
* * *

Phys 251/CS 279/Math 292 Winter 1999 page 1

Chapter 3

Chapter 3:

Fixed Points, Cycles, and Chaos
Goals:

• To characterize the periodic orbits of the logistic map using the
Newton-Raphson method.

• To understand the concept of stability of an orbit.

• To understand and to construct Java objects.

In the previous chapter we began to explore some of the behavior
present in the logistic map. Now we want to start characterizing
quantitatively the various types of behavior displayed by this map.
In the simplest behavior the motion settles down to a single value of
x. A special value of x which is repeated iteration after iteration is
called a fixed point. Mathematically, this special value, x* , obeys:

x* = f x *() (3.1)

where f x() is the mapping function. Another way of expressing this
is to say F x *() = 0 , where F x() ≡ x − f x().

One way to find fixed points is by drawing graphs.

Exercise 3.1. How many fixed points are there for the mapping
function

f x() ≡ c sin x() ?

How does this number depend upon c (assume c ≥ 0)? In particular,
for which ranges of c are there 0, 1, 2, or 3 fixed points of f x() in
the region x ≥ 0 ? In other words, you want to know the number of
solutions of to the equation

x = f x() = c sin x() .

There is a standard way of attacking such a problem. Simply graph x
and f x() and notice how often the graphs cross. The GraphMaker
class from the previous chapter could come in handy here.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 2

Chapter 3

Exercise 3.2. How many (real) solutions are there to the equation

f x() ≡ x7 − x6 + 6x +10 = 0 ?

Using GraphMaker, get a rough estimate (within 10%) of the value(s)
of the real root(s).

We have seen that computing the fixed points of a function f(x) is
the same as computing the zeros of the function F(x) = f(x) - x.
Graphing the functions allows us to visualize what is going on, but it
isn't a very accurate way to determine the zeros. So, we will use a
different numerical technique to find the zeros of a differentiable
function.

A. The Newton-Raphson Method. Assume we have a smooth
function F x() and that we wish to find a zero of F, i.e. a value X for
which

F X() = 0 . (3.2)

We do not know X. Instead, we have a value X0 which approximates X.
Perhaps we obtained this value from studying the graph of F x() , or
perhaps it is purely a guess. The value X0 differs from the correct
zero X by some unknown error ∆ :

X = X0 +∆ (3.3)

where we hope ∆ is small.

To refine our estimate of X, we expand the function F x() in a Taylor
series about X0 :

 F X() = F X0 +∆() = F X0() + ∆ ′ F X0() +O ∆2() = 0 . (3.4)

Here ′ F X0() is the derivative of our function at the known point, X0 ,

and O ∆2() indicates a term of order ∆2 , which we neglect as
(hopefully) small. Solving equation (3.4) gives an estimate for the
error ∆:

 ∆ = −
F X0()
′ F X0() (3.5)

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 3

Chapter 3

which allows us to improve our estimate of the root to the new
value, X1

:

X1 = X0 +∆ = X0 −
F X0()

′ F X0() (3.6)

If the O ∆2() terms (which we neglected) were small enough, then X1

should be closer to the real root X than our original guess X0 . We can
then repeat the process, producing another estimate X2 which
improves on X1 , and so on until we're happy with the accuracy of our
estimate.

For example, one can find a zero of F x() = cos x() using the applet
“Root:”

// Root.java

// Uses Newton-Raphson method to find zero of f(x)

import java.awt.*;

import java.awt.event.*;

import java.applet.Applet;

public class Root extends Applet implements ActionListener

{

Label trialLabel, resultLabel, functionLabel; // labels for the text fields

TextField trial, result, function;

public void init() // set up display

{

trialLabel = new Label("Enter trial x value and press return");

trial = new TextField(20);

trial.addActionListener(this);

resultLabel = new Label("New x value:");

result = new TextField(20);

result.setEditable(false);

functionLabel = new Label ("f(new x value):");

function = new TextField(20);

function.setEditable(false);

add(trialLabel); //installs boxes for input

add(trial);

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 4

Chapter 3

add(resultLabel);

add(result);

add (functionLabel);

add (function);

}

public void actionPerformed(ActionEvent e)

{

double x, newx, delta; // variables used

x = new Double (trial.getText()).doubleValue(); // get trial value

delta = - f(x)/dfdx(x); // estimated error

newx = x + delta; // new approximation

result.setText(fulldouble(newx)); // print out new estimate

function.setText(fulldouble(f(newx))); // print out f(x)

}

double f (double x) {

return Math.cos(x); // the function

}

double dfdx (double x) {

return -Math.sin(x); // the derivative of the function

}

String fulldouble (double x) { // converts double to string

int p[]; // with 19 digits of accuracy

 int n;

 String s;

p = new int [20];

if (x>0) {

p[0] = (int) Math.floor(x);

s = "" + Integer.toString(p[0]) + ".";

}

else {

x = - x;

p[0] = (int) Math.floor(x);

s = "-" + Integer.toString(p[0]) + ".";

}

for (n=1; n<=19; n++) {

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 5

Chapter 3

x = 10.*(x - p[n-1]);

p[n] = (int) Math.floor(x);

 s = s + Integer.toString(p[n]);

 }

return s;

}

}

Program 3.1 Applet that uses the Newton-Raphson method to find a
zero of F x() = cos x() . Notice that we have replaced the Sun-supplied
method ‘Double.toString’ with our own method ‘fulldouble,’ which
returns a String which contains the decimal representation of a real
number to 19 decimal places.

Start by setting x to some reasonable value, say 0.5. Then, by the
approach outlined above, subsequent iterations should approach a
zero of the cosine.

Problem 3.1 . Finding Roots. The cosine has many roots. As a
function of the starting value of x, which root is found? When don't
you get any root? Answer the same questions for the function
f x() ≡ x2 − x −1. Also, refine your estimate(s) of the root(s) of
f x() ≡ x7 − x6 + 6x +10 (from exercise 3.2).

Menu Project. Redo Problem 3.1 for the complex roots of the
function f(z) = z3 – 7z + 6. The Newton-Raphson method works
just the same way for complex numbers as reals. Try to show how
the root found depends on the starting value of z. Generate some
graphical representation of your answer. (You can see some of the
answer on pages 116 and 117 of a book by Peitgen and Richter.1)

Exercise 3.3 . Precision. It is interesting to see how fast the
Newton-Raphson method converges. Please verify that the error in a
given step of Newton-Raphson calculation goes as the square of the
error in the previous step. Hint: Apply the method to a polynomial
function when studying the error.

1 H-O. Peitgen and P.H. Richter The Beauty of Fractals Springer-Verlag Berlin 1986.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 6

Chapter 3

Exercise 3.4 . Finding Fixed Points.

3.4.a. Find two non-negative fixed points x* of the mapping
f x() = 1.5sin x() , with an accuracy of eight decimal digits. Recall that

fixed points obey x* = f x *().

3.4.b. Find the fixed point values for the logistic map f x() = rx 1− x().
Find them analytically or, if need be, on the computer.

B. Cycles . A cycle of length N is a set of values generated by a
mapping (x j +1 = f x j()) possessing the periodic property

x j + N = x j (3.7).

Last week we saw just such a cycle in the logistic map. Recall
Figure 2.1. For r=3.3, the logistic map settles into an oscillation
between two values of x. This is a cycle of length 2, because the
iterates satisfy x j + 2 = x j .

A cycle of length N is a fixed point of the mapping

x j + N = f (N) x j() (3.8)

where f (N) x() means ‘N applications of the mapping f to the initial
value x’ (NOT the Nth derivative of f). The cycle values are the fixed
points of equation (3.8); they satisfy x* = f (N) x *() . Clearly, there
must be at least N fixed points to the mapping f (N) x() for the
mapping f x() to have a cycle of length N. If this is not the case, then
there is no cycle of length N. Unfortunately, f (N) x() is generally not
very easy to work with (for the logistic map it is a polynomial of
order 2N). However, if one can find a good way of calculating f (N) x()
and its first derivative, one could use the Newton-Raphson method
to find the elements of the corresponding N-cycle.

In Required Project I, we ask you to examine the elements of the
cycle of length two, three, and four for the map f (x) = rx 1− x() for
0 < r < 4 . To do this calculation numerically, apply the Newton-
Raphson method to the mapping function f (2) x() . There are two ways
to calculate the necessary derivative. One is to compute i t

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 7

Chapter 3

analytically, either by writing out the resulting polynomial and
differentiating, or by applying the chain rule of differentiation to
f f x()() . The second way is to approximate it numerically using the
definition of a derivative:

df x()
dx

= lim
δ →0

f x + δ() − f x()
δ

(3.9)

and using a small but finite δ in the computation. In this method
you don’t need to know the derivative explicitly; the values of the
function are sufficient. When approximating the derivative in this
fashion, the Newton-Raphson method becomes known as the secant
method.

Exercise 3.5. Accuracy. Compare the two methods of
calculating derivatives described above. If one estimates a
derivative from the difference formula (eq. 3.9), how does the error
in the result depend upon the value of δ ? What value of δ would be
best for calculating the derivative of f (2) x() ?

It is also possible to study the N-cycle maps f (N) x() using the
graphical technique discussed earlier. Simply plot the curves
y = f (N) x() and y = x on the same graph and look for the intersection
points. The intersections are elements of the N-cycle.

C. Stability. Last week we saw that the logistic map settles
down to a fixed point only when r<3. In Required Project 1 you will
show that r=3 is a bifurcation point, where a two-cycle appears in
the iterates of the map. At larger values of r there are more
bifurcations to longer cycles. The fixed point (1-cycle) solution still
exists mathematically for r>3, but we no longer see it. An obvious
question to ask at this point is "why do the bifurcations occur?" The
answer to this questions l ies in the notion of stabil ity. As an
example of a system in which stability obviously determines the
long-term behavior, consider a pencil balanced on its point. One
would like to conclude that in the long run, the steady state of the
system is that with the pencil lying on its side. But if the pencil is
balanced perfectly on its point, and if there are no perturbations, it
will stay balanced on its tip for a long time. Obviously this state is
unstable, in the sense that any small perturbation will destroy this
state and result in the state with the pencil lying on its side. Thus if
we know something about the stability of various states of the
system, then we can make predictions about the long-time motion.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 8

Chapter 3

D. Linearization of 1d map. In Required Project 1 you look in
detail at the behavior of the logistic map in the vicinity of the
bifurcation point r=3. Here we will explore a systematic method for
studying the regions near bifurcation points.

Consider a one-dimensional map f x(). Suppose the point x* is a
fixed point of f, i.e. f x *() = x *. Then we are interested in how points
near x* behave under iteration. We want to know, specifically, do
they move closer to x*, or do they move away? This is a useful
thing to know, since if, for example, nearby points tend to move
closer to x* and ultimately land on it, then we will know the long
term behavior of the map (at least for initial conditions close to x*):
after an init ia l transient period, the orbit is approximately
x*,x*,x*. . . . (This is analogous to the situation with the pencil
lying on its side).

So how do we decide how a nearby point behaves under iteration?
Let us assume that f is smooth, and (for now) that ′ f x *() ≠ 0. Then
we can Taylor expand the iterate of a point x0, close to x*:

x1 ≡ f (x0) = f (x * +(x0 − x*)) ≈ f x *() + (x0 − x*) ′ f x *()

or,

x1 ≈ x * +(x0 − x*) ′ f x *()

(since f x *() = x *), so that

x1 − x* ≈ (x0 − x*) ′ f x *() . (3.10).

In other words, multiplying the initial separation, x0 − x*, by ′ f x *()
gives the separation after one iteration, x1 − x*. So the rule is easy
to see: if |f'(x*)| is larger than 1, then the separation increases; the
fixed point is called unstable. If the derivative is between -1 and
+1, the iterates get closer to the fixed point; in this case, the fixed
point is said to be stable. A stable fixed point is sometimes called
an attractor, because nearby points move closer to it under
iteration. When ′ f x *() < 0 , the iterates alternate from one side of the
fixed point to the other.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 9

Chapter 3

Let us extend this discussion to the two cycle. Label the stable
points as x * and y *, and consider an expansion of the two-cycle
about x * :

x2 = f (2) x0() ≈ f (2) x *() +
d

dx
f (2) x()()

x = x *

(x0 − x*) = x * +
d

dx
f (2) x()()

x = x *

(x0 − x*)
,

which implies

x2 − x* ≈ (x0 − x*)
d

dx
f (2) x()()

x = x * .

The term
d

dx
f (2) x()()

x =x * can be found by the chain rule

d

dx
f (2) x()()

x =x *

≡
d

dx
f f x()()

x =x *

=
df y()

dy
y= f (x *)

dy

dx x = x *

=
df y()

dy
y *

df x()
dx x *

.

Thus,
d

dx
f (2) x()()

x =x * is simply the product of the derivatives of the
function at the two stable cycle points.

For higher iterates, we just play the same game: the separation of
the Nth iteration from the fixed point is easily seen to be

xN − x* ≈ (x0 − x*)
d

dx
f (N) x()()

x = x * . (3.11)

The derivative ′ f x *() is often called the Floquet multiplier of the
fixed point, and is denoted by Λ. Note that equation (3.11) implies
that near the fixed point, the iterates converge to (or diverge away
from) the fixed point geometrically. The geometric convergence
holds with increasing accuracy for higher iterates because the
neglected terms in the Taylor series become more insignificant as
the fixed point is approached. However, geometric divergence from
the fixed point eventually must break down, because the neglected
terms become important and equation (3.10) breaks down.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 10

Chapter 3

So now we have answered the question we started with, and we see
that the answer depends on the slope of the map at the fixed point.
There are some special cases we st i l l have to consider, namely

′ f x *() = 0,±1. But before we do, there is a graphical method of
depicting orbits that we should look at.

Consider a map such as the logistic map, shown in figure 3.1. If we
also plot the line y = x, then the intersection of this line with

Figure 3.1. Graphical Method of Depicting Orbits

the curve of our map is a fixed point. To determine how a point such
as the point x0 iterates under the map, we do the following:

1) From the point x0 on the horizontal axis, go up vertically
until you hit the curve.

2) From this point, go horizontally (either left or right) to the
line y = x . The value of x here is the iterate, x1 = f x0() .

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 11

Chapter 3

3) From this point, move vertically to the curve, then
horizontally to the line, etc. In this way, a succession of iterates is
determined.

In figure 3.2, this procedure is employed for the logistic map with
r=3.2. As you can see, the two cycle is stable (i.e. attracting).

Figure 3.2. Graphical Method Depicting a Two-Cycle.

We return now to the special cases which are not included in our
analysis. First, suppose ′ f x *() = 0. Then equation (3.10) breaks down,
and we must expand to second order, to find

x1 − x* ≈
1

2
(x0 − x*)2 ′ ′ f x *(). (3.12)

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 12

Chapter 3

Exercise 3.8. Convergence. Equation (3.12) says that

xn − x *() ≈ k(xn −1 − x*)2 , where k ≡
1

2
′ ′ f x *(). From this, derive an

expression for xn − x *() in terms of k and (x0 − x*).

In this case, the fixed point is called superstable; the convergence
is faster than geometric.

When ′ f x *() = ±1, equation (3.10) predicts that the separation remains
the same. What really happens depends on the second derivative of f
at the fixed point. For a map like the logistic map where the second
derivative is negative, the orbits converge to the fixed point, but
slower than for ′ f x *() <1. This case is called marginally stable. For
maps with a positive second derivative, the orbits slowly diverge
from the fixed point.

So now we have classified all possible behaviors for a smooth one-
dimensional map near a fixed point. The important idea is that the
classification depends on local properties of the map at the fixed
point, and were obtained by linearization (i.e. first order Taylor
series). We will turn to the somewhat more complicated case of two
dimensional systems in a later chapter.

E. Exact Solutions. The logistic map is exactly solvable at the
two opposite limits of the range of r-values under consideration.
For r = 0, there is the trivial solution in which xi = 0 for al l i > 0

regardless of the initial point x0 .

The case r = 4 is more interesting. To solve that case we make a
change of variables from x j to θ j defined by

x j =
1

2
1− cos2πθ j() (3.13)

Notice that θ j is not uniquely defined. Any one of the changes

 θ j → ±θ j + n (3.14)

for any integer n leaves x j unchanged. Now set r = 4 and substitute

definition (3.13) into the recursion equation x j +1 = 4x j 1 − x j(). After a

bit of fussing with trigonometric identities, the result becomes

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 13

Chapter 3

1 − cos2πθ j +1() = 1 − cos4πθ j() , (3.15)

which then has a solution

θ j = 2 j θ0 . (3.16)

This rather simple solution enables one to understand some aspects
of the chaos which arises at r = 4 rather precisely. We ask you to
explore this in Required Project I.

F. More Java: Objects and Classes. In this course we wil l be
examining several systems with different rules for how they evolve
in time. So we'd really like to have some way to define something
called a DynamicalSystem, which embodies many different evolution
rules with different numbers of variables and parameters. One type
of DynamicalSystem could be LogisticMap; another type could be,
say, DampedPendulum. But in al l cases our applet could ask the
DynamicalSystem to calculate its own evolution (and even maybe
find its own periodic orbits and plot its own graphs). Java enables
us to do exactly this by defining classes of objects.2 Indeed, in a
few weeks we will define and use a DynamicalSystem class.

We start here by discussing how every applet that we have written
uses objects. Next we present a class Complex that contains
operations for complex numbers (which you might well find useful
for the Menu Project described in this chapter). Then finally we will
look at the classes Dataset, GraphMaker and Util from Chapter 2.

One way to think about objects is that they are packages that
contain both data and methods that operate on the data. Each object
typically has many methods in it. So far, we have added methods to
pre-existing objects and put these objects together to perform the
tasks in our programs. For example, an applet is an object that
automatically calls the methods init and paint, among other things. In
the applet “FirstMap,” when we declare:

public class FirstMap extends Applet

2A note about Java: Some of you may have heard that Java is “object-oriented” (like
some other computer languages such as C++) rather than “procedure-oriented” (like
Fortran, Basic, C, and Pascal). The objects we're discussing here are the reason for the
term “object-oriented”.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 14

Chapter 3

our applet knows about ("inherits") al l the methods that Sun has
already put in the Applet class. We will discuss inheritance in more
detail in Chapter 6. So “FirstMap” automatically calls init and paint.
To get “FirstMap” to actually do something, we define our own
versions of init and paint that get executed instead of the Sun-
supplied Applet versions (which do nothing). We also defined the
new methods f, fn, ifromn, and jfromx that we added to the class
“FirstMap.”

We used more objects when we read in the value of r from the
TextField on the applet. (Unfortunately, in Java reading in a double
number from a TextField involves fairly sophisticated use of
objects. But if you understand this process, you are well on the way
to being object-oriented.) The TextField itself is an object (or,
more specifically, we define inputr to be an object in the TextField
class), which comes packaged with a method getText that takes
whatever is on the TextField and converts it to a String:

s = inputr.getText(); // read string in TextField inputr

We then convert the String s into the double variable r :

r = new Double(s).doubleValue(); // convert string to double variable r

This statement first converts the String s into a Double object (not
a double number!) and then calls the method doubleValue() in the
Double class, whose output is the double number r. You might find it
easier to understand the more verbose three-step process:

Double temp; // declare temp as a Double object

temp = new Double(s); // allocate temp; define its value as the Double
// conversion of String s

r = temp.doubleValue(); // call doubleValue method to convert Double object
// temp into double value r

The methods in the class Double are all documented at the web page
http://java.sun.com/products/jdk/1.1/api/java.lang.Double.html.
The CodeWarrior help also has documentation for the Sun-supplied
class libraries.

Now we create our own class Complex. The behavior of objects in
this class should remind you of that of complex numbers z = x + iy ,
with x and y real, and i = −1 . We write two Java files, one with the
class Complex itself, and second with an applet “ComplexTest”
which demonstrates use of the class Complex.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 15

Chapter 3

// Complex.java

// definition of class Complex (for complex numbers)

public class Complex {

private double real; // real and imag are the instance variables of the class

private double imag; // private means real and imag are invisible outside

// the class Complex

Complex(double x, double y) { // The constructor method, called each time a
// new instance of the class is set up.

real = x;

imag = y;

}

// now define the methods for the class

// Get real part

public double realpart() { return real; }

// Get imaginary part

public double imagpart(){ return imag; }

// Add two Complex numbers

public Complex plus(Complex c2) {

return new Complex(real + c2.real, imag + c2.imag);

}

public static Complex plus(Complex c1, Complex c2) {

return new Complex(c1.real + c2.real, c1.imag + c2.imag);

}

// Subtract two Complex numbers

public Complex minus(Complex c2) {

return new Complex(real - c2.real, imag - c2.imag);

}

// Multiply two Complex numbers

public Complex times(Complex c2) {

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 16

Chapter 3

return new Complex(real*c2.real - imag*c2.imag,

real*c2.imag + imag*c2.real);

}

public static Complex times(Complex c1, Complex c2) {

return new Complex(c1.real*c2.real - c1.imag*c2.imag,

c1.real*c2.imag + c1.imag*c2.real);

}

// Divide two Complex numbers

public Complex divideby(Complex c2) {

double denom;

denom = c2.real*c2.real + c2.imag*c2.imag;

if(denom == 0) {

return new Complex(Double.NaN, Double.NaN);

} // return Not-a-Number if dividing by zero

else {

return new Complex ((real*c2.real + imag*c2.imag)/denom,

(imag*c2.real - real*c2.imag)/denom);

}

} // end of divideby method

// Converts Complex to String (needed to display on applet)

public String toString() {

return "(" + real + ", " + imag + ")";

}

}

Program 3.2 Class Complex, for complex numbers.

The first method in the class definition, whose name is the same as
the name of the class, is called the constructor. It is called when a
new instance of the class is declared in an applet. In this case the
constructor just initial izes the instance variables real and imag,
giving them the values of the first and second arguments with which
the constructor is called. The other methods define various standard
operations, including adding, subtracting, multiplying, and dividing.

Here is an applet that uses the Complex class:

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 17

Chapter 3

// ComplexTest.java

// applet that puts the class Complex through some of its paces

import java.awt.*;

import java.applet.Applet;

public class ComplexTest extends Applet {

private Complex a, b;

public void init() {

a = new Complex (5.5, 9.3);

b = new Complex (21.3, 15.0);

}

public void paint(Graphics g) {

g.drawString("a = " + a, 25, 25);

g.drawString("b = " + b, 25, 40);

g.drawString("a + b = " + a.add(b), 25, 70);

g.drawString("a - b = " + a.subtract(b), 25, 85);

}

}

Exercise 3.9 . What happens when you try to access one of the
private instance variables in Complex from the applet
“ComplexTest”?

Exercise 3.10. What happens if the method toString is not defined
in the class Complex?

Exercise 3.11. How would you modify the class Complex to be able
to calculate the modulus and phase of a complex number?

G. The classes GraphMaker, Dataset, and Util. Finally we
show you the contents of the classes we used in the previous
chapter to draw graphs. We start with the class Dataset, which
bundles together two arrays into a single object.

// file Dataset.java

class Dataset {

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 18

Chapter 3

private double[] xdata; // instance variables

private double[] ydata;

private int npts;

// constructor for DataSet class:

public Dataset(double[] dx, double[] dy, int n) {

npts=n; // initialize instance variable and arrays

xdata = new double[n]; // set size of arrays

ydata = new double[n];

setXdata(dx, n); // set values of arrays

setYdata(dy, n);

}

public void setXdata(double[] dx, int n) { // sets xdata array

for (int m=0; m<n; m++) {

xdata[m]=dx[m];

}

}

public void setYdata(double[] dy, int n) { // sets ydata array

for (int m=0; m<n; m++) {

ydata[m] = dy[m];

}

}

public double[] getXdata() {return xdata; }

public double[] getYdata() { return ydata; }

public int length() {return npts;}

// methods to find the maximum and minimum values of the x

// and y coordinates

public double xmax() {return Util.max(xdata, npts);}

public double xmin() {return Util.min(xdata, npts);}

public double ymax() {return Util.max(ydata, npts);}

public double ymin() {return Util.min(ydata, npts);}

}

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 19

Chapter 3

Now you may be wondering why we have bothered to define a Dataset
object when we could have defined a two-dimensional array with
both sets of coordinates. But suppose that some of the data came
with additional information, such as who took it, when it was taken,
or even axis labels. All this information can all be added into a
Dataset, and moreover it is possible to do this while keeping all the
parts used by our current version of GraphMaker unchanged. Thus,
changes to Dataset do not propagate through the entire program.

Problem 3.2. Class Dataset. Modify the class Dataset so that it
also keeps track of a dataTaker and a dataDate. Write an applet that
creates a Dataset, uses GraphMaker to make a graph of the Dataset,
and also prints out the dataTaker and dataDate onto the applet.

Now we show you the class GraphMaker, which takes either one or
two Datasets and plots them on a graph. This class is long, but each
piece is rather straightforward.

// file GraphMaker.java

// class to make a graph

// can plot either one or two datasets

import java.awt.*;

public class GraphMaker extends Canvas { // GraphMaker is subclass of Sun-supplied

// class java.awt.Canvas

private int height; // height of canvas

private int width; // its width

private final int offi = 0; // the graph starts at this x-coordinate on canvas

private final int offj = 40; // the graph starts at this y-coordinate on canvas

private final double bordl = 0.15; // these constants give borders around graph

private final double bordr = 0.1; // expressed as a portion of the entire picture

private final double bordt = 0.1;

private final double bordb = 0.2;

// the user might well wish to change the constants defined above

private int i0, j0, i1, j1; // positions of bottom-left and top-right of plot area

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 20

Chapter 3

private final int ngridsi = 4; // number of grid ticks in x direction

private final int ngridsj = 4; // number of grid ticks in y direction

private final int ticklength = 12; // length of tick lines

private double scalefx, scalefy, offx, offy;

/* these variables are scale factors and offsets describing the relation

// between x,y and i,j coordinates.

*/

private double maxx, maxy, minx, miny; // limits on x and y values in graph

private double xrange, yrange; // ranges of x and y values after rounding

private double intx, inty; // intervals between ticks

private Dataset mydata1, mydata2; // Datasets to be plotted

private int ncurve; // number of curves to plot

// constructor for GraphMaker also sets size:

public GraphMaker(int w, int h) {

super(); // call Canvas constructor

width=w; // width of canvas

height=h; // height of canvas

this.setSize(width, height); // set canvas size

this.setBackground(Color.white); // set white background

ijset(); // set i,j coords of graph corners

ncurve = 0; // no curves until setData sets the Datasets

}

private void ijset() {

i0 = (int) Math.round(bordl*width);

j0 = height - (int) Math.round(bordb*height); // lower lh corner of graph

i1 = (int) Math.round((1 - bordr) * width);

j1 = height - (int) Math.round((1 - bordt) * height); // upper rh corner

}

public void setData(Dataset d1) {

mydata1 = d1;

ncurve = 1;

}

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 21

Chapter 3

public void setData(Dataset d1, Dataset d2) {

mydata1 = d1;

mydata2 = d2;

ncurve = 2;

}

private int ifromx(double x) {

// converts drawing variable x into screen variable i

return i0 + (int) Math.round(scalefx * (x - offx));

}

private int jfromy(double y){

// converts drawing variable y into screen variable j

return j0 - (int) Math.round(scalefy * (y - offy));

}

private void drawCurve(Graphics g, Dataset d) {

double dax[], day[];

int n;

n = d.length();

dax = new double[n];

day = new double[n];

int m; // loop variable

dax = d.getXdata();

day = d.getYdata();

for(m=0; m<n-1; m++) {

g.drawLine(ifromx(dax[m]), jfromy(day[m]),

ifromx(dax[m+1]), jfromy(day[m+1]));

}

}

private void drawPoints(Graphics g, Dataset d) { // draws data points

int SQSIZE=1;

double dax[], day[];

int n;

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 22

Chapter 3

n = d.length();

dax = new double[n];

day = new double[n];

int m; // loop variable

dax = d.getXdata();

day = d.getYdata();

for (m=0; m<n; m++) {

g.drawRect(ifromx(dax[m])-SQSIZE, jfromy(day[m])-SQSIZE,

2*SQSIZE, 2*SQSIZE);

}

}

private void setXgrid(Dataset d) { // calculate x tick locations

minx = d.xmin();

maxx = d.xmax();

intx = RoundUp((maxx - minx) / ngridsi); // size of intervals in x

xrange = intx*ngridsi; // total range of x

minx = intx * Math.floor(minx/intx); // resets convenient minimum for x

}

private void setXgrid(Dataset d1, Dataset d2) { // calculate x tick locations

minx = Math.min(d1.xmin(), d2.xmin());

maxx = Math.max(d1.xmax(), d2.xmax());

intx = RoundUp((maxx - minx) / ngridsi); // size of intervals in x

xrange = intx*ngridsi; // total range of x

minx = intx * Math.floor(minx/intx); // resets convenient minimum for x

}

private void drawXgrid(Graphics g) { // put x ticks on graph

int k; // loop variable for putting down grid ticks

double xt; // x-value for tick

int i; // x coordinate of tick in screen variables

for (k=0; k<=ngridsi; k++) {

xt = minx + k*intx; // x values for ticks

i=ifromx(xt);

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 23

Chapter 3

g.drawLine(i, j0, i, j0 - ticklength); // draws ticks

g.drawString(Double.toString(xt), i-5, j0+15); // puts on numbers

}

}

private void setYgrid(Dataset d) { // calculate y tick locations

miny = d.ymin();

maxy = d.ymax();

inty = RoundUp((maxy - miny) / ngridsj); // size of intervals in y

yrange = inty*ngridsj; // total range of y

miny = inty * Math.floor(miny/inty); // resets convenient minimum for y

}

private void setYgrid(Dataset d1, Dataset d2) { // calculate y tick locations

miny = Math.min(d1.ymin(), d2.ymin());

maxy = Math.max(d1.ymax(), d2.ymax());

inty = RoundUp((maxy - miny) / ngridsj); // size of intervals in y

yrange = inty*ngridsj; // total range of y

miny = inty * Math.floor(miny/inty); // resets convenient minimum for y

}

private void drawYgrid(Graphics g) { // put y ticks on graph

int k; // loop variable for putting down grid ticks

double yt; // y-value for tick

int j; // y coordinate of tick in screen variables

for (k=0; k<=ngridsj; k++) {

yt = miny + k*inty; // y values for ticks

j=jfromy(yt);

g.drawLine(i0, j, i0 + ticklength, j); // draws ticks

g.drawString(Double.toString(yt), i0-35, j+5); // puts on numbers

}

}

private void setscale() { // sets scale for x and y axes and connects

// them with i,j coordinates

offy = miny;

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 24

Chapter 3

scalefy = (height * (1 - bordt - bordb)) / yrange;

scalefx = (width * (1 - bordl - bordr)) / xrange;

offx = minx;

}

private void drawAxes(Graphics g) { // draws axes on graph

g.drawLine(i0,j0,i1,j0);

g.drawLine(i0,j0,i0,j1);

}

public void paint(Graphics g) { // display graph on canvas

drawAxes(g);

if(ncurve == 1) {

setXgrid(mydata1);

setYgrid(mydata1);

}

else if (ncurve == 2){

setXgrid(mydata1, mydata2);

setYgrid(mydata1, mydata2);

}

setscale();

drawXgrid(g);

drawYgrid(g);

drawCurve(g, mydata1);

// drawPoints(g, mydata1);

if (ncurve == 2) {

g.setColor(Color.magenta);

drawCurve(g, mydata2);

// drawPoints(g, mydata2);

g.setColor(Color.black);

}

}

// method from Leigh Brookshaw's graph package, available at

// http://www.sci.usq.edu.au/staff/leighb/graph

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 25

Chapter 3

private double RoundUp (double val) {

// rounds up val to a NICE value

// used for figuring out where to put ticks on graphs

int exponent;

int i;

exponent = (int) (Math.floor (Util.log10(val)));

// loop to strip off zeros and get to the significant digits

if (exponent < 0) {

for (i=exponent; i<0; i++) { val *=10.0; }

}

else {

for (i=0; i<exponent; i++) { val /= 10.0; }

}

if (val > 5.0) val = 10.0;

else

if (val > 2.5) val = 5.0;

else

if (val > 2.0) val = 2.5;

else

if (val > 1.0) val = 2.0;

else val = 1.0;

// loop to reconstruct original order of magnitude of val

if (exponent < 0) {

for (i = exponent; i<0; i++) { val /= 10.0; }

}

else {

for (i=0; i< exponent; i++) {val *=10.0;}

}

return val;

}

}

Finally we present the class Util, which is a collection of some
utility methods that can be used by any class. Util is an abstract
class, which means that, unlike Complex, Dataset, and GraphMaker,

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 26

Chapter 3

you cannot make any objects of the Util class. (An abstract class in
Java is exactly analogous to a collection of subroutines in Pascal, C
or Fortan.)
// Util.java

/* Declaration of Util class--abstract class of utility methods. Its main purpose is to
calculate the maximum and minimum of a double array. It also contains a simple-
minded method that calculates base-10 logarithms.

*/

public abstract class Util {

public static double max(double[] data, int n)

{ /* calculate maximum of first n elements in array data */

int k; // loop variable

double d, mt; // d stores the immediately needed array element

// mt stores a temporary variable which is the

// maximum data element found so far

mt = data[0];

// at start largest element found so far is first element in array

for (k=0; k<=n-1; k++)

{

d = data[k];

if (d > mt) // if new element is larger than maximum found so

// far, then:

{

mt = d; // new data replaces maximum-up-to-now.

}

} // end of loop

return mt; // maximum evaluated

} // end max

public static double min(double[] data, int n) {

/* calculate minimum of first n elements in array data

works just the same as max

*/

int k; // loop variable

double d, mt; // d stores the immediately needed array element

// mt stores a temporary variable which is the

// minimum data element found so far

mt = data[0];

// at start smallest element found so far is first element in array

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 27

Chapter 3

for (k=0; k<=n-1; k++){

d = data[k];

if (d < mt){ // if new element is smaller than minimum found so

// far, then:

mt = d; // new data replaces minimum-up-to-now.

}

} // end of loop

return mt; // minimum evaluated

} // end min

public static int max(int[] data, int n) {

 /* calculate maximum of first n elements in integer array */

int k; // loop variable

int d, mt; // d stores the immediately needed array element

// mt stores a temporary variable which is the

// maximum data element found so far

mt = data[0];

// at start largest element found so far is first element in array

for (k=0; k<=n-1; k++){

d = data[k];

if (d > mt){ // if new element is larger than maximum found so

// far, then:

mt = d; // new data replaces maximum-up-to-now.

}

} // end of loop

return mt; // maximum evaluated

} // end max

public static int min(int[] data, int n) {

/* calculate minimum of first n elements in array data

works just the same as max

*/

int k; // loop variable

int d, mt; // d stores the immediately needed array element

// mt stores a temporary variable which is the

// minimum data element found so far

mt = data[0];

// at start smallest element found so far is first element in array

for (k=0; k<=n-1; k++){

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 28

Chapter 3

d = data[k];

if (d < mt){ // if new element is smaller than minimum found so

// far, then:

mt = d; // new data replaces minimum-up-to-now.

}

} // end of loop

return mt; // minimum evaluated

} // end min

public static double log10(double x) {

// returns log base 10 of x

return Math.log(x)/2.30258509299404568401;

}

}

