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I. INTRODUCTION

Resting on the edge between classical and quantal,
the atomic force microscope (AFM) [2] provides an im-
mensely useful link for experimental determination of
the height profile and certain physical properties of a
nanoscale surface. The basic device consists of a can-
tilever with a finely constructed tip, which interacts with
the surface with a precision determined by the quality
of the tip. Through various methods of transverse and
longitudinal motion, the tip is deflected by the surface
in a measurable manner, typically through the deflection
of a laser beam onto a photodiode detector array (typi-
cally a set of 2 or 4, where intensities are compared for
measurements).

Three primary modes of operation are used in the lab-
oratory: 1) contact, 2) non-contact, and 3) “tapping” or
dynamical mode. The first two are the most traditional,
probing through the use of dragging as in a record nee-
dle, and indirect van der Waals forces, respectively. The
third choice uses a more complicated and less well-defined
alternative of allowing the tip to neither remain on the
surface nor to remain completely off.

This dyanmical mode has practical advantages over the
first two in that direct contact is brief, avoiding damage
to the surface and tip due to static frictional effects, but
the tip-surface coupling remains strong in a measurable
sense. One such measurement that could be useful in var-
ious disciplines for surface imaging is the kinetic friction,
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defined as:

〈f〉 = lim
∆x→∞

W/∆x (1)

where W is the average work needed to pull the tip
across the surface over a distance ∆x. We may take ∆x in
the above formula to equal asymptotically the run-time
multiplied by the drag velocity v0, since the cantilever
should in long times move approximately the same dis-
tance as its tip. We will argue later in this paper that
resonances in this observable arise due to periodicity of
the surface.

Regular mica surfaces provide a clean testing ground
for various AFM techniques, in which context contact
mode theories have been presented [5]. We seek to ex-
plore the dynamical regime of operation on this nearly
sinusoidal surface through the technology presented in
[4]. Through ideas presented in [3], we might begin to
develop a theory for sliding friction in general.

II. PRELIMINARY: MAPPING / REFLECTION
JACOBIANS IN FLOWS

This section is included to justify a reflection Jacobian
that is referenced later in this paper, and may be skipped
if one wishes. In addition, my advisors for this project
expressed that some confusion may be still lingering in
the literature for the general treatment of such Jacobians,
and so there is little harm in refreshing what should be
known.

For continuous flows, computation of the Jacobian re-
sults from the ODE, J̇ = AJ, where A is the local stretch-
ing matrix. Flows that encounter discontinuous maps in
phase space cannot be treated in this same way, but we
can many times neatly separate the smooth and non-
smooth contributions of the Jacobian through a straight-
forward procedure of neighborhood manipulation. A
brief summary of this process is given in the remainder of
this section, and I’ve been told a similar derivation can
be found in Gaspard’s book.
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We assume that the discontinuous, but instantaneous,
map has domain and range on some surface that satisfies
the surface equation F (~x) = 0. For billiards, this surface
is typically visualized as purely spatial, but in fact, it
cuts through velocity space in a way that defines reflec-
tions. On this surface, we define the map as R. We begin
and end with a small neighborhood that is infinitesimally
away from the surface in question.

Motivated by the fact that the map preserves time un-
der mapping, we project neighborhoods onto the surface
and keep track of the small time differences, inherent in
projection, in some new coordinate δt, while the surface
tangent coordinates of intersection can be given as δx⊥.
δt is unaffected by the map, thus the stretching due to
the map portion is purely in tangential coordinates (as
expected). We have kept track of δt and can then re-
project off of the surface after mapping, and return to a
neighborhood defined back in full phase space at a given
sharp value of time. Returning all points to the same
time in the end is critical, or else our usual notion of a
continuous flow Jacobian is not satisfied.

We do precisely this through the following operations:

P :
δx⊥ = δx + v(x)δt

δt = −∇F ·dx
∇F ·v

(2)

P
−1 : δx = δx⊥ − v(x)δt (3)

... and the map Jacobian in perpendicular coordinates:

(

∂R

∂x⊥

)

i,j

=
∂Ri(x)

∂xj,⊥
(4)

Combining all the operations, we get the full Jacobian
for the map portion (which is manifestly different from
any Jacobian that considers ∂R

∂x⊥
alone):

Jmap = P
−1 · ∂R

∂x⊥
· P (5)

Notable terms found in damped billiards under accel-
eration can be found as arising from the above. Cur-
vature terms derive from ∂R

∂x⊥
, due to differentiation of

surface normals. Reduction in normal velocity neighbor-
hood width by γ also derives from ∂R

∂x⊥
, but reduction in

the normal spatial neighborhood width is actually due to
a mismatch in velocities in the two projections. Acceler-
ation terms occur due to a similar mismatch in the two
projections.

A diagram of the calculation is provided on an attached
page at the end of the document.

III. MODEL

We investigate this system through the use of a two-
dimensional impact oscillator, a rich system that is well

studied in the the case of one-dimension and is believed
to possess windows of chaotic behavior for certain pa-
rameter values [6–8]. The idea is to mimic an oscillating
tip pressed against the surface, which is kept active by
the translational motion of the cantilever.

The model is a harmonic oscillator, with horizontal fre-
quency ωh and vertical frequency ωv, with its harmonic
center point moving horizontally with constant velocity
v0. The non-linearity enters through damped reflections
off a sinusoidal surface of given period and amplitude.
So that the tip does not relax into an oscialltion that po-
tentially never intersects this surface, the vertical com-
ponent of the harmonic center is assumed to be below
the maximum of the surface (no hovering).

At each impact, the velocity is assumed to reflect with
law given by Eq. 11 in the next section, but the restitu-
tion coefficient γ is made to go into the elastic limit γ = 1
for low impacts, specifically in a linear manner propor-
tional to normal velocity below some cutoff. The moti-
vation is that while physically we do not expect nearly
grazing impacts to prevent an AFM tip from crossing
a surface maximum, “chattering” [6] can lead a particle
to stick to a surface in finite time through a cascade of
bounces. We do not care to model sliding dyanmics or
bother analytically following through infinite bounces, so
we circumvent this problem instead.

One goal is to compute the mean kinetic friction, de-
fined above. The harmonic part of the trajectory con-
serves energy, so all the work expended to pull the tip a
given distance in this model resides in the inelastic colli-
sions. In prinicple, the technique of periodic orbit expan-
sions [4] might find this coefficient for arbitrary param-
eter values with high precision, though in practice, we
are limited my our understanding of the symbolic dyan-
mics and by the existance of periodic orbits as the only
periodic structures.

The formula connecting the dyanmics of our system to
the kinetic friction derives from understanding all energy
loss is due to contact forces alone. Letting ∆Ek be the
energy lost in a particular impact on a given trajectory
Q, the mean measured friction is for long trajectories:

fQ = lim
N→∞

∑N

k=1
∆Ek

v0tN
=

1

v0

lim
N→∞

∑N

k=1
∆Ek

∑N

k=1
∆tk

(6)

. . . with tk the total elapsed time from start to impact
k.

We expect that the dividend and the quotient become
essentially statistically independent Gaussian variables in
the long time limit, and so our average over the natural
measure should factor:

〈f〉 =
〈∆E〉
v0 〈∆t〉 (7)

We can compute the averages of ∆E, ∆t directly using
periodic orbit theory.

It will conveniant, due to scaling relations, to instead
define an observable: which we will refer to as the friction



3

coefficient:

Kf ≡ f/v0 =
〈∆E〉

v2
0
〈∆t〉 (8)

IV. EQUATIONS OF MOTION

Though trivial considered independently, the equations
of motion when free are for each coordinate (given for
simplicity now in the comoving frame of the harmonic
center):

[

x′
i

v′i

]

c

=

[

cos(ωi ∆t) 1

ωi
sin(ωi ∆t)

−ωi sin(ωi ∆t) cos(ωi ∆t)

] [

xi

vi

]

c

(9)

. . . for i being the horizontal and vertical directions.
Since the system in the comoving frame is due to a con-
stant matrix, the Jacobian, Jt, in the comoving frame is
identical to the matrix above. To translate to “fixed”
coordinates, we can use the equation:

[

x′
i

v′i

]

= Jt

[

xi − x0i

vi − v0i

]

+

[

x0i + v0i ∆t
v0i

]

(10)

. . . with v0i = 0 for i = vertical (zero vertical dragging
velocity) and ~x0 is the initial position of the harmonic
center. We see explicitly that the Jacobian in the comov-
ing frame is equal to the Jacobian in the non-deflected
segments of the trajectory (just as with the totally free
system). Thus the eigenvectors of the Jacobian are the
eigenvectors of the original matrix, leading us to complex
pair eigenvalues λi(t) = e±iωi∆t for i both components.
Notice there is no coupling between components yet.

The reflection from velocity ~v into ~v ′ is given for sur-
face normal n̂:

~v ′ = ~v − (1 + γ) n̂(n̂ · ~v) (11)

We can see that the tangential velocity to the surface
and the surface spatial points themselves are unchanged
under a reflection, to zeroth order. If v‖ is tangential
and v⊥ is normal velocity to the surface, then the new
velocities v′‖, v′⊥ are:

[

v′‖
v′⊥

]

=

[

1 0
0 −γ

] [

v‖
v⊥

]

(12)

The Jacobian of the reflection is harder to compute
than before, but the method presented earlier will do the
trick. A local set of coordinates for a parallel and trans-
verse directions makes the calculation relatively straight-
forward. The net result is (v‖, v⊥ are the incident ve-
locity vectors, κ is the surface curvature, and A0⊥ the
normal component of acceleration in Cartesian local co-
ordinates):









x′
‖

x′
⊥

v′‖
v′⊥









= JR







x‖

x⊥

v‖
v⊥






(13)

JR ≡
[

Γ 0

Θ Γ

]

(14)

Θ ≡
[

κ(1 + γ)v0⊥ κ(1 + γ)v0‖

−κ(1 + γ)v0‖ −κv0‖
2−A0⊥

v0⊥
(1 + γ)

]

(15)

Γ ≡
[

1 0
0 −γ

]

(16)

. . . from which it can be read to have eigenvalues
1, 1, γ, γ, and determinant γ2. This Jacobian is rotated
into the lab frame to get a Cartesian neighborhood. Nu-
merical experiements on the above functional form of the
Jacobian support all terms in the above matrix.

The one remaining aspect of the coordinates is the
non-trivial dependence of the system (and the full 5-
dimensional Jacobian) on the extension parameter, which
is how far in the longitudinal direction the point of zero
harmonic forcing rests leading or lagging from the par-
ticle. Though the absolute reference point of the har-
monic center has simple linear time dependence, the rel-
ative extension defines a phase which is important for
the particle, say, for phase locking. The components in
the 5 × 5 Jacobian matrix cooresponding to this coor-
dinate are simple, and only result from harmonic flight
segments. Here the Jacobian components can be derived
by inspection from the equation of motion Eq. 10.

Finally, a projection of the Jacobian matrix onto the
Poincare surface (just the surface of the billiard system)
can be done through a formula in ChaosBook [4] un-
der “stability”. Then, we can define a Jacobian matrix
purely in the coordinates that neglect the height of the
particle (determined by the function of the surface), and
transform from starting neighborhoods (defined on the
Poincare surface) to full phase space neighborhoods by
the rule (δxP identifies the change in x on the Poincare

section, df
dx

is the derivative of the surface function):

δxP −→ δx = δxP , δy =
df

dx
δxP

We will in addition require that periodicity be inforced
on the trajectories, such that the tip at one location
is identified with itself translated one surface periodic
length (as well as the harmonic center translated the
same distance). The important non-periodic remnant of
the system will be the relative extension of the particle
from the harmonic center.

Again, we emphasize that trajectories which go into
“contact” with the surface through a cascade of bounces
are not included, due to the complexities involved. If
we assume that such a cascade is carried through ana-
lytically after a certain point, we rigorously flatten part
of the Jabobian matrix in the normal direction of the
surface. Since expanding eigenvalues are the most im-
portant, we might continue to compute observables for
this reduced phase space, but as stated, we avoid these
complications.
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V. PHYSICAL PARAMETERS OF THE MODEL

The physical parameters used in this problem mimic
those of Tyson in an earlier project, also using the rest-
point of the AFM tip precisely in the middle of the sur-
face’s maximum and minimum. The parameters should
approximate the dimensions of an AFM tip on mica.

vertical angular frequency:
ωvertical = 40x103 rad/s

horizontal angular frequency:
ωhorizontal = 250x103 rad/s

effective tip mass:
m = 408x10−12 kg

lattice spacing:
a = 0.52 nm

surface amplitude:
H = 0.05 nm

VI. DIMENSIONAL AND SCALING ANALYSIS

Several dimensionless or (equivalently) natural param-
eters exist in the system and set the scale for observations
that might be made in a laboratory. For typical values
of γ, such as γ ≈ 0.7, these parameters predict most of
the general behavior of the system.

Firstly, we notice that γ can change the dyanmics of
the system quite dramatically. The limits γ → 0, 1 are
both singular in a sense. γ → 0 causes all impacts with
acceleration pointed into the surface to stick until accel-
eration reverses direction, which may never happen in
this model after such an impact. Additionally, contact
sliding dynamics should become the most important in
this regime, as compared to impact dynamics. γ → 1
creates a conservative system, and with available phase
space is not shrinking upon each impact, we are not even
sure if the system is bounded!

Intermediate γ values should produce what we expect:
low values tend towards low dimensional attractors, such
as stable periodic orbits and chattering cascades, and
higher values tend towards the inherent oscillatory be-
havior of the Hamiltonian free flights, such as chaotic
attractors and even quasiperiodic orbits. For this rea-
son, choosing a value γ ≈ 0.7 ≈

√
0.5 (γ2 occurs often is

the reasoning here) for typical numerical investigations
makes sense.

The first ratios of dimensionful parameters to notice
relate the scale between horizontal and vertical times and
lengths:

α−1 ≡ ωh/ωv ≈ 6.3
ǫ−1 ≡ a/H ≈ 10.

(17)

2π
ωh

thus sets the shortest time scale, besides the as-
sumed instantaneous impact time, in the dynamics, and

we can expect this time should be (and is) our computa-
tional natural time for surface intersection searching and
so forth.

We find, after convincing ourselves through simula-
tions, that the most important time scale for the actual
dyanmics is rather:

τ ≡ 2π

ωv

≈ 0.16 ms (18)

We can imagine that the fast horizontal motion is en-
trained in the slow bouncing of the AFM tip. Physically,
we should not expect significant horizontal stretching in
the tip, so we are not surprised when we find numeri-
cally that horizontal displacements stay close, relatively,
to their resting point.

The sliding velocity has a natural unit that derives
from τ and a, with the idea that we should associate an
integer when the periods of vertical bouncing and hori-
zontal translation coincide. We define:

v0,natural ≡
a

τ
≈ 3.3 µm/s (19)

Additionally we define the sliding velocity in natural
units:

η ≡ v0

v0,natural

(20)

η neatly organizes the nearly repeating patterns in ob-
servables as we increase sliding velocity. We will see that
two different conditions for η will become important:

η =odd integer, Low Friction / “Splashing” :
Imagine first η = 1. Then, a full vertical oscillation
should coincide with a surface period. Such behavior
is precisely out of phase with hitting the peaks of the
surface once per a given number of units cells having
been traversed, and thus regular impacts should occur
on the lower pieces of the surface, if the particle hits a
contained region regularly at all. Given that we assumed
the harmonic resting point is mid-surface, the particle
deaccelerates typically before impact, and the energy loss
should be less than hitting peaks. This argument should
hold also for resting points located at heights still be-
tween surface extrema. “Splashing” will be explained
shortly, but this descriptor relates to the much higher
incidence of low-angle (and low energy loss) bounces per
surface period for low-lying trajectories, and generally
more problems with grazing impacts.

η =even integer, High Friction / “Bouncing” :
We can argue similarly that for these η, the dynamics cor-
responds to hitting only peaks. The dynamics in these re-
gions typically is much cleaner, involving attractors such
as periodic orbits, and impacts typically are closer to nor-
mal incidence that for odd η. This behavior can be con-
sidered as resonant absorption in the system, and these
peaks might be robust in parameter space due to fre-
quency locking effects, as long as the resonant condition
is satisfied.
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A few comments may be made on vertical velocities.
Notice that if the surface were completely flat, then if
we assume the resting point is at or below the surface,
all vertical motion scales to zero asyptotically. Indeed,
the only way coupling between horizontal motion (which
we think of as delivering energy) and vertical motion can
occur is due to surface normals with horizontal compo-
nents. If we assume our surface is described by y = ǫf(x),
where epsilon is small, then the x-component of the sur-
face normal is (f ′(x) is the first derivative of f):

nx =
−ǫf ′

√

1 + (ǫf ′)2
≈ −ǫf ′(x), |ǫf ′(x)| ≪ 1

. . . so since we think of our verical scale as small, the
vertical velocity should depend in some simple linear way
on the surface height, contributing only an order of mag-
nitude of smallness between the vertical and horizontal
velocities in our case.

The final quantity we investigate here is the friction
coefficient. Since both components of velocity have good
reason to be proportional to v0, we expect each impact
should lose on average ∆E ∝ v2

0 . In comparison, if we
imagine the resonant modes hitting peaks only, the mean
time for impact 〈T 〉 should not change greatly with v0

due to the assumed fixed frequency of vertical harmonic
motion - ie., the size of the oscillation ideally does not
change return time for large bounces (corrections due to
surface height vanish for large bounces).

Hence, arguments lead us to:

f ∝ η, at even η

. . . which explains why the friction coefficient, as de-
fined previously, is a sensible object to measure.

Accounting for the reduction of vertical velocity, and
assuming that vertical velocity is the most important
component for energy absorption, it makes sense to de-
fine:

Kf,natural ≡
(

1 − γ2
) 1

2τ
mǫ2 (21)

. . . where ǫ2 results from a term of vertical velocity over
horizontal velocity, 1

2
m is due to a kinetic energy term,

τ is the simplest natural period, and
(

1 − γ2
)

is a term
that tries to account for energy losses at each impact. By
construction, we expect Kf,natural to approximate Kf

during resonant modes. Being that the actual value for
this prediction involved the effective mass of the tip for
energy conversion, and that this effective mass is essen-
tially a fit to the model, no specific value for Kf,natural

will be listed here.

VII. NUMERICAL OBSERVATIONS DUE TO
DIRECT SIMULATION

Performing direct simulations of this model allows ob-
servation of how the predictions given by dimensional

and qualitative arguments compare to the model in de-
tail. Careful exploration of the system is rather difficult
to do fully, due to a 5-dimensional phase space, two vari-
able parameters γ and v0, quasiperiodic structures, and
the singular behavior of grazing orbits in impact dyan-
mics. However, we can address specific results within this
attractor with the hope that future work may build on
this paper.

First, the most practical result is a sketch of the friction
coefficient in Figure 1. The overall form is as predicted
from arguments about how Kf changes with η, with the
scale set by a maximum (in computational units) of about
0.0001. Taking into account the rescaling of time into τ
(not τcomputational) and the ǫ2 term in Kf,natural, we see
the naturally rescaled Kf is reasonably near unity from
these multiples.

The second set of results, being tests of scaling, affirm
several predictions from the dimensional section above.
Though the γ dependence in Kf was not tested thor-
oughly, the scaling of mean period between impact and
vertical velocity qualitatively fit dimensional arguments.
Mean times looked nearly periodic in 2η, with unnotice-
able net increase with increasing η over several integers
(ignoring small structure). For velocity scaling, this re-
sult was most easily seen for η ≈ 2 by plots of trajectories
in spatial coordinates being similar in vertical scale to the
amplitude of the surface, and for higher η by the scaling
of Kf depend in a predicted (consistent) manner. Plots
of mean time are not included, since a short written de-
scription suffices for overall net behavior.

We would enjoy, ideally, a zoology of the attractors
that can occur within this model. Such a task would be
a serious undertaking, and was not done in this project.
Of the attractors that have been seen: stable periodic

FIG. 1: Friction coefficient (with units mass=1,
time=τcomputational, and using γ = 0.7) vs. eta. The
general behavior is as expected. There are some points at
the higher η that look noisy near zero Kf , but this is a
computational issue that should be averaged out “by eye”
and not taken too seriously. Sampling information is not
referenced here, but the plot is such that cutting sampling
in half kept the graph visually similar within the order of
thickness of the plot’s line.
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orbits, quasi-periodic orbits, chattering cascades (if we
do not change the restitution coefficient for small im-
pacts), and potentially chaotic orbits. Observed transi-
tions between these include period doubling cascades, the
so called grazing bifurcation [7], and others.

VIII. ATTEMPTED SYMBOLIC DYNAMICS

At this point of the project, the state of the symboic
dynamics remains mostly a mystery. The richness of
the system, coupled to the fact that phase space is 5-
dimensional, defies an intuitive understanding, which we
can get in 3 or even 4-dimensional phase space. We can
never see more than a projection of the Poincare map’s
attractor. Attempts were made to use unstable manifolds
to help partition phase space, but the typically complex
expanding eigenvalues on periodic orbits did not open
themselves readily to this treatment.

The one easily attainable periodic structure was peri-
odic orbits, most often found quickly from rough guesses
through a variational method. When found, these peri-
odic orbits often reflect well the overall flow of the sys-
tem. Figures 2 and 3 are plots of a particular attractor
and its first periodic orbit. We should not be surprised,
given the rough shadowing of the periodic orbit onto the
attractor, that the periodic orbit gets the friction within
6 percent error - an already nice approximation.

The reassuring agreement in this orbit prompted a
search for period two orbits, the results of which reflect

FIG. 2: The spatial projection of an attractor for γ = 0.7,
η = 3.4. The sinusoid on the bottom is the surface, while
the rest is (in scaled space) the AFM tip’s trajectory. The
sparse dots on the top are merely due to plotting, and should
be considered comparably dense to the rest of the plot.

some of the frustration inherent in this project. I found
approximate bounds for the attractor and performed a
4-dimensional scan on the Poincare map. Two distinct
regions appeared, and were subsequently run into peri-
odic orbit search routines. One of the resulting regions
contained, sensibly, the short periodic orbit that we al-
ready knew, repeated twice.

The other region contained a “false” periodic orbit that
would not converge under Newton root finding nor re-
solve within accuracy a periodic orbit under the varia-
tional approach. We would expect, and we found numer-
ically this to be true, that this false orbit would become a
true periodic orbit by changing parameters slightly. Still,
we cannot be honest and include this orbit in periodic or-
bit expansions for the given attractor.

Hence, we expect from this investigation that length
2 prime orbits have all been pruned for these partic-
ular parameters. Pruning so quickly is disheartening,
and the hope of finding simple symbolic dyanmics is less-
ened. Possibly toying with generating/adapting parti-
tions could predict prime orbits effectively, but this has
yet to be done.

IX. SPECULATED FUTURE DIRECTION

Though we can arrive at plots of various expectation
values to an accuracy well within the limits to test gen-
eral structure and to compare roughly with experiment,
knowing the symbolic dyanmics remains a conceptually
inviting problem. With symbolic dyanmics known, the
underlying structure of the billiard flow is better under-
stood, and we could potentially begin to generate observ-

FIG. 3: The spatial projection of the periodic orbit found for
γ = 0.7, η = 3.4.
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ables to high accuracy. We say “potentially”, because the
presence of quasi-periodic unstable structures are not in-
cluded in cycle expansions at this point in time, which
could leave a measureable error in expectation values.

A simpler model can be derived from the present
model, with reduced dimensions likely simplifying all the
problems found for the present model. Thinking that the
high horizontal frequency keeps the horizontal stretching
small, we might surpress the horizontal stretching en-
tirely and have an oscillating “hammer” bouncing across
a periodic surface. This model is close to the impact os-
cillators found in the literature, partially referenced in
the introduction of this paper. The overall dimension
would be 3, and the Poincare map would have dimension
2. Thus, Smale horseshoe ideas should work well.

Most likely, further development of this model will be
directly related to experimental observations supporting
or denying predictions. In case of supporting evidence,
the above recommendations might give good description
of dyanmical frictional behavior.

FIG. 4: Projection of a scan for period 2 orbits for γ = 0.7,
η = 3.4. Points with lower norm (most likely to contain peri-
odic structures) are colored dark blue (or just dark).
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FIG. 5: Diagram for neighborhood calculation for Jacobians
with mixed flows and maps. Refer to text.


