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Transport and mixing problems in non-turbulent flows have been studied with chaotic advec-
tion theory to understand and quantify the characteristics of the fluid particle dynamics in simple
analytical flows, and new analyses have been recently extended to realistic and more complex, exper-
imentally realizable flows. Many environmental and engineering flows have also two or more phases,
but little progress has been made in understanding the properties of these flows when there are
inertial particles within the fluid. The purpose of this research is to study numerically the dynamics
of inertial particles in a three-dimensional flow inside a closed cylinder with exactly counter-rotating
lids. The one-way coupling simulations are based on analytical models of the forces acting on the
particles, and on a simple elastic collision scheme with the boundaries. The solutions show how
the effect of gravity can suppress the chaotic motion observed in fluid particles due to sedimenta-
tion. Particle dynamics without gravity force is also analyzed through Lagrangian average maps
and particle variance of concentration, confirming the effect of inertia that decreases mixing in the
container. Additionally, from periodic orbit theory we evaluate a global average of the flow such as
particle dispersion, based on the spectrum of the orbits obtained from the determinant calculated
with few prime cycles of the system.
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I. INTRODUCTION

Mixing in non-turbulent flows has been the subject of
extensive study in recent years, since several geophysi-
cal and engineering flows exhibit chaotic dynamics due
to stirring produced by continuous stretching and fold-
ing of material lines [1]. Chaotic advection theory [2]
has been developed to analyze these transport and mix-
ing problems, connecting nonlinear dynamics with fluid
mechanics, based on the phase-space defined by the La-
grangian representation of fluid particles that show local
instability and global mixing of trajectories.

The theoretical framework to describe these flows
was first developed to study idealized two and three-
dimensional flows, which were specified analitically as so-
lutions of simplified Navier-Stokes equations [3–5]. Sev-
eral experiments have also been carried out to eluci-
date the chaotic advection mechanisms driven by vortical
structures in the flowfield, which homogenize the concen-
tration of passive scalars [6–8].

Recently, investigations of experimentally realizable
three-dimensional flows have given new insights in
chaotic mixing of non-diffusive particles. The mech-
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anisms of the rich Lagrangian dynamics of three-
dimensional vortex breakdown bubbles in closed cylin-
drical containers have been studied in numerical and ex-
perimental investigations [9, 10], establishing the non-
dimensional parameters that determine the Lagrangian
characteristics of the flow.

The instability of the flow in a cylindrical container
with exactly counter-rotating lids, also called von Kar-
man swirling flow, was recently computed and studied in
detail [11], identifying the chaotic characteristics of the
flow at different Reynolds numbers. Numerical simula-
tions agreed with stability analyses performed previously
for this flow [12, 13]. The results [11] also showed how
the shear-layer at the center of the container becomes un-
stable to azimuthal modes and developes radial and ax-
ial vortices, determining the onset of three-dimensional
chaotic dynamics, while few stable/elliptic periodic or-
bits remain in islands or within toroidal regions close to
the lids. From the flow instability, stationary radial cat-
eye vortices emerge at the center of the container, in a
number equivalent to the most unstable azimuthal wave-
number of the flow depending on the aspect ratio of the
container, and the Reynolds number of the flow.

A remarkable finding of this study was the relation-
ship established between the Reynolds number and the
intensity of chaotic stirring. As the Reynolds number
increases, the mixing increases up to a threshold, after
which regions ocuppied by the unmixed islands grow, de-
creasing the stirring intensity within the flow. This phe-
nomenon was previously studied [14], establishing that
for steady and stable, bounded three-dimensional flows,
mixing increases as long as viscous terms are important.
If the Reynolds number is too large, and the flow re-
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mains steady, the chaotic regions and mixing in the flow
will decrease.

Despite all this progress in Lagrangian studies of realis-
tic complex three dimensional flows, there have been few
investigations relating chaotic mixing of discrete inertial
particles.

Particle-laden flows cover a wide range of applications
in combustion, sprays, bubbly flows, atmospheric flows,
and sediment transport in aquatic enviroments.

Numerical investigations of the Lagrangian properties
of inertial particles in these flows have to take into ac-
count that solid particles cannot be considered passive
scalars, but as a dispersed phase, which is subject to
surface and body forces, as well as collisions with solid
boundaries or other particles.

Most of the previous studies have been performed in
analytical two-dimensional cellular flows or shear-layers.
Numerical simulations have found that chaotic behavior
of inertial particles depends on the density ratio between
the two phases, and on the relative response time of the
particles with respect to the time-scale of the vortical
structures of the flow [15].

Recently, inertial particles in two-dimensional un-
steady flows were analyzed in Hamiltonian systems [16],
using the stream function of Kelvin’s cat-eyes vortices,
for which chaotic dynamics was only observed in heavy
particle systems.

The aim of this research is to investigate numerically
the three-dimensional steady flow in a cylindrical con-
tainer with two exactly counter-rotating lids as shown in
Fig. 1, comparing the results obtained in the calculations
for passive non-diffusive fluid particles [11].

The simulated particle trajectories will allow us to de-
termine the non-dimensional parameters that character-
ize the chaotic behavior of the particle system, and the
particle dispersion for this particular flow from periodic
orbit theory [17].

In sect. II the equations which govern the particle mo-
tion are derived by separating the effects of the different
forces acting on the system. Implementation of the model
with a critical analysis of the results unveiling the effect
of inertia is presented in sect. III Results are summarized
and discussed in sect. IV.

II. PROBLEM FORMULATION

The steady incompressible flow in a cylindrical con-
tainer of radius R and height H, with lids rotating at
the same angular velocity magnitude, Ω, but in oppo-
site directions, as shown in Fig. 1, is characterized by
two non-dimensional parameters: the Reynolds number,
defined as:

Re =
ΩR2

ν
(1)

and the aspect ratio of the container:

AR = H/R (2)

FIG. 1: Flow in a cylidrical container with counter-rotating
lids.

The basic axisymmetric flow is formed by an invariant
region of two tori where only quasi-periodic orbits of fluid
particles exist. The upper and lower halves of the cylin-
der have recirculating patterns due to Ekman pumping,
and the radial jet formed at the center of the container
creates a shear layer, which is the mechanism responsible
for the initiation of chaotic mixing.

Recent studies of this flow for different Reynolds
numbers, aspect ratios, and angular velocities of the
lids [12, 13, 18, 19], have shown that this azimuthal
shear layer becomes unstable, exciting three-dimensional
modes that break the symmetry of the flow.

Lackey [11] carried out numerical simulations for AR =
1, in a range of Reynolds numbers between 295 and 850,
integrating the three-dimensional incompressible Navier-
Stokes equations with a second-order accurate scheme,
using 81 × 211 × 161 grid nodes in cylindrical coordi-
nates. Fig. 2 shows the solution at Re = 350, for which
the azimuthal mode 3 is excited. The two isosurfaces of
radial velocity evidence the three-dimensionality of the
flow produced by the radial vortices, whose centers are
stable foci on the azimuthal plane. For larger Reynolds
numbers, these characteristics of the flow are more evi-
dent as it is further discussed in [11].

Fluid particle trajectories from a Lagrangian viewpoint
can identify the invariant and chaotic regions within the
flow to observe the global stirring effect as a function
of the Reynolds number. Through Lagrangian average
maps, the simulations showed that new invariant regions
appear for Re > 500, reducing the size of the mixing
area. The stirring intensity was quantified by the vari-
ance of concentration, which demonstrated that as long
as the flow remains steady, there is a Reynolds number
that maximizes stirring. Above this value the mixing
declines approximately at Re−1/2, confirming the theory
developed by Mezić [14].

To explore the two-phase dynamics and interactions
with the chaotic regions produced by the shear layer, we
study numerically the motion of dispersed solid particles
in this flow, by integrating their momentum equations.

Chaotic motion of inertial non-diffusive particles has
only been studied for two-dimensional cell flows and ABC
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(a)

(b)

FIG. 2: Fully three-dimensional flowfield at Re = 350 and
AR = 1 [11]. (a) Isosurfaces of radial velocity ur = −0.1ΩR
and ur = 0.065ΩR, and (b) Contours of radial vorticity, ωr,
and surface streamlines on the unfolded azimuthal plane Y −θ
at r = 0.75R, 0 ≤ θ ≤ π.

flows [15, 16, 23–25]. The chaotic behavior of inertial par-
ticles is related to the ratio between the particle response
time, which is a function of the drag force, and the char-
acteristic time of the flow, as well as the density ratio
between both phases.

These findings, however, have not been demonstrated
in realistic three-dimensional flows. In this research we
model the particle dynamics for the first time in experi-
mentally realizable three-dimensional flows, using the so-
lutions obtained for the cylinder with exactly counter-
rotating lids.

To simulate the stirring of inertial dispersed particles
that move independently of fluid elements, we need to es-
tablish the dynamic equations by modeling the forces act-
ing on each particle. Therefore, the trajectory and mo-
mentum are described by the following system of equa-
tions:

dxpi

dt
= vpi (3)

m
dvpi

dt
= fi (4)

where vpi and xpi are the velocity and the position of
the particle in each coordinate direction respectively, m
is the mass, and fi represents the sum of forces acting on
the particle in the i direction. To determine an adequate
expression for fi, we utilize empirical and analytical for-
mulas with an elastic collision scheme for particle-wall
contact.

A. Momentum Equation for an Inertial Particle

The total force on a solid particle, fi in Eq. (4), can be
composed of three different parts: (1) Gravitational or
other body forces; (2) Surface forces exerted by the fluid,
such as drag or lift; and (3) Forces due to interaction with
other particles and collisions with physical boundaries
within the flow.

These forces represent the transfer of momentum be-
tween the two phases, which controls the complex real-life
motion of fluid and solid particles. Empirical relations of
drag, lift, gravity, and added mass effect for spherical
non-rotating particles are considered in this model [20].

The drag force is obtained from dimensional analysis
with a drag coefficient CD, calculated as a function of
the particle Reynolds number [21]:

CD =
24

Rer

(
1 + 0.15 Re0.687

r

)
(5)

where Rer depends on the diameter and the relative ve-
locity of the particle, vr:

Rer =
|vr| d

ν
(6)

Models for lift and added mass forces in inviscid
flows [22], with coefficients CL and Cm respectively,
are employed to derive the non-dimensional momentum
equation, which is scaled with the container radius, and
the magnitude of the rotational velocity Ω:

dvpi

dt
=

1
(SG + Cm)

[
− δi3

Fr2 d̃
+

SG

St
vri

+ CL(εijkvrjωk) + (1 + Cm)
Dui

Dt

]
(7)

where d̃ is the non-dimensional particle diameter, and vpi

and ui represent the i component of the particle and flow
velocity. The relative velocity is defined as vri = ui−vpi,
and the vorticity of the flow is the curl of the velocity
field ωi = εijk

∂uk

∂xj
.

Other three dimensionless parameters appear in
Eq.(7): The ratio of solid and fluid densities called spe-
cific gravity SG = ρs/ρ, the densimetric Froude number,
which relates the inertial and gravity forces:

Fr =
ΩR√

(SG − 1)gd
(8)

and the Stokes number, St, used to identify the dynami-
cal relation between the two phases. Since the drag is the
dominant force, the Stokes number is defined as the ratio
between the particle response time and the characteristic
time scale of the flow in the container:

St =
τR

τF
=

4
3

d SG
CD |vr|Ω (9)
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(a)

(b)

(c)

FIG. 3: Three-dimensional, side, and plan views of a group of 1250 inertial particles released in the flow. Green particles
neglect the effect of gravity as Fr → ∞, and red particles consider a Froude number of Fr = 6.15. For both simulations the
additional parameters are: Re = 350, AR = 1, d̃ = 0.02, and SG = 2.65. (a) Initial conditions for both groups at t = 0, (b)
Particles after 4 lid rotations, and (c) Particle positions after 21 lid rotations.

This parameter reflects the particle behavior due to
the flow caracteristics. If the value of St � 1 a particle
has enough time to respond to changes in flow velocity,
and it can follow closely the motion of the largest scales
of the flow. On the other hand, if St � 1 the particle
velocity is not affected by the flowfield, and trajectories of
fluid and solid particles with the same initial conditions
diverge very rapidly.

Besides particle rotation, the model given by Eq. (7)
also neglects the Basset history force due to the viscous
stresses on the particle surface, as well as the Faxén cor-
rection on the drag force that accounts for non-uniform
flow effects [20].

B. Particle Collision Model

The boundary conditions play an important role in
particle dynamics since the flow is contained by the solid
walls of the cylinder. The inertial particles can make con-
tact with the boundaries altering their momentum and
trajectory, which is modeled by a collision algorithm that
simulates the kinetic energy loss due to inelastic and fric-
tion effects.

Here we adopt a simple one-step collision model, for
which the particle impulse changes before and after the
impact by a factor given by the coefficient of restitution
e, referred to the center of mass of the sphere.

Assuming no particle deformation or friction, the post-
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collision velocities are obtained as:

v′pn̂ = −evpn̂ (10)

v′
pt̂

= vpt̂ (11)

where vpn̂ and vpt̂ are the particle velocities in the normal
and tangential directions to the solid surface.

The perfecty elastic model used herein considers the
restitution coefficient e = 1, for which the particle pre-
serves its tangential and normal momentum.

III. ONE-WAY FLOW SIMULATIONS

The trajectory and momentum Eqs.(3) and (4), de-
scribe the particle with a point-volume representation
such that all the forces are concentrated on a point that
corresponds to its center of mass, and the continuum
background fluid is not affected by the particle motion.
These are called one-way coupling simulations, since the
solid phase does not alter the dynamics of the fluid.

A resolved particle scheme would require a detailed
modeling of the particle volume and fluid interaction,
which can be simulated using boundary interface meth-
ods [26]. Recently, Hwang et al. [27] showed how a parti-
cle can change the surrounding flow, and generate chaotic
motions in a simple two-dimensional lid-driven cavity
flow.

To study the interaction of inertial particles with the
flow and compare their motion with passive fluid parti-
cles, we examine the effect of inertia by separating the
gravity force from the forces generated by fluid-solid con-
tact. Poincaré maps are constructed to visualize the
global Lagrangian dynamics of inertial particles, and stir-
ring is analyzed qualitative and quantitatively from the
variance of particle concentration and Lagrangian aver-
ages.

A. Effects of gravity on the particle dynamics

To analyze separately the effects of inertia and gravity,
we compute the trajectories and velocities of 1250 parti-
cles without the gravity term (Fr → ∞), and also with
a Froude number of Fr = 6.15, as shown in Fig. 3.

From the simulations we observe that without gravity,
the shear layer instability contributes to the stretching
and folding of particle trajectories, and even though the
inertial particle motion is different from the passive fluid
particles trajectories, the unmixed islands visualized for
the fluid motion still persist, as shown in the Poncaré
sections depicted in Fig. 4.

Gravity, however, introduces a drift in the vertical di-
rection, which depends on the magnitude of the Froude
number. For a sufficiently small Fr, the inertial effects
cannot maintain the particle suspension and all the flow

(a)

(b)

FIG. 4: Poincaré sections at x = 0. (a) Neglecting gravity
force (Fr → ∞) the unmixed islands can still be observed,
and (b) Section with Fr = 6.15, all trajectories converge to
the lower right corner of the container.

structure starts to break down, destroying the mixing
process when sedimentation takes place.

The Poincaré section constructed for this case is less
dense, since all the particles from different initial condi-
tions land eventually at the bottom lid. They are pushed
away to the corner by the centrifugal acceleration, and
remain trapped because gravity is larger than drag or lift
forces, which prevents particle escape or entrainment to
the flow.

From these simulations we can deduce that for each
Reynolds number, there should be a minimum Fr, such
that chaotic motion of inertial particles is not suppressed.
Further analysis will have to consider the inertial and
body force effects separately to understand the dispersion
mechanisms of a particle cloud due to transfer of low
momentum only.

B. Flow topology and chaotic dynamics

To identify in detail the structures present in the com-
plex three-dimensional flow, Lackey [11] calculated La-
grangian average maps in the transverse section of the
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cylinder at a constant angle.
The Lagrangian averages are constructed by simulating

the velocities and trajectories of 10,000 particles initially
released in the section, and calculating the relative differ-
ence of the velocity magnitude with the average velocity
of the entire flow:

ũL(i, j) =
uL(i, j) − 〈u〉

〈u〉 (12)

where uL(i, j) is the Lagrangian average along the trajec-
tory of the particle starting from the position (i, j), and
〈u〉 is the average velocity magnitude of the flowfield.

In regions where the flow is chaotic, particles cover
ergodically the domain and sample all the velocities in
the flow, thus Lagrangian averages of chaotic trajectories
are close to zero in the passive fluid particle case.

As shown in Fig. 6 the contours of the average maps
reveal the breaking of the axisymmetric flow, which pro-
duces a chaotic region where ũL(i, j) ≈ 0. The La-
grangian maps also show that the size of the lower torus
decreases for the inertial particle case. Quasi-periodic
orbits embedded within the toroidal regions become un-
stable since they cannot maintain the same trajectories
of fluid particles in low momentum regions. The momen-
tum transfer decreases in some sections of the orbit, and
the flow cannot overcome the particle inertia, allowing
the escape due to Stokes number effects.

The same explanation can be argued for the integrable
sections near the centerline, where smaller velocities are
incapable of maintaining the organized motion.

The Lagrangian average maps plotted in Fig. 6 also
show that for the inertial particle case, weaker invariant
bands appear over the torus, in a zone that is well-mixed
from the fluid particles point of view.

Since these sections were not observed in the Poincaré
map of the constant azimuthal plane, we construct a new
section by taking one-sixth of the cylinder, due to the
symmetry of the flow, crossed by a diagonal plane as
shown in Fig. 5.

In this section we observe additional unmixed zones
which determine that mixing decreases for the combina-
tion of parameters employed in the simulations.

C. Stirring inertial particles

The effects of the phenomena previously described on
the Stokes number effect has a consequence on inertial
particle stirring, which can be quantified with the vari-
ance of concentration [11] that corresponds to the sec-
ond moment of the number of particles contained in a
two-dimensional plane at an instant in time, obtained by
collapsing the θ direction of the cylindrical grid.

This statistic is based on the concentration of particles
at every grid point:

σ2
c (t) =

1
I × J

I∑
i

J∑
j

(Ct(i, j) − C̄(t))2 (13)

(a)

(b)

FIG. 5: Poincaré section in a transverse plane. (a) One-
sixth of the geometry before and after being intersected by
the plane, and (b) Poincaré section which could explain the
banded zones in the Lagrangian average map.

where I and J are the maximum number of grid nodes in
the r and z directions respectively, and the instantaneous
mean concentration is calculated as:

C̄(t) =
1

I × J

I∑
i

J∑
j

Ct(i, j) (14)

The variance of concentration for inertial particles with
no gravity, assuming the parameters Re = 350, AR = 1,
d̃ = 0.02, and SG = 2.65, gives a value of σ2

c = 3.15
after 40 lid rotations, which is smaller than the variance
of concentration of fluid particles at the same Reynolds
number, which gives a value of σ2

cf = 1.0, confirming the
effect of inertia on mixing.

D. Particle dispersion and periodic orbits in the
tori

(this section is still incomplete! ) To study the size
variation of the cloud we can calculate the particle dis-
persion, which is the second-order moment of the particle
position in each coordinate direction that reflects the dis-
placement of particles due to inertial effects.

Wang et al. [15] calculated a dispersion coefficient from
numerical experiments, based on Taylor’s stochastic the-
ory of turbulent diffusion. In this analysis the dispersion
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(a)

(b)

FIG. 6: Lagrangian average maps at x = 0. (a) Average
map of fluid particles showing the section of the torus and
integrable section at centerline, and (b) Map for inertial par-
ticles. Integrable sections decrease, but banded zones appear
on the mixing section.

depends on the autocorrelation function of the velocity
field as:

1
2

d

dt
〈x2

pij〉 =
∫ ∞

0

〈upi(t)upj(t + τ)〉dτ (15)

Fig. 7 shows the autocorrelation function of the veloc-
ity on the x-direction for one of the particles shown in
Fig. 3. The time dependence structure is periodic due to
the forcing imposed by the lids, which can be removed
to observe the real loss of information of the particle in
time in all three coordinate directions. The area under
these curves would represent the growth rate of 〈x2

pij〉 in
time.

This information can also be obtained from periodic or-
bit theory [17]. Using the flow characteristics observed in
the Poincaré section and Lagrangian average map, we ap-
proximate the fixed points and orbits, depicted in Fig. 8,
tracking particles with initial conditions at the center of
both tori, and at the center and corners where the mini-
mum values of the Lagrangian averages are located.

The relevant transverse eigenvalues on the periodic or-
bits are obtained by integrating the Jacobian as shown
in appendix A. The corresponding maximum values are
Λp = 0.170 in both orbits, which indicates their local
unstable character.

With the purpose of calculating the particle dispersion
in time, or the square of the particle distance with respect
to the mean, we can also use the information provided
by the spectrum of periodic orbits in the flow.

Using the contribution of a few prime cycles we can
calculate the trace of the evolution operator, or the zeros
of the following spectral determinant [17]:

det (s − A) = exp

[
−

∑
p

∞∑
r

1
r

er(βAp−sTp)∣∣det (I − Jr
p)

∣∣
]

(16)

which can also be obtained through the leading zeros of

FIG. 7: Autocorrelation function of the u velocity of an in-
ertial particle. The dependence shows the periodicity due to
the rotation of the lids.

the dynamical zeta function:

1
ζ

=
∏
p

(1 − tp) (17)

where tp = eβAp−sTp/ |Λp|. The integral of the observable
(particle position in this case) is contained in Ap, Tp is
the period of the orbit, and β the auxiliary variable of
the generating function.

IV. CONCLUDING REMARKS

The numerical investigation of Lackey [11], demon-
strated that the steady flow in a cylindrical container
with exactly counter-rotating lids, for AR = 1, becomes
three-dimensional due to the shear layer instability devel-
oped at the central plane, at a sufficiently large Reynolds
number.

In this investigation we study the dynamics of inertial
particles in this flow, to understand how chaotic regions
contribute to particle stirring when the specific gravity
and size of the dispersed phase are important.

The momentum equation (7), based on analytical and
empirical relations of surface and body forces, is solved
with an elastic collision scheme to account for particle-
wall interactions.

One-way coupling simulations showed that at a given
Re, the gravity force can suppress particle stirring when
the Froude number decreases. Further analyses without
gravity showed that integrable regions observed in fluid
motion still persist, but decrease due to inertial effects.

Even though the diameter of the unmixed islands ob-
served in Poincaré sections and Lagrangian average maps
becomes smaller, the variance of particle concentration
evidenced a reduced mixing in the inertial particle case.
This phenomenon occurs since in certain regions of the
flow the intrinsic time-scale of the particles is larger than
the time-scale of the fluid motion, which is reflected on
the magnitude of the Stokes number.

Several new aspects of the dynamics of inertial parti-
cles in rotating flows have been found, and require further
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FIG. 8: Fixed points and orbits within the invariant region
of inertial particles.

investigation to evaluate in detail the dependence on the
parameters defined in the equations.

Chaotic advection and periodic orbit theory can help
to explore the complex flow and find results of physical
relevance, to design experiments and clarify the dynamics
of the two-phase interaction in these flows.

Acknowledgments

I would like to thank Tahirih Lackey for providing me
the documentation of her thesis, and Predrag Cvitanović
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APPENDIX A: JACOBIAN AND EIGENVALUES
CALCULATION

Defining the state space vector of an inertial particle
as:

x = [up vp wp xp yp wp]T (A1)

the right hand side of the system is expressed in the fol-
lowing vector:

v = [f1/m f2/m f3/m up vp wp]T (A2)

Therefore, the matrix of variations of the flow is:

A =




∂v1
∂x

∂v1
∂y

∂v1
∂z 0 0 0

∂v2
∂x

∂v2
∂y

∂v2
∂z 0 0 0

∂v3
∂x

∂v3
∂y

∂v3
∂z 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




(A3)

We obtain the eigenvalues of the Jacobian, on the peri-
odic orbits, by integrating the system:

dJ
dt

= AJ (A4)

where the components are obtained from the derivatives
of the particle forces, Eq.(7):

∂v1

∂x
= −SG

St

{
1 − urΩR

CD[
CDur

|vr|2
− Repur

|vr|
(

24
Rer

+
1.1268
Re1.313

r

)]}

1
(SG + Cm)

∂v1

∂y
=

{
SG

St

urΩR

CD

[
CDvr

|vr|2

−Repvr

|vr|
(

24
Rer

+
1.1268
Re1.313

r

)]
− CLωz

}
1

(SG + Cm)

∂v1

∂z
=

{
SG

St

urΩR

CD

[
CDwr

|vr|2

−Repwr

|vr|
(

24
Rer

+
1.1268
Re1.313

r

)]
+ CLωy

}
1

(SG + Cm)

∂v2

∂x
=

{
SG

St

vrΩR

CD

[
CDur

|vr|2

−Repur

|vr|
(

24
Rer

+
1.1268
Re1.313

r

)]
+ CLωz

}
1

(SG + Cm)
∂v2

∂y
= −SG

St

{
1 − vrΩR

CD[
CDvr

|vr|2
− Repvr

|vr|
(

24
Rer

+
1.1268
Re1.313

r

)]}

1
(SG + Cm)

∂v2

∂z
=

{
SG

St

vrΩR

CD

[
CDwr

|vr|2

−Repwr

|vr|
(

24
Rer

+
1.1268
Re1.313

r

)]
− CLωx

}
1

(SG + Cm)

∂v3

∂x
=

{
SG

St

wrΩR

CD

[
CDur

|vr|2

−Repur

|vr|
(

24
Rer

+
1.1268
Re1.313

r

)]
− CLωy

}
1

(SG + Cm)

∂v3

∂y
=

{
SG

St

wrΩR

CD

[
CDvr

|vr|2

−Repvr

|vr|
(

24
Rer

+
1.1268
Re1.313

r

)]
+ CLωx

}
1

(SG + Cm)
∂v3

∂z
= −SG

St

{
1 − wrΩR

CD[
CDwr

|vr|2
− Repwr

|vr|
(

24
Rer

+
1.1268
Re1.313

r

)]}

1
(SG + Cm)
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where Rep = ΩRd/ν.
From matrix A, we identify two zero eigenvalues,

three unit eigenvalues when we integrate along a periodic

orbit, and a transverse eigenvalue Λp.
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