenge in many real-life settings, from stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?

In a game of pinball, any two trajectories that start out very close to each
other separate exponentially with time, and in a finite (and in practice, a very
small) number of bounces their separation §x(t) attains the magnitude of L,
the characteristic linear extent of the whole system, Fig. 1.2. This property of
sensitivity to initial conditions can be quantified as

l6x(t)] ~ e*|sx(0)]

where 4, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracy 6x = |6x(0)| of the initial data, the
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1.3. THE FUTURE AS IN A MIRROR 5

dynamics is predictable only up to a finite Lyapunov time
1
Tiyap 3 Injox/L[, (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that
rule the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One could
try to play 1- or 2-disk pinball game, but it would not be much of a game;
trajectories would only separate, never to meet again. What is also needed is
mixing, the coming together again and again of trajectories. While locally the
nearby trajectories separate, the interesting dynamics is confined to a globally
finite region of the state space and thus the separated trajectories are neces-
sarily folded back and can re-approach each other arbitrarily closely, infinitely
many times. For the case at hand there are 2" topologically distinct n bounce
trajectories that originate from a given disk. More generally, the number of
distinct trajectories with n bounces can be quantified as

N(n) ~ e

where h, the growth rate of the number of topologically distinct trajectories, is
called the “topological entropy”” (h = In 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in deterministic dynam-
ics there is no chaos in the everyday sense of the word; everything proceeds
mathematically—that is, as Baron Leibniz would have it, infallibly. When a
physicist says that a certain system exhibits ‘chaos,” he means that the system
obeys deterministic laws of evolution, but that the outcome is highly sensitive
to small uncertainties in the specification of the initial state. The word “chaos’
has in this context taken on a narrow technical meaning. If a deterministic
system is locally unstable (positive Lyapunov exponent) and globally mixing
(positive entropy)-Fig. 1.4—it is said to be chaotic.

While mathematically correct, the definition of chaos as “positive Lyapunov
+ positive entropy’ is useless in practice, as a measurement of these quantities
is intrinsically asymptotic and beyond reach for systems observed in nature.
More powerful is Poincaré’s vision of chaos as the interplay of local instability
(unstable periodic orbits) and global mixing (intertwining of their stable and
unstable manifolds).? In a chaotic system any open ball of initial conditions,
no matter how small, will in finite time overlap with any other finite region
and in this sense spread over the extent of the entire asymptotically accessible
state space. Once this is grasped, the focus of theory shifts from attempting
to predict individual trajectories (which is impossible) to a description of the
geometry of the space of possible outcomes, and evaluation of averages over
this space. How this is accomplished is what ChaosBook is about.

A definition of “‘turbulence’ is even harder to come by. Can you recognize
turbulence when you see it? The word comes from ‘tourbillon,” French for
‘vortex,” and intuitively it refers to irregular behavior of an infinite-dimens-
ional dynamical system described by deterministic equations of motion—say,
a bucket of sloshing water described by the Navier-Stokes equations. But in
practice the word ‘turbulence’ tends to refer to messy dynamics which we un-
derstand poorly. As soon as a phenomenon is understood better, it is reclaimed
and renamed: ‘a route to chaos’, “‘spatiotemporal chaos’, and so on.

ChaosBook.org version13.5, Sep 7 2011 intro - 9apr2009

Fig. 1.4 Dynamics of a chaotic dynami-
cal system is (a) everywhere locally unstable
(positive Lyapunov exponent) and (b) glob-
ally mixing (positive entropy). (A. Jo-
hansen)

section 15.1

2 We owe the appellation “chaos”-as well
as several other dynamics catchwords—-to J.
Yorke who in 1973 entitled a paper [1.3] that
he wrote with T. Li “Period 3 implies chaos”.
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In ChaosBook we shall develop a theory of chaotic dynamics for low dim-
ensional attractors visualized as a succession of nearly periodic but unstable
motions. In the same spirit, we shall think of turbulence in spatially extended
systems in terms of recurrent spatiotemporal patterns. Pictorially, dynamics
drives a given spatially extended system (clouds, say) through a repertoire of
unstable patterns; as we watch a turbulent system evolve, every so often we
catch a glimpse of a familiar pattern:

RN _ :
' % ) —  otherswirls = ’g
{ (S

For any finite spatial resolution, a deterministic flow follows approximately
for a finite time an unstable pattern belonging to a finite alphabet of admissible
patterns, and the long term dynamics can be thought of as a walk through the
space of such patterns. In ChaosBook we recast this image into mathematics.

1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited magnification
range, Jones-Smith and Mathur would also dismiss half the published
investigations of physical fractals.

— Richard P. Taylor [1.4, 5]

When should we be mindful of chaos? The solar system is ‘chaotic’, yet
we have no trouble keeping track of the annual motions of planets. The rule
of thumb is this; if the Lyapunov time (1.1)-the time by which a state space
region initially comparable in size to the observational accuracy extends across
the entire accessible state space—is significantly shorter than the observational
time, you need to master the theory that will be developed here.  That is
why the main successes of the theory are in statistical mechanics, quantum
mechanics, and questions of long term stability in celestial mechanics.

In science popularizations too much has been made of the impact of ‘chaos
theory,” so a number of caveats are already needed at this point.

At present the theory that will be developed here is in practice applicable
only to systems of a low intrinsic dimension — the minimum number of co-
ordinates necessary to capture its essential dynamics. If the system is very
turbulent (a description of its long time dynamics requires a space of high in-
trinsic dimension) we are out of luck. Hence insights that the theory offers
in elucidating problems of fully developed turbulence, quantum field theory of
strong interactions and early cosmology have been modest at best. Even that is
a caveat with qualifications. There are applications—such as spatially extended
(non-equilibrium) systems, plumber’s turbulent pipes, etc.,—~where the few im-
portant degrees of freedom can be isolated and studied profitably by methods
to be described here.

Thus far the theory has had limited practical success when applied to the
very noisy systems so important in the life sciences and in economics. Even
though we are often interested in phenomena taking place on time scales much
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1.4. A GAME OF PINBALL 7

longer than the intrinsic time scale (neuronal inter-burst intervals, cardiac pulses,
etc.), disentangling ‘chaotic’ motions from the environmental noise has been
very hard.

In 1980°s something happened that might be without parallel; this is an
area of science where the advent of cheap computation had actually subtracted
from our collective understanding. The computer pictures and numerical plots
of fractal science of the 1980’s have overshadowed the deep insights of the
1970’s, and these pictures have since migrated into textbooks. By a re-
grettable oversight, ChaosBook has none, so ‘Untitled 5’ of Fig. 1.5 will have
to do as the illustration of the power of fractal analysis. Fractal science posits
that certain quantities (Lyapunov exponents, generalized dimensions, ...) can
be estimated on a computer. While some of the numbers so obtained are in-
deed mathematically sensible characterizations of fractals, they are in no sense
observable and measurable on the length-scales and time-scales dominated by
chaotic dynamics.

Even though the experimental evidence for the fractal geometry of nature
is circumstantial [1.7], in studies of probabilistically assembled fractal aggre-
gates we know of nothing better than contemplating such quantities. In deter-
ministic systems we can do much better.

1.4 A game of pinball

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fasten your seat
belts and turn off all electronic devices. But first, a disclaimer: If you under-
stand the rest of this chapter on the first reading, you either do not need this
book, or you are delusional. If you do not understand it, it is not because the
people who figured all this out first are smarter than you: the most you can
hope for at this stage is to get a flavor of what lies ahead. If a statement in this
chapter mystifies/intrigues, fast forward to a section indicated by [section ...]
on the margin, read only the parts that you feel you need. Of course, we think
that you need to learn ALL of it, or otherwise we would not have included it
in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical system, our analysis pro-
ceeds in three stages; I. diagnose, Il. count, I11. measure. First, we determine
the intrinsic dimension of the system—the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent we are,
at present, out of luck. We know only how to deal with the transitional regime
between regular motions and chaotic dynamics in a few dimensions. That is
still something; even an infinite-dimensional system such as a burning flame
front can turn out to have a very few chaotic degrees of freedom. In this regime
the chaotic dynamics is restricted to a space of low dimension, the number of
relevant parameters is small, and we can proceed to step Il; we count and clas-
sify all possible topologically distinct trajectories of the system into a hierarchy
whose successive layers require increased precision and patience on the part of
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Fig. 1.5 Katherine Jones-Smith, ‘Untitled
5, the drawing used by K. Jones-Smith and
R.P. Taylor to test the fractal analysis of Pol-
lock’s drip paintings [1.6].

remark 1.6
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Fig. 1.6 Binary labeling of the 3-disk pinball
trajectories; a bounce in which the trajectory
returns to the preceding disk is labeled 0, and
a bounce which results in continuation to the
third disk is labeled 1.

chapter 12

section 11.6

121212313

Fig. 1.7 The 3-disk pinball cycles 1232 and
121212313.

8 CHAPTER 1. OVERTURE

the observer. This we shall do in Section 1.4.2. If successful, we can proceed
with step I11: investigate the weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, 11: diagnose,
count. We shall return to step Ill-measure—in Section 1.5. The three sections
that follow are highly technical, they go into the guts of what the book is about.
Is today is not your thinking day, skip them, jump straight to Section 1.7.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck-it is a low dimensional system, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the
three disks by 1, 2 and 3, we can associate every trajectory with an itinerary,
a sequence of labels indicating the order in which the disks are visited; for
example, the two trajectories in Fig. 1.2 have itineraries 2313, 23132321 _
respectively.  Such labeling goes by the name symbolic dynamics. As the
particle cannot collide two times in succession with the same disk, any two
consecutive symbols must differ. This is an example of pruning, a rule that
forbids certain subsequences of symbols. Deriving pruning rules is in general a
difficult problem, but with the game of pinball we are lucky—for well-separated
disks there are no further pruning rules.

The choice of symbols is in no sense unique. For example, as at each bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary {0, 1} alphabet, Fig. 1.6. A clever
choice of an alphabet will incorporate important features of the dynamics, such
as its symmetries.

Suppose you wanted to play a good game of pinball, that is, get the pinball to
bounce as many times as you possibly can—-what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks—if you managed to shoot it so it starts out in the periodic
orbit bouncing along the line connecting two disk centers, it would stay there
forever. Your game would be just as good if you managed to get it to keep
bouncing between the three disks forever, or place it on any periodic orbit. The
only rub is that any such orbit is unstable, so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear that if one is interested
in playing well, unstable periodic orbits are important-they form the skeleton
onto which all trajectories trapped for long times cling.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum.
We shall sometimes refer to the set of periodic points that belong to a given
periodic orbit as a cycle.

Short periodic orbits are easily drawn and enumerated—an example is drawn
in Fig. 1.7-but it is rather hard to perceive the systematics of orbits from their
configuration space shapes. In mechanics a trajectory is fully and uniquely
specified by its position and momentum at a given instant, and no two dis-
tinct state space trajectories can intersect. Their projections onto arbitrary sub-
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1.4. A GAME OF PINBALL 9

spaces, however, can and do intersect, in rather unilluminating ways. In the
pinball example the problem is that we are looking at the projections of a 4-d
state space trajectories onto a 2-d subspace, the configuration space. A
clearer picture of the dynamics is obtained by constructing a set of state space
Poincaré sections.

Suppose that the pinball has just bounced off disk 1. Depending on its po-
sition and outgoing angle, it could proceed to either disk 2 or 3. Not much
happens in between the bounces—the ball just travels at constant velocity along
a straight line-so we can reduce the 4-d flow to a 2-d map P that takes the
coordinates of the pinball from one disk edge to another disk edge. The trajec-
tory just after the moment of impact is defined by s, the arc-length position of
the nth bounce along the billiard wall, and p, = psin ¢, the momentum com-
ponent parallel to the billiard wall at the point of impact, see Fig. 1.9. Such
section of a flow is called a Poincaré section. In terms of Poincaré sections,
the dynamics is reduced to the set of six maps P s, : (Sn, Pn) = (Sn+1, Pn+1),
with s € {1, 2, 3}, from the boundary of the disk j to the boundary of the next
disk k.

Next, we mark in the Poincaré section those initial conditions which do not
eschipertnasaetyousigips of survivors, as the trajectories originating from one
disk can hit either of the other two disks, or escape without further ado. We
label the two strips Mi,, M. Embedded within them there are four strips
Mao1, Moz, Miz1, Miszp of initial conditions that survive for two bounces, and
so forth, see Figs. 1.8 and 1.9. Provided that the disks are sufficiently separated,
after n bounces the survivors are divided into 2" distinct strips: the M;th strip
consists of all points with itinerary i = $15,53...5n, S = {1, 2, 3}. The unstable
cycles as a skeleton of chaos are almost visible here: each such patch contains
a periodic point 515,53 . . . S, with the basic block infinitely repeated. Periodic
points are skeletal in the sense that as we look further and further, the strips
shrink but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a nav-
igation chart through chaotic state space. There exists a unique trajectory for
every admissible infinite length itinerary, and a unique itinerary labels every
trapped trajectory. For example, the only trajectory labeled by 12 is the 2-
cycle bouncing along the line connecting the centers of disks 1 and 2; any
other trajectory starting out as 12. .. either eventually escapes or hits the 3rd
disk.

1.4.3 Escape rate

What is a good physical quantity to compute for the game of pinball? Such a
system, for which almost any trajectory eventually leaves a finite region (the
pinball table) never to return, is said to be open, or a repeller. The repeller
escape rate is an eminently measurable quantity. An example of such a mea-
surement would be an unstable molecular or nuclear state which can be well
approximated by a classical potential with the possibility of escape in certain
directions. In an experiment many projectiles are injected into a macroscopic
‘black box’ enclosing a microscopic non-confining short-range potential, and
their mean escape rate is measured, as in Fig. 1.1. The numerical experiment
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Fig. 1.8 (a) A trajectory starting out from
disk 1 can either hit another disk or escape.
(b) Hitting two disks in a sequence requires a
much sharper aim, with initial conditions that
hit further consecutive disks nested within
each other, as in Fig. 1.9.
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Fig. 1.9 The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk
1 with xo = (S, po) . () Strips of initial
points M2, Mz which reach disks 2, 3 in
one bounce, respectively. (b) Strips of initial
points Miz1, Miz1 Mizz and Moz which
reach disks 1, 2, 3 in two bounces, respec-
tively. Disk radius : center separation ratio
aR =1:2.5. (Y. Lan)
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might consist of injecting the pinball between the disks in some random direc-
tion and asking how many times the pinball bounces on the average before it
escapes the region between the disks.

For a theorist, a good game of pinball consists in predicting accurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how
periodic orbit theory accomplishes this for us. Each step will be so simple that
you can follow even at the cursory pace of this overview, and still the result is
surprisingly elegant.

Consider Fig. 1.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previous bounce. The total
area that remains at a given time is the sum of the areas of the strips, so that the
fraction of survivors after n bounces, or the survival probability is given by

- Mol IMyl A Mool IMiol  IMoal  IMaal

n = —+—:-, I, = + + + ,
! M IM| 2TOME M M T I

(n)

DM, (1.2)
i

£ 1
M

where i is a label of the ith strip, | M| is the initial area, and |M;] is the area

of the ith strip of survivors. i = 01,10,11,...is a label, not a binary number.

Since at each bounce one routinely loses about the same fraction of trajectories,
one expects the sum (1.2) to fall off exponentially with n and tend to the limit

[hit/Ih=e" e, (1.3)

The quantity vy is called the escape rate from the repeller.

1.5 Chaos for cyclists

Etant données des équations ... et une solution particuliére quel-
conque de ces équations, on peut toujours trouver une solution pé-
riodique (dont la période peut, il est vrai, étre trés longue), telle que la
différence entre les deux solutions soit aussi petite qu’on le veut, pen-
dant un temps aussi long qu’on le veut. D’ailleurs, ce qui nous rend
ces solutions périodiques si précieuses, c’est qu’elles sont, pour ansi
dire, la seule bréche par ou nous puissions esseyer de pénétrer dans
une place jusqu’ici réputée inabordable.

—H. Poincaré, Les méthodes nouvelles de la méchanique céleste

We shall now show that the escape rate y can be extracted from a highly con-
vergent exact expansion by reformulating the sum (1.2) in terms of unstable
periodic orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape
rate is roughly v = 0.4103384077693464893384613078192.. ., you do not
need this book. If you have no clue, hang on.
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1.5. CHAOS FOR CYCLISTS 11

1.5.1 How big is my neighborhood?

Not only do the periodic points keep track of topological ordering of the strips,
but, as we shall now show, they also determine their size. As a trajectory
evolves, it carries along and distorts its infinitesimal neighborhood. Let

X(t) = f'(xo)

denote the trajectory of an initial point xo = x(0). Expanding f'(xg + 6Xo)
to linear order, the evolution of the distance to a neighboring trajectory x(t) +
6Xi(t) is given by the Jacobian matrix J:

axi(t)

—_— 14
o, (L4)

d
oxi(t) = Z Jt(Xo)ij6X0j ) Jt(Xo)ij =
=

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this case d = 3. Evaluation of
a cycle Jacobian matrix is a long exercise - here we just state the result. The
Jacobian matrix describes the deformation of an infinitesimal neighborhood of
x(t) along the flow; its eigenvectors and eigenvalues give the directions and the
corresponding rates of expansion or contraction, Fig. 1.10. The trajectories that
start out in an infinitesimal neighborhood separate along the unstable directions
(those whose eigenvalues are greater than unity in magnitude), approach each
other along the stable directions (those whose eigenvalues are less than unity
in magnitude), and maintain their distance along the marginal directions (those
whose eigenvalues equal unity in magnitude).

In our game of pinball the beam of neighboring trajectories is defocused
along the unstable eigen-direction of the Jacobian matrix J.

As the heights of the strips in Fig. 1.9 are effectively constant, we can con-
centrate on their thickness. If the height is ~ L, then the area of the ith strip is
M =~ LlI; for a strip of width I;.

Each strip i in Fig. 1.9 contains a periodic point x;. The finer the intervals,
the smaller the variation in flow across them, so the contribution from the strip
of width I; is well-approximated by the contraction around the periodic point
Xj within the interval,

li = ai/|Ail, (1.5)

where A; is the unstable eigenvalue of the Jacobian matrix J(x;) evaluated at
the ith periodic point for t = T, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). Only the magnitude of
this eigenvalue matters, we can disregard its sign. The prefactors a; reflect the
overall size of the system and the particular distribution of starting values of
X. As the asymptotic trajectories are strongly mixed by bouncing chaotically
around the repeller, we expect their distribution to be insensitive to smooth
variations in the distribution of initial points.

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors a; ~ O(1) are overwhelmed by the exponential growth
of Aj, so we neglect them. If the hyperbolicity assumption is justified, we can
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Fig. 1.10 The Jacobian matrix J' maps an
infinitesimal displacement 6x at % into a dis-
placement Jt(xo)ox finite time t later.
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replace |[Mi| ~ LI in (1.2) by 1/|Aj| and consider the sum
(n)

=) L/IAIl,

where the sum goes over all periodic points of period n. We now define a
generating function for sums over all periodic orbits of all lengths:

I'(z) = irnz” ) (1.6)
n=1

Recall that for large n the nth level sum (1.2) tends to the limitT'y — e™, so
the escape rate vy is determined by the smallest z = e” for which (1.6) diverges:

e
1-ze7’

I'@2) ~ i (ze)" = (1.7)
n=1

This is the property of I'(z) that motivated its definition. Next, we devise a
formula for (1.6) expressing the escape rate in terms of periodic orbits:

(o]
r@ = Y, 2" ) A
n=1 i
z z 72 2 72 2
= — 4 — + + +
[Aol A1l 1Acol  |Aoil  |Azl Al
2 2 2 2

(1.8)

+ + + + ...
[Agool ~ [Aoorl  [Aotol  [Aool

For sufficiently small z this sum is convergent. The escape rate y is now
given by the leading pole of (1.7), rather than by a numerical extrapolation of
a sequence of y, extracted from (1.3). As any finite truncation n < ngrync of
(1.8) is a polynomial in z, convergent for any z, finding this pole requires that
we know something about I", for any n, and that might be a tall order.

We could now proceed to estimate the location of the leading singularity of
I'(z) from finite truncations of (1.8) by methods such as Padé approximants.
However, as we shall now show, it pays to first perform a simple resummation
that converts this divergence into a zero of a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is A,
A prime cycle p is a single traversal of the orbit; its label is a non-repeating
symbol string of n, symbols. There is only one prime cycle for each cyclic
permutation class. For example, p = 0011 = 1001 = 1100 = 0110 is prime, but
0101 =01 is not. By the chain rule for derivatives the stability of a cycle is the
same everywhere along the orbit, so each prime cycle of length n, contributes
n, terms to the sum (1.8). Hence (1.8) can be rewritten as

00 r
7" Nptp z"e
r@ = >\n > (—) - ty = — (1.9)
P > P
=" Al i 1-tp A
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1.5. CHAOS FOR CYCLISTS 13

where the index p runs through all distinct prime cycles. Note that we have
resummed the contribution of the cycle p to all times, so truncating the sum-
mation up to given p is not a finite time n < n, approximation, but an asymp-
totic, infinite time estimate based by approximating stabilities of all cycles by
a finite number of the shortest cycles and their repeats. The n,z"™ factors in
(1.9) suggest rewriting the sum as a derivative

d
r@=-zg Zp: In(1 - tp).

Hence I'(z) is a logarithmic derivative of the infinite product

"

i@ =[]a-t), t= e (1.10)
p

This function is called the dynamical zeta function, in analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definition as 1//(z). This is the
prototype formula of periodic orbit theory. The zero of 1/£(z) is a pole of I'(z),
and the problem of estimating the asymptotic escape rates from finite n sums
such as (1.2) is now reduced to a study of the zeros of the dynamical zeta func-
tion (1.10). The escape rate is related by (1.7) to a divergence of I'(z), and I'(z)
diverges whenever 1/£(z) has a zero.
Easy, you say: “Zeros of (1.10) can be read off the formula, a zero

1
zp = [ApM™

for each term in the product. What’s the problem?” Dead wrong!

1.5.3 Cycle expansions

How are formulas such as (1.10) used? We start by computing the lengths
and eigenvalues of the shortest cycles. This usually requires some numerical
work, such as the Newton method searches for periodic solutions; we shall
assume that the numerics are under control, and that all short cycles up to given
length have been found. In our pinball example this can be done by elementary
geometrical optics. It is very important not to miss any short cycles, as the
calculation is as accurate as the shortest cycle dropped—including cycles longer
than the shortest omitted does not improve the accuracy (unless exponentially
many more cycles are included). The result of such numerics is a table of the
shortest cycles, their periods and their stabilities.

Now expand the infinite product (1.10), grouping together the terms of the
same total symbol string length

1/ = (1—to)(1 —t1)(1 —t10)(1 — taoo) -
= 1—1to—t1 — [tio — tato] — [(ta00 — troto) + (tr01 — taots)]
—[(t2000 — tots0o0) + (t1110 — tati10)
+(tr001 — tatoor — tro1to + taotots)] — ... (1.11)

The virtue of the expansion is that the sum of all terms of the same total length
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Fig. 1.11 Approximation to a smooth dynam-
ics (left frame) by the skeleton of periodic
points, together with their linearized neigh-
borhoods, (right frame). Indicated are seg-
ments of two 1-cycles and a 2-cycle that alter-
nates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-
cycles, and then the other.
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n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section.

The calculation is now straightforward. We substitute a finite set of the
eigenvalues and lengths of the shortest prime cycles into the cycle expansion
(1.11), and obtain a polynomial approximationto 1/Z. We then vary z in (1.10)
and determine the escape rate y by finding the smallest z = e” for which (1.11)
vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you will find out that the
convergence is very impressive: only three input numbers (the two fixed points
0, 1 and the 2-cycle 10) already yield the pinball escape rate to 3-4 significant
digits! We have omitted an infinity of unstable cycles; so why does approxi-
mating the dynamics by a finite number of the shortest cycle eigenvalues work
so well?

The convergence of cycle expansions of dynamical zeta functions is a con-
sequence of the smoothness and analyticity of the underlying flow.  Intu-
itively, one can understand the convergence in terms of the geometrical picture
sketched in Fig. 1.11; the key observation is that the long orbits are shadowed
by sequences of shorter orbits.

A typical term in (1.11) is a difference of a long cycle {ab} minus its shad-
owing approximation by shorter cycles {a} and {b}

tap — tatp = tab(l - tatb/tab) =t (1 -

A
b ’ , (1.12)
AaAb

where a and b are symbol sequences of the two shorter cycles. If all orbits are
weighted equally (t, = z"), such combinations cancel exactly; if orbits of sim-
ilar symbolic dynamics have similar weights, the weights in such combinations
almost cancel.

This can be understood in the context of the pinball game as follows. Con-
sider orbits 0, 1 and 01. The first corresponds to bouncing between any two
disks while the second corresponds to bouncing successively around all three,
tracing out an equilateral triangle. The cycle 01 starts at one disk, say disk 2.
It then bounces from disk 3 back to disk 2 then bounces from disk 1 back to
disk 2 and so on, so its itinerary is 2321. In terms of the bounce types shown in
Fig. 1.6, the trajectory is alternating between 0 and 1. The incoming and outgo-
ing angles when it executes these bounces are very close to the corresponding
angles for 0 and 1 cycles. Also the distances traversed between bounces are
similar so that the 2-cycle expanding eigenvalue A g; is close in magnitude to
the product of the 1-cycle eigenvalues AgA;.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s state space in terms of cycle neighborhoods as
a tessellation (a tiling) of the dynamical system, with smooth flow approxi-
mated by its periodic orbit skeleton, each ‘tile’ centered on a periodic point,
and the scale of the ‘tile” determined by the linearization of the flow around
the periodic point, as illustrated by Fig. 1.11.
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The orbits that follow the same symbolic dynamics, such as {ab} and a
‘pseudo orbit’ {a}{b}, lie close to each other in state space; long shadowing
pairs have to start out exponentially close to beat the exponential growth in
separation with time. If the weights associated with the orbits are multiplica-
tive along the flow (for example, by the chain rule for products of derivatives)
and the flow is smooth, the term in parenthesis in (1.12) falls off exponentially
with the cycle length, and therefore the curvature expansions are expected to
be highly convergent.

1.6 Change in time

The above derivation of the dynamical zeta function formula for the escape
rate has one shortcoming; it estimates the fraction of survivors as a function
of the number of pinball bounces, but the physically interesting quantity is
the escape rate measured in units of continuous time. For continuous time
flows, the escape rate (1.2) is generalized as follows. Define a finite state space
region M such that a trajectory that exits M never reenters. For example, any
pinball that falls of the edge of a pinball table in Fig. 1.1 is gone forever. Start
with a uniform distribution of initial points. The fraction of initial x whose
trajectories remain within M at time t is expected to decay exponentially

Jy dxdy s(y - £1(x)) et
fde '

The integral over x starts a trajectory at every x € M. The integral over y tests
whether this trajectory is still in M at time t. The kernel of this integral

Ly.%) = 6(y - (%) (1.13)

is the Dirac delta function, as for a deterministic flow the initial point x maps
into a unique point y at time t. For discrete time, f"(x) is the nth iterate of the
map f. For continuous flows, f!(x) is the trajectory of the initial point x, and it
is appropriate to express the finite time kernel £t in terms of A, the generator
of infinitesimal time translations

() =

-Et — etﬂ ,

very much in the way the quantum evolution is generated by the Hamiltonian
H, the generator of infinitesimal time quantum transformations.

As the kernel £ is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as the evolution operator for a d-dimens-
ional map or a d-dimensional flow. 3

The number of periodic points increases exponentially with the cycle length
(in the case at hand, as 2"). As we have already seen, this exponential prolifer-
ation of cycles is not as dangerous as it might seem; as a matter of fact, all our
computations will be carried out in the n — oo limit. Though a quick look at
long-time density of trajectories might reveal it to be complex beyond belief,
this distribution is still generated by a simple deterministic law, and with some
luck and insight, our labeling of possible motions will reflect this simplicity.
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Fig. 1.12 The trace of an evolution operator
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If the rule that gets us from one level of the classification hierarchy to the next
does not depend strongly on the level, the resulting hierarchy is approximately
self-similar. We now turn such approximate self-similarity to our advantage,
by turning it into an operation, the action of the evolution operator, whose
iteration encodes the self-similarity.

1.6.1 Trace formula

In physics, when we do not understand something, we give it a name.
—Matthias Neubert

Recasting dynamics in terms of evolution operators changes everything. So
far our formulation has been heuristic, but in the evolution operator formalism
the escape rate and any other dynamical average are given by exact formu-
las, extracted from the spectra of evolution operators. The key tools are trace
formulas and spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.13) for £!(x, y) enables us to evaluate the trace. Identify y with x
and integrate x over the whole state space. The result is an expression for tr £t
as a sum over neighborhoods of prime cycles p and their repetitions

S S(t—rTy)
tr £t = ZT Z|det . ,\;r) , (1.14)

where T, is the period of prime cycle p, and the monodromy matrix M is
the flow-transverse part of Jacobian matrix J (1.4). This formula has a sim-
ple geometrical interpretation sketched in Fig. 1.12. After the rth return to
a Poincaré section, the initial tube M, has been stretched out along the ex-
panding eigen-directions, with the overlap with the initial volume given by
1/ |det(1 - M[,)| — 1/IApl, the same weight we obtained heuristically in Sec-
tion 1.5.1.

The “spiky” sum (1.14) is disquieting in the way reminiscent of the Pois-
son resummation formulas of Fourier analysis; the left-hand side is the smooth
eigenvalue sum tre”™ = ¥ e%!, while the right-hand side equals zero every-
where except for the sett = rT,. A Laplace transform smooths the sum
over Dirac delta functions in cycle periods and yields the trace formula for the
eigenspectrum S, S1, - - - Of the classical evolution operator:

o
~—+
D
0
s
=
Y
|
-
=
Il

(1.15)

The beauty of trace formulas lies in the fact that everything on the right-hand-
side—prime cycles p, their periods T , and the eigenvalues of M p—is an invariant
property of the flow, independent of any coordinate choice.
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1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities

d d 1
Elndet(s—ﬂ)_trﬁln(s—ﬂ)—trs_ﬂ,

and integrating over s. In this way the spectral determinant of an evolution
operator becomes related to the traces that we have just computed:

det (s — A) =exp{ Zi !

F‘det 1- M)

(1.16)

STpr
i (1.17)

The 1/r factor is due to the s integration, leading to the replacement T, —
Tp/rTp in the periodic orbit expansion (1.15).

We have now retraced the heuristic derivation of the divergent sum (1.7)
and the dynamical zeta function (1.10), but this time with no approximations:
formula (1.17) is exact. The computation of the zeros of det (s — A) proceeds
very much like the computations of Section 1.5.3.

1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of individual trajectories by evolution operators which prop-
agate densities feels like a bit of mathematical voodoo. Nevertheless, some-
thing very radical and deeply foundational has taken place. Understanding the
distinction between evolution of individual trajectories and the evolution of the
densities of trajectories is key to understanding statistical mechanics—this is the
conceptual basis of the second law of thermodynamics, and the origin of irre-
versibility of the arrow of time for deterministic systems with time-reversible
equations of motion: reversibility is attainable for distributions whose measure
in the space of density functions goes exponentially to zero with time.

Consider a chaotic flow, such as the stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure white and pure red; there
would be no pink. What is more, if we reversed the stirring, we would return
to the perfect white/red separation. However, that cannot be—in a very few
turns of the stirring stick the thickness of the layers goes from centimeters to
Angstréms, and the result is irreversibly pink.

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics,
and already at the level of a few degrees of freedom the evolution of densities
is irreversible. Furthermore, the theory that we shall develop here general-
izes notions of ‘measure’ and “averaging’ to systems far from equilibrium, and
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transports us into regions hitherto inaccessible with the tools of equilibrium
statistical mechanics.

By going to a description in terms of the asymptotic time evolution operators
we give up tracking individual trajectories for long times, but trade in the un-
controllable trajectories for a powerful description of the asymptotic trajectory
densities. This will enable us, for example, to give exact formulas for transport
coefficients such as the diffusion constants without any probabilistic assump-
tions. The classical Boltzmann equation for evolution of 1-particle density is
based on stosszahlansatz, neglect of particle correlations prior to, or after a
2-particle collision. It is a very good approximate description of dilute gas dy-
namics, but a difficult starting point for inclusion of systematic corrections. In
the theory developed here, no correlations are neglected - they are all included
in the cycle averaging formulas such as the cycle expansion for the diffusion
constant 2dD = limy_,« (x(T)2> /T of a particle diffusing chaotically across a
spatially-periodic array,

11 1)k+1 (ﬁpl +oot ﬁpk)z

D= —— Y i 1.18
2d (T){Z( IAp, - Ap,| (1.18)

where fi, is a translation along one period of a spatially periodic ‘runaway’
trajectory p. Such formulas are exact; the issue in their applications is what
are the most effective schemes of estimating the infinite cycle sums required
for their evaluation. Unlike most statistical mechanics, here there are no phe-
nomenological macroscopic parameters; quantities such as transport coeffi-
cients are calculable to any desired accuracy from the microscopic dynamics.

The concepts of equilibrium statistical mechanics do help us, however, to
understand the ways in which the simple-minded periodic orbit theory falters.
A non-hyperbolicity of the dynamics manifests itself in power-law correlations
and even ‘phase transitions.’

1.8 Chaos: what is it good for?

Happy families are all alike; every unhappy family is unhappy in its
own way.
— Anna Karenina, by Leo Tolstoy

With initial data accuracy 6x = |6x(0)| and system size L, a trajectory is pre-
dictable only up to the finite Lyapunov time (1.1), T Lyap A1 In|L/6X|. Be-
yond that, chaos rules. And so the most successful applications of ‘chaos the-
ory’ have so far been to problems where observation time is much longer than
a typical ‘turnover’ time, such as statistical mechanics, quantum mechanics,
and questions of long term stability in celestial mechanics, where the notion of
tracking accurately a given state of the system is nonsensical.

So what is chaos good for? Transport! Though superficially indistinguish-
able from the probabilistic random walk diffusion, in low dimensional settings
the deterministic diffusion is quite recognizable, through the fractal depen-
dence of the diffusion constant on the system parameters, and perhaps through
non-Gaussion relaxation to equilibrium (non-vanishing Burnett coefficients).
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. Fig. 1.13 (a) Washboard mean velocity, (b)
cold atom lattice diffusion, and (c) AFM tip

(c) velocity drag force. (Y. Lan)

Several tabletop experiments that could measure transport on macroscopic
scales are sketched in Fig. 1.13 (each a tabletop, but an expensive tabletop).
Figure 1.13 (a) depicts a ‘slanted washboard;’ a particle in a gravity field bounc-
ing down the washboard, losing some energy at each bounce, or a charged par-
ticle in a constant electric field trickling across a periodic condensed-matter
device. The interplay between chaotic dynamics and energy loss results in
a terminal mean velocity/conductance, a function of the washboard slant or
external electric field that the periodic theory can predict accurately. Fig-
ure 1.13(b) depicts a ‘cold atom lattice’ of very accurate spatial periodicity,
with a dilute cloud of atoms placed onto a standing wave established by strong
laser fields. Interaction of gravity with gentle time-periodic jiggling of the EM
fields induces a diffusion of the atomic cloud, with a diffusion constant pre-
dicted by the periodic orbit theory. Figure 1.13(c) depicts a tip of an atomic
force microscope (AFM) bouncing against a periodic atomic surface moving
at a constant velocity. The frictional drag experienced is the interplay of the
chaotic bouncing of the tip and the energy loss at each tip/surface collision,
accurately predicted by the periodic orbit theory. None of these experiments
have actually been carried out, (save for some numerical experimentation), but
are within reach of what can be measured today.

Given microscopic dynamics, periodic orbit theory predicts observable macro-
scopic transport quantities such as the washboard mean velocity, cold atom lat-
tice diffusion constant, and AFM tip drag force. But the experimental proposal
is sexier than that, and goes into the heart of dynamical systems theory.

Smale 1960s theory of the hyperbolic structure of the non-wandering set
(AKA “horseshoe’) was motivated by his “structural stability’ conjecture, which
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- in non-technical terms - asserts that all trajectories of a chaotic dynamical
system deform smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard in Fig. 1.13(a) is
easy to see for a cyclist. Take a trajectory which barely grazes the tip of one
of the groves. An arbitrarily small change in the washboard slope can result in
loss of this collision, change a forward scattering into a backward scattering,
and lead to a discontinuous contribution to the mean velocity. You might hold
out hope that such events are rare and average out, but not so - a loss of a
short cycle leads to a significant change in the cycle-expansion formula for a
transport coefficient, such as (1.18).

When we write an equation, it is typically parameterized by a set of param-
eters by as coupling strengths, and we think of dynamical systems obtained by
a smooth variation of a parameter as a ‘family.” We would expect measurable
predictions to also vary smoothly, i.e., be ‘structurally stable.”

But dynamical systems families are ‘families’ only in a name. That the
structural stability conjecture turned out to be badly wrong is, however, not a
blow for chaotic dynamics. Quite to the contrary, it is actually a virtue, perhaps
the most dramatic experimentally measurable prediction of chaotic dynamics.

As long as microscopic periodicity is exact, the prediction is counterintu-
itive for a physicist - transport coefficients are not smooth functions of system
parameters, rather they are non-monotonic, nowhere differentiable functions.
Conversely, if the macroscopic measurement yields a smooth dependence of
the transport on system parameters, the periodicity of the microscopic lattice is
degraded by impurities, and probabilistic assumptions of traditional statistical
mechanics apply. So the proposal is to —by measuring macroscopic transport—
conductance, diffusion, drag —observe determinism on nanoscales, and —for
example— determine whether an atomic surface is clean.

The signatures of deterministic chaos are even more baffling to an engineer:
a small increase of pressure across a pipe exhibiting turbulent flow does not
necessarily lead to an increase in the mean flow; mean flow dependence on
pressure drop across the pipe is also a fractal function.

Is this in contradiction with the traditional statistical mechanics? No - deter-
ministic chaos predictions are valid in settings where a few degrees of freedom
are important, and chaotic motion time and space scales are commensurate
with the external driving and spatial scales. Further degrees of freedom act as
noise that smooths out the above fractal effects and restores a smooth func-
tional dependence of transport coefficients on external parameters.

1.9 What is not in ChaosBook

There is only one thing which interests me vitally now, and that is
the recording of all that which is omitted in books. Nobody, as far
as | can see, is making use of those elements in the air which give
direction and motivation to our lives.

— Henry Miller, Tropic of Cancer

This book offers everyman a breach into a domain hitherto reputed unreach-
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able, a domain traditionally traversed only by mathematical physicists and
mathematicians. What distinguishes it from mathematics is the insistence
on computability and numerical convergence of methods offered. A rigorous
proof, the end of the story as far as a mathematician is concerned, might state
that in a given setting, for times in excess of 1032 years, turbulent dynamics
settles onto an attractor of dimension less than 600. Such a theorem is of a
little use to an honest, hard-working plumber, especially if her hands-on expe-
rience is that within the span of a few typical ‘turnaround’ times the dynamics
seems to settle on a (transient?) attractor of dimension less than 3. If rigor,
magic, fractals or brains is your thing, read Remark 1.4 and beyond.

So, no proofs! but lot of hands-on plumbing ahead.

Many a chapter alone could easily grow to a book size if unchecked: the
nuts and bolt of the theory include ODEs, PDEs, stochastic ODEs, path inte-
grals, group theory, coding theory, graph theory, ergodic theory, linear operator
theory, quantum mechanics, etc.. We include material into the text proper on
‘need-to-know’ basis, relegate technical details to appendices, and give point-
ers to further reading in the remarks at the end of each chapter.

Résumeé

This text is an exposition of the best of all possible theories of deterministic
chaos, and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses
on describing the geometry of the space of possible outcomes, and evaluating
averages over this space, rather than attempting the impossible: precise pre-
diction of individual trajectories. The dynamics of densities of trajectories is
described in terms of evolution operators. In the evolution operator formal-
ism the dynamical averages are given by exact formulas, extracted from the
spectra of evolution operators. The key tools are trace formulas and spectral
determinants.

The theory of evaluation of the spectra of evolution operators presented here
is based on the observation that the motion in dynamical systems of few de-
grees of freedom is often organized around a few fundamental cycles. These
short cycles capture the skeletal topology of the motion on a strange attrac-
tor/repeller in the sense that any long orbit can approximately be pieced to-
gether from the nearby periodic orbits of finite length. This notion is made
precise by approximating orbits by prime cycles, and evaluating the associ-
ated curvatures. A curvature measures the deviation of a longer cycle from its
approximation by shorter cycles; smoothness and the local instability of the
flow implies exponential (or faster) fall-off for (almost) all curvatures. Cy-
cle expansions offer an efficient method for evaluating classical and quantum
observables.

The critical step in the derivation of the dynamical zeta function was the
hyperbolicity assumption, i.e., the assumption of exponential shrinkage of all
strips of the pinball repeller. By dropping the a; prefactors in (1.5), we have
given up on any possibility of recovering the precise distribution of starting x
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(which should anyhow be impossible due to the exponential growth of errors),
but in exchange we gain an effective description of the asymptotic behavior of
the system. The pleasant surprise of cycle expansions (1.10) is that the infinite
time behavior of an unstable system is as easy to determine as the short time
behavior.

To keep the exposition simple we have here illustrated the utility of cycles
and their curvatures by a pinball game, but topics covered in ChaosBook — un-
stable flows, Poincaré sections, Smale horseshoes, symbolic dynamics, prun-
ing, discrete symmetries, periodic orbits, averaging over chaotic sets, evolution
operators, dynamical zeta functions, spectral determinants, cycle expansions,
quantum trace formulas, zeta functions, and so on to the semiclassical quanti-
zation of helium — should give the reader some confidence in the broad sway
of the theory. The formalism should work for any average over any chaotic set
which satisfies two conditions:

1. the weight associated with the observable under consideration is multi-
plicative along the trajectory,

2. the set is organized in such a way that the nearby points in the symbolic

dynamics have nearby weights.
The theory is applicable to evaluation of a broad class of quantities character-
izing chaotic systems, such as the escape rates, Lyapunov exponents, transport
coefficients and quantum eigenvalues. A big surprise is that the semi-classical
quantum mechanics of systems classically chaotic is very much like the clas-
sical mechanics of chaotic systems; both are described by zeta functions and
cycle expansions of the same form, with the same dependence on the topology
of the classical flow.
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But the power of instruction is seldom of much efficacy, except in
those happy dispositions where it is almost superfluous.

—Gibbon

Further reading

1.1 Nonlinear dynamicstexts. This text aims to bridge the
gap between the physics and mathematics dynamical systems
literature. The intended audience is Henri Roux, the perfect
physics graduate student with a theoretical bent who does not
believe anything he is told. As a complementary presenta-
tion we recommend Gaspard’s monograph [1.8] which covers
much of the same ground in a highly readable and scholarly
manner.

As far as the prerequisites are concerned—ChaosBook is not
an introduction to nonlinear dynamics. Nonlinear science re-
quires a one semester basic course (advanced undergraduate
or first year graduate). A good start is the textbook by Stro-
gatz [1.9], an introduction to the applied mathematician’s vi-
sualization of flows, fixed points, manifolds, bifurcations. It
is the most accessible introduction to nonlinear dynamics—a
book on differential equations in nonlinear disguise, and its
broadly chosen examples and many exercises make it a fa-
vorite with students. It is not strong on chaos.* There the text-
book of Alligood, Sauer and Yorke [1.10] is preferable: an el-
egant introduction to maps, chaos, period doubling, symbolic
dynamics, fractals, dimensions—a good companion to Chaos-
Book. Introduction more comfortable to physicists is the text-
book by Ott [1.11], with the baker’s map used to illustrate
many key techniques in analysis of chaotic systems. Ott is
perhaps harder than the above two as first books on nonlin-
ear dynamics. Sprott [1.12] and Jackson [1.13] textbooks are
very useful compendia of the *70s and onward ‘chaos’ litera-
ture which we, in the spirit of promises made in Section 1.1,
tend to pass over in silence.

An introductory course should give students skills in quali-
tative and numerical analysis of dynamical systems for short
times (trajectories, fixed points, bifurcations) and familiarize
them with Cantor sets and symbolic dynamics for chaotic sys-
tems. For the dynamical systems material covered here in
chapters 2 to 4, as well as for the in-depth study of bifurca-
tion theory we warmly recommend Kuznetsov [1.14]. A good
introduction to numerical experimentation with physically re-
alistic systems is Tufillaro, Abbott, and Reilly [1.15]. Ko-
rsch and Jodl [1.16] and Nusse and Yorke [1.17] also empha-
size hands-on approach to dynamics. With this, and a gradu-
ate level-exposure to statistical mechanics, partial differential
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equations and quantum mechanics, the stage is set for any of
the one-semester advanced courses based on ChaosBook.

1.2 ChaosBook based courses. The courses taught so far (for
a listing, consult ChaosBook.org/courses) start out with
the introductory chapters on qualitative dynamics, symbolic
dynamics and flows, and then continue in different directions:

Deterministic chaos. Chaotic averaging, evolution operators,
trace formulas, zeta functions, cycle expansions, Lyapunov
exponents, billiards, transport coefficients, thermodynamic
formalism, period doubling, renormalization operators. A
graduate level introduction to statistical mechanics from the
dynamical point view is given by Dorfman [1.18]; the Gas-
pard monograph [1.8] covers the same ground in more depth.
Driebe monograph [1.19] offers a nice introduction to the
problem of irreversibility in dynamics. The role of ‘chaos’
in statistical mechanics is critically dissected by Bricmont in
his highly readable essay *““Science of Chaos or Chaos in Sci-
ence?”” [1.20].

Spatiotemporal dynamical systems. Partial differential equa-
tions for dissipative systems, weak amplitude expansions,
normal forms, symmetries and bifurcations, pseudospectral
methods, spatiotemporal chaos, turbulence. Holmes, Lum-
ley and Berkooz [1.21] offer a delightful discussion of why
the Kuramoto-Sivashinsky equation deserves study as a stag-
ing ground for a dynamical approach to study of turbulence in
full-fledged Navier-Stokes boundary shear flows.

Quantum chaos. Semiclassical propagators, density of states,
trace formulas, semiclassical spectral determinants, billiards,
semiclassical helium, diffraction, creeping, tunneling, higher-
order 7 corrections. For further reading on this topic, consult
the quantum chaos part of ChaosBook . org.

1.3 Periodic orbit theory. This book puts more emphasis on
periodic orbit theory than any other current nonlinear dynam-
ics textbook. The role of unstable periodic orbits was already
fully appreciated by Poincaré [1.22, 23], who noted that hid-
den in the apparent chaos is a rigid skeleton, a tree of cycles
(periodic orbits) of increasing lengths and self-similar struc-
ture, and suggested that the cycles should be the key to chaotic
dynamics. Periodic orbits have been at core of much of the

intro - 9apr2009



24

mathematical work on the theory of the classical and quan-
tum dynamical systems ever since. We refer the reader to the
reprint selection [1.24] for an overview of some of that litera-
ture.

1.4 If you seek rigor? If you find ChaosBook not rig-
orous enough, you should turn to the mathematics literature.
We recommend Robinson’s advanced graduate level exposi-
tion of dynamical systems theory [1.25] from Smale perspec-
tive. The most extensive reference is the treatise by Katok
and Hasselblatt [1.26], an impressive compendium of mod-
ern dynamical systems theory. The fundamental papers in this
field, all still valuable reading, are Smale [1.27], Bowen [1.28]
and Sinai [1.29]. Sinai’s paper is prescient and offers a vision
and a program that ties together dynamical systems and sta-
tistical mechanics. It is written for readers versed in statisti-
cal mechanics. For a dynamical systems exposition, consult
Anosov and Sinai [1.30]. Markov partitions were introduced
by Sinai in Ref. [1.31]. The classical text (though certainly
not an easy read) on the subject of dynamical zeta functions
is Ruelle’s Statistical Mechanics, Thermodynamic Formal-
ism [1.32]. In Ruelle’s monograph transfer operator technique
(or the “Perron-Frobenius theory’) and Smale’s theory of hy-
perbolic flows are applied to zeta functions and correlation
functions. The status of the theory from Ruelle’s point of view
is compactly summarized in his 1995 Pisa lectures [1.33].
Further excellent mathematical references on thermodynamic
formalism are Parry and Pollicott’s monograph [1.34] with
emphasis on the symbolic dynamics aspects of the formalism,
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and Baladi’s clear and compact reviews of the theory of dy-
namical zeta functions [1.35, 36].

1.5 If you seek magic? ChaosBook resolutely skirts number-
theoretical magic such as spaces of constant negative curva-
ture, Poincaré tilings, modular domains, Selberg Zeta func-
tions, Riemann hypothesis, ... Why? While this beautiful
mathematics has been very inspirational, especially in studies
of quantum chaos, almost no powerful method in its repertoire
survives a transplant to a physical system that you are likely
to care about.

1.6 Sorry, no schmactals! ChaosBook skirts mathemat-
ics and empirical practice of fractal analysis, such as Haus-
dorff and fractal dimensions. Addison’s introduction to frac-
tal dimensions [1.37] offers a well-motivated entry into this
field. While in studies of probabilistically assembled fractals
such as diffusion limited aggregates (DLA) better measures of
‘complexity” are lacking, for deterministic systems there are
much better, physically motivated and experimentally measur-
able quantities (escape rates, diffusion coefficients, spectrum
of helium, ...) that we focus on here.

1.7 Rat brains? If you were wondering while reading this
introduction ‘what’s up with rat brains?’, the answer is yes
indeed, there is a line of research in neuronal dynamics that
focuses on possible unstable periodic states, described for ex-
ample in Refs. [1.38-41].
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A guide to exercises

God can afford to make mistakes. So can Dada!
—Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to
try to work through the essential exercises. As not to fragment the text, the
exercises are indicated by text margin boxes such as the one on this margin, and
collected at the end of each chapter. By the end of a (two-semester) course you
should have completed at least three small projects: (a) compute everything for
a 1-d repeller, (b) compute escape rate for a 3-disk game of pinball, (c) compute
a part of the quantum 3-disk game of pinball, or the helium spectrum, or if
you are interested in statistical rather than the quantum mechanics, compute a
transport coefficient. The essential steps are:

e Dynamics
(1) count prime cycles, Exercise 1.1, Exercise 9.6, Exercise 11.1
(2) pinball simulator, Exercise 8.1, Exercise 13.4
(3) pinball stability, Exercise 13.7, Exercise 13.4
(4) pinball periodic orbits, Exercise 13.5, Exercise 13.6
(5) helium integrator, Exercise 2.10, Exercise 13.11
(6) helium periodic orbits, Exercise 13.12
e Averaging, numerical
(1) pinball escape rate, Exercise 17.3
e Averaging, periodic orbits
(1) cycle expansions, Exercise 20.1, Exercise 20.2
(2) pinball escape rate, Exercise 20.4, Exercise 20.5
(3) cycle expansions for averages, Exercise 20.1, Exercise 22.3
(4) cycle expansions for diffusion, Exercise 25.1
(5) pruning, transition graphs, Exercise 15.6
(6) desymmetrization Exercise 21.1
(7) intermittency, phase transitions, Exercise 24.6

The exercises that you should do have underlined titles. The rest (smaller
type) are optional. Difficult problems are marked by any number of *** stars.
If you solve one of those, it is probably worth a publication.® Solutions to some
of the problems are available on ChaosBook.org. A clean solution, a pretty
figure, or a nice exercise that you contribute to ChaosBook will be gratefully
acknowledged. Often going through a solution is more instructive than reading
the chapter that problem is supposed to illustrate.
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26

Exercises

(1.1) 3-disk symbolic dynamics.

Exercises

As periodic trajectories
will turn out to be our main tool to breach deep into
the realm of chaos, it pays to start familiarizing oneself
with them now by sketching and counting the few short-
est prime cycles (we return to this in Section 15.4). Show
that the 3-disk pinball has 3 - 2"! itineraries of length
n. List periodic orbits of lengths 2, 3, 4, 5, ---. \erify
that the shortest 3-disk prime cycles are 12, 13, 23, 123,
132, 1213, 1232, 1323, 12123, ---. Try to sketch them.

(1.2) Sensitivity toinitial conditions. Assume that two pin-

ball trajectories start out parallel, but separated by 1
Angstrbm, and the disks are of radius a = 1 cm and
center-to-center separation R = 6 cm. Try to estimate
in how many bounces the separation will grow to the
size of system (assuming that the trajectories have been
picked so they remain trapped for at least that long). Es-
timate the Who’s Pinball Wizard’s typical score (number
of bounces) in a game without cheating, by hook or crook

(continued in Exercise 12.6)

6\We tend to list all source literature we found
a useful reading for a given chapter. Not all
of them are necessarily cited in the ‘Further
reading’ section.

(by the end of Chapter 20 you should be in position to
make very accurate estimates).
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Geometry of chaos

narrow; we keep the exposition focused on prerequisites to the applications

to be developed in this text. We assume that the reader is familiar with
dynamics on the level of the introductory texts mentioned in Remark 1.1, and
concentrate here on developing intuition about what a dynamical system can do. It
will be a coarse brush sketch—a full description of all possible behaviors of dynamical
systems is beyond human ken. While for a novice there is no shortcut through this
lengthy detour, a sophisticated traveler might bravely skip this well-trodden territory
and embark upon the journey at Chapter 15.

WE sTaRT ouT With a recapitulation of the basic notions of dynamics. Our aim is

The fate has handed you a flow. What are you to do about it?

(1) Define your dynamical system (M, f): the space of its possible states M, and
the law f! of their evolution in time.

(2) Pin it down locally—is there anything about it that is stationary? Try to determine
its equilibria /fixed points (Chapter 2).

(3) Slice it, represent as a map from a section to a section (Chapter 3).

(4) Explore the neighborhood by linearizing the flow—check the linear stability of
its equilibria / fixed points, their stability eigen-directions (Chapter 4).

(5) Go global: partition the state space of 1-d maps. Label the regions by symbolic
dynamics (Chapter 11).

(6) Now venture global distances across the system by continuing eigenvectors into
stable / unstable manifolds. Their intersections partition the state space in a
dynamically invariant way (Chapter 12).

(7) Guided by this topological partition, compute a set of periodic orbits up to a
given topological length (Chapter 13).

Along the way you might want to learn about dynamical invariants (Chapter 5), nonlin-
ear transformations (Chapter 6), classical mechanics (Chapter 7), billiards (Chapter 8),
and discrete (Chapter 9) and continuous (Chapter 10) symmetries of dynamics.






Go with the flow

Dynamical systems theory includes an extensive body of knowledge
about qualitative properties of generic smooth families of vector fields
and discrete maps. The theory characterizes structurally stable invari-
ant sets [...] The logic of dynamical systems theory is subtle. The
theory abandons the goal of describing the qualitative dynamics of all
systems as hopeless and instead restricts its attention to phenomena
that are found in selected systems. The subtlety comes in specifying
the systems of interest and which dynamical phenomena are to be an-
alyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanovi¢ and E.A. Spiegel)

e DEFINE @ dynamical system (M, f), classify its solutions as equilib-
W ria, periodic, and aperiodic, refine the “aperiodic’ into wandering
and non-wandering sets, decompose the non-wandering into chain-

recurrent sets, and illustrate various cases with concrete examples, the Rossler

and Lorenz systems.
W fast track
Chapter 16, p. 269

2.1 Dynamical systems

In a dynamical system we observe the world as it evolves with time. We ex-
press our observations as numbers and record how they change; given suffi-
ciently detailed information and understanding of the underlying natural laws,
we see the future in the present as in a mirror. The motion of the planets against
the celestial firmament provides an example. Against the daily motion of the
stars from East to West, the planets distinguish themselves by moving among
the fixed stars. Ancients discovered that by knowing a sequence of planet’s
positions—latitudes and longitudes—its future position could be predicted.

For the solar system, tracking the latitude and longitude in the celestial
sphere suffices to completely specify the planet’s apparent motion. All pos-
sible values for positions and velocities of the planets form the phase space
of the system. More generally, a state of a physical system, at a given instant
in time, can be represented by a single point in an abstract space called state
space M (mnemonic: curly ‘A’ for a “manifold’). As the system changes, so
does the representative point in state space. We refer to the evolution of such
points as dynamics, and the function f! which specifies where the representa-

2.1 Dynamical systems

2.2 Flows

2.3 Computing trajectories
Résumeée

Further reading

Exercises

References
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remark 2.1

chapter 12

()

Fig. 2.1 A trajectory traced out by the evo-
lution rule ft. Starting from the state space
point x, after a time t, the point is at f'(x).

Fig. 2.2 The evolution rule f'can be used to
map a region M of the state space into the
region fY{(M;).

32 CHAPTER 2. GO WITH THE FLOW

tive point is at time t as the evolution rule.

If there is a definite rule f that tells us how this representative point moves
in M, the system is said to be deterministic. For a deterministic dynamical
system, the evolution rule takes one point of the state space and maps it into
exactly one point. However, this is not always possible. For example, know-
ing the temperature today is not enough to predict the temperature tomorrow;
knowing the value of a stock today will not determine its value tomorrow. The
state space can be enlarged, in the hope that in a sufficiently large state space it
is possible to determine an evolution rule, so we imagine that knowing the state
of the atmosphere, measured over many points over the entire planet should be
sufficient to determine the temperature tomorrow. Even that is not quite true,
and we are less hopeful when it comes to stocks.

For a deterministic system almost every point has a unique future, so tra-
jectories cannot intersect. We say ‘almost’ because there might exist a set of
measure zero (tips of wedges, cusps, etc.) for which a trajectory is not defined.
We may think such sets a nuisance, but it is quite the contrary—-they will enable
us to partition state space, so that the dynamics can be better understood.

Locally, the state space M looks like RY, meaning that a dynamical evolu-
tion is an initial value problem, with d numbers sufficient to determine what
will happen time t later. Globally, it may be a more complicated manifold such
as a torus, a cylinder, or some other smooth geometric object. By manifold we
mean a smooth differentiable d-dimensional space which looks like R¢ only
locally, within the tangent space at any given state space point x € M. For
example, the state space of an autonomous Hamiltonian system the flow is
confined to a constant energy hyper-surface. When we need to stress that the
dimension d of M is greater than one, we may refer to the point x € M as x;
where i = 1,2,3,...,d. If the dynamics is described by a set of PDEs (par-
tial differential equations), the state space is the infinite dimensional function
space. The evolution rule f': M — M tells us where a point x is in M after a
time interval t.

The pair (M, f) constitute a dynamical system. ‘

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule f! can be differentiated as
many times as needed. Its action on a point x is sometimes indicated by f(x, t)
to remind us that f is really a function of two variables: the time and a point
in state space. Note that time is relative rather than absolute, so only the time
interval is necessary. This follows from the fact that a point in state
space completely determines all future evolution, and it is not necessary to
know anything else. The time parameter can be a real variable (t € R), in
which case the evolution is called a flow, or an integer (t € Z), in which case
the evolution advances in discrete steps in time, given by iteration of a map.
The evolution parameter need not be the physical time; for example, a time-
stationary solution of a partial differential equation is parameterized by spatial
variables. In such situations one talks of a ‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest
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themselves through their trajectories: given an initial point X, the evolution
rule traces out a sequence of points x(t) = f!(xo), the trajectory through the
point Xo = X(0). A trajectory is parameterized by the time t and thus belongs
to (f'(x),t) € M x R. By extension, we can also talk of the evolution of a
region M; of the state space: just apply f! to every point in M; to obtain a new
region f'(M;), as in Fig. 2.2.

Because f' is a single-valued function, any point of the trajectory can be
used to label the trajectory.

If we mark the trajectory by its initial point xq, we are describing it in the
Lagrangian coordinates.

The subset of points My, ¢ M that belong to the infinite-time trajectory of
a given point Xo is called the orbit of xo; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth contin-
uous curve; for a map, it is a sequence of points. “Trajectory” refers to a set
of points or a curve segment traced out by x(t) up to time instant t. “Orbit”
refers to the totality of states that can be reached from xq, with state space M
foliated into a union of such orbits (each My, labeled by a single point be-
longing to the set, xo = x(0) for example). Under time evolution a trajectory
segment is mapped into another trajectory segment, but points within an orbit
are only permuted; the orbit considered as a set is unchanged. Hence orbit is a
dynamically invariant notion.

The central idea of ChaosBook is to describe complicated, ergodic asymp-
totic, t — oo dynamics in terms of compact time-invariant sets or compact
orbits (equilibria, periodic orbits, invariant tori, - - -).

2.1.1 A classification of possible motions?

What are the possible trajectories? This is a grand question, and there are
many answers, the chapters to follow offering some. Here is the first attempt
to classify all possible trajectories:

stationary:  fY(x) = x for all t
periodic:  f'(x) = f*Te(x) for a given minimum period T,
aperiodic:  f(x) # f'(x) forallt#t" .

A periodic orbit (or a cycle) p is the set of points M, c M swept out by a
trajectory that returns to the initial point in a finite time. We refer to a point on
a periodic orbit as a periodic point, see Fig. 2.3. Periodic orbits form a very
small subset of the state space, in the same sense that rational numbers are a
set of zero measure on the unit interval.

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamics can also preserve
higher-dimensional smooth compact invariant manifolds; most commonly en-
countered are the M-dimensional tori of Hamiltonian dynamics, with notion of
periodic motion generalized to quasiperiodic (the superposition of M incom-
mensurate frequencies) motion on a smooth torus, and families of solutions
related by a continuous symmetry.

The ancients tried to make sense of all dynamics in terms of periodic mo-
tions, epicycles, integrable systems. The embarrassing truth is that for a generic
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Fig. 2.3 A periodic point returns to the initial
point after a finite time, x = fTp(x). Periodic
orbit p is the set of periodic points p = M, =
{X1, X2, - - -} swept out by the trajectory of any
one of them in the finite time Ty,.
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dynamical systems almost all motions are aperiodic. So we refine the classifi-
cation by dividing aperiodic motions into two subtypes: those that wander off,
and those that keep coming back.

A point x € M s called a wandering point, if there exists an open neighbor-
hood M, of x to which the trajectory never returns

fl) ¢ My forall t>tin. (2.1)

In physics literature, the dynamics of such state is often referred to as tran-
sient.

Wandering points do not take part in the long-time dynamics, so your first
task is to prune them from M as well as you can. What remains envelops the
set of the long-time trajectories, or the non-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity, and replace it by the notion of recurrence. A
point is recurrent or non-wandering if for any open neighborhood M g of x and
any time tmin there exists a later time t, such that

f{(x) € Mo. (2.2)

In other words, the trajectory of a non-wandering point reenters the neigh-
borhood M infinitely often. We shall denote by Q the non-wandering set
of f, i.e., the union of all the non-wandering points of M. The set Q, the
non-wandering set of f, is the key to understanding the long-time behavior of
a dynamical system; all calculations undertaken here will be carried out on
non-wandering sets.

So much about individual trajectories. What about clouds of initial points?
If there exists a connected state space volume that maps into itself under for-
ward evolution (and you can prove that by the method of Lyapunov function-
als, or several other methods available in the literature), the flow is globally
contracting onto a subset of M which we shall refer to as the attractor. The
attractor may be unique, or there can coexist any number of distinct attract-
ing sets, each with its own basin of attraction, the set of all points that fall
into the attractor under forward evolution. The attractor can be a fixed point
(a sink), a periodic orbit (a limit cycle), aperiodic, or any combination of the
above. The most interesting case is that of an aperiodic recurrent attractor,
to which we shall refer loosely as a strange attractor. We say ‘loosely’, as
will soon become apparent that diagnosing and proving existence of a genuine,
card-carrying strange attractor is a highly nontrivial undertaking; it requires ex-
plaining notions like “transitive” and “chain-recurrent” that we will be ready
to discuss only in Section 14.1.

Conversely, if we can enclose the non-wandering set Q by a connected state
space volume M, and then show that almost all points within Mg, but not in
Q, eventually exit My, we refer to the non-wandering set Q as a repeller. An
example of a repeller is not hard to come by-the pinball game of Section 1.3
is a simple chaotic repeller. Q, the non-wandering set of f, is the union of all
of the above, separately invariant sets: attracting/repelling fixed points, strange
attractors, repellers, etc..

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we have given up the an-
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cients’ fixation on periodic motions. Nothing could be further from truth. As
longer and longer cycles approximate more and more accurately finite seg-
ments of aperiodic trajectories, we shall establish control over non-wandering
sets by defining them as the closure of the union of all periodic points.

Before we can work out an example of a non-wandering set and get a better
grip on what chaotic motion might look like, we need to ponder flows in a little
more depth.

2.2 Flows

Knowing the equations and knowing the solution are two different
things. Far, far away.

— T.D. Lee

A flow is a continuous-time dynamical system. The evolution rule f tis a family
of mappings of M — M parameterized by t € R. Because t represents a time
interval, any family of mappings that forms an evolution rule must satisfy:

(@ %) =x (in 0 time there is no motion)
(b) fY(fY'(x)) = f¥*'(x) (the evolution law is the same at all times)
(c) the mapping (x,t) — ft(x) from M x R into M is continuous.

We shall often find it convenient to represent functional composition by ‘o =’
75 = flo £5 = fY(£9). (2.3)

The family of mappings f!(x) thus forms a continuous (forward semi-) group.
Why ‘semi-"group? It may fail to form a group if the dynamics is not re-
versible, and the rule ft(x) cannot be used to rerun the dynamics backwards
in time, with negative t; with no reversibility, we cannot define the inverse
fY(f{(x)) = f°(x) = x, in which case the family of mappings f!(x) does not
form a group. In exceedingly many situations of interest—for times beyond
the Lyapunov time, for asymptotic attractors, for dissipative partial differential
equations, for systems with noise, for non-invertible maps—the dynamics can-
not be run backwards in time, hence, the circumspect emphasis on semigroups.
On the other hand, there are many settings of physical interest, where dynam-
ics is reversible (such as finite-dimensional Hamiltonian flows), and where the
family of evolution maps f* does form a group.
For infinitesimal times, flows can be defined by differential equations. We

write a trajectory as

X(t+7) = f%7(x0) = f(f(Xo,1),7) (2.4)
and express the time derivative of a trajectory at point x(t),
dx .
e O F(f(%o0, 1), )20 = X(t). (2.5)
Tlr=0

as the time derivative of the evolution rule, a vector evaluated at the same point.
By considering all possible trajectories, we obtain the vector x(t) at any point
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Fig. 2.4 (a) The 2-d vector field for the Duff-
ing system (2.7), together with a short tra-
jectory segment. (b) The flow lines. Each
‘comet’ represents the same time interval of
a trajectory, starting at the tail and ending at
the head. The longer the comet, the faster the
flow in that region.
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Fig. 2.5 Lorenz “butterfly” strange attractor.
(J. Halcrow)
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x € M. This vector field is a (generalized) velocity field:
X(t) = v(x). (2.6)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar pro-
cedures for obtaining a set of differential equations for the vector field v(x)
that describes the evolution of a mechanical system. Equations of mechanics
may appear different in form from (2.6), as they are often involve higher time
derivatives, but an equation that is second or higher order in time can always
be rewritten as a set of first order equations.

We are concerned here with a much larger world of general flows, mechan-
ical or not, all defined by a time-independent vector field (2.6). At each point
of the state space a vector indicates the local direction in which the trajectory
evolves. The length of the vector [v(X)| is proportional to the speed at the point
X, and the direction and length of v(x) changes from point to point. When
the state space is a complicated manifold embedded in R¢, one can no longer
think of the vector field as being embedded in the state space. Instead, we have
to imagine that each point x of state space has a different tangent plane T My
attached to it. The vector field lives in the union of all these tangent planes, a
space called the tangent bundle T M.

Example 2.1 A 2d vector field v(x):
A simple example of a flow is afforded by the unforced Duffing system

X®) = y@®
y(t) —0.15y(t) + x(t) — x(t)°® (2.7)
plotted in Fig. 2.4. The velocity vectors are drawn superimposed over the configura-

tion coordinates (x(t), y(t)) of state space M, but they belong to a different space, the
tangent bundle T M.

The instantaneous velocity vector v is tangent to the trajectory, except at the
equilibrium points, where it vanishes.

If  v(xg) =0, (2.8)

Xq Is also referred to as a stationary, fixed, critical, invariant, rest, stagnation
point, zero of the vector field v, standing wave or steady state - our usage is
‘equilibrium’ for a flow, ‘fixed point’ for a map, and the trajectory remains
forever stuck at xq. Otherwise the trajectory passing through xg at time t = 0
can be obtained by integrating the equations (2.6):

X(t) = f'(X0) = Xo + j: drv(x(1)), x(0) = Xp. (2.9)

We shall consider here only autonomous flows, i.e., flows for which the veloc-
ity field v; is stationary, not explicitly dependent on time. A non-autonomous
system

dy
—= =w(y, 1), (2.10)
dr

can always be converted into a system where time does not appear explicitly.
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To do so, extend (“suspend”) state space to be (d + 1)-dimensional by defining
x = {y, 7}, with a stationary vector field

v(x) = [ W({’ 7 } . (2.11)

The new flow x = v(x) is autonomous, and the trajectory y(r) can be read off
X(t) by ignoring the last component of x.

Example 2.2 Lorenz strange attractor:
Edward Lorenz arrived at the equation

X oy -x)
X:v(x):l y | =| px—-y—-xz l (2.12)
z Xy — bz

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed oo = 10, b =
8/3, and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQy =
(0,0, 0) at the origin is attractive. At p = 1 it undergoes a pitchfork bifurcation into a
pair of equilibria at

Xeq,, = (£ yblo - 1), vb(o - 1),p - 1), (2.13)

We shall not explore the Lorenz flow dependence on the p parameter in what follows,
but here is a brief synopsis: the EQ, 1-d unstable manifold closes into a homoclinic
orbit at p = 13.56.... Beyond that, an infinity of associated periodic orbits are
generated, until p = 24.74 ..., where EQ; , undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
o = 10,b = 8/3,p = 28. For these parameter values the long-time dynamics is
confined to the strange attractor depicted in Fig. 2.5, and the positions of its equilibria
are marked in Fig. 9.3. (continued in Example 3.5)

Example 2.3 Rossler strange attractor:
The Duffing flow of Fig. 2.4 is bit of a bore—every trajectory ends up in one of the
two attractive equilibrium points. Let’s construct a flow that does not die out, but
exhibits a recurrent dynamics. Start with a harmonic oscillator

X=-y, y =X. (2.14)

The solutions are re', re7, and the whole x-y plane rotates with constant angular
velocity 6 = 1, period T = 2z. Now make the system unstable by adding

X=-y, y=Xx+ay, a>0, (2.15)
or, in radial coordinates, F = arsin’6, § = 1 + (a/2)sin20. The plane is still
rotating with the same average angular velocity, but trajectories are now spiraling
out. Any flow in the plane either escapes, falls into an attracting equilibrium point,
or converges to a limit cycle. Richer dynamics requires at least one more dimension.
In order to prevent the trajectory from escaping to co, kick it into 3rd dimension when
X reaches some value ¢ by adding

z=b+z(x-c), c>0. (2.16)

As X crosses ¢, z shoots upwards exponentially, z ~ %9, In order to bring it back,
start decreasing x by modifying its equation to

X=-y-1z.
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Fig. 2.6 A trajectory of the Rossler flow at
time t = 250. (G. Simon)
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38 CHAPTER 2. GO WITH THE FLOW

Large z drives the trajectory toward x = 0; there the exponential contraction by e
kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Rossler flow

X = -y-z
y = Xx+ay
= b+z(x-c), a=b=02, c=57 (2.17)

(for definitiveness, we fix the parameters a, b, ¢ in what follows). The system is as
simple as they get—it would be linear, were it not for the sole bilinear term zx. Even
for so ‘simple’ a system the nature of long-time solutions is far from obvious.

There are two repelling equilibrium points (2.8):

X, = (% + % 1 - 4ab/c?)(c,—c/a,c/a)

X- =~ (ab/c,—b/c,b/c), X; ~ (c,—c/a,c/a)
(x.,y_,z.) = (0.0070, —0.0351, 0.0351)
(X4, Y4,24) = (5.6929, —28.464, 28.464) (2.18)

One is close to the origin by construction. The other, some distance away, exists
because the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in Fig. 2.6 (see
also Fig. 11.10). Trajectories that start out sufficiently close to the origin seem to
converge to a strange attractor. We say ‘seem’ as there exists no proof that such an
attractor is asymptotically aperiodic—it might well be that what we see is but a long
transient on a way to an attractive periodic orbit. For now, accept that Fig. 2.6 and
similar figures in what follows are examples of ‘strange attractors.”  (continued in
Exercise 2.8 and Example 3.4) (R. PaSkauskas)

The Rossler flow is the simplest flow which exhibits many of the key as-
pects of chaotic dynamics; we shall use it and the 3-pinball (see Chapter 8)
systems throughout ChaosBook to motivate introduction of Poincaré sections,
return maps, symbolic dynamics, cycle expansions, and much else. Rdssler
flow is integrated in Exercise 2.7, its equilibria are determined in Exercise 2.8,
its Poincaré sections constructed in Exercise 3.1, and the corresponding re-
turn Poincaré map computed in Exercise 3.2. Its volume contraction rate is
computed in Exercise 4.3, its topology investigated in Exercise 4.4, the short-
est Rossler flow cycles are computed and tabulated in Exercise 13.10, and its

Lyapunov exponents evaluated in Exercise 17.4.
W fast track
Chapter 3, p. 45

2.3 Computing trajectories

On two occasions | have been asked [by members of Parliament],
’Pray, Mr. Babbage, if you put into the machine wrong figures, will
the right answers come out?” | am not able rightly to apprehend the
kind of confusion of ideas that could provoke such a question.

— Charles Babbage
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You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, you need to imple-
ment some finite time-step prescription for integration of the equations of mo-
tion (2.6). The simplest is the Euler integrator which advances the trajectory

by 67 x velocity at each time step:

Xi = Xi + Vi(X) ot.

(2.19)

This might suffice to get you started, but as soon as you need higher numerical
accuracy, you will need something better. There are many excellent reference
texts and computer programs that can help you learn how to solve differential
equations numerically using sophisticated numerical tools, such as pseudo-

spectral methods or implicit methods.

If a “sophisticated’ integration routine

exercise 2.6

takes days and gobbles up terabits of memory, you are using brain-damaged
high level software. Try writing a few lines of your own Runge-Kutta code in

some mundane everyday language. While you absolutely need to master the

exercise 2.7

requisite numerical methods, this is neither the time nor the place to expound

upon them; how you learn them is your business. And if you have developed

exercise 2.9

some nice routines for solving problems in this text or can point another student

to some, let us know.

Résumeé

exercise 2.10

Chaotic dynamics with a low-dimensional attractor can be visualized as a suc-
cession of nearly periodic but unstable motions. In the same spirit, turbulence
in spatially extended systems can be described in terms of recurrent spatiotem-
poral patterns. Pictorially, dynamics drives a given spatially extended sys-
tem through a repertoire of unstable patterns; as we watch a turbulent system
evolve, every so often we catch a glimpse of a familiar pattern. For any finite
spatial resolution and finite time the system follows approximately a pattern
belonging to a finite repertoire of possible patterns, and the long-term dynam-
ics can be thought of as a walk through the space of such patterns. Recasting

this image into mathematics is the subject of this book.

Further reading

2.1 ‘State space’ or ‘phase space? In this text we denote
by the term state space the set of admissible states of a
general d- or co-dimensional dynamical system, and reserve
the term phase space to Hamiltonian 2D-dimensional state
spaces, where D is the number of Hamiltonian degrees of
freedom. |If the state space is a continuous smooth mani-
fold much of the literature refers to it as ‘phase space,” but
we find the control engineering usage sharper: in the state

ChaosBook.org version13.5, Sep 7 2011

space (or ‘time-domain’) description of an autonomous phys-
ical system, the state of the system is represented as a vector
within the ‘state space,” space whose axes are the state vari-
ables, and the set of state variables is related by first-order
differential equations. The distinction made here is needed in
a text where one treats both general dynamical systems and
quantum-mechanical systems. The term ‘phase’ has a precise
meaning in wave mechanics, quantum mechanics and dynam-
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ics of integrable systems at the heart of Hamilton’s formu-
lation of Newtonian mechanics, while ‘state space’ is more
descriptive of the way the notion is used in the general theory
of dynamical systems. Further confusion arises when prefix
spatio- as in “‘spatiotemporal’ is used in reference to states ex-
tended in the (1, 2, or 3-dimensional) physical configuration
space. They may exhibit spatial wave-like behaviors, but their
state space is co-dimensional.

Much of the literature denotes the vector field in a first order
differential equation (2.6) by f(x) or F(x) or even X(x), and
its integral for time t by the ‘time-t forward map’ X(xo,t) =
D(Xo,t) or ¢¢(Xo) or something else. As we shall treat here
maps and flows on equal footing, and need to save Greek let-
ters for matters quantum-mechanical, we reserve the notation
f (x) for maps such as (2.9), and refer to a state space veloc-
ity vector field as v(x). We come to regret this choice very
far into the text, only by the time we delve into Navier-Stokes
equations.

2.2 Rosder and Duffing flows.  The Duffing system (2.7)
arises in the study of electronic circuits [2.1]. The Rossler
flow (2.17) is the simplest flow which exhibits many of the key
aspects of chaotic dynamics. It was introduced in Ref. [2.2] as
a set of equations describing no particular physical system, but
capturing the essence of Lorenz chaos in a simplest imagin-
able smooth flow. Otto Rdssler, a man of classical education,
was inspired in this quest by that rarely cited grandfather of
chaos, Anaxagoras (456 B.C.). This, and references to earlier
work can be found in Refs. [2.3-5]. We recommend in partic-
ular the inimitable Abraham and Shaw illustrated classic [2.6]
for its beautiful sketches of the Rdssler and many other flows.
Timothy Jones [2.7] has a number of interesting simulations
on a Drexel website.

2.3 Lorenz equation. The Lorenz equation (2.12) is the most
celebrated early illustration of “deterministic chaos” [2.8] (but
not the first - the honor goes to Dame Cartwright [2.9]).
Lorenz’s paper, which can be found in reprint collections
Refs. [2.10, 11], is a pleasure to read, and is still one of the
best introductions to the physics motivating such models. For
a geophysics derivation, see Rothman course notes [2.12].
The equations, a set of ODEs in R3, exhibit strange attrac-
tors [2.13-15]. Fragyland [2.16] has a nice brief discussion
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of Lorenz flow. Frgyland and Alfsen [2.17] plot many peri-
odic and heteroclinic orbits of the Lorenz flow; some of the
symmetric ones are included in Ref. [2.16]. Guckenheimer-
Williams [2.18] and Afraimovich-Bykov-Shilnikov [2.19] of-
fer in-depth discussion of the Lorenz equation. The most de-
tailed study of the Lorenz equation was undertaken by Spar-
row [2.20]. For a physical interpretation of p as “Rayleigh
number.” see Jackson [2.21] and Seydel [2.22]. Lorenz trun-
cation to 3 modes is so drastic that the model bears no re-
lation to the geophysical hydrodynamics problem that moti-
vated it. For a detailed pictures of Lorenz invariant manifolds
consult Vol 1l of Jackson [2.21]. Lorenz attractor is a very
thin fractal — as we saw, stable manifold thickness is of order
104 — whose fractal structure has been accurately resolved
by D. Viswanath [2.23, 24]. If you wander what analytic
function theory has to say about Lorenz, check Ref. [2.25].
Refs. [2.26, 27] might also be of interest. (continued in Re-
mark 9.2)

2.4 Diagnosing chaos. In Section 1.3.1 we have stated
that a deterministic system exhibits ‘chaos’ if its trajectories
are locally unstable (positive Lyapunov exponent) and glob-
ally mixing (positive entropy). In Section 17.3 we shall define
Lyapunov exponents, and discuss their evaluation, but already
at this point it would be handy to have a few quick numerical
methods to diagnose chaotic dynamics. Laskar’s frequency
analysis method [2.28] is useful for extracting quasi-periodic
and weakly chaotic regions of state space in Hamiltonian dy-
namics with many degrees of freedom. For pointers to other
numerical methods, see Ref. [2.29].

2.5 Dynamical systems software:  J.D. Meiss [2.30] has
maintained for many years Sci.nonlinear FAQ which is now
in part superseded by the SIAM Dynamical Systems web-
site www.dynamicalsystems.org. The website glossary
contains most of Meiss’s FAQ plus new ones, and a up-
to-date software list [2.31], with links to DSTool, xpp,
AUTO, etc.. Springer on-line Encyclopaedia of Mathemat-
ics maintains links to dynamical systems software packages
on eom.springer.de/D/d130210.htm. Kuznetsov [2.14] Ap-
pendix D.9 gives an exhaustive overview of software available
in 2004. (see also Remark 12.1)
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The exercises that you should do have underlined titles. The rest (smaller

type) are optional. Difficult problems are marked by any number of *** stars.

Exercises

(2.1) Trajectoriesdonot intersect. A trajectory in the state
space M is the set of points one gets by evolving x € M
forwards and backwards in time:

Ch={yeM: f(x)=y forteR}.
Show that if two trajectories intersect, then they are the
same curve.

(2.2) Evolution asagroup. The trajectory evolution f'isa

one-parameter semigroup, where (2.3)
fl+s — fl ° fs .

Show that it is a commutative semigroup.

In this case, the commutative character of the (semi-
)group of evolution functions comes from the commuta-
tive character of the time parameter under addition. Can
you think of any other (semi-)group replacing time?

(2.3) Almost ODE'’s.

(@) Consider the point x on R evolving according X =
e*. Is this an ordinary differential equation?

(b) Is x = x(x(t)) an ordinary differential equation?
(c) What about x = x(t + 1) ?

(2.4) All equilibrium points are fixed points. Show that
a point of a vector field v where the velocity is zero is a
fixed point of the dynamics f!.

(2.5) Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an

auxiliary function, the ‘potential’ ¢
X ==Vé(x)

where x € RY, and ¢ is a function from that space to the
reals R.

(a) Show that the velocity of the particle is in the di-
rection of most rapid decrease of the function ¢.

(b) Show that all extrema of ¢ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for the
system to reach an equilibrium point.
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(2.6)

@7

(2.8)

(2.9)

(d) Show that there are no periodic orbits in gradient
systems.

Runge-Kuttaintegration. Implement the fourth-
order Runge-Kutta integration formula (see, for example,
Ref. [2.32]) for x = v(X):

Xnp1 = xn+%+%+k—;+%+0(érs)
ki = o0tv(Xy), ko =0dtv(Xy+ki/2)
k3 = 0T V(Xn + k2/2)

ke = otv(X, +ks3).

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

Rossler flow.  Use the result of Exercise 2.6 or some
other integration routine to integrate numerically the
Rossler flow (2.17). Does the result look like a “strange
attractor’?

Equilibria of the Rossler flow.

(a) Find all equilibrium points (Xg,Yq,Zq) of the
Rdssler system (2.17). How many are there?

(b) Assume that b = a. As we shall see, some surpris-
ingly large, and surprisingly small numbers arise
in this system. In order to understand their size,
introduce parameters

e=a/c, D=1-4¢&, p* = (1+ VD)/2.

Express all the equilibria in terms of (c, €, D, p*).
Expand equilibria to the first order in e. Note that
it makes sense because fora =b = 0.2, ¢ = 5.7 in
(2.17), e = 0.03. (continued as Exercise 3.1)

(Rytis Paskauskas)

Can you integrate me? Integrating equations
numerically is not for the faint of heart. It is not al-
ways possible to establish that a set of nonlinear ordi-
nary differential equations has a solution for all times and
there are many cases were the solution only exists for a
limited time interval, as, for example, for the equation
x=x%, x(0)=1.
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(a) For what times do solutions of

X = x(x(1)

exist? Do you need a numerical routine to answer
this question?

(b) Let’s test the integrator you wrote in Exercise 2.6.
The equation X = —x with initial conditions x(0) =
2 and x = 0 has as solution x(t) = e'(1 + €?).
Can your integrator reproduce this solution for the
interval t € [0, 10]? Check you solution by plotting
the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

X+0.6X+x—[x+1=0,

which can be checked—numerically—to be chaotic.
As initial conditions we will always use X(0) =
X(0) = x(0) = 0. Can you reproduce the re-
sult x(12) = 0.8462071873 (all digits are signifi-
cant)? Even though the equation being integrated
is chaotic, the time intervals are not long enough
for the exponential separation of trajectories to be
noticeable (the exponential growth factor is ~ 2.4).

(d) Determine the time interval for which the solution
of x = x?, x(0) = 1 exists.

(2.10) Classical collinear helium dynamics.  In order to ap-

ply periodic orbit theory to quantization of helium we
shall need to compute classical periodic orbits of the he-

References

Exercises

lium system. In this exercise we commence their evalua-
tion for the collinear helium atom (7.6)
1, z2 Z 1

2 P> I I r+r '

1
H=§p§+

The nuclear charge for helium is Z = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics
can be visualized as a motion in the (ry, r,), r; > 0 quad-
rant. In (ry, r)-coordinates the potential is singular for
ri — 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in Section 6.3. In the transformed coor-
dinates (X1, X2, p1, P2) the Hamiltonian equations of mo-
tion take the form

- P% 2 %

Pr = 2Q [2 -5~ Q-+ @)]

. p2 2

P, = 2Q2[2—§1—Q§(1+%]

. 1 .1

Q = ZPng , Q2= ZPZQ% . (2.20)

where R = (Q? + Q3)'/2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of Exercise 2.6
(or whatever integration routine you like). A con-
venient way to visualize the 3—d state space orbit
is by projecting it onto the 2-d (r,(t), r2(t)) plane.
(continued as Exercise 3.4)

(Gregor Tanner, Per Rosenqvist)
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Discrete time dynamics

(R. Mainieri and P. Cvitanovic)

HE TIME PARAMETER IN the definition of a dynamical system can be either

I continuous or discrete (Section 2.1). Discrete time dynamical systems

arise naturally from flows; in the Poincaré section method one records

the coordinates of a trajectory whenever a special event happens. This trigger-

ing event can be as simple as vanishing of one of the coordinates, or as compli-

cated as the trajectory cutting through a curved hypersurface. No information

about the flow is lost by reducing it to the set of its Poincaré section points

and the return maps connecting them; the full space trajectory can always be
reconstructed by integration from the nearest point in the section.

Reduction of a continuous time flow to its Poincaré section is a powerful
visualization tool. But, as we shall see in Chapter 10, the method of sections
is much deeper than that - to fully unravel the geometry of a chaotic flow,
one has to reduce all of its symmetries, and evolution in time is one of these
symmetries.

3.1 Poincaré sections

Successive trajectory intersections with a Poincaré section, a (d — 1)-dimens-
ional hypersurface embedded in the d-dimensional state space M, Fig. 3.1,
define the Poincaré return map P(x), a (d — 1)-dimensional map of form

X =P(x) = (X)), X, XeP. (3.1)

Here the first return function r(x)-sometimes referred to as the ceiling function—
is the time of flight to the next section for a trajectory starting at x. The choice
of the section hypersurface # is altogether arbitrary. It is rarely possible to
define a single section that cuts across all trajectories of interest. In practice
one often needs only a local section—a finite hypersurface of codimension 1
intersected by a swarm of trajectories near to the trajectory of interest. The
hypersurface can be specified implicitly through a function U(x) that is zero
whenever a point x is on the Poincaré section,

xeP iff U(x)=0. (3.2)

The gradient of U(x) evaluated at x € P serves a two-fold function. First, the
flow should pierce the hypersurface P, rather than being tangent to it. A nearby
point x + 6x is in the hypersurface P if U(x + 6x) = 0. A nearby point on the
trajectory is given by 6x = vét, so a traversal is ensured by the transversality
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Fig. 3.1 A x(t) trajectory that intersects a
Poincaré section # at times t;,tp, t3,t4, and
closes a cycle (X1, X2, X3, Xa), Xk = X(t) € P
of topological length 4 with respect to this
section. Note that the intersections are not
normal to the section, and that the crossing
z does not count, as it in the wrong direction.
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12123 13132
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3 3

121212313 121212323

Fig. 3.2 Some examples of 3-disk cycles: (a)
12123 and 13132 are mapped into each other
by the flip across 1 axis. Similarly (b) 123
and 132 are related by flips, and (c) 1213,
1232 and 1323 by rotations. (d) The cycles
121212313 and 121212323 are related by ro-
tation and time reversal. These symmetries
are discussed in Chapter 9. (From Ref. [3.1])
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condition

0

d
(v-VU):JZ:;vj(x)@jU(X);&O, a,-U(x)=a—XjU(x), xeP. (33)

Second, the gradient VU defines the orientation of the hypersurface . The
flow is oriented as well, and a periodic orbit can pierce P twice, traversing it
in either direction, as in Fig. 3.1. Hence the definition of Poincaré return map
P(x) needs to be supplemented with the orientation condition

U(Xns1) =U(X,) =0, neZzZ*

d
Zvj(xn)ajU(xn) > 0.
j=1

Xn+1l = P(Xn) >

(3.4)

In this way the continuous time t flow x(t) = f!(x) is reduced to a discrete time
n sequence X, of successive oriented trajectory traversals of #.

With a sufficiently clever choice of a Poincaré section or a set of sections,
any orbit of interest intersects a section. Depending on the application, one
might need to convert the discrete time n back to the continuous flow time.
This is accomplished by adding up the first return function times 7(x;), with
the accumulated flight time given by
to = 0, Xn € P.

thir =th + T(Xn) s (35)

Other quantities integrated along the trajectory can be defined in a similar
manner, and will need to be evaluated in the process of evaluating dynamical
averages.

A few examples may help visualize this.

Example 3.1 Hyperplane #:
The simplest choice of a Poincaré section is a plane # specified by a point (located
at the tip of the vector rp) and a direction vector a perpendicular to the plane. A point
x is in this plane if it satisfies the condition

UXX)=(x—-rp)-a=0. (3.6)

Consider a circular periodic orbit centered at ro, but not lying in #. It pierces the
hyperplane twice; the (v - a) > 0 traversal orientation condition (3.4) ensures that the
first return time is the full period of the cycle. (continued in Example 12.1)

The above flat hyperplane is an ad hoc construct; one Poincaré section rarely
suffices to capture all of the dynamics of interest. A more insightful picture of
the dynamics is obtained by partitioning the state space into N qualitatively
distinct regions {Mzi, Ma, ..., My} and constructing a Poincaré section P per
region. The d-dimensional flow is thus reduced reduced to composition

Psyes,y © 0 0 Ps,es, 0 Ps g
of a set of (d—1)-dimensional maps
sef{l,2,..

Xn > Xnt1,

N} (3.7)

ChaosBook.org version13.5, Sep 7 2011

P5n+1‘_5n :

maps - 21mar2011



3.1. POINCARE SECTIONS 47

that map the coordinates of Poincaré section P, to those of P ,,, the next
section traversed by a given trajectory.
A return map P, from section P, to itself now has a contribution from any
admissible (i.e., there exist trajectories that traverse regions Mg, — M, —
- = M, — Ms, in the same temporal sequence) periodic sequence of
compositions

Psosi-sns = Psgesy 0= 0 Psyes; 0 Ps s (3.8)

The next example offers an unambiguous set of such Poincaré sections which
do double duty, providing us both with an exact representation of dynamics in
terms of maps, and with a covering symbolic dynamics, a subject that will will
return to in Chapter 11.

Example 3.2 Pinball game, Poincar é dissected.

A phase space orbit is fully specified by its position and momentum at a given

instant, so no two distinct phase space trajectories can intersect. The configuration
space trajectories, however, can and do intersect, in rather unilluminating ways, as
e.g. in Fig. 3.2(d), and it can be rather hard to perceive the systematics of orbits
from their configuration space shapes. The problem is that we are looking at the
projections of a 4-d state space trajectories onto a 2-d configuration subspace. A
much clearer picture of the dynamics is obtained by constructing a set of state space
Poincaré sections.
Suppose that the pinball has just bounced off disk 1. Depending on its position and
outgoing angle, it could proceed to either disk 2 or 3. Not much happens in between
the bounces—the ball just travels at constant velocity along a straight line—so we can
reduce the 4-d flow to a 2-d map Poyeo; that maps the coordinates (Poincaré section
Py) of the pinball from one disk edge to another.  Just after the moment of impact
the trajectory is defined by s,, the arc-length position of the nth bounce along the
billiard wall, and p, = psing, the momentum component parallel to the billiard
wall at the point of impact, Fig. 3.3. These coordinates (due to Birkhoff) are smart,
as they conserve the phase space volume. Trajectories originating from one disk can
hit either of the other two disks, or escape without further ado. We label the survivor
state space regions P, P13. In terms of the three Poincaré sections, one for each
disk, the dynamics is reduced to the set of six maps

Popircon = (Sns Pn) = (Snits Prst) » o€{1,2,3) (3.9)

from the boundary of the disk j to the boundary of the next disk k, Fig. 3.4. The
explicit form of this map is easily written down, see Chapter 8, but much more eco-
nomical is the symmetry quotiented version of Chapter 9 which replaces the above 6
maps by a return map pair Po, P;.

Embedded within P, P13 are four strips Pio1, Pioz, Pia1, Pise Of initial con-
ditions that survive two bounces, and so forth. Provided that the disks are suffi-
ciently separated, after n bounces the survivors are labeled by 2" distinct itineraries
J10203...00n.

Billiard dynamics is exceptionally simple - free flight segments, followed
by specular reflections at boundaries, thus billiard boundaries are the obvious
choice as Poincaré sections. What about smooth, continuous time flows, with
no obvious surfaces that would fix the choice of Poincaré sections?
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Fig. 3.3 Poincaré section coordinates for the
3-disk game of pinball.

psin O, \ (Sl’pl).
s \
p sin O, \ .
(S2.P5)
[ =

Y

[ ]
p sin Oy \ (S3:P3)

S3

Fig. 3.4 Collision sequence (si,p1) =
(s2,p2) +— (s3,p3) from the boundary of
a disk to the boundary of the next disk is
coded by the Poincaré sections maps se-
quence P32P2 1.
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Fig. 3.5 (Right:) a sequence of Poincaré sec-
tions of the Rossler strange attractor, defined
by planes through the z axis, oriented at an-
gles (a) —60° (b) 0°, (c) 60°, (d) 120°, in the
x-y plane. (Left:) side and x-y plane view of
a typical trajectory with Poincaré sections su-
perimposed. (R. PaSkauskas)
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Example 3.3 Pendulum:

The phase space of a simple pendulum is 2-d: momentum on the vertical axis and
position on the horizontal axis. We choose the Poincaré section to be the positive
horizontal axis. Now imagine what happens as a point traces a trajectory through
this phase space. As long as the motion is oscillatory, in the pendulum all orbits
are loops, so any trajectory will periodically intersect the line, that is the Poincaré
section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system plotted
in Fig. 2.4. Now every trajectory is an inward spiral, and the trajectory will intersect
the Poincaré section y = 0 at a series of points that get closer and closer to either of
the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a
piece of paper. The next example offers a better illustration of the utility of
visualization of dynamics by means of Poincaré sections.

Example 3.4 Rosder flow:

(continued from Example 2.3) Consider Fig. 2.6, a typical trajectory of the 3-d
Rossler flow (2.17). It wraps around the z axis, so a good choice for a Poincaré
section is a plane passing through the z axis. A sequence of such Poincaré sections
placed radially at increasing angles with respect to the x axis, Fig. 3.5, illustrates the
‘stretch & fold” action of the Rdssler flow, by assembling these sections into a series
of snapshots of the flow. A line segment in (a), traversing the width of the attractor
aty = 0, x > 0 section, starts out close to the x-y plane, and after the stretching (a) —
(b) followed by the folding (c) — (d), the folded segment returns (d) — (a) close to
the initial segment, strongly compressed. In one Poincaré return the interval is thus
stretched, folded and mapped onto itself, so the flow is expanding. It is also mixing,
as in one Poincaré return a point from the interior of the attractor can map onto the
outer edge, while an edge point lands in the interior.
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Once a particular Poincaré section is picked, we can also exhibit the return map (3.1),
as in Fig. 3.6. Cases (a) and (d) are examples of nice 1-to-1 return maps. However,
(b) and (c) appear multimodal and non-invertible, artifacts of projection of a 2—d
return map (ry,zn) — (rni1,Zns1) ONto a 1-d subspace r, — rpy;.  (continued in
Example 3.6)

W fast track
Section 3.3, p. 52

The above examples illustrate why a Poincaré section gives a more infor-
mative snapshot of the flow than the full flow portrait. For example, while the
full flow portrait of the Rossler flow Fig. 2.6 gives us no sense of the thickness
of the attractor, we see clearly in the Poincaré sections of Fig. 3.5 that even

though the return map is 2—d — 2-d, the flow contraction is so strong that for
all practical purposes it renders the return map 1-d.

3.1.1 What's the best Poincaré section?

In practice, picking sections is a dark and painful art, especially for high-dim-
ensional flows where the human visual cortex falls short. It helps to understand
why we need them in the first place.

Whenever a system has a continuous symmetry G, any two solutions related
by the symmetry are equivalent, so it would be stupid to keep recomputing
them over and over. We would rather replace the whole continuous family of
solutions by one.

A smart way to do would be to replace dynamics (M, f) by dynamics on
the quotient state space (M/G, f). We will discuss this in Chapter 9, but in
general constructing explicit quotient state space flow f appears either difficult,
or not appreciated enough to generate much readable literature, or perhaps
impossible. So one resorts to method of sections.

Time evolution itself is a 1-parameter abelian Lie group, albeit a highly
nontrivial one (otherwise this book would not be much of a doorstop). The
invariants of the flow are its infinite-time orbits; particularly useful invariants
are compact orbits such as equilibrium points, periodic orbits and tori. For any
orbit it suffices to pick a single state space point x € M,, the rest of the orbit
is generated by the flow and its symmetries.

Choice of this one point is utterly arbitrary; in dynamics this is called a
“Poincaré section,” and in theoretical physics this goes by the exceptionally un-
informative name of “gauge fixing.” The price is that one generates “ghosts,”
or, in dynamics, increases the dimensionality of the state space by additional
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Fig. 3.6 Return maps for the r, — ry.1 radial
distance Poincaré sections of Fig. 3.5. (R.

PaSkauskas)

chapter 9



Fig. 3.7 (a) Lorenz flow Fig. 2.5 cut by y = x
Poincaré section plane # through the z axis
and both EQ1 2 equilibria. Points where flow
pierces into section are marked by dots. To
aid visualization of the flow near the EQy
equilibrium, the flow is cut by the second
Poincaré section, #’, through y = —x and
the z axis. (b) Poincaré sections # and ¥
laid side-by-side. The singular nature of these
sections close to EQp will be elucidated in
Example 4.7 and Fig. 11.8 (b). (E. Siminos)
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EQ,

/ EQo P
& EQ

(@) (b)

constraints (see Section 13.4). It is a commonly deployed but inelegant proce-
dure where symmetry is broken for computational convenience, and restored
only at the end of the calculation, when all broken pieces are reassembled.

This said, there are a few rules of thumb to follow: (a) You can pick as
many sections as convenient. (b) For ease of computation, pick linear sec-
tions (3.6) if you can. (c) If equilibria play important role in organizing a flow,
pick sections that go through them (see Example 3.5). (c) If you have a global
discrete or continuous symmetry, pick sections left invariant by the symme-
try (see Example 9.10). (d) If you are solving a local problem, like finding
a periodic orbit, you do not need a global section. Pick a section or a set of
(multi-shooting) sections on the fly, requiring only that they are locally trans-
verse to the flow. (e) If you have another rule of thumb dear to you, let us
know.

Example 3.5 Sections of Lorenz flow:

(continued from Example 2.2) The plane # fixed by the x = y diagonal and the

z-axis depicted in Fig. 3.7 is a natural choice of a Poincaré section of the Lorenz flow
of Fig. 2.5, as it contains all three equilibria, Xeq, = (0,0, 0) and the (2.13) pair xgq, ,
Xeq,- A section has to be supplemented with the orientation condition (3.4): here
points where flow pierces into the section are marked by dots.
Xeq,, Xeq, are centers of out-spirals, and close to them the section to EQ, trajectories
pass the z-axis either by crossing the section % or staying on the viewer’s side. We
are free to deploy as many sections as we wish: in order to capture the whole flow
in this neighborhood we add the second Poincaré section, #, through the y = —x
diagonal and the z-axis. Together the two sections, Fig. 3.7 (b), capture the whole
flow near EQy. In contrast to Rossler sections of Fig. 3.5, these appear very singular.
We explain this singularity in Example 4.7, and postpone construction of a Poincaré
return map to Example 9.10. (E. Siminos and J. Halcrow)

3.2 Constructing a Poincaré section

For almost any flow of physical interest a Poincaré section is not available
in analytic form. We describe now a numerical method for determining a
Poincaré section.
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Consider the system (2.6) of ordinary differential equations in the vector
variable X = (X1, X2, ..., Xq)

dXi .
i Vi(x, 1), (3.10)

where the flow velocity v is a vector function of the position in state space x and
the time t. In general, v cannot be integrated analytically, so we will have to
resort to numerical integration to determine the trajectories of the system. Our
task is to determine the points at which the numerically integrated trajectory
traverses a given hypersurface. The hypersurface will be specified implicitly
through a function U(x) that is zero whenever a point x is on the Poincaré
section, such as the hyperplane (3.6).

If we use a tiny step size in our numerical integrator, we can observe the
value of U as we integrate; its sign will change as the trajectory crosses the
hypersurface. The problem with this method is that we have to use a very
small integration time step. In order to land exactly on the Poincaré section
one often interpolates the intersection point from the two trajectory points on
either side of the hypersurface. However, there is a better way.

Let t, be the time just before U changes sign, and ty, the time just after it
changes sign. The method for landing exactly on the Poincaré section will be
to convert one of the space coordinates into an integration variable for the part
of the trajectory between t, and t,. Using

dxe dx;  dxy

ks, S R Y = 11
I dt OIlel(x, t) = vk(x, 1) (3.11)
we can rewrite the equations of motion (3.10) as
dt 1 dxg vg
— = ..., 20 3.12
dxy V1 dx, Vi ( )

Now we use x; as the ‘time’ in the integration routine and integrate it from
X1(ta) to the value of x; on the hypersurface, determined by the hypersurface
intersection condition (3.6). This is the end point of the integration, with no
need for any interpolation or backtracking to the surface of section. The x 1—
axis need not be perpendicular to the Poincaré section; any x; can be chosen
as the integration variable, provided the xj-axis is not parallel to the Poincaré
section at the trajectory intersection point. If the section crossing is transverse
(3.3), v1 cannot vanish in the short segment bracketed by the integration step
preceding the section, and the point on the Poincaré section.

Example 3.6 Computation of Rossler flow Poincar é sections.
(continued from Example 3.4) Poincaré sections of Fig. 3.5 are defined by the fixing
angle U(x) = 8 — 6, = 0. Convert Rdssler equation (2.17) to cylindrical coordinates:
f = v =-zcosf+arsin’e
. z . a .
0 ve=1+FS|n9+§sm20
z = wv,=b+2z(rcosd-c). (3.13)

In principle one should use the equilibrium x, from (2.18) as the origin, and its
eigenvectors as the coordinate frame, but here original coordinates suffice, as for pa-
rameter values (2.17), and (Xo, Yo, Zo) sufficiently far away from the inner equilibrium,
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Fig. 3.8 A flow x(t) of Fig. 3.1 repre-
sented by a Poincaré return map that maps
points in the Poincaré section P as %41 =
f(xn) . In this example the orbit of x; is peri-
odic and consists of the four periodic points
(X1, X2, X3, X4).
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@ increases monotonically with time. Integrate

dr dt dz

@ =y /vy, @ =1/vy, @ = v, /vy (3-14)
from (ry, 6, z,) to the next Poincaré section at 6,,1, and switch the integration back
to (X, Y, z) coordinates. (continued in Example 4.1) (Radford Mitchell, Jr.)

3.3 Maps
Do it again!
—Ilsabelle, age 3

Though we have motivated discrete time dynamics by considering sections
of a continuous flow, there are many settings in which dynamics is inherently
discrete, and naturally described by repeated iterations of the same map

fiM—-> M,
or sequences of consecutive applications of a finite set of maps,
{fa, fB,...fz}:MHM, (315)

for example maps relating different sections among a set of Poincaré sections.
The discrete ‘time’ is then an integer, the number of applications of a map. As
writing out formulas involving repeated applications of a set of maps explicitly
can be awkward, we streamline the notation by denoting a map composition
by 501

fz(--- f5(fa(x)))--) = fz 0 -+ fg o fa(X), (3.16)

and the nth iterate of map f by
') =fof™(=1f("x), ) =x.
The trajectory of x is the finite set of points

{x £ (). P2(x)..... "9}

traversed in time n, and the orbit of x is the subset of all points of M that can
be reached by iterations of f. A periodic point (cycle point) xy belonging to a
periodic orbit (cycle) of period n is a real solution of

(%) = F(FC.. F(x)..) =xc, k=0,1,2,...,n—1. (3.17)

For example, the orbit of x; in Fig. 3.8 is the 4-cycle (X1, X2, X3, X4) .

The functional form of such Poincaré return maps P as Fig. 3.6 can be ap-
proximated by tabulating the results of integration of the flow from x to the
first Poincaré section return for many x € #, and constructing a function that
interpolates through these points. If we find a good approximation to P(x),
we can get rid of numerical integration altogether, by replacing the continuous
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time trajectory f(x) by iteration of the Poincaré return map P(x). Construct-
ing accurate P(x) for a given flow can be tricky, but we can already learn much
from approximate Poincaré return maps. Multinomial approximations

d d
Pk(X)=ak+2bijj+ZCkinin+..., XePp (318)
=1 i,j=1

to Poincaré return maps

Xn41 P1(Xn)

X2,n+l _ PZ(Xn) Xn Xn 1€ P
= s s An+

Xd,n+1 Pd(Xn)

motivate the study of model mappings of the plane, such as the H&non map.

Example 3.7 Hénon map:
The map

Xnp1 = 1—axt+by,
Yn+1 = Xn (319)

is a nonlinear 2-d map most frequently employed in testing various hunches about
chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence rela-
tion

o1 = 1 —ax? + Xy . (3.20)

An n-step recurrence relation is the discrete-time analogue of an nth order differen-
tial equation, and it can always be replaced by a set of n 1-step recurrence relations.
The Hénon map is the simplest map that captures the ‘stretch & fold’ dynamics s
of return maps such as Rossler’s, Fig. 3.5. It can be obtained by a truncation of a S
polynomial approximation (3.18) to a Poincaré return map (3.18) to second order. —
A quick sketch of the long-time dynamics of such a mapping (an example is depicted il
in Fig. 3.9), is obtained by picking an arbitrary starting point and iterating (3.19) on s 0.0 4 £ /
a computer. We plot here the dynamics in the (x,, Xn+1) plane, rather than in the y /
(Xn» Yn) plane, because we think of the Hénon map as a model return map %, — Xns1-
As we shall soon see, periodic orbits will be key to understanding the long-time =
dynamics, so we also plot a typical periodic orbit of such a system, in this case an ~ -1.5 I
unstable period 7 cycle. Numerical determination of such cycles will be explained in -1.5 0.0 1.5
Section 27.1, and the periodic point labels 0111010, 1110100, - - - in Section 12.2.

~ <
oot

0100111

Ke-1

Example 3.8 Lozi map:
Another example frequently employed is the Lozi map, a linear, ‘tent map’ version

of the Hénon map (3.19) given by
Fig. 3.9 The strange attractor and an unstable

Xos1 = 1—alX| + by, period 7 cycle of the Hénqn map (3.19) with
a = 1.4, b = 0.3. The periodic points in the
Yoer = Xn. (3.21) cycle are connected to guide the eye. (from
K.T. Hansen [3.2])
Though not realistic as an approximation to a smooth flow, the Lozi map is a very  exercise 3.5
helpful tool for developing intuition about the topology of a large class of maps of

the “stretch & fold’ type.
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What we get by iterating such maps is—at least qualitatively—not unlike what
we get from Poincaré section of flows such as the Rossler flow Fig. 3.6. For
an arbitrary initial point this process might converge to a stable limit cycle,
to a strange attractor, to a false attractor (due to roundoff errors), or diverge.
In other words, mindless iteration is essentially uncontrollable, and we will
need to resort to more thoughtful explorations. As we shall explain in due
course, strategies for systematic exploration rely on stable/unstable manifolds,
periodic points, saddle-straddle methods and so on.

Example 3.9 Parabola:

For sufficiently large value of the stretching parameter a, one iteration of the Hénon

map (3.19) stretches and folds a region of the (x, y) plane centered around the origin.
The parameter a controls the amount of stretching, while the parameter b controls

the thickness of the folded image through the ‘1-step memory’ term bx,_; in (3.20).
In Fig. 3.9 the parameter b is rather large, b = 0.3, so the attractor is rather thick, with

the transverse fractal structure clearly visible.  For vanishingly small b the Hénon

map reduces to the 1-d quadratic map

Xne1 = 1 —axt. (3.22)

By setting b = 0 we lose determinism, as on reals the inverse of map (3.22) has two
preimages {x;_;, x._,} for most x,. If Bourbaki is your native dialect: the Hénon map
is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still,

this 1-d approximation is very instructive. (continued in Example 11.5)

As we shall see in Section 11.3, an understanding of 1-d dynamics is in-
deed the essential prerequisite to unraveling the qualitative dynamics of many
higher-dimensional dynamical systems. For this reason many expositions of
the theory of dynamical systems commence with a study of 1-d maps. We
prefer to stick to flows, as that is where the physics is.

Résumeé

In recurrent dynamics a trajectory exits a region in state space and then reen-
ters it infinitely often, with a finite mean return time. If the orbit is periodic, it
returns after a full period. So, on average, nothing much really happens along
the trajectory—what is important is behavior of neighboring trajectories trans-
verse to the flow. This observation motivates a replacement of the continuous
time flow by iterative mapping, the Poincaré return map.

The visualization of strange attractors is greatly facilitated by a felicitous
choice of Poincaré sections, and the reduction of flows to Poincaré return
maps. This observation motivates in turn the study of discrete-time dynam-
ical systems generated by iterations of maps.

A particularly natural application of the Poincaré section method is the re-
duction of a billiard flow to a boundary-to-boundary return map, described in
Chapter 8. As we shall show in Chapter 6, further simplification of a Poincaré
return map, or any nonlinear map, can be attained through rectifying these
maps locally by means of smooth conjugacies.

In truth, as we shall see in Chapter 10, the reduction of a continuous time
flow by the method of Poincaré sections is much deeper than that - to make
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sense of an ergodic flow, all of its continuous symmetries must be reduced,

evolution in time being one of these symmetries.

Further reading

3.1 Determining a Poincaré section. The trick described in
Section 3.2 is due to Hénon [3.3-5]. The idea of changing the
integration variable from time to one of the coordinates, al-
though simple, avoids the alternative of having to interpolate
the numerical solution to determine the intersection.

3.2 Hénon, Lozi maps. The Hénon map is of no particular
physical import in and of itself-its significance lies in the
fact that it is a minimal normal form for modeling flows near
a saddle-node bifurcation, and that it is a prototype of the
stretching and folding dynamics that leads to deterministic
chaos. It is generic in the sense that it can exhibit arbitrarily
complicated symbolic dynamics and mixtures of hyperbolic
and non-hyperbolic behaviors. Its construction was motivated
by the best known early example of ‘deterministic chaos’, the
Lorenz equation, see Example 2.2 and Remark 2.3.

Hénon’s and Lorenz’s original papers can be found in reprint
collections Refs. [3.7,8]. They are a pleasure to read, and are
still the best introduction to the physics motivating such mod-
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els. The rigorous proof of the existence of Hénon attractor
is due to Benedicks and Carleson [3.9]. A detailed descrip-
tion of the dynamics of the Hénon map is given by Mira and
coworkers [3.10-12], as well as very many other authors.
The Lozi map [3.13] is particularly convenient in investigat-
ing the symbolic dynamics of 2—d mappings. Both the Lorenz
and Lozi systems are uniformly smooth systems with singu-
larities. The existence of the attractor for the Lozi map was
proven by M. Misiurewicz [3.14], and the existence of the
SRB measure was established by L.-S. Young [3.15].

3.3 Grasshoppersvs. butterflies. The ’sensitivity to initial
conditions’ was discussed by Maxwell, then 30 years later by
Poincaré. In weather prediction, the Lorentz’” ‘Butterfly Ef-
fect’ started its journey in 1898, as a ‘Grasshopper Effect’ in
a book review by W. S. Franklin [3.16]. In 1963 Lorenz as-
cribed a “seagull effect’ to an unnamed meteorologist, and in
1972 he repackaged it as the ‘Butterfly Effect’.
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Exercises

Exercises

(CR)

3.2

3.3)

Poincar € sections of the Rossler flow.

(continuation of Exercise 2.8) Calculate numerically a
Poincaré section (or several Poincaré sections) of the
Rossler flow. As the Rossler flow state space is 3D, the
flow maps onto a 2D Poincaré section. Do you see that
in your numerical results? How good an approximation
would a replacement of the return map for this section by
a 1-d map be? More precisely, estimate the thickness of
the strange attractor. (continued as Exercise 4.4)

(R. PaSkauskas)

A return Poincaré map for the Rossler flow.  (con-
tinuation of Exercise 3.1) That Poincaré return maps
of Fig. 3.6 appear multimodal and non-invertible is an
artifact of projections of a 2-d return map (R,,z,) —
(Rn+1,Zn41) ONto a 1-d subspace R, — Rp.1.

Construct a genuine s, = f(s,) return map by parame-
trazing points on a Poincaré section of the attractor
Fig. 3.5 by a Euclidean length s computed curvilinearly

(3.4)

(3.5)

with dt/ds = «, and choosing « to be 1 or 1/f;.
This allows one to switch between t and x; as the
integration ’time.’
(b) Introduce an extra dimension X, into your system
and set
Xne1 = U(X). (3.24)

How can this be used to find a Poincaré section?

Classical collinear helium dynamics.
(continuation of Exercise 2.10) Make a Poincaré surface
of section by plotting (r;, p1) whenever r, = 0: Note that
forr, = 0, p, is already determined by (7.6). Compare
your results with Fig. 6.3 (b).

(Gregor Tanner, Per Rosenqvist)

Hénon map fixed points. Show that the two fixed
points (Xo, Xo), (X1, X1) of the H&non map (3.19) are given
by

~(1-b)- JI-BF+4a

along the attractor section. Xo a
This is best done (using methods to be developed in what ~(1-b)+ (1-DbZ+4a
follows) by a continuation of the unstable manifold of the X1 = a .

1-cycle embedded in the strange attractor, Fig. 13.2 (b).
(P. Cvitanovic)

Arbitrary Poincaré sections.  We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equation U(x) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

%:ka,

i (3.23)

References

(3.6)

Fixed points of maps. A continuous function F is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity of F to show that a 1-d contrac-
tion F of the interval [0, 1] has at least one fixed
point.

(b) In a uniform (hyperbolic) contraction the slope of
F is always smaller than one, |F’| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?

[3.1] P. Cvitanovi€, B. Eckhardt, P. E. Rosenqgvist, G. Russberg and P. Scherer,
“Pinball Scattering,” in G. Casati and B. Chirikov, eds., Quantum Chaos
(Cambridge U. Press, Cambridge 1993).
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Local stability 4

(R. Mainieri and P. Cvitanovic)

.. . . .. 4.1 Flowstransport neighborhoods
So FAR We have concentrated on description of the trajectory of a single ini- ® g

4.2 Linear flows

4.3 Stability of flows

4.4 Neighborhood volume
4.5 Stability of maps

tial point. Our next task is to define and determine the size of a neighbor-
hood of x(t). We shall do this by assuming that the flow is locally smooth,
and describe the local geometry of the neighborhood by studying the flow lin-
earized around x(t). Nearby points aligned along the stable (contracting) di- > 2
rections remain in the neighborhood of the trajectory x(t) = f {(xo); the onesto ~ Resume
keep an eye on are the points which leave the neighborhood along the unsta- ~ Further reading
ble directions. As we shall demonstrate in Chapter 18, in hyperbolic systems ~ Exercises
what matters are the expanding directions. The repercussion are far-reaching: ~ References
As long as the number of unstable directions is finite, the same theory applies
to finite-dimensional ODEs, state space volume preserving Hamiltonian flows,
and dissipative, volume contracting infinite-dimensional PDEs.

4.1 Flows transport neighborhoods o

4

As a swarm of representative points moves along, it carries along and distorts
neighborhoods. The deformation of an infinitesimal neighborhood is best un-
derstood by considering a trajectory originating near xo = x(0) with an initial
infinitesimal displacement 6x(0), and letting the flow transport the displace-
ment 5x(t) along the trajectory x(Xo,t) = f'(xo).

41.1 Instantaneous shear

The system of linear equations of variations for the displacement of the in-
finitesimally close neighbor x + 6x follows from the flow equations (2.6) by
Taylor expanding to linear order

. : 0Vi
Xi + O0Xi = Vi(X + 6X) ~ Vi(X) + Z a—x'éxj .
j

The infinitesimal displacement 6x is thus transported along the trajectory x(x, t),
with time variation given by

d _ 0Vj
%00 = Z ax ¥

As both the displacement and the trajectory depend on the initial point x and
the time t, we shall often abbreviate the notation to x(xo,t) — x(t) — X,

0Xj(Xo,1). (4.1)

X=X(Xo,t)

59
62
66
70
71
74
74
75
76
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Fig. 4.1 A swarm of neighboring points of
X(t) is instantaneously sheared by the action
of the stability matrix A - a bit hard to draw.

Fig. 4.2 The Jacobian matrix J* maps an in-
finitesimal displacement at X into a displace-
ment rotated and sheared by the linearized
flow Jacobian matrix J*(x) finite time t later.

60 CHAPTER 4. LOCAL STABILITY

oXi(Xo, t) = 6xi(t) — 6x in what follows. Taken together, the set of equations

i =vi(0), 0% = > A0 (4.2)
j

governs the dynamics in the tangent bundle (x,6x) € TM obtained by ad-
joining the d-dimensional tangent space 6x € T My to every point x € M in
the d-dimensional state space M c RY. The stability matrix (velocity gradients
matrix)
ovi(x)

8Xj
describes the instantaneous rate of shearing of the infinitesimal neighborhood
of x(t) by the flow, Fig. 4.1.

Aij(x) = (4.3)

Example 4.1 Rosser and Lorenz flows, linearized:
(continued from Example 3.6) For the Rdssler (2.17) and Lorenz (2.12) flows the
stability matrices are, respectively

0o -1 -1 - o 0
Aross=| 1 a 0 , Ao=| p-z -1 x |. (4.4)
z 0 x-c y X —b

(continued in Example 4.6)

4.1.2 Linearized flow
Taylor expanding a finite time flow to linear order,

Ot (x
( 0)(5xj+~-~, (4.5)
XOj

fl(Xo + 0x) = f1(xo) + Z 5

one finds that the linearized neighborhood is transported by

oxi(t)
6Xj

Sx(t) = J'(x0)d%o » Jij(x0) = (4.6)

X=Xo

This Jacobian matrix is sometimes referred to as the fundamental solution ma-
trix or simply fundamental matrix, a name inherited from the theory of linear
ODEs. It is also sometimes called the Fréchet derivative of the nonlinear map-
ping f'(x). It is often denoted Df, but for our needs (we shall have to sort
through a plethora of related Jacobian matrices) matrix notation J is more eco-
nomical. J describes the deformation of an infinitesimal neighborhood at finite
time t in the co-moving frame of x(t).

As this is a deformation in the linear approximation, one can think of it as a
deformation of an infinitesimal sphere enveloping x into an ellipsoid around
X(t), described by the eigenvectors and eigenvalues of the Jacobian matrix of
the linearized flow, Fig. 4.2. Nearby trajectories separate along the unstable
directions, approach each other along the stable directions, and change their
distance along the marginal directions at a rate slower than exponential, corre-
sponding to the eigenvalues of the Jacobian matrix with magnitude larger than,
smaller than, or equal 1. In the literature adjectives neutral or indifferent are
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often used instead of ‘marginal,” (attracting) stable directions are sometimes
called “asymptotically stable,” and so on.

One of the preferred directions is what one might expect, the direction of the
flow itself. To see that, consider two initial points along a trajectory separated
by infinitesimal flight time t: 6xo = f°(Xg) — Xo = V(Xo)ét. By the semigroup
property of the flow, f*°! = 9%t where

ot+t

o (xo) = drv(x(1)) + fY(xo) = stv(x(t)) + (o).
0

Expanding both sides of f!(f%(xo)) = f°(f'(xo)), keeping the leading term in
ot, and using the definition of the Jacobian matrix (4.6), we observe that J t(xo)
transports the velocity vector at X to the velocity vector at x(t) at time t:

v(x(1) = 3'(x0) V(o). (4.7)

In nomenclature of page 60, the Jacobian matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinate frame.

The velocity at point x(t) in general does not point in the same direction
as the velocity at point xg, so this is not an eigenvalue condition for J¢; the
Jacobian matrix computed for an arbitrary segment of an arbitrary trajectory
has no invariant meaning.

As the eigenvalues of finite time J* have invariant meaning only for periodic
orbits, we postpone their interpretation to Chapter 5. However, already at this
stage we see that if the orbit is periodic, x(T,) = x(0), at any point along cycle
p the velocity v is an eigenvector of the Jacobian matrix J, = J™ with a unit
eigenvalue,

Jp(X)v(X) = v(X), XeM,. (4.8)

Two successive points along the cycle separated by 6xo have the same sepa-
ration after a completed period 6x(T p) = 5Xo, see Fig. 4.3, hence eigenvalue
1.

As we started by assuming that we know the equations of motion, from
(4.3) we also know stability matrix A, the instantaneous rate of shear of an
infinitesimal neighborhood 6x;(t) of the trajectory x(t). What we do not know
is the finite time deformation (4.6).

Our next task is to relate the stability matrix A to Jacobian matrix Jt. On the
level of differential equations the relation follows by taking the time derivative
of (4.6) and replacing 6x by (4.2)

Sx(t) = J'6x0 = Adx(t) = AJ6xo.
Hence the d? matrix elements of Jacobian matrix satisfy ‘tangent linear equa-
tions,” the linearized equations (4.1)
d - .
a‘]t(XO) = A(X) J'(xo), initial condition J%(xp) = 1. (4.9)

Given a numerical routine for integrating the equations of motion, evaluation
of the Jacobian matrix requires minimal additional programming effort; one
simply extends the d-dimensional integration routine and integrates concur-
rently with f'(x) the d? elements of J*(xo).
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Fig. 4.3 Any two points along a periodic orbit
p are mapped into themselves after one cycle
period T, hence a longitudinal displacement
6x = V(Xp)at is mapped into itself by the cycle
Jacobian matrix Jp.
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The qualifier ‘simply” is perhaps too glib. Integration will work for short
finite times, but for exponentially unstable flows one quickly runs into numer-
ical over- and/or underflow problems, so further thought will have to go into
implementation this calculation.

So now we know how to compute Jacobian matrix J! given the stability
matrix A, at least when the d? extra equations are not too expensive to compute.

Mission accomplished.
W fast track
Chapter 7, p. 103

And yet... there are mopping up operations left to do. We persist until
we derive the integral formula (4.37) for the Jacobian matrix, an analogue of
the finite-time “Green function” or “path integral” solutions of other linear
problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a
sufficiently small neighborhood it is essentially linear. Hence the next section,
which might seem an embarrassment (what is a section on linear flows doing
in a book on nonlinear dynamics?), offers a firm stepping stone on the way
to understanding nonlinear flows. If you know your eigenvalues and eigen-

vectors, you may prefer to fast forward here.
W fast track
Section 4.3, p. 66

4.2 Linear flows

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described by linear differential
equations which can be solved explicitly, with solutions that are good for all
times. The state space for linear differential equations is M = RY, and the
equations of motion (2.6) are written in terms of a vector x and a constant
stability matrix A as

X = V(X) = AX. (4.10)

Solving this equation means finding the state space trajectory

X(1) = (xa(t), x2(t), ..., Xa(t))

passing through the point x. I x(t) is a solution with x(0) = xo and y(t) another
solution with y(0) = yo, then the linear combination ax(t) + by(t) witha,b e R
is also a solution, but now starting at the point axo + byp. At any instant in
time, the space of solutions is a d-dimensional vector space, which means that
one can find a basis of d linearly independent solutions.

How do we solve the linear differential equation (4.10)? If instead of a
matrix equation we have a scalar one, x = Ax, the solution is

x(t) = e"xo . (4.11)

stability - 27jun2011 ChaosBook.org version13.5, Sep 7 2011



4.2. LINEAR FLOWS 63

In order to solve the d-dimensional matrix case, it is helpful to rederive the
solution (4.11) by studying what happens for a short time step 6t. If at time
t = 0 the position is x(0), then
x(6t) — x(0)
ot

which we iterate m times to obtain Euler’s formula for compounding interest

- x(0) (4.12)

X(t) ~ (1 + %/l)m X(0). (4.13)

The term in parentheses acts on the initial condition x(0) and evolves it to x(t)
by taking m small time steps 6t = t/m. As m — oo, the term in parentheses
converges to e't. Consider now the matrix version of equation (4.12):

x(6t) — x(0)

——— = AX(0). (4.14)

A representative point x is now a vector in R¢ acted on by the matrix A, as in
(4.10). Denoting by 1 the identity matrix, and repeating the steps (4.12) and
(4.13) we obtain Euler’s formula for the exponential of a matrix:

m
x(t) = I'x©), It =e" = lim (1+ %A) . (4.15)
m—oo
We will find this definition the exponential of a matrix helpful in the general
case, where the matrix A = A(x(t)) varies along a trajectory.

How do we compute the exponential (4.15)?
W fast track
Section 4.3, p. 66

Example 4.2 Jacobian matrix eigenvalues, diagonalizable case:
Should we be so lucky that A = Ap happens to be a diagonal matrix with eigenvalues
(AD, 2@ 1) the exponential is simply

e“(l) . 0
Jt=eto = [ ] ) (4.16)

0 co. gu®@
Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings

it to a diagonal form Ap = U~1AU. Then J can also be brought to a diagonal form
(insert factors 1 = UU~! between the terms of the product (4.15)):

Jt=g" = UeoUt. 4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of J!, and under the flow the neigh-
borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
axis.

We recapitulate the basic facts of linear algebra in Appendix 29. A 2d
example serves well to highlight the most important types of linear flows:
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Fig. 4.4 Qualitatively distinct types of expo-
nents of a [2x2] Jacobian matrix.
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Example 4.3 Linear stability of 2-d flows:
For a 2-d flow the eigenvalues 1, 2@ of A are either real, leading to a linear motion
along their eigenvectors, x;(t) = x;(0) exp(ta), or a form a complex conjugate pair
AV = p+iw,A? = y—iw, leading to a circular or spiral motion in the [, X] plane.

These two possibilities are refined further into sub-cases depending on the signs of
the real part. In the case A1 > 0, 1® < 0, x; grows exponentially with time, and
X, contracts exponentially. This behavior, called a saddle, is sketched in Fig. 4.5, as
are the remaining possibilities: in/out nodes, inward/outward spirals, and the center.
The magnitude of out-spiral |x(t)| diverges exponentially when x > 0, and in-spiral
contracts into (0, 0) when the u < 0, whereas the phase velocity w controls its oscil-
lations.

If eigenvalues AV = 1@ = A are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a) A
can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [d, xd,] block
there is only one eigenvector per block.

We sketch the full set of possibilities in Figs. 4.5 and 4.4, and work out in detail the
most important cases in Appendix 29, Example B.3.

4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symbol Ak will always denote the kth eigenvalue (in
literature sometimes referred to as the multiplier) of the finite time Jacobian
matrix J'. Symbol A% will be reserved for the kth Floquet or characteristic
exponent, or characteristic value, with real part 4 ® and phase w®:

Ay = e = gtl®+io®) (4.18)

J(xo) depends on the initial point xo and the elapsed time t. For notational
brevity we tend to omit this dependence, but in general

A = Ax = A(Xo 1), 2= A0 (x0,1), w = w®(xo,1),--- etc.,

depend on both the trajectory traversed and the choice of coordinates.

However, as we shall see in Section 5.2, if the stability matrix A or the Jaco-
bian matrix J is computed on a flow-invariant set M, such as an equilibrium
q or a periodic orbit p of period T p,

Ag=A(Xg),  Ip(¥)=3"(X), xeM,, (4.19)
(x is any point on the cycle) its eigenvalues
AP = 29(xq), Apk = Au(x, Tp)

are flow-invariant, independent of the choice of coordinates and the initial
point in the cycle p, so we label them by their g or p label.
We number eigenvalues Ak in order of decreasing magnitude

A1l > Azl > ... > |Agl. (4.20)
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Since |Aj| = e%”, this is the same as labeling by
u(l) > #(2) >... 2> u(d). (4.21)

In dynamics the expanding directions, |A¢| > 1, have to be taken care of first,
while the contracting directions |A¢| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

W fast track
Section 4.3, p. 66

4.2.2 Singular value decomposition

In general J' is neither diagonal, nor diagonalizable, nor constant along the
trajectory. As any matrix with real elements, J! can be expressed in the singular
value decomposition (SVD) form

J=UDV' (4.22)

where D is diagonal and real, and U, V are orthogonal matrices. unique up to
permutations of rows and columns. The diagonal elements o1, 03, ..., o7q 0f D
are called the singular values of J, namely the square root of the eigenvalues
of JTJ = VD?VT (or JJT = UD?UT), which is a symmetric, positive semi-
definite matrix (and thus admits only real, non-negative eigenvalues).

Singular values {c-j} are not related to the J' eigenvalues {A j} in any simple
way. From a geometric point of view, when all singular values are non-zero, J
maps the unit sphere into an ellipsoid, Fig. 4.2: the singular values are then the
lengths of the semiaxes of this ellipsoid. Note however that the eigenvectors
of J7J that determine the orientation of the semiaxes are distinct from the J
eigenvectors {1}, and that JTJ satisfies no semigroup property (see (4.38))
along the flow. For this reason the J eigenvectors {e()} are sometimes called
‘covariant’ or ‘covariant Lyapunov vectors’, in order to emphasize the distinc-
tion between them and the singular value decomposition semiaxes directions.

Eigenvectors / eigenvalues are suited to study of iterated forms of a matrix,
such as J¥ or exponentials exp(tA), and are thus a natural tool for study of
dynamics. Singular vectors are not. They are suited to study of J itself, and the
singular value decomposition is convenient for numerical work (any matrix,
square or rectangular, can be brought to this form), as a way of estimating the
effective rank of matrix J by neglecting the small singular values.

Example 4.4 Singular valuesand geometry of deformations:

Suppose we are in three dimensions, and J is not singular, so that the diagonal ele-
ments of D in (4.22) satisfy oy > 0, > 03 > 0, and consider how J maps the unit ball
S = {x € R®|¥* = 1}. V is orthogonal (rotation/reflection), so V'S is still the unit
sphere: then D maps S onto ellipsoid S = {y € R®|y2/o2+y3/03+y3/03 = 1} whose
principal axes directions - y coordinates - are determined by V). Finally the ellipsoid
is further rotated by the orthogonal matrix U. The local directions of stretching and
their images under J are called the right-hand and left-hand singular vectors for J and
are given by the columns in VV and U respectively: it is easy to check that Jv = o Uy,
if v, Uy are the k-th columns of V and U.
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Henri Roux: So, computing eigenvalues and eigenvectors seems like a good
thing. But how do you really do it?
A: Economical description of neighborhoods of equilibria and periodic orbits
is afforded by projection operators of Appendix ??. The requisite linear al-
gebra is standard, but usually not phrased in language of projection operators.
As this is a bit of sidetrack that you will find confusing at the first go, it is
relegated here to Appendix 29.

Now that we have some feeling for the qualitative behavior of eigenvectors
and eigenvalues of linear flows, we are ready to return to the nonlinear case.

4.3 Stability of flows

How do you determine the eigenvalues of the finite time local deformation J*
for a general nonlinear smooth flow? The Jacobian matrix is computed by
integrating the equations of variations (4.2)

X(t) = f'(x0), 6x(Xo,t) = J'(Xo) 6X(Xo,0). (4.23)

The equations are linear, so we should be able to integrate them-but in order
to make sense of the answer, we derive this integral step by step.

4.3.1 Stability of equilibria

For a start, consider the case where x is an equilibrium point (2.8). Expanding
around the equilibrium point x4, using the fact that the stability matrix A =
A(Xg) in (4.2) is constant, and integrating,

f1(X) = Xq +M(X = Xg) + -+ -, (4.24)

we verify that the simple formula (4.15) applies also to the Jacobian matrix of
an equilibrium point,

JH(xq) = e, Aq = A(Xq) . (4.25)

Example 4.5 In-out spirals.
Consider an equilibrium whose Flogquet exponents {A®, 1@} = {u + iw, u — iw) form
a complex conjugate pair. The corresponding complex eigenvectors can be replaced
by their real and imaginary parts, {e?, e?} — {Ree®, Ime®}. The 2-d real repre-

sentation (?7?),
u —w 10 0 -1
((u u )z“(o 1)“"(1 0 )
consists of the identity and the generator of SO(2) rotations in the {Re &V, Im e}
plane. Trajectories x(t) = J'x(0), where (omitting €%, €, - . . eigen-directions)

Jt_ ghat _ etM(cos wt  —sin a)t) ,

sin wt  cos wt (4.26)

spiral in/out around (x,y) = (0, 0), see Fig. 4.5, with the rotation period T, and con-
traction/expansion radially by the multiplier Asagiai, and by the multiplier A; along
the € eigen-direction per a turn of the spiral:

T=2r/w, Awga=e", Aj=e™’. (4.27)
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We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x,y) = (0,0) is of order ~ T (and not, let us say, 1000 T, or 10-2T). A;j multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane.

Example 4.6 Stability of equilibria of the Rossler flow.

(continued from Example 4.1) The Rosler system (2.17) has two equilibrium points
(2.18), the inner equilibrium (x_,y-,z_), and the outer equilibrium point (x*,y*, z*).
Together with their exponents (eigenvalues of the stability matrix) the two equilibria
yield quite detailed information about the flow. Figure 4.6 shows two trajectories
which start in the neighborhood of the outer ‘+’ equilibrium. Trajectories to the
right of the equilibrium point ‘+’ escape, and those to the left spiral toward the inner
equilibrium point ‘—’, where they seem to wander chaotically for all times. The sta-
ble manifold of outer equilibrium point thus serves as the attraction basin boundary.
Consider now the numerical values for eigenvalues of the two equilibria

@, u® + iw?) = (-5.686, 0.0970 + 10.9951)
@, u? £ i0P)= (01929, -4.596x10° +i5.428)

Outer equilibrium: The 1@ + i w® complex eigenvalue pair implies that that neigh-

borhood of the outer equilibrium point rotates with angular period T, ~ |27r/w(f) =
1.1575. The multiplier by which a trajectory that starts near the ‘+” equilibrium point
contracts in the stable manifold plane is the excrutiatingly slow AJ ~ exp(pE,Z)L) =
0.9999947 per rotation. For each period the point of the stable manifold moves away
along the unstable eigen-direction by factor A} = exp(/u(f)TJ,) = 1.2497. Hence the
slow spiraling on both sides of the ‘+’ equilibrium point.

Inner equilibrium: The 1@+ i w® complex eigenvalue pair tells us that neighborhood
of the ‘-’ equilibrium point rotates with angular period T_ = |27r/a)(,2)| = 6.313,
slightly faster than the harmonic oscillator estimate in (2.14). The multiplier by
which a trajectory that starts near the ‘-’ equilibrium point spirals away per one
rotation is Apadial * exp(p(,z)T_) = 1.84. The ,u(,l) eigenvalue is essentially the
z expansion correcting parameter ¢ introduced in (2.16). For each Poincaré section
return, the trajectory is contracted into the stable manifold by the amazing factor of
Ay ~ exp(uVT_) = 107155 (1).

Suppose you start with a 1 mm interval pointing in the A; eigen-direction. After
one Poincaré return the interval is of order of 10~ fermi, the furthest we will get
into subnuclear structure in this book. Of course, from the mathematical point of
view, the flow is reversible, and the Poincaré return map is invertible. (continued in
Example 11.3) (R. Paskauskas)

(4.28)

Example 4.7 Stability of Lorenz flow equilibria:

(continued from Example 4.1) A glance at Fig. 3.7 suggests that the flow is orga-
nized by its 3 equilibria, so lets have a closer look at their stable/unstable manifolds.
The EQq equilibrium stability matrix (4.4) evaluated at xeq, = (0,0,0) is block-
diagonal. The z-axis is an eigenvector with a contracting eigenvalue A® = —b. From
(4.42) it follows that all [x, y] areas shrink at rate —(o-+1). Indeed, the [x, y] submatrix

A :( ‘p" j’l ) (4.29)

has a real expanding/contracting eigenvalue pair A4 = —(o+1)/2+ /(o — 1)2/4 + po,

with the right eigenvectors &9, €2 in the [x, y] plane, given by (either) column of the
projection operator

A -1 1 —o— A0 o
A0 20 T 0 20 p —1-0
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exercise 4.4
exercise 2.8

Fig. 46 Two trajectories of the Rossler
flow initiated in the neighborhood of the
‘+” or ‘outer’ equilibrium point (2.18).
(R. PaSkauskas)

remark 9.10



Fig. 4.7 (a) A perspective view of the lin-
earized Lorenz flow near EQ; equilibrium,
see Fig. 3.7(a). The unstable eigenplane of
EQ; is spanned by Ree? and Imel)). The
stable eigenvector €. (b) Lorenz flow near
the EQp equilibrium: unstable eigenvector
eD, stable eigenvectors €2, e®. Trajec-
tories initiated at distances 1078 ... 10712,
10~13 away from the z-axis exit finite distance
from EQq along the (Y, el) eigenvectors
plane. Due to the strong A} expansion, the
EQp equilibrium is, for all practical purposes,
unreachable, and the EQ; — EQq hetero-
clinic connection never observed in simula-
tions such as Fig. 2.5. (E. Siminos; continued
in Fig. 11.8.)
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EQ;, equilibria have no symmetry, so their eigenvalues are given by the roots of a
cubic equation, the secular determinant det (A — A1) = 0:

2B+ +b+1)+Ab(o+p)+20b(p-1)=0. (4.31)

For p > 24.74, EQ,, have one stable real eigenvalue and one unstable complex
conjugate pair, leading to a spiral-out instability and the strange attractor depicted in
Fig. 2.5.

As all numerical plots of the Lorenz flow are here carried out for the Lorenz param-
eter choice oo = 10,b = 8/3,p = 28, we note the values of these eigenvalues for
future reference,

EQo: (AW, 1®,20)
EQ:: (U + iw®W, A0)

(11.83, - 2.666,
(0.094 +i10.19,

~22.83)

-13.85), (4.32)

as well as the rotation period Teq, = 27r/_w(1) about EQq, and the associated expan-
sion/contraction multipliers A® = exp(u("Tgq,) per a spiral-out turn:

Teq, = 0.6163, (A, A®) = (1.060,1.957 x 1074). (4.33)

We learn that the typical turnover time scale in this problem is of order T ~ Tgq, ~ 1
(and not, let us say, 1000, or 10-2). Combined with the contraction rate (4.42), this
tells us that the Lorenz flow strongly contracts state space volumes, by factor of
~ 10~* per mean turnover time.
In the EQ, neighborhood the unstable manifold trajectories slowly spiral out, with
very small radial per-turn expansion multiplier A® ~ 1.06, and very strong contrac-
tion multiplier A® ~ 10~* onto the unstable manifold, Fig. 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2-d surface evident in
the section Fig. 3.7.
In the xgq, = (0,0,0) equilibrium neighborhood the extremely strong A® =~ -23
contraction along the €2 direction confines the hyperbolic dynamics near EQ, to
the plane spanned by the unstable eigenvector &Y, with A® ~ 12, and the slow-
est contraction rate eigenvector €2 along the z-axis, with A® ~ —3. In this plane
the strong expansion along €V overwhelms the slow 1® ~ —3 contraction down
the z-axis, making it extremely unlikely for a random trajectory to approach EQy,
Fig. 4.7 (b). Thus linearization suffices to describe analytically the singular dip in the
Poincaré sections of Fig. 3.7, and the empirical scarcity of trajectories close to EQy.
(continued in Example 4.9)

(E. Siminos and J. Halcrow)
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Example 4.8 Lorenz flow: Global portrait.

(continued from Example 4.7) As the EQ; unstable manifold spirals out, the strip
that starts out in the section above EQ, in Fig. 3.7 cuts across the z-axis invariant
subspace. This strip necessarily contains a heteroclinic orbit that hits the z-axis head
on, and in infinite time (but exponentially fast) descends all the way to EQy.

How? As in the neighborhood of the EQ, equilibrium the dynamics is linear (see
Fig. 4.7 (a)), there is no need to integrate numerically the final segment of the hete-
roclinic connection - it is sufficient to bring a trajectory a small distance away from
EQo, continue analytically to a small distance beyond EQy, then resume the numer-
ical integration.

What happens next? Trajectories to the left of z-axis shoot off along the €V direction,
and those to the right along —€V). As along the € direction xy > 0, the nonlinear
term in the z equation (2.12) bends both branches of the EQ, unstable manifold
WY(EQo) upwards. Then ... - never mind. Best to postpone the completion of this
narrative to Example 9.10, where the discrete symmetry of Lorenz flow will help
us streamline the analysis. As we shall show, what we already know about the 3
equilibria and their stable/unstable manifolds suffices to completely pin down the
topology of Lorenz flow. (continued in Example 9.10)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary trajectory x(t). The expo-
nential of a constant matrix can be defined either by its Taylor series expansion,
or in terms of the Euler limit (4.15):

© ik
éA=Z%k (4.34)
k=0
. t \™
= lim(1+—=A) . (4.35)
m—oo m

Taylor expanding is fine if A is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for
the task at hand, as for a dynamical system the local rate of neighborhood
distortion A(x) depends on where we are along the trajectory. The linearized
neighborhood is multiplicatively deformed along the flow, and the m discrete
time step approximationto Jt is therefore given by a generalization of the Euler
product (4.35):

1 1
t B _ I St A(Xn)
J_AQHWWMMﬂmne (4.36)
n=m n=m
— lim eétA(xn)eétA(xm_l) . eét A(xz)eét A(X1) ,
m—oo

where 6t = (t —tp)/m, and X, = X(to + nét). Slightly perverse indexing of the
products indicates that the successive infinitesimal deformation are applied by
multiplying from the left. The two formulas for J! agree to leading order in
6t, and the m — oo limit of this procedure is the integral

) = [Teb ] (4.37)
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where T stands for time-ordered integration, defined as the continuum limit of
the successive left multiplications (4.36).  This integral formula for J is the
main conceptual result of this chapter.

It makes evident important properties of Jacobian matrices, such as that they
are multiplicative along the flow,

IH(x) = 37 (x') I(x), where X’ = fi{(xo), (4.38)

an immediate consequence of time-ordered product structure of (4.36). How-
ever, in practice J is evaluated by integrating (4.9) along with the ODEs that

define a particular flow.
i in depth:
ﬂ Section 17.3, p. 293

4.4 Neighborhood volume

Consider a small state space volume AV = d%x centered around the point X, at
time t = 0. The volume AV’ around the point x” = X(t) time t later is
AV
AV
so the |det J| is the ratio of the initial and the final volumes. The determinant
det J'(xq) = H?zl Ai(Xo, t) is the product of the Floquet multipliers. We shall
refer to this determinant as the Jacobian of the flow. This Jacobian is easily
evaluated. Take the time derivative, use the J evolution equation (4.9) and the
matrix identity Indet J = tr In J:

d d d 1.

—InAV(t) = —In =tr—InJ=tr=J=trA =9v;.

m () T detJ trgnd=t3J=t AV
(Here, as elsewhere in this book, a repeated index implies summation.) Inte-
grate both sides to obtain the time evolution of an infinitesimal volume

AV’

AV = ’det %—’;' AV = |det J(xo)'| AV, (4.39)

o0=en| [ reno] e [y
det J*(xo) = exp [fo drtr A(x(r))| = exp fodra.v.(x(r)) . (4.40)

As the divergence djv; is a scalar quantity, the integral in the exponent (4.37)
needs no time ordering. So all we need to do is evaluate the time average

JR— t d
AVi lim % fo dr ; Ai(x(7)

d
H Ai(Xo, 1)
i=1

along the trajectory. If the flow is not singular (for example, the trajectory
does not run head-on into the Coulomb 1/r singularity), the stability matrix
elements are bounded everywhere, |Ajj| < M , and so is the trace }}; Aji. The
time integral in (4.40) grows at most linearly with t, hence d;v; is bounded for
all times, and numerical estimates of the t — oo limit in (4.41) are not marred
by any blowups.
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d
= Z AD(xo, 1) (4.41)
i=1
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Example 4.9 Lorenz flow state space contraction:
(continued from Example 4.7) It follows from (4.4) and (4.41) that Lorenz flow is
volume contracting,

3
avi= > A0t =-c-b-1, (4.42)
i=1
at a constant, coordinate- and p-independent rate, set by Lorenz to gv; = —13.66 .

As for periodic orbits and for long time averages there is no contraction/expansion
along the flow, A0 = 0, and the sum of AQ) is constant by (4.42), there is only one
independent exponent A0 to compute. (continued in Example 4.8)

Even if we were to insist on extracting d;v; from (4.36) by first multiply-
ing Jacobian matrices along the flow, and then taking the logarithm, we can
avoid exponential blowups in Jt by using the multiplicative structure (4.38),
det J'*(xo) = detJV(x’)detJ'(xo) to restart with J°(x’) = 1 whenever the
eigenvalues of J'(xo) start getting out of hand. In numerical evaluations of
Lyapunov exponents, A; = lim_. u®(xo, t), the sum rule (4.41) can serve as a
helpful check on the accuracy of the computation.

The divergence div; characterizes the behavior of a state space volume in
the infinitesimal neighborhood of the trajectory. If 9v; < 0, the flow is locally
contracting, and the trajectory might be falling into an attractor. If 9;vi(x) <
0, for all x € M, the flow is globally contracting, and the dimension of the
attractor is necessarily smaller than the dimension of state space M. If div; = 0,
the flow preserves state space volume and det Jt = 1. A flow with this property
is called incompressible. An important class of such flows are the Hamiltonian
flows considered in Section 7.2.

But before we can get to that, Henri Roux, the perfect student and always
alert, pipes up. She does not like our definition of the Jacobian matrix in
terms of the time-ordered exponential (4.37). Depending on the signs of
multipliers, the left hand side of (4.40) can be either positive or negative. But
the right hand side is an exponential of a real number, and that can only be
positive. What gives? As we shall see much later on in this text, in discussion
of topological indices arising in semiclassical quantization, this is not at all a
dumb question.

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the
iteration of a map follows from Taylor expanding the iterated mapping at finite
time n to linear order, as in (4.5). The linearized neighborhood is transported
by the Jacobian matrix evaluated at a discrete set of timesn=1,2,.. .,

A (%)
5Xj

Mi“j(xo) = (4.43)

X=Xo

In case of a periodic orbit, f"(x) = x, we shall refer to this Jacobian matrix as
the monodromy matrix. Derivative notation M'(xo) — Df'(xo) is frequently
employed in the literature. As in the continuous case, we denote by A i the kth
eigenvalue or multiplier of the finite time Jacobian matrix M "(xo), and by x®)
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Fig. 4.8 A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.
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the real part of kth eigen-exponent

Ay = er‘l(yiiw) , A = e+
For complex eigenvalue pairs the phase w describes the rotation velocity in the
plane defined by the corresponding pair of eigenvectors, with one period of
rotation given by
T=2nlw. (4.44)
Example 4.10 Stability of a 1-d map:
Consider the orbit {..., X_1, Xo, X1, X2, ...} 0f @ 1-d map X,,1 = f(X,). Since point x,
is carried into point x,,1, in studying linear stability (and higher derivatives) of the
map it is often convenient to deploy a local coordinate systems z, centered on the
orbit points x,, together with a notation for the map, its derivative, and, by the chain
rule, the derivative of the kth iterate f* evaluated at the point X,

X = Xa+Za, fa(za) = f(Xa+2a)
f = f'(X)
A(xo,k) = f:’ = flacr - faafa, k>2. (4.45)

Here a is the label of point x,, and the label a+1 is a shorthand for the next point b on

the orbit of X, Xy = Xar1 = f(Xa). For example, a period-3 periodic point in Fig. 4.8

might have label a = 011, and by X;;30 = f(Xo11) the next point label is b = 110.

The formula for the linearization of nth iterate of a d-dimensional map
M"(X0) = M(Xn-1) - - M(x))M(X0),  Xj = fI(x0), (4.46)

in terms of single time steps M = df;/0x follows from the chain rule for
functional composition,

0
— f .
% k(X)

B 4 o
—f(f(x) = ), =—fi(y)
ox; ; aye "l ix
If you prefer to think of a discrete time dynamics as a sequence of Poincaré
section returns, then (4.46) follows from (4.38): Jacobian matrices are multi-
plicative along the flow.

Example 4.11 Hénon map Jacobian matrix:
For the Hénon map (3.19) the Jacobian matrix for the nth iterate of the map is

1

—2ax,m, b
M“(x0)=]_[( 1 0), Xm = (X0, Y0) -

m=n

(4.47)

The determinant of the Hénon one time step Jacobian matrix (4.47) is constant,
detM = AN, = -b (448)

so in this case only one eigenvalue A; = —b/A; needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a

map of this particular form.
W fast track
Chapter 7, p. 103
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4.5.1 Stability of Poincaré return maps

(R. Paskauskas and P. Cvitanovi€)
We now relate the linear stability of the Poincaré return map P : ¥ —
defined in Section 3.1 to the stability of the continuous time flow in the full
state space.

The hypersurface # can be specified implicitly through a function U (x) that
is zero whenever a point x is on the Poincaré section. A nearby point X + 6x
is in the hypersurface # if U(x + 6x) = 0, and the same is true for variations
around the first return point x” = x(r), so expanding U(x’) to linear order in
variation 6x restricted to the Poincaré section leads to the condition

d+1

3 du(x) dx
)¢ de

(4.49)

i=1 P

In what follows U; = d;U is the gradient of U defined in (3.3), unprimed
quantities refer to the starting point x = xo € P, v = Vv(Xg), and the primed
quantities to the first return: x” = x(r), v/ = v(x’), U’” = U(x’). For brevity
we shall also denote the full state space Jacobian matrix at the first return by
J = J"(xo). Both the first return x” and the time of flight to the next Poincaré
section 7(x) depend on the starting point x, so the Jacobian matrix

’

- dx;
ilp

with both initial and the final variation constrained to the Poincaré section
hypersurface % is related to the continuous flow Jacobian matrix by

dx; ox; dxi dr dr
—+

= ! —_— = Jii V,—
de P an dr de i Ide

The return time variation dr/dx, Fig. 4.9, is eliminated by substituting this
expression into the constraint (4.49),

dr

0= aiu,\]ij + (V/ 6U/)dX 5
i

yielding the projection of the full space (d + 1)-dimensional Jacobian matrix to
the Poincaré map d-dimensional Jacobian matrix:

. v, 3U’
\]ij = 6ik - m ‘]kj . (451)

Substituting (4.7) we verify that the initial velocity v(x) is a zero-eigenvector
of J
Jv=0, (4.52)

so the Poincaré section eliminates variations parallel to v, and J is a rank d
matrix, i.e., one less than the dimension of the continuous time flow.
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Fig. 4.9 If x(t) intersects the Poincaré section
% at time 7, the nearby x(t) + 6x(t) trajectory
intersects it time 7 + 6t later. As (U’ - V/é6t) =
—(U’ - J 6x), the difference in arrival times is
given by 6t = —(U’" - J6x)/(U’ - V').
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Résumeé

A neighborhood of a trajectory deforms as it is transported by a flow. In the lin-
ear approximation, the stability matrix A describes the shearing/compression/-
expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite time t is described by the Jacobian matrix

I(xg) = Te ICACON

where T stands for the time-ordered integration, defined multiplicatively along
the trajectory. For discrete time maps this is multiplication by time step Ja-
cobian matrix M along the n points Xg, X1, X2, ..., Xn_1 On the trajectory of
X0,

M"(x0) = M(Xn-1)M(Xn—2) - - - M(x1)M(Xo) ,

with M(x) the single discrete time step Jacobian matrix. In ChaosBook Ay
denotes the kth eigenvalue of the finite time Jacobian matrix J(xo), and u®
the real part of kth eigen-exponent

IAl=e™, Ay =e'tHe)

For complex eigenvalue pairs the ‘angular velocity’ w describes rotational mo-
tion in the plane spanned by the real and imaginary parts of the corresponding
pair of eigenvectors.

The eigenvalues and eigen-directions of the Jacobian matrix describe the
deformation of an initial infinitesimal cloud of neighboring trajectories into a
distorted cloud a finite time t later. Nearby trajectories separate exponentially
along unstable eigen-directions, approach each other along stable directions,
and change slowly (algebraically) their distance along marginal directions. The
Jacobian matrix J! is in general neither symmetric, nor diagonalizable by a
rotation, nor do its (left or right) eigenvectors define an orthonormal coordinate
frame. Furthermore, although the Jacobian matrices are multiplicative along
the flow, in dimensions higher than one their eigenvalues in general are not.
This lack of multiplicativity has important repercussions for both classical and
quantum dynamics.

Further reading

4.1 Linear flows.  The subject of linear algebra generates ble cases are Hirsch and Smale [4.6] and Arnol’d [4.7]. A
innumerable tomes of its own; in Section 4.2 we only sketch, quick overview is given by Izhikevich [4.8]; for different no-
and in Appendix 29 recapitulate a few facts that our narrative tions of orbit stability see Holmes and Shea-Brown [4.9]. For
relies on: a useful reference book is [4.1]. The basic facts ChaosBook purposes, we enjoyed the discussion in chapter 2
are presented at length in many textbooks. Frequently cited Meiss [4.10], chapter 1 of Perko [4.11] and chapters 3 and 5
linear algebra references are Golub and Van Loan [4.2], Cole- of Glendinning [4.12] the most, and liked the discussion of
man and Van Loan [4.3], and Watkins [4.4,5]. The standard norms, least square problems, and differences between sin-
references that exhaustively enumerate and explain all possi- gular value and eigenvalue decompositions in Trefethen and
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Bau [4.13]. Other linear algebra references of possible interest
are Golub and Van Loan [4.2], Coleman and Van Loan [4.3],
and Watkins [4.4,5].

The nomenclature tends to be a bit confusing. In referring
to velocity gradients matrix) A defined in (4.3) as the “stabil-
ity matrix” we follow Tabor [4.22]. Goldhirsch, Sulem, and
Orszag [4.25] call in the “Hessenberg matrix.” Sometimes
A, which describes the instantaneous shear of the trajectory
point X(xo, t) is referred to as the ‘Jacobian matrix,” a particu-
larly unfortunate usage when one considers linearized stabil-
ity of an equilibrium point (4.25). What Jacobi had in mind in
his 1841 fundamental paper [4.26] on the determinants today
known as ‘jacobians’ were transformations between different
coordinate frames. These are dimensionless quantities, while
dimensionally A;; is 1/[time]. More unfortunate still is refer-
ring to J' = e* as an ‘evolution operator, which here (see
Section 17.2) refers to something altogether different. In this
book Jacobian matrix J' always refers to (4.6), the linearized
deformation after a finite time t, either for a continuous time
flow, or a discrete time mapping. Single discrete time step Ja-
cobian Mj = af;/dx in (4.46) is referred to as the ‘tangent
map’ by Skokos [4.23,24].

75

4.2 Matrix decompositions of Jacobian matrix. Though
singular values decomposition provides geometrical insights
into how tangent dynamics acts, many popular algorithms
for asymptotic stability analysis (recovering Lyapunov spec-
trum) employ another standard matrix decomposition: the
QR scheme [4.1], through which a nonsingular matrix J is
(uniquely) written as a product of an orthogonal and an upper
triangular matrix J = QR. This can be thought as a Gram-
Schmidt decomposition of the column vectors of J (which
are linearly independent as A is nonsingular). The geomet-
ric meaning of QR decomposition is that the volume of the
d-dimensional parallelepiped spanned by the column vectors
of J has a volume coinciding with the product of the diagonal
elements of the triangular matrix R, whose role is thus pivotal
in algorithms computing Lyapunov spectra [4.29, 30, 24].

4.3 Routh-Hurwitz criterion for stability of a fixed point.
For a criterion that matrix has roots with negative real parts,
see Routh-Hurwitz criterion [4.27, 28] on the coefficients of
the characteristic polynomial. The criterion provides a neces-
sary condition that a fixed point is stable, and determines the
numbers of stable/unstable eigenvalues of a fixed point.

Exercises

(4.1) Trace-log of amatrix. Prove that

det M = elf "M

for an arbitrary nonsingular finite dimensional matrix M,
detM # 0.

(4.2) Stability, diagonal case.  Verify the relation (4.17)

J'=e" =Ue" U, Ap=UAUT.

(4.3) State space volume contraction.

(a) Compute the Rossler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous dv; along a
typical trajectory on the Réssler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of d;v;. If you see regions
of local expansion, explain them.

(c) (optional) color-code the points on the trajectory by

the sign (and perhaps the magnitude) of d,v; — d;v;.
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(d) Compute numerically the average contraction rate
(4.41) along a typical trajectory on the Rossler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state space d = 3.

(f) (optional) Start some trajectories on the escape side
of the outer equilibrium, color-code the points on
the trajectory. Is the flow volume contracting?

(continued in Exercise 20.12)

(4.4) Topology of the Rossler flow.
cise 3.1)

(continuation of Exer-

(a) Show that equation |det (A — 11)| = 0 for Rossler
flow in the notation of Exercise 2.8 can be written
as

B+ 2c(pF—€)+A(p*/e+1-c2epT)FcVD =0
(4.53)
(b) Solve (4.53) for eigenvalues A* for each equilib-
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rium as an expansion in powers of e. Derive and verify, by using this representation, that Z/(t) satisfies

A = -+ ec/(c? + 1) + 0(e) the equation _
2, = ec/[2(c? + 1)] + o(e?) U = VEOU(),

i{ =1 +(1€/ [chz +(1g§ +0(€) (4.54) with the initial condition /(0) = 1.

= Ce —€) +0(€

,é = —€°¢%/2 + 0o(€%) (4.6) A contracting baker’s map. Consider a contract-
0; = VI+1/e(1+o0(e) ing (or ‘dissipative’) baker’s map, acting on a unit square

> .

Compare with exact eigenvalues. What are dynam- [0, 1] = [0, 1] [0, 1], defined by

ical implications of the extravagant value of A;? X %o/3

(continued as Exercise 13.10) M= Yo <1/2
Yn+l ZYn

(R. Pa3kauskas)
(4.5) Time-ordered exponentials. Given a time dependent Xne1 | _ [ Xn/3+1/2 ~1/2
matrix V (t) check that the time-ordered exponential - 2yn -1 Yn ’

Ut = TedeTV(T) This map shrinks strips by a factor of 1/3 in the x-
direction, and then stretches (and folds) them by a factor
of 2 in the y-direction.

t

wut) = i ft dt, ftl dt, - fm'l AtV (1) - - V(t) By how much does the state space volume contract for
Yo 0 0 one iteration of the map?

Yn+l

may be written as
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Cycle stability

bits, and the ways in which the orbits intertwine— are invariant under a

general continuous change of coordinates. Surprisingly, there also ex-
ist quantities that depend on the notion of metric distance between points, but
nevertheless do not change value under a smooth change of coordinates. Local
quantities such as the eigenvalues of equilibria and periodic orbits, and global
quantities such as Lyapunov exponents, metric entropy, and fractal dimensions
are examples of properties of dynamical systems independent of coordinate
choice.

We now turn to the first, local class of such invariants, linear stability of
periodic orbits of flows and maps. This will give us metric information about
local dynamics, as well as the key concept, the concept of a neighborhood of a
point x : its size is determined by the number of expanding directions, and the
rates of expansion along them: contracting directions play only a secondary
role. (see Section 5.4).

If you already know that the eigenvalues of periodic orbits are invariants of

a flow, skip this chapter.
W fast track
Chapter 7, p. 103

5.1 Stability of periodic orbits

TOPOLOGICAL reATURES Of a dynamical system —singularities, periodic or-

As noted on page 34, a trajectory can be stationary, periodic or aperiodic. For
chaotic systems almost all trajectories are aperiodic—nevertheless, equilibria
and periodic orbits turn out to be the key to unraveling chaotic dynamics. Here
we note a few of the properties that make them so precious to a theorist.

An obvious virtue of periodic orbits is that they are topological invariants:
a fixed point remains a fixed point for any choice of coordinates, and similarly
a periodic orbit remains periodic in any representation of the dynamics. Any
re-parametrization of a dynamical system that preserves its topology has to
preserve topological relations between periodic orbits, such as their relative
inter-windings and knots. So the mere existence of periodic orbits suffices to
partially organize the spatial layout of a non—wandering set. No less important,
as we shall now show, is the fact that cycle eigenvalues are metric invariants:
they determine the relative sizes of neighborhoods in a non—-wandering set.

We start by noting that due to the multiplicative structure (4.38) of Jacobian
matrices, the Jacobian matrix for the rth repeat of a prime cycle p of period T

5.1 Stability of periodic orbits

5.2 Floquet multipliers areinvariant
5.3 Stability of Poincaré map cycles
5.4 There goes the neighborhood
Résumé
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is
ITe(x) = I (FDTe (x)) - 3T (FTP (x))ITP(x) = Jp(X)" (5.1)
where Jp(x) = JT¢(x) is the Jacobian matrix for a single traversal of the prime

cycle p, x € M, is any point on the cycle, and f"Te(x) = x as f'(x) returns to x
every multiple of the period T ,. Hence, it suffices to restrict our considerations

to the stability of prime cycles.
W fast track
Section 5.2, p. 83

5.1.1 Floquet vectors

When dealing with periodic orbits, some of the quantities already introduced
inherit names from the Floquet theory of differential equations with time-
periodic coefficients. Consider the equation of variations (4.2) evaluated on
a periodic orbit p,

ox=AM)6x,  A®) = A1) = At + Tp). (5.2)

The T, periodicity of the stability matrix implies that if x(t) is a solution
of (5.2) then also ox(t + Tp) satisfies the same equation: moreover the two
solutions are related by (4.6)

OX(t+ Tp) = Jp(x) x(t) . (5.3

Even though the Jacobian matrix J(x) depends upon x (the “starting” point of
the periodic orbit), we shall show in Section 5.2 that its eigenvalues do not,
so we may write for its eigenvectors ) (sometimes referred to as ‘covariant
Lyapunov vectors,” or, for periodic orbits, as ‘Floquet vectors’)

Jp(x)eﬂ)(x)=Ap,,-e<i>(x), Apj=oade! (5.4)

where A = 40 + iw( and o) are independent of x. When A ; is real,
we do care about o-E,J) = Ap, /|Ap,| € {+1, -1}, the sign of the jth Floquet
multiplier. If o-“) =-1land /131 # 0, the corresponding eigen-direction is said
to be inverse hyperbollc Keepmg track of this by case-by-case enumeration
is an unnecessary nuisance, so most of our formulas will be stated in terms of
the Floguet multipliers A j rather than in the terms of the multiplier signs o,
exponents 9 and phases w{.

Expand 6x in the (5.4) eigenbasis, ox(t) = Y, sxj(t) e, e = e(x(0)).
Taking into account (5.3), we get that 6x(t) is multiplied by A ; per each
period

SX(t+Tp)= > oxj(t+Tp)el = > Apjox;(t) .
j j

We can absorb this exponential growth / contraction by rewriting the coeffi-
cients 6x;(t) as

sxi(t) = e®tui(t),  uj(0) = 6x(0),

invariants - 12apr2011 ChaosBook.org version13.5, Sep 7 2011



5.1. STABILITY OF PERIODIC ORBITS 81

with uj(t) periodic with period T . Thus each solution of the equation of vari-
ations (4.2) may be expressed in the Floquet form

ox®) = Y etume?, ujt+Ty) = (). (5.5)
j

The continuous time t appearing in (5.5) does not imply that eigenvalues of the

; ; ; linati o ) o (D)
Jacobian matrix enjoy any multiplicative property fort # rT p: Ay’ = uy’ £iwy
refer to a full traversal of the periodic orbit. Indeed, while u j(t) describes the
variation of ¢x(t) with respect to the stationary eigen-frame fixed by eigen-
vectors at the point x(0), the object of real interest is the co-moving eigen-

frame defined below in (5.13).

5.1.2 Floquet matrix eigenvalues and exponents

The time-dependent T -periodic vector fields, such as the flow linearized around
a periodic orbit, are described by Floquet theory. Hence from now on we shall
refer to a Jacobian matrix evaluated on a periodic orbit either as a Floquet
matrix or a monodromy matrix, to its eigenvalues A j as Floquet multipliers
(5.4), and to A = 1 + i) as Floguet or characteristic exponents. We sort
the Floquet multipliers {Ap1, Apyo, ..., Apg} of the [dxd] Floquet matrix J,
evaluated on the p-cycle into sets {e, m, c}

expanding:
marginal:
contracting:

{Ae = {Apj:|Apj|>1}
Ahm = (Apj:|Apil=1)
{Ale = {Apj:|Apj <1}

(5.6)

and denote by A, (no jth eigenvalue index) the product of expanding Floquet
multipliers
Ap = 1_[ Apye .
e

As J, is areal matrix, complex eigenvalues always come in complex conjugate
pairs, Api+1 = A SO the product (5.7) is always real.

The stretching/contraction rates per unit time are given by the real parts of
Floguet exponents

(5.7)

W) = = InfAp (5.8)
P

The factor 1/T, in the definition of the Floquet exponents is motivated by its

form for the linear dynamical systems, for example (4.16), as well as the fact

that exponents so defined can be interpreted as Lyapunov exponents (17.33)

evaluated on the prime cycle p. As in the three cases of (5.6), we sort the

Floquet exponents A = u + iw into three sets

expanding:  {A}e = {40 : 4l >0)
{Bm = {/l(pi) : ,ug) =0}

e =0 4 <0

marginal:

contracting: (5.9)

A periodic orbit p of a d-dimensional flow or a map is stable if real parts
of all of its Floquet exponents (other than the vanishing longitudinal exponent,

ChaosBook.org version13.5, Sep 7 2011 invariants - 12apr2011

Fig. 5.1 For a prime cycle p, Floquet matrix
Jp returns an infinitesimal spherical neigh-
borhood of xg € M, stretched into an ellip-
soid, with overlap ratio along the eigendirec-
tion €V of Jy(x) given by the Floquet multi-
plier |Apjl. These ratios are invariant under
smooth nonlinear reparametrizations of state
space coordinates, and are intrinsic property
of cycle p.

section 17.3

Fig. 5.2 An unstable periodic orbit repels ev-
ery neighboring trajectory X (t), except those
on its center and unstable manifolds.
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explained in Section 5.2.1) are strictly negative, yg) < 0. For continuous time
flows such orbit is called a limit cycle, with one zero exponent (perturbation
tangent to the cycle) and all other exponents negative. The region of system
parameter values for which a periodic orbit p is stable is called the stability
window of p. The set M, of initial points that are asymptotically attracted to
past — +oco (for a fixed set of system parameter values) is called the basin of
attraction of p. If all Floquet exponents (other than the vanishing longitudinal
exponent) are strictly positive, u® > umin > 0, the cycle is repelling, and
unstable to any perturbation. If some are strictly positive, and rest strictly
negative, —u® > umin > 0, the cycle is said to be hyperbolic or a saddle, and
unstable to perturbations outside its stable manifold. Repelling and hyperbolic
cycles are unstable to generic perturbations, and thus said to be unstable, see
Fig. 5.2. Ifall u® = 0, the orbit is said to be elliptic, and if u = 0 for a subset
of exponents (other than the longitudinal one), the orbit is said to be partially
hyperbolic. Such orbits proliferate in Hamiltonian flows.

If all Floquet exponents (other than the vanishing longitudinal exponent) of
all periodic orbits of a flow are strictly bounded away from zero, the flow is
said to be hyperbolic. Otherwise the flow is said to be nonhyperbolic.

Example 5.1 Stability of cycles of 1-dimensional maps:
The stability of a prime cycle p of a 1-d map follows from the chain rule (4.45) for
stability of the nyth iterate of the map

d np-1
A, = — = f’ = f"(Xo). 1
P g 06 l‘! () X = (%) (5.10)
A, is a property of the cycle, not the initial periodic point, as taking any periodic
point in the p cycle as the initial one yields the same A,.
A critical point x. is a value of x for which the mapping f(x) has vanishing deriva-
tive, f'(x;) = 0. A periodic orbit of a 1-d map is stable if

|Ap] = [ £ (np) F (Kngo) - £ (x2) £ (x0)] < 1.,

and superstable if the orbit includes a critical point, so that the above product van-
ishes. For a stable periodic orbit of period n the slope A, of the nth iterate f"(x)
evaluated on a periodic point x (fixed point of the nth iterate) lies between —1 and 1.
If |Ap| > 1, p-cycle is unstable.

Example5.2 Stability of cyclesfor maps:
No matter what method we use to determine the unstable cycles, the theory to be
developed here requires that their Floquet multipliers be evaluated as well. For maps
a Floquet matrix is easily evaluated by picking any periodic point as a starting point,
running once around a prime cycle, and multiplying the individual periodic point
Jacobian matrices according to (4.46). For example, the Floquet matrix M, for a
Hénon map (3.19) prime cycle p of length nj, is given by (4.47),

1
—2axc b
Mp(XO):I_[( P ) X € My,
k=np
and the Floquet matrix My, for a 2-d billiard prime cycle p of length n,
1
o 1 w\(1 O
M"‘H)pﬂ( o 1 ){n 1

k=np

invariants - 12apr2011 ChaosBook.org version13.5, Sep 7 2011



5.2. FLOQUET MULTIPLIERS ARE INVARIANT 83

follows from (8.11) of Chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond to
multiplication from the left, Mp(x1) = M(Xy,) - - - M(x1). We shall compute Floquet
multipliers of H&non map cycles once we learn how to find their periodic orbits, see
Exercise 13.13.

5.2 Floquet multipliers are invariant

The 1-d map Floquet multiplier (5.10) is a product of derivatives over all points
around the cycle, and is therefore independent of which periodic point is cho-
sen as the initial one. In higher dimensions the form of the Floquet matrix
Jp(Xo) in (5.1) does depend on the choice of coordinates and the initial point
Xo € Mp. Nevertheless, as we shall now show, the cycle Floquet multipliers
are intrinsic property of a cycle in any dimension. Consider the ith eigenvalue,
eigenvector pair (A, €V) computed from J,, evaluated at a periodic point x,

Jp()eV(x) = ApieV(x), xeM,. (5.11)

Consider another point on the cycle at time t later, x’ = f'(x) whose Floquet
matrix is Jp(X’). By the semigroup property (4.38), JTe*t = J%“Te, and the
Jacobian matrix at x” can be written either as

IT(x) = 3T (x) 3'(X) = Jp(x) I'(%)

or J'(x) Jp(x). Multiplying (5.11) by J*(x), we find that the Floguet matrix
evaluated at x” has the same Floquet multiplier,

Ip(x)e(x) = Api €V(x), eD(x) = 3'(x)eV(x), (5.12)

but with the eigenvector e® transported along the flow x — x’ to e(x) =
Ji{(x) €D(x). Hence, in the spirit of the Floquet theory (5.5) one can define
time-periodic unit eigenvectors (in a co-moving ‘Lagrangian frame’)

() = e W13 (x) eD(0),  eD(t) = eD(x(t)), x®)e Mp. (5.13)

J,, evaluated anywhere along the cycle has the same set of Floquet multipliers
{Ap1,Ap2, -+, 1.+, Apg-1}. As quantities such as tr Jp(x), det Jp(x) depend
only on the eigenvalues of J,(x) and not on the starting point X, in expressions
such as det (1 - J5(x)) we may omit reference to x,

det(1-Jp) = det(1-J5(x)) forany x e M,. (5.14)

We postpone the proof that the cycle Floquet multipliers are smooth conjugacy
invariants of the flow to Section 6.6.

5.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either a continuous symmetry of
the flow (which one should immediately exploit to simplify the problem), or
a non-hyperbolicity of a flow (a source of much pain, hard to avoid). In that

ChaosBook.org version13.5, Sep 7 2011 invariants - 12apr2011
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case (typical of parameter values for which bifurcations occur) one has to go
beyond linear stability, deal with Jordan type subspaces (see Example 4.3), and
sub-exponential growth rates, such as t.

For flow-invariant solutions such as periodic orbits, the time evolution is
itself a continuous symmetry, hence a periodic orbit of a flow always has a
marginal Floquet multiplier:

As Ji(x) transports the velocity field v(x) by (4.7), after a complete period

Jp(X)v(X) = Vv(X), (5.15)

so for a periodic orbit of a flow the local velocity field is always has an eigen-
vector el (x) = v(x) with the unit Floguet multiplier,

Apy=1, AP =o. (5.16)

The continuous invariance that gives rise to this marginal Floquet multiplier is
the invariance of a cycle (the set M) under a translation of its points along the
cycle: two points on the cycle (see Fig. 4.3) initially distance §x apart, x’(0) —
X(0) = 6x(0), are separated by the exactly same ¢x after a full period T ,. As
we shall see in Section 5.3, this marginal stability direction can be eliminated
by cutting the cycle by a Poincaré section and eliminating the continuous flow
Floquet matrix in favor of the Floquet matrix of the Poincaré return map.

If the flow is governed by a time-independent Hamiltonian, the energy is
conserved, and that leads to an additional marginal Floquet multiplier (we shall
show in Section 7.3 that due to the symplectic invariance (7.19) real eigenval-
ues come in pairs). Further marginal eigenvalues arise in presence of contin-
uous symmetries, as discussed in Chapter 10 below.

5.3 Stability of Poincaré map cycles

(R. Paskauskas and P. Cvitanovi€)
If a continuous flow periodic orbit p pierces the Poincaré section ¥ once, the
section point is a fixed point of the Poincaré return map P with stability (4.51)

(v-U)

with all primes dropped, as the initial and the final points coincide, x’ =
fT(x) = x. If the periodic orbit p pierces the Poincaré section n times, the
same observation applies to the nth iterate of P.

We have already established in (4.52) that the velocity v(X) is a zero eigen-
vector of the Poincaré section Floguet matrix, Jv = 0. Consider next (A p o, €2),
the full state space ath (eigenvalue, eigenvector) pair (5.11), evaluated at a pe-
riodic point on a Poincaré section,

JX)EX) = A, €9(x), xeP. (5.18)

~ viU
Jijz((sik— ! k)ka, (5.17)

Multiplying (5.17) by e and inserting (5.18), we find that the full state space
Floquet matrix and the Poincaré section Floquet matrix J have the same Flo-
quet multiplier

J) & (x) = A, &), xeP, (5.19)

invariants - 12apr2011 ChaosBook.org version13.5, Sep 7 2011
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where &9 is a projection of the full state space eigenvector onto the Poincaré

section: U
@) = ((5ik - (\\/,i. Uk)) (€. (5.20)

Hence, JAp evaluated on any Poincaré section point along the cycle p has the
same set of Floquet multipliers {Ap1, Ap2, - - Apgq} as the full state space Flo-
quet matrix J,, except for the marginal unit Floquet multiplier (5.16).

L As established in (4.52), due to the continuous symmetry (time invariance)
ip is a rank d—1 matrix. We shall refer to any such rank [(d—1-N)x (d—1-N)]
submatrix with N—1 continuous symmetries quotiented out as the monodromy
matrix My. Quotienting continuous symmetries is discussed in Chapter 10
below.

5.4 There goes the neighborhood

In what follows, our task will be to determine the size of a neighborhood of
X(t), and that is why we care about the Floquet multipliers, and especially the
unstable (expanding) ones.

Nearby points aligned along the stable (contracting) directions remain in
the neighborhood of the trajectory x(t) = f!(xo); the ones to keep an eye on
are the points which leave the neighborhood along the unstable directions:
all chaos arises from flights along these these directions. The sub-volume
Myl = TI§ Axi of the set of points which get no further away from f {(xo)
than L, the typical size of the system, is fixed by the condition that AxjA; =
O(L) in each expanding direction i. Hence the neighborhood size scales as
[My,| o O(LdE)/|Ap| o 1/|Ap| where A, is the product of expanding Flogquet
multipliers (5.7) only; contracting ones play a secondary role. Discussion of
Section 1.5.1, Fig. 1.9 the Fig. ?? intersection of initial volume with its return,
and Chapters 12 and 18 illustrate the key role that the unstable directions play
in systematically partitioning the state space of a given dynamical system. The
contracting directions are so secondary that even infinitely many of them (for
example, the infinity of contracting eigen-directions of the spatiotemporally
chaotic dynamics described by a PDE will not matter.

So the dynamically important information is carried by the expanding sub-
volume, not the total volume computed so easily in (4.41). That is also the
reason why the dissipative and the Hamiltonian chaotic flows are much more
alike than one would have naively expected for ‘compressible’ vs. ‘incom-
pressible” flows. In hyperbolic systems what matters are the expanding direc-
tions. Whether the contracting eigenvalues are inverses of the expanding ones
or not is of secondary importance. As long as the number of unstable direc-
tions is finite, the same theory applies both to the finite-dimensional ODEs and
infinite-dimensional PDEs.

Résumeé

Periodic orbits play a central role in any invariant characterization of the dy-

! monodromy: from Greek mono- = alone,

single, and dromo = run, racecourse, meaning
a single run around the stadium.

namics, because (a) their existence and inter-relations are a topological, coordinate-
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independent property of the dynamics, and (b) their Floquet multipliers form
an infinite set of metric invariants: The Floquet multipliers of a periodic or-
bit remain invariant under any smooth nonlinear change of coordinates f —
ho f oh™ . Let us summarize the linearized flow notation used throughout the
ChaosBook.

Differential formulation, flows:

section 6.6

X=V, 5X = ASX

governs the dynamics in the tangent bundle (x, 6x) € T M obtained by adjoin-
ing the d-dimensional tangent space 6x € T My to every point x € M in the
d-dimensional state space M c RY. The stability matrix A = dv/adx describes
the instantaneous rate of shearing of the infinitesimal neighborhood of x(t) by
the flow.
Finite time formulation, maps. A discrete sets of trajectory points {Xo, X1,
-+, Xn, - - -} € M can be generated by composing finite-time maps, either given
as Xn41 = f(Xn), or obtained by integrating the dynamical equations

tn+1
Xn+1 = F(Xn) = Xn +f drv(x(r)), (5.21)
ty
for a discrete sequence of times {tg, t1, - - -, tn, - - -}, specified by some criterion
such as strobing or Poincaré sections. In the discrete time formulation the
dynamics in the tangent bundle (x, 6x) € T M is governed by

Xn+1 = f(xn) 5 6Xn+l = J(Xn) 5Xn B J(Xn) = Jt"”_tn(xn) 5

where J(Xn) = 0Xni1/0%n = fdr exp (A ) is the Jacobian matrix.

Stability of invariant solutions: The linear stability of an equilibriumv(xg Q) =
0 is described by the eigenvalues and eigenvectors {11, e} of the stability ma-
trix A evaluated at the equilibrium point, and the linear stability of a periodic
orbit fT(x) = x, x € My,

Jp(X) e(j)(x) = Apj e(i)(x)’ Apj = O_E)j)e,}g)Tp i

by its Floguet multipliers, vectors and exponents {A j, e}, where AW = 4
iw(p” For every continuous symmetry there is a marginal eigen-direction, with
Apj =1, /1%’) = 0. With all 1 + N continuous symmetries quotiented out
(Poincareé sections for time, slices for continuous symmetries of dynamics, see
Section 10.4) linear stability of a periodic orbit (and, more generally, of a par-
tially hyperbolic torus) is described by the [(d-1-N) x (d-1-N)] monodromy
matrix, all of whose Floquet multipliers |A ;| # 1 are generically strictly hy-
perbolic,

Mp(x) eD(x) = Apj €D(x), X e Mp/G.

We shall show in Chapter 11 that extending the linearized stability hy-
perbolic eigen-directions into stable and unstable manifolds yields important
global information about the topological organization of state space. What
matters most are the expanding directions. The physically important informa-
tion is carried by the unstable manifold, and the expanding sub-volume char-
acterized by the product of expanding Floquet multipliers of J,. As long as
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the number of unstable directions is finite, the theory can be applied to flows
of arbitrarily high dimension.

a in depth: W fast track
| Appendix 29, p. 495 Chapter 9, p. 121

Further reading

5.1 Floquet theory. Study of time-dependent and T-periodic the discussion of Schrddinger equation with a periodic poten-
vector fields is a classical subject in the theory of differen- tial [5.3], or quasi-momenta in the quantum theory of time-
tial equations [5.1, 2]. In physics literature Floquet expo- periodic Hamiltonians.
nents often assume different names according to the context

where the theory is applied: they are called Bloch phases in -2 Periodic orbits. For further reading, consult Moehlis and
K. Josi¢ [5.7] Scholarpedia.org article.

Exercises

(5.1) Alimit cyclewith analytic Floquet exponent.  There Ermentrout
are only two examples of nonlinear flows for which the (.2)
Floguet multipliers can be evaluated analytically. Both
are cheats. One example is the 2—d flow

The other example of a limit cycle with analytic Flo-
quet exponent.  What is the other example of a non-
linear flow for which the Floquet multipliers can be eval-
uated analytically? Hint: email G.B. Ermentrout.

p+q(l-q* - p’)

= —q+pl-q’-pd. (5.3) Yet another exampleof alimit cyclewith analytic Flo-

quet exponent. Prove G.B. Ermentrout wrong by

Determine all periodic solutions of this flow, and deter- solving a third example (or more) of a nonlinear flow for

mine analytically their Floquet exponents. Hint: go to which the Floquet multipliers can be evaluated analyti-
polar coordinates (g, p) = (r cos 8, r sin 6). G. Bard cally.

References

[5.1] G. Floquet, “Sur les equations differentielles lineaires & coefficients pe-
riodique,” Ann. Ecole Norm. Ser. 2, 12, 47 (1883).

[5.2] E. L. Ince, Ordinary Differential Equations (Dover, New York 1953).

[5.3] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart
and Winston, New York 1976).

ChaosBook.org version13.5, Sep 7 2011 refsinvariant - 210ct2009






Go straight

We owe it to a book to withhold judgment until we reach page 100.
—Henrietta McNutt, George Johnson’s seventh-grade English
teacher

coordinates to an action-angle coordinate frame where the phase space

dynamics is described by motion on circles, one circle for each degree
of freedom. In the same spirit, a natural description of a hyperbolic, unstable
flow would be attained if one found a change of coordinates into a frame where
the stable/unstable manifolds are straight lines, and the flow is along hyperbo-
las. Achieving this globally for anything but a handful of contrived examples is
too much to hope for. Still, as we shall now show, we can make some headway
on straightening out the flow locally.

There is much more to this story than what we touch upon here: other tricks
and methods to construct regularizations, what kind of singularities could be
regularized, etc.. Even though such nonlinear coordinate transformations are
very important, especially in celestial mechanics, we shall not use them much
in what follows, so you can safely skip this chapter on the first reading. Ex-
cept, perhaps, you might want to convince yourself that cycle stabilities are
indeed metric invariants of flows (Section 6.6), and you might like transforma-
tions that turn a Keplerian ellipse into a harmonic oscillator (Example 6.2) and
regularize the 2-body Coulomb collisions (Section 6.3) in classical helium.

W fast track
Chapter 7, p. 103

A HAMILTONIAN SYSTEM iS said to be ‘integrable’ if one can find a change of

6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are not
always expressed in the most convenient way. In order to simplify a given
problem, one may stretch, rotate, bend and mix the coordinates, but in doing
so, the vector field will also change. The vector field lives in a (hyper)plane
tangent to state space and changing the coordinates of state space affects the
coordinates of the tangent space as well, in a way that we will now describe.

Denote by h the conjugation function which maps the coordinates of the
initial state space M into the reparameterized state space M’ = h(M), with a
point x € M related to a pointy € M’ by

y =h0x) = (y100,y2(x), - .., ya(x)) -
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exercise 6.2
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The change of coordinates must be one-to-one and span both M and M, so
given any point y we can go back to x = h~*(y). For smooth flows the repa-
rameterized dynamics should support the same number of derivatives as the
initial one. If h is a (piecewise) analytic function, we refer to h as a smooth
conjugacy.

The evolution rule g'(yo) on M’ can be computed from the evolution rule
f'(xg) on M by taking the initial point yq € M’, going back to M, evolving,
and then mapping the final point x(t) back to M’:

y(®) = g'(yo) = ho f o h™(yo). (6.1)

Here ‘o’ stands for functional composition h o f(x) = h(f(x)), so (6.1) is a
shorthand for y(t) = h(f'(h~2(yo))).

The vector field x = v(x) in M, locally tangent to the flow f!, is related to
the flow by differentiation (2.5) along the trajectory. The vector field y = w(y)
in M, locally tangent to g* follows by the chain rule:

Cdg A
wy) = G| = glhertente)|
= WOV = MOV, 62)

In order to rewrite the right-hand side as a function of y, note that the 9, differ-
entiation of h(h~(y)) = y implies

oht
x 0y

oh
oX

_ -1
oh~ ] , (6.3)

oh
-1 o S00=| 50

y

so the equations of motion in the transformed coordinates, with the indices

reinstated, are
ot 1t
yi = wi(y) = [W(y)} vi(h™(y)). (6.4)

1]

Imagine that the state space is a rubber sheet with the flow lines drawn on it.
A coordinate change h corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersections of the distorted rubber
sheet. Trajectories that are closed loops in M will remain closed loops in the
new manifold M’, but their shapes will change. Globally h deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears
the tangent field by the Jacobian matrix o jh;, hence the simple transformation
law (6.2) for the velocity fields.

The time itself is a parametrization of points along flow lines, and it can
also be reparameterized, s = s(t), with the attendant modification of (6.4). An
example is the 2-body collision regularization of the helium Hamiltonian (7.6),

to be undertaken in Section 6.3 below.
W fast track
Section 6.6, p. 97
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6.2 Redctification of flows

A profitable way to exploit invariance of dynamics under smooth conjugacies
is to use it to pick out the simplest possible representative of an equivalence
class. In general and globally these are just words, as we have no clue how to
pick such ‘canonical’ representative, but for smooth flows we can always do it
locally and for sufficiently short time, by appealing to the rectification theorem,
a fundamental theorem of ordinary differential equations. The theorem assures
us that there exists a solution (at least for a short time interval) and what the
solution looks like. The rectification theorem holds in the neighborhood of
points of the vector field v(x) that are not singular, that is, everywhere except
for the equilibrium points (2.8), and points at which v is infinite. According
to the theorem, in a small neighborhood of a non-singular point there exists
a change of coordinates y = h(x) such that x = v(x) in the new, canonical
coordinates takes form

i=Ye == Yo =0 65)

with unit velocity flow along y4, and no flow along any of the remaining di-
rections. This is an example of a one-parameter Lie group of transformations,
with finite time 7 action

Yi = Vi, i=1,2,...,d-1

Yo = Ya+T.

Example 6.1 Harmonic oscillator, rectified:
As a simple example of global rectification of a flow consider the harmonic oscillator

Q=1p, P=-0. (6.6)

The trajectories x(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates y = (r, 6):

2./ 9 = h}(r.6) =rcose
h { p = h(r,6) = rsing ©.7)
The Jacobian matrix of the transformation is
cosf sind
h" = sing cosé@ (6.8)
r r

resulting in (6.4) of rectified form

; cos@ sind ;
(B Em)(2) e
r r

In the new coordinates the radial coordinate r is constant, and the angular coordinate
6 wraps around a cylinder with constant angular velocity. There is a subtle point in
this change of coordinates: the domain of the map h™* is not the plane R?, but rather
the plane minus the origin. We had mapped a plane into a cylinder, and coordinate
transformations should not change the topology of the space in which the dynamics
takes place; the coordinate transformation is not defined on the equilibrium point
x=(0,0),orr=0.
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Fig. 6.1 Coordinates for the helium three
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Fig. 6.2 Collinear helium, with the two elec-
trons on opposite sides of the nucleus.
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6.3 Collinear helium

(G. Tanner)
So far much has been said about 1-d maps, game of pinball and other curi-
ous but rather idealized dynamical systems. If you have become impatient and
started wondering what good are the methods learned so far in solving real life
physical problems, good news are here. We will apply here concepts of nonlin-
ear dynamics to nothing less than the helium, a dreaded three-body Coulomb
problem.

Can we really jump from three static disks directly to three charged particles
moving under the influence of their mutually attracting or repelling forces? It
turns out, we can, but we have to do it with care. The full problem is indeed
not accessible in all its detail, but we are able to analyze a somewhat sim-
pler subsystem—collinear helium. This system plays an important role in the
classical and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons of mass m and charge
—e moving about a positively charged nucleus of mass my,, and charge +2e.

The helium electron-nucleus mass ratio mpe/me = 1836 is so large that we
may work in the infinite nucleus mass approximation mp. = oo, fixing the
nucleus at the origin. Finite nucleus mass effects can be taken into account
without any substantial difficulty. We are now left with two electrons moving
in three spatial dimensions around the origin. The total angular momentum of
the combined electron system is still conserved. In the special case of angular
momentum L = 0, the electrons move in a fixed plane containing the nucleus.
The three body problem can then be written in terms of three independent
coordinates only, the electron-nucleus distances ry and r, and the inter-electron
angle ©, see Fig. 6.1.

This looks like something we can lay our hands on; the problem has been
reduced to three degrees of freedom, six phase space coordinates in all, and
the total energy is conserved. But let us go one step further; the electrons are
attracted by the nucleus but repelled by each other. They will tend to stay as far
away from each other as possible, preferably on opposite sides of the nucleus.
It is thus worth having a closer look at the situation where the three particles
are all on a line with the nucleus being somewhere between the two electrons.
If we, in addition, let the electrons have momenta pointing towards the nucleus
as in Fig. 6.2, then there is no force acting on the electrons perpendicular to
the common interparticle axis. That is, if we start the classical system on the
dynamical subspace © = r, %@ = 0, the three particles will remain in this
collinear configuration for all times.

6.3.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace. It is a
system of two degrees of freedom with the Hamiltonian

-E, (6.10)
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6.3. COLLINEAR HELIUM 93

where E is the total energy. As the dynamics is restricted to the fixed energy
shell, the four phase space coordinates are not independent; the energy shell
dependence can be made explicit by writing

(r1, 12, p1, P2) = (re(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on the energy E. A
simple analysis of potential versus kinetic energy tells us that if the energy is
positive both electrons can escape to ri — oo, i = 1,2. More interestingly,
a single electron can still escape even if E is negative, carrying away an un-
limited amount of Kinetic energy, as the total energy of the remaining inner
electron has no lower bound. Not only that, but one electron will escape even-
tually for almost all starting conditions. The overall dynamics thus depends
critically on whether E > 0 or E < 0. But how does the dynamics change oth-
erwise with varying energy? Fortunately, not at all. Helium dynamics remains
invariant under a change of energy up to a simple scaling transformation; a so-
lution of the equations of motion at a fixed energy E ¢ = —1 can be transformed
into a solution at an arbitrary energy E < 0 by scaling the coordinates as

e? .
ri(E) = m ri, pi(E)=+-mEp;, =12,
together with a time transformation t(E) = e2m/?(~E)~3/2t. We include the
electron mass and charge in the scaling transformation in order to obtain a
non—dimensionalized Hamiltonian of the form

pZ
O -1, (6.11)

H =
2 2 rh I, ri+nr

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states
and resonances of the quantum problem.

6.3.2 Regularization of two—body collisions

Next, we have a closer look at the singularities in the Hamiltonian (6.11).
Whenever two bodies come close to each other, accelerations become large,
numerical routines require lots of small steps, and numerical precision suffers.
No numerical routine will get us through the singularity itself, and in collinear
helium electrons have no option but to collide with the nucleus. Hence a reg-
ularization of the differential equations of motions is a necessary prerequisite
to any numerical work on such problems, both in celestial mechanics (where
a spaceship executes close approaches both at the start and its destination) and
in quantum mechanics (where much of semiclassical physics is dominated by
returning classical orbits that probe the quantum wave function at the nucleus).

There is a fundamental difference between two-body collisions r; = 0 or
r, = 0, and the triple collision r; = r, = 0. Two-body collisions can be reg-
ularized, with the singularities in equations of motion removed by a suitable
coordinate transformation together with a time transformation preserving the
Hamiltonian structure of the equations. Such regularization is not possible
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for the triple collision, and solutions of the differential equations can not be
continued through the singularity at the origin. As we shall see, the chaos in
collinear helium originates from this singularity of triple collisions.

A regularization of the two-body collisions is achieved by means of the
Kustaanheimo-Stiefel (KS) transformation, which consists of a coordinate de-
pendent time transformation which stretches the time scale near the origin, and
a canonical transformation of the phase space coordinates. In order to motivate
the method, we apply it first to the 1-d Kepler problem

1 2
H=Z-p’--=E. 12
5P % (6.12)

Example 6.2 Keplerian ellipse, rectified:
To warm up, consider the E = 0 case, starting at x = 0 att = 0. Even though the
equations of motion are singular at the initial point, we can immediately integrate

by means of separation of variables
Vxdx=2dt,  x=@313, (6.13)

and observe that the solution is not singular. The aim of regularization is to compen-
sate for the infinite acceleration at the origin by introducing a fictitious time, in terms
of which the passage through the origin is smooth.

A time transformation dt = f(q, p)dr for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered,
if the Hamiltonian itself is transformed into #(q, p) = f(q, p)(H(q, p) — E). For
the 1- dimensional Coulomb problem with (6.12) we choose the time transformation
dt = xdr which lifts the [x] — 0 singularity in (6.12) and leads to a new Hamiltonian

7{=%x&—2—Ex=o. (6.14)

The solution (6.13) is now parameterized by the fictitous time dr through a pair of
equations
1
2 t= §T3 .
The equations of motion are, however, still singular as x — 0:
ﬂ = _i % + xE
d2 =~ 2x dr ’
Appearance of the square root in (6.13) now suggests a canonical transformation of

form b
_ 02 _
X—Q ’ p_2Q

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian

(6.15)

mqm:%w—Edzz (6.16)

with all singularities completely removed.
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a) - b)

A
h /

We now apply this method to collinear helium. The basic idea is that one
seeks a higher-dimensional generalization of the ‘square root removal’ trick
(6.15), by introducing a new vector Q with property r = |Q|2. In this simple
1-d example the KS transformation can be implemented by

P1 P2
— 0= — 6.17
200 "7, O
and reparameterization of time by dr = dt/ryr,. The singular behavior in the
original momenta at ry or r, = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of the equations of motions
with respect to the new time 7 is conserved, if we consider the Hamiltonian

n = Q, r,=Q3, p1 =

1
Hio = 5(Q3PT + QIP) - 2R}, + QIQ)(-E + 1/R,) = 0 (6.18)

with Rz = (Q? + Q3)'/2, and we will take E = -1 in what follows. The
equations of motion now have the form

. P2 Q? 1

P, =2Q {2——2—Q2(1+—2)]; Qi =-PiQ3 (6.19)
1 1 82 2 R‘1‘22 1 4 12

. P Q .1

P, =2Q [2——1—Q2(1+—1)]; Q2 = =P, Q2.
2 2 8 1 R‘1‘2 2 4 21

Individual electron-nucleus collisions at r; = Q? = 0orr, = Q3 = 0 no
longer pose a problem to a numerical integration routine. The equations (6.19)
are singular only at the triple collision R1, = 0, i.e., when both electrons hit
the nucleus at the same time.

The new coordinates and the Hamiltonian (6.18) are very useful when cal-
culating trajectories for collinear helium; they are, however, less intuitive as
a visualization of the three-body dynamics. We will therefore refer to the old
coordinates ry, r, when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a form where the
2-body collisions have been transformed away, and the phase space trajecto-
ries computable numerically. To appreciate the full beauty of what has been
attained, you have to fast-forward to quantum chaos part of ChaosBook. org;
we are already ‘almost’ ready to quantize helium by semiclassical methods.
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plane; the trajectory enters here along the r
axis and escapes to infinity along the r, axis;
(b) Poincaré map (r,=0) for collinear helium.
Strong chaos prevails for small ry near the nu-
cleus.
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6.4 Rectification of maps

In Section 6.2 we had argued that nonlinear coordinate transformations can
be profitably employed to simplify the representation of a flow. We shall
now apply the same idea to nonlinear maps, and determine a smooth nonlinear
change of coordinates that flattens out the vicinity of a fixed point and makes
the map linear in an open neighborhood. In its simplest form the idea can
be implemented only for an isolated nondegenerate fixed point (otherwise are
needed in the normal form expansion around the point), and only in a finite
neighborhood of a point, as the conjugating function in general has a finite
radius of convergence. In Section 6.5 we will extend the method to periodic
orbits.

6.4.1 Rectification of a fixed point in one dimension

Consider a 1-d map xn.1 = f(xy) with a fixed point at x = 0, with stability
A = f/(0). If|A] # 1, one can determine term-by-term the power series for a
smooth conjugation h(x) centered at the fixed point, h(0) = 0, that flattens out
the neighborhood of the fixed point

f(x) = h"}(Ah(x)) (6.20)
and replaces the nonlinear map f(x) by a linear map yn+1 = Ayn.

To compute the conjugation h we use the functional equation h—1(Ax) =
f(h~%(x)) and the expansions

f(X) = Ax+xX2f+x3f3+...
h2(x) = x+xhy+xhz+... . (6.21)

Equating the coefficients of x* on both sides of the functional equation yields
hi order by order as a function of f,, f3,.... If h(X) is a conjugation, so is any
scaling h(bx) of the function for a real number b. Hence the value of h’(0) is not
determined by the functional equation (6.20); it is convenient to set h’(0) = 1.

The algebra is not particularly illuminating and best left to computers. In
any case, for the time being we will not use much beyond the first, linear term
in these expansions.

Here we have assumed A # 1. If the fixed point has first k—1 derivatives
vanishing, the conjugacy is to the kth normal form.

In several dimensions, A is replaced by the Jacobian matrix, and one has to
check that the eigenvalues M are non-resonant, that is, there is no integer linear
relation between the Floquet exponents (5.8).
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6.5 Rectification of a periodic orbit

In Section 6.4.1 we have constructed the conjugation function for a fixed point.
Here we turn to the problem of constructing it for periodic orbits. Each point
around the cycle has a differently distorted neighborhood, with differing sec-
ond and higher order derivatives, so we need to compute a different conjuga-
tion function h, at each periodic point x5. We expand the map f around each
periodic point along the cycle,

Ya(®) = fa(®) — Xar1 = ¢faz + ¢ faz + ... (6.22)

where X, is a point on the cycle, f4(¢) = f(xa + ¢) is centered on the periodic
orbit, and the index k in f refers to the kth order in the expansion (6.21).
For a periodic orbit the conjugation formula (6.20) generalizes to

fa(@) = holy (,(0)ha(¢)), a=1,2,---,n,

point by point. The conjugationg functions h, are obtained in the same way
as before, by equating coefficients of the expansion (6.21), and assuming that
the cycle Floquet multiplier A = ]‘12;3 f/(xa) is not marginal, |A| # 1. The
explicit expressions for h, in terms of f are obtained by iterating around the
whole cycle,

f"(Xa + ) = h;*(Ahq(9)) + Xa - (6.23)

evaluated at each periodic point a. Again we have the freedom to set h;(0) = 1
for all a.

6.5.1 Repeats of cycles

We have traded in our initial nonlinear map f for a (locally) linear map Ay and
an equally complicated conjugation function h. What is gained by rewriting
the map f in terms of the conjugacy function h? Once the neighborhood of a
fixed point is linearized, the repeats of it are trivialized; from the conjugation
formula (6.21) one can compute the derivatives of a function composed with
itself r times:

f'(x) = h™}(A"h(x)) .

One can already discern the form of the expansion for arbitrary repeats; the an-
swer will depend on the conjugacy function h(x) computed for a single repeat,
and all the dependence on the repeat number will be carried by factors polyno-
mial in A", a considerable simplification. The beauty of the idea is difficult to
gauge at this stage—an appreciation only sets in when one starts computing per-
turbative corrections, be it in celestial mechanics (where the method was born),
be it the quantum or stochastic corrections to ‘semiclassical’ approximations.

6.6 Cycle Floquet multipliers are metric
invariants

In Section 5.2 we have established that for a given flow the cycle Floquet mul-
tipliers are intrinsic to a given cycle, independent of the starting point along
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the cycle. Now we can prove a much stronger statement; cycle Floquet multi-
pliers are smooth conjugacy or metric invariants of the flow, the same in any
representation of the dynamical system.

That the cycle Floquet multipliers are an invariant property of the given dy-
namical system follows from elementary considerations of Section 6.1: If the
same dynamics is given by a map f in x coordinates, and a map g inthey =
h(x) coordinates, then f and g (or any other good representation) are related by
(6.4), a reparameterization and a coordinate transformationg = ho f oh . As
both f and g are arbitrary representations of the dynamical system, the explicit
form of the conjugacy h is of no interest, only the properties invariant under
any transformation h are of general import. Furthermore, a good representa-
tion should not mutilate the data; h must be a smooth conjugacy which maps
nearby periodic points of f into nearby periodic points of g. This smoothness
guarantees that the cycles are not only topological invariants, but that their lin-
earized neighborhoods are also metrically invariant. For a fixed point f(x) = x
of a 1-d map this follows from the chain rule for derivatives,

G0) = (o)) e
h’(x)f’(x)h,ix) = (x). (6.24)

In d dimensions the relationship between the maps in different coordinate rep-
resentations is again goh = ho f . We now make the matrix structure of relation
(6.3) explicit:

oh; 1 ahi_l

X

i.e., Tik(X) is the matrix inverse of I';}(x). The chain rule now relates M’, the
Jacobian matrix of the map g to the Jacobian matrix of map f:

M;;(h(x)) = Tik(f (<)) M ()T} (X) (6.25)

If x is a fixed point then (6.25) is a similarity transformation and thus preserves
eigenvalues: it is easy to verify that in the case of period n, cycle again
M’P(h(x)) and MP(x) are related by a similarity transformation (note that this is
not true for M"(x) with r # np). As stability of a flow can always be reduced to
stability of a Poincaré section return map, a Floquet multiplier of any cycle, for
a flow or a map in arbitrary dimension, is a metric invariant of the dynamical

system.
i in depth:
3 Appendix B.4, p. 504

Résumé
Dynamics (M, f) is invariant under the group of all smooth conjugacies

(M, f) - (M, g) = (h(M),ho foh™).
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This invariance can be used to (i) find a simplified representation for the flow
and (ii) identify a set of invariants, numbers computed within a particular
choice of (M, f), but invariant under all M — h(M) smooth conjugacies.

The 2D-dimensional phase space of an integrable Hamiltonian system of D
degrees of freedom is fully foliated by D-tori. In the same spirit, for a uni-
formly hyperbolic, chaotic dynamical system one would like to change into a
coordinate frame where the stable/unstable manifolds form a set of transver-
sally intersecting hyper-planes, with the flow everywhere locally hyperbolic.
That cannot be achieved in general: Fully globally integrable and fully glob-
ally chaotic flows are a very small subset of all possible flows, a ‘set of measure
zero’ in the world of all dynamical systems.

What we really care about is developping invariant notions of what a given
dynamical system is. The totality of smooth one-to-one nonlinear coordi-
nate transformations h which map all trajectories of a given dynamical sys-
tem (M, f!) onto all trajectories of dynamical systems (M’, g') gives us a huge
equivalence class, much larger than the equivalence classes familiar from the
theory of linear transformations, such as the rotation group O(d) or the Galilean
group of all rotations and translations in R¢. In the theory of Lie groups, the
full invariant specification of an object is given by a finite set of Casimir in-
variants. What a good full set of invariants for a group of general nonlinear
smooth conjugacies might be is not known, but the set of all periodic orbits
and their Floquet multipliers will turn out to be a good start.

Further reading

6.1 Rectification of flows. See Section 2.2.5 of Ref. [6.10] for
a pedagogical introduction to smooth coordinate reparameter-
izations. Explicit examples of transformations into canonical
coordinates for a group of scalings and a group of rotations
are worked out.

6.2 Rectification of maps. The methods outlined above are
standard in the analysis of fixed points and construction of
normal forms for bifurcations, see for example Ref. [6.26, 31,
2-7,11]. The geometry underlying such methods is pretty, and
we enjoyed reading, for example, Percival and Richards [6.8],
chaps. 2 and 4 of Ozorio de Almeida’s monograph [6.9], and,
as always, Arnol’d [6.1].

Recursive formulas for evaluation of derivatives needed to
evaluate (6.21) are given, for example, in Appendix A of
Ref. [6.9]. Section 10.6 of Ref. [6.11] describes in detail the
smooth conjugacy that relates the Ulam map (11.5) to the tent
map (11.4). For ‘negative Schwartzian derivatives,” families
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of conjugacies of Ulam-type maps, associated Lyapunov ex-
ponents, continuous measures and further pointers to litera-
ture, see Ref. [6.12].

6.3 A resonance condition. In the hyperbolic case there is
a resonance condition that must be satisfied: none of the Flo-
quet exponents may be related by ratios of integers. That is,
if Ap1,Ap2,....Apg are the Floquet multipliers of the Jaco-
bian matrix, then they are in resonance if there exist integers
Ny,...,Ng such that

(Ap,l)nl (Ap,z)n2 T (Ap,d)nd =1.
If there is resonance, then one may get corrections to the basic
conjugation formulas in the form of monomials in the vari-

ables of the map. (R.
Mainieri)
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Exercises

Exercises

(6.1)

(6.2)

Harmonic oscillator in polar coordinates: Given a
harmonic oscillator (6.6) that follows p = —g and g = p,
use (6.8) to rewrite the system in polar coordinates (6.7)
and find equations for r and 6.

1. Show that the 1-d state space of the rewritten sys-
tem is the quotient space M/SO(2).

2. Construct a Poincaré section of the quotiented flow.

Coordinate transformations. ~ Changing coordinates
is conceptually simple, but can become confusing when
carried out in detail. The difficulty arises from confusing
functional relationships, such as x(t) = h=(y(t)) with nu-
merical relationships, such as w(y) = h’(x)v(x). Working
through an example will clear this up.

(a) The differential equation in the M space is x =
{2x1, X} and the change of coordinates from M to
M ish(xg, X2) = {2X1 + X2, X1 — X2}. Solve for x(t).
Find h™1.
(b) Show that in the transformed space A, the differ-
ential equation is
E Y1 _ l 5y1 + 2y2
dt| y2 3| yat+dy2 |°

References

(6.3)

(6.4)

Solve this system. Does it match the solution in the
M space?

Linearization for maps. Let f : C — C beamap
from the complex numbers into themselves, with a fixed
point at the origin and analytic there. By manipulating
power series, find the first few terms of the map h that
conjugates f to ez, that is,

f(2) = h"(eh(2)).

There are conditions on the derivative of f at the origin to
assure that the conjugation is always possible. Can you
formulate these conditions by examining the series?

(difficulty: medium) (R. Mainieri)

Ulam and tent maps.  Show that the smooth conjugacy
(6.1)

9(yo) ho foh™(y)
y = h(x) =sin’(zx/2),

conjugates the tent map f(x) = 1-2|x—1/2] into the Ulam
map g(y) = 4y(1 —y). (continued as Exercise 13.1)
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Hamiltonian dynamics

Conservative mechanical systems have equations of motion that are
symplectic and can be expressed in Hamiltonian form. The generic
properties within the class of symplectic vector fields are quite differ-
ent from those within the class of all smooth vector fields: the system
always has a first integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in their energy
level.

— John Guckenheimer

the Rossler flow of Fig. 2.6 is of concern only to chemists or biomedi-

cal engineers or the weathermen; physicists do Hamiltonian dynamics,
right? Now, that’s full of chaos, too! While it is easier to visualize aperiodic
dynamics when a flow is contracting onto a lower-dimensional attracting set,
there are plenty examples of chaotic flows that do preserve the full symplectic
invariance of Hamiltonian dynamics. The whole story started with Poincaré’s
restricted 3-body problem, a realization that chaos rules also in general (non-
Hamiltonian) flows came much later.

Here we briefly review parts of classical dynamics that we will need later
on; symplectic invariance, canonical transformations, and stability of Hamil-
tonian flows. If your eventual destination are applications such as chaos in
quantum and/or semiconductor systems, read this chapter. If you work in neu-
roscience or fluid dynamics, skip this chapter, continue reading with the bil-
liard dynamics of Chapter 8 which requires no incantations of symplectic pairs

or loxodromic quartets.
W fast track
Chapter 8, p. 113

You miGHT THINK that the strangeness of contracting flows, flows such as

7.1 Hamiltonian flows

(P. Cvitanovi€ and L.V. Vela-Arevalo)
An important class of flows are Hamiltonian flows, given by a Hamiltonian
H(q, p) together with the Hamilton’s equations of motion

. OH . oH
= =— = —— 7.1
ql 6p| ’ pl aql ’ ( )
with the 2D phase space coordinates x split into the configuration space coor-
dinates and the conjugate momenta of a Hamiltonian system with D degrees

7.1 Hamiltonian flows

7.2 Stability of Hamiltonian flows
7.3 Symplectic maps

7.4 Poincaréinvariants

Further reading

Exercises

References
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remark 2.1
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Fig. 7.1 Phase plane of the unforced, un-
damped Duffing oscillator. The trajectories
lie on level sets of the Hamiltonian (7.4).

example 6.1

Fig. 7.2 A typical collinear helium trajec-
tory in the [r1, r2] plane; the trajectory enters
along the rp-axis and then, like almost every
other trajectory, after a few bounces escapes
to infinity, in this case along the rp-axis.
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of freedom (dof):

X=(9,p), g=1(0:1,92,..-.9p), p =(p1 P2,-... PD) - (7.2)

The energy, or the value of the Hamiltonian function at the state space point
X = (g, p) is constant along the trajectory x(t),

d oH . OoH .
&H(Q(t), p) = s i(t) + (‘)_pipi(t)
oHoOH oH oH
- aom oo 73
og; ap;  Api 0q; (7.3)

so the trajectories lie on surfaces of constant energy, or level sets of the Hamil-
tonian {(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically
the whole story.

Example 7.1 Unforced undamped Duffing oscillator:
When the damping term is removed from the Duffing oscillator (2.7), the system can
be written in Hamiltonian form with the Hamiltonian
P9, q
H@.P) = 5~ 5 + 5 (7.4)
Thisis a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (g, p).
The Hamilton’s equations (7.1) are

g=p. p=9-¢. (7.5)
For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves in the

phase plane (g, p), and the dynamics is very simple: the curves of constant energy
are the trajectories, as shown in Fig. 7.1.

Thus all 1-dof systems are integrable, in the sense that the entire phase plane
is foliated by curves of constant energy, either periodic — as is the case for the
harmonic oscillator (a ‘bound state’)—or open (a ‘scattering trajectory’). Add
one more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium:

In the quantum chaos part of ChaosBook.org we shall apply the periodic orbit
theory to the quantization of helium. In particular, we will study collinear helium,
a doubly charged nucleus with two electrons arranged on a line, an electron on each
side of the nucleus. The Hamiltonian for this system is

1, 1, 2 2 1

H= P+ sk - o

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy

conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-

dimensional configuration plane, the (r;,r;), ri > 0 quadrant, Fig. 7.2. It looks

messy, and, indeed, it will turn out to be no less chaotic than a pinball bouncing

between three disks. As always, a Poincaré section will be more informative than
this rather arbitrary projection of the flow.

(7.6)

Note an important property of Hamiltonian flows: if the Hamilton equations
(7.1) are rewritten in the 2D phase space form X; = vi(x), the divergence of the
velocity field v vanishes, namely the flow is incompressible. The symplectic
invariance requirements are actually more stringent than just the phase space
volume conservation, as we shall see in the next section.
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7.2 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of
equations of motion can affect the dynamics. In the case at hand, the symplectic
invariance will reduce the number of independent Floquet multipliers by a
factor of 2 or 4.

7.2.1 Canonical transformations

The equations of motion for a time-independent, D-dof Hamiltonian (7.1) can
be written

. 0 |1 0
Xi=winj(X), w:( - 0 ), Hj(X)Za—XjH(X), (7.7)
where x = (g, p) € M is a phase space point, Hx = d¢H is the column vector
of partial derivatives of H, | is the [Dx D] unit matrix, and w the [2Dx2D]
symplectic form ?
W = -w, w?=-1. (7.8)

The evolution of J* (4.6) is again determined by the stability matrix A, (4.9):

S0 =AM, A = i g0, (7.9)

where the matrix of second derivatives Hy, = 0xdnH is called the Hessian
matrix. From the symmetry of Hy, it follows that

Alw+wA=0. (7.10)

This is the defining property for infinitesimal generators of symplectic (or
canonical) transformations, transformations which leave the symplectic form
w invariant.

Symplectic matrices are by definition linear transformations that leave the
(antisymmetric) quadratic form x;wijy;j invariant. This immediately implies
that any symplectic matrix satisfies

Q'wQ = w, (7.11)

and —when Q is close to the identity Q = 1 + 5tA — it follows that that A must
satisfy (7.10).

Consider now a smooth nonlinear change of variables of form y; = hi(x),
and define a new function K(x) = H(h(x)). Under which conditions does
K generate a Hamiltonian flow? In what follows we will use the notation
Jj = 0/0yj: by employing the chain rule we have that

~ oh
wij(‘),—K = a)ij5|H6—Xj (7.12)
(Here, as elsewhere in this book, a repeated index implies summation.) By
virtue of (7.1) O|H = —wimYm, SO that, again by employing the chain rule, we
obtain
ohy  ohn.
(t)”a]K = —wija—xjw|ma—xr:xn (713)
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L The term ‘symplectic’ —Greek for twin-
ing or plaiting together— was introduced into
mathematics by Hermann Weyl. ‘Canonical’
lineage is church-doctrinal: Greek ‘kanon,’
referring to a reed used for measurement,
came to mean in Latin a rule or a standard.
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Fig. 7.3 Stability exponents of a Hamiltonian
equilibrium point, 2-dof.

section 4.3.1
exercise 7.4
exercise 7.5
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The right hand side simplifies to x; (yielding Hamiltonian structure) only if

oh oh
—wija—xzw.ma—xr: = 6in (7.14)

or, in compact notation, by defining (dh);j = g—:]

—w(0h) w(dh) = 1 (7.15)

which is equivalent to the requirement that oh is symplectic. h is then called
a canonical transformation.  We care about canonical transformations for
two reasons. First (and this is a dark art), if the canonical transformation h
is very cleverly chosen, the flow in new coordinates might be considerably
simpler than the original flow. Second, Hamiltonian flows themselves are a
prime example of canonical transformations.

Example 7.3 Hamiltonian flows are canonical:

For Hamiltonian flows it follows from (7.10) that %(JTwJ) = 0, and since at the
initial time J°(xo) = 1, Jacobian matrix is a symplectic transformation (7.11). This
equality is valid for all times, so a Hamiltonian flow f(x) is a canonical transfor-
mation, with the linearization 8, f'(x) a symplectic transformation (7.11): For
notational brevity here we have suppressed the dependence on time and the initial
point, J = J'(xo). By elementary properties of determinants it follows from (7.11)
that Hamiltonian flows are phase space volume preserving:

detJ|=1. (7.16)

Actually it turns out that for symplectic matrices (on any field) one always has det J =
+1.

7.2.2 Stability of equilibria of Hamiltonian flows

For an equilibrium point x the stability matrix A is constant. Its eigenvalues
describe the linear stability of the equilibrium point. A is the matrix (7.10)
with real matrix elements, so its eigenvalues (the Floquet exponents of (4.25))
are either real or come in complex pairs. In the case of Hamiltonian flows, it
follows from (7.10) that the characteristic polynomial of A for an equilibrium
Xq satisfies
det (A — A1) det (w }(A - 1)w) = det(—wAw — A1)
det (AT + 11) = det(A + 11). (7.17)

That is, the symplectic invariance implies in addition that if A is an eigenvalue,
then —1, 2* and —A* are also eigenvalues. Distinct symmetry classes of the
Floquet exponents of an equilibrium point in a 2-dof system are displayed in
Fig. 7.3. It is worth noting that while the linear stability of equilibria in a
Hamiltonian system always respects this symmetry, the nonlinear stability can
be completely different.
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7.3 Symplectic maps

A Floquet multiplier A = A(Xo, t) associated to a trajectory is an eigenvalue of
the Jacobian matrix J. As J is symplectic, (7.11) implies that

Jt=—wlw, (7.18)
so the characteristic polynomial is reflexive, namely it satisfies

det(J — A1) det(J7T — A1) = det(—wd w - Al)

det(J71 — A1) = det(J7Y)det(1- AJ)
A?Pdet(J - A1), (7.19)

Hence if A is an eigenvalue of J, so are 1/A, A* and 1/A*. Real eigenvalues
always come paired as A, 1/A. The Liouville conservation of phase space
volumes (7.16) is an immediate consequence of this pairing up of eigenvalues.
The complex eigenvalues come in pairs A, A*, |A|] = 1, or in loxodromic
quartets A, 1/A, A* and 1/A*. These possibilities are illustrated in Fig. 7.4.

Example 7.4 Hamiltonian Hénon map, reversibility:

By (4.48) the Hénon map (3.19) for b = —1 value is the simplest 2—d orienta-
tion preserving area-preserving map, often studied to better understand topology and
symmetries of Poincaré sections of 2 dof Hamiltonian flows. We find it convenient
to multiply (3.20) by a and absorb the a factor into x in order to bring the Hénon map
for the b = —1 parameter value into the form

X1+ X1 =a—-x2, i=1,.,n,, (7.20)
The 2-dimensional Hénon map for b = —1 parameter value

Xoer = a-X2—Yp
Yner = Xn. (7-21)

is Hamiltonian (symplectic) in the sense that it preserves area in the [X, y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix (ar-
bitrarily) the stretching parameter value to a = 6, a value large enough to guarantee
that all roots of 0 = f"(x) — x (periodic points) are real.

Example 7.5 2-dimensional symplectic maps:
In the 2-dimensional case the eigenvalues (5.6) depend only on tr M'

1
Az =3 (trM' £ (tr ME = 2)(tr M+ 2). (7.22)
The trajectory is elliptic if the stability residue |tr MY — 2 < 0, with complex eigen-
values Ay = e A; = A; = e If |trM' — 2 > 0, A is real, and the trajectory is

either

hyperbolic Ap=et, Apy=et, or (7.23)
inverse hyperbolic Ay =—e", Ap=—et. (7.24)
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Fig. 7.4 Stability of a symplectic map in &*.
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Fig. 7.5 Phase portrait for the standard map
for (a) k = 0: symbols denote periodic orbits,
full lines represent quasiperiodic orbits. (b)
k = 0.3, k = 0.85 and k = 1.4: each plot
consists of 20 random initial conditions, each
iterated 400 times.
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Example 7.6 Standard map.
Given a smooth function g(x), the map

Xn+1 = Xn + Yn+1
Yosr = Yn+0(X) (7.25)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.43) is

1 ’
weow = [1( 15807 1) (726

The map preserves areas, det M = 1, and one can easily check that M is symplectic.
In particular, one can consider x on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map
is thus the cylinder S; x R (S, stands for the 1-torus, which is fancy way to say
“circle”): by taking (7.25) mod 1 the map can be reduced on the 2-torus S,.

The standard map corresponds to the choice g(x) = k/2xsin(2zx). When k = 0,
Yn+1 = Yn = Yo, SO that angular momentum is conserved, and the angle x rotates with
uniform velocity

Xne1 = Xn +Yo = Xo + (N +1)yo mod 1.

The choice of y, determines the nature of the motion (in the sense of Section 2.1.1):
for yo = 0 we have that every point on the y, = 0 line is stationary, for yo = p/q
the motion is periodic, and for irrational y, any choice of X, leads to a quasiperiodic
motion (see Fig. 7.5 (a)).

Despite the simple structure of the standard map, a complete description of its dy-
namics for arbitrary values of the nonlinear parameter k is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
Fig. 7.5 (a), while, when k is sufficiently large, single trajectories wander erratically
on a large fraction of the phase space, as in Fig. 7.5 (b).

This gives a glimpse of the typical scenario of transition to chaos for Hamiltonian
systems.

Note that the map (7.25) provides a stroboscopic view of the flow generated by a
(time-dependent) Hamiltonian

HOGYD) = 29+ G005:() (7.27)

where ¢; denotes the periodic delta function

o

sit) = > o(t—m) (7.28)

m=—co

and
G'(x) = -9(x). (7.29)
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Important features of this map, including transition to global chaos (destruction of
the last invariant torus), may be tackled by detailed investigation of the stability of
periodic orbits. A family of periodic orbits of period Q already present in the k =
0 rotation maps can be labeled by its winding number P/Q The Greene residue
describes the stability of a P/Q-cycle:

1
Rp/Q = Z (2 —1r MP/Q) . (730)

If Rp/q € (0, 1) the orbit is elliptic, for Rp,q > 1 the orbit is hyperbolic orbits, and for
Re/q < 0 inverse hyperbolic.

For k = 0 all points on the yo = P/Q line are periodic with period Q, winding
number P/Q and marginal stability R, = 0. As soon as k > 0, only a 2Q of such
orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half
hyperbolic. If we further vary k in such a way that the residue of the elliptic Q-cycle
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher
period are generated.

7.4 Poincaré invariants
Let C be a region in phase space and V(0) its volume. Denoting the flow of the

Hamiltonian system by f!(x), the volume of C after a time t is V(t) = f!(C),
and using (7.16) we derive the Liouville theorem:

V(i) = fft(c)dx:jc‘

fc det (3)dx’ = fc dx’ = V(0), (7.31)

tryr
det 10D g
ox

Hamiltonian flows preserve phase space volumes.

The symplectic structure of Hamilton’s equations buys us much more than
the “‘incompressibility,” or the phase space volume conservation. Consider the
symplectic product of two infinitesimal vectors

(6%,6%) = oX wsk = 6pidhi — 60isPi
D

{oriented area in the (q;, pi) plane} . (7.32)
=1

Time t later we have
(6X',6%) = 6x"ITwIs% = 6x" wok.

This has the following geometrical meaning. We imagine there is a reference
phase space point. We then define two other points infinitesimally close so
that the vectors 6x and X describe their displacements relative to the refer-
ence point. Under the dynamics, the three points are mapped to three new
points which are still infinitesimally close to one another. The meaning of the
above expression is that the area of the parallelepiped spanned by the three fi-
nal points is the same as that spanned by the initial points. The integral (Stokes
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Further reading

theorem) version of this infinitesimal area invariance states that for Hamilto-
nian flows the D oriented areas V; bounded by D loops QV;, one per each
(i, pi) plane, are separately conserved:

fdp/\dqz p - dg = invariant.
Vv Qv

(7.33)

Morally a Hamiltonian flow is really D-dimensional, even though its phase
space is 2D-dimensional. Hence for Hamiltonian flows one emphasizes D, the
number of the degrees of freedom.

in depth:
Appendix B.4, p. 504

e

Further reading

7.1 Hamiltonian dynamics literature. If you are read-
ing this book, in theory you already know everything that is
in this chapter. In practice you do not. Try this: Put your
right hand on your heart and say: “I understand why nature
prefers symplectic geometry.” Honest? Out there there are
about 2 centuries of accumulated literature on Hamilton, La-
grange, Jacobi etc. formulation of mechanics, some of it ex-
cellent. In context of what we will need here, we make a very
subjective recommendation-we enjoyed reading Percival and
Richards [7.1] and Ozorio de Almeida [7.2].

7.2 The sign convention of w. The overall sign of w, the
symplectic invariant in (7.7), is set by the convention that the
Hamilton’s principal fur)ction (for energy conserving flows) is
given by R(q,q',t) = jqq pidg; — Et. With this sign convention
the action along a classical path is minimal, and the Kinetic
energy of a free particle is positive.

7.3 Symmetries of the symbol square. For a more detailed
discussion of symmetry lines see Refs. [7.3-7]. It is an open
question (see Remark 21.2) as to how time reversal symme-
try can be exploited for reductions of cycle expansions. For
example, the fundamental domain symbolic dynamics for re-
flection symmetric systems is discussed in some detail in Sec-
tion 21.5, but how does one recode from time-reversal sym-
metric symbol sequences to desymmetrized 1/2 state space
symbols?

newton - 23apr2011

7.4 Standard map.  Standard maps model free rotators un-
der the influence of short periodic pulses, as can be physically
implemented, for instance, by pulsed optical lattices in cold
atoms physics. On the theoretical side, standard maps exhibit
a number of important features: small k values provide an
example of KAM perturbative regime (see Ref. [7.10]), while
for larger k chaotic deterministic transport is observed [7.8,9];
the transition to global chaos also presents remarkable univer-
sality features [7.3, 11, 6]. Also the quantum counterpart of
this model has been widely investigated, being the first ex-
ample where phenomena like quantum dynamical localization
have been observed [7.12]. Stability residue was introduced
by Greene [7.11]. For some hands-on experience of the stan-
dard map, download Meiss simulation code [7.13].

7.5 Loxodromic quartets. For symplectic flows, real eigen-
values always come paired as A, 1/A, and complex eigenval-
ues come either in A, A* pairs, [A| = 1, or A, 1/A, A*, 1/A*
loxodromic quartets. As most maps studied in introductory
nonlinear dynamics are 2d, you have perhaps never seen a
loxodromic quartet. How likely are we to run into such things
in higher dimensions? According to a very extensive study
of periodic orbits of a driven billiard with a four dimensional
phase space, carried in Ref. [7.17], the three kinds of eigen-
values occur with about the same likelihood.
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Exercises

(7.1) Complex nonlinear Schrodinger equation. Con-
sider the complex nonlinear Schrodinger equation in one
spatial dimension [7.15]:

2

i‘;—‘f + ‘;7 +Bglol* =0,

(a) Show that the function ¢ : R — C defining the

traveling wave solution ¢(x,t) = (x—ct) forc > 0

satisfies a second-order complex differential equa-

tion equivalent to a Hamiltonian system in R* rel-

ative to the noncanonical symplectic form whose
matrix is given by

B #0.

0 0 1 ©

W 0 0 0 1
7]l -1 0 0 -c
0 -1 c¢c O

(b) Analyze the equilibria of the resulting Hamiltonian
system in R* and determine their linear stability
properties.

(c) Let y(s) = e°2a(s) for a real function a(s) and
determine a second order equation for a(s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits for 8 < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrodinger equation.

(Luz V. Vela-Arevalo)
(7.2) Symplectic group/algebra

Show that if a matrix C satisfies (7.10), then exp(sC) is a
symplectic matrix.

(7.3) Whenisalinear transformation canonical ?

(@) Let A be a [n x ] invertible matrix. Show that
the map ¢ : R™ — R given by (q.p) +~
(Ag, (A™1)Tp) is a canonical transformation.

(b) IfRisarotation in R3, show that the map (g, p) —
(Rqg,Rp) is a canonical transformation.

(Luz V. Vela-Arevalo)

References

(7.4) Determinants of symplectic matrices. Show that
the determinant of a symplectic matrix is +1, by going
through the following steps:

(a) use (7.19) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that the joint multiplicity of 2 = +1 is even,

(c) show that the multiplicities of 2 = 1 and 2 = -1
cannot be both odd. (Hint: write

P() = (1= 1™+ 1)™Q()
and show that Q(1) = 0).

(7.5) Cherry’'sexample.  What follows Refs. [7.14, 16] is
mostly a reading exercise, about a Hamiltonian system
that is linearly stable but nonlinearly unstable. Consider
the Hamiltonian system on R* given by

1 1
H = S(a + p1) = (6 + p3) + 5 P2(P — G7) — GaGa Py

(a) Show that this system has an equilibrium at the ori-
gin, which is linearly stable. (The linearized sys-
tem consists of two uncoupled oscillators with fre-
quencies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constant 7:

qlz_\/icos(t—r)’ _ cosZ(t—r),
t—-71 t—-71
sin(t — sin2(t —

o = vaSE=D o sin2(t-7)
t—-71 t—-71

These solutions clearly blow up in finite time; how-
ever they start at t = 0 at a distance V3/r from
the origin, so by choosing 7 large, we can find so-
lutions starting arbitrarily close to the origin, yet
going to infinity in a finite time, so the origin is
nonlinearly unstable.

(Luz V. Vela-Arevalo)
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Billiards

grapple with both numerically and conceptually, is the dynamics of bil-

liards. For billiards, discrete time is altogether natural; a particle moving
through a billiard suffers a sequence of instantaneous kicks, and executes sim-
ple motion in between, so there is no need to contrive a Poincaré section. We
have already used this system in Section 1.3 as the intuitively most accessible
example of chaos. Here we define billiard dynamics more precisely, anticipat-
ing the applications to come.

THE pynamics that we have the best intuitive grasp on, and find easiest to

8.1 Billiard dynamics

A billiard is defined by a connected region Q c RP, with boundary 9Q c RP~*
separating Q from its complement RP \ Q. The region Q can consist of one
compact, finite volume component (in which case the billiard phase space is
bounded, as for the stadium billiard of Fig. 8.1), or can be infinite in extent,
with its complement RP\ Q consisting of one or several finite or infinite volume
components (in which case the phase space is open, as for the 3-disk pinball
game in Fig. 1.1). In what follows we shall most often restrict our attention to
planar billiards.

A point particle of mass m and momentum p,, = mv, moves freely within the
billiard, along a straight line, until it encounters the boundary. There it reflects
specularly (specular = mirrorlike), with no change in the tangential compo-
nent of momentum, and instantaneous reversal of the momentum component
normal to the boundary,

P =p-2(p- M), (8.1)
with A the unit vector normal to the boundary dQ at the collision point. The
angle of incidence equals the angle of reflection, as illustrated in Fig. 8.2. A
billiard is a Hamiltonian system with a 2D-dimensional phase space x = (g, p)
and potential V(q) = 0 forq € Q, V(q) = o for q € 6Q.

A billiard flow has a natural Poincaré section defined by Birkhoff coordi-
nates sy, the arc length position of the nth bounce measured along the billiard
boundary, and p, = |p|sin ¢, the momentum component parallel to the bound-
ary, where ¢, is the angle between the outgoing trajectory and the normal to
the boundary. We measure both the arc length s, and the parallel momen-
tum p counterclockwise relative to the outward normal (see Fig. 8.2 as well
as Fig. 3.3). In D = 2, the Poincaré section is a cylinder (topologically an
annulus), Fig. 8.3, where the parallel momentum p ranges for —|p| to |p|, and
the s coordinate is cyclic along each connected component of Q. The vol-
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Fig. 8.1
dimensional domain bounded by two semi-

The stadium billiard is a 2-

circles of radius d = 1 connected by two
straight walls of length 2a. At the points
where the straight walls meet the semi-
circles, the curvature of the border changes
discontinuously; these are the only singular
points of the flow. The length a is the only
parameter.

remark 2.1



Fig. 8.2 (a) A planar billiard trajectory is
fixed by specifying the perimeter length
parametrized by s and the outgoing trajec-
tory angle ¢, both measured counterclock-
wise with respect to the outward normal A.
(b) The Birkhoft phase space coordinate pair
(s, p) fully specifies the trajectory, where p =
|pl'sin ¢ is the momentum component tangen-
tial to the boundary As the pinball kinetic
energy is conserved in elastic scattering, the
pinball mass and the magnitude of the pinball
momentum are customarily set to m = |p| =
1.

exercise 8.6
section 8.2

Fig. 8.3 In D = 2 the billiard Poincaré sec-
tion is a cylinder, with the parallel momentum
p ranging over p € {—1, 1}, and with the s co-
ordinate is cyclic along each connected com-
ponent of Q. The rectangle Fig. 8.2 (b) is
such cylinder unfolded, with periodic bound-
ary conditions glueing together the left and
the right edge of the rectangle.

exercise 8.1

exercise 8.2
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(s.p)

(a) (b)

ume in the full phase space is preserved by the Liouville theorem (7.31). The
Birkhoft coordinates x = (s, p) € P, are the natural choice, because with them
the Poincaré return map preserves the phase space volume of the (s, p) param-
eterized Poincaré section (a perfectly good coordinate set (s, ¢) does not do
that).

Without loss of generality we set m = |v| = |p| = 1. Poincaré section condi-
tion eliminates one dimension, and the energy conservation |p| = 1 eliminates
another, so the Poincaré section return map P is (2D — 2)-dimensional.

The dynamics is given by the Poincaré return map

P : (Sh, Pn) = (Sn+1, Pn+1) (8.2)

from the nth collision to the (n + 1)st collision.  The discrete time dynamics
map P is equivalent to the Hamiltonian flow (7.1) in the sense that both de-
scribe the same full trajectory. Let t, denote the instant of nth collision. Then
the position of the pinball € Q attime t, + 7 < t,,1 is given by 2D — 2 Poincaré
section coordinates (sn, pn) € P together with 7, the distance reached by the
pinball along the nth section of its trajectory (as we have set the pinball speed
to 1, the time of flight equals the distance traversed).

Example 8.1 3-disk game of pinball:
In case of bounces off a circular disk, the position coordinate s = r@ is given by
angle 6 € [0, 2x]. For example, for the 3-disk game of pinball of Fig. 1.6 and Fig. 3.3
we have two types of collisions:

Po - {¢ =—¢+ Zaar(_:sm P back-reflection (8.3)
pP=-p+ R Sll’lqﬁ’
Py { v fa_rcsm p+2n/3 reflect to 3rd disk . (84)
p’ = p R Sin ¢,

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more
than high-school geometry is required. There is no need to compute arcsin - one only
needs to compute one square root per each reflection, and the simulations can be very
fast.

Trajectory of the pinball in the 3-disk billiard is generated by a series of Py’s and
P,’s. At each step one has to check whether the trajectory intersects the desired disk
(and no disk in-between). With minor modifications, the above formulas are valid for
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any smooth billiard as long as we replace a by the local curvature of the boundary at
the point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discrete time billiard systems.
Infinitesimal equations of variations (4.2) do not apply, but the multiplicative
structure (4.38) of the finite-time Jacobian matrices does. As they are more
physical than most maps studied by dynamicists, let us work out the billiard
stability in some detail.

On the face of it, a plane billiard phase space is 4-dimensional. However,
one dimension can be eliminated by energy conservation, and the other by the
fact that the magnitude of the speed is constant. We shall now show how going
to a local frame of motion leads to a [2x2] Jacobian matrix.

Consider a 2-dimensional billiard with phase space coordinates X = (q1, g2, P1, P2)-
Let t, be the instant of the nth collision of the pinball with the billiard bound-
ary, and t* = t, + ¢, € positive and infinitesimal. With the mass and the
speed equal to 1, the momentum direction can be specified by angle 6: x =
(01, 9z, sin @, cos¥). Now parametrize the 2—d neighborhood of a trajectory
segment by 6x = (6z, 66), where

6z = 601 €0SH — 59z Sin 0, (8.5

&0 is the variation in the direction of the pinball motion. Due to energy con-
servation, there is no need to keep track of 6qy, variation along the flow, as
that remains constant. (6q1, 60_2) is the coordinate variation transverse to the
kth segment of the flow. From the Hamilton’s equations of motion for a free
particle, dgi/dt = p;j, dpi/dt = 0, we obtain the equations of motion (4.1) for
the linearized neighborhood

d d

—60=0, —d6z=460. 8.6

dt dt (86)
Let 66, = 06(t}) and 6z, = 6z(t}) be the local coordinates immediately after the
nth collision, and 66, = §6(ty), 6z, = o6z(t;) immediately before. Integrating
the free flight fromt}_, to t; we obtain

62; 6Zn_l + Tnden_l N Tn = tn - tn_l
56 = 6h1, (8.7)

and the Jacobian matrix (4.37) for the nth free flight segment is

MT(xn)=( é 7 ) 8.8)

At incidence angle ¢, (the angle between the outgoing particle and the outgo-
ing normal to the billiard edge), the incoming transverse variation 6z ; projects
onto an arc on the billiard boundary of length 6z, / cos ¢,. The corresponding
incidence angle variation é¢, = dz;, /pn COS ¢n, pn = local radius of curvature,

ChaosBook.org version13.5, Sep 7 2011 billiards - 16sep2008



116 Further reading

increases the angular spread to

0z, = -0,

n

2
06 = —-06, - ——oz,, 8.9
: e (89)

so the Jacobian matrix associated with the reflection is
1 0 ) 2

Mr(%n) = —( — = s (8.10)

The full Jacobian matrix for n, consecutive bounces describes a beam of tra-
jectories defocused by M+ along the free flight (the 7, terms below) and defo-
cused/refocused at reflections by Mg (the r,, terms below)

1
Mp=(—1)np1_[((1) Tln)(rln 2) (8.11)

n=n,

exercise 8.4

where 1, is the flight time of the kth free-flight segment of the orbit, r, =
2/pn COS ¢y is the defocusing due to the kth reflection, and p,, is the radius of
curvature of the billiard boundary at the nth scattering point (for our 3-disk
game of pinball, p = 1). As the billiard dynamics is phase space volume
preserving, det M = 1, and the eigenvalues are given by (7.22).

This is an example of the Jacobian matrix chain rule (4.46) for discrete time
systems (the Hénon map stability (4.47) is another example). Stability of every
flight segment or reflection taken alone is a shear with two unit eigenvalues,

Fig. 8.4 Defocusing of a beam of nearby tra- det Mt = det ( 1 ) , det Mg = det ( 10 ) , (8.12)
jectories at a billiard collision. (A. Wirzba) 0 1 rnh 1

but acting in concert in the interwoven sequence (8.11) they can lead to a hy-
perbolic deformation of the infinitesimal neighborhood of a billiard trajectory.
As a concrete application, consider the 3-disk pinball system of Section 1.3.
Analytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles
follow from elementary geometrical considerations. Longer cycles require
numerical evaluation by methods such as those described in Chapter 13.

exercise 13.7

exercise 13.8
exercise 8.3
chapter 13

Résumeé

A particulary natural application of the Poincaré section method is the reduc-
tion of a billiard flow to a boundary-to-boundary return map.

Further reading

8.1 Billiards. The 3-disk game of pinball is to chaotic dy- namics what a pendulum is to integrable systems; the simplest

billiards - 16sep2008 ChaosBook.org version13.5, Sep 7 2011



Exercises

physical example that captures the essence of chaos. Another
contender for the title of the ‘harmonic oscillator of chaos’ is
the baker’s map which is used as the red thread through Ott’s
introduction to chaotic dynamics [8.11]. The baker’s map is
the simplest reversible dynamical system which is hyperbolic
and has positive entropy. We will not have much use for the
baker’s map here, as due to its piecewise linearity it is so non-
generic that it misses all of the subtleties of cycle expansions
curvature corrections that will be central to this treatise.

That the 3-disk game of pinball is a quintessential example
of deterministic chaos appears to have been first noted by
B. Eckhardt [8.1]. The model was studied in depth classi-
cally, semiclassically and quantum mechanically by P. Gas-
pard and S.A. Rice [8.3], and used by P. Cvitanovi¢ and
B. Eckhardt [8.4] to demonstrate applicability of cycle expan-
sions to quantum mechanical problems. It has been used to
study the higher order 7 corrections to the Gutzwiller quanti-
zation by P. Gaspard and D. Alonso Ramirez [8.5], construct
semiclassical evolution operators and entire spectral determin-
ants by P. Cvitanovi¢ and G. Vattay [8.6], and incorporate the
diffraction effects into the periodic orbit theory by G. Vat-
tay, A. Wirzba and P.E. Rosenqvist [8.7]. Gaspard’s mono-
graph [8.8], which we warmly recommend, utilizes the 3-disk
system in much more depth than will be attained here. For
further links check ChaosBook.org.

A pinball game does miss a number of important aspects of
chaotic dynamics: generic bifurcations in smooth flows, the
interplay between regions of stability and regions of chaos,

117

intermittency phenomena, and the renormalization theory of
the ‘border of order’ between these regions. To study these
we shall have to face up to much harder challenge, dynamics
of smooth flows.

Nevertheless, pinball scattering is relevant to smooth poten-
tials. The game of pinball may be thought of as the infinite
potential wall limit of a smooth potential, and pinball sym-
bolic dynamics can serve as a covering symbolic dynamics in
smooth potentials. One may start with the infinite wall limit
and adiabatically relax an unstable cycle onto the correspond-
ing one for the potential under investigation. If things go well,
the cycle will remain unstable and isolated, no new orbits (un-
accounted for by the pinball symbolic dynamics) will be born,
and the lost orbits will be accounted for by a set of prun-
ing rules. The validity of this adiabatic approach has to be
checked carefully in each application, as things can easily go
wrong; for example, near a bifurcation the same naive sym-
bol string assignments can refer to a whole island of distinct
periodic orbits.

8.2 Stability analysis.  The chapter 1 of Gaspard mono-
graph [8.8] is recommended reading if you are interested in
Hamiltonian flows, and billiards in particular. A. Wirzba
has generalized the stability analysis of Section 8.2 to
scattering off 3-dimensional spheres (follow the links in
ChaosBook.org/extras). A clear discussion of linear sta-
bility for the general d-dimensional case is given in Gas-
pard [8.8], sect. 1.4.

Exercises

(8.1) A pinball smulator. Implement the disk — disk
maps to compute a trajectory of a pinball for a given
starting point, and a given R:a = (center-to-center dis-
tance):(disk radius) ratio for a 3-disk system. As this
requires only computation of intersections of lines and
circles together with specular reflections, implementation
should be within reach of a high-school student. Please
start working on this program now; it will be continually
expanded in chapters to come, incorporating the Jacobian
calculations, Newton root—finding, and so on.

Fast code will use elementary geometry (only one
/-~ per iteration, rest are multiplications) and eschew
trigonometric functions. Provide a graphic display of the
trajectories and of the Poincaré section iterates. To be
able to compare with the numerical results of coming

ChaosBook.org version13.5, Sep 7 2011

chapters, work with R:a = 6 and/or 2.5 values. Draw
the correct versions of Fig. 1.9 or Fig. 12.3 for R:a = 2.5
and/or 6.

(8.2) Trapped orbits.  Shoot 100,000 trajectories from one
of the disks, and trace out the strips of Fig. 1.9 for vari-
ous R:a by color coding the initial points in the Poincaré
section by the number of bounces preceding their escape.
Try also R:a = 6:1, though that might be too thin and re-
quire some magnification. The initial conditions can be
randomly chosen, but need not - actually a clearer picture
is obtained by systematic scan through regions of inter-
est.

(8.3) Pinball stability. Add to your Exercise 8.1 pinball sim-
ulator a routine that computes the [2x2] Jacobian matrix.
To be able to compare with the numerical results of com-
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118

ing chapters, work with R:a = 6 and/or 2.5 values.

Stadium billiard. Consider the Bunimovich sta-
dium [8.9, 10] defined in Fig. 8.1. The Jacobian matrix
associated with the reflection is given by (8.10). Here we
take px = —1 for the semicircle sections of the bound-
ary, and cos ¢ remains constant for all bounces in a ro-
tation sequence. The time of flight between two semi-
circle bounces is T, = 2cos¢,. The Jacobian matrix of
one semicircle reflection folowed by the flight to the next

bounce is
_ 1 2cos ¢ 1 0
)= (_1)( 0 1 )( -2/cos¢ 1 )
_ -3 2 C0s ¢
- (_1)( 2/ €OS ¢ 1 ) :

A free flight must always be followed by k = 1,2,3,---
bounces along a semicircle, hence the natural symbolic
dynamics for this problem is nary, with the correspond-
ing Jacobian matrix given by shear (ie. the eigenvalues

References

(8.5)

(8.6)

Exercises

remain equal to 1 throughout the whole rotation), and k
bounces inside a circle lead to

-2k-1

K K 2k cos ¢
=1 ( 2k/ cos ¢ )

2%k-1 (8.13)

The Jacobian matrix of a cycle p of length n, is given by

np
1 7 1 0
— (—1)ZM k
n=co (g 5 ) e 0

k=1

) . (8.14)

Adopt your pinball simulator to the stadium billiard.

A test of your pinball simulator. Test your Exer-
cise 8.3 pinball simulator by computing numerically cy-
cle stabilities by tracking distances to nearby orbits.
Compare your result with the exact analytic formulas of
Exercise 13.7 and 13.8.

Birkhoff coordinates.  Prove that the Birkhoff coordi-
nates are phase space volume preserving.
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World in a mirror

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

flection and rotation symmetries of various potentials. In this chapter

we study quotienting of discrete symmetries, and in the next chapter we
study symmetry reduction for continuous symmetries. We look at individual
orbits, and the ways they are interrelated by symmetries. This sets the stage
for a discussion of how symmetries affect global densities of trajectories, and
the factorization of spectral determinants to be undertaken in Chapter 21.
As we shall show here and in Chapter 21, discrete symmetries simplify the
dynamics in a rather beautiful way: If dynamics is invariant under a set of
discrete symmetries G, the state space M is tiled by a set of symmetry-related
tiles, and the dynamics can be reduced to dynamics within one such tile, the
fundamental domain M/G. In presence of a symmetry the notion of a prime
periodic orbit has to be reexamined: a set of symmetry-related full state space
cycles is replaced by often much shorter relative periodic orbit, the shortest
segment of the full state space cycle which tiles the cycle and all of its copies
under the action of the group. Furthermore, the group operations that relate
distinct tiles do double duty as letters of an alphabet which assigns symbolic
itineraries to trajectories.

Familiarity with basic group-theoretic notions is assumed, with details rele-
gated to Appendix C.1. The erudite reader might prefer to skip the lengthy
group-theoretic overture and go directly to C, = D; Example 9.7, Exam-
ple 9.10, and C3v = D3 Example 9.12, backtrack as needed.

D YNAMICAL SYsTEMs Often come equipped with symmetries, such as the re-

9.1 Discrete symmetries

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter

We show that a symmetry equates multiplets of equivalent orbits, or “stratifies’
the state space into equivalence classes, each class a ‘group orbit.”. \We start
by defining a finite (discrete) group, its state space representations, and what
we mean by a symmetry (invariance or equivariance) of a dynamical system.
As is always the problem with ‘gruppenpest’ (read Appendix A.2.3) way too
many abstract notions have to be defined before an intelligent conversation can
take place. Perhaps best to skim through this section on the first reading, then

9.1 Discrete symmetries 121
9.2 Symmetries of solutions 128
9.3 Relative periodic orbits 131
9.4 Dynamics reduced to fundamental do-

main 133
Résumé 135
Further reading 136
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return to it later as needed.

Definition: A finite group consists of a set of elements

G =1{e,02,...,0n} (9.2)
and a group multiplication rule g j o g; (often abbreviated as g ;g;), satisfying
(1) Closure: If gi,gj € G, thengjo g € G
(2) Associativity: gk o (gj o 9i) = (9k © 9j) © i
(3) Identitye: goe=eog=gforallgeG
(4) Inverse g~*: For every g € G, there exists a unique elementh=gt e G

such that
hog=goh=e.

|G| = n, the number of elements, is called the order of the group.
Example 9.1 Discrete groups of order 2 on R3.

Three types of discrete group of order 2 can arise by linear action on our 3-d Euclid-
ian space R®:

reflections: o(x,y,z) = (X,Y,—2)
rotations: R(1/2)(x,y,2) = (=X, -V,2) (9.2)
inversions: P(x,y,2) = (=X, -Y,—2).

o is a reflection (or an inversion) through the [x,y] plane. R(1/2) is [x,y]-plane,
constant z rotation by 7 about the z-axis (or an inversion thorough the z-axis). P is
an inversion (or parity operation) through the point (0,0, 0). Singly, each operation
generates a group of order 2: D; = {e,o}, C, = {e,R(1/2)}, and D; = {e, P}. To-
gether, they form the dihedral group D, = {e,o, R(1/2), P} of order 4.  (continued
in Example 9.2)

Definition: Coordinatetransformations. Consideramap x” = f(x), x, f(x) €
M. An active coordinate transformation Mx corresponds to a non-singular
[dxd] matrix M that maps the vector x € M onto another vector Mx € M. The
corresponding passive coordinate transformation f(x) — M~ f(x) changes the
coordinate system with respect to which the vector f(x) € M is measured. To-
gether, a passive and active coordinate transformations yield the map in the
transformed coordinates:

f(x) = M~1f(MX). (9.3)

Definition: Matrix representation. Linear action of a discrete group G el-
ement g on states X € M is given by a finite non-singular [d x d] matrix g,
the matrix representation of element g € G. We shall denote by ‘g’ both the
abstract group element and its matrix representation.

If the coordinate transformation g belongs to a linear non-singular represen-
tation of a discrete finite group G, for any element g € G there exists a number
m < |G| such that

g"=gogo...og=e — |detg/ =1. (9.4)

m times
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As the modulus of its determinant is unity, detg is an mth root of 1. Hence all
finite groups have unitary representations.

Example 9.2 Discrete operationson R2.
(continued from Example 9.1) The matrix representation of reflections, rotations
and inversions defined by (9.2) is

10 0 -1 0 0 -1 0 0
a':[O 10 J R(1/2)=[ 0 -1 o], P:[ 0 -1 0 ]
00 -1 0 0 1 0 0 -1

9:5)

with detR(1/2) = 1, deto = det P = -1, that is why we refer to R(1/2) as a rotation,
and o, P as inversions. (continued in Example 9.4)

Definition: Symmetry of a dynamical system. A group G is a symmetry
of the dynamics if for every solution f(x) € Mand g € G, gf(x) is also a
solution.

Another way to state this: A dynamical system (M, f) is invariant (or G- A f(X)
equivariant) under a symmetry group G if the time evolution f : M - M
(a discrete time map f, or the continuous flow ! map from the d-dimensional 3
manifold M into itself) commutes with all actions of G, ,

f(gx) = gf(x), (9.6)

or, in the language of physicists: The ‘law of motion” is invariant, i.e., retains [y 7 -
its form in any symmetry-group related coordinate frame (9.3), 3 : e : X

f(x) = g7 (g9, ©7) | /e | #x,

for any state x € M and any finite non-singular [d x d] matrix representation
g of element g € G. Why ‘equivariant?” A scalar function h(x) is said to be f(X)
G-invariant if h(x) = h(gx) for all g € G. The group actions map the solu- 4

tion f : M — M into different (but equivalent) solutions gf(x), hence the
invariance condition f(x) = g~ f(gx) appropriate to vectors (and, more gen- ,
erally, tensors). The full set of such solutions is G-invariant, but the flow that oX 285 A <
generates them is said to be G-equivariant. It is obvious from the context, but § o
for verbal emphasis applied mathematicians like to distinguish the two cases . ‘o X
by inequi-variant. The distinction is helpful in distinguishing the dynamics ‘
written in the original, equivariant coordinates from the dynamics rewritten in
terms of invariant coordinates, see Sections 9.1.2 and 10.4. L

XV

Example 9.3 A reflection symmetric 1d map. . GXO
Consider a 1d map f with reflection symmetry f(—x) = —f(x), such as the bimodal
‘sawtooth” map of Fig. 9.1, piecewise-linear on the state space M = [-1, 1], a com-
pact 1-dimensional line interval, split into three regions M = M. U Mc U Mr.  Fig. 9.1 The bimodal Ulam sawtooth map
Denote the reflection operation by ox = —x. The 2-element group G = {e,o}  with the Dy symmetry f(—x) = —f(x). If the
goes by many names, such as Z, or C,. Here we shall refer to it as Dy, dihedral  trajectory xp — X3 — X2 — --- is a solution,
group generated by a single reflection. The G-equivariance of the map implies that SO is its reflection 0 — X — 0% — -+~
if (x,} is a trajectory, than also {ox,} is a symmetry-equivalenttrajectory because ~(continued inFig. 9.2)
0Xny1 = 0 f(Xy) = f(o%y) (continued in Example 9.7) exercise 9.7
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Example 9.4 Equivariance of the Lorenz flow.

(continued from Example 9.2) The vector field in Lorenz equations (2.12) is equiv-
ariant under the action of cyclic group C, = {e, R(1/2)} acting on R® by a x rotation
about the z axis,

R1/2)(x.y.2) = (-x.-Y.2).

(continued in Example 9.10)

Example 9.5 Discrete symmetries of the plane Couette flow.

The plane Couette flow is a fluid flow bounded by two countermoving planes, in
a cell periodic in streamwise and spanwise directions. The Navier-Stokes equa-
tions for the plane Couette flow have two discrete symmetries: reflection through the
(streamwise,wall-normal) plane, and rotation by 7 in the (streamwise,wall-normal)
plane. That is why the system has equilibrium and periodic orbit solutions, (as op-
posed to relative equilibrium and relative periodic orbit). They belong to discrete
symmetry subspaces. (continued in Example 10.4)

9.1.1 Subgroups, orbits, subspaces

A solution usually exhibits less symmetry than the equations of motion. The
symmetry of a solution is thus a subgroup of the symmetry group of dynamics.
This section makes the statement precise by setting up the group-theoretic no-
tions needed in what follows. The reader might prefer to skip to Section 9.2,
backtrack as needed.

Definition: Subgroup, coset. Let H = {e, by, bs,..., by} € G be a subgroup
of order h = |H|. The set of h elements {c,cb,,cbs,...,cby}, ¢ € G but not
in H, is called left coset cH. For a given subgroup H the group elements are
partitioned into H and m — 1 cosets, where m = |G|/|H|. The cosets cannot be
subgroups, since they do not include the identity element.

Definition: Class. An element b € G is conjugate to a if b = cac™ where
c is some other group element. If b and c are both conjugate to a, they are
conjugate to each other. Application of all conjugations separates the set of
group elements into mutually not-conjugate subsets called classes, types or
conjugacy classes. The identity e is always in the class {e} of its own. This is
the only class which is a subgroup, all other classes lack the identity element.

Physical importance of classes is clear from (9.7), the way coordinate trans-
formations act on mappings: action of elements of a class (say reflections, or
rotations) is equivalent up to a redefinition of the coordinate frame.

Definition: Invariant subgroup. A subgroup H € G is an invariant sub-
group or normal divisor if it consists of complete classes. Class is complete if
no conjugation takes an element of the class out of H.

Think of action of H within each coset as identifying its |H| elements as
equivalent. This leads to the notion of the factor group or quotient group G/H
of G, with respect to the normal divisor (or invariant subgroup) H. H thus
divides G into H and m — 1 cosets, each of order |H|. The order of G/H is
m = |G|/|H|, and its multiplication table can be worked out from the G multi-
plication table class by class, with the subgroup H playing the role of identity.
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G/H is homeomorphic to G, with [H| elements in a class of G represented by a
single element in G/H.

So far we have discussed the structure of a group as an abstract entity. Now
we switch gears and describe the action of the group on the state space. This is
the key step; if a set of solutions is equivalent by symmetry (a circle, let’s say),
we would like to represent it by a single solution (cut the circle at a point, or
rewrite the dynamics in a ‘reduced state space,” where the circle of solutions is
represented by a single point).

Definition: Orbit. The subset My, c M traversed by the infinite-time tra-
jectory of a given point X, is called the orbit (or a solution) x(t) = f'(xo). An
orbit is a dynamically invariant notion: it refers to the set of all states that can
be reached in time from xq, thus as a set it is invariant under time evolution.
The full state space M is foliated (stratified) into a union of such orbits. We
label a generic orbit My, by any point belonging to it, xo = X(0) for example.

A generic orbit might be ergodic, unstable and essentially uncontrollable.
The ChaosBook strategy is to populate the state space by a hierarchy of orbits
which are compact invariant sets (equilibria, periodic orbits, invariant tori, . . .),
each computable in a finite time. They are a set of zero Lebesgue measure, but
dense on the non-wandering set, and are to a generic orbit what fractions are to
normal numbers on the unit interval. Orbits which are compact invariant sets
we label by whatever alphabet we find convenient in a given context: point
EQ = xgq = Mg foran equilibrium, 1-dimensional loop p = M, for a prime
periodic orbit p, etc. (note also discussion on page 162, and the distinction
between trajectory and orbit made in Section 2.1; a trajectory is a finite-time
segment of an orbit).

Definition: Group orbit or the G-orbit of the point x € M is the set
My ={gx|geGC} (9.8)

of all state space points into which x is mapped under the action of G. If G isa
symmetry, intrinsic properties of an equilibrium (such as stability eigenvalues)
or a cycle p (period, Floguet multipliers) evaluated anywhere along its G-orbit
are the same.

A symmetry thus reduces the number of inequivalent solutions M. So
we also need to describe the symmetry of a solution, as opposed to (9.7), the
symmetry of the system. We start by defining the notions of reduced state
space, of isotropy of a state space point, and of stabilizer of an orbit.

Definition: Reduced state space. The action of group G partitions the state
space M into a union of group orbits. This set of group orbits, denoted M/G,
has many names: reduced state space, quotient space or any of the names
listed on page 155.

Reduction of the dynamical state space is discussed in Section 9.4 for dis-
crete symmetries, and in Section 10.4 for continuous symmetries.
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Definition: Isotropy subgroup. The maximal set of group actions which
maps a state space point x into itself,

Gx={geG:gx=x}, 9.9

is called the isotropy group or little group of x.
We also need a notion of set-wise invariance, as opposed to the point-wise
invariance under G.

Definition: Fixed-point subspace. My is the set of all state space points
left H-fixed, point-wise invariant under subgroup or ‘centralizer’ H c G action

Mu =Fix(H) ={xe M :hx=xforallheH}. (9.10)

Points in state space subspace Mg which are fixed points of the full group
action are called invariant points,

Mg =Fix(G) ={xe M:gx=xforall g e G}. (9.11)

Definition: Stabilizer. We shall sometimes refer to the subset of nontrivial
group actions G, € G on state space points within a compact set M, which
leave no point fixed but leave the set invariant, as the stabilizer G , of M,

Gp=1{0€Gp:gxe Mp, gx# xforg e}, (9.12)

and reserve the notion of “isotropy” of a set M, for the subgroup G, that leaves
each point in it fixed.

Saying that G, is the symmetry of the solution p, or that the orbit M, is ‘G-
invariant,” accomplishes as much without confusing you with all these names
(see Remark 9.1). In what follows we shall speak freely and say things like
“the symmetry of the periodic orbit p is C, = {e, R},” rather than bandy about
‘stabilizers’ and such.

The splitting of a group G into an stabilizer G , and m — 1 cosets ¢G,, relates
an orbit M, to m—1 other distinct orbits c M. All of them have equivalent sta-
bilizers, or, more precisely, the points on the same group orbit have conjugate
stabilizers:

Gep =CGpc™, (9.13)

ie.,

If G, is the stabilizer of orbit M,, elements of the coset space g € G/G,
generate the m,—1 distinct copies of M,, so for discrete groups the multiplicity
of orbit p is mp = |G|/|Gy|.

Definition: Flow invariant subspace. A typical point in fixed-point sub-
space My moves with time, but, due to equivariance (9.6), its trajectory x(t) =
ft(x) remains within f(My) € My for all times,

hft(x) = fi(hx) = f'(x), heH, (9.14)
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i.e., it belongs to a flow invariant subspace. This suggests a systematic ap-
proach to seeking compact invariant solutions. The larger the symmetry sub-
group, the smaller My, easing the numerical searches, so start with the largest
subgroups H first.

We can often decompose the state space into smaller subspaces, with group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. M, c M is an invariant subspace if
(M, :gxe M, forallge Gand x e M,}. (9.15)

{0} and M are always invariant subspaces. So is any Fix (H) which is point-
wise invariant under action of G.

Definition: Irreducible subspace. A space M, whose only invariant sub-
spaces are {0} and M, is called irreducible.

9.1.2 Invariant bases

Physical laws should have the same form in symmetry-equivalent coordinate
frames, so they are often formulated in terms of functions (Hamiltonians, La-
grangians, - - -) invariant under a given set of symmetries.

Example 9.6 Polynomialsinvariant under discrete operationson R3.
(continued from Example 9.1) o is a reflection through the [x, y] plane. Any {e, o}-
invariant function can be expressed in the polynomial basis {u;, U, us} = {X,y, 2%}.
R(1/2) is a [x,y]-plane rotation by n about the z-axis. Any {e, R(1/2)}-invariant
function can be expressed in the polynomial basis {u;, Uy, Us, Us) = {X, xy,¥?, 2},
with one syzygy between the basis polynomials, (x?)(y?) — (xy)? = 0.
P is an inversion through the point (0,0, 0). Any {e, P}-invariant function can be ex-
pressed in the polynomial basis {uj, - - -, U} = {X?,¥?, 7%, Xy, Xz, yz}, with three syzy-
gies between the basis polynomials, (x?)(y?) — (xy)? = 0, and its 2 permutations.
For the D, dihedral group G = {e, o, R(1/2), P} the G-invariant polynomial basis is
{U1, Up, Us, Ug} = (X2, ¥2,22, xy}, with one syzygy, (x2)(y?) — (xy)? = 0. (continued in
Example 10.13)

The key result of the representation theory of invariant functions is:

Hilbert-Weyl theorem. Foracompact group G there exists a finite G-invariant
homogenous polynomial basis {us, Uy, . . ., Un}, m > d, such that any G-invariant
polynomial can be written as a multinomial

h(x) = p(u(x), uz(x), ..., um(x)),  xe M. (9.16)

These polynomials are linearly independent, but can be functionally dependent
through nonlinear relations called syzygies.

In practice, explicit construction of G-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few simple low-dimens-
ional cases, such as the 5-dimensional example of Section 10.5. We prefer to
apply the symmetry to the system as given, rather than undertake a series of
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Fig. 9.2 The Dj-equivariant bimodal saw-
tooth map of Fig. 9.1 has three types of pe-
riodic orbits: (a) D;-fixed fixed point C,
asymmetric fixed points pair {L,R}. (b) Ds-
symmetric (setwise invariant) 2-cycle LR. (c)
Asymmetric 2-cycles pair {LC,CR}. (con-
tinued in Fig. 9.8) (Y.
Lan)
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(XN (X (X
R —
CR
i/t e
[ X X X
LR L
L [ /-~ LC
(a) (b) (c)

nonlinear coordinate transformations that the theorem suggests. (What ‘com-
pact’ in the above refers to will become clearer after we have discussed con-
tinuous symmetries. For now, it suffices to know that any finite discrete group
is ‘compact’.)

9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all of the system’s symme-
tries, a subgroup of them, or have no symmetry at all. For a generic ergodic
orbit f{(x) the trajectory and any of its images under action of g € G are dis-
tinct with probability one, f'(x) n gf'(x) = 0 for all t, t'. For example, a
typical turbulent trajectory of plane Couette flow has no symmetry beyond the
identity, so its symmetry group is the trivial {e}. For compact invariant sets,
such as fixed points and periodic orbits the situation is very different. For ex-
ample, the symmetry of the laminar solution of the plane Couette flow is the
full symmetry of its Navier-Stokes equations. In between we find solutions
whose symmetries are subgroups of the full symmetry of dynamics.

The key concept in the classification of dynamical orbits is the concept of
their symmetry (isotropy or stabilizer subgroup). We note three types of solu-
tions: (i) fully asymmetric a, (ii) G, set-wise invariant cycles s built by repeats
of relative cycle segments §, and (iii) isotropy subgroup G gq -invariant equilib-
ria or point-wise G ,-fixed cycles b.

Definition: Asymmetricorbits. Anequilibrium or periodic orbit is not sym-
metric if {Xa} N {gxa} = 0 forany g € G, where {X,} is the set of periodic points
belonging to the cycle a. Thus g € G generate |G| distinct orbits with the same
number of points and the same stability properties.

Example 9.7 Group D; - areflection symmetric 1d map:

Consider the bimodal ‘sawtooth’ map of Example 9.3, with the state space M =
[-1,1] split into three regions M = { M, Mc, Mg} which we label with a 3-letter
alphabet L(eft), C(enter), and R(ight). The symbolic dynamics is complete ternary
dynamics, with any sequence of letters A = {L,C, R} corresponding to an admissi-
ble trajectory (‘complete’ means no additional grammar rules required, see Exam-
ple 11.6 below). The D;-equivariance of the map, D; = {e, o}, implies that if {X,} is
a trajectory, so is {o-Xn}.
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Asymmetric cycles. o- maps a cycle a into the reflected cycle o-a, with the same period
and the same stability properties, see Fig. 9.2 (c).

Definition: G,-symmetriccycles. A cycle p is G p-symmetric (set-wise sym-
metric, self-dual) if the action of elements of G, on the set of periodic points
M, reproduces the set. The set G, of group elements with this property is
called the stabilizer of the cycle s. g € G, acts as a shift in time, mapping the
periodic point x € M, into another periodic point.

Example 9.8 D;-symmetric cycles:
For D, the period of a set-wise symmetric cycle is even (ns = 2ns), and the mirror
image of the X periodic point is reached by traversing the relative periodic orbit
segment § of length ng, f™(Xs) = o Xs, see Fig. 9.2 (b).

Definition: Gp-fixed orbits:  An equilibrium x4 or a compact solution p is
point-wise or G ,-fixed if it lies in the invariant points subspace Fix (Gp), gXx = X
forall g € Gy, and x = xq or x € Mp. A solution that is G-invariant under all
group G operations has multiplicity 1. Stability of such solutions will have to
be examined with care, as they lie on the boundaries of domains related by the
action of the symmetry group.

Example 9.9 Group D;-invariant cycles:
In the example at hand there is only one G-invariant (point-wise invariant) orbit, the
fixed point C at the origin, see Fig. 9.2 (a). We shall continue analysis of this system
in Example 9.13, and work out the symbolic dynamics of such reflection symmetric
systems in Example 12.5.

As reflection symmetry is the only discrete symmetry that a map of the inter-
val can have, this example completes the group-theoretic analysis of 1-d maps.
Consider next a 3-d flow with a symmetry.

Example 9.10 Desymmetrization of Lorenz flow:
(continuation of Example 9.4) Lorenz equation (2.12) is invariant under the action
of order-2 group C, = {e,R(1/2)}, where R(1/2) is [x, y]-plane, constant z half-cycle
rotation by 7 about the z-axis:

(X9 Y, Z) - R(l/Z)(X, Y, Z) = (_X’ -y, Z) . (917)

(R(1/2))?> = 1 condition decomposes the state space into two linearly irreducible
subspaces M = M* & M-, the z-axis M* and the [x,y] plane M~, with projection
operators onto the two subspaces given by (see Section ??)

1 [ 0 0O ] 1 [ 1 0 0 ]
Pr=-(1+R(1/2)=| 0 0 0|, P ==(1-R(1/2)=|0 1 0 |.
2 00 1 2 0 0 0

(9.18)

As the flow is C,-invariant, so is its linearization X = Ax. Evaluated at EQo, A com-

mutes with R(1/2), and, as we have already seen in Example 4.7, the EQ, stability

matrix decomposes into [X, y] and z blocks.

The 1-d M* subspace is the fixed-point subspace of C,, with the z-axis points left

fixed (i.e., point-wise invariant) under the group action

M* =Fix(Cy) = {xe M:gx=xforg e {e,R(1/2)}}. (9.19)
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Fig. 9.4 (a) Lorenz attractor plotted in
[x',y’,z], the doubled-polar angle coordi-
nates (9.21), with points related by n-rotation
in the [x,y] plane identified. Stable eigen-
vectors of EQp: & and €@, along the z axis
(9.20). Unstable manifold orbit W(EQp)
(green) is a continuation of the unstable &V
of EQp. (b) Blow-up of the region near
EQ;1: The unstable eigenplane of EQ; de-
fined by Re &2 and Im&®@, the stable eigen-
vector &3, The descent of the EQp unstable
manifold (green) defines the innermost edge
of the strange attractor. As it is clear from
(a), it also defines its outermost edge. (E.
Siminos)

Fig. 9.3 Lorenz attractor of Fig. 3.7, the full
state space coordinates [x,y, z], with the un-
stable manifold orbits WY(EQp). (Green) is
a continuation of the unstable €9 of EQy,
and (brown) is its z-rotated symmetric part-
ner. Compare with Fig. 9.4. (E.
Siminos)
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(b) Im !

(@)

A C,-fixed point x(t) in Fix (C,) moves with time, but according to (9.14) remains
within x(t) € Fix (C,) for all times; the subspace M* = Fix (C,) is flow invariant. In
case at hand this jargon is a bit of an overkill: clearly for (x,y,z) = (0,0, z) the full
state space Lorenz equation (2.12) is reduced to the exponential contraction to the
EQo equilibrium,

7=-bz. (9.20)

However, for flows in higher-dimensional state spaces the flow-invariant M, sub-
spaces can each be high-dimensional, with interesting dynamics of its own. Even in
this simple case this subspace plays an important role as a topological obstruction,
with the number of windings of a trajectory around it providing a natural symbolic
dynamics.

The M~ subspace is, however, not flow-invariant, as the nonlinear terms z = xy — bz
in the Lorenz equation (2.12) send all initial conditions within M~ = (x(0), y(0), 0)
into the full, z(t) # O state space M/AM*. The R(1/2) symmetry is nevertheless very
useful.

By taking as a Poincaré section any R(1/2)-invariant, infinite-extent, non-self-inter-
secting surface that contains the z axis, the state space is divided into a half-space
fundamental domain M = M/C, and its 180° rotation R(1/2)M. An example is
afforded by the # plane section of the Lorenz flow in Fig. 3.7. Take the fundamental
domain M to be the half-space between the viewer and #. Then the full Lorenz flow
is captured by re-injecting back into M any trajectory that exits it, by a rotation of =
around the z axis.

As any such R(1/2)-invariant section does the job, a choice of a ‘fundamental do-
main” is here largely mater of taste. For purposes of visualization it is convenient
to make the double-cover nature of the full state space by M explicit, through any
state space redefinition that maps a pair of points related by symmetry into a single
point. In case at hand, this can be easily accomplished by expressing (x,y) in polar
coordinates (x,y) = (rcos®é,rsin @), and then plotting the flow in the ‘doubled-polar
angle representation:’

(X,y) = (rcos26,rsin26) = (X2 - y2)/r,2xy/r), (9.21)
as in Fig. 9.4 (a). In contrast to the original G-equivariant coordinates [x, Y, z], the
Lorenz flow expressed in the new coordinates [X,y’,z] is G-invariant, see Exam-
ple 9.6. In this representation the M = M/C, fundamental domain flow is a smooth,
continuous flow, with (any choice of) the fundamental domain stretched out to seam-
lessly cover the entire [x’,y’] plane. (continued in Example 11.4)
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(E. Siminos and J. Halcrow)

Note: nonlinear coordinate transformations such as the doubled-polar angle
representation (9.21) are not required to implement the symmetry quotienting
M|/G. Here they are deployed only as a visualization aid that might help the
reader disentangle 2-d projections of higher-dimensional flows. All numerical
calculations can still be carried in the initial, full state space formulation of a
flow, with symmetry-related points identified by linear symmetry transforma-

tions.
i in depth:
3 Appendix 30, p. 509
9.3 Relative periodic orbits

We show that a symmetry reduces computation of periodic orbits to repeats of
shorter, ‘relative periodic orbit’ segments.

Invariance of a flow under a symmetry means that the group action image of
a cycle is again a cycle, with the same period and stability. The new orbit may
be topologically distinct (in which case it contributes to the multiplicity of the
cycle) or it may be the same cycle.

Acycle p is Gp-symmetric under symmetry operationg € G, if the operation
acts on it as a shift in time, advancing a cycle point to a cycle point on the
symmetry related segment. The cycle p can thus be subdivided into m, repeats
of a relative periodic orbit segment, ‘prime’ in the sense that the full state space
cycle is built from its repeats. Thus in presence of a symmetry the notion of a
periodic orbit is replaced by the notion of the shortest segment of the full state
space cycle which tiles the cycle under the action of the group. In what follows
we refer to this segment as a relative periodic orbit segment (in the literature
sometime referred to as a short periodic orbit).

Relative periodic orbits (or equivariant periodic orbits) are orbits x(t) in
state space M which exactly recur

X®) =gx(t+T) (9.22)

for the shortest fixed relative period T and a fixed group actiong € G . Param-
eters of this group action are referred to as ‘phases’ or ‘shifts.” For a discrete
group by (9.4) g™ = e for some finite m, so the corresponding full state space
orbit is periodic with period mT.

The period of the full orbit is given by the m, x (period of the relative pe—
riodic orbit), ng = n,/|Gy|, and the ith Floquet multlpller Apji s given by A~.
of the relative periodic orbit. The elements of the quotient space b € G/G P
generate the copies bp, so the multiplicity of the full state space cycle p is
mp = |G|/|Gp|-

Example 9.11 Relative periodic orbits of L orenz flow:
(continuation of Example 9.10) The relation between the full state space periodic
orbits, and the fundamental domain (9.21) reduced relative periodic orbits of the
Lorenz flow: an asymmetric full state space cycle pair p, Rp maps into a single cycle
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Fig. 9.5 The symmetries of three disks on an
equilateral triangle. The fundamental domain
is indicated by the shaded wedge.



Fig. 9.6 The 3-disk pinball cycles: (a) 12, 13,
23, 123; the clockwise 132 not drawn. (b)
Cycle 1232; the symmetry related 1213 and
1323 not drawn. (c) 12323; 12123, 12132,
12313, 13131 and 13232 not drawn. (d) The
fundamental domain, i.e., the 1/6th wedge in-
dicated in (a), consisting of a section of a
disk, two segments of symmetry axes act-
ing as straight mirror walls, and the escape
gap to the left. The above 14 full-space cy-
cles restricted to the fundamental domain and
recoded in binary reduce to the two fixed
points 0, 1, 2-cycle 10, and 5-cycle 00111
(not drawn). See Fig. 9.9 for the 001 cycle.

exercise 9.5

132

CHAPTER 9. WORLD IN A MIRROR

i

p in the fundamental domain, and any self-dual cycle p = Rp = PR is a repeat of a
relative periodic orbit p.

(d)

The next illustration of these ideas brings in the noncommutative group
structure: for the 3-disk game of pinball of Section 1.3, Example 9.12 and
Example 9.14, the symmetry group has elements that do not commute. is a
non-abelian

Example 9.12 Czv = D3 invariance - 3-disk game of pinball:

As the three disks in Fig. 9.5 are equidistantly spaced, our game of pinball has a
sixfold symmetry. The symmetry group of relabeling the 3 disks is the permutation
group Ss; however, it is more instructive to think of this group geometrically, as Cs,
(dihedral group D3), the group of order |G| = 6 consisting of the identity element
e, three reflections across axes {o,, 023, 013}, and two rotations by 27/3 and 47/3
denoted {R(1/3),R(2/3)}. Applying an element (identity, rotation by +2x/3, or one
of the three possible reflections) of this symmetry group to a trajectory yields another
trajectory. For instance, o3, the flip across the symmetry axis going through disk 1
interchanges the symbols 2 and 3; it maps the cycle 12123 into 13132, Fig. 9.6 (c).
Cycles 12, 23, and 13 in Fig. 9.6 (a) are related to each other by rotation by +27/3,
or, equivalently, by a relabeling of the disks.

The nontrivial subgroups of D; are D; = {e, o}, consisting of the identity and any
one of the reflections, of order 2, and C3 = {e, R(1/3), R(2/3)}, of order 3, so possible
cycle multiplicities are |G|/|G,| = 1, 2, 3 or 6. Only the fixed point at the origin has
full symmetry G, = G. Such equilibria exist for smooth potentials, but not for the
3-disk billiard.

The C; subgroup G, = {e,R(1/3), R(2/3)} invariance is exemplified by 2 cycles 123
and 132 which are invariant under rotations by 2rr/3 and 4x/3, but are mapped into
each other by any reflection, Fig. 9.7 (a), and have multiplicity |G|/IGp| = 2.

The C, type of a subgroup is exemplified by the invariances of p = 1213. This cycle
is invariant under reflection 03{1213} = 1312 = 1213, so the invariant subgroup is
Gy = {e, o3}, with multiplicity is ms = [G|/IG,| = 3; the cycles in this class, 1213,
1232 and 1323, are related by 27/3 rotations, Fig. 9.7 (b).

A cycle of no symmetry, such as 12123, has G, = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132 and 13232),
Fig. 9.7 (c).
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121212313 121313132 121231313

Besides the above spatial symmetries, for Hamiltonian systems cycles may be related

by time reversal symmetry. An example are the cycles 121212313 and 313212121 =
121213132 which have the same periods and stabilities, but are related by no space

symmetry, see Fig. 9.7. (continued in Example 9.14)

9.4

Dynamics reduced to fundamental domain

I submit my total lack of apprehension of fundamental concepts.
—John F. Gibson

So far we have used symmetry to effect a reduction in the number of indepen-
dent cycles, by separating them into equivalence classes, and slicing them into
‘prime’ relative orbit segments. The next step achieves much more: it replaces
each class by a single (typically shorter) prime cycle segment.

(1)

)

3

Discrete symmetry tessellates the state space into dynamically equiva-
lent domains, and thus induces a natural partition of state space: If the
dynamics is invariant under a discrete symmetry, the state space M can
be completely tiled by a fundamental domain M and its symmetry im-
ages My = aM, My = bM, ... under the action of the symmetry group
G=1{eahb,..},

M=A~/lu/\~/(au/\~/(b-~-u/\~/(|e‘=A7(ua/\7(ubA7l-~-. (9.23)

Discrete symmetries can be used to restrict all computations to the fun-
damental domain M = M/G, the reduced state space quotient of the
full state space M by the group actions of G.

We can use the invariance condition (9.6) to move the starting point x
into the fundamental domain x = aX, and then use the relation a’lbh =
h=! to also relate the endpointy € M to its image in the fundamental
domain M. While the global trajectory runs over the full space M,
the restricted trajectory is brought back into the fundamental domain M
any time it exits into an adjoining tile; the two trajectories are related
by the symmetry operation h which maps the global endpoint into its
fundamental domain image.

Cycle multiplicities induced by the symmetry are removed by desym-
metrization, reduction of the full dynamics to the dynamics on a fun-
damental domain. Each symmetry-related set of global cycles p corre-
sponds to precisely one fundamental domain (or relative) cycle p. Con-
versely, each fundamental domain cycle p traces out a segment of the
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Fig. 9.7 Cycle 121212313 has multiplicity 6;
shown here is 121313132 = 03121212313.
However, 121231313 which has the same sta-
bility and period is related to 121313132 by
time reversal, but not by any Csv symmetry.

R



Fig. 9.8 The bimodal Ulam sawtooth map
of Fig. 9.2 with the Dy symmetry f(-x) =
—f(x) restricted to the fundamental domain.
f(x) is indicated by the thin line, and funda-
mental domain map f(X) by the thick line. (a)
Boundary fixed point C is the fixed point 0.
The asymmetric fixed point pair {L,R} is re-
duced to the fixed point 2, and the full state
space symmetric 2-cycle LR is reduced to the
fixed point 1. (b) The asymmetric 2-cycle
pair {LC,CR} is reduced to 2-cycle 01. (c)
All fundamental domain fixed points and 2-
cycles. (Y.
Lan)

exercise 9.6

(b)

Fig. 9.9 (a) The pair of full-space 9-cycles,
the counter-clockwise 121232313 and the
clockwise 131323212 correspond to (b) one
fundamental domain 3-cycle 001.

134 CHAPTER 9. WORLD IN A MIRROR

f(x)
/IR /\Ql"//

0 %702
T X

(b) (©)

global cycle p, with the end point of the cycle p mapped into the irre-
ducible segment of p with the group element hs. The relative periodic
orbits in the full space, folded back into the fundamental domain, are
periodic orbits.

(4) The group elements G = {e, g, ..., gjg } which map the fundamental do-
main M into its copies g M, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symmetries, see Sec-
tion 10.4.

Example 9.13 Group D; and reduction to the fundamental domain.
Consider again the reflection-symmetric bimodal Ulam sawtooth map f(—x) = —f(X)
of Example 9.7, with symmetry group D; = {e, o’}. The state space M = [-1,1] can
be tiled by half-line M = [0,1], and oM = [-1,0], its image under a reflection
across x = 0 point. The dynamics can then be restricted to the fundamental domain
% € M = [0, 1]; every time a trajectory leaves this interval, it is mapped back using
ag.

In Fig. 9.8 the fundamental domain map f~(>~() is obtained by reflecting x < 0 seg-
ments of the global map f(x) into the upper right quadrant. f is also bimodal and
piecewise-linear, with M = [0, 1] split into three regions M = { Mo, My, M} which
we label with a 3-letter alphabet A = {0,1,2}. The symbolic dynamics is again
complete ternary dynamics, with any sequence of letters {0, 1, 2} admissible.
However, the interpretation of the ‘desymmetrized” dynamics is quite different - the
multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
Fig. 9.8:

In (a) the boundary fixed point C is also the fixed point 0. In this case the set of
points invariant under group action of D;, M N oM, is just this fixed point x = 0, the
reflection symmetry point.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the full
state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR} is reduced to the 2-cycle 01. Finally, the symmetric 4-cycle
LCRC is reduced to the 2-cycle 02. This completes the conversion from the full state
space for all fundamental domain fixed points and 2-cycles, Fig. 9.8 (c).

Example 9.14 3-disk game of pinball in the fundamental domain
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If the dynamics is equivariant under interchanges of disks, the absolute disk labels
6 =1,2,---,N can be replaced by the symmetry-invariant relative disk—disk incre-
ments g;, where g; is the discrete group element that maps disk i—1 into disk i. For
3-disk system g; is either reflection o~ back to initial disk (symbol ‘0”) or 2r/3 rota-
tion by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry
invariant relabeling is that N-disk symbolic dynamics becomes (N —1)-nary, with no
restrictions on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental domain, a
one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflecting
mirrors (see Fig. 9.6(d)). A set of orbits related in the full space by discrete symme-
tries maps onto a single fundamental domain orbit. The reduction to the fundamen-
tal domain desymmetrizes the dynamics and removes all global discrete symmetry-
induced degeneracies: rotationally symmetric global orbits (such as the 3-cycles 123
and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles 12, 13
and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degener-
ate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. Some examples
of such orbits are shown in Figs. 9.7 and 9.9. (continued in Example 12.7)

Résumeé

If a dynamical system (M, f) has a symmetry G, the symmetry should be
deployed to ‘quotient’ the state space to M/G, i.e., identify all symmetry-
equivalent x € M on each group orbit. The main result of this chapter can be
stated as follows:

In presence of a discrete symmetry G, associated with each full state space
cycle p is the group of its symmetries G, C G of order 1 < |G| < |G|, whose
elements leave the set M, invariant. The elements of G, act on p as time
shifts, tiling it with |Gp| copies of its shortest invariant segment, the relative
periodic orbit . The elements of the coset b € G/G , generate m, = |G|/|Gl
equivalent copies of p.

Once you grasp the relation between the full state space M and the desym-
metrized, G-quotiented reduced state space M/G, you will find the life as a
fundamentalist so much simpler that you will never return to your full state
space confused ways of yesteryear. The reduction to the fundamental domain
M = M/G simplifies symbolic dynamics and eliminates symmetry-induced
degeneracies. For the short orbits the labor saving is dramatic. In the next
chapter continuous symmetries will induce relative periodic orbits that never
close a periodic orbit, and in the Chapter 25 they will tile the infinite periodic
state space, and reduce calculation of diffusion constant in an infinite domain
to a calculation on a compact torus.
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Further reading

Further reading

9.1 Literature. We found Tinkham [9.1] the most enjoy-

able as a no-nonsense, the user friendliest introduction to
the basic concepts. Byron and Fuller [9.2], the last chap-
ter of volume two, offers an introduction even more compact
than Tinkham’s. For a summary of the theory of discrete
groups see, for example, Ref. [9.3]. Chapter 3 of Rebecca
Hoyle [9.4] is a very student-friendly overview of the group
theory a nonlinear dynamicist might need, with exception of
the quotienting, reduction of dynamics to a fundamental do-
main, which is not discussed at all. We found sites such as
en.wikipedia.org/wiki/Quotient_group helpful. Curiously, we
have not read any of the group theory books that Hoyle recom-
mends as background reading, which just confirms that there
are way too many group theory books out there. For example,
one that you will not find useful at all is Ref. [9.5]. The reason
is presumably that in the 20th century physics (which moti-
vated much of the work on the modern group theory) the fo-
cus is on the linear representations used in quantum mechan-
ics, crystallography and quantum field theory. We shall need
these techniques in Chapter 21, where we reduce the linear ac-
tion of evolution operators to irreducible subspaces. However,
here we are looking at nonlinear dynamics, and the emphasis
is on the symmetries of orbits, their reduced state space sis-
ters, and the isotypic decomposition of their linear stability
matrices.
In ChaosBook we focus on chaotic dynamics, and skirt the
theory of bifurcations, the landscape between the boredom of
regular motions and the thrills of chaos. Chapter 4 of Rebecca
Hoyle [9.4] is a student-friendly introduction to the treatment
of bifurcations in presence of symmetries, worked out in full
detail and generality in monographs by Golubitsky, Stewart
and Schaeffer [9.6], Golubitsky and Stewart [9.7] and Chossat
and Lauterbach [9.8]. Term ‘stabilizer’ is used, for example,
by Broer et al. [9.9] to refer to a periodic orbit with Z, sym-
metry; they say that the relative or pre-periodic segment is in
this case called a ‘short periodic orbit.” In Efstathiou [9.10]
a subgroup of ‘short periodic orbit” symmetries is referred to
as a ‘nontrivial isotropy group or stabilizer” Chap. 8 of Go-
vaerts [9.11] offers a review of numerical methods that em-
ploy equivariance with respect to compact, and mostly dis-
crete groups. (continued in Remark 10.1)

9.2 Symmetries of the Lorenz equation: (continued from
Remark 2.3) After having studied Example 9.10 you will ap-
preciate why ChaosBook. org starts out with the symmetry-
less Rossler flow (2.17), instead of the better known Lorenz
flow (2.12). Indeed, getting rid of symmetry was one of
Rossler’s motivations. He threw the baby out with the wa-
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ter; for Lorenz flow dimensionalities of stable/unstable man-
ifolds make possible a robust heteroclinic connection absent
from Rossler flow, with unstable manifold of an equilib-
rium flowing into the stable manifold of another equilibrium.
How such connections are forced upon us is best grasped by
perusing the chapter 13 ‘Heteroclinic tangles’ of the inim-
itable Abraham and Shaw illustrated classic [9.12]. Their
beautiful hand-drawn sketches elucidate the origin of hete-
roclinic connections in the Lorenz flow (and its high-dim-
ensional Navier-Stokes relatives) better than any computer
simulation. Miranda and Stone [9.13] were first to quotient
the C, symmetry and explicitly construct the desymmetrized,
‘proto-Lorenz system,” by a nonlinear coordinate transforma-
tion into the Hilbert-Weyl polynomial basis invariant under
the action of the symmetry group [9.14]. For in-depth discus-
sion of symmetry-reduced (‘images’) and symmetry-extended
(‘covers’) topology, symbolic dynamics, periodic orbits, in-
variant polynomial bases etc., of Lorenz, Rdssler and many
other low-dimensional systems there is no better reference
than the Gilmore and Letellier monograph [9.15]. They inter-
pret [9.16] the proto-Lorenz and its ‘double cover’ Lorenz as
‘intensities’ being the squares of ‘amplitudes,” and call quo-
tiented flows such as (Lorenz)/C, ‘images.” Our ‘doubled-
polar angle’ visualization Fig. 11.8 is a proto-Lorenz in dis-
guise; we, however, integrate the flow and construct Poincaré
sections and return maps in the original Lorenz [x, y, z] coordi-
nates, without any nonlinear coordinate transformations. The
Poincaré return map Fig. 11.9 is reminiscent in shape both
of the one given by Lorenz in his original paper, and the one
plotted in a radial coordinate by Gilmore and Letellier. Nev-
ertheless, it is profoundly different: our return maps are from
unstable manifold — itself, and thus intrinsic and coordinate
independent. In this we follow Ref. [9.17]. This construction
is necessary for high-dimensional flows in order to avoid prob-
lems such as double-valuedness of return map projections on
arbitrary 1-d coordinates encountered already in the Rdssler
example of Fig. 3.6. More importantly, as we know the em-
bedding of the unstable manifold into the full state space, a
periodic point of our return map is - regardless of the length
of the cycle - the periodic point in the full state space, so no
additional Newton searches are needed. In homage to Lorenz,
we note that his return map was already symmetry-reduced:
as z belongs to the symmetry invariant Fix (G) subspace, one
can replace dynamics in the full space by 7, Z, ---. That is
G-invariant by construction [9.15].

9.3 Examples of systems with discrete symmetries.
Almost any flow of interest is symmetric in some way or
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other: the list of examples is endless, we list here a hand-
ful that we found interesting. One has a C, symmetry in
the Lorenz system (Remark 2.3), the Ising model, and in the
3-d anisotropic Kepler potential [9.18-20], a D4 = C4v sym-
metry in quartic oscillators [9.21, 22], in the pure x?y? po-
tential [9.23, 24] and in hydrogen in a magnetic field [9.25],
and a D, = C,v = V4 = C, x C, symmetry in the stadium
billiard [9.26]. A very nice nontrivial desymmetrization is
carried out in Ref. [9.27].  An example of a system with
D3 = C3v symmetry is provided by the motion of a particle in
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the Hénon-Heiles potential [9.28-31]
— 1 2 1 3 qi
V(r,0) = 2r + 3r sin(30) .

Our 3-disk coding is insufficient for this system because of the
existence of elliptic islands and because the three orbits that
run along the symmetry axis cannot be labeled in our code.
As these orbits run along the boundary of the fundamental
domain, they require the special treatment. A partial classifi-
cation of the 67 possible symmetries of solutions of the plane
Couette flow of Example 9.5, and their reduction 5 conjugate
classes is given in Ref. [9.32].
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Exercises

Exercises

(9.1) Polynomials invariant under discrete operations on
RS, Prove that the {e,o}, {e,R(1/2)}, {e,P} and
{e, o, R(1/2), P}-invariant polynomial basis and syzygies
are those listed in Example 9.6.

(9.2) Gx c G. Prove that the set G as defined in (9.9) is a
subgroup of G.

(9.3) Transitivity of conjugation. Assume that g;, g2, g3 €
G and both g; and g, are conjugate to gs. Prove that g; is
conjugate to g,.

(9.4) Isotropy subgroup of gx. Prove that for g € G, x and
gx have conjugate isotropy subgroups:

ng =g Gy g_1

(9.5) Ds: symmetriesof an equilateral triangle.  Consider
group D3 = Csv, the symmetry group of an equilateral
triangle:

2 3
(a) List the group elements and the corresponding ge-
ometric operations
(b) Find the subgroups of the group D;.

(c) Find the classes of D3 and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups of Ds.

(9.6) Reduction of 3-disk symbolic dynamicsto binary.
(continued from Exercise 1.1)

(a) Verify that the 3-disk cycles
{12,13,23},{123,132}, {1213 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.}, - - -,
correspond to the fundamental domain cycles 0, 1,

01, 001, 011, - - - respectively.

(b) Check the reduction for short cycles in Table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in Fig. 9.9.

exerDiscrete - 6sep2008

(c) Optional: Can you see how the group elements
listed in Table 12.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in Exercise 12.6)

(9.7) C,-equivariance of Lorenz system. Verify that the
vector field in Lorenz equations (2.12)
X oy —x)
X=v(X)=|Vy |=| px—-y—-xz (9.24)
z Xy — bz

is equivariant under the action of cyclic group C, =

{e,R(1/2)} acting on R® by a x rotation about the z axis,
R(1/2)(x.y.2) = (-x.-y.2),

as claimed in Example 9.4. (continued in Exercise 9.8)

(9.8) Lorenz system in polar coordinates: group theory.
Use (6.7), (6.8) to rewrite the Lorenz equation (9.24) in
polar coordinates (r, 6, z), where (x,y) = (rcosé,rsin6).

1. Show that in the polar coordinates Lorentz flow

takes form
Po= %(—a’—l+(0'+p—z)sin29
+(1 - o) cos 26)
0 = %(—0’+p—2+(0’—1)sin2¢9
+(o + p — Z) cos 26)
z = —bz+r—223in20. (9.25)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

3. Show that this is the (Lorenz)/C, quotient map for
the Lorenz flow, i.e., that it identifies points related
by the = rotation in the [x,y] plane.

4. Rewrite (9.24) in the invariant polynomial basis of
Example 9.6 and Exercise 9.25.

5. Show that a periodic orbit of the Lorenz flow in po-
lar representation (9.25) is either a periodic orbit or
a relative periodic orbit (9.22) of the Lorenz flow in
the (x,y, z) representation.

By going to polar coordinates we have quotiented out the
n-rotation (x,y,z) — (=X, —Y,z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.
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(9.9) Proto-Lorenz system. Here we quotient out the
C, symmetry by constructing an explicit “intensity” rep-
resentation of the desymmetrized Lorenz flow, following
Miranda and Stone [9.13].

1. Rewrite the Lorenz equation (2.12) in terms of
variables
(u,v,z) = (X% —y2,2xy,2), (9.26)
show that it takes form

u
]
z
N = Vuz+2.
2. Show that this is the (Lorenz)/C, quotient map for
the Lorenz flow, i.e., that it identifies points related
by the x rotation (9.17).
3. Show that (9.26) is invertible. Where does the in-
verse not exist?
4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(2.12) and in the proto-Lorenz form (9.27)

v/2 —bz

45
40
35|\
30
225
20
15
10

References

—(c+Du+(c-rv+(1-0o)N+vz
l (r—o)Ju—(oc+2LVv+(r+oc)N-uz-uN

(9.27)

10.

11.

139

for the Lorenz parameter values o = 10, b = 8/3,
p = 28. Topologically, does it resemble more the
Lorenz, or the Rossler attractor, or neither? (plot
by J. Halcrow)

. Show that a periodic orbit of the proto-Lorenz is

either a periodic orbit or a relative periodic orbit of
the Lorenz flow.

. Show that if a periodic orbit of the proto-Lorenz

is also periodic orbit of the Lorenz flow, their Flo-
quet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

What does the volume contraction formula (4.42)
look like now? Interpret.

Show that the coordinate change (9.26) is the same
as rewriting (9.25) in variables

(u,v) = (r?cos 26, r?sin26),

i.e., squaring a complex number z = x + iy, 22 =
u+ iv.

How is (9.27) related to the invariant polynomial
basis of Example 9.6 and Exercise 9.25?
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Relativity for cyclists

Maybe when 1’m done with grad school I’ll be able to figure it all out

— Rebecca Wilczak, undergraduate

HAT IF THE LAWS OF MoTION retain their form for a family of coordinate
W frames related by continuous symmetries? The notion of ‘fundamen-
tal domain’ is of no use here. If the symmetry is continuous, the
dynamical system should be reduced to a lower-dimensional, desymmetrized
system, with ‘ignorable’ coordinates eliminated (but not forgotten).

We shall describe here two ways of reducing a continuous symmetry. Inthe
‘method of slices’ or “moving frames’ of Section 10.4 we slice the state space
in such a way that an entire class of symmetry-equivalent points is represented
by a single point. In the Hilbert polynomial basis approach of Section 10.5
we replace the equivariant dynamics by the dynamics rewritten in terms of
invariant coordinates. In either approach we retain the option of computing in
the original coordinates, and then, when done, projecting the solution onto the
symmetry reduced state space.

Instead of writing yet another tome on group theory, in what follows we
continue to serve group theoretic nuggets on need-to-know basis, through a
series of pedestrian examples (but take a slightly higher, cyclist road in the text

proper).

10.1 Continuous symmetries

First of all, why worry about continuous symmetries? Here is an example of
the effect a continuous symmetry has on dynamics (for physics background,
see Remark 10.2).

Example 10.1 Complex Lorenz flow:
Consider a complex generalization of Lorenz equations (2.12),

X = —oX+oy,

y=(@-)x-ay
z (xy" +x"y)/2 - bz, (10.1)

where x,y are complex variables, z is real, while the parameters o, b are real and
p = p1+1ipp, a =1—ieare complex. Recast in real variables, this is a set of five
coupled ODEs

5(1 = —0X3+0oYy1

X2

—0 Xy +0Y2
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Fig. 10.1 Atypical {x1, x2, z} trajectory of the
complex Lorenz flow, with a short trajectory
of Fig. 10.4 whose initial point is close to the
relative equilibrium TW; superimposed. See
also Fig. 10.7. (R. Wilczak)

exercise 10.1
exercise 10.2
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Vi = (01— 2)X1—p2Xo — Y1 — €Y2
Yo = paXi+ (o1 —Z)X2 +€y1 — Yo
Z = -—bz+xy1+ XYz (10.2)

In all numerical examples that follow, the parameters will be set to p; = 28, p, =
0,b = 8/3,0 = 10, e = 1/10, unless explicitly stated otherwise. As we shall
show in Example 10.7, this is a dynamical system with a continuous (but no discrete)
symmetry. Figure 10.1 offers a visualization of its typical long-time dynamics. Itis a
mess. In the rest of this chapter we shall investigate various ways of ‘quotienting’ its
SO(2) symmetry, and reducing the dynamics to a 4-dimensional reduced state space.
As we shall show here, the dynamics has a nice ‘stretch & fold” action, but that is
totally masked by the continuous symmetry drifts. We shall not rest until we attain
the simplicity of Fig. 10.12, and the bliss of 1-dimensional return map of Fig. 10.14.

We shall refer to the component of the dynamics along the continuous sym-
metry directions as a ‘drift.” In a presence of a continuous symmetry an orbit
explores the manifold swept by combined action of the dynamics and the sym-
metry induced drifts. Further problems arise when we try to determine whether
an orbit shadows another orbit (see the Fig. 13.1 for a sketch of a close pass
to a periodic orbit), or develop symbolic dynamics (partition the state space,
as in Chapter 11): here a 1-dimensional trajectory is replaced by a (N +1)-
dimensional ‘sausage,” a dimension for each continuous symmetry (N being
the total number of parameters specifying the continuous transformation, and
‘1’ for the time parameter t). How are we to measure distances between such
objects? We shall learn here how to develop more illuminating visualizations
of such flow than Fig. 10.1, ‘quotient’ symmetries, and offer computation-
ally straightforward methods of reducing the dynamics to lower-dimensional,
reduced state spaces. The methods should also be applicable to high-dimens-
ional flows, such as translationally invariant fluid flows bounded by pipes or
planes (see Example 10.4).

But first, a lightning review of the theory of Lie groups. The group-theoretical
concepts of Section 9.1 apply to compact continuous groups as well, and will
not be repeated here. All the group theory that we shall need is in principle
contained in the Peter-Weyl theorem, and its corollaries: A compact Lie group
G is completely reducible, its representations are fully reducible, every com-
pact Lie group is a closed subgroup of a unitary group U(n) for some n, and
every continuous, unitary, irreducible representation of a compact Lie group is
finite dimensional.

Example 10.2 Special orthogonal group SO(2)
(or S1) is a group of length-preserving rotations in a plane. ‘Special’ refers to re-
quirement that detg = 1, in contradistinction to the orthogonal group O(n) which
allows for detg = +1. A group element can be parameterized by angle 6, with the
group multiplication law g(¢')g(6) = g(@ + 6), and its action on smooth periodic
functions u(@ + 2r) = u(6) generated by

_ 4
T do

Expand the exponential, apply it to a differentiable function u(#), and you will rec-
ognize a Taylor series. So g(#') shifts the coordinate by &, g(6’) u(®) = u(@ +6).

g@)=¢"7, T (10.3)
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Example 10.3 Translation group:
Differential operator T in (10.3) is reminiscent of the generator of spatial translations.
The ‘constant velocity field” v(x) = v = ¢ - T’ acts on x; by replacing it by the
velocity vector c;. It is easy to verify by Taylor expanding a function u(x) that the
time evolution is nothing but a coordinate translation by (time x velocity):

e'TC’TU(X) = e—TC‘% u(x) =u(x-rc). (10.4)

As x is a point in the Euclidean RY space, the group is not compact. In general, a
sequence of time steps in time evolution always forms an abelian Lie group, albeit
never as trivial as this free ballistic motion.

If the group actions consist of N rotations which commute, for example act on an
N-dimensional cell with periodic boundary conditions, the group is an abelian group
that acts on a torus TN,

Example 10.4 Continuous symmetries of the plane Couette flow.
(continued from Example 9.5) The plane Couette flow is a Navier-Stokes flow
bounded by two countermoving planes, in a cell periodic in streamwise and spanwise
directions. Every solution of Navier-Stokes equations belongs, by the SO(2) x SO(2)
symmetry, to a 2-torus T2 of equivalent solutions. Furthermore these tori are in-
terrelated by a discrete D, group of spanwise and streamwise flips of the flow cell.
(continued in Example 10.10)

Let G be a group, and gM — M a group action on the state space M. The
[dxd] matrices g acting on vectors in the d-dimensional state space M form
a linear representation of the group G. If the action of every element g of a
group G commutes with the flow

gv(x) =v(@x).  gf(x) = f7(gx), (10.5)

G is a symmetry of the dynamics, and, as in (9.6), the dynamics is said to be
invariant under G, or G-equivariant.

In order to explore the implications of equivariance for the solutions of dyn-
amical equations, we start by examining the way a compact Lie group acts on
state space M. For any x € M, the group orbit My of x is the set of all group
actions (see page 125 and Fig. 10.2)

My =1gx|geG}. (10.6)

As we saw in Example 10.3, the time evolution itself is a noncompact 1-
parameter Lie group. Thus the time evolution and the continuous symmetries
can be considered on the same Lie group footing. For a given state space point
x a symmetry group of N continuous transformations together with the evo-
lution in time sweeps out, in general, a smooth (N+1)-dimensional manifold
of equivalent solutions (if the solution has a nontrivial symmetry, the manifold
may have a dimension less than N + 1). For solutions p for which the group
orbit of x, is periodic in time T, the group orbit sweeps out a compact in-
variant manifold M,,. The simplest example is the N = 0, no symmetry case,
where the invariant manifold M, is the 1-torus traced out by a periodic trajec-
tory p. If M is a smooth C* manifold, and G is compact and acts smoothly
on M, the reduced state space can be realized as a ‘stratified manifold,” mean-
ing that each group orbit (a ‘stratum’) is represented by a point in the reduced
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Fig. 10.2 (a) The group orbit My of state
space point x(0), and the group orbit My
reached by the trajectory x(t) time t later. As
any point on the manifold M is physically
equivalent to any other, the state space is foli-
ated into the union of group orbits. (b) Sym-
metry reduction M — M replaces each full
state space group orbit My by a single point
yeM.
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y(7)

M y(0)
(b)

state space, see Section 10.4. Generalizing the description of a non-wandering
set of Section 2.1.1, we say that for flows with continuous symmetries the non-
wandering set Q of dynamics (2.2) is the closure of the set of compact invariant
manifolds M,. Without symmetries, we visualize the non-wandering set as a
set of points; in presence of a continuous symmetry, each such ‘point’ is a
group orbit.

10.1.1 Lie groups for pedestrians

[...] which is an expression of consecration of ‘angular momentum.’
— Mason A. Porter’s student

Definition: A Lie group is a topological group G such that (i) G has the
structure of a smooth differential manifold, and (ii) the composition map G x
G — G : (g,h) — gh~! is smooth, i.e., C* differentiable.

Do not be mystified by this definition. Mathematicians also have to make
a living. Historically, the theory of compact Lie groups that we will deploy
here emerged as a generalization of the theory of SO(2) rotations, i.e., Fourier
analysis. By a ‘smooth differential manifold” one means objects like the circle
of angles that parameterize continuous rotations in a plane, Example 10.2, or
the manifold swept by the three Euler angles that parameterize SO(3) rotations.

An element of a compact Lie group continuously connected to identity can
be written as

g(6) = €’T, 6'T=ZeaTa,a=l,2,-~-,N, (10.7)

where 6 - T is a Lie algebra element, and 6, are the parameters of the trans-
formation. Repeated indices are summed throughout this chapter, and the dot
product refers to a sum over Lie algebra generators. The Euclidian product of
two vectors x, y will be indicated by x-transpose times vy, i.e., xTy = Z? XiYi-
Unitary transformations exp(6 - T) are generated by sequences of infinitesimal
steps of form

9(60) ~1+60-T, 60eRN, |66 <1, (10.8)
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where T, the generators of infinitesimal transformations, are a set of linearly
independent [d x d] anti-hermitian matrices, (T,)" = —Ta, acting linearly on
the d-dimensional state space M. In order to streamline the exposition, we
postpone discussion of combining continuous coordinate transformations with
the discrete ones to Section 10.2.1.

For continuous groups the Lie algebra, i.e., the set of N generators T , of
infinitesimal transformations, takes the role that the |G| group elements play in
the theory of discrete groups. The flow field at the state space point x induced
by the action of the group is given by the set of N tangent fields

ta(X)i = (Ta)ijXj, (10.9)

which span the tangent space. Any representation of a compact Lie group G
is fully reducible, and invariant tensors constructed by contractions of T , are
useful for identifying irreducible representations. The simplest such invariant
is

T T=>cfi1w, (10.10)

where Cg’) is the quadratic Casimir for irreducible representation labeled «,
and 1@ is the identity on the a-irreducible subspace, 0 elsewhere. The dot
product of two tangent fields is thus a sum weighted by Casimirs,

()" - t(x') = Z CEx 6%, . (10.11)

[0

Example 10.5 SO(2) irreducible representations:
(continued from Example 10.2) Expand a smooth periodic function u(6+2xr) = u(6)
as a Fourier series

u(®) =ag + Z (am cosm@ + by, sinmd) . (10.12)
m=1

The matrix representation of the SO(2) action (10.3) on the mth Fourier coefficient
pair (am, by) is

™y _ [ COSME  sinme’
9@ = ( —-sinm¢’  cosme’ |’ (10.13)
with the Lie group generator
0 m
(m) _
T = ( “m 0 ) . (10.14)
The SO(2) group tangent (10.9) to state space point u(#) on the mth invariant subspace
is
t™u) = m ( b ) ) (10.15)
—am
The L? norm of t(u) is weighted by the SO(2) quadratic Casimir (10.10), C{" = m?,
de =
56 > (Tu(®)" Tu@r - 6) = Z m? (a; + bfn) , (10.16)
m=1

and converges only for sufficiently smooth u(#). What does that mean? We saw in
(10.4) that T generates translations, and by (10.14) the velocity of the mth Fourier
mode is m times higher than for the m = 1 component. If |u™]| does not fall off faster
the 1/m, the action of SO(2) is overwhelmed by the high Fourier modes.
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Example 10.6 SO(2) rotationsfor complex L orenz equations:
Substituting the Lie algebra generator

01 0 00
-1 0 0 00

T=l 0 0 0 1 0 (10.17)
0 0 -1 00
00 0 00

acting on a 5-dimensional space (10.2) into (10.7) yields a finite angle SO(2) rotation:

cos6  sind 0 0 0
—sind cosé 0 0 0
g(9) = 0 0 cos® sing O (10.18)
0 0 —sing cos® O
0 0 0 0 1

From (10.13) we see that the action of SO(2) on the complex Lorenz equations state
space decomposes into m = 0 G-invariant subspace (z-axis) and m = 1 subspace with
multiplicity 2.

The generator T is indeed anti-hermitian, T* = —T, and the group is compact, its
elements parametrized by # mod 2. Locally, at x € M, the infinitesimal action of
the group is given by the group tangent field t(x) = Tx = (X, —X1,Y2,-Y1,0). In
other words, the flow induced by the group action is normal to the radial direction in
the (x1, X2) and (y1, y») planes, while the z-axis is left invariant.

W fast track
Section 10.2, p. 150

10.1.2 Lie groups for cyclists

Henri Roux: “Why do you devote to Lie groups only a page, while
only a book-length monograph can do it justice?” A: “ChaosBook
tries its utmost to minimize the Gruppenpest jargon damage, which is
a total turnofT to our intended audience of working plumbers and elec-
tricians. The sufferings of our master plumber Fabian Waleffe while
reading Chapter 9 - World in a mirror are chicken feed in comparison
to the continuous symmetry reduction nightmare that we embark upon
here.”

Here comes all of the theory of Lie groups in one quick serving. You will live
even if you do not digest this section, or, to spell it out; skip this section unless
you already know the theory of Lie algebras.

The [dxd] matrices g acting on vectors in the state space M form a linear
representation of the group G. Tensors transform as

i = gi" 957 g hi ¥ (10.19)

A multilinear function h(T, T, ..., s) is an invariant function if (and only if) for
any transformation g € G and for any set of vectors g, r, s, ... it is unchanged

by the coordinate transformation
h(@q,aF,...9s) = h(@,F,...,S) = hap.. “€Q3r°---sc. (10.20)
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Examples of such invariant functions are the length r(x)? = &!x'x; and the
volume V(x,Y,2) = e'*xyjzc. Substitute the infinitesimal form of group action
(10.8) into (10.19), keep the linear terms. In the index-notation longhand, the
Lie algebra generator acts on each index separately,

(Ta) hy s o+ (T hyy K = (T ¥+ .. = 0. (10.21)

Hence the tensor h;; ~k is invariant if T.h = 0, i.e., the N generators T,
‘annihilate’ it.

As one does not want the symmetry rules to change at every step, the gener-
ators T,,a=1,2,...,N, are themselves invariant tensors:

(Ta)'| = 095" G (Ta) | . (10.22)

where gap = e“g'c]ab is the adjoint [NxN] matrix representation of g € G. The
[dxd] matrices T, are in general non-commuting, and from (10.21) it follows
that they close N-element Lie algebra

[Ta7 Tb] = TaTb - TbTa = _CabCTC ) a5 b, Cc= 1, 2a coey N )
where the fully antisymmetric adjoint representation hermitian generators

[Cc]ab = Cabc = _Cbac = _Cacb

are the structure constants of the Lie algebra.

As we will not use non-abelian Lie groups in this chapter, we omit the
derivation of the Jacobi relation between Cg,pc’s, and you can safely ignore
all this talk of tensors and Lie algebra commutators as far as the pedestrian
applications at hand are concerned.

10.1.3 Equivariance under infinitesimal transformations
A flow x = v(x) is G-equivariant (10.5) if
v(x) =g7tv(gx), forallgeG. (10.23)

For an infinitesimal transformation (10.8) the G-equivariance condition be-
comes

v(x)=(1—0~T)v(x+0~Tx)+-~-:v(x)—H-Tv(x)+%6~Tx+m.

The v(x) cancel, and 6, are arbitrary. Denote the group flow tangent field at x by
ta(X)i = (Ta)ijXj. Thus the infinitesimal, Lie algebra G-equivariance condition
is

ta(v) — A(X) ta(x) = 0, (10.24)
where A = dv/0x is the stability matrix (4.3). If case you find such learned re-
marks helpful: the left-hand side of (10.24) is the Lie derivative of the dynam-
ical flow field v along the direction of the infinitesimal group-rotation induced
flow ta(X) = TaX,

0
L= (Ta _ ;y(Tax))v(y) . (10.25)
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The equivariance condition (10.24) states that the two flows, one induced
by the dynamical vector field v, and the other by the group tangent field t,
commute if their Lie derivatives (or the ‘Lie brackets * or ‘Poisson brackets’)
vanish.

Example 10.7 Equivariance of complex Lorenz flow:
That complex Lorenz flow (10.2) is equivariant under SO(2) rotations (10.18) can
be checked by substituting the Lie algebra generator (10.17) and the stability matrix
(4.3) for complex Lorenz flow (10.2),

-0 0 o 0 0
0 - 0 o 0
A= p1—17 —pP2 -1 -e =X s (1026)
P2 p1—2 € -1 -x
Y1 Y2 X1 X —b

into the equivariance condition (10.24). Considering that t(v) depends on the full set
of equations (10.2), and A(x) is only its linearization, this is not an entirely trivial
statement. For the parameter values (10.2) the flow is strongly volume contracting
(4.41),

5
o= ) (k) = —b—2(c +1) = -24-2/3, (10.27)
i=1
at a coordinate-, p- and e-independent constant rate.

Checking equivariance as a Lie algebra condition (10.24) is easier than check-
ing it for global, finite angle rotations (10.23).

10.2 Symmetries of solutions

Let v(x) be the dynamical flow, and f ™ the trajectory or ‘time-r forward map’
of an initial point xo,

d

d—’t‘ =v(x),  x(t)=fT(x0) = Xo + fo “d V(). (10.28)

As discussed in Section 9.2, solutions x(r) can be classified by their symme-
tries. Generic trajectories have no symmetry, but recurrent solutions often do.
The simplest solutions are the equilibria or steady solutions (2.8).

Definition: equilibrium  xgq = Mgq is a fixed, time-invariant solution,

09

V(Xeq)
X(XEQ,T) = Xgq t+ f dr’ V(X(T')) = XEQ - (1029)
0
An equilibrium with full symmetry,

0 XeQ = XeQ forallge G,

exercise 10.6
exercise 10.7
exercise 10.8

lies, by definition, in Fix (G) subspace (9.10), for example the x3 axis in Fig. 10.3 (a).

The multiplicity of such solution is one. An equilibrium xgq with symmetry
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Geg smaller than the full group G belongs to a group orbit G/Ggqg. If G
is finite there are |G|/|Ggg| equilibria in the group orbit, and if G is continu-
ous then the group orbit of x is a continuous family of equilibria of dimension
dim G —dim Ggq. For example, if the angular velocity ¢ in Fig. 10.3 (b) equals
zero, the group orbit consists of a circle of (dynamically static) equivalent equi-
libria.

Definition: Relative equilibrium  solution Xyw(r) € Myw: the dynamical
flow field points along the group tangent field, with constant “angular’ velocity
¢, and the trajectory stays on the group orbit, see Fig. 10.3 (a):

v(x) = c-t(x), X € Mrw
x(¥) = g(-tc)x(0) = e7°Tx(0). (10.30)
A traveling wave
X(1) = g(=C7) Xrw = Xrw - €7, Ce€R’ (10.31)

is a special type of a relative equilibrium of equivariant evolution equations,
where the action is given by translation (10.4), g(y) x(0) = x(0) +y. A
rotating wave is another special case of relative equilibrium, with the action is
given by angular rotation. By equivariance, all points on the group orbit are
equivalent, the magnitude of the velocity ¢ is same everywhere along the orbit,
so a ‘traveling wave’ moves at a constant speed. For an N > 1 trajectory
traces out a line within the group orbit. As the c, components are generically
not in rational ratios, the trajectory explores the N-dimensional group orbit
(10.6) quasi-periodically. In other words, the group orbit g(r) x(0) coincides
with the dynamical orbit x(r) € Mrw and is thus flow invariant.

Example 10.8 A relative equilibrium:

For complex Lorenz equations and our canonical parameter values of (10.2) a
computation yields the relative equilibrium TW, with a representative group orbit
point

(X1, X2, ¥1, 0, Z)1w1 = (8.48492,0.0771356, 8.48562, 0, 26.9999) , (10.32)
and angular velocity crw; = 1/11. This corresponds to period Try; = 27/C ~ 69, SO
a simulation has to be run up to time of order of at least 70 for the strange attractor
in Fig. 10.1 to start filling in.

Figure 10.4 shows the complex Lorenz flow with the initial point (10.32) on the
relative equilibrium TW;. It starts out by drifting in a circle around the z-axis, but as
the numerical errors accumulate, the trajectory spirals out.

Calculation of the relative equilibrium stability reveals that it is spiral-out unstable,
with the very short period Tspira = 0.6163. This is the typical time scale for fast
oscillations visible in Fig. 10.1, with some 100 turns for one circumambulation of
the TW; orbit. In that time an initial deviation from Xty is multiplied by the factor
Avragiar ~ 500. It would be sweet if we could eliminate the drift time scale ~ 70 and
focus just on the fast time scale of ~ 0.6. That we will attain by reformulating the
dynamics in a reduced state space.

ChaosBook.org version13.5, Sep 7 2011 continuous - 12dec2010

exercise 10.11
exercise 10.12
exercise 10.13
exercise 10.14
exercise 10.15
exercise 10.16
exercise 10.17

exercise 10.18

v=cg@t
X(m= 9 x(0)

Fig. 10.3 (a) A relative equilibrium orbit
starts out at some point x(0), with the dynam-
ical flow field v(x) = c-t(x) pointing along the
group tangent space. For the SO(2) symmetry
depicted here, the flow traces out the group
orbit of x(0) in time T = 2x/c. (b) An equi-
librium lives either in the fixed Fix(G) sub-
space (xz axis in this sketch), or on a group
orbit as the one depicted here, but with zero
angular velocity c. In that case the circle (in
general, N-torus) depicts a continuous family
of fixed equilibria, related only by the group
action.



Fig. 104 {x1,Xp,z} plot of the complex
Lorenz flow with initial point close to TW;.
In Fig. 10.1 this relative equilibrium is super-
imposed over the strange attractor. (R.
Wilczak)

Fig. 10.5 A periodic orbit starts out at x(0)
with the dynamical v and group tangent t
flows pointing in different directions, and re-
turns after time T, to the initial point x(0) =
X(Tp). The group orbit of the temporal or-
bit of x(0) sweeps out a (1+ N)-dimensional
torus, a continuous family of equivalent peri-
odic orbits, two of which are sketched here.
For SO(2) this is topologically a 2-torus.
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Definition: Periodic orbit. Let x be a periodic point on the periodic orbit p
of period T,

fT)=x, xeM,
By equivariance, g x is another periodic point, with the orbits of x and gx either
identical or disjoint.

If gx lands on the same orbit, g is an element of periodic orbit’s symmetry
group G. If the symmetry group is the full group G, we are back to (10.30),
i.e., the periodic orbit is the group orbit traced out by a relative equilibrium.
The other option is that the isotropy group is discrete, the orbit segment {x, gx}
is pre-periodic (or eventually periodic), x(0) = g pX(Tp), where T, is a fraction
of the full period, T, = T/m, and thus

x(0)

x(0)

If the periodic solutions are disjoint, as in Fig. 10.5, their multiplicity (if G

is finite, see Section 9.1), or the dimension of the manifold swept under the

group action (if G is continuous) can be determined by applications of g € G.
They form a family of conjugate solutions (9.13),

Mgp=gMpg™. (10.34)

ng(Tp), XGMP? gp EGp
gpX(MTp) = x(T) = x(0). (10.33)

Definition: Relativeperiodicorbit p is an orbit M, in state space M which
exactly recurs
Xp(0) = gpXp(Tp), Xp(7) € Mp, (10.35)

at a fixed relative period T, but shifted by a fixed group action g, which brings
the endpoint x(Tp) back into the initial point x(0), see Fig. 10.6. The group
action g, parameters 6 = (61, 6>, - - - 6y) are referred to as “phases,” or “shifts.”
In contrast to the pre-periodic (10.33), the phase here are irrational, and the
trajectory sweeps out ergodically the group orbit without ever closing into a
periodic orbit. For dynamical systems with only continuous (no discrete) sym-
metries, the parameters {t, 61, - - -, Oy} are real numbers, ratios 7/6; are almost
never rational, likelihood of finding a periodic orbit for such system is zero,
and such relative periodic orbits are almost never eventually periodic.

Relative periodic orbits are to periodic solutions what relative equilibria
(traveling waves) are to equilibria (steady solutions). Equilibria satisfy f 7(x) —
x = 0 and relative equilibria satisfy f7(x)—g(r) x = 0 forany 7. In a co-moving
frame, i.e., frame moving along the group orbit with velocity v(x) = ¢ - t(x),
the relative equilibrium appears as an equilibrium. Similarly, a relative peri-
odic orbit is periodic in its mean velocity ¢, = 6,/T, co-moving frame (see
Fig. 10.8), but in the stationary frame its trajectory is quasiperiodic. A co-
moving frame is helpful in visualizing a single ‘relative’ orbit, but useless for
viewing collections of orbits, as each one drifts with its own angular velocity.
Visualization of all relative periodic orbits as periodic orbits we attain only by
global symmetry reductions, to be undertaken in Section 10.4.

Example 10.9 Complex Lorenz flow with relative periodic or bit:
Figure 10.7 is a group portrait of the complex Lorenz equations state space dynam-
ics, with several important players posing against a generic orbit in the background.
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Fig. 10.6 A relative periodic orbit starts out at x(0)
with the dynamical v and group tangent t flows point-
ing in different directions, and returns to the group or-
bit of x(0) after time T, at x(Tp) = gpx(0), a rotation
of the initial point by gp. For flows with continuous
symmetry a generic relative periodic orbit (not pre-
periodic to a periodic orbit) fills out ergodically what
is topologically a torus, as in Fig. 10.5; if you are able
to draw such a thing, kindly send us the figure. As
illustrated by Fig. 10.8 (a) this might be a project for
Lucas Films.

The unstable manifold of relative equilibrium TW; is characterized by a 2-dimensional
complex eigenvector pair, so its group orbit is a 3-dimensional. Only one representa-
tive trajectory on it is plotted in the figure. The unstable manifold of equilibrium EQ,
has one expanding eigenvalue, but its group orbit is a cone originating at EQy. Only
one representative trajectory on this cone is shown in the figure. It lands close to
TWj;, and then spirals out along its unstable manifold. 3 repetitions of a short relative
periodic orbit 01 are drawn. The trajectory fills out ergodically a 2-dimensional
orbit Mo;. The assignment of its symbolic dynamics label will be possible only after
the symmetry reduction, see Fig. 10.14 and Fig. 11.9.

10.2.1 Discrete and continuous symmetries together

We expect to see relative periodic orbits because a trajectory that starts on
and returns to a given torus of a symmetry equivalent solutions is unlikely to
intersect it at the initial point, unless forced to do so by a discrete symmetry.
This we will make explicit in Section 10.4, where relative periodic orbits will
be viewed as periodic orbits of the reduced dynamics.

If, in addition to a continuous symmetry, one has a discrete symmetry which
is not its subgroup, one does expect equilibria and periodic orbits. However,
a relative periodic orbit can be pre-periodic if it is equivariant under a discrete
symmetry, as in (10.33): If g™ = 1 is of finite order m, then the corresponding
orbit is periodic with period mT p. If g is not of a finite order, a relative periodic
orbit is periodic only after a shift by g, as in (10.35). Morally, as it will be
shown in Chapter 21, such orbit is the true ‘prime’ orbit, i.e., the shortest
segment that under action of G tiles the entire invariant suomanifold M p.

Definition: Relativeorbit Mgy in state space M is the time evolved group
orbit My of a state space point x, the set of all points that can be reached from
x by all symmetry group actions and evolution of each in time.

Myp ={gxt :teR,geG} . (10.36)

In presence of symmetry, an equilibrium is the set of all equilibria related by
symmetries, an relative periodic orbit is the hyper-surface traced by a trajectory
intime T and all group actions, etc..

Example 10.10 Relative orbitsin the plane Couette flow.
(continued from Example 10.4) Translational symmetry allows for relative equi-
libria (traveling waves), characterized by a fixed profile Eulerian velocity ury (X)
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Fig. 10.7 (Figure 10.1 continued) A group
portrait of the complex Lorenz equations
state space dynamics. Plotted are relative
equilibrium TW; (red), its unstable mani-
fold (brown), equilibrium EQp, one trajec-
tory from the group orbit of its unstable man-
ifold (green), 3 repetitions of relative periodic
orbit 01 (magenta) and a generic orbit (blue).
(E. Siminos)



Fig. 10.8 A relative periodic orbit of
Kuramoto-Sivashinsky flow projected on (a)
the stationary state space coordinate frame
{v1,V2,v3}, traced for four periods Tp; (b)
the co-moving {V,V,,V3} coordinate frame,
moving with the mean angular velocity ¢, =
Op/Tp. (from Ref. [10.1])

chapter 21
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Vo Vi Vo ~

V3

V3

(@) (b)

moving with constant velocity c, i.e.
u(x,7) = Urw(x —c7). (10.37)

As the plane Couette flow is bounded by two counter-moving planes, it is easy to
see where the relative equilibrium (traveling wave) solutions come from. A relative
equilibrium solution hugs close to one of the walls and drifts with it with constant ve-
locity, slower than the wall, while maintaining its shape. A relative periodic solution
is a solution that recurs at time T, with exactly the same disposition of the Eule-
rian velocity fields over the entire cell, but shifted by a 2-dimensional (streamwise,-
spanwise) translation g,. By discrete symmetries these solutions come in counter-
traveling pairs uq(x — c7), —uq(—x + c7): for example, for each one drifting along
with the upper wall, there is a counter-moving one drifting along with the lower wall.
Discrete symmetries also imply existence of strictly stationary solutions, or ‘standing
waves.” For example, a solution with velocity fields antisymmetric under reflection
through the midplane has equal flow velocities in opposite directions, and is thus an
equilibrium stationary in time.

10.3 Stability

A spatial derivative of the equivariance condition (10.5) yields the matrix equiv-
ariance condition satisfied by the stability matrix (stated here both for the finite
group actions, and for the infinitesimal, Lie algebra generators):
1 oA

9ANMG T =AEX).  [Ta.Al= 2 t(X). (10.38)
For a flow within the fixed Fix (G) subspace, t(x) vanishes, and the symmetry
imposes strong conditions on the perturbations out of the Fix (G) subspace. As
in this subspace stability matrix A commutes with the Lie algebra generators
T, the spectrum of its eigenvalues and eigenvectors is decomposed into irre-
ducible representations of the symmetry group. This we have already observed
for the EQq of the Lorenz flow in Example 9.10.

A infinitesimal symmetry group transformation maps the initial and the end
point of a finite trajectory into a nearby, slightly rotated equivalent points, so
we expect the perturbations along to group orbit to be marginal, with unit
eigenvalues. The argument is akin to (4.7), the proof of marginality of per-
turbations along a periodic orbit. Consider two nearby initial points sepa-
rated by an N-dimensional infinitesimal group transformation (10.8): 6xo =
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g(69)Xo — Xo = 60- Txg = 66-t(Xo). By the commutativity of the group with the
flow, g(66)f"(xo) = f7(g(66)xo0). Expanding both sides, keeping the leading
term in 66, and using the definition of the Jacobian matrix (4.6), we observe
that J7(Xo) transports the N-dimensional group tangent space at x(0) to the
rotated tangent space at x(7) at time :

ta(r) = ' (X0) ta(0).  ta(r) = Tax(7). (10.39)

For a relative periodic orbit, gpx(T,) = x(0), at any point along cycle p the
group tangent vector ty(7) is an eigenvector of the Jacobian matrix with an
eigenvalue of unit magnitude,

Jpta(X) = ta(X), Jp(X) = gpd™P(%), XeM,. (10.40)

Two successive points along the cycle separated by 6xo = 60 - t(r) have the
same separation after a completed period 6x(T p) = gpdXo, hence eigenvalue
of magnitude 1. In presence of an N-dimensional Lie symmetry group, N
eigenvalues equal unity.

10.4 Reduced state space

Given Lie group G acting smoothly on a C* manifold M, we can think of
each group orbit as an equivalence class. Symmetry reduction is the identi-
fication of a unique point on a group orbit as the representative of its equiv-
alence class. We call the set of all such group orbit representatives the re-
duced state space M/G. In the literature this space is often rediscovered, and
thus has many names - it is alternatively called ‘desymmetrized state space,’
‘symmetry-reduced space,” ‘orbit space,” ‘quotient space,” or ‘image space,’
obtained by mapping equivariant dynamics to invariant dynamics by methods
such as ‘moving frames,” “‘cross sections,” ‘slices,” ‘freezing,” ‘Hilbert bases,’
‘gquotienting,” ‘lowering of the degree,” ‘lowering the order,” or ‘desymmetriza-
tion.’

Symmetry reduction replaces a dynamical system (M, ) with a symme-
try by a ‘desymmetrized’ system (M, f), a system where each group orbit
is replaced by a point, and the action of the group is trivial, gy = y for all
y € M, g € G. The reduced state space M is sometimes called the ‘quo-
tient space’ M/G because the symmetry has been “divided out.” For a discrete
symmetry, the reduced state space M/G is given by the fundamental domain
of Section 9.4. In presence of a continuous symmetry, the reduction to M/G
amounts to a change of coordinates where the ‘ignorable angles’ {01, - - -, On}
that parameterize N group translations can be separated out.

We start our discussion of symmetry reduction by considering the finite-
rotations method of moving frames, and its differential formulation, the method
of slices.

10.4.1 Go with the flow: method of moving frames

The idea: We can, at least locally, map each point along any solution x(r) to
the unique representative y(r) of the associated group orbit equivalence class,
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Fig. 10.9 A point x on the full state space
trajectory x(t) is equivalent up to a group ro-
tation g(t) to the point y on the curve y(t) if
the two points belong to the same group orbit
My, see (10.6).

Fig. 10.10 Slice M is a hyperplane (10.42)
passing through the slice-fixing point X, and
normal to the group tangent t at x’. It in-
tersects all group orbits (indicated by dotted
lines here) in an open neighborhood of X.
The full state space trajectory x(r) and the re-
duced state space trajectory y(r) belong to the
same group orbit My() and are equivalent up
to a group rotation g(7), defined in (10.41).

exercise 6.1
exercise 10.21
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by a suitable rotation

x(r) = g(r) y(7). (10.41)

Equivariance implies the two points are equivalent. In the ‘method of slices’
the reduced state space representative y of a group orbit equivalence class is
picked by slicing across the group orbits by a fixed hypersurface. ~ We start
by describing how the method works for a finite segment of the full state space
trajectory.

Definition: Slice. Let G act regularly on a d-dimensional manifold M, i.e.,
with all group orbits N-dimensional. A slice through point x’ is a (d — N)-
dimensional submanifold M such that all group orbits in an open neighbor-
hood of the slice-defining point x” intersect M transversally and only once
(see Fig. 10.10).

The simplest slice condition defines a linear slice as a (d —N)-dimensional
hyperplane M normal to the N group rotation tangents t at point x’:

Y=xX)t,=0, t=tu(x)=Tax. (10.42)

In other words, “slice’ is a Poincaré section (3.6) for group orbits. Each ‘big
circle’ —group orbit tangent to t,— intersects the hyperplane exactly twice, with
the two solutions separated by =. As for a Poincaré section (3.4), we add an
orientation condition, and select the intersection with the clockwise rotation
angle into the slice.

Definition: Moving frame. Assume that for a given x € M and a given slice
M there exists a unique group element g = g(x) that rotates x into the slice,
gx =y € M. The map that associates to a state space point x a Lie group
action g(x) is called a moving frame.
As X't = 0 by the antisymmetry of T, the slice condition (10.42) fixes 6
for a given x by
0=y't,=x"g(O)"t,, (10.43)

where g" denotes the transpose of g. The method of moving frames can be
interpreted as a change of variables

y(@) =97 (1) X(7).,

that is passing to a frame of reference in which condition (10.43) is identically
satisfied, see Example 10.11. Therefore the name ‘moving frame.” Method of
moving frames should not be confused with the co-moving frames, such as the
one illustrated in Fig. 10.8. Each relative periodic orbit has its own co-moving
frame. In the method of moving frames (or the method of slices) one fixes a
stationary slice, and rotates all solutions back into the slice.

The method of moving frames is a post-processing method; trajectories are
computed in the full state space, then rotated into the slice whenever desired,
with the slice condition easily implemented. The slice group tangent t” is a
given vector, and g(0) x is another vector, linear in x and a function of group
parameters 6. Rotation parameters 6 are determined numerically, by a Newton
method, through the slice condition (10.43).
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Figure 10.11 illustrates the method of moving frames for an SO(2) slice
normal to the x, axis. Looks innocent, except there is nothing to prevent a
trajectory from going through (x1, x2) = (0, 0), and what @ is one to use then?
We can always chose a finite time step that hops over this singularity, but in
the continuous time formulation we will not be so lucky.

How does one pick a slice point x’? A generic point X’ not in an invari-
ant subspace (on the complex Lorenz equations z axis, for example) should
suffice to fix a slice. The rules of thumb are much like the ones for picking
Poincaré sections, Section 3.1.1. The intuitive idea is perhaps best visualized
in the context of fluid flows. Suppose the flow exhibits an unstable coherent
structure that —approximately— recurs often at different spatial dispositions.
One can fit a ‘template’ to one recurrence of such structure, and describe other
recurrences as its translations. A well chosen slice point belongs to such dy-
namically important equivalence class (i.e., group orbit). A slice is locally
isomorphic to M/G, in an open neighborhood of x’. As is the case for the dy-
namical Poincaré sections, in general a single slice does not suffice to reduce
M — M/G globally.

The Euclidian product of two vectors x, y is indicated in (10.42) by x-transpose
times y, i.e., X"y = 2 x;y;. More general bilinear norms (x,y) can be used,
as long as they are G-invariant, i.e., constant on each irreducible subspace. An
example is the quadratic Casimir (10.11).

Example 10.11 An SO(2) moving frame:
(continued from Example 10.2) The SO(2) action

(Y1,Y2) = (X1 €0S 8 + X, SiN G, —X; SiN G + X, €OS 6) (10.45)

is regular on R?\{0}. Thus we can define a slice as a ‘hyperplane’ (here a mere
line), through x’ = (0, 1), with group tangent t' = (1, 0), and ensure uniqueness by
clockwise rotation into positive X, axis. Hence the reduced state space is the half-line
X1 = 0,Y, = X, > 0. The slice condition then simplifies to y; = 0 and yields the
explicit formula for the moving frame parameter

0(X1, %2) = tan~(x1/%z) , (10.46)

i.e., the angle which rotates the point (x;, X,) back to the slice, taking care that tan?
distinguishes (X1, X2) plane quadrants correctly. Substituting (10.46) back to (10.45)
and using cos(tan~* a) = (1 + a?)~%/2, sin(tan"* a) = a(1 + a®)~/? confirms y; = 0. It
also yields an explicit expression for the transformation to variables on the slice,

Yo = A+ X2, (10.47)

This was to be expected as SO(2) preserves lengths, X3 +x3 = y2+y2. If dynamics is in
plane and SO(2) equivariant, the solutions can only be circles of radius (3¢ + x3)*/2, so
this is the “rectification” of the harmonic oscillator by a change to polar coordinates,
Example 6.1. Still, it illustrates the sense in which the method of moving frames
yields group invariants. (E. Siminos)

Thesslice condition (10.42) fixes N directions; the remaining vectors (Yn+1 - - . Yd)
span the slice hyperplane. They are d — N fundamental invariants, in the sense
that any other invariant can be expressed in terms of them, and they are func-
tionally independent. Thus they serve to distinguish orbits in the neighborhood
of the slice-fixing point x’, i.e., two points lie on the same group orbit if and
only if all the fundamental invariants agree.
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Fig. 10.11 Method of moving frames for
a flow SO(2)-equivariant under (10.18) with
slice through X = (0,1,0,0,0), group tan-
gent t' = (1,0,0,0,0). The clockwise ori-
entation condition restricts the slice to half-
hyperplane y; = 0, y» > 0. A trajectory
started on the slice at y(0), evolves to a state
space point with a non-zero x(t;). Com-
pute the polar angle 6, of x(t1) in the (x1, x2)
plane. Rotate x(t) clockwise by 6 to y(t;) =
g(—61) x(t1), so that the equivalent point on
the circle lies on the slice, yi(t1) = 0. Thus
after every finite time step followed by a rota-
tion the trajectory restarts from the y; (t) = 0
reduced state space.
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10.4.2 Dynamics within a slice

I made a wrong mistake.
—Yogi Berra

As an alternative to the post-processing approach of the preceding sections, we
can proceed as follows: Split up the integration into a sequence of finite time
steps, each followed by a rotation of the final point (and the whole coordinate
frame with it; the ‘moving frame’) such that the next segment’s initial point
is in the slice fixed by a point x’, see Fig. 10.11. It is tempting to see what
happens if the steps are taken infinitesimal. As we shall see, we do get a flow
restricted to the slice, but at a price.

Using decomposition (10.41) one can always write the full state space tra-
jectory as x(r) = g(r) y(r), where the (d—N)-dimensional reduced state space
trajectory y(r) is to be fixed by some condition, and g(7) is then the corre-
sponding curve on the N-dimensional group manifold of the group action that
rotates y into x at time 7. The time derivative is then X = v(gy) = gy + gu, with
the reduced state space velocity field given by u = dy/dt. Rewriting this as
u=g"v(gy) - g'gy and using the equivariance condition (10.23) leads to

u=v-ggy.

The Lie group element (10.7) and its time derivative describe the group tangent
flow

d .
Ay _ g% 6T _ .
g g=g9 dte 6-T.

This is the group tangent velocity g 1§y = 6 - t(y) evaluated at the pointy, i.e.,
with g = 1. The flow in the (d—N) directions transverse to the group flow is
now obtained by subtracting the flow along the group tangent direction,

u@y) =v(y) -6(y)-tly), ~ u=dy/dt, (10.48)
for any factorization (10.41) of the flow of form x(7) = g(7) y(). To integrate
these equations we first have to fix a particular flow factorization by imposing
conditions on y(r), and then integrate phases 6(r) on a given reduced state
space trajectory y(7).

Here we demand that the reduced state space is confined to a hyperplane
slice. Substituting (10.48) into the time derivative of the fixed slice condition
(10.43), _

uy) "ty = v(y) Tt~ ba - ty) "ty = 0,

yields the equation for the group phases flow 6 for the slice fixed by x’, together
with the reduced state space M flow u(y):

. T4
b)) = (10.49
uy) = vy) - o) -, yeM. (10.50)

Each group orbit My = {gx|g € G} is an equivalence class; method of slices
represents the class by its single slice intersection point y. By construction
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uTt’ = 0, and the motion stays in the (d—N)-dimensional slice. We have thus
replaced the original dynamical system { M, f} by a reduced system { M, f}.

In the pattern recognition and ‘template fitting” settings (10.49) is called the
‘reconstruction equation.” Integrated together, the reduced state space trajec-
tory (10.50) and g(r) = exp{6(7) - T}, the integrated phase (10.49), reconstruct
the full state space trajectory x(r) = g(r) y(r) from the reduced state space tra-
jectory y(7), so no information about the flow is lost in the process of symmetry
reduction.

Example 10.12 A dlicefor complex Lorenz flow.
(continuation of Example 10.6) Here we can use the fact that

ty)" U =XTTT T X = Xy X] + XXy + Yay) + YaYh

is the dot-product restricted to the m = 1 4-dimensional representation of SO(2). A
generic X’ can be brought to form x' = (0,1,y},y3,2) by a rotation and rescaling.
Then Tx" = (1,0,y;, -y}, 0), and

V(X) -t Vit VsY, —VaY)

t(x) -t X2 +Y1yy +YaYs
A long time trajectory of (10.50) with X" on the relative equilibrium TW; group orbit
is shown in Fig. 10.12. As initial condition we chose the initial point (10.32) on
the unstable manifold of TW,, rotated back to the slice by angle 6 as prescribed by
(10.43). We show the part of the trajectory for t € [70, 100]. The relative equilibrium
TW4y, now an equilibrium of the reduced state space dynamics, organizes the flow
into a Rossler type attractor (see Fig. 2.6). The denominator in (10.49) vanishes
and the phase velocity 6(y) diverges whenever the direction of group action on the
reduced state space point is perpendicular to the direction of group action on the
slice point x’. While the reduced state space flow appears continuous in the {x, X2, z}
projection, Fig. 10.12 (a), this singularity manifests itself as a discontinuity in the
{X2, 2,2} projection, Fig. 10.12 (b). The reduced state space complex Lorenz flow
strange attractor of Fig. 10.1 now exhibits a discontinuity whenever the trajectory
crosses this 3-d subspace.

(10.51)

Slice flow equations (10.50) and (10.49) are pretty, but there is a trouble in
the paradise. The slice flow encounters singularities in subsets of state space,
with phase velocity 6 divergent whenever the denominator in (10.51) changes
sign, see {xz, Y2, z} projection of Fig. 10.12 (b). Hence a single slice does not
in general suffice to cover M/G globally.

10.5 Method of images: Hilbert bases

(E. Siminos and P. Cvitanovit)
Erudite reader might wonder: why all this slicing and dicing, when the problem
of symmetry reduction had been solved by Hilbert and Weyl nearly a century
ago? Indeed, the most common approach to symmetry reduction is by means of
a Hilbert invariant polynomial bases (9.16), motivated intuitively by existence
of such nonlinear invariants as the rotationally-invariant length r2 = x2 + x3 +
R xﬁ, or, in Hamiltonian dynamics, the energy function. One trades in
the equivariant state space coordinates {X1, X2, - - -, X4} for a non-unique set of
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Fig. 10.12 Method of moving frames, slice
fixed by a point on the complex Lorenz equa-
tions relative equilibrium group orbit, X =
xTwi. (@) The strange attractor of Fig. 10.1 in
the reduced state space of (10.50), {x, 2,2}
projection.  (b) {x2,y2,z} projection. The
reduced state space complex Lorenz flow
strange attractor of Fig. 10.1 now exhibits a
discontinuity due to the vanishing denomina-
tor in (10.51).
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m > d polynomials {u1, Uy, - - -, Uy} invariant under the action of the symmetry
group. These polynomials are linearly independent, but functionally dependent
through m — d + N relations called syzygies.

Example 10.13 An SO(2) Hilbert basis.
(continued from Example 9.6) The Hilbert basis

u = X+x, Up = Y2 +y3,
U3 = Xi¥Y2 — X2Y1, Uy = Xay1 + X2Y2,
U = z. (10.52)

is invariant under the SO(2) action on a 5-dimensional state space (10.18). That
implies, in particular, that the image of the full state space relative equilibrium TW;
group orbit of Fig. 10.4 is the stationary equilibrium point EQ;, see Fig. 10.13. The
polynomials are linearly independent, but related through one syzygy,

Ul —u3 —u2 =0, (10.53)

yielding a 4-dimensional M/SO(2) reduced state space, a symmetry-invariant repre-
sentation of the 5-dimensional SO(2) equivariant dynamics. (continued in Exam-
ple 10.14)

The dynamical equations follow from the chain rule

5Ui .

U= —Xj, 10.54
= g ¥ (10.54)
upon substitution {xy, X2, - - -, X4} = {Uz1, U2, - - -, U }. One can either rewrite the
dynamics in this basis or plot the ‘image’ of solutions computed in the original,

equivariant basis in terms of these invariant polynomials.

Example 10.14 Complex Lorenz equationsin a Hilbert basis.
(continuation of Example 10.13) Substitution of (10.2) and (10.52) into (10.54)
yields complex Lorenz equations in terms of invariant polynomials:

Uy = 20 (us—uy),

U = —2(Uz—paU3— (o1 —Us)Uy) ,

U3 = —(0c +1)us+pu;+euy, (10.55)
Uy = —(0c+1us+ (o1 —Us)Uy +0Up; —eus,

Us = U —bus.
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As far as visualization goes, we need neither construct nor integrate the invariant dy-
namics (10.55). It suffices to integrate the original, unreduced flow of Figure 10.1,
but plot the solution in the image space, i.e., u; invariant, Hilbert polynomial coordi-
nates, as in Fig. 10.13. (continued in Example 10.15)

Reducing dimensionality of a dynamical system by elimination of variables
through inclusion of syzygies such as (10.53) introduces singularities. Such
elimination of variables, however, is not needed for visualization purposes;
syzygies merely guarantee that the dynamics takes place on a submanifold
in the projection on the {uy,uy, - - -, Uy} coordinates. However, when one re-
constructs the dynamics in the original space M from its image M/G, the
transformations have singularities at the fixed-point subspaces of the isotropy
subgroups in M.

Example 10.15 Hilbert basissingularities.
(continuation of Example 10.14) When one takes syzygies into account in rewriting
a dynamical system, singularities are introduced. For instance, if we solve (10.53)
for up and substitute into (10.55), the reduced set of equations,

Ul = 20’(U4 - U1)

U3 = —(0'+1)U3+p2U1+eU4

Up = —(0 +1)Us+ (o1 —Us)Uy + 0 (U3 +U3)/u; —eus

Us = Uy — b Us , (1056)
is singular as u; — 0. (E. Siminos)

Nevertheless we can now easily identify a suitable Poincaré section, guided
by the Lorenz flow examples of Chapter 9, as one that contains the z-axis and
the image of the relative equilibrium TW, here defined by the condition u; =
us. As in Example 11.4, we construct the first return map using as coordinate
the Euclidean arclength along the intersection of the unstable manifold of TW 4
with the Poincaré surface of section, see Fig. 10.14.  Thus the goals set into
the introduction to this chapter are attained: we have reduced the messy strange
attractor of Fig. 10.1 to a 1-dimensional return map. As will be explained in
Example 11.4 for the Lorenz attractor, we now have the symbolic dynamics
and can compute as many relative periodic orbits of the complex Lorenz flow
as we wish, missing none.

What limits the utility of Hilbert basis methods are not such singularities,
but rather the fact that the algebra needed to determine a Hilbert basis becomes
computationally prohibitive as the dimension of the system or of the group inc-
reases. Moreover, even if such basis were available, rewriting the equations in
an invariant polynomial basis seems impractical, so Hilbert basis computations
appear not feasible beyond state space dimension of order ten. When our goal
is to quotient continuous symmetries of high-dimensional flows, such as the
Navier-Stokes flows, we need a more practical, workable framework. The
method of moving frames of Section 10.4 is one such minimalist alternative.
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Fig. 10.13 Invariant ‘image’ of complex
Lorenz flow, Fig. 10.1, projected onto the in-
variant polynomials basis (10.52). Note the
unstable manifold connection from the equi-
librium EQp at the origin to the strange at-
tractor controlled by the rotation around rela-
tive equilibrium EQy (the reduced state space
image of TW;); as in the Lorenz flow Fig. 3.7,
natural measure close to EQp is vanishingly
small but non-zero.
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Résumeé

The message: If a dynamical systems has a symmetry, use it! Here we have
described how, and offered two approaches to continuous symmetry reduction.
In the method of slices one fixes a ‘slice’ (y — x’)Tt" = 0, a hyperplane normal
to the group tangent t’ that cuts across group orbits in the neighborhood of the
slice-fixing point x’. Each class of symmetry-equivalent points is represented
by a single point, with the symmetry-reduced dynamics in the reduced state
space M/G given by (10.50):

U=v—0-t, 6= "t)/(t-t).

In practice one runs the dynamics in the full state space, and post-processes the
trajectory by the method of moving frames. In the Hilbert polynomial basis
approach one transforms the equivariant state space coordinates into invariant
ones, by a nonlinear coordinate transformation

{X1,X2,- -+, Xg} = {U1, Uz, ---,Um} + {Syzygies},

and studies the invariant ‘image’ of dynamics (10.54) rewritten in terms of
invariant coordinates.

In practice, continuous symmetry reduction is considerably more involved
than the discrete symmetry reduction to a fundamental domain of Chapter 9.
Slices are only local sections of group orbits, and Hilbert polynomials are non-
unique and difficult to compute for high-dimensional flows. However, there is
no need to actually recast the dynamics in the new coordinates: either approach
can be used as a visualization tool, with all computations carried out in the
original coordinates, and then, when done, projecting the solutions onto the
symmetry reduced state space by post-processing the data. The trick is to
construct a good set of symmetry invariant Poincaré sections (see Section 3.1),
and that is always a dark art, with or without a symmetry.

We conclude with a few general observations: Higher dimensional dynamics
requires study of compact invariant sets of higher dimension than 0-dimension-
al equilibria and 1-dimensional periodic orbits studied so far. In Section 2.1.1
we made an attempt to classify ‘all possible motions:” (1) equilibria, (2) peri-
odic orbits, (3) everything else. Now one can discern in the fog of dynamics an
outline of a more serious classification - long time dynamics takes place on the
closure of a set of all invariant compact sets preserved by the dynamics, and
those are: (1) 0-dimensional equilibria Meq, (2) 1-dimensional periodic orbits
My, (3) global symmetry induced N-dimensional relative equilibria Mrw, (4)
(N+1)-dimensional relative periodic orbits M,, (5) terra incognita. We have
some inklings of the ‘terra incognita:” for example, in symplectic symmetry
settings one finds KAM-tori, and in general dynamical settings we encounter
partially hyperbolic invariant M-tori, isolated tori that are consequences of dy-
namics, not of a global symmetry. They are harder to compute than anything
we have attempted so far, as they cannot be represented by a single relative pe-
riodic orbit, but require a numerical computation of full M-dimensional com-
pact invariant sets and their infinite-dimensional linearized Jacobian matrices,
marginal in M dimensions, and hyperbolic in the rest. We expect partially hy-
perbolic invariant tori to play important role in high-dimensional dynamics. In
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this chapter we have focused on the simplest example of such compact invari-
ant sets, where invariant tori are a robust consequence of a global continuous
symmetry of the dynamics. The direct product structure of a global symmetry
that commutes with the flow enables us to reduce the dynamics to a desym-

metrized (d—1-N)-dimensional reduced state space M/G.

Relative equilibria and relative periodic orbits are the hallmark of systems
with continuous symmetry. Amusingly, in this extension of ‘periodic orbit’
theory from unstable 1-dimensional closed periodic orbits to unstable (N +1)-
dimensional compact manifolds M, invariant under continuous symmetries,
there are either no or proportionally few periodic orbits. In presence of a con-
tinuous symmetry, likelihood of finding a periodic orbit is zero. Relative pe-
riodic orbits are almost never eventually periodic, i.e., they almost never lie
on periodic trajectories in the full state space, so looking for periodic orbits in

systems with continuous symmetries is a fool’s errand.

However, dynamical systems are often equivariant under a combination of
continuous symmetries and discrete coordinate transformations of Chapter 9,

for example the orthogonal group O(n).

In presence of discrete symmetries

relative periodic orbits within discrete symmetry-invariant subspaces are even-
tually periodic. Atypical as they are (no generic chaotic orbit can ever enter
these discrete invariant subspaces) they will be important for periodic orbit
theory, as there the shortest orbits dominate, and they tend to be the most sym-

metric solutions.

500

Further reading

10.1 A brief history of relativity, or, ‘Desymmetrization and
its discontents’ (after Civilization and its discontents; con-
tinued from Remark 9.1):  The literature on symmetries in
dynamical systems is immense, most of it deliriously unin-
telligible. Would it kill them to say ‘symmetry of orbit p’
instead of carrying on about ‘isotropies, quotients, factors,
normalizers, centralizers and stabilizers?” Group action be-
ing “free, faithful, proper, regular?” Symmetry-reduced state
space being ‘orbitfold?’ For the dynamical systems applica-
tions at hand we need only basic the Lie group facts, on the
level of any standard group theory textbook [10.2]. Chapter 2.
of Ref. [10.3] offers a pedagogical introduction to Lie groups
of transformations, and Nakahara [10.4] to Lie derivatives and
brackets. The presentation given here is in part based on Simi-
nos thesis [10.5] and Ref. [10.6]. The reader is referred to the
monographs of Golubitsky and Stewart [10.7], Hoyle [10.8],
Olver [10.9], Bredon [10.10], and Krupa [10.11] for more
depth and rigor than would be wise to wade into here.
Relative equilibria and relative periodic solutions are related
by symmetry reduction to equilibria and periodic solutions
of the reduced dynamics. They appear in many physical ap-
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plications, such as celestialrmechaics, molecularsynamics,
motion of rigid bodies, HOnlinea? waves, spiralling patterns,
and fluid mechanics. Age ive equilibrium is a solutiof
which travels along an orbig of 168 SYGUMEH00 OrHoD agopon-
stant speed; an introduction to them is gives, for example, in
Marsden [10.?]. According to Cushman, Bates [10.12] and
Yoder [10.13], C. Huygens [10.14] understood the relative
equilibria of a spherfcg b@ﬁ&uwfﬁww }Rem B@Wepi?@
lishing them in 1673. tﬂqéﬂugt %1

on gInV(:II'IaI’ltré)O nfmla

Gl EPE!%

was obtained by Jaco?;f1
tation, see Laskar et @He;nghlﬂ ta,l,@eli?f%eﬁman Fesd0la
gist Vierkandt [10.16]osfameroiiatodicyoimseiprdeouasas
space (the constraineslalviel owityfqitiase feptice Luvedu fiowheetacs
tion of the group of ENER@E&@IRIRAS-6F the plane) all orbits
of the rolling disk system are periodic [10.17]. According
to Chenciner [10.18], the first attempt to find (relative) pe-
riodic solutions of the N-body problem was the 1896 short
note by Poincaré [10.19], in the context of the 3-body prob-
lem. Poincaré named such solutions ‘relative.” Relative equi-
libria of the N-body problem (known in this context as the
Lagrange points, stationary in the co-rotating frame) are cir-
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cular motions in the inertial frame, and relative periodic or-
bits correspond to quasiperiodic motions in the inertial frame.
For relative periodic orbits in celestial mechanics see also
Ref. [10.20]. A striking application of relative periodic or-
bits has been the discovery of “choreographies” in the N-body
problems [10.21-23].

The modern story on equivariance and dynamical systems
starts perhaps with S. Smale [10.24] and M. Field [10.25], and
on bifurcations in presence of symmetries with Ruelle [10.26].
Ruelle proves that the stability matrix/Jacobian matrix eval-
uated at an equilibrium/fixed point x € Mg decomposes
into linear irreducible representations of G, and that sta-
ble/unstable manifold continuations of its eigenvectors inherit
their symmetry properties, and shows that an equilibrium can
bifurcate to a rotationally invariant periodic orbit (i.e., relative
equilibrium).

Gilmore and Lettelier monograph [10.27] offers a very clear,
detailed and user friendly discussion of symmetry reduc-
tion by means of Hilbert polynomial bases (do not look for
‘Hilbert’ in the index, though). Vladimirov, Toronov and
Derbov [10.28] use an invariant polynomial basis different
from (10.52) to study bounding manifolds of the symmetry
reduced complex Lorenz flow and its homoclinic bifurcations.
There is no general strategy how to construct a Hilbert basis;
clever low-dimensional examples have been constructed case-
by-case. The Example 10.13, with one obvious syzygy, is
also misleading - syzygies proliferate rapidly with increase in
dimensionality. The determination of a Hilbert basis appears
computationally prohibitive for state space dimensions larger
than ten [10.29, 30], and rewriting the equations of motions
in invariant polynomial bases appears impractical for high-
dimensional flows. Thus, by 1920’s the problem of rewriting
equivariant flows as invariant ones was solved by Hilbert and
Weyl, but at the cost of introducing largely arbitrary extra di-
mensions, with the reduced flows on manifolds of lowered di-
mensions, constrained by sets of syzygies. Cartan found this
unsatisfactory, and in 1935 he introduced [10.31] the notion of
a moving frame, a map from a manifold to a Lie group, which
seeks no invariant polynomial basis, but instead rewrites the
reduced M/G flow in terms of d — N fundamental invari-
ants defined by a generalization of the Poincaré section, a
slice that cuts across all group orbits in some open neighbor-
hood. Fels and Olver view the method as an alternative to the
Grobner bases methods for computing Hilbert polynomials,
to compute functionally independent fundamental invariant
bases for general group actions (with no explicit connection
to dynamics, differential equations or symmetry reduction).
‘Fundamental’ here means that they can be used to generate
all other invariants. Olver’s monograph [10.9] is pedagogical,
but does not describe the original Cartan’s method. Fels and
Olver papers [10.32,33] are lengthy and technical. They refer
to Cartan’s method as method of ‘moving frames’ and view it
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as a special and less rigorous case of their ‘moving coframe’
method. The name ‘moving coframes’ arises through the use
of Maurer-Cartan form which is a coframe on the Lie group
G, i.e., they form a pointwise basis for the cotangent space.
In Refs. [10.5, 6] the invariant bases generated by the moving
frame method are used as a basis to project a full state space
trajectory to the slice (i.e., the M/G reduced state space).
The basic idea of the ‘method of slices’ is intuitive and fre-
quently reinvented, often under a different name; for exam-
ple, it is stated without attribution as the problem 1. of
Sect. 6.2 of Arnol’d Ordinary Differential Equations [10.34].
The factorization (10.41) is stated on p. 31 of Anosov and
Arnol’d [10.35], who note, without further elaboration, that
in the vicinity of a point which is not fixed by the group one
can reduce the order of a system of differential equations by
the dimension of the group. Ref. [10.36] refers to symmetry
reduction as ‘lowering the order.” For the definition of “slice’
see, for example, Chossat and Lauterbach [10.30]. Briefly, a
submanifold M containing x’ is called a slice through x if
it is invariant under isotropy G, (M;) = M. If X" is a fixed
point of G, than slice is invariant under the whole group. The
slice theorem is explained, for example, in Encyclopaedia of
Mathematics. Slices tend to be discussed in contexts much
more difficult than our application - symplectic groups, sec-
tions in absence of global charts, non-compact Lie groups. We
follow Refs. [10.37] in referring to a local group-orbit sec-
tion as a ‘slice.” Refs. [10.10, 38] and others refer to global
group-orbit sections as ‘cross-sections,” a term that we would
rather avoid, as it already has a different and well established
meaning in physics. Duistermaat and Kolk [10.39] refer to
‘slices,” but the usage goes back at least to Guillemin and
Sternberg [10.38] in 1984, Palais [10.40] in 1961 and Mas-
tow [10.41] in 1957. Bredon [10.10] discusses both cross-
sections and slices. Guillemin and Sternberg [10.38] define
the “cross-section,” but emphasize that finding it is very rare:
“existence of a global section is a very stringent condition on
a group action. The notion of ‘slice’ is weaker but has a much
broader range of existence.”

In the 1982 paper Rand [10.53] explains how presence of
continuous symmetries gives rise to rotating and modulated
rotating (quasiperiodic) waves in fluid dynamics. Haller
and Mezic [10.54] reduce symmetries of three-dimensional
volume-preserving flows and reinvent method of moving
frames, under the name ‘orbit projection map.” There is ex-
tensive literature on reduction of symplectic manifolds with
symmetry; Marsden and Weinstein 1974 article [10.55] is an
important early reference. Then there are studies of the re-
duced phase spaces for vortices moving on a sphere such as
Ref. [10.56], and many, many others.

Reaction-diffusion systems are often equivariant with respect
to the action of a finite dimensional (not necessarily compact)
Lie group. Spiral wave formation in such nonlinear excitable
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media was first observed in 1970 by Zaikin and Zhabotin-
sky [10.42]. Winfree [10.43, 44] noted that spiral tips execute
meandering motions. Barkley and collaborators [10.45, 46]
showed that the noncompact Euclidean symmetry of this class
of systems precludes nonlinear entrainment of translational
and rotational drifts and that the interaction of the Hopf and
the Euclidean eigenmodes leads to observed quasiperiodic and
meandering behaviors. Fiedler, in the influential 1995 talk at
the Newton Institute, and Fiedler, Sandstede, Wulff, Turaev
and Scheel [10.47-50] treat Euclidean symmetry bifurcations
in the context of spiral wave formation. The central idea is to
utilize the semidirect product structure of the Euclidean group
E(2) to transform the flow into a ‘skew product’ form, with
a part orthogonal to the group orbit, and the other part within
it, as in (10.50). They refer to a linear slice M near relative
equilibrium as a Palais slice, with Palais coordinates.  As
the choice of the slice is arbitrary, these coordinates are not
unique. According to these authors, the skew product flow
was first written down by Mielke [10.51], in the context of
buckling in the elasticity theory. However, this decomposi-
tion is no doubt much older. For example, it was used by
Krupa [10.11,30] in his local slice study of bifurcations of rel-
ative equilibria. Biktashev, Holden, and Nikolaev [10.52] cite
Anosov and Arnol’d [10.35] for the ‘well-known’ factoriza-
tion (10.41) and write down the slice flow equations (10.50).

Neither Fiedler et al. [10.47] nor Biktashev et al. [10.52]
implemented their methods numerically. That was done by
Rowley and Marsden for the Kuramoto-Sivashinsky [10.37]
and the Burgers [10.57] equations, and Beyn and
Thummler [10.58, 59] for a number of reaction-diffusion
systems, described by parabolic partial differential equa-
tions on unbounded domains. We recommend the Barkley
paper [10.46] for a clear explanation of how the Euclidean
symmetry leads to spirals, and the Beyn and Thimmler
paper [10.58] for inspirational concrete examples of how
“freezing’/‘slicing’ simplifies the dynamics of rotational, trav-
eling and spiraling relative equilibria. Beyn and Thiimmler
write the solution as a composition of the action of a time de-
pendent group element g(t) with a ‘frozen,” in-slice solution
G(t) (10.41). In their nomenclature, making a relative equilib-
rium stationary by going to a co-moving frame is ‘freezing’
the traveling wave, and the imposition of the phase condition
(i.e., slice condition (10.42)) is the ‘freezing ansatz.” They
find it more convenient to make use of the equivariance by
extending the state space rather than reducing it, by adding
an additional parameter and a phase condition. The “freezing
ansatz’ [10.58] is identical to the Rowley and Marsden [10.57]
and our slicing, except that ‘freezing’ is formulated as an ad-
ditional constraint, just as when we compute periodic orbits
of ODEs we add Poincaré section as an additional constraint,
i.e., increase the dimensionality of the problem by 1 for every
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continuous symmetry (see Section 13.4).
Derivation of Section 10.4.2 follows most closely Rowley and
Marsden [10.57] who, in the pattern recognition setting refer
to the slice point as a ‘template,” and call (10.49) the ‘recon-
struction equation’ [10.?,60]. They also describe the ‘method
of connections’ (called ‘orthogonality of time and group orbit
at successive times’ in Ref. [10.58]), for which the reconstruc-
tion equation (10.49) denominator is t(y)" - t(y) and thus non-
vanishing as long as the action of the group is regular. This
avoids the spurious slice singularities, but it is not clear what
the ‘method of connections’ buys us otherwise. It does not re-
duce the dimensionality of the state space, and it accrues ‘ge-
ometric phases’ which prevent relative periodic orbits from
closing into periodic orbits. Geometric phase in laser equa-
tions, including complex Lorenz equations, has been studied
in Ref. [10.61, 62, 64—66]. Another theorist’s temptation is to
hope that a continuous symmetry would lead us to a conserved
quantity. However, Noether theorem requires that equations
of motion be cast in Lagrangian form and that the Lagrangian
exhibits variational symmetries [10.67, 68]. Such variational
symmetries are hard to find for dissipative systems.
Section 10.1.2 title ‘Lie groups for cyclists’ is bit of a joke
in more ways than one. First, ‘cyclist,” ‘pedestrian’ through-
out ChaosBook.org refer jokingly both to the title of Lipkin’s
Lie groups for pedestrians [10.69] and to our preoccupations
with actual cycling. Lipkin’s ‘pedestrian’ is fluent in Quan-
tum Field Theory, but wobbly on Dynkin diagrams. More to
the point, it is impossible to dispose of Lie groups in a page
of text. As a counterdote to the 1-page summmary of Sec-
tion 10.1.2, consider reading Gilmore’s monograph [10.70]
which offers a quirky, personal and enjoyable distillation of
a lifetime of pondering Lie groups. As seems to be the case
with any textbook on Lie groups, it will not help you with the
problem at hand, but it is the only place you can learn both
what Galois actually did when he invented the theory of finite
groups in 1830, and what, inspired by Galois, Lie actually did
in his 1874 study of symmetries of ODEs. Gilmore also ex-
plains many things that we pass over in silence here, such as
matrix groups, group manifolds, and compact groups.
One would think that with all this literature the case is shut
and closed, but not so. Applied mathematicians are inordi-
nately fond of bifurcations, and almost all of the previous
work focuses on equilibria, relative equilibria, and their bifur-
cations, and for these problems a single slice works well. Only
when one tries to describe the totality of chaotic orbits does
the non-global nature of slices become a serious nuisance.
(E. Siminos and P. Cvitanovit)

10.2 Complex Lorenz equations (10.1) were introduced
by Gibbon and McGuinness [10.71, 72] as a low-dimension-
al model of baroclinic instability in the atmosphere. They
are a generalization of Lorenz equations (2.12). Ning and
Haken [10.73] have shown that equations isomorphic to com-
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plex Lorenz equations also appear as a truncation of Maxwell-
Bloch equations describing a single mode, detuned, ring laser.
They set e + p, = 0 so that SO(2)-orbits of detuned equilibria
exist [10.72]. Zeghlache and Mandel [10.7] also use equations
isomorphic to complex Lorenz equations with e + o, = 0 in
their studies of detuned ring lasers. This choice is ‘degener-

ate’

in the sense that it leads to non-generic bifurcations. As

existence of relative equilibria in systems with SO(2) sym-
metry is the generic situation, we follow Bakasov and Abra-
ham [10.74] who set p, = 0 and e # 0 in order to describe de-

Exercises

tuned lasers. Here, however, we are not interested in the phys-
ical applications of these equations; rather, we study them as
a simple example of a dynamical system with continuous (but
no discrete) symmetries, with a view of testing methods of
reducing the dynamics to a lower-dimensional reduced state
space. Complex Lorenz flow examples and exercises in this
chapter are based on E. Siminos thesis [10.5] and R. Wilczak
project report [10.75].

(E. Siminos and P. Cvitanovic)

Exercises

(10.1)

(10.2)

Visualizations of the 5-dimensional complex Lorenz
flow:  Plot complex Lorenz flow projected on any three
of the five {X1, X2, Y1, Y2, 2} axes. Experiment with differ-
ent visualizations.

An SO(2)-equivariant flow with two Fourier modes:

Complex Lorenz equations (10.1) of Gibbon and
McGuinness [10.71] have a degenerate 4-dimensional
subspace, with SO(2) acting only in its lowest non-
trivial representation. Here is a possible model, still
5-dimensional, but with SO(2) acting in the two low-
est representations. Such models arise as truncations of
Fourier-basis representations of PDEs on periodic do-
mains. In the complex form, the simplest such modifica-
tion of complex Lorenz equations may be the “2-mode”
system

X = —oX+oXy

y = (r-2x*-ay

: 1 2\ x %2

t = 3 (xy" + x?y) bz, (10.57)

where X,y, r = r; +ir;, a = 1 + ie are complex and
z, b, o are real. Rewritten in terms of real variables
X =Xy +1X2, Y =Y + iy, this is a 5-dimensional first
order ODE system

X1 = —0X +0Y;
Xo = —0X+0Y;
Vio= (p1—2)X —raXp—y1 —ey,
Y2 =
7 = —bz+xy1+ Xy2. (10.58)

Verify (10.58) by substituting x = x; +i X2, Yy = y1 +1Ya,
r = ri+iry, a = 1+ieinto the complex 2-mode equations
(10.57).

exerContinuous - 100ct2009

(10.3) SO(2) rotationsin a plane:

(10.4) Invariance under fractional rotations.

Show by exponentiation
(10.7) that the SO(2) Lie algebra element T generates ro-
tation g in a plane,

- 10\ . 0 1
e —COS@(O 1 +sing 10

_ cos®  sinf
- —sing® cos6 |-

9(9)

(10.59)

Argue that if
the isotropy group of the velocity field v(x) is the discrete
subgroup C,, of SO(2) rotations about an axis (let’s say
the ‘z-axis’),

RA/mV(X) = v(R(L/m)x) =v(x),  (R(L/m))" =e,
the only non-zero components of Fourier-transformed
equations of motion are aj, for j = 1,2,---. Argue that
the Fourier representation is then the quotient map of the
dynamics, M/Cy. (Hint: this sounds much fancier than
what is - think first of how it applies to the Lorenz system
and the 3-disk pinball.)

(10.5) U(1) equivariance of complex L orenz equationsfor fi-

nite angles: Show that the vector field in complex
Lorenz equations (10.1) is equivariant under the unitary
group U(1) acting on R® = C2 x R by

0 € [0,2n).

9(O)(x.y,2) = (€“x.€"%,2), (10.60)

(E. Siminos)

(10.6) SO(2) equivariance of complex Lorenz equations for

finite angles: Show that complex Lorenz equations
(10.2) are equivariant under rotation for finite angles.
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(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

(10.12)

Stability matrix of complex Lorenz flow: ~ Compute
the stability matrix (10.26) for complex Lorenz equations
(10.2).

Rotational equivariance, infinitesimal angles.  Show
that complex Lorenz equations are equivariant under in-
finitesimal SO(2) rotations.

DiscoYer the equivariance of a given flow:

J Suppose you were given complex Lorenz equa-
tions, but nobody told you they are SO(2) equivariant.
More generally, you might encounter a flow without re-
alizing that it has a continuous symmetry - how would
you discover it?

Equilibria of complex Lorenz equations:  Find all
equilibria of complex Lorenz equations. Hint: Equilibria
come either in the fixed Fix (G) subspace, or on a group
orbit.

y
Equilibria of complex Lorenz equations: J In
Exercise 10.10 we found only one equilibrium of com-
plex Lorenz equations. The Ning and Haken [10.73]
version of complex Lorenz equations (a truncation of
Maxwell-Bloch equations describing a single mode ring
laser) sets e + p, = 0 so that a detuned equilibrium ex-
ists. Test your routines on 2 cases: (a) e = 0, o, = 0. As
discussed by Siminos [10.5], reality of parameters a, p in
(10.1) implies existence of a discrete C, symmetry. (b)
e+p2 =0, e # 0. You might want to compare results
with those of Ning and Haken.

Complex Lorenz equations in polar coordinates.
Rewrite complex Lorenz equations from Cartesian to po-
lar coordinates, using (X1, X2, Y1,Y2,2) =

(rp cos 6y, r18iN 61,1, COS By, 128N 65,2), (10.61)

where r; > 0,r, > 0. Show that in polar coordinates the
equations take form

5l -0 (ry — rpcos6)

91 —0'% sing

2 [=| —r2+ri((pr—2)cosd—pzsing) |,
6, e+ i (o1 —2)sin 6 + p; cos )

z —bz + rirycosé

We know from classical mechanics that for translation-
ally or rotationally invariant flows the relative distance
is invariant (that is why one speaks of ‘relative’ equilib-
ria), hence we introduce a variable 8 = 6, — 6,. 6, and 6,
change in time, but at the relative equilibria the difference
between them is constant. Show that this new variable
allows us to rewrite the complex Lorenz equations as 4
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coupled polar coordinates equations:

1 —o (r; — rp cos6)

i —ry + (01 — 2)ry cos @

2= , T\ e (10.62)
0 —e— (0 + (o1 —2)%)sing

z —bz + rirycosé

where we have set p, = 0. Plot a long-time solution
of these equations and show that the polar representation
introduces singularities into what initially was a smooth
flow:

We shall encounter the same problem in implementing
the x; = 0 moving frames slice). A polar coordinates
{ry, r, 0} plot of the complex Lorenz flow strange attrac-
tor. @ is very small until the trajectory approaches ei-
therr; — 0 orr, — 0, where Mathematica continues
through the singularity by a rapid change of 6 by . The
the fixed Fix (G) subspace (r1,12,6,2) = (0,0, 6,2) sepa-
rates the two folds of the attractor.

(10.13) Visualizationsof the complex Lorenz flow in polar co-

ordinates: Plot complex Lorenz flow projected on
any three of the {ry, r,, 6, z} coordinates. Experiment with
different visualizations. The flow (10.62) is singular as
ri — 0, with angle 6; going through a rapid change
there: is that a problem? Does it make sense to insist
onry > 0,r, > 0, or should one let them have either sign
in order that the 6 trajectory be continuous?

Find the
relative equilibria of the complex Lorenz equations by
finding the equilibria of the system in polar coordinates
(10.62). Show that

(@) The relative equilibrium (hereafter
to [10.5] as TWy) is given by
(Vb (or = d). viod (o1 - d),
cos™ (1/Vd).p1 —d), (10.63)
where d = 1 + €?/(o + 1)?,
(b) The angular velocity of relative equilibrium TW; is
b = oe/(o +1), (10.64)

referred

(r1,r2,60,2) =

with the period Trw, = 27(c + 1)/ce.

exerContinuous - 100ct2009



(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

168

Relative equilibrium TW;y in polar coordinates: Plot
the equilibrium TW; in polar coordinates.

Relative equilibrium TW; in Cartesian coordinates:
Show that for our parameter values,

Xrw, = (X1, X2, Y1, Y2, 2) (10.65)
= (8.4849,0.077135, 8.4856, 0, 26.999)

is a point on the TW; orbit. Plot the relative equilibrium
TW;, in Cartesian coordinates.

Eigenvalues and eigenvectors of TW; stability matrix:
Compute the eigenvalues and eigenvectors of the stabil-
ity matrix (10.26) evaluated at TW, and using the (10.2)
parameter values, in (a) Cartesian coordinates, (b) polar
coordinates.

The eigen-system of TW, stability matrix in polar co-
ordinates. Plot the eigenvectors of A at TW; in polar
coordinates, as well as the complex Lorenz flow at values
very near TW;.

Eigenvalues and eigenvector s of EQ, stability matrix:
Find the eigenvalues and the eigenvectors of the stabil-
ity matrix A (10.26) at EQo = (0, 0,0, 0, 0) determined in
Exercise 10.10. ChaosBook convention is to order eigen-
values from most positive (unstable) to the most negative.
Follow that. Replace complex eigenvectors by the real,
imaginary parts, as that is what you actually use.
Theeigen-system of the stability matrix at EQ,: Plot
the eigenvectors of A at EQq and the complex Lorenz
flow at values very close to EQp.

SO(2) or harmonic oscillator dlice: Construct a
moving frame slice for action of SO(2) on R?

(X,y) > (xcos8 —ysing, xsin 6 + y cos 6)

by, for instance, the positive y axis: x = 0, y > 0. Write
out explicitly the group transformations that bring any
point back to the slice. What invariant is preserved by
this construction?
State space reduction by a slice, finite time segments:
Replace integration of the complex Lorenz equations by

a sequence of finite time steps, each followed by a rota- (10.25)

tion such that the next segment initial point is in the slice
Yo = 0, Y1 > 0.

State space reduction by a slice, ODE formulation: (10.26)

Reconsider (10.22) in the sequence of infinitesimal time
steps limit, each followed by an infinitesimal rotation
such that the next segment initial point is in the slice
y, = 0,y; > 0. Derive the corresponding 4d reduced
state space ODE for the complex Lorenz flow. Here is
a way to do it, bit different from the derivation given in
Section 10.4.2.

Infinitesimal time version of the moving frames symme-
try reduction is attained by taking small time steps in
Fig. 10.11 and dropping the higher order terms. For in-

exerContinuous - 100ct2009

finitesimal dg we set sindg ~ d@, cosdd ~ 1, g(df) ~

(E. Siminos) (10.24)

Exercises

1+ d@T, and the condition (10.42) for rotating an in-
finitesimal time evolution step dx = vdt back into the
slice

o
Il

(y +dx) - g(de)" Tx'
(y+dtv)- (L +doT) Tx
dtv-Tx +doy-T'Tx

X

Q

yields
v-TX

Ty-TTTX
Let u(y) be the vector field that generates the flow in the
reduced state space. According to

g ~ dt. (10.66)

t* x+vdt

‘ R(d6).(x+vdt)

in the limit that g(dd) ~ 1 + d9 T the infinitesimal time
step under u is connected to the time step under v by

y+udt=(1+doT) - (y+ vdt).

Dropping second order terms, dividing through with dt
de
dt

and substituting (10.66) gives the reduced state space
equations (10.50):

u=v+ Ty,

(v-Tx)

(Y- %)
where we have used the fact that —x - T Tx* = (X - X*)4 =
X1X] + X2 X5 +Y1Y; +Y2Y; is the dot-product restricted to the
4-dimensional representation of SO(2). By construction,
the motion stays in the (d—1)-dimensional slice.

Accumulated phase shift: Derive the 1d equation
(10.49) for the accumulated phase shift 6 associated with
the 4-d reduced state space ODE of Exercise 10.23.

The moving frame flow stays in the reduced state
space:  Show that the flow (10.67) stays in a (d —1)-
dimensional slice.

State space reduction by a relative equilibrium TW;
Cross-section: Replace integration of the complex
Lorenz equations by a sequence of short time steps, each
followed by a rotation such that the next segment initial
point is in the relative equilibrium TW; cross-section

v = yrw) - trw; =0, (10.68)

where for any x, y = g(6) - x is the rotation that lies in the
cross-section. Check Fig. 10.12 by long-time integration
of (10.67).

X=V

Ty, (10.67)

trw, = TYrw,
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Charting the state space

The classification of the constituents of a chaos, nothing less is here
essayed.
—Herman Melville, Moby Dick, chapter 32

logically invariant way, and name topologically distinct orbits.

We start in Section 11.1 with a simple and intuitive example, a 3-disk game
of pinball. The qualitative dynamics of stretching/shrinking strips of surviving
state space regions enables us to partition the state space and assign symbolic
dynamics itineraries to trajectories. For the 3-disk game of pinball all possible
symbol sequences enumerate all possible orbits.

In Section 11.2 we use Rossler and Lorenz flows to motivate modeling of
higher-dimensional flows by iteration of 1-dimensional maps. For these two
flows the 1-dimensional maps capture essentially all of the higher-dimensional
flow dynamics, both qualitatively and quantitatively. 1-dimensional maps suf-
fice to explain the two key aspects of qualitative dynamics; temporal ordering,
or itinerary with which a trajectory visits state space regions (Section 11.3),
and the spatial ordering between trajectory points (Section 11.4), which is the
key to determining the admissibility of an orbit with a prescribed itinerary. In
a generic dynamical system not every symbol sequence is realized as a dy-
namical trajectory; as one looks further and further, one discovers more and
more ‘pruning’ rules which prohibit families of itineraries. For 1-dimensional
‘stretch & fold” maps the kneading theory (Section 11.5) provides the defini-
tive answer as to which temporal itineraries are admissible as trajectories of
the dynamical system. Finally, Section 11.6 is meant serve as a guide to the
basic concepts of symbolic dynamics.

Deceptively simple, this subject can get very difficult very quickly, so in this
chapter we do the first, 1-dimensional pass at a pedestrian level, postponing
the discussion of higher-dimensional, cyclist level issues to Chapter 12.

Even though by inclination you might only care about the serious stuff,
like Rydberg atoms or mesoscopic devices, and resent wasting time on for-
mal things, this chapter and Chapters 14 and 15 are good for you. Study them.

I N THIS CHAPTER and the next we learn how to partition state space in a topo-

11.1 Qualitative dynamics

(R. Mainieri and P. Cvitanovit)
What can a flow do to points in state space? This is a very difficult question
to answer because we have assumed very little about the evolution function f ¢;
continuity, and differentiability a sufficient number of times. Trying to make

11
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Fig. 11.1 A coarse partition of M into re-
gions Mo, M, and My, labeled by ternary
alphabet A = {1,2,3}.

(
—

Fig.11.2 Atrajectory with itinerary 021012.

B

i

Fig. 11.3 A 1-step memory refinement of the
partition of Fig. 11.1, with each region M
subdivided into Mg, M1, and Mz, labeled
by nine ‘words’ {00, 01,02, - - -, 21,22}.

exercise 1.1

174 CHAPTER 11. CHARTING THE STATE SPACE

sense of this question is one of the basic concerns in the study of dynamical
systems.  The first answer was inspired by the motion of the planets: they
appear to repeat their motion through the firmament, so the ancients’ attempts
to describe dynamical systems were to think of them as periodic.

However, periodicity is almost never quite exact. What one tends to observe
is recurrence. A recurrence of a point X of a dynamical system is a return of
that point to a neighborhood of where it started. How close the point x o must
return is up to us: we can choose a volume of any size and shape, and call it the
neighborhood My, as long as it encloses xq. For chaotic dynamical systems,
the evolution might bring the point back to the starting neighborhood infinitely
often. That is, the set

yeMo: y=1(x0). t>to (11.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This sug-
gests another way of describing how points move in state space, the important
first step on the way to a theory of dynamical systems: qualitative, topological
dynamics, or symbolic dynamics. As the subject can get quite technical,
a summary of the basic notions and definitions of symbolic dynamics is rele-
gated to Section 11.6; check that section and references cited in Remark 11.1
whenever you run into baffling jargon.

We start by dividing the state space up into regions Ma, Mg, ..., Mz, as
in Fig. 11.1. This can be done in many ways, not all equally clever. Any
such division of state space into distinct regions constitutes a partition, and we
associate with each region (sometimes referred to as a state) a symbol s from
an N-letter alphabet or state set A = {A,B,C,---,Z}. As the state evolves,
different regions will be visited. The visitation sequence - forthwith referred to
as the itinerary - can be represented by the letters of the alphabet A. If, as in
the example sketched in Fig. 11.2, the state space is divided into three regions
Mo, My, and My, the ‘letters’ are the integers {0, 1, 2}, and the itinerary for
the trajectory sketched in the figureis0—» 2 —» 10— 1+ 2+ ---

Example 11.1 3-disk symbolic dynamics:

Consider the motion of a free point particle in a plane with 3 elastically reflecting
convex disks, Fig. 11.4. After a collision with a disk a particle either continues to
another disk or escapes, so a trajectory can be labeled by the disk sequence. Sets of
configuration space pinball trajectories of Fig. 11.4 become quickly hard to disen-
tangle. As we shall see in what follows, their state space visualization in terms of
Poincaré sections £ = [s, p] (Fig. 11.5, see also Fig. 3.4) is much more powerful.
(continued in Example 11.2)

In general only a subset of points in Mg reaches Ma. This observation
offers a systematic way to refine a partition by introducing m-step memory: the
region Ms, ..s;s, consists of the subset of points of M, whose trajectory for
the next m time steps will be s — $; > -+ > Sy, see Fig. 11.3.

Example 11.2 3-disk state space partition:
(continued from Example 11.1) Ateach bounce a cone of initially nearby trajectories
defocuses (see Figs. 1.8 and 11.4), and in order to attain a desired longer and longer
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itinerary of bounces the strip of initial points X, = (So, po) has to be specified with
exponentially finer precision, nested within the initial state space strips drawn in
Fig. 11.5.  (continued in Example 12.2)

If there is no way to reach partition M; from partition M;, and conversely,
partition M; from partition M;, the state space consists of at least two discon-
nected pieces, and we can analyze it piece by piece. An interesting partition
should be dynamically connected, i.e., one should be able to go from any re-
gion M; to any other region M; in a finite number of steps. A dynamical
system with such a partition is said to be metrically indecomposable.

In general one also encounters transient regions - regions to which the dy-
namics does not return to once they are exited. Hence we have to distinguish
between (uninteresting to us) wandering trajectories that never return to the
initial neighborhood, and the non-wandering set (2.2) of the recurrent trajec-
tories.

However, knowing that a point from M; reaches {Mj, - - -, My} in one step
is not quite good enough. We would be happier if we knew that the map of
the entire initial region f(M;) overlaps nicely with the entire M;; otherwise
we have to subpartition M; into the subset f(M;) and the reminder, and often
we will find ourselves partitioning ad infinitum, a difficult topic that we shall
return to Section 12.4.

Such considerations motivate the notion of a Markov partition, a partition
for which no memory of preceding steps is required to fix the transitions al-
lowed in the next step. Finite Markov partitions can be generated by expanding
d-dimensional iterated mappings f : M — M, if M can be divided into N re-
gions { Mo, My, ..., Mn-1} such that in one step points from an initial region
M either fully cover a region M, or miss it altogether,

either M;n f(Mj)=0 or M;c f(M). (11.2)
Whether such partitions can be found is not clear at all - the borders need to
be lower-dimensional sets invariant under dynamics, and there is no guaran-
tee that these are topologically simple objects. However, the game of pinball
(and many other non-wandering repeller sets) is especially nice: the issue of
determining the partition borders does not arise, as the survivors live on discon-
nected pieces of the state space, separated by a chasm of escaping trajectories.

ChaosBook.org version13.5, Sep 7 2011 knead - 30mar2009

Fig. 11.5 The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk
1 with x = (arclength, parallel momentum)
= (s, p), where p = sin@. (a) Strips of initial
points Mj2, Mz which reach disks 2, 3 in
one bounce, respectively. (b) 1-step memory
refinement of partition (see Fig. 11.3): strips
of initial points Mi21, M131, Mizz and Moz
which reach disks 1, 2, 3 in two bounces, re-
spectively. Disk radius : center separation ra-
tioa:R =1:2.5. (Y.
Lan)

23132321}

2313

Fig. 11.4 Two pinballs that start out very
close to each other exhibit the same qual-
itative dynamics _2313_ for the first three
bounces, but due to the exponentially grow-
ing separation of trajectories with time, fol-
low different itineraries thereafter: one es-
capes after -2313_, the other one escapes after
_23132321_. (Notation _2313_ is explained in
Section 11.6.)



2

Fig. 11.6 For the 3-disk game of pinball no
itineraries are pruned as long as the inter-disk
spacing exceeds R : a > 2.04821419....
(from K.T. Hansen [11.19])
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The itinerary of a billiard trajectory is finite for a scattering trajectory, com-
ing in from infinity and escaping after a finite number of collisions, infinite for
a trapped trajectory, and infinitely repeating for a periodic orbit. A finite length
trajectory is not uniquely specified by its finite itinerary, but an isolated unsta-
ble cycle is: its itinerary is an infinitely repeating block of symbols. For hy-
perbolic flows the intersection of the future and past itineraries, the bi-infinite
itinerary S™.S* = ---5_,5 150.515253 - - - Specifies a unique orbit. Almost all
infinite length trajectories (orbits) are aperiodic. Still, the longer the trajectory
is, the closer to it is a periodic orbit whose itinerary shadows the trajectory
for its whole length: think of the state space as the unit interval, aperiodic or-
bits as normal numbers, and periodic ones as fractions whose denominators
correspond to cycle periods, as is literally the case for the Farey map (20.31).

Determining whether the symbolic dynamics is complete (as is the case for
sufficiently separated disks, see Fig. 11.6), pruned (for example, for touching
or overlapping disks), or only a first coarse-graining of the topology (as, for
example, for smooth potentials with islands of stability) requires a case-by-
case investigation, a discussion we postpone until Section 11.5 and Chapter 12.
For now we assume that the disks are sufficiently separated that there is no
additional pruning beyond the prohibition of self-bounces.

Inspecting Fig. 11.5 we see that the relative ordering of regions with dif-
fering finite itineraries is a qualitative, topological property of the flow. This
observation motivates searches for simple, ‘canonical’ partitions which exhibit
in a simple manner the spatial ordering common to entire classes of topologi-
cally similar nonlinear flows.

11.2 From d-dimensional flows to
1-dimensional maps

Symbolic dynamics for the 3-disk game of pinball is so straightforward that
one may altogether fail to see the connection between the topology of hyper-
bolic flows and their symbolic dynamics. This is brought out more clearly by
the 1-dimensional visualization of “stretch & fold” flows to which we turn now.
We construct here the return maps (3.4) for two iconic flows, the Rdssler
and the Lorenz, in order to show how ODEs in higher dimensions can be mod-
eled by low-dimensional maps. In the examples at hand the strong dissipation
happens to render the dynamics essentially 1-dimensional, both qualitatively
and quantitatively. However, as we shall show in Chapter 12, strong dissipa-
tion is not essential -the hyperbolicity is- so the method applies to Hamiltonian
(symplectic areas preserving) flows as well. The key idea is to replace the
original, arbitrarily concocted coordinates by intrinsic, dynamically invariant
curvilinear coordinates erected on neighborhoods of unstable manifolds.

Wfast track

Section 11.3, p. 179
Suppose concentrations of certain chemical reactants worry you, or the variati-

ons in the Chicago temperature, humidity, pressure and winds affect your

mood. Such quantities vary within some fixed range, and so do their rates
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of change. Even if we are studying an open system such as the 3-disk pinball
game, we tend to be interested in a finite region around the disks and ignore
the escapees. So a typical dynamical system that we care about is bounded. If
the price to keep going is high - for example, we try to stir up some tar, and
observe it come to a dead stop the moment we cease our labors - the dynam-
ics tends to settle into a simple state. However, as the resistance to change
decreases - the tar is heated up and we are more vigorous in our stirring - the
dynamics becomes unstable.

Example 11.3 Rossler attractor return map: Stretch & fold.

(continued from Example 4.6)  In the Rdssler flow (2.17) of Example 3.4 we

sketched the attractor by running a long chaotic trajectory, and noted that the at-
tractor of Fig. 3.5 is very thin. For Rdssler flow an interval transverse to the at-
tractor is stretched, folded and fiercely pressed back. The attractor is ‘fractal,” but
for all practical purposes the return map is 1-dimensional; your printer will need a
resolution better than 10 dots per inch to start resolving its structure. We had at-
tempted to describe this “stretch & fold” flow by a 1-dimensional return map, but the
maps that we plotted in Fig. 3.6 were disquieting; they did not appear to be a 1-to-1
maps. This apparent non-invertibility is an artifact of projection of a 2—d return map
(Rn,zn) — (Rns1,Zn+1) ONto the 1-dimensional subspace R, — Rp.;. Now that we
understand equilibria and their linear stability, let’s do this right.
The key idea is to measure arclength distances along the unstable manifold of the x_
equilibrium point, as in Fig. 11.7 (a). Luck is with us; Fig. 11.7 (b) return map Spy1 =
P(sn) looks much like a parabola of Example 3.9, so we shall take the unimodal map
symbolic dynamics, Section 11.3, as our guess for the covering symbolic dynamics.

(continued in Example 11.11)

You get the idea - Rossler flow winds around the stable manifold of the
‘central’ equilibrium, stretches and folds, and the dynamics on the Poincaré
section of the flow can be reduced to a 1-dimensional map. The next example
is similar, but the folding mechanism is very different: the unstable manifold of
one of the equilibria collides with the stable manifold of the other one, forcing
a robust heteroclinic connection between the two.

W fast track
Section 11.3, p. 179
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Fig. 11.7 (8) x = 0, y > 0 Poincaré sec-
tion of the x_ unstable manifold, Rossler flow
Fig. 2.6. (p1, p2) are measured with the ori-
gin placed at x_. (b) s — P(s) return map,
where s is the arc-length distance measured
along the unstable manifold of equilibrium
point x_. (A. Basu and J. Newman)



Fig. 11.8 (a) A Poincaré section of the Loren
flow in the doubled-polar angle represente
tion, Fig. 9.4, given by the [y, z] plane the
contains the z-axis and the equilibrium EQq
X" axis points toward the viewer. (b) Th
Poincaré section of the Lorenz flow by th
section Crossings into the section are marke
red (solid) and crossings out of the sectio
are marked blue (dashed). Outermost point
of both in- and out-sections are given by th
EQq unstable manifold WY(EQo) intersec
tions. (E
Siminos)
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Fig. 11.9 The Poincaré return map Sy+1 =
P(sn) parameterized by Euclidean arclength
s measured along the EQ; unstable manifold,
from xgq, to WY(EQo) section point, upper-
most right point of the blue (dashed) seg-
ment in Fig. 11.8 (b). The critical point (the
‘crease’) of the map is given by the section of
the heteroclinic orbit WS(EQo) that descends
all the way to EQy, in infinite time and with
infinite slope. (E. Siminos)
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11.2.1 Heteroclinic connections

In general, two manifolds can intersect in a stable way if the sum of their di-
mensions is greater than or equal to the dimension of the state space, hence an
unstable manifold of dimension k is likely to intersect a stable manifold whose
codimension in state space is less than or equal to k (i.e., robustly with respect
to small changes of system parameters). Trajectories that leave a fixed point
along its unstable manifold and reach another fixed point along its stable man-
ifold are called heteroclinic if the two fixed points are distinct or homoclinic if
the initial and the final point are the same point. ~ Whether the two manifolds
actually intersect is a subtle question that is central to the issue of “structural
stability” of ergodic dynamical systems.

Example11.4 Lorenzflow: Stretch & crease.

We now deploy the symmetry of Lorenz flow to streamline and complete analysis of
the Lorenz strange attractor commenced in Example 9.10. There we showed that the
dihedral D; = {e,R} symmetry identifies the two equilibria EQ; and EQ,, and the
traditional ‘two-eared’ Lorenz flow Fig. 2.5 is replaced by the ‘single-eared’” flow
of Fig. 9.4 (a). Furthermore, symmetry identifies two sides of any plane through
the z axis, replacing a full-space Poincaré section plane by a half-plane, and the
two directions of a full-space eigenvector of EQ, by a one-sided eigenvector, see
Fig. 9.4 (a).

Example 4.8 explained the genesis of the Xzq, equilibrium unstable manifold, its
orientation and thickness, its collision with the z-axis, and its heteroclinic connection
to the xeq, = (0, 0, 0) equilibrium. All that remains is to describe how the EQ,
neighborhood connects back to the EQ; unstable manifold.

Figure 9.4 and Fig. 11.8 (a) show clearly how the Lorenz dynamics is pieced together
from the 2 equilibria and their unstable manifolds: Having completed the descent
to EQo, the infinitesimal neighborhood of the heteroclinic EQ, — EQ, trajectory
is ejected along the unstable manifold of EQ, and is re-injected into the unstable
manifold of EQ;. Both sides of the narrow strip enclosing the EQq unstable manifold
lie above it, and they get folded onto each other with a knife-edge crease (contracted
exponentially for infinite time to the EQ, heteroclinic point), with the heteroclinic
out-trajectory defining the outer edge of the strange attractor. This leads to the folding
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of the outer branch of the Lorenz strange attractor, illustrated in Fig. 11.8 (b), with
the outermost edge following the unstable manifold of EQy.
Now the stage is set for construction of Poincaré sections and associated Poincaré re-
turn maps. There are two natural choices; the section at EQo, lower part of Fig. 11.8 (b),
and the section (blue) above EQ;. The first section, together with the blowup of the
EQo neighborhood, Fig. 4.7 (b), illustrates clearly the scarcity of trajectories (van-
ishing natural measure) in the neighborhood of EQ,. The flat section above EQ;
(which is, believe it or not, a smooth conjugacy by the flow of the knife-sharp sec-
tion at EQo) is more convenient for our purposes. Its return map (3.4) is given by
Fig. 11.9.
The rest is straight sailing: to accuracy 10~ the return map is unimodal, its critical
point’s forward trajectory yields the kneading sequence (11.13), and the admissible
binary sequences, so any number of periodic points can be accurately determined
from this 1-dimensional return map, and the 3-d cycles then verified by integrating
the Lorenz differential equations (2.12). As already observed by Lorenz, such a map
is everywhere expanding on the strange attractor, so it is no wonder mathematicians
can here make the ergodicity rigorous.

(E. Siminos and J. Halcrow)

What have we learned from the above two exemplary 3-dimensional flows?
If a flow is locally unstable but globally bounded, any open ball of initial points
will be stretched out and then folded back. If the equilibria are hyperbolic, the
trajectories will be attracted along some eigen-directions and ejected along
others. The unstable manifold of one equilibrium can avoid stable manifolds
of other equilibria, as is the case for Rossler, or slice them head on, as is the
case for Lorenz. A typical trajectory wanders through state space, alternatively
attracted into equilibria neighborhoods, and then ejected again. What is impor-
tant is the motion along the unstable manifolds — that is where 1d maps come
from.

At this juncture we proceed to show how this works on the simplest example:
unimodal mappings of the interval. The erudite reader may skim through this
chapter and then take a more demanding path, via the Smale horseshoes of
Chapter 12. Unimodal maps are easier, but physically less compelling. The
Smale horseshoes offer the high road, more complicated, but the right tool to
generalize what we learned from the 3-disk dynamics, and begin analysis of
general dynamical systems. It is up to you - unimodal maps suffice to get
quickly to the heart of this treatise.

11.3 Temporal ordering: itineraries

In this section we learn how to name topologically distinct trajectories for the
simple, but instructive case; 1-dimensional maps of an interval.

The simplest mapping of this type is unimodal; interval is stretched and
folded only once, with at most two points mapping into a point in the refolded
interval, as in the Rossler return map Fig. 11.10(b). A unimodal map f(x) is
a 1-dimensional function R — R defined on an interval M € R with a mono-
tonically increasing (or decreasing) branch, a critical point (or interval) x for
which f(xc) attains the maximum (minimum) value, followed by a monoton-
ically decreasing (increasing) branch. Uni-modal means that the map is a 1-
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Fig. 11.10 (a) The Rdssler flow, Fig. 3.5, is
an example of a recurrent flow that stretches 0
and folds. (b) The Rossler ‘stretch & fold” 0 2 4 6 8 10
return map, Fig. 11.7 (b).  (R. PaSkauskas S
and A. Basu) (b) n

humped map with one critical point within interval M. Multi-modal maps,
with several critical points within interval M, can be described with a straight-
forward generalization of the methods we describe next.

Example 11.5 Unimodal maps:
(continued from Example 3.9) The simplest examples of unimodal maps are the
quadratic map
f(x) = Ax(1 - x), xe M=1[0,1] (11.3)

and numerically computed return maps such as Fig. 11.10 (b). Such dynamical sys-
tems are irreversible (the inverse of f is double-valued), but, as we shall show in
Section 12.2, they may nevertheless serve as effective descriptions of invertible 2-
dimensional hyperbolic flows. For the unimodal map such as Fig. 11.12 a Markov
partition of the unit interval M is given by the two intervals { My, M;}.  (continued
in Example 11.6)

o Yo Yn
‘ r L L Example 11.6 Full tent map, Ulam map:
00 01 11 10 (continued from Example 11.5) The simplest examples of unimodal maps with
complete binary symbolic dynamics are the full tent map, Fig. 11.11,
Fig. 11.11 The full tent map (11.4) par- f()=1-2ly-1/2, yeM=1[0,1], (11.4)

tition { Moo, Moz, M1, Mio} together with

the fixed points xo, X1. the Ulam map (quadratic map (11.3) with A = 4)

exercise 6.4
f)=4x(1-x), xeM=][01], (11.5)

and the repelling unimodal maps such as Fig. 11.12. For unimodal maps the Markov
partition of the unit interval M is given by intervals { Mo, M;}. We refer to (11.4)
as the complete tent map because its symbolic dynamics is complete binary: as both
f(Mo) and f (M,) fully cover M = { Mo, My}, all binary sequences are realized as
admissible itineraries.

For 1d maps the critical value denotes either the maximum or the minimum
value of f(x) on the defining interval; we assume here that it is a maximum,
f(xc) > f(x) for all x € M. The critical point x. that yields the critical value
f(xc) belongs neither to the left nor to the right partition M;, and is denoted
by its own symbol s = C. As we shall see, its images and preimages serve as
partition boundary points.
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The trajectory X1, X2, X3, . .. of the initial point xq is given by the iteration
Xn+1 = f(Xn). Iterating f and checking whether the point lands to the left or to
the right of x. generates a temporally ordered topological itinerary (11.17) for
a given trajectory,

1 ifx, > X
Sy =< C ifx,=Xc (11.6)
0 ifxp < X

We refer to S*(xg) = .5152S3- - as the future itinerary. Our next task is to
answer the reverse problem: given an itinerary, what is the spatial ordering of
points that belong to the corresponding state space trajectory?

11.4 Spatial ordering

Tired of being harassed by your professors? Finish, get a job, do
combinatorics your own way, while you still know everything.

—Professor Gatto Nero

Suppose you have succeeded in constructing a covering symbolic dynamics,
such as the one we constructed for a well-separated 3-disk system. Now start
moving the disks toward each other. At some critical separation (see Fig. 11.6)
a disk will start blocking families of trajectories traversing the other two disks.
The order in which trajectories disappear is determined by their relative or-
dering in space; the ones closest to the intervening disk will be pruned first.
Determining inadmissible itineraries requires that we relate the spatial order-
ing of trajectories to their time ordered itineraries.

The easiest point of departure is to start out by working out this relation for
the symbolic dynamics of 1-dimensional mappings. As it appears impossible
to present this material without getting bogged down in a sea of 0’s, 1’s and
subscripted subscripts, we announce the main result before embarking upon its
derivation:

The admissibility criterion (Section 11.5) eliminates all itineraries that can-
not occur for a given unimodal map.

Example 11.7 Bernoulli shift map state space partition.
First, an easy example: the Bernoulli shift map, Fig. 11.13,

b(y) = { bo(y) = 2y, y e Mo =0,1/2)

yeM=(1/21] ° (11.7)

bi(y) =2y -1,
models the 50-50% probability of a coin toss. It maps the unit interval onto itself,
with fixed points yo = 0, y; = 1. The closely related doubling map acts on the circle

X 2x (mod 1), x € [0,1] (11.8)

and consequently has only one fixed point, X, =0=1 (mod 1). The Bernoulli map
is called a ‘shift” map, as a multiplication by 2 acts on the binary representation of
v = .515,S3... by shifting its digits, b(y) = .s;S3.... The nth preimages b™"(y) of
the critical point y, = 1/2 partition the state space into 2" subintervals, each labeled
by the first n binary digits of points y = .s;5,S3 . .. within the subinterval: Fig. 11.13
illustrates such 4-intervals state space partition { Mgo, Mo1, M1z, Myo} forn = 2.
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Fig. 11.12 A unimodal repeller with the sur-
vivor intervals after 1 and 2 iterations. Inter-
vals marked s;s; - - - s consist of points that
do not escape in n iterations, and follow the
itinerary S* = s15; - - sp. Note that the spa-
tial ordering does not respect the binary or-
dering; for example X0 < Xo1 < X11 < X10-
Also indicated: the fixed points 0, 1, the 2-
cycle 01, and the 3-cycle 011.

exercise 12.7

section 11.5

Yn+1

Fig. 11.13 The n = 2, 4-intervals state space
partition for the Bernoulli shift map (11.7),
together with the fixed points 0, 1 and the 2-
cycle 01.
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Fig. 11.14 Alternating binary tree relates the
itinerary labeling of the unimodal map inter-
vals, Fig. 11.12, to their spatial ordering. Dot-
ted line stands for O, full line for 1; the binary
sub-tree whose root is a full line (symbol 1)
reverses the orientation, due to the orientation

reversing fold in Figs. 11.10 and 11.12. See
also Fig. 14.4.

exercise 11.4
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Consider amap f(x) topologically conjugate (two monotonically increasing branches)
to the Bernoulli shift, with the forward orbit of x generating the itinerary $;S,Ss.. ..
Convert this itinerary into Bernoulli map point y = .5;5,S3 . ... These values can now
be used to spatially order points with different temporal itineraries: if y < 7/, then
X< X,

Suppose we have already computed all (n — 1)-cycles of f(x), and would now like to
compute the cycle p = $,5,53... S, of period n. Mark y values on the unit interval
for all known periodic points of the Bernoulli shift map, and then insert in between
them y,«,,k = 0,1,---,n, — 1 corresponding to periodic points of cycle p. In the
dynamical state space they will be bracketed by corresponding cycle points x; from
cycles already computed, and thus the knowledge of the topological ordering of all
cycle points provides us with robust initial guesses for periodic-orbit searches for any
map with 2 monotonically increasing branches. (continued in Example 23.5)

For the Bernoulli shift converting itineraries into a topological ordering is
easy; the binary expansion of coordinate v is also its temporary itinerary. The
tent map (11.4), Fig. 11.11 is a bit harder. It consists of two straight segments
joined at x = 1/2. The symbol s, defined in (11.6) equals O if the function
increases, and 1 if the function decreases. lteration forward in time generates
the time itinerary. More importantly, the piecewise linearity of the map makes
the converse possible: determine analytically an initial point given its itinerary,
a property that we now use to define a topological coordinatization common to
all unimodal maps.

Here we have to face the fundamental problem of pedagogy: combinatorics
cannot be taught. The best one can do is to state the answer, and then hope
that you will figure it out by yourself.

The tent map point y(S *) with future itinerary S * is given by converting the
sequence of s,’s into a binary number by the following algorithm:

Wn if Sn+1 = 0
W, = . , Wy =S
n+l { 1-w, ifspy =1 1=t

¥(S™)

0.W1W2W3 Lo = Z Wn/2n. (11.9)

This follows by inspection from the binary tree of Fig. 11.14. Once you figure
this out, feel free to complain that the way the rule is stated here is incompre-
hensible, and show us how you did it better.

Example 11.8 ConvertingytoS*:
v whose itinerary is S* = 0110000 - - - is given by the binary number y = .010000 - - -.
Conversely, the itinerary of y = 0liss; =0, f(y) = .1 —» 55 = 1, f2(y) = (1) =
1 — s3 = 1, etc.. Orbit that starts out as a finite block followed by infinite repeats of
another block p = S, = (815,83...8,)® is said to be heteroclinic to the cycle p. An
orbit that starts out as p'nfty followed by a finite block followed

We refer to y(S *) as the (future) topological coordinate. wy’s are the digits
in the binary expansion of the starting point y for the full tent map (11.4). In
the left half-interval the map f (x) acts by multiplication by 2, while in the right
half-interval the map acts as a flip as well as multiplication by 2, reversing the
ordering, and generating in the process the sequence of s,’s from the binary
digits wy.
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The mapping xo — S*(x0) — yo = y(S*) is a topological conjugacy
which maps the trajectory of an initial point xo under iteration of a given uni-
modal map to that initial point y for which the trajectory of the ‘canonical’
unimodal map, the full tent map (11.4), has the same itinerary. The virtue of
this conjugacy is that y(S *) preserves the ordering for any unimodal map in
the sense that if X > x, then’y > y.

Example 11.9 Periodic orbits of unimodal maps.

Let
_f fo()if x <X
) ‘{ f() I x> % (11.10)
and assume that all periodic orbits are unstable, i.e., the stability A, = fX (see
(4.45)) satisfies |Ap| > 1. Then the periodic point X s,s,.s, iS the only fixed point of
the unique composition (3.17) of n maps

fg, 00000 f52 o f51 (X515253...sn) = Xs15783...8n (11.11)

(note that successive maps, applied from the left, correspond to later times, i.e., later
symbols in the itinerary).

The nth iterate of a unimodal map has at most 2" monotone segments, and therefore
there will be 2" or fewer periodic points of length n.  For the full tent map (11.4)
it has exactly 2" periodic points. A periodic orbit p of length n corresponds to an
infinite repetition of a length n = n, symbol string block, customarily indicated by
a line over the string: p = S = (5152S3...5:)® = 515253...5n . As all itineraries
are infinite, we shall adopt convention that a finite string itinerary p = $;5,S3... Sy
stands for infinite repetition of a finite block, and routinely omit the overline. A
cycle pis called prime if its itinerary S cannot be written as a repetition of a shorter
block S’. If the itinerary of Xy is p = $15,83... S, its cyclic permutation o*p =
SkSke1 - - - SnS1L - - - Sk1 corresponds to the point x,_; in the same cycle.

Example 11.10 Periodic points of the full tent map.

Each cycle p is a set of n, rational-valued full tent map periodic points y. It follows
from (11.9) that if the repeating string s;S; . . . S, contains an odd number of *1’s, the
string of well ordered symbols w;w; ... w,, has to be of the double length before it
repeats itself. The cycle-point y is a geometrical sum which we can rewrite as the
odd-denominator fraction

g2n 20
y(S1S2 .- Sn) = m Z Wt/2t (1112)
t=1

Using this we can calculate the 3, = ¥(S ,) for all short cycles. For orbits up to length
5 this is done in Table 11.1.

Critical points are special - they define the boundary between intervals, i.e.,
interval is split into O [left part], x. [critical point] and 1 [right part]. For the
dike map and the repeller Fig. 11.12 x is the whole interval of points along
the flat top of the map, but usually it is a point. As illustrated by Figs. 11.11
and 11.13, for a unimodal map the preimages f ~"(x.) of the critical point x.
serve as partition boundary points. But not all preimages—one has to ensure
that they are within the set of all admissible orbits by checking them against
the kneading sequence of the map.
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pruned

Fig. 11.15 The ‘dike’ map obtained by slic-
ing of the top portion of the tent map in
Fig. 11.11. Any orbit that visits the pri-
mary pruning interval (x, 1] is inadmissible.
The admissible orbits form the Cantor set
obtained by removing from the unit interval
the primary pruning interval and all its iter-
ates. Any admissible orbit has the same topo-
logical coordinate and itinerary as the corre-
sponding tent map Fig. 11.11 orbit.
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S ¥(S) | s | ¥(S) |
0].0 = 0 10111 | .11010 = 26/31
11.10 = 2/3 || 10110 | .1101100100 = 28/33
10 | .1100 = 4/5 || 10010 | .11100 = 28/31
101 | .110 = 6/7 || 10011 | .1110100010 =  10/11
100 | .111000 = 8/9 || 10001 | .11110 = 30/31
1011 | .11010010 =  14/17 || 10000 | .1111100000 =  32/33
1001 | .1110 = 14/15
1000 | 11110000 =  16/17

Table 11.1 The maximal values of unimodal map cycles up to length 5. (K.T. Hansen)

11.5 Kneading theory

(K.T. Hansen and P. Cvitanovit)
The main motivation for being mindful of spatial ordering of temporal itineraries
is that this spatial ordering provides us with criteria that separate inadmissible
orbits from those realizable by the dynamics. For 1-dimensional mappings the
kneading theory provides a precise and definitive criterion of admissibility.

If the parameter in the quadratic map (11.3) is A > 4, then the iterates of
the critical point x. diverge for n — oo, and any sequence S * composed of
letters s; = {0, 1} is admissible, and any value of 0 < y < 1 corresponds to
an admissible orbit in the non-wandering set of the map. The corresponding
repeller is a complete binary labeled Cantor set, the n — oo limit of the nth
level covering intervals sketched in Fig. 11.12.

For A < 4 only a subset of the points in the interval y € [0, 1] corresponds to
admissible orbits. The forbidden symbolic values are determined by observing
that the largest x, value in an orbit x; — X, — X3 — ... has to be smaller
than or equal to the image of the critical point, the critical value f(x.). Let
K = S*(Xc) be the itinerary of the critical point x., denoted the kneading
sequence of the map. The corresponding topological coordinate is called the
kneading value

k= y(K) = y(S7(x)). (11.13)

The ‘canonical’ map that has the same kneading sequence K (11.13) as f (x)
is the dike map, Fig. 11.15,

{ fo(y) =2y ¥y € Mo =[0,«/2)
fly)=9 fe(y) =« yeM.=[k/2,1-«/2] , (11.14)
fily) =21-vy) yeMi=(1-«/2,1]

obtained by slicing off all y (S*(xo)) > «. The dike map is the full tent map
Fig. 11.11 with the top sliced off. It is convenient for coding the symbolic
dynamics, as those y values that survive the pruning are the same as for the
full tent map Fig. 11.11, and are easily converted into admissible itineraries by
(11.9).
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If y(S*) > v(K), the point x whose itinerary is S * would exceed the critical
value, X > f(xc), and hence cannot be an admissible orbit. Let

¥8M) = sup Y(e"(S) (11.15)

be the maximal value, the highest topological coordinate reached by the orbit
X1 — X2 = X3 — ..., Where o is the shift (11.20), o-(- - - S_-25-150.515253 - ) =
+++8.9S_150S1.5253 - - - . We shall call the interval (x, 1] the primary pruned in-
terval. The orbit S* is inadmissible if y of any shifted sequence of S * falls
into this interval.

Criterion of admissibility: Let « be the kneading value of the critical point,
and (S *) be the maximal value of the orbit S *. Then the orbitS * is admissible
if and only if (S %) < «.

While a unimodal map may depend on many arbitrarily chosen parameters,
its dynamics determines the unique kneading value . We shall call  the topo-
logical parameter of the map. Unlike the parameters of the original dynamical
system, the topological parameter has no reason to be either smooth or contin-
uous. The jumps in « as a function of the map parameter such as A in (11.3)
correspond to inadmissible values of the topological parameter. Each jump in
k corresponds to a stability window associated with a stable cycle of a smooth
unimodal map. For the quadratic map (11.3) « increases monotonically with
the parameter A, but for a general unimodal map such monotonicity need not
hold.

Example11.11 Rosser return map web diagram:
(continuation of Example 11.2) The arclength distance along the unstable manifold
of the x_ equilibrium point return map, Fig. 11.7 (b), generates the kneading sequence
(11.13) as the itinerary of the critical point plotted in Fig. 11.16 (a).

As we shall see in Section 12.4, for higher dimensional maps and flows there
is no single parameter that orders dynamics monotonically; as a matter of fact,
there is an infinity of parameters that need adjustment for a given symbolic
dynamics. This difficult subject is beyond our current ambition horizon.

W fast track
Chapter 12, p. 193
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Fig. 11.16 (a) Web diagram generated by the
trajectory of the critical point the unimodal
Rassler return map of Fig. 11.7 (b). (b) The
web diagram for the corresponding ‘canoni-
cal’ dike map (11.14) with the same kneading
sequence. (A. Basu and J. Newman)
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11.6 Symbolic dynamics, basic notions

(Mathematics) is considered a specialized dialect of the natural lan-
guage and its functioning as a special case of speech.

— Yuri I. Manin [11.1]

In this section we collect the basic notions and definitions of symbolic dynam-
ics. The reader might prefer to skim through this material on first reading,
return to it later as the need arises.

Shifts. We associate with every initial point xo € M the future itinerary, a
sequence of symbols S *(xg) = s15,S3 - - - which indicates the order in which
the regions are visited. If the trajectory X1, X2, X, . .. of the initial point xg is
generated by

Xns1 = f(Xn), (11.16)

then the itinerary is given by the symbol sequence
Sh=S§ if Xn € Ms . (11.17)
Similarly, the past itinerary S "(xg) = - - - S_25_1S¢ describes the history of xo,

the order in which the regions were visited before arriving to the point xo. To
each point xo in the dynamical space we thus associate a bi-infinite itinerary

S(Xo) = (Sk)keZ =S St=... S_2S_-150.S1S2S83 - . (11.18)

The itinerary will be finite for a scattering trajectory, entering and then es-
caping M after a finite time, infinite for a trapped trajectory, and infinitely
repeating for a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters of the
alphabet A is called the full shift (or topological Markov chain)

A” = {(SK)kez : Sk € Aforallk €Z). (11.19)

The jargon is not thrilling, but this is how professional dynamicists talk to each
other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries as the covering symbolic
dynamics.  The name shift is descriptive of the way the dynamics acts on
these sequences. As is clear from the definition (11.17), a forward iteration
x — X' = f(x) shifts the entire itinerary to the left through the ‘decimal point.’
This operation, denoted by the shift operator o,

0'(' ++S_25-150.5152S3 - * ) =-+-S_25.150S1.52S3 -, (11.20)

demoting the current partition label s; from the future S* to the ‘has been’
itinerary S™. The inverse shift o= shifts the entire itinerary one step to the
right.

A finite sequence b = SySks1 - - - Sken,—1 OF Symbols from A is called a block
of length ny,. If the symbols outside of the block remain unspecified, we denote
to the totality of orbits that share this block by _SySk+1 - - - Sk+ny-1--

A state space orbit is periodic if it returns to its initial point after a finite time;
in the shift space the orbit is periodic if its itinerary is an infinitely repeating
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block p®. We shall refer to the set of periodic points M, that belong to a
given periodic orbit as a cycle

P=515"5n, = {xslsz...snp, Xspe$op 1o ° "»Xsnpsl---snp,1}~ (11.21)

By its definition, a cycle is invariant under cyclic permutations of the symbols
in the repeating block. A bar over a finite block of symbols denotes a periodic
itinerary with infinitely repeating basic block; we shall omit the bar whenever
it is clear from the context that the orbit is periodic. Each periodic point is
labeled by the first n,, steps of its future itinerary. For example, the 2nd periodic
point is labeled by

Xspwsngs1 = X750, 51:55775,51 -

This - a bit strained - notation is meant to indicate that the symbol block repeats
both in the past and in the future. It is helpful for determining spatial ordering
of cycles of 2D-hyperbolic maps, to be undertaken in Section 12.3.1.

A prime cycle p of length ny is a single traversal of the orbit; its label is

a block of n, symbols that cannot be written as a repeat of a shorter block
(in literature such cycle is sometimes called primitive; we shall refer to it as
‘prime’ throughout this text).
Partitions. A partition is called generating if every infinite symbol sequence
corresponds to a distinct point in the state space. Finite Markov partition (11.2)
is an example. Constructing a generating partition for a given system is a
difficult problem. In examples to follow we shall concentrate on cases which
allow finite partitions, but in practice almost any generating partition of interest
is infinite.

A partition too coarse, coarser than, for example, a Markov partition, would
assign the same symbol sequence to distinct dynamical trajectories. To avoid
that, we often find it convenient to work with partitions finer than strictly nec-
essary. ldeally the dynamics in the refined partition assigns a unique infinite
itinerary - - - S_S_150.515253 - - - to each distinct orbit, but there might exist full
shift symbol sequences (11.19) which are not realized as orbitss; such se-
quences are called inadmissible, and we say that the symbolic dynamics is
pruned. The word is suggested by ‘pruning’ of branches corresponding to
forbidden sequences for symbolic dynamics organized hierarchically into a
tree structure, as explained in Chapter 14.

A mapping f : M — M together with a partition A induces topological
dynamics (X, o), where the subshift

T = {(Sk)kez} (11.22)

is the set of all admissible (i.e., ‘pruned’) infinite itineraries,and o : ¥ — X
is the shift operator (11.20). The designation ‘subshift’ comes form the fact
that = c A is the subset of the full shift (11.19). One of our principal tasks
in developing symbolic dynamics of dynamical systems that occur in nature
will be to determine X, the set of all bi-infinite itineraries S that are actually
realized by the given dynamical system.

Pruning. If the dynamics is pruned, the alphabet must be supplemented
by a grammar, a set of pruning rules. After the inadmissible sequences have
been pruned, it is often convenient to parse the symbolic strings into words of
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variable length - this is called coding. Suppose that the grammar can be stated
as a finite number of pruning rules, each forbidding a block of finite length,

G ={b1, by, --- by}, (11.23)

where a pruning block b is a sequence of symbols b = s1S---S,,, S € A, of
finite length ny,. In this case we can always construct a finite Markov partition
(11.2) by replacing finite length words of the original partition by letters of a
new alphabet. In particular, if the longest forbidden block is of length M +1, we
say that the symbolic dynamics is a shift of finite type with M-step memory.
In that case we can recode the symbolic dynamics in terms of a new alphabet,
with each new letter given by an admissible block of at most length M.

A topological dynamical system (Z, o) for which all admissible itineraries
are generated by a finite transition matrix (14.1)

2 ={(Skkez : Tss,, =1 Tforallk} (11.24)

is called a subshift of finite type.
i in depth:
3 Chapter 12, p. 193
Résumé

From our initial chapters 2 to 4 fixation on things local: a representative point,
a short-time trajectory, a neighborhood, in this chapter we have made a coura-
geous leap and gone global.

The main lesson is that - if one intends to go thoughtfully about globaliza-
tion - one should trust the dynamics itself, and let it partition the state space,
by means of its (topologically invariant) unstable manifolds. This works if
every equilibrium and periodic orbit is unstable, so one exits it local neigh-
borhood via its unstable manifold. We delineate the segment of the unstable
manifold between the fixed point and the point where the nonlinearity of the
dynamics folds back on itself as the primary segment, and measure location
of nearby state space points by arclengths measured along this (curvilinear)
segment. For 1-dimensional maps the folding point is the critical point, and
easy to determine. In higher dimensions, the situation is not so clear - we shall
discuss that in Chapter 12.

Trajectories exit a neighborhood of an equilibrium or periodic point along
unstable directions, and fall along stable manifolds towards other fixed points,
until they again are repelled along their unstable manifolds. Such sequences
of visitations can be described by symbolic dynamics. As we shall show in
Chapter 14, they are encoded by transition matrices / transition graphs, and ap-
proximated dynamically by sequences of unstable manifold — unstable man-
ifold maps, or, in case of a return to the initial neighborhood, by return maps
s — f(s).

As ‘kneading theory’ of Section 11.5 illustrates, not all conceivable symbol
sequences are actually realized (admissible). The identification of all inadmis-
sible or pruned sequences is in general not possible. However, the theory to be
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developed here relies on exhaustive enumeration of all admissible itineraries
up to a given topological length; Chapters 12 and 15 describe several strategies

for accomplishing this for physically realistic goals.

Further reading

11.1 Symbolic dynamics. For a brief history of symbolic dy-
namics, from J. Hadamard in 1898 onward, see notes to chap-
ter 1 of Kitchens monograph [11.2], a very clear and enjoyable
mathematical introduction to topics discussed here. Diacu and
Holmes [11.3] provide an excellent survey of symbolic dy-
namics applied to celestial mechanics. For a compact survey
of symbolic dynamics techniques, consult sects. 3.2 and 8.3
of Robinson [11.4]. The binary labeling of the once-folding
map periodic points was introduced by Myrberg [11.5] for 1-
dimensional maps, and its utility to 2-dimensional maps has
been emphasized in Refs. [11.6,7]. For 1-dimensional maps it
is now customary to use the R-L notation of Metropolis, Stein
and Stein [11.8, 9], indicating that the point x, lies either to
the left or to the right of the critical point in Fig. 11.12. The
symbolic dynamics of such mappings has been extensively
studied by means of the Smale horseshoes, see for example
Ref. [11.10]. Using letters rather than numerals in symbol
dynamics alphabets probably reflects good taste. We prefer
numerals for their computational convenience, as they speed
up conversions of itineraries into the topological coordinates
(6,7) introduced in Section 12.3.1. The alternating binary or-
dering of Fig. 11.14 is related to the Gray codes of computer
science [11.11].

11.2 Kneading theory. The admissible itineraries are stud-
ied, for example, in Refs. [11.12, 8, 10, 13]. We follow here
the Milnor-Thurston exposition [11.14]. They study the top-

ChaosBook.org version13.5, Sep 7 2011

ological zeta function for piecewise monotone maps of the
interval, and show that for the finite subshift case it can be
expressed in terms of a finite dimensional kneading determi-
nant. As the kneading determinant is essentially the topolo-
gical zeta function of Section 15.4, we do not discuss it here.
Baladi and Ruelle have reworked this theory in a series of pa-
pers [11.15-18]. Knight and Klages [11.19] in their study of
deterministic diffusion (for deterministic diffusion, see Chap-
ter ??) refer to the set of iterates of the critical point as ‘gen-
erating orbit.” They say: “The structure of the Markov parti-
tions varies wildly under parameter variation. The method we
employ to understand the Markov partitions involves iterating
the critical point. The set of iterates of this point form a set of
Markov partition points for the map. Hence we call the orbit
of the critical point a ‘generating orbit.” If the generating orbit
is finite for a particular value of parameters, we obtain a finite
Markov partition. We can then use the finite Markov partition
to tell us about the diffusive properties of the map and hence
the structure of the diffusion coefficient.”

11.3 Heteroclinic connections. For sketches of heteroclinic
connections in the nonlinear setting, see Abraham and Shaw
illustrated classic [11.20]. Section 5 of Ref. [11.21] makes
elegant use of stable manifold co-dimension counts and of in-
variant subspaces implied by discrete symmetries of the un-
derlying PDE to deduce the existence of a heteroclinic con-
nection.
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Exercises

Exercises

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

Binary symbolic dynamics.  Verify that the shortest
prime binary cycles of the unimodal repeller of Fig. 11.12

0, 1, 01, 001 . Compare with Table 15.1.
Try to sketch them in the graph of the unimodal func-
tion f(x); compare ordering of the periodic points with
Fig. 11.14. The point is that while overlayed on each
other the longer cycles look like a hopeless jumble, the
periodic points are clearly and logically ordered by the
alternating binary tree.

Generating primecycles.  Write a program that gen-
erates all binary prime cycles up to given finite length.

A contracting baker’smap.  Consider a contracting
(or “dissipative”) baker’s defined in Exercise 4.6.

The symbolic dynamics encoding of trajectories is real-
ized via symbols 0 (y < 1/2) and 1 (y > 1/2). Consider
the observable a(x,y) = x. Verify that for any periodic
orbitp (e ... &,), & € {0,1}

3L
Ap = Z;djl

Unimodal map symbolic dynamics. Show that the
tent map point y(S *) with future itinerary S is given by
converting the sequence of s,’s into a binary number by
the algorithm (11.9). This follows by inspection from the
binary tree of Fig. 11.14.

Unimodal map kneading value.
quadratic map

Consider the 1—d

f(x)=Ax(1-x), A=38. (11.25)

(a) (easy) Plot (11.25), and the first 4-8 (whatever
looks better) iterates of the critical point x, = 1/2.

(b) (hard) Draw corresponding intervals of the par-
tition of the unit interval as levels of a Can-
tor set, as in the symbolic dynamics partition of
Fig. 11.12. Note, however, that some of the inter-
vals of Fig. 11.12 do not appear in this case - they
are pruned.

(c) (easy) Check numerically that K = S*(x.), knead-
ing sequence (the itinerary of the critical point
(11.13)) is

K =1011011110110111101011110111110....

As the orbits of a chaotic map are exponentially
unstable, so many digits seem too good to be true

exerKnead - 4jun2003

(11.6) “Golden mean” pruned map.

- recheck this sequence using arbitrary precision
arithmetics.

(d) (medium) The tent map point y(S*) with future
itinerary S* is given by converting the sequence of
S,’s into a binary number by the algorithm (11.9).
List the corresponding kneading value (11.13) se-
quence k = y(K) to the same number of digits as
K.

(e) (hard) Plot the dike map, Fig. 11.15, with the same
kneading sequence K as f(x). The dike map is ob-
tained by slicing off all y(S*(x0)) > «, from the
full tent map Fig. 11.11, see (11.14).

How this kneading sequence is converted into a series of
pruning rules is a dark art, relegated to Section 15.5.
Consider a symmetri-
cal tent map on the unit interval such that its highest point
belongs to a 3-cycle:

1

0.8

0.6

0.4

0.2

0 02 04 06 08 1

(a) Find the value |A| for the slope (the two different
slopes +A just differ by a sign) where the maxi-
mum at 1/2 is part of a 3-cycle, as in the figure.

(b) Show that no orbit of this map can visit the region
x > (1 + V5)/4 more than once. Verify that once
an orbit exceeds x > (V5—1)/4, it does not reenter
the region x < (V5 - 1)/4.

(c) Ifan orbit is in the interval (V5 — 1)/4 < x < 1/2,
where will it be on the next iteration?

(d) If the symbolic dynamics is such that for x < 1/2
we use the symbol 0 and for x > 1/2 we use the
symbol 1, show that no periodic orbit will have the
substring _00_ in it.

(e) On the second thought, is there a periodic orbit that
violates the above _00_ pruning rule?

ChaosBook.org version13.5, Sep 7 2011



11.6. REFERENCES 191

For continuation, see Exercise 15.7 and Exercise 19.2. just making sure you know how to go back and forth be-
See also Exercise 15.6 and Exercise 15.8. tween spatial and temporal ordering of trajectory points.
(11.7) Binary 3-step transition matrix.  Construct [8x8] bi- (@) derive (11.12)

nary 3-step transition matrix analogous to the 2-step tran-
sition matrix (14.10). Convince yourself that the num-
ber of terms of contributing to tr T" is independent of the

(b) compute the five periodic points of cycle 10011
(c) compute the five periodic points of cycle 10000

memory length, and that this [2™x2™] trace is well defined (d) (optional) plot the above two cycles on the graph
in the infinite memory limit m — co. of the full tent map.

(11.8) Full tent map periodic points.  This exercise is easy: (continued in Exercise 13.15)
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Stretch, fold, prune 1 2

I.1. Introduction to conjugacy problems for diffeomorphisms. _ _
This is a survey article on the area of global analysis defined by differ- 121 Going global: stable/unstable mani-
entiable dynamical systems or equivalently the action (differentiable) folds 194

of a Lie group G on a manifold M. Here Diff(M) is the group of all 122 Horseshoes 197

diffeomorphisms of M and a diffeomorphism is a differentiable map  12.3 Symbol plane 200

with a differentiable inverse. (...) Our problem is to study the global ~ 12.4 Prunedanish 203

structure, i.e., all of the orbits of M. 12,5 Recoding, symmetries, tilings 204

—Stephen Smale, Differentiable Dynamical Systems Résumé 207

Further reading 208

E HAVE LEARNED that the Rdssler attractor is very thin, but otherwise the  Exercises 210
W return maps that we found were disquieting — Fig. 3.6 did not ap-  References 211

pear to be a one-to-one map. This apparent loss of invertibility is
an artifact of projection of higher-dimensional return maps onto their lower-
dimensional subspaces. As the choice of a lower-dimensional subspace is ar-
bitrary, the resulting snapshots of return maps look rather arbitrary, too. Such
observations beg a question: Does there exist a natural, intrinsic coordinate
system in which we should plot a return map?

We shall argue in Section 12.1 that the answer is yes: The intrinsic coordi-
nates are given by the stable/unstable manifolds, and a return map should be
plotted as a map from the unstable manifold back onto the immediate neigh-
borhood of the unstable manifold. In Chapter 5 we established that Floquet
multipliers of periodic orbits are (local) dynamical invariants. Here we shall
show that every equilibrium point and every periodic orbit carries with it stable
and unstable manifolds which provide topologically invariant global foliation
of the state space. They will enable us to partition the state space in a dynam-
ically invariant way, and assign symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relative spatial ordering of
trajectories, and separates the admissible and inadmissible itineraries. We il-
lustrate how this works on H&non map Example 12.3. Determining which sym-
bol sequences are absent, or ‘pruned’ is a formidable problem when viewed in
the state space, [X1, X, ..., Xq] coordinates. It is equivalent to the problem of
determining the location of all homoclinic tangencies, or all turning points of
the Hénon attractor. They are dense on the attractor, and show no self-similar
structure in the state space coordinates. However, in the ‘danish pastry’ rep-
resentation of Section 12.3 (and the ‘pruned danish,” in American vernacular,
of Section 12.4), the pruning problem is visualized as crisply as the New York
subway map; any itinerary which strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the pedestrian tempo of the
preceding chapter. Skip most of this chapter unless you really need to get into
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nitty-gritty details of symbolic dynamics.
W fast track
Chapter 13, p. 215
12.1 Going global: stable/unstable manifolds

The complexity of this figure will be striking, and | shall not even try
to draw it.

— H. Poincaré, on his discovery of homoclinic tangles, Les
méthodes nouvelles de la méchanique céleste

The Jacobian matrix J! transports an infinitesimal neighborhood, its eigen-
values and eigen-directions describing deformation of an initial infinitesimal
sphere of neighboring trajectories into an ellipsoid time t later, as in Fig. 4.2.1
Nearby trajectories separate exponentially along the unstable directions, ap-
proach each other along the stable directions, and creep along the marginal
directions.

The fixed point q Jacobian matrix J(X) eigenvectors (5.12) form a rectilinear
coordinate frame in which the flow into, out of, or encircling the fixed point is
linear in the sense of Section 4.2.2

The continuations of the span of the local stable, unstable eigen-directions
into global curvilinear invariant manifolds are called the stable, respectively
unstable manifolds. They consist of all points which march into the fixed point
forward, respectively backward in time

WS
WU

{xe M:f'(x) = xg > Oast — oo}
{xe M: () = xg > 0ast — oo} . (12.1)

Eigenvectors e of the monodromy matrix J(x) play a special role - on them
the action of the dynamics is the linear multiplication by A; (for a real eigen-
vector) along 1-d invariant curve W i* or spiral in/out action in a 2-D surface
(for a complex pair). Fort — oo a finite segment on W ¢, respectively W,
converges to the linearized map eigenvector e(©, respectively e®, where ©, ¢
stand respectively for ‘contracting,” “expanding.” In this sense each eigenvector
defines a (curvilinear) axis of the stable, respectively unstable manifold.

Actual construction of these manifolds is the converse of their definition
(12.1): one starts with an arbitrarily small segment of a fixed point eigenvector
and lets evolution stretch it into a finite segment of the associated manifold.
As a periodic point x on cycle p is a fixed point of f Te(x), the fixed point
discussion that follows applies equally well to equilibria and periodic orbits.
Expanding real and positive Floquet multiplier. Consider ith expanding
eigenvalue, eigenvector pair (A, €7) computed from J = J(x) evaluated at a
fixed point x,

JEDN(x) = AieP(x), xeM,, Ai>1. (12.2)

Take an infinitesimal eigenvector e)(x), [l€9(X)| = & < 1, and its return
AieD(x) after one period T . Sprinkle the straight interval between [e, Aje] C
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W¢,) with a large number of points x*, for example equidistantly spaced on
logarithmic scale between Ine and In A + In . The successive returns of these
points fTe(x®), £2Te(x®), ..., £MTe(x®)) trace out the 1d curve W, within the
unstable manifold. As separations between points tend to grow exponentially,
every so often one needs to interpolate new starting points between the rarified
ones. Repeat for —e@(x).

Contracting real and positive Floquet multiplier. Reverse the action of the
map backwards in time. This turns a contracting direction into an expanding
one, tracing out the curvilinear stable manifold W §, as a continuation of e(.
Expanding/contracting real negative Floquet multiplier. As above, but ev-
ery even iterate f2To(x®), £4To(x®), £8T»(x)) continues in the direction e®,
every odd one in the direction —e®.

Complex Floguet multiplier pair, expanding/contracting. The complex
Floquet multiplier pair {Aj, Aj.1 = A7} has Floguet exponents (5.9) of form
AD = 40 4 i with the sign of ,u(di) # 0 determining whether the linear
neighborhood is out / in spiralling. The orthogonal pair of real eigenvectors
{Reel), Imel)} spans a plane, as in (??). T = 2r/w is the time of one turn
of the spiral, JTRe e9(x) = |Aj|Re €D (x) . As in the real cases above, sprinkle
the straight interval between [, |A jle] along Re el (x) with a large number of
points x. The flow will now trace out the 2d invariant manifold as an out / in
spiralling strip. Two low-dimensional examples are the unstable manifolds of
the Lorenz flow, Fig. 11.8 (a), and the Rdssler flow, Fig. 11.10 (a). For a highly
non-trivial example, see Fig. 12.1.

The unstable manifolds of a flow are d,-dimensional. Taken together with
the marginally stable direction along the flow, they are rather hard to visualize.
A more insightful visualization is offered by (d—1)-dimensional Poincaré sec-
tions (3.2) with the marginal flow direction eliminated (see also Section 3.1.1).
Stable, unstable manifolds for maps are defined by

WS
Wy = {xeP:P‘”(x)—xq—>0asn—>oo}, (12.3)

{xeP:P"(x)=x; > 0asn— o

where P(x) is the (d —1)-dimensional return map (3.1). In what follows, all
invariant manifolds WY, W* will be restricted to their Poincaré sections W",
W,

Example 12.1 A section at afixed point with a complex Floquet multiplier
pair:

(continued from Example 3.1) The simplest choice of a Poincaré section for a fixed
(or periodic) point x4 with a complex Floguet multiplier pair is the plane # specified
by the fixed point (located at the tip of the vector x;) and the eigenvector Ime¥
perpendicular to the plane. A point x is in the section # if it satisfies the condition

(X=Xg) - Ime® =0. (12.4)

In the neighborhood of x, the spiral out/in motion is in the {Re &, Im &} plane, and
thus guaranteed to be cut by the Poincaré section ¢ normal to ¥,

In general the full state space eigenvectors do not lie in a Poincaré section;
the eigenvectors &0 tangent to the section are given by (5.20). Furthermore,
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Fig. 12.1 A 2d unstable manifold obtained
by continuation from the linearized neigh-
borhood of a complex eigenvalue pair of
an unstable equilibrium of plane Couette
flow, a projection from a 61,506-dimensional
state space ODE truncation of the (co-
dimensional) Navier-Stokes PDE. (J.F. Gib-
son, 8 Nov. 2005 blog entry [12.58])
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while in the linear neighborhood of fixed point x the trajectories return with
approximate periodicity T p, this is not the case for the globally continued man-
ifolds; 7(x), or the first return times (3.1) differ, and the W(L'j) restricted to the
Poincaré section is obtained by continuing trajectories of the points from the
full state space curve W/ to the section .

For long times the unstable manifolds wander throughout the connected er-
godic component, and are no more informative than an ergodic trajectory. For
example, the line with equitemporal knots in Fig. 12.1 starts out on a smoothly
curved neighborhood of the equilibrium, but after a “turbulent” episode decays
into an attractive equilibrium point. The trick is to stop continuing an invariant

manifold while the going is still good.
W fast track
Section 12.2, p. 197

Learning where to stop is a bit of a technical exercise, the reader might
prefer to skip next section on the first reading.

12.1.1 Parametrization of invariant manifolds

,
J As the flow is nonlinear, there is no “natural’ linear basis to represent it.
Wistful hopes like “‘POD modes,” ‘Karhunen-Loéve,” and other linear changes
of bases do not cut it. The invariant manifolds are curved, and their coordi-
natizations are of necessity curvilinear, just as the maps of our globe are, but
infinitely foliated and thus much harder to chart.

Let us illustrate this by parameterizing a 1d slice of an unstable manifold by
its arclength. Sprinkle evenly points {(x®, x®@, ... x(N-D} petween the equi-
librium point x4 = x©@ and point x = x™), along the 1d unstable manifold
continuation x® e WY of the unstable & eigendirection (we shall omit the
eigendirection label (j) in what follows). Then the arclength from equilibrium
point xq = X© to x = x™ is given by

N
H K K K K k-1
SZ:MLE gijdx¥ax{?, dx = x - Y. (12.5)
k=1

For the lack of a better idea (perhaps the dynamically determined g = JTJ
would be a more natural metric?) let us measure arclength in the Euclidian

metric, gij = dij, SO
1/2

N
5= lim [Z (dx(k))z) . (12.6)

By definition ™™ (x) e W(‘*j), so fY(x) induces a 1d map s(So, 7) = S(f7*)(xo)).

Turning points are points on the unstable manifold for which the local un-
stable manifold curvature diverges for forward iterates of the map, i.e., points
at which the manifold folds back onto itself arbitrarily sharply. For our pur-
poses, approximate turning points suffice. The 1d curve WY, starts out linear
at Xq, then gently curves until —under the influence of other unstable equilibria
and/or periodic orbits— it folds back sharply at ‘turning points’ and then nearly
retraces itself. This is likely to happen if there is only one unstable direction,
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as we saw in the Rossler attractor Example 11.3, but if there are several, the
‘turning point” might get stretched out in the non-leading expanding directions.

The trick is to figure out a good base segment to the nearest turning point
L = [0, sp], and after the foldback assign to s(x,t) > sy the nearest point
s on the base segment. If the stable manifold contraction is strong, the 2nd
coordinate connecting s(x,t) — s can be neglected. We saw in Example 11.3
how this works. You might, by nature and temperament, take the dark view:
Rassler has helpful properties, namely insanely strong contraction along a 1-
dimensional stable direction, that are not present in real problems, such as
turbulence in a plane Couette flow, and thus the lessons of Chapter 11 of no use
when it comes to real plumbing. For this reason, both of the training examples
to come, the billiards and the Hénon map are of Hamiltonian, phase space
preserving type, and thus as far from being insanely contracting as possible.
Yet, to a thoughtful reader, they unfold themselves as pages of a book.

Assign to each d-dimensional point X € Ly a coordinate s = s(X) whose
value is the Euclidean arclength (12.5) to x4 measured along the 1-dimensional
P section of the x4 unstable manifold. Next, for a nearby point Xo ¢ Lq
determine the point X; € Ly which minimizes the Euclidean distance (Xo —
%1)?, and assign arc length coordinate value sq = s(%1) to Xo. In this way,
an approximate 1-dimensional intrinsic coordinate system is built along the
unstable manifold. This parametrization is useful if the non-wandering set is
sufficiently thin that its perpendicular extent can be neglected, with every point
on the non-wandering set assigned the nearest point on the base segment L q.

Armed with this intrinsic curvilinear coordinate parametrization, we are now
in a position to construct a 1-dimensional model of the dynamics on the non-
wandering set. If X, is the nth Poincaré section of a trajectory in neighborhood
of xq, and s, is the corresponding curvilinear coordinate, then sp.1 = f™(Sn)
models the full state space dynamics X, — X,,1. We approximate f(sp) by a
smooth, continuous 1-dimensional map f : Ly — Lq by taking %, € Ly, and
assigning to Xn.1 the nearest base segment point Sp 1 = S(Xns1).

12.2 Horseshoes

If you find yourself mystified by Smale’s article abstract quoted on page 197,
about ‘the action (differentiable) of a Lie group G on a manifold M,” time
has come to bring Smale to everyman. If you still remain mystified by the
end of this chapter, reading Chapter 16 might help; for example, the Liouville
operators form a Lie group of symplectic, or canonical transformations acting
on the (p, q) manifold.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded. An example is a 3-dimensional
invertible flow sketched in Fig. 11.10 which returns a Poincaré section of the
flow folded into a “horseshoe’ (we shall belabor this in Fig. 12.4). We now
offer two examples of locally unstable but globally bounded flows which return
an initial area stretched and folded into a ‘horseshoe,” such that the initial area
is intersected at most twice. We shall refer to such mappings with at most 2"
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Fig. 12.3 The 3-disk game of pinball of
Fig. 11.5, generated by starting from disk 1,
preceded by disk 2, coded in binary, as in
Fig. 12.2. (a) Strips Ms;; which have sur-
vived a bounce in the past and will survive
a bounce in the future. (b) Iteration corre-
sponds to the decimal point shift; for exam-
ple, all points in the rectangle [1.01] map into
the rectangles [0.10], [0.11] in one iteration.

0 ‘

Fig. 12.2 Binary labeling of trajectories of
the symmetric 3-disk pinball; a bounce in
which the trajectory returns to the preceding
disk is labeled 0, and a bounce which results
in continuation to the third disk is labeled 1.
exercise 11.1
exercise 12.6

exercise 11.2
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sin@

(a) -2.5 0 s 2.5 (b)

transverse self-intersections at the nth iteration as the once-folding maps.

The first example is the 3-disk game of pinball Fig. 11.5, which, for suf-
ficiently separated disks (see Fig. 11.6), is an example of a complete Smale
horseshoe. We start by exploiting its symmetry to simplify it, and then parti-
tion its state space by its stable / unstable manifolds.

Example 12.2 Recoding 3-disk dynamicsin binary.

(continued from Example 11.2) The A = {1, 2,3} symbolic dynamics for 3-disk
system is neither unique, nor necessarily the smartest one - before proceeding it
pays to quotient the symmetries of the dynamics in order to obtain a more efficient
description. We do this in a quick way here, and redo it in more detail in Section 12.5.
As the three disks are equidistantly spaced, the disk labels are arbitrary; what is
important is how a trajectory evolves as it hits subsequent disks, not what label the
starting disk had. We exploit this symmetry by recoding, in this case replacing the
absolute disk labels by relative symbols, indicating the type of the collision. For
the 3-disk game of pinball there are two topologically distinct kinds of collisions,

Fig. 12.2:
s = 0
"1 1

In the binary recoding of the 3-disk symbolic dynamics the prohibition of self-
bounces is automatic. If the disks are sufficiently far apart there are no further re-
strictions on symbols, the symbolic dynamics is complete, and all binary sequences
(see Table 15.1) are admissible.

It is intuitively clear that as we go backward in time (reverse the velocity vector),
we also need increasingly precise specification of X, = (So, po) in order to follow
a given past itinerary. Another way to look at the survivors after two bounces is to
plot M, s,, the intersection of M, with the strips M, obtained by time reversal
(the velocity changes sign sing — —sing). M, s,, Fig. 12.3(a), is a ‘rectangle’
of nearby trajectories which have arrived from disk s; and are heading for disk s,.
(continued in Example 12.6)

pinball returns to the disk it came from

pinball continues to the third disk . (12.7)

The 3-disk repeller does not really look like a ‘horseshoe;’ the ‘fold” is cut
out of the picture by allowing the pinballs that fly between the disks to fall off
the table and escape. Next example captures the ‘stretch & fold’ horseshoe
dynamics of return maps such as Rdéssler’s, Fig. 3.5.
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Example 12.3 A Hénon repeller complete hor seshoe:
(continued from Example 3.7) Consider 2-dimensional Hénon map

(Xns1. Yne1) = (1 — ax2 + byn, Xn) . (12.8)

If you start with a small ball of initial points centered around the fixed point Xy, and
iterate the map, the ball will be stretched and squashed along the unstable manifold
Wy . Iterated backward in time,

(-1 Yn-1) = (¥, =b (1 — @y} — xn)), (12.9)

this small ball of initial points traces out the stable manifold W;. Their intersections
enclose the region M., Fig. 12.4(a). Any point outside W border of M. escapes
to infinity forward in time, while —by time reversal- any point outside Wy border
arrives from infinity back in paste. In this way the unstable - stable manifolds define
topologically, invariant and optimal initial region M ; all orbits that stay confined for
all times are confined to M. .

The Hénon map models qualitatively the Poincaré section return map of Fig. 11.10.
For b = 0 the Hénon map reduces to the parabola (11.3), and, as shown in Sec-
tions 3.3 and 27.1, for b # 0 it is kind of a fattened parabola; by construction, it takes
a rectangular initial area and returns it bent as a horseshoe. Parameter a controls the
amount of stretching, while the parameter b controls the amount of compression of
the folded horseshoe. For definitiveness, fix the parameter valuestoa = 6, b = —1;
the map is then strongly stretching but area preserving, the furthest away from the
strongly dissipative examples discussed in Section 11.2. The map is quadratic, so it
has 2 fixed points xo = f(Xo), X1 = f(x1) indicated in Fig. 12.4 (a). For the parameter
values at hand, they are both unstable.

Iterated one step forward, the region M is stretched and folded into a Smale horse-
shoe drawn in Fig. 12.4 (b). Label the two forward intersections f (M )N M_ by M,
with s € {0,1}. The horseshoe consists of the two strips My, M. , and the bent
segment that lies entirely outside the W line. As all points in this segment escape to
infinity under forward iteration, this region can safely be cut out and thrown away.
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Fig. 12.4 The Hénon map (12.8) for a = 6,
b = —1: fixed point 0 with segments of
its stable, unstable manifolds W*, WY, and
fixed point 1. (a) Their intersection bounds
the region M_ = 0BCD which contains the
non-wandering set Q. (b) The intersection
of the forward image f (M) with M_con-
sists of two (future) strips Mo, M;i., with
points BCD brought closer to fixed point 0
by the stable manifold contraction. (c) The
intersection of the forward image f (M) with
the backward backward f~1(M) is a four-
region cover of Q. (d) The intersection of
the twice-folded forward horseshoe f2(M)
with backward horseshoe f~1(M)). (e) The
intersection of f2(M.) with f~2(M) is a 16-
region cover of Q. Iteration yields the com-
plete Smale horseshoe non-wandering set Q,
i.e., the union of all non-wandering points of
f, with every forward fold intersecting every
backward fold. (P. Cvitanovict and Y.
Matsuoka)

exercise 3.5
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Iterated one step backwards, the region M _is again stretched and folded into a horse-

shoe, Fig. 12.4 (c). As stability and instability are interchanged under time reversal,

this horseshoe is transverse to the forward one. Again the points in the horseshoe

bend wander off to infinity as n — —oo, and we are left with the two (past) strips

M, M . Iterating two steps forward we obtain the four strips M1, Mo1., Moo., Mio.,
and iterating backwards we obtain the four strips Mo, M1, M1, Mo transverse

to the forward ones just as for 3-disk pinball game Fig. 12.2. Iterating three steps

forward we get an 8 strips, and so on ad infinitum. (continued in Example 12.4)

What is the significance of the subscript such as 11 which labels the M p11
future strip? The two strips M o, M1 partition the state space into two regions
labeled by the two-letter alphabet A = {0, 1}. S* = .011 is the future itinerary
for all x € M g11. Likewise, for the past strips all x € Ms__..s;s,. have the past
itinerary S™ = s_ - - - S_1S0 . Which partition we use to present pictorially the
regions that do not escape in m iterations is a matter of taste, as the backward
strips are the preimages of the forward ones

Mo, = £ (M), My = F(My).

Q, the non-wandering set (2.2) of M, is the union of all points whose forward
and backward trajectories remain trapped for all time, given by the intersec-
tions of all images and preimages of M:

Q- {x ‘xe tim (M) f-“(M_)} . (12.10)

Two important properties of the Smale horseshoe are that it has a complete
binary symbolic dynamics and that it is structurally stable.

For a complete Smale horseshoe every forward fold f "(M) intersects transver-
sally every backward fold f ~™(M), so a unique bi-infinite binary sequence can
be associated to every element of the non-wandering set. A point x € Q is la-
beled by the intersection of its past and future itineraries S (X) = - - - S_25-150.5152 - - -,
where sp=s if f"(X)e M5 ,se{0,1}andn € Z.

emark At The system is said to be structurally stable if all intersections of forward and

backward iterates of M remain transverse for sufficiently small perturbations

f — f + ¢ of the flow, for example, for slight displacements of the disks in the

pinball problem, or sufficiently small variations of the H&non map parameters

cection 1 & b. While structural stability is exceedingly desirable, it is also exceedingly
cection 5o Tare. About this, more later.

12.3 Symbol plane

Consider a system for which you have succeeded in constructing a covering
symbolic dynamics, such as a well-separated 3-disk system. Now start mov-
ing the disks toward each other. At some critical separation a disk will start
blocking families of trajectories traversing the other two disks. The order in
which trajectories disappear is determined by their relative ordering in space;
the ones closest to the intervening disk will be pruned first. Determining inad-
missible itineraries requires that we relate the spatial ordering of trajectories to
their time ordered itineraries.

exercise 12.7
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So far we have rules that, given a state space partition, generate a temporally
ordered itinerary for a given trajectory. Our next task is the converse:
given a set of itineraries, what is the spatial ordering of corresponding points
along the trajectories? In answering this question we will be aided by Smale’s
visualization of the relation between the topology of a flow and its symbolic
dynamics by means of ‘horseshoes,” such as Fig. 12.4.

12.3.1 Kneading danish pastry

The danish pastry transformation, the simplest baker’s transformation appro-
priate to Hénon type mappings, yields a binary coordinatization of all possible
periodic points.

The symbolic dynamics of once-folding map is given by the danish pastry
transformation. This generates both the longitudinal and transverse alternating
binary tree. The longitudinal coordinate is given by the head of a symbolic
sequence; the transverse coordinate is given by the tail of the symbolic se-
quence. The dynamics on this space is given by symbol shift permutations;
volume preserving, with 2 expansion and 1/2 contraction.

For a better visualization of 2-dimensional non-wandering sets, fatten the
intersection regions until they completely cover a unit square, as in Fig. 12.7.

We shall refer to such a ‘map’ of the topology of a given ‘stretch & fold’
dynamical system as the symbol square. The symbol square is a topologically
accurate representation of the non-wandering set and serves as a street map for
labeling its pieces. Finite memory of m steps and finite foresight of n steps
partitions the symbol square into rectangles [S_mi1 -+ S0.5152 - - - Sn], Such as
those of Fig. 12.6. In the binary dynamics symbol square the size of such
rectangle is 27™ x 27"; it corresponds to a region of the dynamical state space
which contains all points that share common n future and m past symbols. This
region maps in a nontrivial way in the state space, but in the symbol square its
dynamics is exceedingly simple; all of its points are mapped by the decimal
point shift (11.20)

0 (-++5-25-150.515253 -+ +) = -+~ S_25.15051.5253 " * » (12.11)
Example 12.4 A Hénon repeller subshift;
(continued from Example 12.3) The Hénon map acts on the binary partition as

a shift map. Figure 12.6 illustrates action f(My) = Mo. The square [01.01] gets

mapped into the rectangles ¢-[01.01] = [10.1] = {[10.10], [10.11]}, see Fig. 12.4 (e).
Further examples can be gleaned from Fig. 12.4.

As the horseshoe mapping is a simple repetitive operation, we expect a sim-
ple relation between the symbolic dynamics labeling of the horseshoe strips,
and their relative placement.  The symbol square points (S *) with future
itinerary S* are constructed by converting the sequence of s,’s into a binary
number by the algorithm (11.9). This follows by inspection from Fig. 12.9.
In order to understand this relation between the topology of horseshoes and
their symbolic dynamics, it might be helpful to backtrace to Section 11.4 and
work through and understand first the symbolic dynamics of 1-dimensional
unimodal mappings.
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Vo7

Fig. 125 Kneading orientation preserving
danish pastry: mimic the horsheshoe dynam-
ics of Fig. 12.6 by: (1) squash the unit square
by factor 1/2, (2) stretch it by factor 2, and (3)
fold the right half back over the left half.

exercise 12.2
exercise 12.3

oot.| |°%
101
111.
011.
010.
110.
100.
000.]5

Fig. 12.9 Kneading danish pastry: symbol
square representation of an orientation pre-
serving once-folding map obtained by fat-
tening the Smale horseshoe intersections of
Fig. 12.4(e) into a unit square. Also indi-
cated: the fixed points 0, 1, and the 3-cycle
points {011,110,101}. In the symbol square
the dynamics maps rectangles into rectangles



Fig. 12.6 The dynamics maps two (past)
strips strips M, M1 into two (future) strips
Mo., Ma.. The corners are labeled to aid vi-
sualization. Note that the BCGH strip is ro-
tated by 180 degrees.  (P. Cvitanovi¢ and Y.
Matsuoka)

Fig. 12.7 Kneading danish pastry: symbol
square representation of an orientation pre-
serving once-folding map obtained by fatten-
ing the Smale horseshoe intersections of (a)
Fig. 12.6 (b) Fig. 12.4 into a unit square. Also
indicated: the fixed points 0, 1 and the 2-cycle
points {01,10}. In the symbol square the dy-
namics maps rectangles into rectangles by a
decimal point shift.

exercise 12.4
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(@) 0 1 (b)

Under backward iteration the roles

CHAPTER 12. STRETCH, FOLD, PRUNE

of 0 and 1 symbols are interchanged;

M;* has the same orientation as M, while M has the opposite orientation.
\We assign to an orientation preserving once-folding map the past topological

coordinate § = 6(S ) by the algorithm:

Wn
1-w,

Whn-1

6(S7)

(]
0.WoW_1W_5 ... = Z Wi_n/2".
n=1

ifs,=0

. , Wo = S
ifsp=1 0=0

(12.12)

Such formulas are best derived by solitary contemplation of the action of a
folding map, in the same way we derived the future topological coordinate

(11.9).

The coordinate pair (6,y) associates a point (x,y) in the state space Cantor
set of Fig. 12.4 to a point in the symbol square of Fig. 12.9, preserving the
topological ordering. The symbol square [6, y] serves as a topologically faith-
ful representation of the non-wandering set of any once-folding map, and aids
us in partitioning the set and ordering the partitions for any flow of this type.
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W fast track
Chapter 13, p. 215
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12.4 Prune danish

Anyone know where | can get a good prune danish in Charlotte? |
mean a real NY Jewish bakery kind of prune danish!

— Googled

In general, not all possible symbol sequences are realized as physical trajec-
tories. Trying to get from ‘here’ to ‘there’ we might find that a short path is
excluded by some obstacle, such as a disk that blocks the path, or a potential
ridge. In order to enumerate orbits correctly, we need to prune the inadmissible
symbol sequences, i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so far is rather straight-
forward, and sets the stage for situations that resembles more the real life. A
generic once-folding map does not yield a complete horseshoe; some of the
horseshoe pieces might be pruned, i.e., not realized for particular parameter
values of the mapping. In 1 dimension, the criterion for whether a given sym-
bolic sequence is realized by a given unimodal map is easily formulated; any
orbit that strays to the right of the value computable from the kneading se-
quence (the orbit of the critical point (11.13)) is pruned. This is a topological
statement, independent of a particular unimodal map. Our objective is to gen-
eralize this notion to 2—d once-folding maps.

Adjust the parameters of a once-folding map so that the intersection of the
backward and forward folds is still transverse, but no longer complete, as in
Fig. 12.10(a). The utility of the symbol square lies in the fact that the surviv-
ing, admissible itineraries still maintain the same relative spatial ordering as
for the complete case.

In the example of Fig. 12.10 the rectangles [10.1], [11.1] have been pruned,
and consequently any trajectory containing blocks b; = 101, by = 111 is
pruned, the symbol dynamics is a subshift of finite type (11.24). We refer to
the border of this primary pruned region as the pruning front; another exam-
ple of a pruning front is drawn in Fig. 12.11 (b). We call it a ‘front’ as it can
be visualized as a border between admissible and inadmissible; any trajectory
whose points would fall to the right of the front in Fig. 12.11 is inadmissi-
ble, i.e., pruned. The pruning front is a complete description of the symbolic
dynamics of once-folding maps.For now we need this only as a concrete illus-
tration of how pruning rules arise.

In the example at hand there are total of two forbidden blocks 101, 111, so
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Fig. 12.8 Kneading orientation preserving
danish pastry: symbol square representa-
tion of an orientation preserving once-folding
map obtained by fattening the intersections of
two forward iterates / two backward iterates
of Smale horseshoe into a unit square.



Fig. 12.10 (a) An incomplete Smale horse-
shoe: the inner forward fold does not inter-
sect the outer backward fold. (b) The primary
pruned region in the symbol square and the
corresponding forbidden binary blocks.

Fig. 12.11 (a) An incomplete Smale horse-
shoe which illustrates (b) the monotonicity of
the pruning front: the thick line which delin-
eates the left border of the primary pruned re-
gion is monotone on each half of the sym-
bol square. The backward folding in this fig-
ure and Fig. 12.10 is schematic - in invertible
mappings there are further missing intersec-
tions, all obtained by the forward and back-
ward iterations of the primary pruned region.

exercise 9.6
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0109t

- — 10010
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— 10140

For now we concentrate on this kind of pruning because it is particularly clean

and simple.
W fast track
Chapter 13, p. 215

Though a useful tool, Markov partitioning is not without drawbacks. One
glaring shortcoming is that Markov partitions are not unique: any of many
different partitions might do the job. The C,- and D3- equivariant systems that
we discuss next offers a simple illustration of different Markov partitioning
strategies for the same dynamical system.

12.5 Recoding, symmetries, tilings

\
J In Chapter 9 we made a claim that if there is a symmetry of dynamics,
we must use it. Here we shall show how to use it, on two concrete exam-
ples, and in Chapter 21 we shall be handsomely rewarded for our labors. First,
the simplest example of equivariance, a single ‘reflection” C, group of Exam-
ple 9.13.

Example 12.5 C, recoded:
Assume that each orbit is uniquely labeled by an infinite string {si}, si € {+,—} and
that the dynamics is C,-equivariant under the + < — interchange. Periodic orbits
separate into two classes, the self-dual configurations +—, + + ——, + + + — ——,
+ — —+ — 4+ +—, - -+, with multiplicity m, = 1, and the pairs +, -, + + -, — — +, - - -,
with multiplicity m, = 2. For example, as there is no absolute distinction between the
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Table 12.1 Correspondence between the C, symmetry reduced cycles p and the full
state space periodic orbits p, together with their multiplicities my. Also listed are the
two shortest cycles (length 6) related by time reversal, but distinct under C,.

p p Mp
1 + 2
0 —+ 1
01 -— ++ 1
001 -+ + 2
011 - —— +++ 1
0001 —+—— +—++ 1
0011 -+ ++ 2
0111 -———— 4+ +++ 1
00001 -+ —+- 2
00011 —+——= 4+ -+ ++ 1
00101 —++—— +——++ 1
00111 —+—-—— +—+++ 1
01011 ——+++ 2
01111 - —-—-- +++++ 1
001011 —-4+4+--—+—-——+++ 1
001101 —-4+4++--+-———++ 1

‘left’ or the ‘right’ lobe of the Lorenz attractor, Fig. 3.7 (a), the Floquet multipliers
satisfy A, = A_, A,,_ = A,__,and soon.

The symmetry reduced labeling p; € {0, 1} is related to the full state space labeling
Si € {+,—} by

If s§ = s then pi=1
If s # s then p=0 (12.13)
For example, the fixed point + = --- + + + +--- maps into ---111--- = 1, and so
does the fixed point =. The 2-cycle =+ = --- — + — +--- maps into fixed point
--000--- =0, and the 4-cycle —+ +— = --- — —+ + — — + +--- maps into 2-cycle

---0101--- = 01. A list of such reductions is given in Table 12.1.

Next, let us take the old pinball game and ‘quotient’ the state space by the
symmetry, or ‘desymmetrize.” As the three disks are equidistantly spaced, our
game of pinball has a sixfold symmetry. For instance, the cycles 12, 23, and 13
in Fig. 12.12 are related to each other by rotation by +27/3 or, equivalently, by
a relabeling of the disks. We exploit this symmetry by recoding, as in (12.7).

Example 12.6 Recoding ternary symbolic dynamicsin binary:
Given a ternary sequence and labels of 2 preceding disks, rule (12.7) fixes the subse-
quent binary symbols. Here we list an arbitrary ternary itinerary, and the correspond-
ing binary sequence:

ternary : 3121312321231323
binay : - 10101101011010 (12.14)

The first 2 disks initialize the trajectory and its direction; 3 +— 1 + 2 + ---. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23,
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exercise 21.5

exercise 11.1
exercise 12.6



exercise 12.7
exercise 14.2

Fig. 1212 The 3-disk game of pinball
with the disk radius : center separation ratio
a:R = 1:2.5. (a) 2-cycles 12, 13, 23, and 3-
cycle 123 (132, which rotates clockwise, is
not drawn). (b) The fundamental domain, i.e.,
the small 1/6th wedge indicated in (a), con-
sisting of a section of a disk, two segments
of symmetry axes acting as straight mirror
walls, and an escape gap. The above five cy-
cles restricted to the fundamental domain are
the two fixed points 0, 1. See Fig. 9.6 for cy-
cle 10 and further examples.

exercise 11.2
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Table 12.2 D3 correspondence between the binary labeled fundamental domain prime
cycles p and the full 3-disk ternary labeled cycles p, together with the D transformation
that maps the end point of the p cycle into the irreducible segment of the p cycle, see
Section 9.12. Breaks in the above ternary sequences mark repeats of the irreducible
segment; for example, the full space 12-cycle 1212 3131 2323 consists of 1212 and its
symmetry related segments 3131, 2323. The multiplicity of p cycle is m, = 6nz/np.
The shortest pair of fundamental domain cycles related by time reversal (but no spatial
symmetry) are the 6-cycles 001011 and 001101.

p p Op p p 95
0 12 o1 000001 121212 131313 023
1 123 C 000011 121212 313131 232323 Cc?
01 1213 03 000101 121213 e
001 121232313 C 000111 121213212123 o
011 121323 013 001011 121232 131323 0723
0001 12121313 03 001101 121231323213 o3
0011 1212 31312323 c? 001111 121231 232312 313123 C
0111 12132123 o1 010111 121312 313231 232123 Cc?
00001 121212323231313 C 011111 121321 323123 o3
00011 1212132323 o3 0000001 121212123232323131313 C
00101 1212321213 o1 0000011 1212121 3232323 013
00111 12123 e 0000101 12121232121213 o1
01011 121312321231323 C 0000111 1212123 e
01111 1213213123 0723 e e .

31, 32 respectively have the same weights, the same size state space partitions, and
are coded by a single binary sequence. (continued in Example 12.7)

Binary symbolic dynamics has two immediate advantages over the ternary
one; the prohibition of self-bounces is automatic, and the coding utilizes the
symmetry of the 3-disk pinball game in an elegant manner.

The 3-disk game of pinball is tiled by six copies of the fundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors, see Fig. 12.12 (b). Every global 3-disk trajectory has a cor-
responding fundamental domain mirror trajectory obtained by replacing every
crossing of a symmetry axis by a reflection. Depending on the symmetry of the
full state space trajectory, a repeating binary alphabet block corresponds either
to the full periodic orbit or to a relative periodic orbit (examples are shown in
Fig. 12.12 and Table 12.2). A relative periodic orbit corresponds to a periodic
orbit in the fundamental domain.

Table 12.2 lists some of the shortest binary periodic orbits, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. For a num-
ber of deep reasons that will be elucidated in Chapter 21, life is much simpler
in the fundamental domain than in the full system, so whenever possible our
computations will be carried out in the fundamental domain.

Example 12.7 D3 recoded - 3-disk game of pinball:
(continued from Example 12.6) The D; recoding can be worked out by a glance
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at Fig. 12.12 (a) (continuation of Example 9.14). For the symmetric 3-disk game
of pinball the fundamental domain is bounded by a disk segment and the two adja-
cent sections of the symmetry axes that act as mirrors (see Fig. 12.12 (b)). The three
symmetry axes divide the space into six copies of the fundamental domain. Any
trajectory on the full space can be pieced together from bounces in the fundamental
domain, with symmetry axes replaced by flat mirror reflections. The binary {0, 1}
reduction of the ternary three disk {1, 2, 3} labels has a simple geometric interpreta-
tion, Fig. 12.2: a collision of type O reflects the projectile to the disk it comes from
(back—scatter), whereas after a collision of type 1 projectile continues to the third
disk. For example, 23 = ---232323--- maps into ---000- - - = 0 (and so do 12 and
13),123 = ---12312--- maps into ---111--- = 1 (and so does 132), and so forth.
Such reductions for short cycles are given in Table 12.2, Fig. 12.12 and Fig. 9.7.

Résumeé

In the preceding and this chapter we start with a d-dimensional state space and
end with a 1-dimensional return map description of the dynamics. The arc-
length parametrization of the unstable manifold maintains the 1-to-1 relation of
the full d-dimensional state space dynamics and its 1-dimensional return-map
representation. To high accuracy no information about the flow is lost by its
1-dimensional return map description. We explain why Lorenz equilibria are
heteroclinically connected (it is not due to the symmetry), and how to generate
all periodic orbits of Lorenz flow up to given length. This we do, in contrast to
the rest of the thesis, without any group-theoretical jargon to blind you with.

For 1-dimensional maps the folding point is the critical point, and easy to
determine. In higher dimensions, the situation is not so clear - one can attempt
to determine the (fractal set of) folding points by looking at their higher iterates
- due to the contraction along stable manifolds, the fold gets to be exponentially
sharper at each iterate. In practice this set is essentially uncontrollable for
the same reason the flow itself is chaotic - exponential growth of errors. We
prefer to determine a folding point by bracketing it by longer and longer cycles
which can be determined accurately using variational methods of Chapter 27,
irrespective of their period.

For a generic dynamical system a subshift of finite type is the exception
rather than the rule. Its symbolic dynamics can be arbitrarily complex; even for
the logistic map the grammar is finite only for special parameter values. Only
some repelling sets (like our game of pinball) and a few purely mathemati-
cal constructs (called Anosov flows) are structurally stable - for most systems
of interest an infinitesimal perturbation of the flow destroys and/or creates an
infinity of trajectories, and specification of the grammar requires determina-
tion of pruning blocks of arbitrary length. The repercussions are dramatic and
counterintuitive; for example, the transport coefficients such as the determin-
istic diffusion constant of Section 25.2 are emphatically not smooth functions
of the system parameters. Importance of symbolic dynamics is often grossly
unappreciated; as we shall see in Chapters 20 and 23, the existence of a finite
grammar is the crucial prerequisite for construction of zeta functions with nice
analyticity properties. This generic lack of structural stability is what makes
nonlinear dynamics so hard.

ChaosBook.org version13.5, Sep 7 2011 smale - 19apr2009

section 25.2



208 Further reading

The conceptually simpler finite subshift Smale horseshoes suffice to moti-
vate most of the key concepts that we shall need for time being. Our strategy
is akin to bounding a real number by a sequence of rational approximants; we
converge toward the non—wandering set under investigation by a sequence of
self-similar Cantor sets. The rule that everything to one side of the pruning
front is forbidden might is striking in its simplicity: instead of pruning a Can-
tor set embedded within some larger Cantor set, the pruning front cleanly cuts
out a compact region in the symbol square, and that is all - there are no addi-
tional pruning rules. A ‘self-similar’ Cantor set (in the sense in which we use
the word here) is a Cantor set equipped with a subshift of finite type symbol
dynamics, i.e., the corresponding grammar can be stated as a finite number of
pruning rules, each forbidding a finite subsequence s:5;...s,_. Here the no-
tation _s;S, ... Sp- stands for n consecutive symbols s11, sy, ..., Sy, preceded
and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topological pruning into
pruning rules for inadmissible sequences; those are implemented by construct-

ing transition matrices and/or graphs, see Chapters 14 and 15.

Further reading

12.1 Stable/unstable manifolds. For pretty hand-drawn p