
Deterministi di�usion| the sawtooth mapChristian Ingemann MikkelsenThis is the term paper whih makes up the �nal part of the exam for theFall '98 ourse on lassial and novel approahes to non-equilibrium statistialmehanis and kineti theory. The sole referene for the paper is the haosweb-book Classial and Quantum Chaos: A Cylist Treatise by Cvitanovi� &friends at http://www.nbi.dk/ChaosBook/. The projet desription is foundin appendix H.2 of the web-book.1 ReprodutionOne ahievement of periodi orbit theory is the possibility to do non-equilibriumstatistial mehanis in a new way, without the need for approximations, sto�-zahlansatz or the like. It enables us in priniple to relate the short term be-haviour of a dynamial system to behaviour in the t!1 limit. The ookbookreipe is simple; enode the dynamis in a suitable alphabet, alulate the greatorale: the dynamial zeta funtion, query the orale in the right way and youwill get the answers. However, the real world is a ruel plae for theoretialphysiists. Finding a suitable alphabet for the dynamis of real world systemsis rarely easy and as with all great orales you must approah them with respetand know exatly how to pose the questions.Realising that the main obstale for a young aspiring physiist is �ndinga suÆiently well-behaved real world problem to whih he an apply newlyaquired textbook knowledge, let us turn to a toy problem that an be usefulfor gaining insight. Let us look at something one-dimensional, linear, evolvingin disrete time | in short, a problem tratible to pen and penil alulations!What we want to look at is the following mapping of I = [0; 1℄ into R,f̂I(x̂) def:= � �x̂; x̂ 2 [0; 1=2[�(x̂� 1) + 1; x̂ 2℄1=2; 1℄: (1)The funtion f̂I is onstruted suh that 0 7! 0 and 1 7! 1. It is the di�usionproperties of this map (and related ones to be de�ned below) we will investigateas funtion of, or rather for various values of the parameter �. In the followingwe will take this parameter to be greater than 2. We do not have the rightmapping to study yet beause f̂I is only de�ned on the unit interval whereas ittakes values in R. The ure is very natural and simple; extend f̂I to all of Rby translating the funtion bak to the unit interval, evaluating it there, andsending it bak to where it ame from. In a less verbose and more mathematialformulation this translates intof̂(x̂) def:= f̂I(x̂� bx̂) + bx̂; (2)1



where b� denotes the `oor' funtion whih returns the nearest integer smallerthan or equal to its argument. Obviously, x̂�bx̂ 2 I holds and 1 is still mappedto 1 with the extended de�nition (2).Until now we have been deorating our de�nitions with plenty of little `hats'just to make the reader urious as to whether any `bald' funtions would showup. Indeed they will! The onvention we will follow here is to denote entitiesrelating to the whole spae (i.e. R) with hats and let `bald' symbols refer tothe elementary ell in asu the unit interval I . This notation is broadly that ofCvitanovi� & friends, setion 14.1. If the notation is useful for no other purposeit at least makes the formulas look ool, so we will use it here.In our aspiring physiist's reipe for doing periodi orbit theory, we men-tioned something about understanding and enoding the short term dynamisin an alphabet and then using this to understand the t ! 1 behaviour. Thisis exatly what we are going to try now. We de�ne a new funtion f : I ! Iby translating f̂ bak to I by doing the alulations modulo unity. Likewise weget rid of the integer part of f̂(x̂). All we then have to do is to iterate f onI and keep trak of the `jumping' i.e. the disarted integer part of f̂(x). Morepreisely we de�ne f as f(x) def:= f̂(x̂)� bf̂(x̂); (3)where x = x̂�bx̂ is in I . We are now going to write down a symboli dynamiswhere the alphabet simply keeps trak of the distane of the `jump'.Sine this is periodi orbit theory, it seems reasonable that we introduesome notion of periodiity. The notation is that of A Cylist Treatise wherep = fx1; : : : ; xnpg is alled an elementary ell yle (elementary ell = no hats)if np iterations sends xj bak to itself, fnp(xj) = xj . We are also to keep trakof the length of the jumps so we will briey return to the whole spae, R. Wede�ne (with hats now) n̂p 2 Z by n̂p = f̂np(xj) � xj as the jumping number ofthe yle. If n̂p = 0 the yle is said to be standing, otherwise it is said to berunning.Now things are in plae! The yle weight for a yle p is given in the projetdesription (H.2) as tp(�; z) = znp e�n̂pj�pj : (4)Our orale will be the dynamial zeta funtion given by1=�(�; z) =Yp (1� tp(�; z)): (5)The quantity we want to ompute is the di�usion onstant D whih periodiorbit theory tells us is given by D = 12 hn̂2pi�hni� : (6)The triangular brakets, h�i� , denotes mean yle quantities, so for examplehn̂2pi� is the yle mean of the square of the jumping number. We are dealingwith a problem in disrete time so the rôle of time is taken over by the mean2



0+ 1+ 2+ 2- 1- 0- 0+ 1+ 2+ 2- 1- 0-Figure 1: Illustration of the mapping f for � = 5 (left) and � = 6 (right). Thejumping numbers for the intervals are indiated.yle length hnpi� . The mean square jumping number and the mean yle lengthare given by (querying the orale)hn̂2pi� = �2��2 1�(�; z) �����=0; z=1 and (7)hnpi� = z ��z 1�(�; z) �����=0; z=1 : (8)Let's get some real world numbers in! Out there natural numbers are verypopular and it will turn out that the dynamis will be partiularly simple if wehoose � to take values in the natural numbers. We will have to onsider twoases: � odd and � even. Let us start out by onsidering the ase where � is odd.Sawteeth for � oddWe will now have to understand the short term dynamis of the system,hoose our alphabet, and then we an alulate the big D. The dynamis isillustrated on �gure 1 for the ase of � = 5. The interval I is partitioned intosix subintervals fM0+;M1+;M2+;M2�;M1�;M0�g orresponding to the sixdi�erent possible jumping numbers. In general for � odd we have fMi j i =m�; : : : ;m+g where m is given by (�� 1)=2.We now need to hoose our alphabet A. From the �gure we see thatM0+;M1+;M1� and M0� are mapped onto the entire unit interval I . Thisis easily generalised to arbitrary odd �, where M0�; : : : ;M(m�1)� are mappedonto the entire interval. The subintervals M2+ and M2� (Mm+ and Mm�in the general ase of � odd) are only mapped onto M0+ [M1+ [M2+ andM0� [ M1� [ M2� respetively. In the general ase we get that Mm+ ismapped onto SiMi+ and similarly for m�.We an write the general ase out in the in�nite alphabetA = f(m+)k0+; (m+)k1+; (m�)k0�; (m�)k1� j k = 0; 1; 2; : : :g (9)in whih the dynamis is unrestrited, i.e. all ombinations of letters are possibleitineraries for points. Two possibilities are not aounted for, however. The3



dynamis has not taken into aount that it is possible for a point to be mappedfrom Mm+ to Mm+ (and similarly for Mm�) ad in�nitum. This an be takenare of rather simply by introduing fators of (1� tm+) and (1� tm�) in thedynamial zetafuntion as we will see below.The dynamial zeta funtion, 1=�, an now be alulated,1=� = Yp (1� tp) (10)= (1� tm+)(1� tm�)(1� m�1Xa=0 1Xk=0(tm+)kta+ � m�1Xa=0 1Xk=0(tm�)kta�):We have here used relations of the type t(m+)ka+ = (tm+)kta+ whih makesthe `urvature orretions' of eq. (9.5) in A Cylist Treatise vanish. The innersummations are easily taken are of with the aid of,1Xk=0(tm+)kta+ = ta+1� tm+ (11)and similar expressions for tm� and ta�.We an now plug into (10)1=� = (1� tm+)(1� tm�)� (1� tm�)m�1Xa=0 ta+ � (1� tm+)m�1Xa=0 ta�= 1� tm+ � tm� �m�1Xa=0 ta+ �m�1Xa=0 ta� + tm�m�1Xa=0 ta+ + tm+m�1Xa=0 ta� + tm+tm�and obtain the orale we want to query. We do this by applying the operationsz ��z and �2��2 to 1=�(�; z) and evaluating at (�; z) = (0; 1). The alulationsare simpli�ed if we note that tp is an eigenfuntion of the two operators witheigenvalues np and n̂2p respetively. Furthermore, we will need that tp(0; 1) =1=�p.Straightforward (albeit tedious) alulations and the formulas (7) and (8)give hn̂2i� = (�� 1)(� + 1)(1� �)12� (12)hni� = (1� �)� ; (13)where we have used the de�ning relation m = (�� 1)=2 to simplify the result.The di�usion onstant D now follows readily,D = 12 hn̂2i�hni� = (� + 1)(�� 1)24 : (14)Voila!
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Sawteeth for � evenLikewise and a bit simpler, we an deal with the ase of even values of �. Theinterval an be partitioned into � equal intervals fMgm+i=m� where m = �=2�1.We enode the symboli dynamis in the alphabetA = f0+; : : : ;m+;m�; : : : ; 0�g.Sine f is an onto mapping of the Mi onto the unit interval, f(Mi) = I , thesymboli dynamis is unrestrited in the alphabet A.The zeta funtion now follows from the de�nition as1=� = 1� m+Xi=m� ti; (15)where we have used the fat that all higher terms in the sum vanish exatly:in the lingo of periodi orbit theory all urvature orretion vanish beause theshadowing is exat.We now just have to rank the wheel and grind out the big D. The meanyle length is alulated ashni� = � m+Xi=m� 1� = �2(m+ 1)� = �1: (16)Likewise for the mean yle squared jumping number,hn̂2i� = � (n̂0+)2� � � � � � (n̂m+)2� � (n̂m�)2� � � � � � (n̂0�)2� (17)= � 2� mXi=0 i2 = �m(m+ 1)(2m+ 1)3� = � (�� 1)(�� 2)12 : (18)Plugging into the formula for the di�usion onstant is trivial and givesD = 12 hn̂2i�hni� = (�� 1)(�� 2)24 (19)Voila!2 Sawtooth map, ut in (Markov) pieesThe preeding disussion was made simple beause f̂ mapped the Mi subinter-vals onto the entire unit interval I . This made the symboli dynamis easy sinewe did not have to keep trak of what had happened in the preeding steps. Weould use the jumping numbers as alphabet and the dynamis was unrestrited.However, we will now go a step further and onsider situations where theunit interval an be partitioned into a �nite number of subintervals Mi whihonly has the weaker property that; loosely speaking, subintervals are mappedonto unions of subintervals. This is more tehnially orret written asf(Mi) \Mj = ; or Mj � f(Mi) 8i; j (20)Suh a partition is alled �nite Markov.5



0+ 1+ 2+ 2- 1- 0-
x0

0+ 1+ 2+ 2- 1- 0-Figure 2: Illustration of the mapping f̂ for � = 2 + 2p2 (left) and � = 3 +p5(right). The jumping numbers for the intervals are indiated.We will now onsider something onrete, a map allowing a �nite Markovpartition fM0+;M1+;M2+;M2�;M1�;M0�g where the (ritial) point 1=2is mapped onto the right end-point of the intervalM1+. The map is illustratedon �gure 2.First of all, we will determine the value of � that orresponds to this situ-ation. What we know is that the ritial point 1=2 is mapped onto the rightend-point of M1+, x0. However, we know that being the right end-point ofM1+ x0 solves the equation f̂(x0) = 2, so that we have the following equationsto solve for �,f(1=2) = x0, or f̂(1=2) = x0 + 2 together with f̂(x0) = 2: (21)First solving the last equation for x0 gives �=2 and substituting into the �rstequation gives � = 2(1 �p2). The negative solution is obviously not the onewe are seeking and we have already limited our sope to maps with � > 2 so itis disarted.By inspeting �gure 2 it is lear that f(Mi) = I for i 2 f0+; 1+; 1�; 0�g,f(M2+) = M0+ [ M1+ and f(M2�) = M0� [ M1�, so we an hoose analphabet A in whih the symboli dynamis is unrestrited, A = f0+; 1+; 2 +0+; 2 + 1+; 2� 1�; 2� 0�; 1�; 0�g.And the zeta funtion is1=� = 1� t0+ � t1+ � t2+0+ � t2+1+ � t2�1� � t2�0� � t1� � t0� (22)We an now grind out the numbers,hni� = 4 1� + 4 2�2 = 4�+ 8�2 (23)and hn̂2i� = 202� + 212� + 2 22�2 + 2 32�2 = 2�+ 26�2 ; (24)and the di�usion onstant isD = 12 hn̂2i�hni� = �+ 134� + 8 = 15 + 2p216 + 8p2 = 26� 11p216 : (25)6



Voila!The basi observation that made the previous alulation work was that weould �nd a partition whih was Markov. The point 1=2 was mapped to the endof an interval and allowed a Markov partition to be found. We will now workout a few more examples of this sort for values of � between 4 and 6. Thereare 7 easy-to-�nd suh examples, 1=2 mapped to the left end-points of M0+(� = 4), M1+ (� = 2+p6), M2+ (� = 2+2p2), the right end-points of M2+(� = 5), M2� (� = 3 +p5), M1� (� = (5 +p41)=2) and M0� (� = 6).Some of the numbers we already have worked out. The integers are overedby the results from the previous setion. We �nd from the formulas thatD = 1=4for � = 4, D = 1 for � = 5 and D = 5=6 for � = 6. The ase � = 2 + 2p2 wasalulated above and we quote the result D = (26� 11p2)=16.The ase � = 2+p6 an be dealt with along lines similar to the � = 2+2p2ase. The dynamis is unrestrited in the alphabet A = f0+; 1+; 2 + 0+; 2 �0�; 1�; 0�g, so we an write1=� = 1� t0+ � t1+ � t2+0+ � t2�0� � t1� � t0� (26)to alulate hn̂2i� = � 2� � 8�2 = �2�+ 8�2 (27)and hni� = � 4� � 4�2 = �4� + 4�2 : (28)This gives us immediately the di�usion onstantD = 12 hn̂2i�hni� = �+ 44� + 4 = 6 +p612 + 4p6 = 1� p64 (29)The Duke of CambridgeThe two remaining ases are a little harder but with a little persistene wewill be able to deal with them. Let us �rst look at the ase of � = 3 +p5.The unit interval is naturally partitioned into 6 subintervals as in the pre-eding examples. The intervals with labels 0+, 1+, 1� and 0� are mapped ontothe entire unit interval. What gives a little trouble is the two middle intervals,M2+ andM2�. The �rst of these two is mapped onto the intervalsM0+,M1+,M2+ and M2�, and the seond is mapped onto M0�, M1�, M2� and M2+.Writing down the alphabet orresponding to the dynamis is a bit triky. Itwill have to ontain sequenes of arbitrarily long ombinations of 2+ and 2�terminating with one of the four symbols whih gives no restrition on the nextletter, 0+, 1+, 1� and 0�. We will, however, have to make sure that the labelbefore the terminating label in the letter has the right sign, e.g. before 1� wewill have to have 2� and not 2+. On top of this it will have to have provisionsfor itineraries whih let the point boune bak and forth between M2+ andM2� inde�nitely.However, we an avoid the problems of formulating the alphabet diretlyand make use of the fat that the slope of the map is the onstant �. The lattergives rise to identities of the form t(2+)k1 (2�)k2 (2+)k30+ = (t2+)k1+k3(t2�)k2 t0+7



et. as an be seen diretly from the de�nition of tp. These identities makeshadowing work and they will make life muh easier in the following.The sequenes of labels whih are supposed to make out the alphabet anbe of three forms. It an be one of 0+, 1+, 1� and 1� in whih ase thereare no problems what so ever. There an be a sequene | possibly empty |of 2+s and 2�s preeding a 2 + 0+, 2 + 1+, 2 � 1� or 2 � 0� as desribedabove. It is important to note that the order of the symbols matter when thealphabet is written out but when the zeta funtion is alulated we an usethe identities noted above. The problem of ordering is thus redued to one ofounting. Postponing the third ase for a moment, we write(1 � t0+ � t1+ � t1� � t0� (30)� (t2+t0+ + t2+t1� + t2�t1� + t2�t0�) 1Xn=0 nXi=0 �ni � (t2+)i(t2�)n�i):We have here introdued the binominal oeÆient ( ni ) to ount the number ofways i plus-signs an be distributed over n symbols. The fator in front of thesum takes are of the fat that the symbol sequenes has to end with the orretombinations of 2� and 0�=1�. Shadowing aounts for the fat that we don'tget an in�nite produt to work out but only a sum.We will now return to the third ase we left out before. It is the ase wherethe sequenes onsists only of 2�. This is analogous to the ase of � odd wherewe had to inlude the two �xed points. We deal with it in rather muh the sameway by introduing them into to the in�nite produt by hand. However, herethere are in�nitely may possible sequenes whereas the two �xed points justgave two additional fators. Fear not, dear reader, yet again one an hear theavalary approahing | shadowing sets in and anles the urvature orretionsexatly, leaving only the term (1� t2+ � t2�): (31)We an now write out the full dynamial zeta funtion, however, it pays ofto give it a bit of massage. The sums in (30) an easily be alulated by notingthat 1Xn=0 nXi=0 �ni � (t2+)i(t2�)n�i = 1Xn=0(t2+ + t2�)n = 1(1� t2+ � t2�) : (32)The orale an now be alulated,1=� = (1�t2+�t2�)(1�t0+�t1+�t1��t0+� (t2+t0+ + t2+t1+ + t2�t1� + t2�t0�)(1� t2+ � t2�) ):(33)Multiplying everything out and olleting terms gives us1=� = 1�t0+�t1+�t2+�t2��t1��t0�+t2+t0�+t2+t1�+t2�t0++t2�t1+: (34)Calulating the mean yle square jumping number and mean yle length isnow trivial,hn̂2i� = �t1+ � 4t2+ � 4t2� � t1� + 4t2+t0� + t2+t1� + t2�t1+ + 4t2�t0+8



= �10�� 1�2 (35)hni� = �t0+�t1+�t2+�t2��t1��t0�+2t2+t0�+2t2+t1�+2t2�t1++2t2�t0+= �6�� 8�2 : (36)The di�usion onstant D follows,D = 12 hn̂2i�hni� = 5�� 56�� 8 = 5 +p58 : (37)The ase � = (5 +p41)=2 an be dealt with along similar lines. The maindi�erene is that now the intervals M2+ and M2� are mapped onto M0+ [M1+[M2+[M2�[M1� andM0�[M1�[M2�[M2+[M1+, respetively.This makes only a small di�erene in the alulations sine we only need to takeinto aount the fat that ombinations of 2+ and 2� now also an terminatewith 2 + 1� and 2� 1+. This is done by introduing t2+t1� and t2�t1+ in thefator in front the sums in eq. (30). Doing the maths analogous to what we didbefore gives1=� = 1� t0+ � t1+ � t2+ � t2� � t1� � t0� + t2+t0� + t2�t0+: (38)It is interesting to notie the way terms with two tp-s anel when we make theimage of M2+ overlap all but the last interval, M0�. It is fairly obvious whatwill happen when we let the interval overlap all the subinterval, i.e. we onsiderthe ase of � = 6; we get exatly the simple form of the zeta funtion orre-sponding to unrestrited dynamis in the alphabet f0+; 1+; 2+; 2�; 1�; 0�g. Itis reassuring to know that our methods are at least onsistent!Applying the operators z ��z and �2��2 and evaluating at (�; z) = (0; 1) giveshn̂2i� = �10�� 8�2 and hni� = �6�� 4�2 : (39)The di�usion onstant now follows readily,D = 12 hn̂2i�hni� = 5�� 46�� 4 = 107�p41124 : (40)If we ompare with table H.2 in the projet desription we see that theresults alulated here are di�erent from those in the table for (a), (b) and (e).The two �rst are readily explained as typos in the table(?) but it seem verypossible that a small error found its way into my alulations of the seond lastentry in the table.3 Numeris and some onluding remarksWhen one has no other ideas one an always try to do some numerial alula-tions. . . We have now alulated a few di�usion onstants, trusting that we havederived the underlying theory orretly. If we an trust periodi orbit theorythen our alulations of di�usion onstants have been exat. However, it is notintuitively obvious that the numbers found so far are orret so we might want9
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10 100 1000 10000 100000 1e+06 1e+07 1e+08Figure 3: Di�usion onstant alulated numerially for � = 5 with inreasingnumbers of iterations. The value D = 1 found from periodi orbit theory isindiated with a dashed line.to use the dumb approah of brute fore numeris. It is a quite obvious approahsine iterated mapping lend themselves to easy omputer implementation.However, ontrary to popular belief, numerial alulations is a quite subtlesubjet and the pitfalls are legio. We will here look at data for the ase of� = 5 alulated for inreasing numbers of iterations. Beause we do not havein�nitely muh omputer-time, we will balane the number of iterations withthe number of start-points we look at. Figure 3 shows the di�usion onstantsas a funtion of the number of iterations in a simulation where the number ofiterations times the number of input points has been kept at 108. (This takesabout 70 s per data-point on a fast omputer with an extremely inelegant C-program using double preision arithmetis.) The result, D = 1, from periodiorbit theory is also indiated on the �gure. It is obvious that the result fromperiodi orbit theory is of the right order of magnitude but something is learlygoing wrong.From the �gure we see that up to a few thousand iterations the points lookas if they are onverging but the they seem to be tossed around more or less atrandom for more iterations. What seems to be happening is that the sequeneof points gets aught by an attrator for the dynamial system onsisting ofboth the iterated mapping and non-linearities aused by round-o� errors. Thisgives rise to apparently extreme di�usion onstants.
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� di�usion onstant4 14 0:252 +p6 1� p64 � 0:3882 + 2p2 26�11p216 � 0:6535 1 13 +p5 5+p58 � 0:9055+p412 107�p41124 � 0:8116 56 � 0:833Where did we end up, and where do we go from here?But what about the exat results, then? Can we interpret them? We an seethat the largest value of D is found for � = 5. Comparing �gure 1 this mightbe possible to understand. First of all, we would expet as a general trend thathigher values of � would lead to faster di�usion. It is true that di�usion getsfaster with higher values of �. The expressions for � even and odd also showsthat: for large values D goes as �2. This is, however, not the only e�et so anwe understand why � = 5 gives the highest value of D.Every time the sequene enters the M2+ interval it will not only be sentfar in one diretion, it will also be sent in the same diretion in the next timestep as an be seen from the �gure (by symmetry this is also true for 2�). Ifwe inrease � to 3 +p5 we get the possibility that the `fast running' points ofM2+ get mapped to the M2� interval and thus kiked in the other diretion.If we then inrease � one step more we get a further possibilities to get sent inthe opposite diretion when we make a long jump and thus a lower value of thedi�usion onstant even though � goes up. If we go to � = 6, points inM2+ annow be mapped toM0� also but that just means standing still for one iterationso we would expet this to a�et the di�usion onstant in a less negative wayand indeed it even does go up a bit.These are of ourse just hand-waving arguments but they seem to explainthe behaviour seen in the alulated values of the di�usion onstant. What oneshould be able to work out is whether there is a general trend of D growingroughly as �2 and then eliminate that e�et and somehow study the `bare'e�et of letting the `fastest running' intervals, Mm�, overlap more or less withthe other intervals. It also seems possible that the e�ets of the overlaps ofthe Mm� intervals and the other intervals will diminish as we go to highervalues of �. It might happen that there exists a point from whih the di�usiononstant grows `monotonially' with � inreasing in steps that math Markovpartitions of the simple form we have studied here (e.g. �nite Markov partitionslabeled by jumping numbers). If this atually happens one an study whethersomething similar will happen if we make even �ner partitions (a possibility noteven mentioned here), and one an maybe investigate whether from some �nitevalue onwards D beomes a monotoni funtion of � (my guess is that no suhvalue exists). All these are possibilities whih an be investigated, possibly withtehniques used in this term paper. 11


