
* * *

Phys 251/CS 279/Math 292 Winter 1999 page 1

Chapter 1

Chapter 1: Getting Started

Goals:

• To learn the basics of using a Macintosh

• To use CodeWarrior to compile and run prewritten Java programs

• To learn some basics of Java programming—logical and math
operations, drawing on applets

• To answer questions about the geometry of particle motion in
enclosed spaces

In this first chapter we w i l l lead you step-by-step through the
things we want you to do. Future chapters will be much less explicit
in describing the precise way you should do things.

A. Preliminaries. First, find a Macintosh in the MacLab. If you are
unfamiliar with the Macintosh, please talk to your TA or to the
MacLab staff, and they will show you how to get started with basic
operations such as creating and opening folders and files.

Next, if you are not familiar with a web browser, you should check
out Netscape. To find it, double click on "Ryerson Maclab" and
"Netscape x.x" (where x.x is the current version number). In addition
to checking out some useful web sites (the U of C home page is at
http://www.uchicago.edu), you might want to go to some of the sites
running Java applets that are in the Gamelan directory at
http://www.developer.com/directories/pages/dir.java.html.

Later we will run a Java applet using the Web browser. However,
first we will run simple Java applets using CodeWarrior.

B. Getting Started. To start on chapter 1, open (i.e. double-click
on) the icon called "MacLab Resources", then sequentially open the
"Courses," "Winter 1999," and "Phys 251/CS 279/Math 292" folders.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 2

Chapter 1

This folder contains four subfolders, called "Class Notes," "Drop
Box," "Programs," and "Solutions."

The "Class Notes" folder contains these Class Notes. You w i l l be
putting the programs you write for your projects in the "Drop Box,"
and "Solutions" w i l l contain the solutions to the exercises,
problems, quizzes, and required projects. Right now, we want you to
open (i.e. double-click on) the "Programs" folder.

To start Chapter 1, copy the folder called "Chapter_1" to the
desktop by dragging the "Chapter_1" folder icon to the desktop.
(Eventually you may want to copy this folder onto a zip disk.) Now
double click on the folder "Explore" in the (desktop) "Chapter_1"
folder, and finally on the file "Explore.mcp." The computer will start
running CodeWarrior, then after a bit you will be in the programming
environment, working on a project represented by a window with
label Explore.mcp. The window should contain, under “Sources,” a
list of files in the project: “Explore.html” and “Explore.java.” If it
doesn't, click on the triangle on the left next to “Sources” to see
this l ist of files. “Explore.java” is the name of a Java program
which is provided for you. Open this file by double-clicking on the
word “Explore.java” in the project window.

This applet performs a set of very simple tasks. It takes two
numbers and multiplies them together, and then displays the two
numbers and their product on the applet. The program knows how to
write onto the applet because it actually defines an "extension" of
the class "Applet." The people who wrote Java have written code
that tells members of the Applet class how to display text, among
other things. After some comments (first 3 lines, each preceded by
//), the next two lines tell Java that the program will be using some
of this code. The following line of the program makes sure that Java
knows that Explore is in the Applet class. To get the program into
operation, open the Project menu and select the command Run.1
Codewarrior compiles the program (i.e. the Java compiler translates
the program into "bytecodes," a computer language specially
designed so the program can be run over the internet) and the "class
libraries" (the code written by others that tells the computer how to

1If you don’t see a Run command, it is because the debugger is ‘enabled.’ Select Disable
Debugger from the Project menu, after which the Run command should appear on the
Project menu.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 3

Chapter 1

display things on the applet viewer, among other things) are loaded.
Then the application Metrowerks Java opens automatically and
executes the instructions one at a time (it "interprets" the bytecode
instructions), opens the applet viewer, and finally displays the
applet. Some other windows w i l l also open, which sometimes
contain useful information (but not now). You can close them after
running the program. Our program is shown below:

// Anything to the right of double slashes like these is a comment and is not read by the

// computer

// Explore.java Our first program, which multiplies numbers

import java.applet.Applet; // import Applet class

import java.awt.Graphics; // import Graphics class (enables writing to applet viewer)

public class Explore extends Applet // defines the name of our Applet

{

// in the next lines, this program defines some variables

 int i; // defines an integer variable

 int j, k; // defines two more

double x, y; // defines two real number variables (not used)

// every applet automatically calls the methods init and paint, which we will modify

// so that they perform the operations that we want. In Java, init and paint do nothing

// unless we specify otherwise.

public void init()

{

 i = 7; // gives i the value of 7

 j = 5; // gives j the value of 5

 k= i * j; // computes i times j, puts the result in k

} // end of init

public void paint (Graphics g) // display the result on the Applet

{

int xpos = 25; // x coordinate of output string on applet, in pixels

int ypos = 25; // y coordinate of output string, from top of applet

 g.drawString(Integer.toString(i), xpos, ypos); // convert i to string and

// put onto Applet

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 4

Chapter 1

 ypos = 40;

 g.drawString(Integer.toString(j), xpos, ypos); // put value of j onto Applet

 ypos = 55;

 g.drawString(Integer.toString(k), xpos, ypos); // put value of k onto Applet

} // end of paint

} // end of definition of the applet Explore

Program 'Explore.' Our First Program. It takes two numbers and
multiplies them together and then displays the factors and the
product on the Applet.

Run the program 'Explore' to see that it operates correctly.

To those unfamiliar with computer programming, this may seem like
quite a long program, since al l it does is determine that 5×7=35.
Look over it briefly. You’ll see that over half of the text is in
comments (text preceded by //), which really aren’t part of the
program at al l (the compiler ignores them). Also, notice that the
majority of the commands in the program are devoted to printing the
output on the applet (everything from the command public void paint on).
Another significant portion is devoted to organizing the computer’s
memory in preparation for doing the computation (the definition
commands). The actual computation boils down to the single
command k= i * j.

In reality, our program did not run on its own; we had to do an
additional step so that our Java applet would run. Java applets are
designed to be run using web browsers like Netscape and Internet
Explorer, which can only recognize Java if the program is embedded
in a document written in HTML (HyperText Markup Language). We
have arranged this by putting an HTML file called “Explore.html” into
the project “Explore.mcp.” The fi le “Explore.html” contains the
lines:

<title>Explore</title>

<hr>

<applet archive="AppletClasses.jar" code="Explore.class" width=200 height=200>

</applet>

<hr>

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 5

Chapter 1

You can view this f i le by double-clicking on its name in the
“Explore.mcp” project window. This HTML fi le tells the web
browser to look in the archive "AppletClasses.jar" for the applet
“Explore” (CodeWarrior sets up this archive automatically, as you'll
see shortly) and fixes the size of the applet display at 200 x 200
pixels. Java has a hard and fast rule that the Java code for the
applet “Explore” must be placed in the file “Explore.java.” (The html
fi le need not be called "Explore.html.") The Java compiler
(Codewarrior) puts the bytecodes it produces into the f i le
“Explore.class” (which is compressed and put into the archive
"AppletClasses.jar"), and the web browser runs the program by
interpreting those bytecodes. We used the “appletviewer” that i s
built into CodeWarrior to run our applet, but you can also use a
regular web browser such as Netscape. You can view the applet by
opening Netscape (if you need to free up some memory, then "Quit"
CodeWarrior either by choosing Quit from the File menu or else by
z-Q, simultaneously hitting z and q) and selecting Open File from
the File menu and then using the dialog box to select “Explore.html.”

Now let’s alter our original program and see what happens. If you are
not running CodeWarrior, then start it up, either by clicking the
CodeWarrior icon, choosing it on the Apple menu, or by double
clicking on our old project “Explore.mcp.” To make a change, open
the file called “Explore.java” and make a change in the text. A good
choice would be to change the value of ‘i ’ in the line i = 7, perhaps to i
= 12. Be sure to save and close the window after making the change.
Then open the Project menu and select the command Run, as before.
The program should execute and indicate that 12×5=60.

Having learned how to edit programs, it is now time to
systematically explore some of the basic features of Java.

Variables are associated with locations in memory. When you
declare a variable you tell the computer how much space it needs to
reserve to store the variable and also tell the computer what type of
data w i l l be represented in that space. There are many different
types of variables in Java. In our program, i, j, and k have been
defined to be integers, while x and y have been defined to be real
numbers with 'double' precision. In the following exercises you will
explore what Java does with integer variables.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 6

Chapter 1

To complete the following exercises, you w i l l need to make more
modifications to “Explore.java.” We recommend saving the altered
Java and html files with different names (don't forget to change the
name of the Applet!).2 CodeWarrior will automatically put the new
fi le in the project and remove the fi le it superseded from the
project. The old file hasn't been erased, though, and you can Add (in
the Project menu) it back to the project if you wish. If you change
the name of the applet you will need to alter the html file so that all
three occurrences of “Explore” are replaced with the new name.
Alternatively, you can choose not to change the name of the Applet,
but old versions of the program will be lost as you introduce new
alterations.

Exercise 1.1. Elementary integer operations.
1.1.1 The basic integer operations are + - * / and %. Change
“Explore.java” to use the other integer operations besides
multiplication. Figure out what each operation means. A l l
operations should be quite obvious except perhaps for % (which i s
called "modulus"). Make sure that you know what happens with
negative numbers.

1.1.2 What happens if you have several such operations in a row, as
1 + 3*4; or 2*3 + 5 / 3? You can organize expressions like these by
putting in parentheses, as for example in:

k = (4* 3) + (4 / 2);

We usually put in parentheses to avoid having to remember the rules
related to what happens without them.

1.1.3 What happens if you do an operation in which the same
variable appears on both sides of the = sign? For example, see what
k ends up being if, after the statement "k = i * j ;" you add the
statement:

k = k + 3;

1.1.4 There is also a function for taking the absolute value of a
number: if i is a variable, Math.abs(i) is its absolute value, so that

Math.abs(-1) = 1

Math.abs(1) = 1

Math.abs(0) = 0.

2 Alternatively, you can save the old version in a file with a different name (say, Explore.old.java).

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 7

Chapter 1

Try this function out in the program “Explore.java.”

Exercise 1.2. Errors. There is nothing awful about making errors.
Let us make a few. In each exercise start from the original version
of “Explore.java.”

1.2.1 Insert a line in your program to set the variable ‘m’ equal to
zero. What happens? The compiler will write a message in the Errors
& Warnings window that will help you figure out how to fix this
error (it even has a red arrow pointing to the culprit line of the
program).

1.2.2 Now insert a line to set i equal to 1.1. What happens?

1.2.3 Set i equal to zero and define j by
j=1 / i;

What happens? If the computer locks up, you will need to force exit
from ‘‘Metrowerks Java’’ by simultaneously hitting the three keys z-
option-esc. You may find information about what went wrong in the
Java Output window.

1.2.4 One more error: Set j equal to 100000 and then insert a line
j = 600000*j;

Now run the program. Is your value for j what you expected? What
happened?

Java also supports two other data types similar to integers: long and
short. Variables of these types are declared and used in the same
way as variables of type int. However, java assumes that any non-
decimal number (such as 5) is of type int unless another type i s
explicitly specified in the following manner:

long y;
short z;
y = (long) 5l;
z = (short) 5;

The number 5 is cast as a long integer in the third line and as a short
integer in the fourth line. Notice that long integers need to end in ‘l’,
but short integers do not have to end in ‘s.’ To convert these data
types to strings, use Long.toString(y) and Short.toString(z).

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 8

Chapter 1

Problem 1.1. What is the largest possible value of an integer
variable? The smallest, i.e. the most negative? What are the
largest and smallest possible values of a "long" integer? Determine
your answers to 5 significant figures.

In addition to integers, Java has the capability to manipulate real
(decimal) numbers as well. Note that in the applet “Explore” there
are two real number variables declared (but not used) in this applet
called double variables. Edit the program “Explore” to use the
variables x and y. To draw the output on the screen, you will need to
use the command Double.toString(x).

Exercise 1.3. Elementary real operations. Modify the applet
“Explore” to answer the following questions.

1.3.1 Are all of the following valid expressions for a real variable:
-3.4, -7.01e11, .011, 1, 1e5? What does the ‘e’ notation mean?

1.3.2 Can you store the result of an integer computation in a real
variable? How?

1.3.3 What happens if you have several such operations in a row,
such as 1.0 + 3.0*4.0 or 2*3.0 + 5.0?

C. Loops. In doing a computation, you often want the computer to
do the same operation (or set of operations) over and over again. The
programming construction which allows you to execute the same
commands repetitively is called a loop. In Java you can define a loop
in several ways. One way is with a for statement.

Look at the program entitled “Fibonacci.java” below. This applet
constructs the series 1,1,2,3,5,8, Note that each number in this
series is the sum of the two preceding numbers. The algorithm that
we will use to construct this series is as follows. Let ‘i’ be the first
number in the series, ‘j’ the second, and ‘k’ the third. We compute ‘k’
by summing ‘i’ and ‘j.’ To create the fourth term in the series we let
‘i’ be the second number in the series, ‘j’ the third, and ‘k’ (created
by summing ‘i’ and ‘j’ as before) the fourth. We step through this
process over and over again. Let ‘n’ be our "step counter." At each
step in this process we do two things. First we shift ‘i’ and ‘j’ to be
the ‘n’ and ‘n+1’ terms in the series. Second, we compute ‘k’ by

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 9

Chapter 1

summing ‘i’ and ‘j’. The for{} construction sets up a loop which will
allow us to run through our process a specified number of times.

// Fibonacci.java

// An applet that writes out a Fibonacci series

import java.awt.*;

import java.applet.Applet;

public class Fibonacci extends Applet { // defines the name Fibonacci for our Applet

 int i, j, k;

int n, nsteps, ypos;

public void init () // initialize our variables

{

 nsteps = 8; // we start with two numbers in the series

// nsteps gives us the number of "new" Fibonacci numbers

// which will be created

// The series length will then be nsteps + 2

 i = 1; // i is initially the first term in the series

j = 1; // j is initially the second term

ypos = 25;// vertical coordinate of first line of text (in pixels, from top)

} // end of init

public void paint (Graphics g) // use paint method to display on applet

{

 for (n = 1; n <= nsteps; n=n+1)

{ // the next four lines will be executed nsteps times

 k = i + j; // Sum the last two terms in the series to get the next

 g.drawString(Integer.toString(n) + ", " +

Integer.toString(k), 25, ypos);

// Write the step number and k onto the applet

// In this statement the '+' concatenates strings, so that

// n is written and then k

//

// The next two lines shift i and j

// to be the last two terms in the series

i = j; // the new value of i is that of j

 j = k; // the new value of j is that of k

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 10

Chapter 1

ypos = ypos + 15; // put next pair lower down on the applet

 } // end of the for loop

} // end of paint

} // end of applet

Program Fibonacci.java. This program computes a Fibonacci series of
length n. Notice that the brackets serve to block off a portion of the
program which can be treated as a whole. In this case, the brackets
tell the computer to treat the four lines in the for loop as if they
were a single statement. Brackets are also required at the beginning
and end of a program. Also note that while the '+' sign denotes
addition when applied to numbers, when used with strings (as in the
line with "g.drawString"), it means "string concatenation" (writing
the first string and then the second).

Create a Codewarrior project for “Fibonacci.” First, choose New
Project under the File menu. A box will open asking you to pick the
Project Stationery. First, click on the arrow next to Java , and then
choose the "Java Applet" stationery. The stationery dialog box also
gives you the option of automatically creating a new folder for the
project, which we recommend that you do. Another dialog box will
ask you to enter a name for the project and choose its location. We
suggest that you name the new project “Fibonacci.mcp” (mcp is the
fi le suffix for CodeWarrior project files) and select the folder
“Chapter_1” (it is the folder that already contains Explore). If you
selected the "create folder" option, CodeWarrior will create a folder
“Fibonacci” in the folder “Chapter_1.”

When the project window appears, click the arrow next to "Sources"
to reveal the default fi les “TrivialApplet.html” and
“TrivialApplet.java.” These are the fi les we need to change to
create and view our applet. First, double-click on
“TrivialApplet.html” and edit it by replacing al l occurrences of
‘TrivialApplet’ with ‘Fibonacci.’ Then save the file (you are free to
change the name of the html f i le when you save it, but it's not
necessary). Then open “TrivialApplet.java” and use the editor to
replace the existing text with the text of the program
“Fibonacci.java” given above. You can cut and paste the text of
“Fibonacci.java” from the SimpleText file "Fibonacci.java text" that
we have placed in the folder "Text Files," which is inside the

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 11

Chapter 1

"Chapter_1" folder. To cut and paste, double-click on the
"Fibonacci.java text" icon (which causes SimpleText to open it),
select all the text in the file (either by holding down the mouse as
you drag it down through the file's contents, or by using z-A), Copy
the text onto the clipboard (using z-C), and then Paste it into the
program (using z-V). It is also possible to Select All, Copy, and
Paste using the menus at the top of the screen. Finally use the
Save As... command in the File menu to save the fi le as
“Fibonacci.java.” This time, the name “Fibonacci.java” is not
optional; there is a strict rule that a Java file must have the same
name as the public class it contains (determined by the "public class
Fibonacci extends Applet" statement in the program). Now, you can
compile and run the program by choosing Run from the Project menu.

The Fibonacci series has many interesting properties. Let us define
fn as the nth term in the Fibonacci series and let gn= f n/fn-1. As n
becomes large, gn approaches a number φ. It turns out that φ is a wel l
known number called "the golden section" or "golden mean". The
Ancient Greeks were famil iar with φ in the following context.
Consider the line segment shown below.

a b

a + b

If the ratio a/b is the same as the ratio (a+b)/a, then a/b = φ. The
Greeks thought that rectangles with sides a and b in this ratio were
the most aesthetically pleasing. The sides of the Parthenon in
Athens and the proportions of many ancient Greek vases and
sculptures are based on the golden mean.

Problem 1.2. Show analytically that the golden mean is (1+ 5)/2.
Then modify the Fibonacci program to compute and write out the
ratio of each term to its predecessor. (Don't forget that you want
this ratio to be a float or double variable.) Show analytically that gn

approaches the golden mean as n becomes large.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 12

Chapter 1

Here is another small note on for loops. In using such a loop, the
‘counting’ variable does not have to start at one. For instance,
suppose you wanted to write to the screen a sequence of integers
from 2 to 8, along with their squares. Assuming the variables i and
ypos have been declared, the following lines of Java w i l l do
precisely that:

for (i = 2; i <= 8; i = i+1) {

g.drawString(Integer.toString(i) + ", " +

Integer.toString(i*i), 25, ypos);

// Write the step number and its square to the applet

ypos = ypos + 15; // put next pair lower down on the applet
}

D. Drawing on the Screen. Graphics can be displayed on an
applet. The applet has an invisible coordinate system built into i t
with (x=0, y=0) being the upper left corner and the other corners
having the coordinates determined by the width and height in the
"applet code" statement in the html file that calls the applet.

The basic method one needs to start out with graphics is the
Graphics method drawLine, which has the following specifications:

public abstract void drawLine(// Graphics class

int x1, // x coordinate of first point, in pixels

int y1, // y coordinate of first point

int x2, // x coordinate of second point

int y2) // y coordinate of second point

Draws a line, using the current color, between the point
(x1, y1) and the point (x2, y2).

Ignore the keywords public, abstract, and void for now. We w i l l
discuss their meaning in the next chapter.

A program which uses drawLine is “Drawing,” shown below. Once
again, create a new project by selecting New Project from the File
menu, modify the fi les “TrivialApplet.html” and
“TrivialApplet.java,” and change the name of “TrivialApplet.java” to
“Drawing.java.” Don’t forget to change the Java Applet Settings .

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 13

Chapter 1

The text of “Drawing.java” is in the Text Files folder. But we would
like you to type the program in yourself, so you can see how
CodeWarrior's editor works. Notice how the editor color-codes
things to help you remember to close braces and put in the
semicolons. Be sure to be aware of capital and small letters because
Java is case-sensitive; "a" and "A" are not the same. After you have
typed in the program, Save it as “Drawing.java,” and then Run it.

// Drawing.java draws a line on the applet

import java.awt.*;

import java.applet.Applet;

public class Drawing extends Applet {

int iold, jold, inew, jnew,k;

public void paint (Graphics g)

{

// draw a line from (5, 10) to (60, 150)

g.drawLine (5, 10, 60, 150);

} // end of paint

} // end of applet

Run the program and note the effect of adding more lines, say:
g.drawLine (100, 100, 150, 150);

g.drawLine (150, 150, 150, 100);

Java does not give us a direct way to plot a single point. Instead, we
draw a line starting at the position where we want to plot the point
and ending at the same point. Thus if we want to add a command to
our paint method to plot a dot at the position (100,100), we would
do so with the line:

g.drawLine(100, 100, 100, 100);

Or, if one wants a larger shape, one could plot a small filled square
three pixels on a side centered at position (175,175) using:

g.fillRect(174,174,2,2);

The specifications for fillRect are:

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 14

Chapter 1

public abstract void fillRect(// Graphics class

int x, // x coordinate of first point, in pixels

int y, // y coordinate of first point

int width, // width of rectangle

int height) // height of rectangle

 Draws a filled rectangle from (x, y) to

(x+width-1, y+height-1) in the current color.

One can also draw other shapes using methods such as drawArc,
drawOval, etc., which are described in Chapter 13 of Beginning Java.

Exercise 1.4. We can now simulate the effect of a 'ball' bouncing
off the top and the bottom of a rectangular region. More precisely,
we can show the path of such a ball as it moves from top to bottom,
bottom to top, and every time advances in the x direction by the
same amount. Let this amount be k and let us modify the paint
method in “Drawing.java.” First start out by issuing instructions
which set initial values for i (the x-coordinate of our ball), j (its y-
coordinate), and k (the step forward).

iold = 0;

jold= 0;

k = 25;

Next, do the bounces.
jnew = 200-jold;

inew= iold+k;

g.drawLine(iold,jold, inew,jnew);

The first line moves the y-coordinate up and back from top to
bottom or from bottom to top. The next advances the x-coordinate.
The last step draws the line. Insert a loop in the program to advance
the coordinates and draw lines ‘nlines’ times. Call your counting
variable ‘count.’ Make sure that each new line starts from where the
last one ended. The result of the program is that a little picture is
drawn out.

Now we have used computer graphics to display the answer to a
(tiny) mechanics problem.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 15

Chapter 1

One final point about graphics: You could want to print out on a
printer something displayed on an applet. The easiest way to do this
is to take a "snapshot" of the whole screen, by simultaneously
pressing z-Shift-3. This will produce a file called "Picture 1" (or
"Picture 2," "Picture 3," etc.) on the startup disk (if you don't know
which disk is your startup disk, use Find File to find "Picture 1"). You
can open the fi le using SimpleText, which happens automatically
when you double-click on the icon of “Picture 1,” and then select the
Print command on the File menu in the SimpleText application.
(Directions for saving Java applet output on Macintosh, Windows and
Unix systems are at http://gdbwww.gdb.org/gdb/mapPrint.html.)
You can use MacPaint, Photoshop, or Canvas to alter and print the
file, if you wish.

E. More About Loops. A for(){} loop is not the only way to
construct a loop. The program “FirstOrbit” below uses a second
technique, the while(){} structure. Using this structure is very
simple. Everything that is between the brackets w i l l be executed,
until a condition that you specify is no longer satisfied. We w i l l
just do the simplest thing: terminate the loop when we get to the
edge of the screen, i.e. when the variable iold is greater than 200.
(For a more complete discussion of loops see Chapter 3 of Beginning
Java.

// FirstOrbit.java

// an orbit calculation for particles bouncing off the top

// and bottom of a rectangle.

import java.awt.*;

import java.applet.Applet;

public class FirstOrbit extends Applet {

// declare variables

int iold, jold, inew, jnew; // x and y coordinates of particle at beginning

// and end of a flight between bounces

int di; // advance of i in each bounce

public void init ()

{

// set initial values

iold = 0;

jold = 0;

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 16

Chapter 1

di = 22;

}

public void paint (Graphics g)

{

// set up a loop to run through the same steps many times

while (iold <= 200) { // terminate loop when x coordinate exceeds 200

inew = iold + di; // advance i

jnew = 200 - jold; // go from top to bottom

g.drawLine (iold, jold, inew, jnew); // draw line between points

// start next line at endpoint of the line just drawn

iold = inew;

jold = jnew;

} // end of while

} // end of paint

} // end of applet

Program FirstOrbit. An orbit calculation for a ball bouncing off two
walls. There are many bounces but the program ends when it should.
Notice how while is used.

Exercise 1.5. Add “FirstOrbit.java” and a suitable html file that
calls it to the project “Explore.mcp.” Use z-R to make the program
run.

A note on nested loops. There is nothing wrong with having a loop
inside a loop. However, be careful that the ‘counting’ variables are
different from each other! As an exercise, can you determine what
the output from the following lines of code would be?

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 17

Chapter 1

i = 0;

ypos = 25;

while (i < 6) {

j = 1;

while (j < 3) {

g.drawString(Integer.toString(i *j), 25, ypos);

j = j + 1;

ypos = ypos + 25;

}

i = i + 2;

}

The answer is that this bit of program writes out the numbers: 0, 0,
2, 4, 4, 8. Please go through the loops by hand to make sure you
understand how nested loops work.

Java has a shorthand notation that often comes in handy when you
are incrementing variables. The expression "j = j+2" is equivalent to
"j += 2." There is an even shorter notation "j ++" and "j - - " that
increments or decrements the variable by one. So our bit of code
could also be written:

i = 0;

ypos = 25;

while (i < 6) {

j = 1;

while (j < 3) {

g.drawString(Integer.toString(i *j), 25, ypos);

j++ ;

ypos += 25;

}

i += 2;

}

Of course, for(){} loops and while(){} loops can be mingled and nested.
For example, in the example with nested whiles above, we could have
used a for loop for the j loop:

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 18

Chapter 1

i = 0;

while (i < 6) {

for (j = 1; j <= 2; j++) {

g.drawString(Integer.toString(i *j), 25, ypos)

ypos += 25;

}

i += 2;

}

Make sure you understand how this works.

Exercise 1.6. Now modify FirstOrbit.java in the following way.
Replace the line that says "while(i <= 200)" with "while (i != 201)". Can
you predict what will happen? Try it and see. Don't panic at what
happens; instead, read the next paragraph.

Now, there is a bit of a problem. The program keeps on going, and
going. It never stops. What to do? There are several things you can
try. The first is to press z-. (command-period). If that doesn't
work, try z-control-/ (command-control-slash). If that fails, then
press z-option-esc. Although z-. and z-control-/ may not always
work, z-option-esc will definitely stop the program. (z-option-esc
w i l l emergency-exit you from any Macintosh application, though
sometimes this exit causes the machine to crash. So only use it in
emergencies.) So now we have a program which runs perfectly well,
but forever. Clearly, this is an undesirable situation, and one that
you should take care to prevent in future programs.

Incidentally, you may have noticed the Enable Debug command (just
above Run) on CodeWarrior's Project menu. You can run the program
inside the debugger by choosing Enable Debug and then Debug
(which replaces Run when the debugger is enabled) from the Project
menu. The debugger can be very useful for tracking down and fixing
errors because it enables you to step through the program to see
exactly what it is doing. However, it also makes the program run
much, much slower. So Enable Debug when you are debugging a
program, and Disable Debug when you run a long program where
speed is essential.

F. Logical Operations. In “FirstOrbit.java,” we tested to see
whether to stay in the while loop with the condition while (i <= 200),

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 19

Chapter 1

which seems very natural. We want now to discuss the full range of
logical statements which can be applied to numbers, such as
"i > 200". The following symbols:

== > <

define a set of logical operations which can be applied to integers
(or reals) and have as their outcome the values true or false .

Exercise 1.7.

1.7.1 To see logical (or "Boolean") operations at work reopen the
file containing the program “Explore.java.” To do this select Open
under the Fi le Menu and then click on “Explore.java.” Assign some
values to ‘i’ and ‘j.’ Inside the paint method, type the following (and
then increment ypos):

g.drawString(new Boolean(5==3).toString(), 25, ypos);
g.drawString(new Boolean(2>1).toString(), 25, ypos);
g.drawString(new Boolean(i>j).toString(), 25, ypos);

Run the program to see whether the computer thinks these
statements are true or false.

1.7.2 There are more logical operators. They are:
>= <= !=

What do they mean?

Notice the difference between the symbols = and == . Can you express
the difference in words?

Logical operations have many more uses than simply stopping repeat
loops. They can also be used to conditionally execute a command or
sequence of commands, using the i f(){} construction. If one has a
piece of computer program which looks like

if (condition)

{

statement1;

}

statement2;

then the computer first checks to see whether the thing called
condition is true or false. If condition is true the computer performs
statement1 and then statement2. If condition is false the computer

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 20

Chapter 1

skips statement1 and goes on to statement2. This kind of approach
allows the computer to make choices and do good things (like not
getting stuck in infinite loops). As always in Java, statement1 (and
statement2) can be one of two things: it can be a single command
(like drawLine(i1, j1, i2, j2) ;), or it can be a set of commands
sandwiched between a set of brackets. This is a general rule: any
place you can have a single command, you can instead have several
commands delineated by brackets.

It is important to note that there is no semicolon immediately after
if(condition). If you put one in by mistake, then Java will think that
the conditional applies only to the stuff before the semicolon, so any
statements in brackets following the semicolon w i l l always be
executed. This is a common way to generate accidentally an infinite
loop.

G. Supplied Functions and Constants. Java comes supplied with
many useful functions and supplied constants. Among them is
Math.PI. To see what Math.PI is (it's not hard to guess) include the
statement

g.drawString(Double.toString(Math.PI), xpos, ypos);

in the paint method of “Explore.java.” Then incorporate the following
lines into the paint method of the program to see the effect of such
operations as:

x = Math.sin (Math.PI/2);

y = Math.cos (Math.PI * x);

g.drawString("x="+x+", y="+y, xpos, ypos);

Java also provides us with the Math methods Math.log(x) (natural
log), Math.exp(x) (which returns ex), and Math.pow(x,y), which
computes xy. Another function, especially useful for plotting real
variables, is Math.round(). (Note: When operating on a float, Math.round
returns an int, while operating on a double returns a long).

H. Writing. Here is a little more detail about displaying things on
applets. In all our applets so far we have done this inside the paint
method, which is always called with a Graphics object that we have
been calling g. This Graphics object in turn has access to several
methods that write onto the applet. For example, to put a string on
the applet one uses drawString; to draw a line one uses drawLine. There
is no separate command for writing integer or real numbers, so we

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 21

Chapter 1

first convert them to strings and then display them using drawString.
You cannot use drawString or drawLine unless you have access to the
Graphics object.

Reopen the project “Explore.mcp.” You will be using “Explore.java”
to practice writing.

Exercise 1.8. Writing. Inside the paint method type in the
following statements.

g.drawString("The answer is " + (3+5), 25, 25);

g.drawString("The answer is " + 3 + 5, 25, 40);

What is the output? Notice that + can mean both 'string
concatenation' and 'addition', depending on whether it is acting on
strings or on numbers. Also notice that numbers can get converted
automatically to strings (this is called automatic casting). Finally,
notice that you can tell the computer to perform operations in a
particular order by using parentheses.

Now try:
g.drawString(3+5, 25, 55);

This leads to an error because drawString sees the integer 8 when it
is expecting a string and it complains. Two ways to fix this are:

g.drawString(Integer.toString(3)+5, 25, 70);

g.drawString(3+5 +" ", 25, 85);

The second one works because " " is a string, and when Java
combines a number with a string, it automatically casts the result
as a string.

Problem 1.3. Create an applet that prints out a string and
underlines it.

I. The Graphical User Interface. Often we want a program to be
able to communicate with the person running it, not only to display
the result of calculations but also to follow user instructions. Java
is designed so that it is straightforward to write a program that is
easy for the user to control using the keyboard and mouse. This
functionality is called the "graphical user interface" (GUI).

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 22

Chapter 1

The key to the GUI is that Java has a built-in ability to recognize
"events," such as pressing a key and moving the mouse. In addition,
Java has built-in methods that enable an applet to "handle" these
events. One key event-handling method is called "actionPerformed."

To see how event-handling works, let's go back to Explore and make
it a bit fancier. For example, particularly if you didn’t know how to
multiply very well, you might want to change the values of i and j
and see how that affected the result. You could do this by changing
the assignment statements in “Explore.java” and recompiling each
time, but it is much more convenient to run the program just once
and change the numbers you want to multiply as the applet runs. So
we have modified the program so that the user types integers onto
text fields on the applet and then presses a button to display the
sum on the applet. The people at Sun have written instructions that
enable applets to make Labels, TextFields and Buttons. We can
declare our instances of these objects and add them to our applet.
We instruct the button to listen for an “action” (which will be when
the mouse is clicked on it) and notify the applet every time the
action occurs. (Sun’s instructions are for this are in the java.awt
and java.awt.event packages that are imported in the beginning of
the program.) Because this new program “Exploremore” prints out
the new product every time the user generates an event by hitting
the button, we no longer calculate the product in the method init
(which would only calculate the product once), but rather in the
method actionPerformed, which is called every time the button i s
pressed.

// Exploremore.java

// A second program which multiplies numbers

import java.applet.Applet; // import Applet class

import java.awt.*; // import the java.awt package (enables use of graphical

 // user interface components)

import java.awt.event.*; // import package which enables events to be recognized

public class Exploremore extends Applet // defines the name of our Applet

 implements ActionListener // specifies that applet will be listening

 // for user-initiated actions (mouse clicks)

{

// in the next lines, this program defines some variables

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 23

Chapter 1

 int num1; // defines an integer variable

 int num2, product; // defines two more

 Label prompt1, prompt2; // prompt user for two inputs

Label label1, label2; // labels for input text fields

TextField input1, input2; // store input values here

Label resultLabel; // label for result text field

TextField result; // result text field

Button productButton; // button to get product on result field

// set up the graphical user interface components and initialize variables

public void init()

{

 prompt1 = new Label("Enter integers in text fields");

 prompt2 = new Label("Press button for product ");

label1 = new Label ("First integer");

input1 = new TextField(10);

label2 = new Label ("Second integer");

input2 = new TextField(10);

resultLabel = new Label("Product:");

result = new TextField (10);

result.setEditable(false); // prevents user from changing result field

productButton = new Button("Click for product");

productButton.addActionListener(this); // tells button to listen for mouse

// clicks

add (prompt1);

add (prompt2); // put prompts on applet

add(label1);

add(input1); // put first input on applet

add(label2);

add(input2); // put second input on applet

add(resultLabel);

add(result); // put result on applet

add(productButton); // put button on applet

product = 0; // set product to 0

} // end of init

// when button is pressed (action is performed),

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 24

Chapter 1

// get the integers from the input text fields and then display product

public void actionPerformed(ActionEvent e)

{

num1 = Integer.parseInt (input1.getText()); // get first number

num2 = Integer.parseInt (input2.getText()); // get second number

product = num1 * num2; // calculate product

result.setText(Integer.toString(product)); // display product in

// result text field

} // end of actionPerformed method

} // end of the applet

Program Exploremore. A modification of Explore. Each time the
button is pushed, it takes two numbers input by the user, multiplies
them together, and then displays the multiplicands and the product
in the "result" TextField.

Create the Java project for “Exploremore.” The text of the program
“Exploremore.java” is in the file "Exploremore.java text" that is in
the folder "Text Files" inside the "Chapter_1" folder. Again, the name
“Exploremore.java” is not optional; it is fixed by the "public class
Exploremore extends Applet" statement in the program. Also
remember that you need to make a suitable html f i le that cal ls
“Exploremore.” Compile and run the program.

Now we will add a GUI to our orbit program so that the horizontal
increment di can be changed "on the fly." We'd like to be able to
draw the orbits for different values of di, so we would l ike to call
paint every time the button is pressed. In Java you cannot call paint
directly. Instead you must call repaint(). The method repaint() then
calls the method update, which erases the applet and then calls paint.

Although we want to erase the old orbit, we don't want to erase the
whole applet every time we change di (certainly we want to keep the
button!). So we have overridden update so that it only calls paint and
no longer erases the applet. We erase the old orbit using the
Graphics method clearRect.

The new orbit program is in the project “SecondOrbit.mcp” in the
folder “SecondOrbit.” The file “SecondOrbit.html” has an applet code

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 25

Chapter 1

statement with large height so that there is enough room for a text
field, a button, and a rectangle in which the orbits are drawn. Here
is the program:

// SecondOrbit.java

// an orbit calculation for particles bouncing off the top and bottom of a rectangle

import java.applet.Applet;

import java.awt.*;

import java.awt.event.*

public class SecondOrbit extends Applet // defines name of applet

 implements ActionListener // specifies that applet will be listening for

 // user-initiated actions (mouse clicks)

final int HEIGHT = 200; // The height of our rectangle

final int WIDTH = 200; // The width of our rectangle

final int YOFFSET = 75; // y starts at 75 to leave room for text and button

final int XOFFSET = 50; // x starts at 50 so rectangle is centered on applet

// the values of final variables are set when they

// are declared, and can't be changed afterwards

int iold, jold; // old x and y coordinates of our particle

int inew, jnew; // new x and y coordinates of our particle

int di; // advance in i in each bounce

 Label prompt; // prompt user to input di

TextField input1; // store input value here

Button startButton; // button user presses to start plotting the new orbit

// set up the graphical user interface components and initialize variables

public void init()

{

 prompt = new Label("please enter advance in x-coordinate per step");

input1 = new TextField(10);

startButton = new Button("Click to start");

startButton.addActionListener(this);

add (prompt); // put prompt on applet

add(input1); // put input TextField on applet

add(startButton); // put start button on applet

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 26

Chapter 1

di = 0; // set horizontal increment to 0 initially

} // end of init

public void actionPerformed(ActionEvent e)

{

di = Integer.parseInt (input1.getText()); // get di from TextField

if (di <= 0) // check if di is an allowed value

{

showStatus(

"Please choose a step-size di greater than 0 and press start button");

// shows string at bottom of applet

}

else { // if di is OK, then call the paint method

showStatus("di="+di); // shows string at bottom of applet

repaint();

}

} // end of actionPerformed method

// override Component class update

// do not clear background, only call paint

public void update(Graphics g)

{

paint(g);

}

public void paint(Graphics g)

{

g.clearRect(XOFFSET, YOFFSET, WIDTH, HEIGHT); // clears rectangle interior

g.drawRect(XOFFSET, YOFFSET, WIDTH, HEIGHT); // draws rectangle

if(di > 0) // don't draw unless di is set to a value > 0

{

// set initial values for x and y

iold = XOFFSET;

jold = YOFFSET;

// set up a loop to run through the same steps many times

while (iold + di <= XOFFSET+WIDTH) // main loop

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 27

Chapter 1

 {

inew = iold + di; // advance x coordinate

jnew = HEIGHT - jold + 2*YOFFSET;

// go from top to bottom or bottom to top

g.drawLine(iold,jold,inew,jnew);

iold = inew;

jold = jnew;

 } // end of main while loop

 } // end of if

} // end of paint method

} // end of applet

Program SecondOrbit. This version of the orbit program has a
TextField and a Button so that the operator can control the program.
Notice how the declaration of constants in the program works via
the declaration of final variables. If we are ever to modify this
program it is better to change the values of HEIGHT and WIDTH rather
than figure out what '200' means. Notice also the use of an if{} to
check that the user has chosen a value of di that is greater than 0.

Problem 1.4. Motion in a square region. Write a program to
depict the motion of a particle bouncing inside a square region. Use
the applet to answer the following questions: Under what
circumstances w i l l the orbit close, i.e. repeat itself? Is this
circumstance likely or unlikely?

J. Projects on the Fundamentals of Statistical Mechanics.
The reader might not think that our problems with the bouncing ball
have very much physics in them. However, even these very simple
problems can be used to il lustrate some very interesting physics.
The subject called statistical mechanics treats the outcomes of
mechanical problems in terms of the probabilities for the
occurrence of various events. One major result of statistical
mechanics is that if the bouncing ball is in an enclosure with
sufficiently complex shape then something very simple happens: In
the long run the ball is equally likely to have any direction of motion
and to be in any part of the box.

We describe below three projects which are intended to introduce
the student to this idea. These projects are not too hard for any

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 28

Chapter 1

student with computer experience so that by the end of the quarter
most students in the course w i l l find them reasonably simple.
However, we suggest that any student who is relatively
inexperienced in computer technique spend his or her time this first
week learning the basics. Everyone would benefit from reading over
the projects, however.

Menu Project. A region with four walls. So far, our
mechanics example has had very little interesting physics in
it. Now we ask you to turn to some more interesting
examples. Problem 1.4 asked you to write a program to
depict a situation in which there is a ball bouncing in a
square region bounded by four walls. Now for a harder job: do
the same thing for an arbitrary quadrilateral.

Physical Question 1. Under what circumstances will the
orbit close, i.e. repeat itself?

Physical Question 2. Statistical Mechanics says that in
sufficiently complicated situations particles w i l l reach a
state of statistical equilibrium in which, al l other things
being equal, they will spend a time within a given region of
the container which is proportional to the area of that region.
Since the time spent is proportional to the probability for
finding the particle in the region, we have the simple rule
equal probabilities for equal areas. Our statement on the
conditions required for this rule is vague. However you can be
much less vague. Show that this rule is not true in most
square or rectangular boxes. For most quadrilateral boxes
this rule is true. Construct a numerical demonstration of the
plausibility of the equal areas rule in some quite
unsymmetrical quadrilateral.

Menu Project . Dynamics in the Stadium. A 'stadium' is
a couple of semicircles stuck on the ends of a rectangle.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 29

Chapter 1

First consider a situation in which there is a ball bouncing
within a circular region. Under what circumstances will the
orbit close, i.e. repeat itself? Is this circumstance likely or
unlikely? Then consider the motion of a point particle which
bounces around a stadium. Under what conditions does this
orbit close?

Someone suggests that in a stadium, for ‘most’ starting
conditions the probability that the particle w i l l be moving
with an angle q to the x-axis is independent of q. Pick a
particular stadium and choose some starting condition ‘at
random’ and see whether you can offer evidence for or
against this hypothesis.

In doing this you w i l l have to more sharply define the
hypothesis mentioned above. Specifically, you w i l l have to
choose between two alternatives: Does the particle have
equal numbers of trajectories at each angle or does it spend
an equal time traveling at each angle? Note: the Java Math
method Math.random() generates a double value from 0 up to
(but not including) 1.

Menu Project . Dynamics in the Triangle. Take a triangle
with sides which have lengths L1, L2, and L3. There is a ball
bouncing in the triangle. Can you find the law which says, for
most starting conditions of the ball, what is the relative
probability that the ball will hit each of the sides?

Hint 1: The law is simple.

Hint 2: Start with a case in which one length is very much
smaller than the others.

Appendix A: Java Documentation

In our applets we have been taking advantage of the work of lots of
Java developers by using software that is in the Java Application
Programming Interface, or Java API. (We are using the version 1.1 of
the API.) You may have wondered how one learns what code has been
written, what it does, and how to use it. Of course, one place to look

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 30

Chapter 1

is in your textbook. In addition, Sun has descriptions of everything
in the Java API (together with lots of other Java information) at the
web site http://java.sun.com.

Appendix B: CodeWarrior

It is perfectly possible to write and run Java programs without
using CodeWarrior. Everything you need to write and run Java
programs (the "Java Development Kit," plus a tutorial and other
documentation) is at the Sun web site. We have elected to use the
CodeWarrior integrated development environment in this course
because of its features that make finding bugs easier, particularly
the color-coded editor and the debugger.

There is documentation on CodeWarrior in the folder sequence
"MacLab Resources/References."

