
* * *
Phys 251/CS 279/Math 292 Winter 1999 page 1
Chapter 4

Chapter 4:

 Fractals I
Goals:

• To understand what fractals are.

• To see the fractal nature of some natural processes, including the
period-doubling sequence of the logistic map.

A fractal is an object that looks the same when it is magnified. For
example, the object in Figure 4.1 (called "the Sierpinski gasket") is a
triangular shape in which there are three smaller triangles, each of
which is a replica of the whole.

Figure 4.1 The Sierpinski gasket.

Another example of a fractal is the Cantor set, which is one of the
most famous objects in modern mathematics. It is constructed in

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 2
Chapter 4

the following way: Take the line which extends between zero and
one. Erase the middle third of that line. Take the line segments
which remain and erase their middle thirds as well. Do this again
and again.

We will see that fractals arise naturally in the study of dynamical
systems. But first we will draw a few fractals.

A. Drawing fractals.

A.1. Recursion. In Java, a method can call itself. This process is
called recursion, and it is ideally suited for constructing fractals.
The applet CantorRecursion constructs the Cantor set by defining a
method that removes the middle third of a line segment and also
calls itself recursively on the parts that are remaining. It draws
the resulting line segments at each step of the process. The
recursion is stopped when the line segment is one pixel long and so
can't be divided any more.

// CantorRecursion.java

// draws Cantor set

import java.awt.*;

import java.applet.Applet;

public class CantorRecursion extends Applet{

int length; // longest segment

int left, right; // endpoints of segments

int height; // vertical size of applet

int ypos; // vertical position on applet

final int nlevels = 6; // number of levels to be drawn

final int yspace = 50; // vertical spacing between lines

public void init () {

setBackground(Color.white);

length = 1;

for (int i = 1; i <= nlevels; i++) {

length = 3*length;

} // original line segment length

height = (nlevels + 2)*yspace;

setSize(length + 30, height); // make applet a convenient size

left = 15; // initial left and right coordinates of segment

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 3
Chapter 4

right = 15 + length - 1;

ypos = yspace;

}

public void paint (Graphics g) {

g.setColor(Color.blue);

cantor(left, right, ypos, g);

}

// Recursive definition of method cantor

public void cantor (int cleft, int cright, int ypos, Graphics g) {

int clength = cright - cleft + 1;

g.drawLine(cleft, ypos, cright, ypos);

if (clength <= 1) // base case

g.drawLine(cleft, ypos, cright, ypos);

else {

cantor(cleft, cleft+clength/3 -1, ypos+yspace, g); // left

cantor(cright-clength/3 +1, cright, ypos+yspace, g); // right
}

}

 }
Program 4.1. An applet that uses recursion to draw a Cantor set.

The applet draws each ‘level’ in the progressive construction of the
Cantor set. Level zero is a full line segment; the first level has the
middle third removed, the second level removes the middle third of
the two segments created at level one, and so on. The actual Cantor
set is the result of the repetitive application of this process
infinitely many times. Hence it consists of a set of infinitely many
points. However, the applet must stop at the screen resolution and
cannot display the true Cantor set.

Note the basic structure of cantor, which is typical of all recursive
methods. There are two parts: the “body” of the recursion and the
“terminator”. The method calls itself repeatedly, decreasing the
variable clength in each step. This is the body of the recursion. Of
course we can’t let this process continue indefinitely. The recursion
stops when clength <= 1 (the smallest possible length is 1 pixel). The
statement {if (clength <= 1) g.drawLine(cleft, ypos, cright, ypos);} is therefore
called the terminator.

The Cantor set just described is known as the ‘middle-thirds’ Cantor
set, because it removes the middle third and leaves the two end

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 4
Chapter 4

thirds of the segment at each level. One can construct other Cantor
sets by leaving some other fraction ‘f’ at each end of the segment
(f ≤ 1 2) while removing the middle (1 − 2 f) portion of the segment.
The middle-thirds Cantor set has f =1 3 .

Exercise 4.1: Alter CanterRecursion to construct the Cantor sets
with other values of f.

A.2. Iteration. Recursion is elegant, but one can construct
fractals using old-fashioned iteration. The applet CantorIteration
constructs the middle-thirds Cantor set iteratively as follows.
First, the line [0,1] is drawn. Then the segment (1/3, 2/3) i s
removed. (i) This object is shrunk down to a third its size and
copied into a buffer. (ii) The object in the buffer is copied onto the
left and right thirds of the original line segment. Then steps (i) and
(ii) are repeated until the finite resolution of the screen prevents
any finer division of the results. The necessary rescaling i s
performed by the Graphics method drawImage:

public abstract boolean drawImage(Image img, int x,
 int y, int width, int height, ImageObserver observer)

Draws the specified image inside the rectangle specified
by:

x - the x coordinate
y - the y coordinate
width - the width of the rectangle
height - the height of the rectangle

// CantorIteration.java
// draws Cantor set
import java.awt.*;
import java.applet.Applet;

public class CantorIteration extends Applet
 implements ActionListener {

int nlevels, length;
int csheight = 1;
int left, right;
int nplots; // number of iterations done so far
int height = 200; // vertical size of applet
int ypos; // vertical position on applet
Image theImage, bufferImage;
Graphics theGraphics, bufferGraphics;
boolean firstpaint;

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 5
Chapter 4

public void init () {
setBackground(Color.white);
nlevels = 5;
nplots = 0;
length = 1;
for (int i = 1; i <= nlevels; i++) {

length = 3*length;
} // length of line containing Cantor set
setSize(length+30, height); // make applet a convenient size
left = 15; // left and right coordinates of Cantor set,
right = 15+length-1; // in pixels

ypos = 30; // initial vertical position coordinate

// put on Button to do next level:
Button nextlevelButton = new Button("Plot Next Level");
nextlevelButton.addActionListener(this);
add (nextlevelButton);

// create Image object for the Cantor set picture:
theImage = createImage(length, csheight);
theGraphics = theImage.getGraphics();

// create Image object for intermediate buffer:
int bufferwidth = length/3;
bufferImage = createImage(bufferwidth, csheight);
bufferGraphics = bufferImage.getGraphics();

// put [1,1/3] + [2/3,1] into theImage:
theGraphics.setColor(Color.blue);
theGraphics.fillRect(0, 0, length/3, csheight);
theGraphics.fillRect(2*length/3+1, 0, length/3, csheight);
theGraphics.setColor(Color.white);
theGraphics.fillRect(length/3, 0, length/3, csheight);
theGraphics.setColor(Color.blue);

} // end of init

public void actionPerformed(ActionEvent evt)
{ if(nplots < nlevels) {

// copy theImage into bufferImage, shrinking it by a factor of three:
bufferGraphics.drawImage(theImage, 0, 0, length/3, csheight, this);

// shrink and copy bufferImage into left and right thirds of theImage:
theGraphics.drawImage(bufferImage, 0, 0, length/3, csheight, this);

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 6
Chapter 4

theGraphics.drawImage(bufferImage, 2*length/3, 0, length/3,
 csheight, this);

repaint();
nplots ++;
ypos += 20;

}
} // end of actionPerformed

public void update (Graphics g) {
paint(g);

}

public void paint (Graphics g) {
g.drawImage(theImage, left, ypos, this);
if (nplots >= nlevels) {

showStatus("at screen resolution: can't divide any more");
}

}
 }

Program 4.2. An applet that constructs the Cantor set using
iteration.

Exercise 4.2: Please go through, understand, and run this program.
Then alter the program to construct the Cantor sets which leave a
fraction f of the segment at each end in each step (as in Exercise
4.1).

Problem 4.1: Write a program to construct the Sierpinski gasket,
the fractal set shown in Figure 4.1.

Menu Project. Using a turtle to draw fractals. This
project consists of two parts. The first is to create a "turtle"
graphics system (much like LOGO). The turtle graphics system
has a turtle at some position pointing in a certain direction. The
turtle can move forward, leaving a trail of ink behind (drawing a
line), and it can rotate. It can also turn the ink on and off. So
your class has to support the following commands:

public class Turtle {
public Turtle(Graphics g, int height, int width, int xpos, int ypos, int angle);
// constructor. Draws into the graphics context g, which has height 'height' and
// width 'width.' Starts turtle at initial position (xpos, ypos) and angle 'angle.'

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 7
Chapter 4

public void right(int angle); // rotates turtle right by angle degrees
public void left(int angle); // rotates turtle left by angle degrees
public void pendown(); // puts turtle's pen down (turns ink on)
public void penup(); // puts the turtle's pen up (turns ink off)
public void forward(int distance); // moves forward distance steps.

// if pen is up, doesn't draw anything; if pen is down, draws line
public void forward(double distance); // optional. Use double precision

// variables for extra accuracy
}
(See also problems 5.21 and 9.29 in Deitel and Deitel.)

The second part of the project is to use your turtle to draw
fractals. In the appendix, we describe turtle commands needed
to draw one particular fractal, the Koch curve. Have your turtle
make the Koch curve and/or other fractals of your choosing.

B. Fractal dimension. One fundamental property of a set is its
dimension. A point is a zero-dimensional set, a line is one-
dimensional, and a circle is two-dimensional. Fractals can have
non-integral dimension. There are many ways to define the
dimension d of a set, all of which reduce to the expected results for
points, lines, and spheres. Here we will present what is called the
capacity, or box-counting, dimension.

Assume the set in question is embedded in an N-dimensional space.
(For example, figure 4.2 shows three sets embedded in a 2-
dimensional space.) We imagine covering the space by a grid of N-
dimensional boxes of side length ε, and then we count the number of
boxes N(ε) needed to cover the set. We do this for smaller and
smaller values of ε, and then define the box-counting dimension d as
the limit (if it exists):1

d = lim
ε → 0

ln N(ε)

ln(1/ ε)
 . (4.1)

Figure 4.2 demonstrates that this definition of d gives the expected
results for points, curves, and two-dimensional figures. The point
is covered by a single box for any ε, so it has d = 0. The number of
boxes needed to cover a line is proportional to 1/ε, so it has d = 1.

1The limit in equation (4.1) does exist for the fractals that we discuss in this chapter.

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 8
Chapter 4

Finally, the circle (including its interior) requires a number of boxes
proportional to (1/ε)2, so it has d = 2.

Figure 4.2 Covering procedure used to calculate box-counting
dimension of a set.

Now we show that the middle-thirds Cantor set described above has
a fractional box-counting dimension d. To do this, we use one-
dimensional ‘boxes’ (line segments of length εn) with the

particularly convenient sequence of lengths εn =
1

3

n

, and calculate

the number of boxes needed to cover the set for each value of n.

For n=0, a single box of length 1 covers the set. When n=1, then 2
boxes are needed to cover the set (one for [0,1/3] and the other for
[2/3,1]). When n=2, 4 boxes (covering [0,1/9], [2/9,1/3], [2/3,7/9],

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 9
Chapter 4

and [8/9,1]) can cover the set. Similarly, for any n, the number of
boxes needed to cover the set is 2n. Therefore, using the definition
of d in equation (4.1), we find for this set:

d = lim
n →∞

ln 2n()
ln 3n() =

ln2

ln3
≈ 0.63 (4.2)

In applying equation (4.1), we changed variables from ε to n,
replacing the limit from ε → 0 with the equivalent limit n → ∞ . This
is often convenient when computing the box-counting dimension of
an object. As you might have guessed, the middle-thirds Cantor set
has a dimension between 0 and 1; in dimensionality it l ies
somewhere between a point and a line segment.

Exercise 4.3. Find the box-counting dimension of the Cantor set
constructed by leaving a fraction ‘f’ on the end of each line segment
at each level.

Problem 4.2: Find analytically the box-counting dimension of the
Sierpinski gasket. (Hint: Use triangle shaped ‘boxes.’)

C. Fractals in dynamical systems. Fractals arise naturally in
the study of dynamical systems. In fact, the Cantor set itself comes
up when one studies the "tent map," a one-dimensional map defined
by:

xi +1 = f(xi) =
 A xi xi ≤ 1

2

 A - A xi xi ≥
1

2

(4.3)

Problem 4.3. The tent map and the Cantor set. Investigate
the map defined in equation (4.3). Show analytically that when A=3,
the set of x points whose orbits are bounded (those having |fn(x)| < ∞
for all n) is the middle-thirds Cantor set. (Hint: first show that
points outside the interval [0,1] always escape to infinity. Then
consider which points inside the unit interval get mapped to places
outside of it.) Other values of A generate other Cantor sets. What is
the relationship between A and the fractal dimension of the set of
points with bounded orbits? Assume A>2.

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 10
Chapter 4

Menu Project. Julia sets. In this project you will
investigate the map

f(z) = z2 + c,

where z and c are both complex. We are again interested in
the set of z whose orbits are bounded, meaning that |fn(z)| < ∞
for all n. See what this set looks like when the parameter
value c = -0.5 + 0.5i. What happens when the parameter c is
changed? You may find chapter 13 of Peitgen, Jurgens, Saupe,
Chaos and Fractals: New Frontiers of Science, Springer-
Verlag (1992) useful for this project.

C.1. Scaling in the Logistic Map . Now let's consider the
period-doubling sequence of our old friend the logistic map:

xi +1 = f r xi() = rxi 1 − xi(). (4.4)

Looking at the bifurcation plot you calculated in Required Project I,
it is clear that the r values at which the period-doubling
bifurcations occur get closer and closer together as the period
length increases. Now we wish to examine the period-doubling
sequence in detail. We will find that there is a fractal here, and
moreover the fractal has properties (such as the fractal dimension)
that are are not special to the logistic mapthey are identical for a
huge variety of dynamical systems (they are "universal"). We will
gain some insight into this universality in the next chapter.

But first, we w i l l explore the properties of the period-doubling
sequence of the logistic map. Specifically, we want to calculate a
sequence of r values, r0, r1, . . ., rn, which give the 2n cycles. We now
discuss how to perform this calculation.

From a computational point of view, it is inconvenient to try to
calculate the bifurcation values of r. It is much easier to find the r
values for which the cycles are superstable. (Recall that for
superstable cycles of length N, the derivative of fN(x) vanishes.)
Why? Because for any superstable 2n-cycle, the point x = 0.5 must
be an element of the cycle. This fact follows from the chain rule for
the derivative of fN(x) and the fact that the derivative of f(x)
vanishes at x=0.5 (see if you can prove it). This simplifies things

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 11
Chapter 4

because now we only need to find r-values and not x-values: x = 0.5
is always an element of the cycle we are looking for.

So one can find a superstable 2n-cycle by applying Newton's method
to the function

F r() = f r
N x = 0.5() − 0.5 (4.5)

where N ≡ 2n. The r dependence of this equation is hidden inside f
(hence the subscript). So to find the r-value, rn, of the 2n cycle, you
just apply Newton's method to the variable r in equation (4.5), since
whenever F(rn) is zero, we have a superstable 2n cycle. To use
Newton's method, we need the derivative of F with respect to r,
which can be calculated directly using the chain rule.

The remaining detail is what to use for the initial r value in applying
Newton's method to equation (4.5). Well, we already know that r0

(the r for which the 1-cycle is superstable) is equal to 2 (the
Floquet multiplier vanishes at this value see Exercise 3.7). It is
also true that r1 must fall somewhere between 3 and 3.57 (since the
2-cycle is born at r = 3, and, as we shall see, r ≈ 3.57 is the
maximum r value for period doubling). So a good guess for r1 might
be 3.2. For higher period doublings, it is important that we begin
Newton's method at an r value that is a pretty good guess for the
actual r value (otherwise we might end up with the r value of the
previous cycle). To do this, suppose that we have calculated r0, r1, . .
. , rn-1, and we are now ready to use Newton's method to calculate rn.
Then the best choice for the initial guess of rn is:

rn ≈ rn−1 + (rn−1 − rn− 2) / 4.7 (4.6)

You will see shortly where the number 4.7 comes from.

In Required Project II, we ask you to write an applet to compute a
sequence of r values for the superstable 2n-cycles of the logistic
map using Newton's method. You should be able to get as far as n =
10. You should see that the r values are converging to something
close to 3.57.

Why are we so interested in this sequence of r-values? Well, i t
turns out that they are converging to an accumulation value, r∞ , at a
geometric rate. That is,

rn ≈ r∞ − δ −n (4.7)

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 12
Chapter 4

where δ is a number that we want to calculate. We can rewrite
equation (4.7) as2

δ ≈
rn−1 − rn −2

rn − rn−1

(4.8)

Once you compute the rn's, it is a simple matter to plug them into
equation (4.8) to get an estimate of δ. We ask you to do this in
Required Project II.

Exercise 4.4. Scaling and self-similar ity. The geometric
convergence of the r-values means that near r∞ a plot of the values
of rn w i l l look the same when it is magnified. Be sure that you
understand why this is so. (You might find it helpful first to
consider the sequence rn = (1/2)n, which has δ = 2 and r∞= 0, and to
show that a plot of these points near r = 0 looks exactly the same if
the scale of r is changed by a factor of two.)

C.2. Scaling in state space . We just discussed how the change
in the parameter value r to go from a 2n to a 2n+1 superstable cycle is
characterized by a scaling factor δ. This is a scaling in "parameter
space," since r is a parameter of the map. In Required Project II you
will also demonstrate that there is also a scaling in x (which we can
call "state space," since x describes the state of the system).

You will compute the yn = x
2n-1 = f rn

2n−1

x =1/ 2() for n = 2 through 10. You
should find that the yn's also converge geometrically with n:

1

2
− yn ≈ −α()− n , (4.9)

 where

−α ≈
yn−1 − yn− 2

yn − yn−1

, (4.10)

and you will find α.

2 Equation (4.8) is obtained by taking equation (4.7) for the values n and n-1, and
subtracting them, giving rn − rn−1 = δ − n−1() − δ− n = δ − n δ −1() . Do the same thing for n-1

and n-2: rn−1 − rn− 2 = δ − n−1() δ −1() . The ratio of these two equations is

rn−1 − rn− 2

rn − rn−1

=
δ − n−1() δ −1()
δ − n δ −1() = δ , which is equation (4.8).

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 13
Chapter 4

Exercise 4.6 . Verify that the bifurcation diagram of the logistic
map looks the same when it is magnified about the point (x = 1/2, r =
r∞) by a factor -α in the x-direction and δ in the r-direction.

C.3. Universality. The quantities α and δ are of interest because
these numbers turn out to be universal in the sense that they do not
depend on the particular choice of mapping. Almost all maps that
look roughly like the logistic map (i.e. having a single hump in the
middle) will have the same values of α and δ even though their values
of rn are different.3

In Required Project II you will produce some empirical evidence that
universality holds by computing the scaling properties of the period-
doubling sequence for other functions with quadratic maxima. You
should find that α and δ are the same as they are for the logistic
map.

Appendix: Turtle fractals

In this appendix we describe how to construct a particular fractal,
the Koch curve, using the turtle commands described in one of the
Menu Projects. Recall that the turtle is constructed to obey the
following commands:

F: move a specified distance forward (forward(DISTANCE))

R: turn right by a specified angle (right(ANGLE))

L: turn left by a specified angle (left(ANGLE))

The Koch curve is defined in stages. Stage 0 is the base stage and
consists of the command "F". To go to stage 1, replace the "F" by the
sequence of commands "FLFRRFLF." If we are in stage n, we go to
stage (n+1) by taking each "F" command in stage n and replacing it by
the sequence of commands "FLFRRFLF." For example, the stage 2
command sequence is "FLFRRFLF L FLFRRFLF RR FLFRRFLF L
FLFRRFLF."

The resulting curves for each stage are shown below.

3The values of α and δ will be the same as long as the second derivative of f(x) evaluated
at the maximum point is nonzero. This is the general (or technically, the generic) case:
"almost any" function with a hump has a quadratic hump; only very specially chosen
functions have non-quadratic humps.

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 14
Chapter 4

Here is the Stage 0 curve. The command sequence is F.

Here is the Stage 1 curve. The command sequence is FLFRRFLF

Here is the Stage 2 curve. The command sequence is
FLFRRFLF LFRR FLFRRFLF L FLFRRFLF

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 15
Chapter 4

Here is the Stage 3 curve.

Here is the Stage 4 curve.

Here is the Stage 5 curve.

* * *
Phys 251/CS 279/Math 292 Winter 1999 page 16
Chapter 4

Here is the Stage 6 curve.

