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Chapter 8:

Higher-Dimensional Dynamical Systems

Goals:

• To explore the behavior of nonlinear Hamiltonian systems, and, in
particular, the standard map.

• To classify possible orbits of two-dimensional dynamical
systems.

• To understand Lyapunov exponents and how to calculate them.

Chapters 6 and 7 focused on dynamical systems described by
Newton's laws, all of which have at least two degrees of freedom.
In this chapter we will compare these higher-dimensional systems
to the one-dimensional systems that we classified in Chapter 3.
First, we w i l l  examine the special properties of Hamiltonian
systems (all of which have at least two degrees of freedom).  Then
we will classify the possible behaviors of smooth two-dimensional
dynamical systems, and compare them to those that we found for
one-dimensional maps in Chapter 3.

A. Hamiltonian Systems.  At the end of the last chapter we saw
that Hamiltonian systems are qualitatively different than damped
systems because their dynamics conserve volumes in phase space.
In this chapter we explore the consequences of this difference.  We
start by examining the pendulum, described by the second order
ordinary differential equation:

d2θ
dt2 = −

g

L
sinθ . (8.1)

To make things a bit simpler, we fix g L = 1 (we can do this by
scaling time: we define τ = t(g / L)1 / 2  and write the equation in terms
of τ).  The motion of the pendulum is periodic (in other words, the
orbits close); you calculated the period in Problem 6.4.

A.1.  The importance of conserving phase space areas: two
different approximations.  As we have seen, the way to solve a
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second order equation like (8.1) is to break it into two first order
equations:

dθ
dt

= p ,

dp

dt
= − sinθ  .  (8.2)

In the last two chapters, we solved equations of this type using the
fourth-order Runge-Kutta method,  but here we will use a simpler
technique to highlight what happens when our approximations
violate conservation of phase space areas.  We w i l l  do the most
obvious thing:  write θn+1 and pn+1 in terms of θn and pn by
approximating the time derivatives as finite differences:

θn+1 = θn +∆pn

pn+1 = pn −∆ sin θn ,   (8.3)

where ∆ is the time step (make sure you understand why this is the
obvious thing to do).

Problem 8.1. Write the program that implements (8.3) and make
phase space plots of the pairs (θ,p) (when calculating pn+1, be sure
you use θn and not θn+1!).  Start with initial conditions p0 = 0, θ0 = π/3.
Try ∆ = 0.01.  Does the orbit close?  How about for ∆ = 0.1?  How
does the “error” (in this case, the distance by which the orbit fails
to close) depend on the step size ∆?  This divergence occurs even
though equation (8.1) should conserve energy.  Why is this?

You see that with this scheme, the orbits don't close.  No matter how
small the step size, if you wait long enough, the orbit will diverge.

In the last chapter we saw that for a map defined by:

z j +1 ≡
x j +1

y j +1

 
 
  

 
 = f(z j ) ≡

g(x j ,y j)

h(x j ,y j)

 
 
  

 
  , (8.4)

the change in phase space area A when j is incremented by 1 obeys:

δA

A
=

∂g

∂x

∂h

∂y
−

∂g

∂y

∂h

∂x
−1

 
 
  

 
. (8.5)

As you may recall, the Jacobian matrix J  of the map (8.4) is defined
as:
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J =
∂g ∂x ∂g ∂y

∂h ∂x ∂h ∂y

 
 
  

 
. (8.6)

Therefore we can write (8.5) as:
δA

A
= det J − 1 . (8.7)

Exercise 8.1.  Compute J for (8.3), and find its determinant. You
should find that it does not always equal 1, rather it has a term
proportional to ∆2 .

Thus the approximation (8.3) does not agree with an important
qualitative property of all Hamiltonian systems: the conservation of
phase space volume. Hence we should not be surprised if the
approximation fails to capture all kinds of qualitative properties of
the true solution. In particular, as we have seen, orbits which we
know are closed refuse to close within this approximation.

For this particular equation there is a simple way of fixing it up so
that it is area preserving.  (This is a trick that works in only a few
cases. More generally, if the first order solution analogous to (8.3)
doesn't work well enough for your purposes, you have to go to a more
complicated, higher order method of solving the equation. We won't
go into these methods now, but see Numerical Recipes, chapter 15, if
you are interested).  The trick is to write

θn+1 = θn +∆pn+1

pn+1 = pn −∆ sin θn (8.8)

Exercise 8.2: Compute J  for (8.8), and verify that its determinant
is unity. Fix up your program from Problem 8.1. The difference should
be dramatic, especially for large ∆.

A.2. The Standard Map.  We introduced equations (8.8) as an
approximation to the equations of motion of the pendulum.  But these
equations are worth investigating in their own right.

If we define r j = ∆pj  and k = ∆2 , we can rewrite (8.8) as:
θ j +1 = θ j + r j +1,

r j +1 = rj − ksin(θ j) .   (8.9)
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In interpreting equations (8.9) it is sometimes (though not always)
useful to think of θ as a phase, so that θj  can be shifted by an
amount equal to 2πn, where n is an integer, without changing the
physics.  With this interpretation, we choose to write equations
(8.9) as:

θ j +1 = θ j + r j +1   mod 2π          ( −π ≤ θ j < π  for all j)

r j +1 = rj − ksin(θ j) . (8.10)

Equations (8.10) are known as the "standard map."  One physical
situation in which they appear is a circular accelerator in which a
beam goes around so that the magnitude of its momentum is
constant except in a small acceleration section.  Let pj be the
momentum of the beam during the jth circuit.  In the acceleration
section, the beam sees an oscillating (AC) field which gives it an
impulsive kick that depends on the phase, θ j, at which it enters the
acceleration section. If the kick is proportional to sin(θ j), we have

p j +1 = p j − K sin(θ j ) . (8.11)

But the phase at which the beam enters the next time, θ j+1, i s
advanced by an amount proportional to its momentum, so that

θ j +1 = θ j + Cp j +1. (8.12)

The pair (8.11) and (8.12) is identical to the set (8.9) if we define
r j = Cp j  and k = CK .

There are three kinds of phase space orbits for the Standard Map:

i) Periodic--a finite number of points.

i i) Chaotic--the orbit apparently fills an area.

i i i)  KAM curve--the orbit fal ls on a curve (not necessarily
continuous).

For a given k, chaotic, periodic, and KAM orbits can all be observed,
depending on the initial conditions.

Problem 8.2 . Exploring the behavior of the Standard Map.   By
plotting a phase space portrait, you should be able to locate all three
kinds of behavior.  Create an applet to do this.  Use k = 0.75.  The
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easiest way to observe all three kinds of behavior is to start at, say,
r = 0.1, θ = 0, and then keep increasing the initial r.  What does the
portrait look like for small r?  At what value of r do things change?
What does it change to?  As k is decreased, do the chaotic regions
become easier or harder to find?

Menu Project.  Mapping Phase Space Regions for the
Standard Map.   In this project, you will characterize the
evolution of areas in phase space for the standard map (8.10).
Take a whole bunch of points (like maybe a thousand) bunched
into a fairly small area, and iterate them all by (8.10), and
see what the resulting region looks like.  Typically, it will be
a distortion of the original region, but it should have the
same area.  Try to determine if the area seems to be
preserved after several iterations.  Then see what you can
say about how the shape of the area evolves as the map is
iterated.  Do this also with mapping (8.3), and compare the
two cases.

Menu Project. Dissipative Standard Map.   In this
project, you will study the map defined by:

θ j +1 = θ j + p j +1 ,
p j +1 = bpj + (1− b)Ω− k sin(θ j ) ,

where 0 ≤ b ≤ 1.  This map, called the dissipative standard map,
is identical to the standard map when the parameter b is
equal to 1.  By calculating how phase space areas evolve, you
should be able to understand the physical significance of the
parameter b.  What is the physical significance of the
parameter Ω?   Calculate the phase space portraits for this
map, and characterize the different types of behavior.

Although, as we saw, the Standard Map can be viewed as an
approximation to the equations of motion of a pendulum, the
Standard Map has chaotic orbits (for some init ia l  conditions)
whereas an undamped undriven pendulum does not (recall from
chapter 6 that conservation of energy implies that the motion of an
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undamped undriven pendulum is always periodic).  The results of
problem 8.2 should help you to see why there is no inconsistency.
For a pendulum to exhibit chaos, it must be subject to a driving
force.  This is the subject of the next project.

Menu Project. The Undamped Driven Pendulum.   This
project concerns the dynamics of the undamped driven
pendulum, described by the equation of motion:

d2θ
dt2 = − sinθ + F0 sin ωt( ) .

Make some phase space plots for this system, being careful
to solve the equations of motion accurately enough so that
the orbits appear to close when F0 = 0.  How does increasing
F0 change the behavior?  If you plot the (p,θ) pairs at discrete
times separated by the drive period, how do these phase
space plots compare to those for the standard map?

B. Classifying orbits for 2d maps.  In Chapter 3 we classified
all the possible behaviors for a smooth one-dimensional map near a
fixed point.  Orbits were classified as stable, superstable,
marginally stable, or unstable.  We now examine stability for two
dimensional maps and systems of differential equations.

B.1. Linearization of 2d maps.  We ask the same question for 2d
maps that we asked in the 1d case: How do orbits behave near a fixed
point? We will answer the question in the same way, by linearizing
the map in the vicinity of the fixed point. So, assume z* is a f ixed
point of the map f (z*), i.e.

z* ≡
x *

y *

 
 
 

 
 
 = f(z*) ≡

g
x *

y *

 
 
 

 
 
 

h
x *

y *

 
 
 

 
 
 

 

 

 
 
  

 

 

 
 
  

(we w i l l  use vector notation and column vector/matrix notation
interchangeably). To linearize the map f , we use the 2 dimensional
Taylor expansion, so that if z0 is close to z*, we have
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z1 ≡ f(z0 ) = f(z * +(z0 − z*))

      ≅ z * +J(z*)(z0 − z*) (8.11)

where J (z*) is the Jacobian matrix evaluated at z = z* :

J =
∂g ∂x ∂g ∂y

∂h ∂x ∂h ∂y

 
 
  

 
. (8.12)

(Equations (8.11) and (8.12) are equivalent to equation (7.4) from
chapter 7.)  If you are unclear on the derivation of these equations,
you can work it out yourself without the vector notation.  Use the

fact that x1 ≅ x * + ∂g
∂x

x0 − x *( ) + ∂g
∂y

y0 − y *( )  for a function of two

variables (likewise for y).  Putting x and y back into vector notation
should lead you to equations (8.11) and (8.12).

Equation (8.11) asserts that the initial difference vector z0 - z*  i s
transformed by the matrix J (z*) to the iterated difference vector,
z1 - z*. So to understand what happens to points close to the fixed
point, we need to study the structure of the matrix J (z*). Recall
that any vector z can be written in terms of the eigenvectors of
J (z*) (for reasonable J ’s).   Call the eigenvectors e i .  Then the
vector z0 - z* can be written as z0 − z* = Ai e i

i
∑ , with unknown

amplitudes Ai  for each eigenvector.  If we apply J (z*) to e i ,  we get
λ i e i , where λi  is the eigenvalue.  Hence, applying J (z*) to z0 -  z*
gives us the new iterate

z1 − z* = J z0 − z*( ) = Ai Je i
i

∑ = Ai λ ie i
i

∑ .

Now, if we apply N iterations, we have

z N − z* = JN z0 − z*( ) = Ai J
N e i

i
∑ = Aiλ i

N e i
i

∑

which tells us that the eigenvalues of J (z*) determine the behavior
of the iterates.  Roughly speaking, if J (z*) has eigenvalues that
exceed 1 in magnitude, the iterates will diverge from the fixed point
because λN  grows with N (analogous to the 1-dimensional case).
However, the classification of fixed points is more complex in two
dimensions.  
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Let λ1 and λ2 be the eigenvalues (which may be complex),  with
associated eigenvectors e1 and e2.  Then the following are possible
(all are illustrated below):

1) λ1 and λ2 both real. Then

i) if |λ1| < 1 and |λ2| < 1, then nearby points are attracted to the 
fixed point, and approach it along hyperbolas whose axes are 
e1 and e2.  The fixed point is attracting.

ii) if |λ1| < 1 and |λ2| > 1, then the fixed point is called a saddle 
node.  Points that start close to e1 initially move closer 
to the fixed point, but ultimately diverge away from it.

i i i) if |λ1| >1 and |λ2| > 1, then nearby points diverge away from 
the fixed point.  The fixed point is repelling.  

2) if λ1 and λ2 are complex, then they must be complex conjugates of
each other.  (This is because det J   = λ1λ2 is real.)  Then

iv) if λ1 and λ2 lie inside the unit circle, points close to the 
fixed point spiral into it. The fixed point is called an 
attracting focus.

v) if the eigenvalues lie on the unit circle, nearby points circle
about the fixed point in ellipses. The fixed point is said to be a
center.

vi) if they lie outside the unit circle, points near the fixed 
point spiral away from it; it is called a repelling focus.

3) if |λi | = 1 for some i, and no other eigenvalue has absolute value
greater than 1, then whether the orbit eventually diverges from the
fixed point depends on higher derivatives, in a fashion similar to the
one-dimensional case that we discussed in Chapter 3.
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(Recall that the eigenvalues λ of a matrix J  can be found be solving
the equation det J − λI( ) = 0, where I is the identity matrix.)

Exercise 8.3.  Linear maps.  One way to observe the cases listed
above is to use linear maps. Thus take a general 2-d linear map:

x n+1 = f(xn ) =
1 + α β

γ 1 + δ
 
  

 
  xn

Choose values of α, β, γ, and δ so as to obtain all six cases listed
above, and verify that the behavior is as you expect. For best results,
choose small values for α, β, γ, and δ so that the matrix is close to
the identity matrix.  Give an example (a combination of α, β, γ, and δ)
of each type of point.  (Hint:  avoid the combination βγ = αδ .  Can you
figure out why?)

Problem 8.3.  Henon Map.   The Henon map is

zn+1 =
xn+1

yn+1

 
 
 

 
 
 = f(zn ) =

ab + byn − xn
2 / b

xn

 

 
 

 

 
 

where a and b are parameters, often taken to be a = 1.4, b = 0.3.  Find
the fixed points of this map, determine their eigenvalues, and verify
that nearby orbits behave as expected (you will need to look very
close to the fixed points to see the expected behavior).

B.2. Area preserving maps.   Recall that Hamiltonian systems
have Jacobians with determinant equal to unity. Since det    J     = λ1λ2 =
1, this rules out some of the cases listed above. If one of the
eigenvalues is λ, the other must be 1/λ. This eliminates cases i, i i i,
iv and vi, leaving only the possibility of a saddle node (often called a
hyperbolic fixed point in the context of area preserving maps) or a
center (often called an elliptic fixed point).

Exercise 8.4 . Using the (area preserving) standard map (8.9), try to
find the two possible types of fixed points. Use k = 0.0025.  You
should have no trouble locating a center; can you also find a saddle
node? Plot trajectories starting near the various fixed points in
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phase space. Can you see why the two types of fixed points are
called hyperbolic and elliptic?

B.3. Limit Cycles.  Up to now we have been talking about stability
properties of differential equations

d

dt
z = f z( )

or maps          (8.13)

z j +1 = f(z j)

near fixed points (Case 1) or fixed points and cycles (Case 2).  There
is one more very important possible behavior of a differential
equation, which we can il lustrate by considering the case of two
variables, x and y which obey the ordinary differential equations

d

dt
x = −y[1+ α (x2 + y2 −1)]− kx(x2 + y2 −1)

d

dt
y = x[1+ β(x 2 + y2 −1)]− ky(x2 + y2 −1)        (8.14)

These equations have two very simple solutions:

a. A fixed point in which x = y = 0

b. A cycle in which x and y simple rotate around the unit circle

x = cos t( )

y = sin t( )    (8.15)

Case b can be expressed in polar coordinates with the statement

that r ≡ x2 + y2
 is always equal to 1.  

Exercise 8.5.  For the case in which α = β, show that these are the
only possible behaviors as t → ∞ by converting equations (8.14) to
polar coordinates.  For which initial values of x and y is the fixed
point the limiting behavior?  For which initial values is the cycle
(called a limit cycle) the limiting behavior?
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To see this solution in more general form we suggest you carry out a
numerical solution of (8.14) using the fourth order Runge-Kutta
method and thereby generate phase plane portraits.

Problem 8.4.   Construct a phase plane portrait of the solution to
equation (8.14) with α = 1, β = 0, k = 0.2.  Notice how the solution
approaches solution (8.15) for almost any starting value of x and y.
By how much does the period you have numerically determined differ
from the exact period of 2π?  How does this error vary with ∆ for
small ∆?  What is the effect of changing the constant k?

B.4. Flow Diagrams.  Flow diagrams are a pictorial way of
representing the stability (or instability) of fixed points.  When
constructing them, we mark the fixed points and then use arrows to
indicate the movement of nearby points when iterated.  We give
some examples below.   

In exercise 8.5 you should have recognized that the equation

d

dt
r =− kr(r 2 −1)

for  r ≡ x2 + y2   determines the nature of the limit cycle.  To see
how this works first notice the fixed points of this flow (where
dr/dt=0).

r = -1                   r = 0                    r = 1

____o_______________o_____________o________

Put arrows on this flow pointing in the direction of dr/dt, i.e. to the
right when dr/dt is positive and to the left when

 
dr/dt is negative.

Notice that dr/dt can change sign only at the fixed points (where
dr/dt=0).   Assume k>0.  

r = -1                      r = 0                     r = 1

→→o←←←←←←←←←←o→→→→→→→→→o←←←←←

This picture tells you that the fixed point at r = 0 is unstable and
the other two are stable.  
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For k<0, the situation is reversed (changing the sign of k changes the
sign of dr/dt everywhere).  

r = -1                      r = 0                     r = 1

←←←o→→→→→→→→→o←←←←←←←←←←o→→→→→

Now r=0 is the stable fixed point; the others are unstable.  Initial
conditions of r>1 or r<-1 will result in the magnitude of r growing
without bound.  

C. Lyapunov Exponents.  One of the hallmarks of a chaotic system
is that orbits are extremely sensitive to the initial conditions.  Two
points initially close together will rapidly diverge from each other
as their orbits progress.  We have already seen such behavior in the
logistic map for r  = 4.  A quantitative measure of this divergence is
the Lyapunov exponent.   

One can analyze the stability of any kind of orbit (chaotic or not). To
do this, imagine one has constructed a sequence of orbit points

xo, x1, x2,  . . . , xn, . . .

starting from an init ia l  xo.  Then one constructs another orbit
starting from an initial value xo' = xo + δxo, where δxo is very small.
These two orbits initially lie very close together (separated only by
δxo).  Then one has xo', x1' = f(xo'), . . . , and if δxo is very small, then:

′ x n = xn + Anδxo

where (using the chain rule):

A1 =  
df

dx x 0

A2 =  A1 

df

dx x1

...

An =  
df

dx x jj =0

n -1

∏ .
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There is a theorem which states that for large n the limit

 λ  =  lim
n→ ∞

1

n   ln   
df

dx x j

 

 
 

 

 
  

j=0

n-1

∑     (8.16)

exists for almost al l  starting values, xo.  Here λ is called the
Lyapunov exponent for the motion.  If the motion is a stable cycle of
length N,  then λ will be negative, and in fact

λ = (ln|Λ| ) / N

where Λ is the Floquet multiplier for the cycle.

If the motion is chaotic, λ > 0 and eλ represents the average amount
(per step) by which the orbits separate from one another.  Another
say of stating this is that, after N steps, the difference between
two orbits will grow as

δxN = δx0eλN     (8.17)

where δxN  is the separation between the orbits after N iterations.
Equation (8.17) applies only when the separation between the orbits
is small.  If λ is positive, then eventually the orbits w i l l  be
separated by a distance approaching the size of the attractor, and
equation (8.17) will no longer be valid.

Exercise 8.6.  For the logistic map x j +1 = rx j (1− x j)  find the value of
the Lyapunov index for r = 0.5, 1.5, and 4 by numerical methods.
Check your result by using several values of n and xo.  Check them
against exact answers you derive.  (For r = 4 use the solution
x j = (1− cosθ j) / 2 , θ j = 2 j θo   to evaluate λ.)

Problem 8.5.  Lyapunov Index for Logistic Map.   Plot λ against
r for the logistic map. Interpret the result.  Estimate the error.

For systems of differential equations, if we start from two initial
conditions z1 t = 0( ) and z2 t = 0( ) = z1 t = 0( ) + δz ,  the Lyapunov index i s
defined as:

λ = lim
t→∞

  lim
δz→ 0

 
1

t
ln z1 t( ) − z2 t( ) .
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Menu Project.  Lyapunov Index for the Lorenz
Equations.  Recall from Chapter 7 the Lorenz equations:

d

dt
x = p y − x( )

d

dt
y =− xz + rx − y

d

dt
z = xy − bz  .

Estimate λ for the Lorenz equations for the parameter values
p = 10, b = 8/3, and different values of r.  What do you think
is the error in your estimate?


