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At first glance, finding and labelling periodic orbits in a chaotic system appears a daunting
task. It even seems unlikely that out the chaotic trajectories in a strange attractor there would
even exist periodic orbits and trajectories. With the clever use of Poincaré sections and return
maps, there is a methodology to the madness. Poincaré return maps not only provide intuition
about how the dynamics act but also when properly used, translate into a return map. The
purpose of this work is to review the methods of computing return maps and periodic solutions
for the Rössler system and to apply this knowledge to the Complex Lorenz equations. The
main difference between the Complex Lorenz and Rössler equations is that the Complex Lorenz
exhibits symmetries. To profit from this opportunity, we review symmetry reduction methods
and apply them to the Complex Lorenz. Once symmetry is reduced, the Complex Lorenz
problem becomes almost as simple as the Rössler, and we can use the methods developed
there. Our first goal, however, is to review how to compute periodic orbits for the Rössler
system.

1 Rössler System and Return Map

The Rössler equations:

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c) ,
(1)

were developed to study chaos as a variant on a harmonic oscillator [1]. We start with this
system because unlike higher dimensional problems, the full state space can be visualized.
With this in mind, we begin our tour of the Rössler system. For this work, we will focus on
parameters given by a = b = 0.2 and c = 5.7; under these conditions the equilibria are given
as:

x−eq = (
c+D

2
,−c+D
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,
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2a
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x+eq = (
c−D
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,
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) ≈ (5.693,−28.465, 28.465)

D =
√
c2 − 4ab

(2)
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The stability of the near and far equilibrium, x−eq and x+eq, is obtained from the eigenvalues of

the stability matrix Aij = ∂vi
∂xj

:

x−eq : (λ−1 , λ
−
2 , λ

−
3 ) ≈ (0.097− 0.995i, 0.097 + 0.995i,−5.687)

x+eq : (λ+1 , λ
+
2 , λ

+
3 ) ≈ (0.193,−5.428i, 5.428i)

(3)

Examining a typical trajectory, such as the one in Figure 1a, shows that a trajectory not in
the basin of attraction for x−eq will spiral away along the unstable direction of x+eq and wander
away. If it is within the basin, the trajectory spirals away from x+eq towards x−eq, and once the
trajectory comes close to x−eq, it lands on the unstable direction of x−eq and spirals outwards.
When it gets far enough out, the unstable x+eq pushes the dynamics back in towards x−eq and
the cycle begins again. The equilibria split the dynamics into those that diverge away and stay
away (wandering set of trajectories) and those that are attracted and stay near the equilibrium
close to the origin (the non-wandering set of trajectories) [1]. It is not obvious that out of this
non-wandering set that there should exists periodic orbits, or trajectories such that:

∃Tp : x(t+ Tp) = x(t) . (4)

Our goal is to review and generalize the methods to obtaining these solutions. Our starting
point is one of the most powerful techniques used in dynamics: Poincaré sections. A Poincaré
section can provide intuition about the nature of dynamics, but more importantly, they can
be turned into return maps which lead to our periodic orbits.

At first glance, picking a good Poincaré section is more an art than anything else, and what
constitutes a good Poincaré section can only truly be answered once we have gone through the
computation for return maps. We will return to this concept at the end of this section, but for
now, we will follow good judgment and define a good Poincaré section as one that captures the
local dynamics of interest [1]. Using our previous example, we want to capture the dynamics
in the attractor for the trajectory in Figure 1a. To capture the interesting dynamics, a good
Poincaré section will cut the spiralling around the x−eq, such as the one suggested in Figure 1b.

a.) b.)

Figure 1: Trajectories of the Rössler system. The equilibrium x−eq and x+eq are marked in black.
a) A typical trajectory (blue) in the basin of attraction for x−eq spirals towards x−eq and fills
out the attractor. The (red) trajectory shows a typical trajectory that spirals away from x+eq.
b) Shows a good Poincaré section that will capture the dynamics of interest around x−eq. The
section contains the x−eq, and as the trajectory crosses the section, each point is marked in red.

With a good Poincaré section, we see how the dynamics are governed near x−eq; in a
typical trajectory such as the one in Figure 1b, the trajectories spiral away from x−eq along the
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unstable manifold and then fold back onto themselves along the stable direction. To capture
all of these dynamics in our Poincaré section, we want to start with points that start on
the unstable manifold of x−eq [3]. The reasoning for the unstable manifold versus the stable
manifold are straightforward: (1) a trajectory placed on the stable manifold will approach the
equilibrium, but never quite make it; and (2) the unstable manifold causes the a trajectory
to push out, when it comes back in, the contracting nature of x−eq will (almost) place the
trajectory back on the unstable manifold to begin the cycle again (Figure 2).

a.) b.)

Figure 2: a) Example of the unstable manifold’s curve in the Poincaré section for a trajectory
originating on the manifold. The equilibrium is marked in black, and the blue points corre-
spond to stretching and the green arrows show directionality. When the trajectory folds back
in (purple arrow) to the turn over point (red), we stop collecting crossings. Here we have
only shown one trajectory marking out a curve, but in practice, one starts with a series of
points very close to the equilibrium and along the unstable eigen-direction. b) Two examples
of trajectories that start on the unstable eigen-direction of x−eq (one is in red the other is in
blue). As the trajectories fill out the attractor and cross the Poincaré section (cyan), they cut
out a curve such as the one in part a).

To start on the unstable manifold, we use an initial point for the trajectories very close to
x−eq and linear theory dictates the unstable direction and manifold. As the trajectories evolve
with time, the Poincaré section marks their ith crossings x̂i until they have fallen back in
towards the equilibrium as in Figure 2. Crossing the Poincaré section should only be counted
in one direction. The unstable manifold will carve out a curve as it stretches out in the
Poincaré section, and as long one fold over is marked, the dynamics of the system will be
captured (Figure 2).

To translate this curve into a return map, we invoke the notion of curvilinear distance [2]:

sn =

n−1∑
i=0

‖ x̂i − ˆxi+1 ‖ (5)

where x̂i is the position of the trajectory crossing the section and we are summing over all
points ordered along the curve originating from the equilibrium x0 = x−eq to our point of
interest xn. For a given trajectory, we define the next distance along this curve as sn+1.

Tracking the curvilinear distance provides the return map: the unstable manifold pushes
a trajectory out (distance along the curve increases), at a certain point on this manifold, the
trajectories are pulled back in (distance along the curve shrinks). In other words, the distance
tells how a trajectory is pushed out or pulled back in as it spirals around x−eq, and this will
act as a return map if we look at sn versus sn+1.

Running this for the Rössler system, we arrive at Figure 3. Using this return map, periodic
orbits of length 1 (spiral around x−eq once) are found by calculating distances such that sn =
sn+1. Return maps can be used to compute cycles of length k by solving those which solve
sn = sn+k. A few simple examples are shown in Figure 4.
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Figure 3: The return map for the Rössler system. The black marks the return map, and the
red shows how to use the return map to find the periodic orbit in Figure 4. This a plot of the
curvilinear distance sn. For the high order lengths, the periodic orbits of the Rössler system
can be found through methods such as the Newton root finding method after iterating the
map or with a multi-point Newton method [1].

a.) b.)

Figure 4: a) Cycle 1 for the Rössler system. b) Cycles 01 (red) and 0111 (blue). The meaning
of these names for the cycle will be given in section 4

We have demonstrated that for a chaotic system, in this case the Rössler system, we can
find periodic orbits with return maps based on curvilinear distance along the unstable manifold
in a section. We mentioned earlier that the choice of a good Poincaré section becomes easier
to understand once we have gone through the return map calculation. The Poincaré section
needs to cut the trajectories in such a way that all the interesting dynamics of the attractor
are captured. Since we are looking at curvilinear distance along the unstable manifold with
respect to the attractor, the section should include the equilibrium point near and directly
involved with the attractor, but this is not necessarily a requirement that needs to be taken to
heart. One could in principle generalize the theory for sections not containing the equilibrium,
but if not careful, certain periodic orbits could be lost. As a result, it is not a bad idea to
make sure the section includes the equilibrium. There is also some literature which suggests
multiple Poincaré sections may be necessary [5]; however, for our purposes here of finding
periodic orbits of the Rössler attractor, this section will suffice. To summarize and generalize
what we have done here, we:

1. Determined the equilibria and their stable and unstable directions,

2. Found which equilibria were involved in the attractor,

3. Chose a Poincaré section that captures the dynamics of interest,

4. Marked how the unstable manifold crossed the section,

5. Calculated the curvilinear distance along the curve,
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6. Turned the curvilinear distance into a meaningful return map (sn vs sn+1),

7. Used the return map to back out the periodic orbits.

With a basic understanding of computing and some of the functions of return maps having
been reviewed, we now turn to a more interesting set of equations, namely the Complex
Lorenz. The Complex Lorenz equations, however, are different from the Rössler equations
because they have an extra layer of complexion to them: symmetry [3]. Before we dive right
in, however, let us clearly define what we mean by symmetry and explain how to handle them.

2 Symmetries

Our goal for this section is to explain how to remove symmetries from dynamics. We are
defining dynamics to be the evolution of trajectories, f t(x0) = x(t), coupled with the state
space that describes the system, Ω. There is a lot of literature involving symmetries and
dynamic systems [1, 3, 4, 2, 5]. A quick review of several of the definitions and a symmetry
reduction technique will be given to gain insights into finding return maps for symmetry
systems. In short, we need to redefine our system on a symmetry reduced space: Ω̂ and
symmetry reduced evolution: f̂ t(x0) = x̂(t).

We say a system has symmetry if for ∀g ∈ G, where G is a group, the flow remains
equivariant [1]:

v(x) = g−1v(gx) (6)

Let us define a point’s group orbit [1] as the set of points which a point can reach under
actions of G:

X ′ = {gx|∀g ∈ G} (7)

An equilibrium will remain an equilibrium under the actions of symmetry. We define a relative
equilibrium:

∀t ∃g : x(t) = gx(0) (8)

as any point for which the group orbit and the trajectory are the same [1]. These set of
trajectories are also called travelling waves (TW) [1].

We will also define a relative periodic orbit [1], as any trajectory:

∃Tp, g ∈ G : x(t+ Tp) = gx(0) (9)

We could of course define a periodic orbit in symmetry reduced space, but a periodic orbit
could be classified as a relative periodic orbit.

For this work, we will only be focusing symmetries that are Lie groups. For us, the most
important feature of Lie groups is that there exists a finite set of generators, T, for a Lie group
(Lie algebra) [1]. The set of linearly independent elements of the generators will produce all
elements of G with the formalism:

∀g ∈ G ∃φ : g = eφ·T (10)

Let the size of the of independent generators be N; a symmetry of a system (with dimen-
sionality d) will reduce the dimensionality to d − N [5]. To symmetry reduce a problem, we
will follow the prescription described in Ref. [4] and [5]. In Ref. [5], a series of methods are
discussed, but here we will focus on the method of slices. In the method of slices, we can define
a hyperplane to which we will reduce all trajectories. Slice’s are defined by their template
(the point the hyperplane is defined) and the slice condition:

t = Tx̂

< t|x̂′ > = 0
(11)
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Here t is called the group tangent for the template point x̂.
The slice condition (equation 11) reduces the group orbit X ′ to a finite set of points (here

the elements are x̂′) which lie in the slice hyperplane t. As is described in Ref. [4] there may
be a number of points on a group orbit which meet the slice condition, and a second condition
to symmetry reduction is minimizing the distance:

‖ x̂− g(t)x(t) ‖=‖ x̂− x̂′ ‖ (12)

There are two ways to meet the slice condition: (1) act a group element on a trajectory to
meet the slice condition for each point in time (post processing) or (2) to run the dynamics
in a slice. The details of both can be found in the literature [1, 3, 4, 5].

Now that we have discussed the definitions and some of the concepts of symmetry and
symmetry reduction, we focus our attention on a system. For this purpose, we turn to the
complex lorenz equations which we will be using again in the next section. The Complex
Lorenz is given by:

ẋ1 = −σx1 + σy1

ẋ2 = −σx2 + σy2

ẏ1 = (ρ1 − z)x1 − ρ2x2 − y1 − ey2
ẏ2 = ρ2x1 + (ρ1 − z)x2 + ey1 − y2
ż = −bz + x1y1 + x2y2 ,

(13)

where for the remainder of this paper, we will use the parameters given by σ = 10, ρ1 = 28,
ρ2 = 0, b = 8/3, and e = 1/10 [3].

a.) b.)

Figure 5: a) A typical trajectory plotted in (x1, x2, z) space. Blue is the trajectory, the red
is a travelling wave TW1, and the black is the equilibrium at the origin. b) Same trajectory
as in part a, but this is symmetry reduced (x2 = 0 space), and is plotted in (x1, y1, z). The
trajectory no longer looks as messy as it was in part a. The labelling is the same.

A typical trajectory for the Complex Lorenz is seen in figure 5a. It is left to the reader
to verify that the Complex Lorenz has SO(2) symmetry, with the generator of the rotations
given by Ref. [1]: 

0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0
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Using equation 10, we can compute a group element with phase φ as:
cos(φ) sin(φ) 0 0 0
− sin(φ) cos(φ) 0 0 0

0 0 cos(φ) sin(φ) 0
0 0 − sin(φ) cos(φ) 0
0 0 0 0 1

 (14)

To find the relative equilibrium since we have SO(2) symmetry, we switch over to polar
coordinates (r1, r2, θ1, θ2, z), and write the equations above as:

ṙ1 = −σ(r1 − r2 cos(θ))

ṙ2 = −r2 + r1((ρ1 − z) cos(θ)− ρ2 sin(θ))

θ̇1 = −σ r2
r1

θ̇2 = e+
r1
r2

((ρ1 − z) sin(θ) + ρ cos(θ))

ż = −bz + r1r2 cos(θ) ,

(15)

where r1 =
√
x21 + x22, r2 =

√
y21 + y22 , tan(θ1) = x2

x1
, tan(θ2) = y2

y1
, and θ = θ1 − θ2 [1].

To have a relative equilibrium, we require: θ̇1 = θ̇2 and the remaining equations in 15 to
be set to 0. It is left to the reader to verify that the equilibrium is given by:

(r1, r2, θ, z) = (
√
b(ρ1 − d),

√
bd(ρ1 − d), cos−1(

1√
d

), ρ1 − d) (16)

where d = 1 + e2

(σ+1)2 .

(It should be noted that the constraint of θ̇1 = θ̇2 requires that sin(θ) < 0). Using our
parameters, a point on the relative equilibrium in coordinates is given by [1]

(x1, x2, y1, y2, z) = (8.4849,−0.0771, 8.4885, 0, 26.9999)

As mentioned, there are several ways to symmetry reduce this problem. Here, we will post
process into a slice, and unwisely choose our template and slice condition as:

x̂ = (1, 0, 0, 0, 0)

< x̂′|t >= 0 , t = Tx̂
(17)

Using the slice condition (11, 12) and the fact that we can write a point on the trajectory
as x̂′ = g−1(φ(t))x(t), we can compute the element g ∈ G to meet our template and slice
conditions [4]. With the knowledge of our relative equilibrium and a chosen slice, we a method
to symmetry reduce our trajectory, and arrive at Figure 5b. We have reached the goals for
this section: we have symmetry reduced a system.

Symmetries play an interesting role in dynamics. When a system has a symmetry, there
exists a set of solutions (we have called these relative equilibria) with trajectories in the same
direction as the symmetry. If these relative equilibria act as an attractor for a chaotic system,
trajectories will tend to flow in the direction the relative equilibrium in addition to filling
out the attractor [5]. As a result all of the interesting dynamics moves with the symmetries,
and any hope of getting periodic orbits and relative periodic orbits is lost. We could try to
redefine the Poincaré section, but then the methods developed in the previous section would
be for nothing. With symmetry reduction, however, we remove all of these complications and
we will only see the dynamics of interest; [5] does an excellent job of explaining this in a nice
analogy with drifters and dancers.

Having reviewed symmetries and how to reduce a symmetry, we now turn back to finding
return maps, but we add an extra twist: the new system will have symmetry.
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3 Complex Lorenz Return Map

The obvious question is why symmetry reduction even necessary for finding a return map?
In short flows can be broken into two parts: (1) in the direction of the symmetry action, and
(2) in directions orthogonal to the symmetry [1, 3, 5]. The former complicates our goals of
finding periodic orbits and relative periodic orbits; the latter is our concern, since imbedded in
these are the relative equilibrium and relative periodic orbits [5]. When we symmetry reduce,
the relative equilibrium become equilibrium and the relative periodic orbits become periodic
orbits (periodic orbits, of course, will remain periodic orbits). For a system without symmetry,
we can find the periodic orbits; therefore, if we symmetry reduce a problem, we have reduced
the problem to a previously solved one.

Using Figure 5, we see the relative equilibrium (xTW ) and the equilibrium (x0, the origin)
are the acting components to the attractor. In analogy to the Rössler system, x−eq is to x+eq as
xTW is to x0. Therefore, we want to look at how the unstable manifold originating from xTW
unravels in a Poincaré section.

a.) b.)

Figure 6: a) Reduced dynamics of the Complex Lorenz with a possible Poincaré section.
Usually, visualization of the Poincaré section is impossible since the symmetry reduced space
is 4-d, but we have used a simple section to help the reader. b) Return map for the complex
Lorenz. sn is the curvilinear distance. This return map can be used to compute the relative
periodic orbits seen in Figure 7

Looking at a typical trajectory in reduced space (Figure 5b), with the templates given
by 17, we can find a good Poincaré section will contain xTW and intersect all the interesting
dynamics. For this particular example, we have chosen the section shown in Figure 6 a).
Following the same prescription as the Rössler system, we find the curvilinear distance along
the curve of the unstable manifold in the Poincaré section and the return map. The results are
seen in Figure 6b. A couple of relative periodic orbits in reduced space (appearing periodic)
and in the original space are shown in Figure 7.

Summarizing, to find the (relative) periodic orbits of the Complex Lorenz, we followed the
methods developed for the Rössler system with one extra step: we removed the symmetry of
the Complex Lorenz. The reasons for dividing out the symmetries were explained and with
the reduced space, the relative periodic orbits of the Complex Lorenz were found.

The only difference between the Complex Lorenz and the Rössler system of equations were
the added difficulty of the SO(2) symmetry. Removing symmetries for this case was easy, but
in other cases, there will be problems. Failures in symmetry reduction manifest themselves
as discontinuities in dynamics [5]. For the Complex Lorenz, we avoided this problem, but it
will rear its ugly head in other problems. Methods for getting around these problems can be
found in Ref. [5].
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a.) b.)

c.) d.)

Figure 7: Images depicted relative periodic orbits for the Complex Lorenz system. The tra-
jectories are in blue, the relative equilibrium red, and the equilibrium in black. a) Cycle of
length 1 for the Complex Lorenz system in reduced space (same template as Figure 5. b)
Same trajectory as part a, but plotted in full state space. The group orbit of the initial point
are shown in cyan; notice how the trajectory intersects this at the beginning and the end. c)
Cycle of length 4 for the Complex Lorenz in reduced space. d) Same cycle as part c, but in
full state space; the group orbit of the starting and last point is given in cyan.
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4 Return Maps and Periodic Orbits

We have already discussed how a return map yields periodic orbits. We demonstrated a few
examples of the computed periodic solutions. We turn now to a discussion of applications
of return maps and periodic cycles to compute various entities of interest. To expedite the
process, we will assume the reader is familiar with the the concepts of entropy, transition
graphs, and spectral determinants. The reader unfamiliar with these topics can refer to
Ref. [1]. We will also focus on the Rössler system, so that we can compare our results.

For a return map, such as the one for the Rössler system, we will name any periodic orbit
according to which regions it visits on a return map (Figure 8a). For example in Figure 8, the
periodic cycle 0111 starts in region 0 iterates to region 1 three times and then returns to 0.
Using our return map, we can find the cycles of any order and have listed here the cycles up
to order 7. They are listed in Table below.

a.) b.)

Figure 8: a) Rössler return map with symbolic dynamics defined. Anything to the left of the
critical point (marked with a dashed line) is labelled 0, and anything to the right is labelled
1. b) Cycles 0111 (blue) plotted on the Rössler return map. Note that it start it 0 iterates
through region 1 three times and then returns to its initial point.

np 1 2 3 4 5 6 7
1 01 001 0111 01101 001011 0110101

011 01111 011101 0110111
011111 0111101

0111111

For cycles up to length 5, we have also listed the leading Floquet multiplier (calculated
from the Jacobian) and the periodicity of these trajectories in the table below. These values
can be compared with those computed in Refs. [1, 6]. Cycles of length 3 and shorter compare
well, beyond these lengths, however, they fail to agree; this could be due to computational
limitations.

Λ TP
1 -2.383 5.871
01 -3.618 11.780
001 -2.318 17.492
011 4.753 17.560
0111 -17.532 23.544
01101 -26.682 29.477
01111 24.055 29.212

To find the entropy a system, we want to calculate the leading root of the polynomial:

det|1− zT | = 0 (18)
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where T is our transition matrix [1]. In theory this should be an infinite product, but for this
work, we will truncate this to our 7th order. We can reduce this polynomial to:

det|1− zT | = 1− t1z − t01z2 − (t001 + t110 − t1t01)z3

−(t0111 − t1t001 − t1t011)z4 − (t01101 + t01111 − t01t001−
t01t011 − t1t0111)z5 − · · ·

(19)

det|1− zT | ≈ 1− z − z2 − z3 + z4 + z5 − z6 + z7 (20)

Calculation of the smallest root gives z ≈ .606684170874. The entropy h = ln(z) is given
by h ≈ −0.499746934907. This is the final result: we have demonstrated the use of return
maps to calculate periodic orbits and calculated the entropy of the Rössler system, albeit we
only did so up to order 7.

5 Conclusion

We have demonstrated the ability to compute periodic orbits for two systems. The first system
we examined was the Rössler attractor, and we developed a prescription to compute periodic
orbits for chaotic systems through return maps. In the second system, the Complex Lorenz,
we were forced to deal with symmetries. We showed that with symmetry reduction, we could
reduce the problem from a complicated mess to a tractable problem: with symmetry reduced
dynamics, we could now use our previous described methods and compute the return maps
and several relative periodic orbits for the Complex Lorenz. In the last section, we went
over how the return maps could be used to compute entropy, and made an estimation for the
entropy of the Rössler system. The goals of this project were to find a return map for two
systems, but along the way we learned how symmetries can cause difficulties. Without sym-
metry reduction the difficulty of computing return maps and relative periodic orbits increases
dramatically [3]. Symmetry reduction is crucial to solving problems, but [5] points out that
symmetry reduction may actually lead to some problems. They have come up with a solution
to deal with discontinuities that can arise in symmetry reduction, and while it would have
been nice to try to implement those solutions here for computing return maps, a system with
the appropriate parameters could not be found. This is not without hope though and will
continue to be investigated by this author.
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