Second Menu of Projects (for Project V)

Calculating g and a to higher accuracy for the
period-doubling route to chaos. In this project, you will
determine a and g to higher accuracy than is done in Chapter
5 of the class notes. First, please extend the Taylor-series
calculation presented there to higher orders in z. How does
the value of a and the form of g depend on the number of
terms that are kept in the Taylor series? Does the process
appear to converge? Then, we would like you to compare your
results for g to those obtained when you use Feigenbaum's
result that g(z) can be obtained by repeatedly iterating any
function f(z) with a quadratic maximum at z=0 and rescaling
appropriately. Specifically, Feigenbaum showed that g(x) can
be written as the limit:
i nen@ Z 0

9(2) =lim(-a)"f g(_a)nz (5.8?)
where the map f is iterated at the parameter value r = ry .
(We say a bit about this method in the Appendix. For more
detailed expositions, see, for example, the book by Hilborn.)
In practice, one plugs in the known value of a (a is
determined by equation (5.8) because the limit exists only for
that particular value), and then iterates some large but finite
number of times to obtain an approximate result for g. How
does your result for g depend on the number of iterations you
perform on the map function? How does it compare to the
results you obtained using the Taylor series method?

Calculating dfor the period-doubling route to chaos.

In this project, you will calculate d, which is a measure of
how many iterations are required to determine that the
parameter value r is not exactly equal to ry . We recommend
that you consult the references to see how to do this
(Hilborn, section 5.7 has a heuristic discussion; the rigorous
derivations are in M. J. Feigenbaum, J. Stat. Phys. 19, 25
(1978); 21, 669 (1979)); here we say just a few words to
give an overview of the procedure.

* * *
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To calculate d you need to how the map function itself
evolves under iteration. In particular, you need to figure out
which deviations of the map function f(z) from the universal
function g(z) are the ones that cause it to diverge from the
universal function as it is iterated. Then, you will consider
functions which are close to the fixed function and express
the evolution in terms of equations which are linearized
about the fixed function g(z). You will find that the
deviations can be described in terms of an eigenfunction and
an eigenvalue, the latter of which is d. Since this
eigenfunction grows by the factor d each time the map is
iterated, whereas all the other deviations shrink under
iteration, it determines the deviations from criticality and
hence the convergence of the sequence of r-values.

Periodic and Non-periodic Orbits in a Central
Potential. By doing the integral in Eq (6.8) one can see
whether for a given potential and given values of Eand L F is
a rational number. If it is rational, then the orbit closes, if
not the orbit never repeats itself. One might then ask the
question about whether there are any forms of the potential
V(r) which permit the orbit to be closed for all E and L.
However, once V(r) is fixed we know that F is a function of E
and L, which we then write as F(E,L). Some applications of
theorems derived from calculus indicate that the function is
continuous. Hence it can only be rational by being constant,
independent of E and L.

It turns out that F(E,L) is constant only for very special
potentials, those which vary as a power of the distance:

V(r)=-ar-2a

One can recognize two familiar special cases, a=1, which is
the attractive gravitational force, and a=-2, which is the
harmonic oscillator. Compute the value of F(E,L) for these
two cases and find out whether the orbit closes. Then do the
same for a=3. Plot up a few orbits to show what is going on.

* * *
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Notice that the integrals involved must be computed
carefully because of their singularities at the two endpoints.
To do them accurately, one should first compute rmin and rmax
and then make a transformation like that in Problem 6.4 to
eliminate the singularities at the endpoints.

Period-doubling bifurcation sequence for motion in a
double-well potential. Compare Figure 7.1 to Figure 2.2,
the possible values of x for different values of r in the
logistic map. Determine whether the double-well system
has a period-doubling bifurcation sequence, and if so,
whether it is similar to that of the logistic map. (You will
need to define what you mean by the word "similar" here.)
How does your answer depend on the choice of parameters of
the double-well system?

Mapping Regions for a Double Well System.

In this project, you will investigate the evolution of phase
space regions for the damped driven motion of a particle in
the double well. The idea is to take a whole bunch of points
(at least a thousand) bunched into a fairly small area,
propagate them all forward in time using the equations of
motion, and see what the resulting region looks like. Can you
think of a way of estimating the area of the resulting region?
In any case, try to determine if the area seems to behave as
expected from equation (7.8)

According to equation (7.8), how the area of the region
changes in time should be independent of the value of Fq.
However, the shape of the region does depend on Fq.
Investigate the evolution of the shapes of the regions in the
different regimes. This project is quite open-ended, and we
expect you to do interesting and imaginative work.

Mapping Phase Space Regions for The Standard Map.
In this project, you will characterize the evolution of areas
in phase space for the standard map (8.10). Take a whole

* * *
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bunch of points (like maybe a thousand) bunched into a fairly
small area, and iterate them all by (8.10), and see what the
resulting region looks like. Typically, it will be a distortion
of the original region, but it should have the same area. Try
to determine if the area seems to be preserved after several
iterations. Then see what you can say about how the shape of
the area evolves as the map is iterated. Do this also with
mapping (6.3), and compare the two cases.

Dissipative Standard Map. In this project, you will study
the map defined by:

qj+l :qj + pj+1,
pj+1 = bpj + (1' b)W‘ kSin(qj)!

where O£b£1. This map, called the dissipative standard
map, is identical to the standard map when the parameter b
is equal to 1. By calculating how phase space areas evolve,
you should be able to understand the physical significance of
the parameter b. What is the physical significance of the
parameter W? Calculate the phase space portraits for this
map, and characterize the different types of behavior.

The Undamped Driven Pendulum. This project concerns
the dynamics of the undamped driven pendulum, described by
the equation of motion:

d*q

? =-sng+ Fosin(wt).

Make some phase space plots for this system, being careful
to solve the equations of motion accurately enough so that
the orbits appear to close when Fg = 0. How does increasing
Fo change the behavior? If you plot the (p,q) pairs at discrete
times separated by the drive period, how do these phase
space plots compare to those for the standard map?

* * *
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Lyapunov Index for the Lorenz Equations. Recall from
Chapter 7 the Lorenz equations:

d

7= p(y- x)

d =- XZ+IX-
Céty y
—7=xv- b

dtz Xy Z

Estimate | for the Lorenz equations for the parameter values

p = 10, b = 8/3, and different values of r. What do you think
is the error in your estimate?

* * *
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