
* * *

Phys 251/CS 279/Math 292 Winter 1999 page 1

Chapter 7

Chapter 7:

Displaying Solutions to Differential Equations

Goals:

• To display solutions to dynamical equations using animations and
phase space plots.

• To calculate how volumes in phase space change in time.

• To understand Java concepts required to make attractive
animations, such as double-buffering and threading.

In this chapter we discuss methods of presenting solutions to our
equations of motion. Notice that we have divided the problem of
understanding our differential equations into two parts: first, we
saw how to solve the equations, and now we are seeing how to
display that solution. Although this endeavor is small enough that
this strategy may not seem necessary, for larger programs it i s
essential. Always, when faced with a large problem, first divide it
into smaller problems, which you can then attack one by one. A l l
programmers do this when tackling a non-trivial problem.

A. Animations. First we will do some animations. To whet your
appetite, we'd like you to play around with some applets that use the
DoubleWell class to integrate the equations of motion for a particle
in a double-well potential (6.28). These applets are in
"Programs:Chapter_7:DoubleWell Animations." The first, in the
project “DWAnimation.mcp,” displays the position x of the particle
at a sequence of equally spaced times. The vertical coordinate i s
x4 − x2 + xF0 cos(ωt) , the potential energy at position x and time t. The
parameter values m = γ = 1, k1 = 2, k2 = 4, and ω = 10π are fixed,
while you can change the amplitude of the drive F0. Does the motion
appear to be periodic when F0 = 0.2? How about F0 = 0.6? F0 = 1?

The animation, along with the x versus t plots that you made in the
last chapter, may lead you to suspect that the motion of the particle
in the quartic potential is not periodic for all F0. A second applet,
in the project “DWBifurcation.mcp,” provides more information
about this question. It plots, versus the drive amplitude F0, the

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 2

Chapter 7

values of x exactly once each period, at times 2πn/ω, where n is an
integer. To change F0, edit its textField and then press the start
button. Figure 7.1 shows the result when for each value of F0, we
chose a starting value of x, evolved the equations of motion for a
while so that the transient decayed, and then plotted 50 values of x.

F0

x

Figure 7.1. Bifurcation diagram for motion of a particle in a
double-well potential, described by equations (6.28) and (6.29).

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 3

Chapter 7

This type of plot, where we look at x(t) only at periodic points in
time, is called a stroboscopic map. If x happens to vary periodically
with a period exactly equal to the period between the time points,
then we w i l l see the same value of x every time we look (x i s
constant in the stroboscopic map). For the double-well problem, we
suspect that x(t) might vary with the same period as the forcing, and
so we use a stroboscopic map with exactly that period. When the
forcing magnitude is less than about 0.67, we see in Figure 7.1 that
x is constant under the stroboscopic map, indicating that the
solution is periodic. For slightly larger values of Fo, x oscillates
between two values. That tells us that after 2 applications of the
stroboscopic map, x has returned to its original value. The motion is
still periodic, but the period has doubled. Figure 7.1 suggests that
the motion in the double well might have the same sort of period-
doubling bifurcation sequence that we have seen in the logistic map.

Menu Project. Period-doubling bifurcation sequence
for motion in a double-well potential. Compare Figure
7.1 to Figure 2.2, the possible values of x for different values
of r in the logistic map. Determine whether the double-well
system has a period-doubling bifurcation sequence, and if so,
whether it is similar to that of the logistic map. (You will
need to define what you mean by the word "similar" here.)
How does your answer depend on the choice of parameters of
the double-well system?

Making Animations Look Better. One of the reasons Java has
excited a lot of interest is its capabilities for creating animations
for the web. In principle, an animation is just a series of images
displayed in quick enough succession that the viewer gets an illusion
of motion. However, there are techniques for making better-looking
animations that you may want to know about.

To see that a certain amount of sophistication is necessary to
create an animation that looks even remotely decent, you can look at
the very naive animation applet that we have written for the
particle in the double wel l that is in the project
SimpleAnimation.mcp, in the folder sequence "Programs:Chapter_7:
Animation_Learning_Examples:SimpleAnimation." This applet sets
up a loop which at every step increments time by deltat, calculates
x(t), and then calls repaint() to display the result.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 4

Chapter 7

/*
Totally naive animation applet

*/

import java.awt.*;
import java.applet.Applet;

public class SimpleAnimationApplet extends Applet
{

private final static int BALLRADIUS=5;
DoubleWell dw1; // our DoubleWell dynamical system
VariableSet vars; // variables for DoubleWell
double time, deltat;
boolean firstpaint = true;

int imin, iwidth, jmin, jmax, jheight; // coordinates on applet
double xmin, xmax, xwidth, ymin, ymax, yheight; // limits on x and y values
int ipts[] = new int[201]; // arrays used for putting potential
int jpts[] = new int[201]; // on applet

Point position;

public void init() {

 dw1 = new DoubleWell();
 deltat = dw1.getdt(); // get time step
 vars = dw1.getvars(); // get VariableSet

 this.setSize(250,250); // set display size

setBackground(Color.white); // set white background

 for(int i = 1; i<=100; i++) { // loop; at each step move
 for (int i2 = 1; i2 <=20; i2++) { // particle and then repaint
 repaint();
 }
 System.out.println("i= "+i);
 }
 System.out.println("animation over");

} // end of init

int xtoi(double x){ // converts x to screen coord i
return Math.round((float) (imin + iwidth*(x-xmin)/xwidth));

}

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 5

Chapter 7

int ytoj(double y){ // converts y to screen coord j
return Math.round((float) (jmax - jheight*(y-ymin)/yheight));

}

Point vartoPoint(VariableSet v) { // converts variableset first to x and y,
double x = v.getx()[0]; // and then to screen coordinates
double t = v.gettime();
return new Point(xtoi(x), ytoj(dw1.potential(x, t)));

}

void draw(Graphics g, Point p) {
g.fillOval(p.x-BALLRADIUS ,p.y-BALLRADIUS,

2*BALLRADIUS,2*BALLRADIUS); // draw ball
}

void putpotential (Graphics g) { // Put potential on canvas
g.setColor(Color.black);

double xo;
ipts[0] = xtoi(xmin);
jpts[0] = ytoj (dw1.potential(xmin, dw1.gettime()));
for(int i = 1; i<=200; i++){

xo = xmin + i*xwidth/200;
ipts[i] = xtoi(xo);
jpts[i] = ytoj(dw1.potential(xo,dw1.gettime()));
g.drawLine(ipts[i-1], jpts[i-1], ipts[i], jpts[i]);

}
}

public void paint(Graphics g) {

if(firstpaint == true) {
// set xmin, xmax, ymin, ymax:
xmin = -1.2*dw1.getA();
xmax = 1.2*dw1.getA();
xwidth = xmax-xmin;

ymin = dw1.minpotential(xmin, xmax) + xmin*dw1.getforce();
ymin = ymin -0.05*Math.abs(ymin);
ymax = dw1.maxpotential(xmin, xmax) + xmax*dw1.getforce();
ymax = ymax + 0.05*Math.abs(ymax);
yheight = ymax-ymin;

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 6

Chapter 7

// set imin, iwidth, jmin, jheight:
imin = this.size().width/20;
iwidth = this.size().width - 2*imin;
jmax = size().height - size().height/20;
jheight = size().height - 2*(size().height/20);

// set initial value of position:
position = vartoPoint(vars);
firstpaint = false;

}

// Get new position
time += deltat;
vars = dw1.nextvars();
dw1.setvars(vars);
position = vartoPoint(vars);
position.move(position.x, position.y-BALLRADIUS-1);

g.setColor(Color.black);
putpotential(g);
g.setColor(Color.blue);
draw(g,position);

} // end of paint

} // end of applet

Program 7.1 SimpleAnimationApplet.java, an awful-looking
animation of the motion of a particle in a double-well potential.

Please Run SimpleAnimationApplet and see how terrible it looks.

The two main reasons why the SimpleAnimationApplet looks bad are:
(1) the screen updates are irregular, so the motion appears
incredibly jerky, and (2) the screen is blank most of the time. These
problems have different origins, and they both need to be fixed for
the animation to appear acceptable.

The first step towards fixing the timing problem is to pause for a
short time after each call to repaint. The sequence

try { Thread.sleep(5); }
catch(InterruptedException e) {} ;

pauses execution for 5 milliseconds.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 7

Chapter 7

Exercise 7.1. Modify SimpleAnimationApplet to pause after each
call to repaint, and assess the resulting animation.

Pausing the animation helps the timing, but the animation st i l l
flickers badly. This happens because of the default behavior of the
method repaint.

Repaint works by scheduling a call to the method update, which
first clears the drawing region and then calls paint.1 We w i l l
override update's default behavior and instead have it implement a
technique called double-buffering, in which first the new image is
painted onto an offscreen buffer and then the buffer contents are
displayed on the applet. The screen doesn't go blank between
frames, and the animation smoothes out.

Creating the offscreen graphics context is done by first creating a
new Image object, and then calling the method getGraphics to create
the necessary Graphics object. This Image object contains the re-
drawn screen, but holds it in electronic limbo (the buffer) until we
are ready for it. One must declare these objects:

Image offImage;
Graphics offGraphics;
. . . .

Here is the update method:
public void update(Graphics g) {

// Create offscreen graphics context, if none exists
if (offGraphics == null) {

offImage = createImage(size().width, size().height);
}
offGraphics = offImage.getGraphics();
paint(offGraphics); // draw into offGraphics buffer
g.drawImage(offImage, 0, 0, this); // draw offGraphics buffer onto applet

}

The update method no longer clears the display, so this must be done
in the paint method before drawing the new stuff via:

g.setColor(getBackground());
g.fillRect(0, 0, this.size().width, this.size().height);

1Multiple calls to update can get consolidated into a single screen update. That is why
pausing execution smoothed out our animation—it caused each update request to be
handled separately.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 8

Chapter 7

which fil ls in a rectangle the size of the drawing region with the
background color.

Exercise 7.2. Add double-buffering to SimpleAnimationApplet and
see how much better the resulting animation looks.

The animation should now look OK, so you might think that a l l
problems are solved. However, this applet has the undesirable
feature that it doesn't stop when the applet window is closed (or, in
a browser, when the viewer leaves the page that the applet is on).
To see that this is so, close the Applet window while the animation
is running and watch the Java console window. The iterations
continue (indicated by the scrolling data on the screen) even though
the Applet window is gone.

The DWAnimationApplet stops automatically whenever it is not
visible. Also, it is controllable by the viewer--as you saw, it can be
stopped, the parameters changed, and then restarted. Al l this i s
possible because the animation has been put into a separate thread
of execution. Each time the animation thread pauses, the applet
checks to see if any buttons have been pressed or if the display is
not visible, and adjusts itself accordingly.

A thread is a separate flow of control within a program. Here we
wi l l tell you a bit about them (hopefully enough so that you
understand how to create an animation thread), and refer you for
more detailed discussions in Beginning Java, chapter 10, Exploring
Java, chapter 8, and to the discussion on Sun web site, at
http://java.sun.com/docs/books/tutorial/essential/threads/index.html. We
wi l l i l lustrate the process using the applet DBThreadedApplet,
which is in the project “DBThreadedAnimation.mcp” in the folder
"Animation Learning Examples."

Running a thread involves creating an object of the class Thread,
which targets another object that has a method called run. The
Thread object starts, stops, and resumes the execution thread; while
it is going, it calls the run method of the target object. In our case,
the target object is DBThreadedApplet.

Now Java requires any object that wants to serve as a target of a
Thread to declare that it has an appropriate run method. One way to
do this is to make the target object a subclass of Thread, via:

class Animation extends Thread

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 9

Chapter 7

However, DBThreadedApplet is already a subclass of Applet, and Java
does not allow objects to inherit from more than one class. Instead
we have DBThreadedApplet implement an interface called Runnable.
An interface is a list of methods that define some set of behavior
for an object; implementing the Runnable interface means that the
object is guaranteed to have a run method. So, we declare our target
object DBThreadedApplet via:

public class DBThreadedApplet extends Applet implements Runnable

We must declare a Thread object in DBThreadedApplet via:
Thread animatorthread;

The creation of the thread is done inside the applet's start method,
which is called when the applet is first displayed and also each time
the applet is revisited in a Web page. The target object for the
animatorThread is DBThreadedApplet itself, referred to as this.
This start method creates and starts the animatorThread.

public void start() {
if (frozen) {

//Do nothing. The user has stopped the motion.
}
else {

if (animatorThread == null){
animatorThread = new Thread (this);

}
animatorThread.start ();

}
}

The animation is stopped and the offscreen buffer is destroyed when
the applet's stop method is called, which occurs whenever the applet
stops being visible:

public void stop(){ // called when user moves off the page
// stop animating thread
animatorThread = null;

// Get rid of objects necessary for double buffering
offGraphics = null;
offImage = null;

}

Finally we write a run method (as promised when we declared
"DBThreadedApplet implements Runnable"):

public void run() {

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 10

Chapter 7

while (Thread.currentThread() == animatorThread) {
//advance the position and display ball.
repaint();

try { Thread.sleep(20); } // pause briefly
catch (InterruptedException e) {}

} // end of animation loop
} // end of run

DWAnimationApplet has a fancier user interface than
DBThreadedApplet (it has buttons for starting and stopping it, and
textFields for changing parameters), but the threading is basically
identical. Please go through the listing of DWAnimationApplet.java
in appendix A and make sure that you understand it.

Incidentally, al l along we have been using an interface for our
applets which listen for events. Therefore, when
DWAnimationApplet is declared using the statement
public class DWAnimationApplet extends Applet implements Runnable, ActionListener

we are stating that DWAnimationApplet w i l l implement both the
Runnable interface and the ActionListener interface. As just
described, to implement the Runnable interface, the applet must
have a run method. To implement the ActionListener interface, the
applet must have a method called actionPerformed:

public void actionPerformed(ActionEvent evt).

You can go back and verify that all the applets which implement the
ActionListener interface do indeed have an actionPerformed method.

B. Phase portraits. There are two fundamentally different ways of
presenting the solution to a classical mechanics problem. One is to
plot coordinates (and momenta) like x and p as functions of time,
which we did at the end of Chapter 6 as well as in the animations we
just did in this Chapter. Now we discuss the other presentation
method, the “phase plane portrait,” in which orbits are drawn as
trajectories in the (x, p) plane.

Interactive computation permits a particularly appealing way of
displaying the phase plane portrait: One draws the phase space (i.e.
the (x, p) plane) and the user chooses initial conditions by clicking
with the mouse. To add this functionality to a Java program, we tell
our Canvas where the phase portrait is plotted to listen for mouse
events. This is done by implementing the MouseListener interface.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 11

Chapter 7

To do this, we must make sure that the methods mouseClicked,
mousePressed, mouseReleased, mouseEntered, and mouseExited
are al l present. In the DWPhasePortraitApplet below, al l of the
methods called for by the interface except for mousePressed do
nothing, but they all need to be defined.

mousePressed

public abstract void mousePressed(MouseEvent evt)

Invoked when the mouse button has been pressed on a
component.

mouseClicked

public abstract void mouseClicked(MouseEvent evt)

Invoked when the mouse button has been clicked on a
component.

mouseReleased

public abstract void mouseReleased(MouseEvent evt)

Invoked when the mouse button has been released on a
component.

mouseEntered

public abstract void mouseEntered(MouseEvent evt)

Invoked when the mouse enters a component.

mouseExited

public abstract void mouseExited(MouseEvent evt)

Invoked when the mouse exits a component.

The methods getX and getY in the MouseEvent class return the x and
y position of mouse events.

The applet DWPhasePortraitApplet plots phase portraits for the
particle in the double-well potential, using the classes in
“DoubleWell.java.” This applet has a separate plotting thread so
that the user can interrupt it, clear the screen, and change the
initial conditions. There is also a button that allows the user to
change colors. The plotting is done on a separate canvas, which
makes sure that the buttons aren't in the way. The pixel locations of

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 12

Chapter 7

the mouse clicks are converted to (x, p) coordinates using the
methods itox and jtop. This applet is in the project
“DoubleWellPhasePortrait.mcp,” which can be found in the folder
sequence “Programs:Chapter_7: Phase Portraits.”
// DWPhasePortraitApplet.java
/*

applet to construct phase portrait for motion of particle in
double-well potential

*/

import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;

public class DWPhasePortraitApplet extends Applet
 implements Runnable, ActionListener

{
DoubleWell dw1;
VariableSet tvars;
DWPhasePortraitCanvas b; // canvas that draws phase portrait

Button startButton, stopButton, resetButton; // buttons to control flow
Button colorButton; // button to allow color change
TextField forceTF; // text fields for user input of force,
TextField transienttimeTF; // time discarded before plotting starts

Thread animatorThread; /* put plotting in separate thread so that user
can stop it, change parameters, and restart it */

int delay; /* delay between plotting calls so that program
registers button clicks while it's going */

boolean frozen = false; // true if user has stopped the motion

public void init() {
int width = 400; // width of drawing canvas
int height = 400; // height of drawing canvas
delay = 10; // delay in milliseconds between frames

 dw1 = new DoubleWell(); // instantiate dynamical system object

 this.setSize(450,550); // set applet size

 b = new DWPhasePortraitCanvas(dw1);

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 13

Chapter 7

b.setSize(width,height); // set canvas size
b.setBackground(Color.white); // set white background
b.repaint(); // draw axes on canvas

 dw1.setdt(0.02); // set time step
 dw1.setomega(2.*Math.PI/5.); // set drive frequency

 // put the user interface components on the applet

Panel p = new Panel();
 startButton = new Button("Start");
 startButton.addActionListener(this);

stopButton = new Button("Stop");
stopButton.addActionListener(this);
p.add(startButton);
p.add(stopButton);

 Panel p2 = new Panel();
 Label transienttimeprompt = new Label("time delay before plotting:");
 transienttimeTF = new TextField (Integer.toString(b.transienttime), 10);

p2.add(transienttimeprompt);
p2.add(transienttimeTF);

 Panel p3 = new Panel();
 p3.setLayout(new FlowLayout());
 Label fprompt = new Label ("force:");

 forceTF = new TextField (10);
forceTF.setText(Double.toString(dw1.getforce()));
Button resetButton = new Button("Clear Canvas");
resetButton.addActionListener(this)

 p3.add(fprompt);
 p3.add(forceTF);

 p3.add(resetButton);

Panel p4 = new Panel();
 Button colorButton = new Button("New Color");

colorButton.addActionListener(this);
 p4.add(colorButton);
 Panel p5 = new Panel();
 Label textlabel = new Label("Click on canvas to set starting point");
 p5.add(textlabel);

add(p);
add(b);
add(p2);

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 14

Chapter 7

add(p3);
add(p4);
add(p5);

 } // end of init

public void start() {
if (frozen) {

// Do nothing. The user has stopped the motion.
}
else {

if (animatorThread == null){
animatorThread = new Thread (this); // make thread

}
animatorThread.start (); // start thread

}
}

public void stop(){ // called when user moves off the page
// stop animating thread
animatorThread = null;

}

public void run() {
// just to be nice, lower plotting thread's priority
// so it can't interfere with other processing going on.
Thread.currentThread().setPriority(Thread.MIN_PRIORITY);

// This is the animation loop.
while (Thread.currentThread() == animatorThread) {

// advance the position and plot.
b.repaint();

// Delay briefly.
try{

Thread.sleep(delay);
}
catch (InterruptedException e) {

break;
}

} // end of animation loop
} // end of run

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 15

Chapter 7

 public void actionPerformed(ActionEvent evt) // handle user instructions
 { if (arg.getSource() == startButton) && (frozen == true))
 { frozen = false;
 start(); // start plotting

}
else if (evt.getSource() == stopButton) {

 frozen = true;
// stop animating thread
animatorThread = null; // stop plotting

}
else if (evt.getSource() == resetButton) {

// stop, then clear plotting canvas
frozen = true;
animatorThread = null;
b.clear = true;
b.repaint(); // clear canvas

}
else if (evt.getSource() == colorButton) {

// change color
b.theColor = b.changeColor(b.theColor);

}

// for any event, set parameters to the values in the TextFields
 String s = transienttimeTF.getText(); // read string for transienttime
 b.transienttime = new Integer(s).intValue(); // convert to double
 s = forceTF.getText(); // read string for force
 dw1.setforce(new Double(s).doubleValue()); // convert to double

} // end of actionPerformed method
} // end of applet

class DWPhasePortraitCanvas extends Canvas // canvas for plotting
 implements MouseListener // phase portrait

{
boolean firstpaint = true;
boolean clear = false;

DoubleWell dw1;
VariableSet vars, nextvars;
double deltat;
int n_var = 2;
private double xvec[] = new double[n_var];

// xvec[0]=position, xvec[1]=momentum
private double time;

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 16

Chapter 7

Point position; // position of point on graph:
// position.x = force, position.y = x

double pmin, pmax, xmin, xmax; // minimum and maximum values of
// x and p to be plotted on graph

double pheight, xwidth; // ranges of x and p on graph
int imin, iwidth, jmax, jheight; // pixel values

int transienttime; // number of periods discarded
// before plotting

Color theColor;
float redpart, greenpart, bluepart;

// constructor for DWPhasePortraitCanvas:
DWPhasePortraitCanvas(DoubleWell mydw) {

super(); // first call Canvas constructor

dw1 = mydw; // get DoubleWell object
vars = dw1.getvars(); // get DoubleWell variables
deltat = dw1.getdt();

nextvars = vars;

// set initial values of transienttime and force:
transienttime = 0;
dw1.setforce(0.9);

// set initial values of fmin, fmax, xmin, xmax:
pmin = -2.;
pmax = 2.;
pheight = pmax-pmin;

xmin = -1.5 ;
xmax = 1.5 ;
xwidth = xmax-xmin;

firstpaint = true;

theColor = Color.blue;
addMouseListener(this); // tells canvas to handle mouse events

} // end of DWPhasePortraitCanvas constructor

public void mousePressed(MouseEvent evt) { // mouse pressed
double[] temp = {itox(evt.getX()), jtop(evt.getX())}; // location of click

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 17

Chapter 7

dw1.setvars(new VariableSet(dw1.gettime(), temp));
repaint();

}
// other mouse event methods required for MouseListener interface
public void mouseReleased(MouseEvent evt) {}
public void mouseEntered(MouseEvent evt) {}
public void mouseExited(MouseEvent evt) {}
public void mouseClicked(MouseEvent evt) {}

public Color changeColor(Color c) {
if(c == Color.blue) {return Color.magenta;}
else if(c == Color.magenta) {return Color.darkGray;}
else if(c == Color.darkGray) {return Color.cyan;}
else if(c == Color.cyan) {return Color.red;}
else if(c == Color.red) {return Color.green;}
else {return Color.blue;}

}

int ptoj(double p){ // converts p to screen coord j
return Math.round((float) (jmax - jheight*(p-pmin)/pheight));

}

double jtop(int j){ // converts screen coord j to p
return pmin + (jmax - j)*pheight/jheight;

}

int xtoi(double x){ // converts x to screen coord i
return Math.round((float) (imin + iwidth*(x-xmin)/xwidth));

}

double itox(int i){ // converts screen coordinate i to x
return xmin + (i - imin)*xwidth/iwidth;

}

Point vartoPoint(VariableSet v) { // converts VariableSet to plotting point
return new Point(xtoi(v.getx()[0]), ptoj(v.getx()[1]));

}

public void drawbox(Graphics g){ // draw box, numbers, and labels for graph
g.setColor(Color.black);
g.drawRect(imin, jmax-jheight, iwidth, jheight);

g.drawString(Double.toString(xmin), imin-10, jmax+15);
g.drawString(Double.toString(xmax), imin+iwidth-10, jmax+15);

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 18

Chapter 7

g.drawString("x", imin+iwidth/2-10, jmax+15);
g.drawString(Double.toString(pmin), imin-30, jmax+5);
g.drawString(Double.toString(pmax), imin-30, jmax-jheight+5);
g.drawString("p", imin-30, jmax-jheight/2+10);

}

public void update(Graphics g) {
paint(g);

}

public void paint (Graphics g) {

if(firstpaint == true) {
// set imin, iwidth, jmin, jheight based on size of the canvas:
imin = 3*(getSize().width/20);
iwidth = getSize().width - (3*imin/2);
jmax = getSize().height - 2*(size().height/20);
jheight = getSize().height - 3*(size().height/20);

drawbox(g); // draw the box, numbers, and labels

position = vartoPoint(vars);
firstpaint = false;

}

// Get new position
nextvars = dw1.nextvars();
time = nextvars.gettime();
dw1.setvars(nextvars);

vars = nextvars;

// discard points if time < transienttime :
if((time > transienttime-.001)) {

position.move(vartoPoint(nextvars).x, vartoPoint(nextvars).y);

g.setColor(theColor);
g.drawRect(position.x, position.y, 0, 0); // put point (x, p) on canvas

}

if(clear == true) { // clear canvas if button was pressed
g.clearRect(0, 0, size().width,size().height);
clear = false;

}

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 19

Chapter 7

drawbox(g);
} // end of update

}

Exercise 7.3. Use the DWPhasePortraitApplet to plot phase space
portraits of the evolution of the double-well system. How does
changing the init ia l conditions affect the motion at long times?
Characterize how these portraits depend on the drive amplitude F0.
Make sure that you understand how the behavior of the animation
(position versus time) is related to the structure of the phase plot.

Problem 7.1. In 1963 E. Lorenz, in work that essentially started
the chaos business, considered the behavior of the system of
equations:

d

dt
x = p y − x() (7.1a)

d

dt
y =− xz + rx − y (7.1b)

d

dt
z = xy − bz . (7.1c)

Write a program that uses fourth order Runge-Kutta to integrate
these equations for the parameter values p = 10, b = 8/3, and, r = 28
(we suggest ∆ = 0.01 as a good step size). In this system of three
first order equations, each point in phase space is described by a
three-dimensional vector (x,y,z). Since we only have two-
dimensional graphics, have your applet plot a phase space portrait of
the orbit projected onto the (z, y) plane. Then try to get a feel for
the three-dimensional structure of the "attractor" (i.e. the orbit in
phase space that the system converges to) by projecting it onto
different planes. Although the motion appears smooth and
continuous, it is nevertheless said to be “chaotic.” Can you explain
why? (Hint: try graphing x or y vs. time).

C. Volumes in phase space. Now instead of just plotting a single
orbit in the (x,p) plane, we plot a whole group of trajectories that
start out near each other together as a set of curves in the (x, p)
plane. Thus we are considering how regions in phase space evolve.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 20

Chapter 7

Problem 7.2. Write a program for the damped particle in the
double well potential that plots the phase space evolution of many
points that all start out in a small area. Choose a value of F0 where
the long-time motion is relatively simple. How does the evolution
of the areas change as γ, the damping parameter of the system, is
varied?

We can calculate how the area of a phase space region changes as
time evolves. Consider a phase space region that at time t = t0 i s a

small rectangle, with vertices z00 =
x0

p0

, z10 =

x0 + δx

p0

 , z10 =

x0

p0 + δp

,

and z11 =
x0 + δx

p0 + δp

 .

The equation prescribing the configuration at time t = t0 +∆ can be
written in the form:

z(t0 + ∆) = f(z(t0), t0) . (7.2)

Here, z(t) =
x(t)

p(t)

 and f z t(), t() =

g x, p, t()
h x, p, t()

 . At time t0 +∆ the four

vertices have moved:

z00 t0 +∆() = f z00 t0(),t0() ;

z10 t0 + ∆() = z00 t0 +∆() + δx
∂g ∂x

∂h ∂x

;

z01 t0 + ∆() = z00 t0 +∆() + δp
∂g ∂p

∂h ∂p

;

z11 t0 +∆() = z00 t0 + ∆() + δx
∂g ∂x

∂h ∂x

+ δp

∂g ∂p

∂h ∂p

; (7.3)

plus corrections that are higher order in δx and δp.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 21

Chapter 7

Problem 7.3. Show analytically that the change δA in the area A
obeys:

δA

A
=

∂g

∂x

∂h

∂p
−

∂g

∂p

∂h

∂x
−1

. (7.4)

In the l imit when the time step ∆ → 0 (in other words, when the
dynamical system is described by a set of differential equations),
then this result for the area change simplifies even more.

x

p

δp

δx

initial area A

final area
A + δA

Figure 7.2. Diagram of how a phase space region evolves. The
region on the left maps into the one on the right after a time ∆ has
elapsed.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 22

Chapter 7

Problem 7.4. In the limit ∆ → 0 , g ≈ x +∆
dx

dt
 and h ≈ p + ∆

dp

dt
. Show

analytically that in this l imit the time evolution of the area A
satisfies the differential equation

1

A

dA

dt
=

∂
∂x

dx

dt

 +

∂
∂p

dp

dt

 . (7.5)

Now let's specialize to systems described by equations of the form:

m
d2x

dt2 + γ
dx

dt
= −

dV (x)

dx
+ F0 cos(ωt) . (7.6)

(As you recall, the equation of motion for the particle in the double
well has this form, with V(x) = −k1x

2 / 2 + k2 x4 / 4.)

Exercise 7.4 Show that the phase space evolution for equation

(7.6) is described by equation (7.5) with
dx

dt
=

p

m
 and

dp

dt
= F0 cos ωt() −

γp

m
−

dV x()
dx

, and hence:

1

A

dA

dt
= −

γ
m

. (7.7)

The solution to equation (7.7) is:

 A(t) = A(t = t0)exp(−
γ
m

(t − t0)) . (7.8)

Thus, whenever γ ≠ 0, phase space areas shrink exponentially.

Menu Project. Mapping Regions for a Double Well
System.

In this project, you will investigate the evolution of phase
space regions for the damped driven motion of a particle in
the double well. The idea is to take a whole bunch of points
(at least a thousand) bunched into a fairly small area,
propagate them all forward in time using the equations of
motion, and see what the resulting region looks like. Can you
think of a way of estimating the area of the resulting region?
In any case, try to determine if the area seems to behave as
expected from equation (7.8)

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 23

Chapter 7

According to equation (7.8), how the area of the region
changes in time should be independent of the value of F0.
However, the shape of the region does depend on F0.
Investigate the evolution of the shapes of the regions in the
different regimes. This project is quite open-ended, and we
expect you to do interesting and imaginative work.

D. Area-Preserving Systems. We have just seen that the rate of
change of areas of regions in phase space is proportional to the
damping constant in equation (7.6). If the damping is zero, then the
areas in phase space remain constant for all time—a much different
result than an exponential decay!

This result is closely related to a proposition known in classical
mechanics as Liouville's theorem, which states that a Hamiltonian
system is volume preserving in phase space. “Hamiltonian” means
that the system can be described in terms of pairs of generalized
coordinates and momenta qi , pi for i=1,2,...N, and that these
coordinates obey Hamilton's equations, which are:

dqi

dt
=

∂H

∂pi

dpi

dt
= −

∂H

∂qi

.

The motion is thus controlled by the Hamiltonian function, H(q,p).
Examples of Hamiltonian systems include the undamped pendulum
and motion in a central potential. Hamiltonian dynamics arise not
only in mechanical systems with no friction but also in a variety of
other problems, such as the paths followed by magnetic field lines
in a plasma, the mixing of fluids, and motion in particle
accelerators.

Exercise 7.5 Determine H for an undamped pendulum with equation
of motion:

d2θ
dt2 = − sinθ (7.9)

in terms of the angular coordinate, θ, and the momentum, p =
dθ
dt

.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 24

Chapter 7

Problem 7.5 Show analytically that the pendulum equation (7.9)
preserves areas in phase space.

Exercise 7.6. Consider the case of undamped one dimensional
motion in a uniform gravitational field. Do an analytical calculation
to determine what happens to a rectangle representing various
initial conditions (such as the rectangle shown in figure 7.2) after
the system has evolved for a time δt. Is the area in phase space
conserved in this case?

Hamiltonian systems preserve phase space areas exactly as they
evolve in time, but when we solve differential equations on the
computer, we use a finite time step and make a finite error, and
unless we are very careful we will not capture this feature of the
real system. In the next chapter we will see how important this
type of error can be.

Appendix A: The applet DWAnimationApplet
// DWAnimationApplet.java
/*

applet (with double-buffering but no clipping) of motion of particle
in double-well potential

*/
import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;

public class DWAnimationApplet extends Applet implements Runnable, ActionListener
{

DoubleWell dw1;
VariableSet tvars;
DoubleWellCanvas b;
Thread animatorThread;
int delay;
boolean frozen = false;
Button startButton, stopButton, resetButton;
TextField forceTF;
TextField dtTF;
TextField delayTF;

public void init ()
{

int width = 250;

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 25

Chapter 7

int height = 250;
delay = 200; // delay in milliseconds between frames

 dw1 = new DoubleWell();

 this.setSize(320,400);

 b = new DoubleWellCanvas(dw1);

b.setSize(width,height); // set canvas size
b.setBackground(Color.white); // set white background

 Panel p = new Panel();
 startButton = new Button("Start");
 startButton.addActionListener(this);
 stopButton = new Button("Stop");
 stopButton.addActionListener(this);
 p.add(startButton);
 p.add(stopButton);

 Panel p2 = new Panel();
 Label delayprompt = new Label("animation delay (in millisec):");
 delayTF = new TextField (Integer.toString(delay), 10);

p2.add(delayprompt);
p2.add(delayTF);

 Panel p3 = new Panel();
 p3.setLayout(new FlowLayout());
 Label dtprompt = new Label("deltat:");
 Label fprompt = new Label ("force:");

 dtTF = new TextField (10);
dtTF.setText(Double.toString(dw1.getdt()));

 forceTF = new TextField (10);
forceTF.setText(Double.toString(dw1.getforce()));
resetButton = new Button("Reset");
resetButton.addActionListener(this);

 p3.add(dtprompt);
 p3.add(dtTF);
 p3.add(fprompt);
 p3.add(forceTF);

 p3.add(resetButton);

add(p);
add(b);

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 26

Chapter 7

add(p2);
add(p3);

} // end of init

public void start()
{

if (frozen) {
//Do nothing. The user has stopped the motion.

}
else {

if (animatorThread == null){
animatorThread = new Thread (this);

}
animatorThread.start ();

}
}

public void stop() // called when user moves off the page
{

// stop animating thread
animatorThread = null;

//Get rid of objects necessary for double buffering
b.offGraphics = null;
b.offImage = null;

}

public void run() {
// just to be nice, lower this thread's priority
// so it can't interfere with other processing going on.
Thread.currentThread().setPriority(Thread.MIN_PRIORITY);

// Remember the starting time.
long startTime = System.currentTimeMillis();

// This is the animation loop.
while (Thread.currentThread() == animatorThread) {

//advance the position and display ball.
b.repaint();

//Delay depending on how long we have taken so far.
try{

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 27

Chapter 7

startTime += delay;
Thread.sleep(Math.max(0,

 startTime-System.currentTimeMillis()));
}
catch (InterruptedException e) {

break;
}

} // end of animation loop
} // end of run

 public void actionPerformed(ActionEvent evt)
 { if (evt.getSource() == startButton && (frozen == true))
 { frozen = false;
 start();

}
else if (evt.getSource() == stopButton) {

 frozen = true;
// stop animating thread
animatorThread = null;

}
else if (evt.getSource() == resetButton) {

dw1.setvars(dw1.resetvars);
}

// for any event, reset parameters if they have changed
 // read both deltat and force
 String s = dtTF.getText(); // read string for deltat
 dw1.setdt(new Double(s).doubleValue()); // convert to double
 s = forceTF.getText(); // read string for force
 dw1.setforce(new Double(s).doubleValue()); // convert to double
 s = delayTF.getText(); // read string for delay
 delay = new Integer(s).intValue() ;

b.firstpaint = true;
} // end of actionPerformed method

} // end of applet

class DoubleWellCanvas extends Canvas {

private static final int BALLRADIUS = 5;

Dimension offDimension; // Dimension of offscreen buffer
Image offImage;

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 28

Chapter 7

Graphics offGraphics; // Graphics object for offscreen buffer
boolean firstpaint = true;

DoubleWell dw1;
VariableSet vars;
double deltat;
double force;
int n_var = 2;
private double xvec[] = new double[n_var]; // xvec[0]=position,

// xvec[1]=velocity
private double time;
private double y; // vertical position, set by potential
Point position;

double xmin, xmax, ymin, ymax; // minimum and maximum values of
// x and y to be plotted on graph

double xwidth, yheight;
int imin, iwidth, jmax, jheight; // pixel values

int ipts[] = new int[201]; // arrays for graph of potential versus x
int jpts[] = new int[201];

// constructor for DoubleWellCanvas:
DoubleWellCanvas(DoubleWell mydw) {

super(); // first call Canvas constructor

dw1 = mydw;
vars = dw1.getvars();

}

int xtoi(double x){ // converts x to screen coord i
return Math.round((float) (imin + iwidth*(x-xmin)/xwidth));

}

int ytoj(double y){ // converts y to screen coord j
return Math.round((float) (jmax - jheight*(y-ymin)/yheight));

}

Point vartoPoint(VariableSet v) {
double x = v.getx()[0];
double t = v.gettime();
return new Point(xtoi(x), ytoj(dw1.potential(x, t)));

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 29

Chapter 7

}

void clipToAffectedArea(Graphics g, Point oldp, Point newp,
int radius) {

int x = Math.min(oldp.x, newp.x) - radius;
int y = Math.min(oldp.y, newp.y) - radius;
int w = (Math.max(oldp.x, newp.x) + radius) - x;
int h = (Math.max(oldp.y, newp.y) + radius) - y;
g.setClip(x, y, w, h);

}

void draw(Graphics g, Point p) {
g.fillOval(p.x-BALLRADIUS ,p.y-BALLRADIUS,

2*BALLRADIUS,2*BALLRADIUS); // draw ball
}

void putpotential(Graphics g) {
// Put potential on canvas
g.setColor(Color.black);

double xo;
ipts[0] = xtoi(xmin);
jpts[0] = ytoj (dw1.potential(xmin, dw1.gettime()));
for(int i = 1; i<=200; i++){

xo = xmin + i*xwidth/200;
ipts[i] = xtoi(xo);
jpts[i] = ytoj(dw1.potential(xo,dw1.gettime()));
g.drawLine(ipts[i-1], jpts[i-1], ipts[i], jpts[i]);

}
}

public void paint(Graphics g) {

// erase old image
g.setColor(getBackground());
g.fillRect(0,0,this.getSize().width, this.getSize().height);

// Draw potential
putpotential(g);

// Draw new position

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 30

Chapter 7

g.setColor(Color.blue);
draw(g, position);

}

public void update (Graphics g){
// Create the offscreen graphics context, if no good one exists.

if (offGraphics == null) {
offImage = createImage(getSize().width, getSize().height);

}
offGraphics = offImage.getGraphics();

if(firstpaint == true) {
// set xmin, xmax, ymin, ymax:
xmin = -1.2*dw1.getA();
xmax = 1.2*dw1.getA();
xwidth = xmax-xmin;

ymin = dw1.minpotential(xmin, xmax) + xmin*dw1.getforce();
ymin = ymin -0.05*Math.abs(ymin);
ymax = dw1.maxpotential(xmin, xmax) + xmax*dw1.getforce();
ymax = ymax + 0.05*Math.abs(ymax);
yheight = ymax-ymin;

// set imin, iwidth, jmin, jheight:
imin = this.getSize().width/20;
iwidth = this.getSize().width - 2*imin;
jmax = getSize().height - getSize().height/20;
jheight = getSize().height - 2*(getSize().height/20);

position = vartoPoint(vars);
firstpaint = false;

}

// Get new position
time += deltat;
vars = dw1.nextvars();
dw1.setvars(vars);
position.move(vartoPoint(vars).x, vartoPoint(vars).y-BALLRADIUS-1);

// Set clipping rectangle
// clipToAffectedArea(offGraphics, lastposition, position, BALLRADIUS);

// Set clipping rectangle on screen
// clipToAffectedArea(g, lastposition, position, BALLRADIUS);

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 31

Chapter 7

paint(offGraphics); // draw into offGraphics buffer

g.drawImage(offImage, 0, 0, this); // draw buffer onto Canvas

// offGraphics.dispose();
}

}

 Appendix B: Making Animations Run Faster

One reason that using Java to animate web pages is an attractive
strategy is that if a user has enough patience to wait for the applet
to download, then the animation speed depends only on the
processing speed of the user's machine and not at all on the speed of
the network connection. We have checked that our
DWAnimationApplet looks acceptable on the slowest machines in the
MacLab (PowerMac 7100's). If your machine is faster, then you can
decrease the delay between frames, which makes the animation go
faster and look better, without destroying the responsiveness of the
buttons. (The easiest way to check this out is to reduce the delay
and see if the ball speeds up. If you have a really fast machine, you
might want to reduce the time step so that the particle doesn't move
quite so far between frames.)

However, at some point you could be desperate to get an animation
to run faster. For it to run faster on any machine, then you need to
reduce the amount of computation that occurs between frames. If
you are using an efficient algorithm for the computations, then the
strategy most likely to speed things up is to repaint only those parts
of the image that change between updates by clipping the drawing
region using the setClip() method of the Graphics class.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 32

Chapter 7

setClip

public abstract void

setClip(int x, int y, int width, int height)

Sets a clipping rectangle for this graphics context to
the rectangle specified by the given coordinates.

Graphics operations performed with this graphics context
have no effect outside the clipping area.

Parameters:

x - the x coordinate of the new clip rectangle

y - the y coordinate of the new clip rectangle

width - the width of the new clip rectangle

height - the height of the new clip rectangle

We should warn you that when we experimented with clipping by
displaying a static quartic potential in our DWAnimationApplet and
repainting only the ball, the improvement in performance was
marginal and (particularly when run using Netscape) the applet
looked much worse. So we cannot guarantee that clipping will be a
useful strategy for your animation. But it's worth trying.

If you are not so worried about anonymous web-surfers and want an
applet to run faster on your own machine, there are a two effective
strategies you can use. They are: (1) use a faster computer
(effective, but can be expensive), and (2) use a just- in-t ime
compiler. Apple's just-in-time compiler, which they claim speeds
up execution on PowerMacs by a factor of 10 (and certainly ran
DWAnimationApplet for us much faster than Metrowerks Java did),
can be downloaded from the Apple web site, at
http://www.apple.com/macos/java. Internet Explorer 3.0 and above
and Netscape 3.0 and above on both Windows and on Mac machines
have built-in just-in-time compilers. Therefore, many anonymous
web-surfers w i l l see your animations run fast without doing
anything special.

