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1.GribovAmbiguity All modern theories trying to explain fundamental physics
are field theories which describe the configuration of a field and its dynamics as
the interaction between fields and their evolution in space and time. These fields
may be scalar, vector or tensor fields and they transform under a gauge trans-
formation accordingly to give different configurations of the field. However, for
some of these configurations the physical observables, which are in a direct way
the reality that we perceive/observe, do not change under gauge transformations.
For example, in electromagnetism, the following transformations,

A → A+∇ψ (3.1a)

φ → φ− ∂ψ

∂t
(3.1b)

keep the observables E and B (electric and magnetic fields respectively) un-
changed. This is an example of a gauge transformation.

What is gauge freedom and gauge fixing? The invariance of physically observ-
ables quantities with respect to a gauge transformation implies that the system
has redundant degrees of freedom in field variables. All field configurations that
transform into one another through gauge transformations are physically equiva-
lent and, therefore, for correct predictions, should be counted as one. Gauge fix-
ing is the mathematical procedure of selecting an equivalence class for each set
of physically identical field configurations. A coherent and consistent prescrip-
tion of selecting the representative configurations (also known as gauge fixing)
out of all possible detailed configurations is required to make

What is a gauge theory? According to (symmgauge freedom) there are two
types of theories that can be called ‘gauge theories’. The Yang-Mills theories and
constrained Hamiltonian theories. The Hamiltonian theories subsume the Yang-
Mills theories. Such theories have a common striking feature known as gauge
freedom. Gauge freedom is a fancy way of saying that the theories has two kinds
of variables – physical and unphysical– due to which the initial value problem in
such theories are ill-defined. This means that a set of initial conditions does not
uniquely determine the evolution of all the dynamical variables of the theory. The
set of ’physical’ variables will evolve the same way but the ’unphysical’ variables
can evolve in infinite number of arbitrary ways thus allowing infinite number of
solutions for the same initial conditions. It is possible to interpret classical gauge
theories as deterministic only if we consider the physical dynamical variables as
the complete description of physical reality. If two states differ only in their
unphysical variables, they represent the same physical configuration of the field.

Speaking in mathematical dialect, a gauge theory is a field theory in which the
lagrangian is equivariant under a lie group of continuous transformations. Such
a group of transformations is called a symmetry group of the theory. A gauge
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field is a vector field associated with the generators of the symmetry group and
the particles that arise due to quantization of the gauge field are called gauge
bosons.
Consequences of Gauge Symmetry The presence of gauge symmetry has sig-
nificant consequences on the results of the theory. Let us consider a free non-
relativistic particle in one dimensional space. The hamiltonian of such a system
is given just by the kinetic energy of the particle H = −1

2
d2

dx2 . The energy
eigenvalue spectrum of this problem is continuous in the absence of symmetry.
In the case of a periodic boundary condition when the points x and x+ pL, p�I
are physically identified with each other, the wavefunction has a gauge symme-
try Ψ(x) = Ψ(x + pL). The spectrum now becomes discrete and this is how
gauge symmetry affects the physial configuration space. This is a simple exam-
ple which illustrates that a gauge theory must obey some constraints that identify
the physically identical configurations and that it makes the spectrum more re-
strictive.

Abelian and non-Abelian gauge theories The continuous symmetry operations
on the lagrangian which keep the action invariant constitute a Lie group. The
generators of infinitesimal transformations of such a Lie group define the alge-
bra of such a symmetry group. If the generators of the gauge symmetry group
commute then the theory is said to be Abelian, otherwise non-Abelian.

Gribov copies In 1978, Gribov showed that for a non-Abelian, for example
SU(2) and SU(3), the local gauge group imposes more stringent constraints than
it does on an Abelian gauge theory. The transversality condition ∂.A = 0 fixes
the gauge uniquely for Abelian gauge theories but in the case of non-Abelian
gauge theories, there exist distinct phase space configurations A and A� related
by a finite gauge transformations A� = UA such that ∂ · A = 0 and ∂ · A� = 0
where A �= A�.These distinct configurations are called Gribov copies and in
a non-Abelian gauge theory they have an additional constraint of being physi-
cally identical. The subspace of the full state space that contains only physically
distinct configurations of the field is called a fundamental modular region and
is free of any Gribov copies. In 1978, Singerinsert reference showed that in
non-Abelian theories Gribov copies are unavoidable and that the physical con-
figuration space is topologically non-trivial. On the other hand, for an Abelian
theory the physical configuration space is a linear vector space.
Quantum Chromodynamics and Confinement Quantum Chromodynamics is
a theory which describes the strong interactions at sub-atomic level. Strong in-
teraction is the force between quarks and gluons. At very high energies these
sub-atomic particles are asymptotically free which means that they behave like
free particles. But these particles have not been observed. This is because in
low energy conditions they interact with each other and form bound states called
hadrons like proton and neutron. This phenomena is called confinement.
Inspite of QCD being qualitatively similar to QED, the problem of confinement
is not very well understood. In QED, the method of perturbative expansion us-
ing feynman diagrams has proved very successful because the small value of the
QED coupling constant makes the contribution of higher terms more and more
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negligible. In QCD the value of the coupling constant is a function of energy
and becomes larger as the energy is lowered. This phenomena called "infrared
slavery" is responsible for the failure of perturbation theory for low energy phe-
nomena. For understanding the low energy behaviour of the theory, various non-
perturbative methods have been developed to describe confinement. Different
methods work well in different conditions and so QCD is a patchwork of differ-
ent methods that work in different conditions.
Dynamical implications of non-Abelian nature of gauge symmetry group
The existence of Gribov copies and suppression of infrared modes due to their
closeness to Gribov horizon leads to an interesting feature.The calculation of the
gluon propagator under a non-Abelian theory leads to expulsion of the gluon
from the physical spectrum of the solution. This is seen as non-existence of a
physical pole in the gluon propagator.
Gauge orbit and Physical configuration Each physical configuration of the
field Aphys is associated with a corresponding gauge orbit which is collection
of all physically identical configurations. The physicalconfiguration space is
the space of all gauge orbits modulo the group of local gauge transformations
G = U ,

P = A/G.

Introduction to Yang-Mills theoryAs QCD is a specific case of a general Yang-
Mills theory, it is a good idea at the general theory. Consider the compact group
SU(N) of NxN unitary matrices U of determinant one. These matrices can be
expressed as

U = exp(−igθaXa),

where Xa are the generators of SU(N) group. If these generators Xa follow
commutation relations

[Xa, Xb] = ifabcX
c,

and the SU(N) corresponds to a single Lie group. These generators are defined
to be hermitian and normalizable as follows:

X† = X,

Tr[XaXb] =
δab
2
.

Now, the generatorsXa belong to the adjoint representation of the group SU(N),
i.e.

UXaU
† = Xb(D

A)ba,

with (DA(Xa))bc = −ifabc. Here fabc are the structure constants of SU(N)
and have the following property,

fabcfdbc = Nδad.
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We can construct a lagrangian which by design would be invariant under the
above defined SU(N) group. The Yang-Mills action for this lagrangaian would
be

SYM =

�
d4x

1

2
TrFµνFµν ,

whereby Fµν is the field strength

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ],

and Aµ are the gluon fields that belong to adjoint representation of SU(N) sym-
metry, i.e.

Aµ = Aa
µX

a.

The field strength is given by

Fµν = ∂µA
a
µ + gfaklA

k
µA

l
ν .

Aµ under the SU(N) symmetry transforms as

A�
µ = UAµU

† − i

g
(∂µU)U †.

We find that
F �
µν = UFµνU

†,

and can now see that Yang-Mills action is invariant under SU(N) symmetry.
The infinitesimal transformations can thus be written as

δAa
µ = −Dab

µ θb,

with Dab
µ the covariant derivative in the adjoint representation

Dab
µ = ∂µδ

ab − gfabcAc
µ.

There is also a matter part of the action but we will work with pure Yang-Mills
action.

Faddeev-Popov Ghosts Faddeev-Popov ghosts or ghost fields are additional
fields which are introduced into gauge field theories to maintiain the consistency
of path integral formulation. In order for the quantum field theories to deliver
unambiguous and sensible results we need to avoid overcounting of feynman
diagrams that correspond to physically equivalent processes. In a gauge field
theory, each physical configuration has infinite number of full state space config-
urations all of which lie on a gauge orbit. Selecting a representative configuration
from this equivalence class is required in order for path integral method to work.
But usually there is no such prescription of selecting such a representative con-
figurations. However, it is possible to modify the action by adding extra terms
called ghost-fields that break gauge symmetry. In general, ghost fields can add
or break gauge symmetry in a field theory. This method is called Faddeev-Popov
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procedure. Ghost fields are mathematical tools and represent virtual particles in
feynman diagrams. They are also essential for unitarity.

Faddeev-Popov Quantization To understand the Gribov problem we first need
to have a look at Faddeev-Popov quantization reference 53. The Yang-Mills
action as discussed earlier is given by

SYM =

�
ddx

1

4
F a
µνF

a
µν .

Our naive assumption that the generating functional Z(J) would be given by

Z(J) =

�
[dA]exp[−SYM +

�
dxJa

µA
a
µ].

But this functional is not well defined. We can look at the quadratic part of the
action,

Z(J)quadr =

�
[dA]exp[−1

4

�
dx(∂µAν(x)−∂νAµ(x))

2+

�
dxJa

µ(x)A
a
µ(x)

=

�
[dA]exp[−1

2

�
dxdyAa

ν(x)[δ
abδ(x−y)(∂2δµν−∂µ∂ν)A

b
µ(y))+

�
dxJa

µ(x)A
a
µ(x)

which after a gaussian integration gives

Z(J)quadr = (detA)−
1
2

�
[dA]e−

1
2

�
dxdyJa

ν (x)Aµν(x,y)
−1Ja

µ(y),

with Aµν(x, y) = δ(x− y)(∂2δµν − ∂mu∂ν), is ill defined because Aµν(x, y)
is not invertible. There is something wrong with the generating functional.
Following the derivation of gauge fixed action given in ref 16:

S = SYM +

�
dx(c̄∂µD

ab
µ cb − 1

2α
(∂µA

a
µ)

2).

If we take the limit α → 0, we have the Landau Gauge which stays a fixed point
under normalization. If α = 1, it’s called the Feynman gauge in which the gluon
propagator is the simplest.
What is BRST symmetry? Fixing the gauge cause the local gauge symmetry to
break. However, after fixing the gauge, a new symmetry called the BRST sym-
metry appears which is basically the symmetry of the gabhost fields.For example,
inserting a b-field

S = SYM +

�
ddx(ba∂µAµ + α

ba)2

2
+ c̄a∂µD

ab
µ cb),

where Z(J) is now given as

Z(J) =

�
[dA][dc][dc̄][db]e[−S+

�
dxJa

µa=0A
a
µ].
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Here b is the bosonic field. The action for this theory has a new symmetry called
the BRST symmetry,

sS = 0,

with
sAa

µ = −(Dµc)
a, sca =

1

2
gfabccbcc,

sc̄a = ba, sba = 0

sψ̄α = −igca(Xa)ijψj
α, sψ̄

i
α = −igψj

αc
a(Xa)ji.

This BRST symmetry property is the proof that Yang-Mills theory is unitary in
perturbation theory. Introduction of BRST symmetry introduces extra particles
called ghost particles c and c̄. Like other ghost particles, these particles too vio-
late spin-statistics thorem.

Gribov Problem For any kind of gauge orbit the gauge fixing condition might
have one, more or no solutions, i.e. the slice might intersect the gauge orbit once,
more than once or never. Consider two Gribov copies Aµ and A�

µ related by a
gauge transformation

A�
µ = UAµU

† − i

g
(∂µU)U †,

which obviously satisfy the transversality condition

∂µAµ = 0 ∂µA
�
µ = 0.

These equations when combined and expanded to first order gives

−∂µ(∂µα+ ig[α, ∂µ]) = 0

which is equivalent to
−∂µDµα = 0.

This means that the relevant Gribov copies are in a space orthogonal to the trivial
null space. The transversality condition, ∂µAµ, also implies that Faddeev-Popov
operator is Hermitian,

−∂µDµ = ∂µDµ.

Thus existence of Gribov copies are connected to zero eigenvalues of the Faddeev-
Popov operator.
Important observation For small Aµ, the equation reduces to the eigenvalue
equation

−∂2
µψ = �ψ,
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has positive eigenvalues but this cannot be gauranteed for large Aµ. This means
that for large Aµ the eigenvalues of Fadeev-Popov operator are zero.

Possible Solutions?
Gribov Region and Gribov Horizon
We need to improve the gauge fixing for non-Abelian theories. This can be
done by finding the Gribov region Ω which is defined as subspaces with positive
eigenvalues of Faddeev-Popov operator,

Ω = Aa
µ, ∂µA

a
µ = 0,Mab > 0,

where M is the Faddeev-Popov operator,

Mab(x, y) = −∂µD
ab
µ δ(x− y).

This is the region which obeys Landau gauge and where the FP operator is pos-
itive definite. The border of the Gribov region is the manifold where the first
eigenvalue of the FP operator becomes zero. This is known as Gribov horizon.
The eigenvalues become negative on the other side of the Gribov horizon. An-
other way of chosing a Gribocv region is to select those points on the gauge orbit
which have minimumA2. This definition also agrees with our previous definiton
on Gribov region.

Properties of the Gribov region
1. It is important that each group orbit passes through the Gribov region be-
cause we want to take into account all possible physical configurations. Gribov
showed that for every configuration infinitesimally close to the Gribov horizon,
there exists a Gribov copy on the other side of the horizon infinitesimally close
the horizon. It has been rigorously proved that every gauge orbit passes through
the Gribov region.
2. Gribov region is a convex manifold. reference 12
3. Gribov region is bounded in every direction. Unfortunately, despite of all the
nice properties, it has been discussed reference 86 that Gribov region still con-
tains Gribov copies.
Another possible solution, Fundamental Modular Region
Now when even the Gribov region has Gribov copies, let us define a fundamen-
tal modular region as a more restrictive subspace of all the configurations which
have all absolute minima of the functional. We shall select only the configura-
tions closest to the region. This is called the fundamental modular region or the
minimal Landau gauge.
Properties of FMR
1.All gauge orbits intersect with FMR.
2.Aµ = 0 belongs to FMR as 0 is the smallest norm. 3.FMR is also convex and
bounded in every direction. 4.The boundary of Λ, δΛ has some points common
with the Gribov horizon. 5. Gribov copies exist on the boundary.
Other attempts at gauge fixing
Singer showed that suitable regularity conditions at infinity does not leave any
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contiuous gauge choices. This means that there is no unique representative of
the gauge orbit that is continuous in the space of gauge orbits. A gauge free of
Gribov copies is singular gauge and very difficult to handle in computations and
also violates Lorentz invariance.
In 2005, Ghiotti, Kalloniatis, and Williams tried to improve the Fadeev-Popov
gauge fixing by including the determinant into the action but in such a method
the number of Gribov copies is not accounted for and no further calculations
have been done along these lines.
Slavnov, in 2008 and 2010, pointed out that if we don’t take the absoulte value
of the determinant of the Faddeev-Popov operator and integrate over all Gribov
copies, their effects will cancel out. The disadvantage is that if we make approx-
imations then the errors can get very large.
Stochastic quantization with stochastic gauge fixing introduces a gauge-fixing
force which is tangent to the gauge orbit. More works need to be done in this
method.
Summary In order to get correct predictions from non-Abelian field theories,
which are susceptible to large number of gauge copies, we need to choose a rep-
resentative of each gauge orbit. Some newmethods and mathematical tricks have
been explored but none have given a consistent recipe for selection of the rep-
resentatives of these equivalence classes. However, if approximations are made
in a clever manner, some of the methods can give us practically usable results.
There are other methods like semi-classical approach by Gribov which I haven’t
mentioned.
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