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Required Project II:  The logistic map, Part II

Note:  If you are asked to write an applet, you are expected to put a
working version of it into the drop box.  You are also expected to
turn in hard copy solutions which include listings of all the applets.

In this project you w i l l  study in detail the properties of the
sequence of period-doubling bifurcations of the logistic map

xi +1 = f r xi( ) = rxi 1 − xi( ). (RP2.1)

In Required Project 1 you studied a few of these bifurcations by
calculating the orbits of period 1, 2, and 4.  Now you will examine
the properties of the period-doubling sequence in detail.  Chapter 4
of the class notes presents a strategy for computing orbits with
very long periods.  We expect you to use this strategy when you
write the applets for this project probing the properties of these
long-period orbits (unless, of course, you come up with a
computational scheme that works even better!).

The reason why it is interesting to study these long-period orbits is
that they have universal scaling properties.  First you will calculate
the high-period orbits in the period-doubling sequence and find
properties of these orbits that obey scaling laws.  “Universality”
means that these scaling laws are characterized by exponents that
are exactly the same for a huge class of different mapping functions.
You will explore this universality and understand why it arises by
using renormalization-group equations.

First you w i l l  demonstrate scaling empirically, by explicit
computation of orbits in the period-doubling sequence.

Scaling in parameter space.

RP2.1.   Write an applet that computes a sequence of r values, r0, r1, .
. ., r n, for the superstable 2n-cycles of the logistic map using
Newton's method.  You should be able to get as far as n = 10.  You
should see that the r values are converging to something close to
3.57.

This sequence of r-values converges to an accumulation value, r∞, at
a geometric rate.  That is,
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 rn ≈ r∞ − δ −n   (RP2.2)

where δ is a number that we want to calculate. We can rewrite
equation (RP2.2) as1

 δ ≈
rn−1 − rn− 2

rn − rn −1

  (RP2.3)

Since you have already computed the rn's, it is a simple matter to
plug them into equation (RP2.3) to get an estimate of δ.  Please have
your applet do so.

Scaling in state space .  In RP2.1 you calculated how the
parameter value r changes as one goes from a 2n to a 2n+1 superstable
cycleit gets scaled by a factor δ.  This is a scaling in "parameter
space," since r is a parameter of the map.  Now you will characterize
the scaling in x (which is called “state space,” since x describes the
state of the system).

Again consider the superstable 2n cycles.  Every superstable cycle
must contain x = 1/2, the point where the function reaches its
maximum value (and thus its derivative is zero).  Now we ask, for a
cycle of length 2n that starts at x =1 2, what is f rn

2n−1

x = 1/ 2( ) , the
value of x exactly halfway through the cycle?

RP2.2.   We claim that frn

2n −1

x = 1/2( )  is closer to 1/2 than any other
point in the orbit.  Please write an applet that checks this claim
numerically for a few values of n.

RP2.3.   Have your applet compute the yn = x
2n-1 = f rn

2n−1

x =1/ 2( ) for n = 2
through 10. You should find that the yn's also converge geometrically
with n:

 
1

2
− yn ≈ −α( )− n , (RP2.4)

 where

                                    

1 Equation (RP2.3) is obtained by taking equation (RP2.2) for the values n and n-1, and
subtracting them, giving rn − rn−1 = δ − n−1( ) − δ− n = δ − n δ −1( ) .  Do the same thing for n-1

and n-2: rn−1 − rn− 2 = δ − n−1( ) δ −1( ) .  The ratio of these two equations is

rn−1 − rn− 2

rn − rn−1

=
δ − n−1( ) δ −1( )
δ − n δ −1( ) = δ , which is equation (RP2.3).  
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−α ≈
yn−1 − yn− 2

yn − yn−1

. (RP2.5)

Please find α.

Notice that -α is negative.  This means that these points are falling
on alternate sides of x =1 2.

RP2.4 .  At the parameter value r = r∞ ≈  3.569945669, the period-
doubling sequence of the logistic map accumulates and there is a
“cycle” of length 2∞.  At this value of r, the long term iterates of the
map fall on a fractal.  First generate some graphical output to show
that the fractal is self-similar (keep expanding ever smaller regions
of the iterates, and show that they replicate the shape of the whole
set).  Then estimate numerically the box-counting fractal dimension
of the set.  Try to relate this result for the fractal dimension to the
values of α and/or δ that you calculated above.

Universality.   Now we ask you to look at the question of
universality empirically by computing the exponents for the period-
doubling sequences of other functions.

Consider the following functions:

     Fr x( ) = rsin πx( )      for 0 < x <1, 0 < r <1;     (RP2.6)

     Gr x( ) = re− x −1( )2        for 0 < x < 4 , 0 < r < 4 . (RP2.7)

Both these functions have single humps; (RP2.6) has its maximum at
x = 0.5 (like the logistic map), while (RP2.7) has its maximum at x =
1.2

RP2.5  Choose one of the functions above, (RP2.6) or (RP2.7), and,
using modified versions of the programs you used for the logistic
map:  (a) Draw the bifurcation diagram.  (b) Compute α and δ.  If you
are using equation (RP2.7), be sure to take into account that the
maximum is at x = 1, not x = 0.5.

RP2.6.  Write an applet that generates the time series for the

logistic map with r = r∞, starting with x0 =
1

2
 (it should be easy to

                                    

2Both of these functions have quadratic maxima.  You can verify this for yourself by
taking two derivatives of each function, and plugging in the x value at the maximum (i.e.,
the top of the hump).
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modify your applet from RP2.4 to do this).  Let k=2nj (in other words,
consider only every 2nth iterate) with, say, n=3.  Demonstrate that

the x's near the maximum x =
1

2
 appear to obey the equation

−α x2k −
1

2
 
 

 
 = xk −

1

2
. (5.1)

The renormalization group.  The class notes show that a
function g(z) (with z=x-1/2) which generates a time series with the
self-similarity property (5.1) must obey the renormalization group
equation

g z( ) = −αg g −
z

α
 
 

 
 

 
 

 
 . (5.6)

RP2.7.    In the class notes the exponent α characterizing the period-
doubling route to chaos is calculated for functions which have a
quadratic maximum (the generic case, which includes the logistic
map).  Here you will calculate the exponents that characterize the
period-doubling route to chaos for a function with a particular type
of cusp, specifically

f (x) = r
1

2
 
 

 
 

3
2

− x −
1

2

3
2 

 
 

 

 
  .

(a)  Estimate the values of α and δ for this map using the method you
used for the logistic map in RP2.1 and RP2.3 (i.e., by calculating the
sequence of superstable 2n cycles, and finding δ from the rn values
and α from distance that the (2n-1)th iterate of x=1/2 is from x = 1/2).

(b)  The renormalization group equation for a function g(z) (where
z=x-1/2) that embodies the self-simi lar ity of the time series at
r = r∞  follows solely from self-similarity and does not care at a l l
about whether the function has a cusp, so it is identical to that for
the logistic map:

−αg g −
z

α
 
 

 
 

 
 

 
 = g z( ).

For functions with a 
3

2
-power cusp, we can expand g(z) near z=0 as:

g z( ) = A − Bz
3

2 + Cz2 + . . . ,
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and solve the RG equation approximately by ignoring terms of order
higher than z

3
2 .  Find an approximate value for α using this method.

(Hint:  When you equate the coefficients of the powers of z, you will
find an algebraic equation that α must satisfy.  You may solve this
equation numerically using your Newton-Raphson routine, or a
package such as Maple, Matlab, or Mathematica.)  How does i t
compare with the result you obtained by direct computation of the
orbits?  How would you improve the accuracy of your approximate
solution to the renormalization-group equation?

Symmetry of the renormalization group equation.   In the
class notes, the renormalization-group equation is solved by
expanding g(z) in Taylor series and truncating the series at order z2.
There were two equations and two Taylor-series coefficients, but
the coefficients entered into both equations in only one combination,
and α needed to be fixed in order to satisfy both equations.  You
should have found a similar phenomenon when you solved the
renormalization-group equation for the map with a 3/2-cusp (2
equations, 2 coefficients in the expansion of g(z), and yet a solution
exists only for a special value of α).  Now we ask you to investigate
a symmetry of the renormalization-group equation that underlies
this behavior.

RP2.8.    Verify that if g(z) satisfies the renormalization group
equation (5.6), then βg(z/β) does also.  Explain why this result
justif ies setting g(0) = 1, and why this in turn means that the
renormalization group equation cannot be solved unless α has a
particular value.


