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I. INTRODUCTION

My project is an investigation of effects of magnetic dif-
fusivity on kinematic dynamo. I work and work through
obscure ref. [2], and then very intuitive but more obscure
unpublished paper by Cvitanović and Ott [1].

Many astrophysical magnetic fields are thought to be
arise by dynamo action due to internal fluid motions.
Many flows are known to give a growing B [3, 4]. How-
ever, even most of the simplest models shows chaotic be-
haviors [5]. Here we apply the periodic orbit theory to
dynamo problems. The periodic orbit theory of classical
chaos expresses all long time averages over chaotic dy-
namics in terms of cycle expansions [6, 7, 8, 9], sums
over periodic orbits (cycles) ordered hierarchically ac-
cording to the orbit length, stability, or action. The
study of periodic orbit can be useful when they are dense.
Then we can find a periodic orbit around any point, and
see the evolution on the orbit easily, instead of numeri-
cal calculation. If the symbolic dynamics is known, and
the flow is hyperbolic. The longer cycles are shadowed
by the shorter ones, and cycle expansions converge ex-
ponentially or even super-exponentially with the cycle
length [10].

In sect. II I derive the induction equation for pas-
sive diffusion less transport of magnetic flux lines and
in sect. III show that chaotic stretching and folding of a
magnetic field can lead to growth of average fields and
dynamo action. In sect. IV I rederive the Balmforth et
al. [2] trace formula for the deterministic dynamo action.
In sect. VI I turn to the central issue of this project, the
rate of smearing of periodic trajectories by diffusion, and
attempt, inconclusively, to derive Ott’s [1] modification
of the cycle weight in presence of magnetic diffusivity.
My results and the reasons why I failed to complete this
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project on the level of a publishable paper are discussed
in sect. VIII.

II. INDUCTION EQUATION

In the limit where current associated with charge sep-
aration and relativistic correction for motion of fluid is
neglected, a reduced form of Maxwell’s equation is valid.
The system can be described as follows:

∇×B = µJ (1)
J = σ(E + u×B) (2)

∇×E = −∂B
∂t

. (3)

Taking curl of (1), using (2), (3)

LHS = ∇×∇×B = ∇(∇ ·B)−∇2B = −∇2B
RHS = µσ∇× (E + u×B)

=
1
η

(
−∂B

∂t
+∇× (u×B)

)
(4)

yields

∂B
∂t

−∇× (u×B)− η∇2B = 0 , (5)

where η = 1/µσ is magnetic diffusivity whose dimension
is [L2]/[T ]. When the fluid is incompressible, ∇ · u = 0,
(5) can be simplified by using

∇× (u×B) = B · ∇u− u · ∇B
+(∇ ·B)u− (∇ · u)B (6)

as the following:

B · ∇u =
∂B
∂t

+ u · ∇B− η∇2B =
dB
dt

− η∇2B . (7)

In (6), (u · ∇)B, (B · ∇)u, and B(∇ ·u) represent advec-
tion, stretching, and compression, respectively [11].

When the fluid is compressible, the equation of mass
conservation can be expressed as

∂ρ

∂t
+∇ · (ρu) =

dρ

dt
+ ρ∇ · u = 0 (8)
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∇ · u = −1
ρ

dρ

dt
(9)

Then (7) becomes

dB
dt

− η∇2B− dρ

dt

1
ρ
B = B · ∇u (10)

Dividing both sides by ρ yields

B
ρ
· ∇u =

1
ρ

dB
dt

− η

ρ
∇2B− B

ρ2

dρ

dt

=
d

dt

B
ρ
− η

ρ
∇2B (11)

Suppose at a time t two nearby points are marked as
x and x+ δl. Then at time t+dt, the points would move
to x + u(x, t)dt and x + δl + u(x + δl, t)dt. δl becomes
δl + δl · ∇udt + O(δl2) in dt. Therefore

dδl
dt

≈ δl · ∇u(x, t) (12)

Note that (12) and B/ρ of (11) has same mathematical
structure when there is no diffusion.

Let’s consider a Lagrangian map M : a → x where a
is an initial position of a particle. Then we can define
the Jacobian of the map J (a,x) by

Jij(a,x) =
∂xi(a, t)

∂aj
(13)

At time t, dl = J (a, t)da is tangent to the material line
which was tangent to da at a. Again, using the fact that
magnetic field behaves just like material line, B can be
expressed in the form

B
ρ

(x(a, t), t) = J (a, t)
B
ρ

(a, 0) (14)

This is called Cauchy’s solution of the induction equa-
tion. Since

ρ(a, 0)
ρ(x, t)

= detJ (a, t) (15)

B can be expressed entirely in terms of the initial field
and the Jacobian. We can rewrite (15) by defining and
operator T on an initial magnetic field as

(T B)(x, t) =
ρ(x, t)

ρ(M−1x, 0)
J (M−1x, t)B(M−1x, 0)

(16)
Operator T is called induction operator for a perfect con-
ductor. For the case of incompressible flow, the ratio of
initial density and density at a later time is unity.

III. GROWTH RATE

Chaotic stretching of magnetic field together with con-
structive folding, can lead to growth of average fields

and dynamo action. Chaotic flows are associated with
positive Lyapunov exponents, which measure asymptotic
growth of vectors. For a given spatial point a and veloc-
ity vector v, we can define the Lyapunov exponent as

ΛLyap = lim sup
t→∞

1
t

log
∣∣J T (a)v

∣∣ . (17)

Lyapunov exponent is almost same in a given region and
gives the rates for almost all vectors stretch. However,
there are examples that the growth rate on the fast dy-
namo is greater than the Lyapunov exponent. There-
fore we need a different quantity to determine the upper
bound of fast dynamo growth rate. Since the Lyapunov
exponent is almost same, we can take the average over a
single chaotic region as

ΛLyap = lim
t→∞

1
t

〈
log
∣∣J T (a)v

∣∣〉 (18)

By Oseledets’ multiplicative ergodic theorem [12], the
Lyapunov exponent exists for almost all v and a in a
chaotic region. Now let’s consider the rate of stretching
of a finite curve in the same chaotic region. After some
time, the curve will be spread out all over the volume.
Its length will be given by average of J T (a)v over the
region as

hline = lim
t→∞

1
t

log
〈∣∣J T (a)v

∣∣〉 . (19)

Convexity of log function implies hline ≥ ΛLyap and
equality holds only if the stretching is uniform. New-
house [13] and Yomdin [14] showed that the topologi-
cal entropy gives the maximum growth rate of finite k-
dimensional volume in a C∞ flow. For 2d area preserving
flow hline = htop, but for 3d flow hline ≤ htop.

Given a flow Mt on a compact metric space, t > 0 and
ε > 0, we say two points x and y are (t, ε)− separated if

d(Mτx,Mτy) > ε , for some τ with 0 < τ < t (20)

where d(x,y) is the distance between x and y. We then
define Nsep(t, ε) to be the maximum number of points
xi which are mutually (t, ε) − separated. If we observe
the system for a time t and resolve distance of ε, we can
at most observe Nsep(t, ε) distinct orbits. We define the
topological entropy of flow u by

htop = lim
ε→0+

lim sup
t→∞

1
t
logNsep(t, ε) , (21)

which is the rate at which the system reveals information
about its structure as t increases. Positive topological
entropy is typical for a chaotic flow, since it indicates
sensitive dependence on initial conditions. Vishik [15],
Klapper and Young [16] have shown topological entropy
is an upper bound on the fast dynamo growth rate.
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IV. TRACE FORMULA

Dynamic properties of dynamo can be studied by in-
vestigating the behavior on a periodic orbit and the link
is the trace formula. Consider a steady incompressible
flow v(x, t) = v(x) and its corresponding eigenfunc-
tion of induction equation as B(x, t) = b(x)est, where
x(t) = f t(a) and x(t = 0) = a is the flow. Then (14)
becomes

B(x, t) = estb(x)
= J (a, t)B(a, 0)

=
∫

d3x′δ(x′ − f−t(x))J (x′, t)b(x′) , (22)

For simplicity, define Lt
ij(x,x′) as

Lt
ij(x,x′) = δ(x′ − f−t(x))

∂xi

∂x′j
. (23)

Then each component of (22) can be rewritten as

estbi(x) =
∫

d3x′Lt
ij(x,x′)bj(x′) . (24)

Suppose Lt
ij has a sequence of eigenvalues es0t, es1 , · · ·

with s0 ≥ s1 ≥ s2 ≥ · · · , then long term evolution is
dominated by dominant eigenvalue es0t.

As any pair of nearby two points on a periodic orbit
has same period, the distance between two point is con-
served. Therefore Jacobian matrix has eigenvalue 1 along
the flow of periodic orbit. Since incompressible flow is a
area preserving mapping, detJ (a, t) = 1, which implies
other two eigenvalues are inverse of the other. By con-
vention we take larger eigenvalue between those two and
call it Λp.

We can separate a flow into transverse x|| and longi-
tudinal coordinates x⊥. Then we can write trace of Lt

as

trLt =
∫

dx′⊥dx′||δ
(
x′⊥ − f t

⊥(x)
)

δ
(
x′|| − f t

||(x)
)∑

i

∂xi

∂x′i
. (25)

Transverse integration is defined on the Poincaré surface.
Linearization of the periodic flow transverse to the orbit
yields ∫

dx′⊥δ
(
x′⊥ − f

rTp

⊥ (x)
)

=
1

|det(1− J r
p )|

, (26)

where Jp is p-cycle transverse Jacobian matrix.∑
i ∂xi/∂x′i term of (25) is same as trJ = 1 + trJp.

To compute the longitudinal component, we use a
parametrized coordinate x|| by flight time

x||(τ) =
∫ τ

0

dσv(σ)
mod Lp

, (27)

where v(σ) = v(x||(σ)) and Lp is the length of circuit of
periodic orbit. Then integral along longitudinal coordi-
nate can be rewritten as∫ Lp

0

dx||δ
(
x′|| − f t

||(x)
)

=
∫ Tp

0

dτv(τ)δ

(∫ t+τ

τ

dσv(σ)
mod Lp

)
. (28)

All the zeros for the term within delta function do not
depend on τ . Using∫

dxδ (h(x)) =
∑

x:h(x)=0

1
|h′(x)|

, (29)

(28) can be rewritten as∫ Lp

0

dx||δ
(
x′|| − f t

||(x)
)

=
∞∑

r=1

δ(t− rTp)
∫ Tp

0

dτv(τ)
1

v(τ + t)

= Tp

∞∑
r=1

δ(t− rTp) . (30)

Using (26) and (30), (25) becomes

trLt =
∞∑

n=0

mnesnt

=
∑

p

Tp

∞∑
r=1

1 + Λr
p + 1

Λr
p

Λr
p + 1

Λr
p
− 2

δ(t− rTp) . (31)

Therefore dynamics evolution is determined by proper-
ties of periodic orbit. The period and eigenvalues of Ja-
cobian set the dynamics around the periodic orbit.

V. TOPOLOGICAL ENTROPY BOUND

Let Γ(s) be the Laplace transformation of trLt. By
(31), we have

Γ(s) =
{∑∞

n=0
mn

s−sn
s > s0

∞ s ≤ s0
(32)

=
∑

p

Tp

∞∑
r=1

1 + Λr
p + 1

Λr
p

Λr
p + 1

Λr
p
− 2

e−srTp . (33)

Let s0 be the element of {sn} with largest real part.
Then for large time, trLt ≈ es0t and we can rewrite (33)
as

Γ(s) ≈
∑
P

Tp

∞∑
r=1

σr
pe−srTp , (34)
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where σr
p is defined as

σr
p =

1 + Λr
p + 1

Λr
p

Λr
p + 1

Λr
p
− 2

≈
Λr

p

|Λr
p|

= ±1 . (35)

Then (34) is bounded as

Γ(s) ≤
∑

p

Tp

∞∑
r=1

e−Re(s)rTp . (36)

The rate of growth of the number of periodic orbits with
the cycle period topological entropy, can be calculated
by

∑
p

Tp

∞∑
r=1

e−hrTp . (37)

As h decreases from ∞, this quantity goes under a tran-
sition from a finite value to ∞ and the value of h at
transition is called topological entropy htop. Thus we
have

|Γ(s)| < ∞ for Re(s) > htop . (38)

To see how close the growth rate gets to the topological
entropy, consider steady flow described by the following
map [17]:

M(x, y) =
{∣∣∣∣x2 − u

(
y − 1

2

)∣∣∣∣ , 2 ∣∣∣∣y − u

(
y − 1

2

)∣∣∣∣}(39)

T (x, y) =
{

Ta if x < 1
2

Tb if x > 1
2

(40)

where u denotes the unit step function.
This map can be understood as a deformation of the

unit square as the fluid flows from z = 0 and z = L̃.
When Ta 6= Tb, the flux does not cancel each other per-
fectly. Now consider the surface y = 1/2 and the total
magnetic flux through this surface per unit length in z
by Φ(z, t). We seek for exponential solutions, so set

Φ(z, t) = φ(z)est (41)

where s can be a complex number. The flux at z = L
and t = t can be represented as

Φ(L, t) = Φ(0, t− Ta)− Φ(0, t− Tb) . (42)

The flux at z = L is sum of fluxes at z = 0, due to the
deformation, with different signs. Also, the two parts
arrive at z = L with different time interval. Since the
flow is periodic in z with period L, we can set φ(z) as

φ(z) = p(z)eikz , (43)

where p(z) = p(z + L). Then (42) becomes

eikL = e−sTa − e−sTb . (44)

FIG. 1: Deformation of the unit square corresponding to the
baker’s map

Topological entropy is the exponential rate of increase
of the flux without cancellation [18, 19]. Then (44) is
changed into

1 = e−htopTa + e−htopTb . (45)

Assuming Ta < Tb, then

1 ≈ e−htopTa . (46)

Therefore the flux growth given by (44) can almost reach
the bound set by topological entropy.

VI. SMEARING OF PERIODIC
TRAJECTORIES BY DIFFUSION

Consider a factorized hyperbolic flow,

du

dt
= λu + du (47)

ds

dt
= −λs + ds (48)

dz

dt
= x(u, s) + d|| . (49)

Assume the diffusion is isotropic:

〈di(t)〉 = 0
〈di(t)dj(t′)〉 = 2Dδijδ(t− t′) (50)



5

Assume that z coordinate is periodic with period T . In-
tegration of (49) yields

u(T ) =
∫ T

0

dteλ(T−t)du(t) , (51)

assuming u(t = 0) = 0. The average of displace-
ment from the periodic orbit would be 0, because of
the isotropic diffusion. To see the effect of diffusion, we
should consider the square of displacement:

〈
u(T )2

〉
=
∫ T

0

dt

∫ T

0

dt′eλ(2T−t−t′)du(t)du(t′)

=
D

λ

(
e2λT − 1

)
. (52)

For contracting axis, it becomes〈
s(T )2

〉
=

D

λ

(
1− e−2λT

)
. (53)

Therefore mean square thickness
〈
δx2

⊥
〉

after one period
is given as 〈

δx2
⊥
〉

=
〈
u(T )2 + s(T )2

〉
= 2

D

λ
sinh(λT ) (54)

Along u, diffusion can be extended, but along s the effect
of diffusion is suppressed due to contraction.

Let the velocity field evolution be given by

dx
dt

= Ax +N (x) + v||x̂|| + d(x, t) , (55)

where A is the stability matrix, N (x) contains all higher
order nonlinear terms, and d(x, t) is noise by diffusion.
Pick x(t) along a noiseless prime cycle of period T and
consider linearized flow for a small deviation x + δx(t),
with period T + δT . Then the position after one cycle
can be given as

δx(T + δT ) = e
R T+δT
0 dtA(x(t))δ(0)

+
∫ T+δT

0

dte
R T+δT

t
dτA(x(τ))d(x, t) (56)

where the integrals are time ordered. Average displace-
ment in transverse directions can be calculated as〈

δx(T + δT )2⊥
〉

=
∫ ∫ T+δT

0

dt dt′
〈
d(t′)T

e−
R t′

T+δT
dτA(x(τ))PT

⊥

P⊥e
R T+δT

t
dτA(x(τ))d(t)

〉
= 2D

∫ T+δT

0

dt tr⊥{
e−

R t′
T+δT

dτA(x(τ))

e
R T+δT

t
dτA(x(τ))

}
, (57)

[21]
where tr⊥ is the trace in two dimensional subspace

of locally transverse coordinate and P⊥ is the projection
operator into locally transverse coordinate system. Trace
in (57) is due to 〈di(t)dj(t′)〉 = 2Dδijδ(t−t′). Integration
within the trace in (57) represent evolution of A from
time t to T + δT along the periodic orbit and following
the same path to t. Therefore above will depend on the
initial point x(0) on periodic orbit.

To derive Γ(s), we need to compute
〈
(δTp)

2
〉
. δTp can

be expressed as

δTp =
Lp

v||

(
δLp

Lp
−

δv||

v||

)
, (58)

where Lp is the physical length of the prime cycle and
Tp = Lp/v||. Here we only considered the first order

correction. Then
〈
(δTp)

2
〉

becomes

〈
(δTp)

2
〉

=
〈

δLp
2

v||2

〉
−2
〈

δLpδv||

v||3
Lp

〉
+
〈

δv||
2

v||4
Lp

2

〉
.(59)

By assumption of periodicity and incompressibility, v|| =

const. From (50),
〈
(δLp)

2
〉

= 2DTp. Since there is no

correlation of diffusion at different time,
〈
δLpδv||

〉
= 0.

For small diffusion,

δv|| =
∂v||

∂s
δs +

∂v||

∂u
δu + d|| , (60)

δv2
|| =

(
∂v||

∂s

)2

δs2 +
(

∂v||

∂u

)2

δu2 + 2
∂v||

∂s

∂v||

∂u
δsδu ,(61)

where s and u are locally transverse spatial coordinates.
Therefore (59) can be rewritten as〈

(δTp)
2
〉

=
2DTp

v||2
+

T 2
p

v2
||

〈
δv2
||

〉
. (62)

Note that last term of (62) is proportional to T 2
p , not Tp

From (34), noisy case becomes

Γ(s) =
∑

p

∞∑
r=1

σr
pe−rsTp

≈
∑

p

∞∑
r=1

σr
pe−rs〈Tp〉− rs2

2 〈δT 2
p 〉

=
∑

p

∞∑
r=1

σr
pe−rsTp− rs2

2 〈δT 2
p 〉 . (63)

[21] RJ: tr⊥ will pick up two component with factor 2D.
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For Tp � 1, the leading contribution of noise comes from
v2
||. Therefore noise depends mainly on the dynamics

along the periodic orbit.

VII. SIMPLE SIMULATION

Let’s consider a simple model:

ṙ = α(r − rc)2 + dr

θ̇ = ω0 +
dθ

r

ż = −αz −2 +dz (64)

where each noise di follows Gaussian distribution with
standard deviation σ.

Method: rc = 100, ω = 0.01, period T = 200π. Each
data set correponds to 1000 periodic orbits, and < δT 2 >
is averaged if the particle starting from r = 100, θ =
0, z = 0 comes back within |δr| < 3 and |δz| < 3. Diffu-
sion constant D is given by

√
πσ where σ is the standard

deviation of Gaussian noise. The result are (values on
the right is < δT 2 >:

σ = 0.001 → 9.78× 10−7

σ = 0.01 → 6.05× 10−5

σ = 0.1 → 6.45−3

σ = 1 → 6.05× 10−1

σ = 5 → 1.24× 102

σ = 10 → 7.36× 102 (65)

FIG. 2: Relation between < δT 2 > and D

Fig. ?? suggest < δT 2 > will not be quite saturated in
modle of (64).

I tried another model:

ṙ = r − rc + dr

θ̇ = ω0 +
dθ

r
ż = z + dz , (66)

with sane coefficient with (65). The results are:

FIG. 3: Relation between < δT 2 > and D

VIII. CONCLUSIONS AND DISCUSSION

I rederived some of basic equations on the dynamics
of fast dynamo. Also, I was able to see the upper of
growth rate becomes the topological entropy. From (62),
we can see that the leading term is coming from solely the
velocity along the periodic orbits. The effect of diffusion
on the transverse direction contribute higher order terms,
which is not obvious. But the condition of periodic orbit
and isotropic diffusion reduces the effect of diffusion on
transverse direction.

However, there are still many problems are remaining.
It is not sure whether or not we can use Ott’s formulation
of noise in general cases. In general, the Poincaré section
away from the orbit is not calculable. Here we assumed
transverse plane of a point of periodic orbit is Poincaré
section, but it is possible it is highly deformed to make it
difficult to determine δTp. Also, if the diffusion is large,
our formula will not work. So it would be important to
set a limit where my work remains valid. Also there are
still lots of ambiguities left for the dynamics on transverse
plane. In real dynamo, the diffusion will not be isotropic
and the situation gets much more complicated.
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APPENDIX A: BAKER’S MAP

Folded baker’s map has the form

(x, y) →
{

(2x, y
2 ) (0 ≤ x < 1

2 )
(2− 2x, 1− y

2 ) ( 1
2 ≤ x < 1) (A1)

This is a representation of a complete cancellation of flux
following stretching. A stacked baker’s map is defined as

(x, y) →
{

(2x, y
2 ) (0 ≤ x < 1

2 )
(2x− 1, 1+y

2 ) ( 1
2 ≤ x < 1)

(A2)

and is 2 dimensional model for exponential growth of
field. One application of map doubles the embedded flux.

A mixing map M has the property that sub volume
become uniformly spread over whole volume D. An area
preserving map M is mixing if

µ(MnU ∩ V ) → µ(U)µ(V ) (A3)

as n → ∞ where µ is measure to represent area for any
two sub domain U and V in D. For any continuous func-
tion f(x, y) defined on the unit square, the map M is
ergodic if [20]

lim
N→∞

1
N

N−1∑
n=0

f(Mn(x, y)) =
∫

D

f(x, y)dxdy (A4)

for almost all points (x, y) in the unit square. Ergodicity
is equivalent to the absence of sets invariant under M
having area other than 0 or 1. If M is a mixing map,
setting U and V as a invariant set under M gives

µ(MnU ∩ U) = µ(U) → µ(U)2 (A5)

The area invariant set is either 0 or 1 thus a mixing map
is ergodic.

APPENDIX B: LAGRANGIAN CHAOS

When solution of the equation describing the trajec-
tory of fluid elements,

dx(t)
dt

= v(x(t), t) (B1)

are chaotic, it is called Lagrangian chaos. It is also called
as chaotic advection. Chaotic velocity field implies that
velocity of an individual particle dx

dt is not integrable. To
produce a chaotic advection, the Eulerian velocity which
is velocity field at a spatially fixed point is not necessarily
turbulent. Chaotic advection can be made even when
Eulerian velocity is periodic in time.

Due to chaos, nearby trajectory typically separates ex-
ponentially with Lyapunov coefficient λ

λ = lim
t→∞

lim
δ0→0

1
t
ln

δ(t)
δ0

(B2)
where δ(t) = |x1(t)− x2(t)|. As an element of fluid gets
elongated, the thickness of filament is decreasing expo-
nentially exp(−λt). The thinning process is stopped at
a diffusion scale

√
λt.

A periodic orbit is a solution (x, T), x ∈ Rd, T ∈ R of
the periodic orbit condition

fT(x) = x , T > 0 (B3)

for a given flow or discrete time mapping x 7→ f t(x).
Our goal is to determine periodic orbits of flows defined
by first order ODEs

dx

dt
= v(x) , x ∈M ⊂ Rd , (x, v) ∈ TM (B4)

in d dimensions. Here M is the phase space (or state
space) in which evolution takes place, and the vector field
v(x) is smooth (sufficiently differentiable) almost every-
where.
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