
* * *

Phys 251/CS 279/Math 292 Winter 1999 page 1

Chapter 6

Chapter 6:
Newton's Laws: Sums, Integrals, and Orbits

Goals:

• To use numerical methods to characterize the motion of particles
 governed by Newton’s laws.

• To understand inheritance of classes in Java.

In this chapter we examine systems described by Newton's laws. In
large part, the goal of this chapter is to teach some numerical
techniques needed to solve the resulting equations—evaluating
infinite sums and integrals, and also solving simple ordinary
differential equations. However, there is another element on the
agenda here. We would like you to learn something about hypothesis
testing on the computer. Computational physics is aimed at asking
questions about the behavior of some mathematical model of the
real world, and thereby questions about the world itself. Hence,
computational physicists are forever defining techniques for
answering questions like “If one assumes xxx of our model, then is
yyy true?”. This chapter w i l l involve a l ittle of this kind of
questioning.

A. Some Classic Mechanics Problems.

A.1. The Pendulum. At one level, classical mechanics started
with Galileo and his observations of the simple pendulum. We too
start with the pendulum. Let a mass M be held by a rod of length L,
and let θ be the angle that the rod makes with the vertical direction
(see figure 6.1). Then the kinetic and potential energies are given
respectively by M (L dθ/dt)2/2 and MgL(1 - cos θ), where g is the

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 2

Chapter 6

gravitational acceleration. If the pendulum swings freely (no
damping), its total energy, E, is constant:1

E =
1

2
M L

dθ
dt







2

+ MgL 1− cosθ() = constant . (6.1)

One can integrate equation (6.1) to obtain the time that the pendulum
must take in going from θ-value θ0 to a larger value θ1 by having θ
increase, i.e. by having dθ/dt be greater than zero. Start by solving

eq. (6.1) for
dθ
dt

 :

dθ
dt

=
2

ML2 E − MgL 1 − cosθ()() =
2g

L

E

MgL
+ cosθ −1



 


(6.2)

(we can take the positive square root because we assume θ i s
increasing). Integrating this gives the time to get from one angle to
another:

t =
L

2g

dθ
E

MgL
+ cosθ −1θo

θ1

∫ . (6.3)

The pendulum must have energy E > 0. For E < 2MgL , the pendulum
oscillates back and forth; for E > 2MgL , it turns over and over with
dθ
dt

 never going through zero.

1Differentiating equation (6.1) with respect to time yields the
familiar equation of motion for a pendulum:

ML2 d2θ
dt2 + MgLsinθ = 0 .

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 3

Chapter 6

L

θ

Pendulum
Figure 6.1 : The Pendulum

For now, we look at the case E < 2MgL and notice that the maximum
possible value of θ is θmax which satisfies

cosθmax = 1 −
E

MgL
 . (6.4)

The period of oscillation is the time it takes for the motion to go
from θmax through zero to its minimum value through zero again and
back to θmax once more. This period is four times the time that it
takes to go from zero to θmax. Hence if we call the period τ, we have:

τ =
8L

g

dθ
E

MgL
+ cosθ − 10

θ max

∫ . (6.5)

Many of you may recognize that the ‘natural frequency’ of the

pendulum, ω0 ≡
g

L
, sets the timescale for the period. It is said that

Galileo believed that the period of the pendulum to be independent of
E (or more likely θmax, since Galileo probably predates the concept of
energy). We wish to develop numerical methods for calculating the

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 4

Chapter 6

integral (6.5) and seeing how τ depends upon E. Hence we must
describe how to calculate integrals numerically.

A.2. Central Forces. In another view, Classical Mechanics started
with Kepler and Newton and the Newtonian formulation of central
force motion. In modern terms, one would say that a point particle
moving through a potential V(r) which depends only upon the
magnitude of r would have an energy:

E = M (dr/dt)2/ 2 + L2 / (2 M r2) + V(r) . (6.6)

Here, L is the angular momentum given by

L = M r2 dϕ /dt (6.7)

where ϕ is the azimuthal angle which describes the position of the
particle. (See Figure 6.2). The coordinate r is measured from the
‘center’ of the potential V, which is spherically symmetric about the
point r=0. The motion is confined to a plane (determined by the
particle’s momentum), so only one angular coordinate is necessary.
In an isolated system, both E and L are conserved, i.e. they are
independent of time. We wish to ask, once more, about the nature of
the particle orbit. In particular, we would like to know whether the
orbit is closed. (The particle eventually returns to its starting
point).

y

x

ϕr

Φ

 Figure 6.2. Orbit in Central Force

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 5

Chapter 6

In a typical orbit, the particle moves in and out radially as it moves
around, so that both r and ϕ are time-dependent. The orbit has a
period for radial motion, which we denote Tr , and a period for
angular motion, which we call Tϕ. If Tr /Tϕ is rational (Tr /Tϕ = P/Q,
where P and Q are integers), then the orbit will close (because after
a time PTϕ=QTr the configuration repeats); if it is irrational it will
not. Equivalently, one can consider the amount Φ by which ϕ
advances during one period of the radial motion (Tr). If Φ/2π i s
rational the orbit w i l l close; if it is irrational it w i l l not.
Consequently, we wish to use numerical methods to determine
whether Φ/2π is rational.

To calculate Φ, we use a technique essentially similar to the one we

employed in the pendulum problem. First, notice that
dr

dt

dϕ
dt

 is the

rate of change of r with ϕ, i.e.
dr

dϕ
. Hence, from Eq (6.7),

dr

dt
=

dϕ
dt

dr

dϕ
=

L

Mr 2

dr

dϕ
.

With this substitution, Eq. (6.6) becomes:

E =
L2

2Mr 4

dr

dϕ


 



2

+
L2

2Mr2 + V r() . (6.8)

By precisely the same logic as before, one finds the advance in ϕ as r
increases from r0 to r1 by writing

ϕ(r1) − ϕ(r0) = dr[−r 2 + 2Mr 4 E − V r()()
r 0

r1

∫ / L2]−1/2 (6.9)

Hence if one takes as the minimum and maximum values of r, rmin
and rmax, one has the formula for the advance per cycle

∆φ = 2
dr

X r()rmin

rmax

∫ (6.10a)

where the integrand is given in terms of X(r) defined as

X r() ≡ 2mr 4 E − V r()() / L2 − r2 (6.10b)

and the extremal values of r are given by

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 6

Chapter 6

X(rmin) = X(rmax) = 0 . (6.10c)

Our problem, then, is to do the integral (6.10) for some potential
V(r) and see whether the result is a rational multiple of 2π. (See the
Menu Project in this chapter for more on orbits in central
potentials).

A.3. Damped motion in a potential. Now consider the motion of
a particle of mass m in a potential well V(x) subject to a viscous
damping force -γv, where v is the particle velocity, and a periodic
driving force F(t) = F0 cos(ωt) . The position of the particle is governed
by Newton's equation of motion:

m
d2x

dt2 + γ
dx

dt
= −

dV

dx
+ Fo cos ωt() (6.11)

If the wel l is parabolic (V(x) = kx2 / 2), then this system is just a
damped harmonic oscillator, which is covered in every freshman
mechanics course. We will consider the motion when the potential
has the form V(x) = −k1x

2 / 2 + k2 x4 / 4 (shown in figure 6.3).

V(x)

x

Figure 6.3. Double-Well (Quartic) Potential

For a given F0 we would like to know whether at long times (after
any transients have decayed) the motion of the particle is periodic.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 7

Chapter 6

In other words, we would like to know whether the orbits of this
system close.

Exercise 6.1. Orbits of a simple harmonic oscillator . Show
that when the potential is quadratic, the orbits of equation (6.11)
eventually close for any non-zero F0.

When the potential is quartic, answering this question is not nearly
so simple. We cannot use conservation of energy to simplify the
problem as we did in A.1 and A.2 , because here energy is not
conserved. So, below we w i l l attack this problem by direct
numerical integration of the differential equation (6.11).

B. Sums. We have already seen something about how to calculate
derivatives numerically (see Chapter 3). Integrals, which are only a
little tougher, are defined as limits of sums. Hence it is logical for
us to begin with summation.

It is very easy to use the computer to find finite sums (and
products) like:

Exp x, N() ≡
x j

j!j = 0

N

∑ (6.12a)

(Here j! = j (j-1) (j-2)...(2) (1))

Gau x, N() ≡ exp −
1

2
xj 2





j =− N

N

∑ (6.12b)

zeta p, N() ≡ j− p

j =1

N

∑ (6.12c)

sin x, N() ≡ x 1 −
x

πj



 



2









j =1

N

∏ (6.12d)

Geo r, N() ≡ r j

j =1

N

∑ =
1 − r N +1

1− r
 (6.12e)

The last of these can be recognized as the simple geometric series
and the last equals sign gives the formula for summing such a
series. Given enough time, a computer can always evaluate
expressions such as these.

Exercise 6.2. Simple finite sums . Write functions which
perform the sums in (6.12c) and (6.12d) for any value of the

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 8

Chapter 6

arguments. (To do this you will need to use the method Math.pow.)
Calculate zeta(1.5,N) and sin(1.5,N) for N equal to 1, 3, 10, 30, and
100. Do these quantities appear to converge to a limit as N goes to
infinity? The notation suggests that in the l imit as N goes to
infinity sin(x,N) goes to sin(x). Find some evidence for or against
this proposition.

Problem 6.1. Simple infinite sums . A function, which we wish
to call Gau(x), is defined as the large-N limit of expression (6.12b)

Gau x() ≡ exp −
1

2
xj2





j =−∞

∞

∑ for x > 0 (6.13)

As we have already seen, for reasonably large values of x, this sum
converges extremely rapidly. When x is a small positive number, the
sum converges slowly. However, there is a formula which enables
one to calculate Gau(x) for positive x close to zero (the formula is
exact for all x):

Gau x() =
2π
x







q

Gau
4π 2

x



 


(6.14)

Find some evidence (numerical or analytic) that would convince a
reasonable person that equation (6.14) is correct, and determine q.
Write a program which plots Gau(x) for x between zero and five.
How big are the errors that you make in this calculation? Under
what conditions is this error insignificant?

C. Integrals. A slightly harder case is provided by the calculation
of an integral, for example,

I c,c +∆() ≡ f x()dx
c

c+∆

∫ (6.15)

Consider first the case in which ∆ is quite small so that we can
assume that the function f(x) varies very little in the integration
interval. In that case, one can replace f(x) by is average value in the
interval, i.e. f (x) → (f (c) + f (c + ∆))/ 2 so that the integral i s
approximately evaluated as:

I(c,c + ∆) = ∆(f (c) + f (c + ∆))/2 + O(f ' ' (c)∆3) (6.16)

Here, O is a symbol meaning that the term in question (usually a
correction to a useful result) is of the order of magnitude of the

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 9

Chapter 6

value stated. This result for the error magnitude can be derived by
expanding f(x) in a Taylor series about x=c.

Starting from the result (6.16), one can easily calculate an integral
over a more extended region.

I a,b() ≡ f x()dx
a

b

∫ (6.17)

Divide the region between a and b in Eq (6.17) into N pieces each of
size ∆, where ∆ is again small. We represent the function f(x) by the
values

f j = f (a + j∆) , where N∆ = b − a (6.18)

A summation of the N contributions to the integrand (each like (6.15)
and (6.16)) coming from subintervals of size ∆ gives

I(a,b) = ∆ f j
j=1

N−1

∑ + ∆(f0 + fN) /2 + O(f ' ' (x)N∆3) .

 (trapezoidal integration formula) (6.19)

The correction term in Equation (6.19) involves an error which i s
proportional to ′ ′ f x() , i.e. to the second derivative of f someplace in
our interval.

Exercise 6.3. Definite Integrals. To check out this method,
calculate numerically the integral between 0 and 1 of the following
simple functions: x3 , cos(x) , and exp(x). Use several different
values of N and see if you can get some idea of how the error
diminishes as N increases.

Problem 6.2 . Modify the applet you used to do the integrals in
exercise 6.3, so that it integrates (x(1− x))−1/2 from 0 to 1 using Eq.
(6.19). How does the error depend upon the choice of ∆ (please be
quantitative)?

(Note: we expect you to do the integral in the form written. No fancy
substitutions, please. You can, however, check your result by
considering the substitution

x = (1+ cosθ)/2 (6.20)

which does reduce the integral to a trivial form.)

Exercise 6.4. The zeta function . The quantity

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 10

Chapter 6

ς(p) = lim
N→ ∞

zeta p, N() ≡ j− p

j =1

∞

∑ (6.21)

is called the Riemann zeta function. It is of fundamental importance
in analytic number theory. The summation (6.21) is far, far less
well-behaved than the one in Equation (6.13). To see this one can use
the finite-N expressions which you generated in Exercise 6.2 to
estimate the zeta function itself. In this way, please estimate
zeta(p), for p equal to 1.25, 2, 2.5, and 4. To four decimal places
these sums are equal to 4.5951..., 1.6449..., 1.3415..., 1.0823.... How
well can you do in calculating the values of these sums? Which of
your estimates is worst? Why?

You can improve your estimates by including in a rough fashion the
left-out terms in the summation. For large N, it is true that the sum

j− p

j = N

∞

∑ is closely approximated by the integral j− pdj
N

∞

∫ :

j− p

j = N

∞

∑ ≈ j− pdj
N

∞

∫ =
1

p −1()N p−1
 . (6.22)

This is because the sum has contributions from many terms, and
these terms change slowly with j. Given Eq. (6.22), one can improve
the convergence of the calculation of expression (6.21) in a marked
fashion by summing explicitly up to some N and using the integral to
approximate the rest of the terms.

Problem 6.3. It is true that for each integer m, ζ(2m) is equal to a
simple rational number times an integral power of π. Write an
applet that computes ζ(2), ζ(4), and ζ(6) and thus figure out which
power and which rational number for the values m = 1, 2, and 3.

Problem 6.4. The period of the pendulum. Create an applet to

calculate the period of the pendulum (Eq. 6.4 and 6.5) for
E

mgL
 = 0.01,

0.1, 1, 1.5 and 1.99. Express your results in terms of the ‘natural
timescale’ of the pendulum (i.e. compute τ g / L). To get accurate
results, you should not use the variable θ as the integration variable,
but instead make a transformation analogous to the one in Eq (6.20)

θ = θmax cosφ .

What do you gain from this change of variables?

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 11

Chapter 6

Menu Project. Periodic and Non-periodic Orbits in a
Central Potential. By doing the integral in Eq (6.10) one
can see whether for a given potential and given values of E
and L Φ is a rational number. If it is rational, then the orbit
closes; if not the orbit never repeats itself. One might then
ask the question about whether there are any forms of the
potential V(r) which permit the orbit to be closed for all E
and L. However, once V(r) is fixed we know that Φ is a
function of E and L, which we then write as Φ(E,L). Some
applications of theorems derived from calculus indicate that
the function is continuous. Hence it can only be rational by
being constant, independent of E and L.

It turns out that Φ(E,L) is constant only for very special
potentials, those which vary as a power of the distance:

 V(r) = - α r- α . (6.23)

One can recognize two familiar special cases, α=1, which is
the attractive gravitational force, and α=-2, which is the
harmonic oscillator. Compute the value of Φ(E,L) for these
two cases and find out whether the orbit closes. Then do the
same for α=3. Plot up a few orbits to show what is going on.

Notice that the integrals involved must be computed
carefully because of their singularities at the two endpoints.
To do them accurately, one should first compute rmin and rmax
and then make a transformation like that in Problem 6.4 to
eliminate the singularities at the endpoints.

D. Integrating First Order Differential equations. The
integration of differential equations is not so different from just
doing simple integrals. Consider an ordinary differential equation
problem, which is stated in the form:

dx

dt
= G x,t(); x(t = 0) = 0 (6.24)

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 12

Chapter 6

Equation (6.24) can be integrated numerically by replacing the 1st

derivative with a finite difference:
dx

dt
≈

x t + ∆() − x t()
∆

, where ∆ is a

small step in t. So our algorithm looks like

x t +∆() = x t() +∆G x,t() (6.25).

It is common practice to define the discrete variables t j ≡ j∆ and

x j ≡ x t j(). Then the algorithm of eq. (6.25) turns into

x j +1 = x j +∆ G x j , j∆() . (6.26)

At this point we have basically replaced our differential equation
with a discrete (but time-dependent) mapping function G x j , j∆().
Exercise 6.5. Solving a first-order differential equation.
Use numerical methods to solve the differential equation

dx

dt
= −t2 x2 ,

with the init ia l condition x(t = 0) = 10 . What happens to x as t
approaches infinity? Can you find a large t l imiting form? (Hint:
Make a log-log plot of x versus t. Look for a straight line behavior.
What data does the slope give you?) Now can you compute a
numerical solution for t < 0. At some point there is a disaster.
When? What happens near the disaster? Can you now figure out an
exact solution? How well does the exact solution agree with the
numerical one? How does the accuracy of your result depend upon
the value of ∆ which you use in your numerical solution?

E. Integrating Differential equations: higher order
equations. Higher order differential equations can also be
attacked by very much the same method. Consider a second order
equation like the one for a particle in a quartic potential:

m
d2x

dt2 + γ
dx

dt
= k1x − k2 x3 + F0 cosωt. (6.27)

One can write Equation (6.27) in terms of a pair of first order
equations by using the momentum, p, as an additional variable, and
then writing two first order equations, namely

dx

dt
=

p

m

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 13

Chapter 6

dp

dt
+

γ
m

p = k1x − k2x
3 + F0 cosωt . (6.28)

Exercise 6.6. Solving a second-order differential equation.
Please write an algorithm (but not a program) which will solve the
pair of first order differential equations:

dx

dt
= U x, y;t()

dy

dt
= V x, y;t() (6.29)

Assume that x and y are given at t = 0 and that the step-length, ∆, is
also given.

We did not ask you to write a program that implements your
algorithm for solving equations (6.29) because we would like you to
use a more accurate method of solution called the Runge-Kutta
method, in which the functions U and V are evaluated at several
places chosen to minimize the errors. We illustrate the process for
the second order Runge-Kutta method, which is the simplest one.
Let

z ≡
x

y



 



stand for the two coordinates x and y. Then equation (6.29) is in the
form

d

dt
z = f z,t() , (6.30)

with f z,t() ≡
U z,t()
V z,t()



 


 .

If ∆ is a small step size, then:

z(t + ∆) − z(t) = ∆f(z(t +∆ / 2), t + ∆ / 2) + O(∆3) . (6.31)

Note that if the ∆/2 were lacking on the right hand side the
approximation would have an error of order ∆2. As (6.31) stands it
has an error of order ∆3.

Since the right side of equation (6.31) is already multiplied by a ∆,
we can evaluate z(t + ∆ / 2) to within an error of order ∆ and still get

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 14

Chapter 6

a result good to order ∆2. Hence an appropriate algorithm for using
(6.31) is to let z j = z(to + j∆) and write

h j = f(z j ,t) (6.32a)

z j +1 = z j + ∆f(z j +∆ h j 2,t +∆ / 2) (6.32b)

Equations (6.32a) and (6.32b) (evaluated in that order) comprise the
second order Runge-Kutta algorithm for determining the solution to
equation (6.29). This method can be extended straightforwardly to
higher order. It is popular to truncate it at fourth order (for reasons
described in Numerical Recipes), so that the error is O(∆5). More
sophisticated techniques, such as varying the step size ∆, can be
applied to pathological equations for which straightforward Runge-
Kutta methods are insufficient. You can find a good exposition on
methods for solving differential equations at
http://csep1.phy.ornl.gov/ode/ode.html; the section on the Runge-
Kutta method is at http://csep1.phy.ornl.gov/ode/ode.html.

F. More on classes: Inheritance. Every dynamical system is a
set of rules for going from one combination (z, t) to another
combination (z(t + ∆), t + ∆). This definition applies both to discrete
equations like the logistic map and to continuous differential
equations like (6.27). For the logistic map, the rule is so simple
(f (x) = x(t +∆) = rx(1− x)) that we just wrote a method to calculate f(x)
and didn't bother to make a separate class. However, solving a
system of differential equations requires several steps, so we will
write a class DiffEqSystem to do it. Our class uses the Runge-Kutta
method to integrate differential equation systems of the form:

d

dt
z = f z,t() , (6.33)

where the function f and the number of components in the vector z
are not known in advance. (Note that the Runge-Kutta formulas
(6.32) work for any number of components of z.) That way we can
use it for any equations of form (6.33). Now of course eventually we
will need to know the actual equations that we wish to solve, but
we'll get to that later.

Our first step is to define a class called a VariableSet, which
bundles the combination (z, t) so that we don't need to explicitly
keep track of them separately. This class is very simple; its
methods mostly just set and get z and t.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 15

Chapter 6

class VariableSet {

private double t;
private double[] x;

VariableSet(double time, double[] xvars) { // constructor
setvars(time, xvars);

}

public void settime(double time){t = time;}

public double gettime() {return t;}

public void setx(double[] x1) {x = x1;}

public double[] getx() {return x;}

public void setvars(double time, double[] xvars) {
settime(time);
setx(xvars);

}

public void setvars(VariableSet v) {
settime(v.gettime());
setx(v.getx());

}

public String toString() {
return "t = "+", x = "+x[0]+", p = "+x[1];

}
} // end of class VariableSet

Program 6.1 The VariableSet Class

Next we write a class DiffEqSystem, which contains a method
nextvars, which calculates z(t +∆), t + ∆(), given z(t),t() and the vector
function f in (6.30).

Because we don't know the form of f or even how many components z
has, we do not have enough information to make a DiffEqSystem
object. Therefore, DiffEqSystem is designated as an abstract class.
We also designate the method timederiv (which defines f) as an

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 16

Chapter 6

abstract method. An object of a subclass of DiffEqSystem can be
created only if this method is defined in the subclass.
abstract class DiffEqSystem { // abstract means that we can't
// make any instances of this class--not surprising since we don't
// yet know what differential equations we are going to solve

protected VariableSet myvars;
protected int n_var; // # of degrees of freedom
protected double dt, dt2; // dt = time step; dt2 = dt/2

// constructor
DiffEqSystem() {
// don't know about variables yet, so just set time step:

setdt(0.3);
}

public VariableSet nextvars() { // method that returns next VariableSet
return new VariableSet(myvars.gettime()+dt, newx_rk4());

// 4th order Runge-Kutta
}

public abstract double[] timederiv(double t, double[] x) ; // abstract method
// actual equations vary--defined only in subclass

// 2nd order Runge-Kutta for time evolution
private double[] newx_rk2() {

double x[] = myvars.getx();
double t = myvars.gettime();
double [] xtemp2 = new double[n_var];
// xtemp2 is estimate of x halfway along interval where taking
// derivative leads to higher order error
xtemp2 = arraysum(x, mult_by_cst(timederiv(t, x), dt2));

return arraysum(x, mult_by_cst(timederiv(t + dt2, xtemp2), dt));
}

// 4th order Runge-Kutta for time evolution
// formula from p 551 of Numerical Recipes, or
// at http://csep1.phy.ornl.gov/ode/node7.html
private double[] newx_rk4() {

double t = myvars.gettime();
double x[] = myvars.getx();

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 17

Chapter 6

double[] k1 = new double[n_var];
double[] k2 = new double[n_var];
double[] k3 = new double[n_var];
double[] k4 = new double[n_var];
double[] xsum = new double[n_var];

k1 = mult_by_cst(dt, timederiv(t, x));
k2 = mult_by_cst(dt,

timederiv(t + dt2, arraysum(x, mult_by_cst(k1, .5))));
k3 = mult_by_cst(dt,

timederiv(t + dt2, arraysum(x, mult_by_cst(k2, .5))));
k4 = mult_by_cst(dt,

timederiv(t + dt, arraysum(x, k3)));

for(int i=0; i<n_var; i++) {
xsum[i] = x[i] + (1./6.)*(k1[i] + 2*k2[i] + 2*k3[i] + k4[i]);

}
return xsum;

}

// a bunch of set and get methods:
public void setdt(double deltat) {

dt = deltat;
dt2 = dt/2.;

}

public double getdt() {return dt;}

public void setvars(VariableSet v) {
if (v.getx().length == n_var) myvars = v;
else System.out.println("Wrong number of variables");

}

public VariableSet getvars() {
return myvars;

}

public void settime(double time){
myvars.settime(time);

}

public double gettime() { return myvars.gettime(); }

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 18

Chapter 6

// some useful utility methods, used in Runge-Kutta methods:

public double[] mult_by_cst(double constant, double array[]) {
double[] temp = new double[n_var];
for(int i=0; i< n_var; i++) {

temp[i] = array[i]*constant;
}
return temp;

} // end of mult_by_cst

public double[] mult_by_cst(double array[], double constant) {
return mult_by_cst(constant, array);

} // end of mult_by_cst

public double[] arraysum(double array1[], double array2[]) {
// add two arrays of length n_var

double[] temp = new double[n_var];
for (int i=0; i< n_var; i++) {

temp[i] = array1[i] + array2[i];
}
return temp;

} // end of arraysum

} // end of class DiffEqSystem

Program 6.2 The DiffEqSystem Class

Now, finally, the class DoubleWell, a subclass of DiffEqSystem,
specializes to the motion of a particle in a quartic potential. The
subclass relationship, denoted by the declaration that DoubleWell
"extends DiffEqSystem," means that DoubleWell automatically
inherits the methods from the DiffEqSystem class (such as
nextvars). The DoubleWell class then defines methods to set and get
the system parameters, and to calculate the potential in which the
particle moves. The constructor for DoubleWell sets the parameters
of the motion, initial izes the variables, and defines the time
derivatives in f , so we can make instances of the DoubleWell class.
/*

file DoubleWell.java
class for calculating motion in double well potential
extends class DiffEqSystem

*/
import java.awt.*;

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 19

Chapter 6

public class DoubleWell extends DiffEqSystem {
private double A; // parameter in double-well potential: V(x) = x*x(x*x-A*A)
private double force;
private double omega;
private double mass;
private double damping;

public VariableSet resetvars;

// constructor
DoubleWell() {

super(); // first call constructor of DiffEqSystem class
A = 1.; // set default parameters
force = 1.;
omega = 2.*Math.PI*(0.2);
mass = 1.;
damping = 1.;

// set # of degrees of freedom and initial conditions
n_var = 2;
double resetarray[] = {-A, 0};
resetvars = new VariableSet(0, resetarray);
myvars = resetvars;

}

// constructor when initial conditions are given
DoubleWell(VariableSet v) {

this(); // first call no-argument constructor
setvars(v); // set variables to those given

}

public double[] timederiv(double t, double[] xvec) { // equations of motion
double x = xvec[0]; // x = position
double p = xvec[1]; // p = momentum
double[] temp = new double[n_var];// array [dx/dt, dp/dt]

temp[0] = p/mass; // dx/dt = p/mass
temp[1] = (force*Math.cos(omega*t) - damping * p/mass

-4.*x*x*x + 2*A*A*x);

return temp;
}

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 20

Chapter 6

// methods for calculating potential in which particle moves
public double potential(double x) { return x*x*(x*x - A*A); }

public double potential(double x, double t) {
return x*x*(x*x - A*A) - x*force*Math.cos(omega*t);

}

public double maxpotential(double xmin, double xmax){
// maximum value of potential in range [xmin, xmax]

if(xmax < A) { return 0.; }
else {

if (Math.abs(xmax) > Math.abs(xmin)) {
return potential(xmax);

}
else { return potential(xmin); }

}
}

public double minpotential(double xmin, double xmax){
return potential(A/Math.sqrt(2));

}

// set and get methods for system parameters
public void setA(double aparam) { A = aparam; }

public double getA() {return A;}

public void setforce(double f) { force = f; }

public double getforce() { return force; }

public void setomega(double o) { omega = o; }

public double getomega() { return omega; }
}

Program 6.3 The DoubleWell Class

Thus, we have constructed a very general class DiffEqSystem and
then used inheritance to create the more specific subclass
DoubleWell tailored to describe the motion of a particle in a double-
well potential.

* * *

Phys 251/CS 279/Math 292 Winter 1999 page 21

Chapter 6

A sub-class of a super-class inherits all the public and protected
methods and variables; that is, it has access to the methods and
variables as if they were defined in the sub-class. In our example,
the sub-class DoubleWell can access a method such as getdt(),
which is defined in the super-class DiffEqSystem, as if it were
defined in DoubleWell itself.

Often, methods in the sub-class overwrite existing methods in the
super-class. For example, in the class DiffEqSystem, timederiv
does nothing because we don’t yet know what function we want to
differentiate. In DoubleWell, it is overwritten, because now the
equations of motion are known.

Problem 6.5. Motion of particle in a quartic potential.
Write an applet that calculates the position x as a function of time
for a particle in a double-well potential, with motion governed by:

m
d2x

dt2 + γ
dx

dt
= k1x − k2 x3 + F0 cosωt. (6.34)

Assume that x and
dx

dt
 are given at t = 0 and that the step-length, ∆,

is also given. Have your applet plot x(t) versus t. Feel free to use
the classes VariableSet, DiffEqSystem, and DoubleWell, which are
all in the file "DoubleWell.java" that you can find by going down the
folder sequence "Chapter_6:Programs:DoubleWell."

Apply this program to the particular case of Eq. (6.34) in which

m = γ = 1, k1 = 2, k2 = 4 , and ω = π . Use the initial conditions
dx

dt t = 0

= 0

and x 0() = −1.2 . Determine whether at long times the motion appears
to be periodic when F0 = 0.5 . How about when F0 = 1.0 ? When F 0 = 2.0 ?

