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The Hénon map is one of the simplest two-dimensional mappings exhibiting chaotic behavior.
It has been extensively studied due to its low dimension and chaotic dynamics. Even though the
Hénon map is introduced mathematically as a model problem and has no particular physical import
of itself, links between certain harmonic oscillators and “Hénon-like” maps have been found. To
get a better understanding of the Hénon map, we review the dynamic properties of the Hénon map
including its fixed points, stability, periodic orbits, and so on, and a physical interpretation of it is
discussed.
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I. INTRODUCTION

In 1963, Lorenz proposed a system of three coupled
differential equations, which is later well known as the
Lorenz flow. The Lorenz flow was first studied because
it is of interest for weather prediction. However, further
explorations of the Lorenz flow have revealed even more
benefits. As an illustration of deterministic chaos, the
Lorenz flow was widely explored and studied. Motivated
by the Lorenz equations, Hénon introduced a simple two
dimensional map in 1976 [1], which captured the stretch-
ing and folding dynamics of chaotic systems such as the
Lorenz system.
The Hénon map is a minimal normal form for mod-

eling flows near a saddle-node bifurcation, and it is a
prototype of the stretching and folding dynamics that
leads to deterministic chaos. Due to its simple form, the
Hénon map has provide us a way to conduct more de-
tailed exploration of the chaotic dynamics. Interesting
enough, even though the Hénon map is introduced as a
mathematical model, it still corresponds to the dynam-
ics of some physical systems, one of which was given by
Biham and Wenzel [2]. However, this interpretation is
mostly exploited as a computational tool instead of an
illustration of the physical dynamics. In contrast, Heagy
demonstrated an interesting interpretation of the Hénon
map [3]. This interpretation links the Hénon map to the
period one return map of an impulsively driven harmon-
ic oscillator, which provides a relatively good insight into
the dynamics of the Hénon map.
In sect. II the standard form of the Hénon map is in-

troduced and the details of its dynamic properties are
discussed. A review of an physical interpretation of the
Hénon map is shown in sect. III. In sect. IV the prop-
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erties of the Hénon map are briefly summarized, and a
discussion of its physical interpretations is given.

II. THE HÉNON MAP

In 1969, Hénon showed in Ref [4] that essential prop-
erties of dynamical systems defined by differential e-
quations can be retained by a carefully defined area-
preserving mappings. Inspired by the same idea, Hénon
proposed the famous two dimensional Hénon map as a
reduced approach to study the dynamics of the Lorenz
system. The Hénon map is given by the following equa-
tions:

xn+1 = 1− ax2
n + byn

yn+1 = xn

(1)

This is a nonlinear two dimensional map, which can also
be written as a two-step recurrence relation

xn+1 = 1− ax2
n + bxn−1 (2)

A. Fixed points and Hénon attractor

An attractor refers to a subset of a connected state
space M0, where the flow is globally contracting onto,
as M0 mapping into itself under forward evolutions. An
attractor can be a fixed point, a periodic orbit, aperiodic,
or a combination of the above. The most interesting case
is the aperiodic recurrent attractor, which is also referred
to as a strange attractor.

For the Hénon map, we have two fixed points. Taking
(xn+1, yn+1) = (xn, yn) = (x0, x0) in (1), we have

x0 =
−(1− b)±√

(1− b)2 + 4a

2a
(3)

which can be either attracting or saddle points depending
on the choice of parameters (a, b) [5].

In Ref [1], Hénon had also claimed that for (a, b) =
(1.4, 0.3) the Hénon map converges to a strange attrac-
tor. A visualization of the Hénon attractor can be done
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FIG. 1: A visualization of the Hénon attractor.

by numerical iterations. By picking an arbitrary initial
point and iterating (1) on a computer and plotting the
results on the (xn, xn+1) plane, we can get a sketch of
the dynamics of the Hénon map. An iteration of 10, 000
with initial point (0.1, 0.1) is plotted in Fig. 1. As we
have mentioned, the Hénon map is one of the simplest
maps capturing the stretching and folding dynamics of
chaotic systems. The parameter a controls the amount
of stretching and the parameter b controls the thickness
of folding. In Fig. 1, b is relatively large and the attrac-
tor is rather thick, which gives a clearly visible transverse
fractal structure.
It is worth mentioning that even though the Hénon

attractor at (a, b) = (1.4, 0.3) is shown to be a strange
attractor for all practical purposes, the existence of the
strange attractor has never been proven and the Hénon
attractor could be a result of some long attracting stable
cycles. Actually, it is possible to find stable attractors
arbitrarily close by in the parameter space. An exam-
ple is the 13-cycle attractor at (a, b) = (1.39945219, 0.3).
A comparison of the “Hénon attractor and the 13-cycle
attractor is shown in Fig. 2.

B. Jacobian matrix and stability

The Jacobian matrix is an important tool to explore
the properties of dynamic systems. Evaluating it for the
Hénon map we get the Jacobian matrix for the nth iterate
is

Jn(x0) =
1∏

m=n

(−2axm b
1 0

)
. (4)

Calculating the determinant of the Hénon one time-step
Jacobian matrix gives us a good insight into the dynamics
of the map. From (4) we get

det J = Λ1Λ2 = −b , (5)

which is a constant. This gives a constant area contrac-
tion rate for the Hénon map. The constant Jacobian is

(a)
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

xn

x n
+1

(b)
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

xn

x n
+1

FIG. 2: Plot of the Hénon attractor and the 13-cycle attrac-
tor. Figure obtained by iterating the Hénon map with speci-
fied values of (a, b), and removing and re-plotting points every
1,000 iterations. (a) The Hénon attractor at (a, b) = (1.4, 0.3),
and (b) the 13-cycle attractor at (a, b) = (1.39945219, 0.3).

not an accident. Hénon had demonstrated this interest-
ing property when he first introduced the Hénon map in
Ref [1]. He claimed that by dividing the map into three
steps: a folding, a contraction along the x axis, and a
flipping about x = y, each step has a simple and unique
geometrical interpretation, namely, the folding preserves
areas, the flipping preserves the area but reverses the
sign, and the contraction contracts the area by a con-
stant factor b. Altogether, we have a area contraction
rate of −b. This kind of map is known as an entire Cre-
mona transformation, which is a one-by-one mapping of
the plane into itself.

The Floquet matrix of the Hénon map can also be eval-
uated from the Jacobian matrix. By picking a periodic
point as a starting point, and multiplying individual pe-
riodic point Jacobian matrices around a prime cycle, we
get the Floquet matrix as

Mp(x0) =

1∏
k=np

(−2axk b
1 0

)
, xk ∈ Mp . (6)

For a specific Hénon map with (a, b) given, the Floquet
multipliers and Floquet exponents can therefore be cal-
culated, and the stability of periodic orbits can be eval-
uated accordingly (based on |Λj | and the sign of the real

part of the Floquet exponents μ(i)).

C. Hénon repeller and horseshoe

For the study of long-term dynamics, only the non-
wandering set Ω of a dynamics system is of our inter-
est, where the trajectories reenter the neighborhood in-
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finitely often. A non-wandering set is the union of al-
l kinds of separately invariant sets including attractors
and repellers. In sect. II A we have already introduced
the attractor, which is a subset of a connected state s-
pace attracting the flow globally. Conversely, for a non-
wandering set Ω enclosed by a connected state space vol-
ume M0, if all points within M0 but not Ω will eventual-
ly exit M0, the non-wandering set Ω is called a repeller.
For the Hénon map with parameter b �= 0, interesting

repellers can be found. The Hénon map takes a rectan-
gular area and returns it bent as a Smale horseshoe. The
Hénon repeller with parameter b = −1 and a large pa-
rameter a is especially instructive. According to (5), for
b = −1, the contraction rate is 1, which means the map
is area preserving. At the same time, the map is strong-
ly stretching due to a large parameter a. Therefore, we
get a strongly stretching but yet area preserving map,
where the folded horseshoe can be clearly observed and
the stable manifold Ws and unstable manifold Wu of the
can be studied visually. For parameter (a, b) = (6,−1),
different iterates of the map are calculated numerically
and plotted on the (x, y) plane in Fig. 3.
Starting with a set of points in a small square around

the fix point x0, iterating forward using (1) will stretch
and fold the initial set of points and trace out the un-
stable manifold Wu, as indicated by the blue line in
Fig. 3(a). On the other hand, the backward iteration
in time is given by

xn−1 = yn

yn+1 = −b−1(1− ay2n − bxn)
(7)

Iterated backward in time, the initial set will outline
the stable manifold Ws, as indicated by the green line
in Fig. 3(a). The intersection of Ws and Wu gives an
invariant and optimal initial region M where the non-
wandering set is enclosed. We say M is invariant and
optimal because any point outside Ws border escapes to
infinity forward in time and any point outside Wu border
comes from infinity backward in time.
As we iterate one more step forward in time, M will

be stretched and folded to form a Smale horseshoe, and
the intersection is split into two future strips as shown
in Fig. 3(b). Label the strips symbolically we have M0.

and M1. respectively. Similarly, iterate one more step
backward in time, the intersection becomes four region-
s as shown in Fig. 3(c), which can be labeled as M0.0,
M0.1, M1.0 and M1.1. Iterate one more step forward,
we will get 4 future strips labeled by M00., M01., M10.,
M11., and iterate one more step backward, we will get
4 past strips labeled by M.00, M.01, M.10, M.11 (Fig-
ure 6 in appendix A). As we iterate further, the more
future strips and past strips will intersect each other
to form more regions which can be labeled as MS−.S+

where S+ = s1s2 · · · sm is called the future itinerary and
S− = s−n · · · s−1s0 is called the past itinerary. As one
may notice, the dynamics of the map is simply acting as
a shift of the itinerary, where a forward iterate move the
entire itinerary to the left through the ‘decimal point’ and

(a)
−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

(b)
−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

(c)
−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

FIG. 3: Different iterates of the Hénon map at (a, b) =
(6,−1). The two fixed points are marked as red circles. The
blue line corresponds to forward iterates, and the green line
corresponds to backward iterates. (a) Forward iterate show-
ing Wu, and backward iterate showing Ws. The intersection
bounds the state space M, containing the non-wandering set
Ω. (b) One more forward iterate. The intersection of f(M)
and M becomes two strips. (c) One more backward iterate.
The intersection of f(M) and f−1(M) becomes four regions.

a backward iterate move the entire itinerary to the right.
Therefore, we call the set of all bi-infinite itineraries that
can be define by S = S−.S+ the full shift.

Here we say the Hénon map shows a complete Smale
horseshoe because it has a complete binary symbolic
dynamics, and as we can see in Fig. 3, every forward
fold fn(M) intersects transversally every backward fold
f?m(M). For a given step number m and n, the inter-
sections MS−.S+ represents the set of points that do not
escape in such forward and backward iterates. Therefore,
when m and n goes to infinity, we get the set of points
that remain inM for all time, namely, the non-wandering
set of M.

Ω =

{
x : x ∈ lim

m,n→∞ fm(M.)
⋂

f−n(M.)

}
. (8)

However, the non-wandering set for an arbitrary map
doesn’t necessarily corresponds to the full shift, because
some points represented by the itinerary in the full shift
may be inadmissible. Thus we say the complete dynam-
ics of the Hénon map is a subshift where all admissible
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sequences are considered.
The reason why we carry it all the way through to

show the Hénon map corresponds to a complete Smale
horse is that, a complete Smale horseshoe is structural-
ly stable, meaning that all intersections of forward and
backward iterates of M remain transverse for sufficient-
ly small variations of the Hénon map parameters a and
b. In a more physical term, the transport properties of
the system have a smooth dependence on the parameter-
s. Structural stability is an extremely desirable however
rather rare property. A lack of structural stability will
results in the creation and destruction of infinitely many
periodic orbits for any parameter change, no matter how
small it is. For any structurally unstable systems, even
as simple as a purely hyperbolic system, any global ob-
servable could show a non-smooth dependence on system
parameters and behave in a rather unpredictable way.
Therefore, the fact that for a specific range of parameters
[6] the Hénon map is structural stable is a very important
property and what makes any physical interpretation of
the Hénon map practically meaningful.

D. Symmetries and Hamiltonian flow

The symmetry of the Hénon is rather simple. For a
parameter b �= 0, the Hénon is time reversible with the
back ward iteration given by (7), thus giving a b to 1/b,
a to a/b2 symmetry in the parameter plane, and an x to
−x/b symmetry in the coordinate plane.
Some interesting properties for the Hénon map with

parameter b = −1 can be found. When b = −1, the
Hénon map (2) becomes

ax2
n = 1− xn+1 − xn−1 . (9)

The map has an x to x symmetry, the backward and
the forward iteration are the same, and according to (5),
the area contraction rate is 1. So the map is orientation
and area preserving, and the non-wandering set is sym-
metric about xn+1 = xn. Such a simple map corresponds
to a Poincaré return map for a 2-dimensional Hamiltoni-
an flow. As we know, for a Hamiltonian flow, the Jaco-
bian matrix J is a symplectic transformation, detJ = 1
for all the time and the flow is a canonical transforma-
tion. This analogue gives us a hint about how we can
develop physical interpretations of the Hénon map. In
sect. III, we will therefore start with this orientation and
area preserving case and discuss a physical interpretation
of the Hénon map in detail.

III. PHYSICAL INTERPRETATIONS OF THE
HÉNON MAP

As discussed in sect. IID, the area preserving Hénon
map is a good starting point to get insightful physical

views of the Hénon map. Actually, different interpreta-
tions have been proposed based on the connection be-
tween the area-preserving Hénon map and the return
map of the Hamiltonian flow[2, 3, 7]. In this section,
we also start our discussion with the area preserving
case, and we choose to review in detail the interpretation
demonstrated by Heagy in ref. [3], because in Heagys pa-
per a very comprehensive formulation is developed and
more physical meaning has been given to the interpreta-
tion instead of just using it as a computational tool to
assist mathematical calculations.

A. Area-preserving case

Kicked oscillator systems have been studied as physi-
cal model of different maps. For example, a periodically
kicked pendulum has been shown to have a return map
equivalent to the standard map[8]. In ref. [3], Heagy
claimed that the area preserving Hénon map can also be
associated with a kicked driven harmonic oscillator with
a cubic nonlinear coupling to the kicking term. This asso-
ciation can be derived from the Hamiltonian of the kicked
oscillator given by

H =
1

2
p2 +

1

2
x2 +

1

2
x3

∞∑
n=−∞

δ(t− nT ) . (10)

The Hamilton’s equations for the Hamiltonian(10) are

dx

d t
= p ,

d p

d t
= −x− x2

∞∑
n=−∞

δ(t− nT ) .
(11)

Consider one period of the oscillation T , for a small
time interval (nT, nT + ε) during which the kick takes
place, from the Hamiltons equations(11) we have

dxn = x(nT + ε)− x(nT ) = εp(nT ) ,

d pn = p(nT + ε)− p(nT ) = −εx(nT )− x(nT )2 .
(12)

where the prime denote the variables after the kick. Tak-
ing the limit of ε → 0 we have

x(nT + ε) = x(nT ) ,

p(nT + ε) = p(nT )− x(nT )2 .
(13)

After the kick, for time nT +ε → (n+1)T , the system
goes freely and integrate (10) we get

x(t) = C1 cos(t− nT ) + C2 sin(t− nT ) ,

p(t) = −C1 sin(t− nT ) + C2 cos(t− nT ) .
(14)

Substituting (13) into (14) we get C1 = x(nT ) and
C2 = p(nT ) − x(nT )2. Substituting C1, C2 and using a
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discrete representation given by xn = x(nT ), pn = p(nT ),
equations refeqe:nkick become

xn+1 = xn cos(t− nT ) + (pn − x2
n) sin(t− nT ) ,

pn+1 = −xn sin(t− nT ) + (pn − x2
n) cos(t− nT ) .

(15)

This map is already the same as the area-preserving
map given by Hénon in ref. [4]. However, if we want to
get the standard form of the Hénon map given by (1) or
(2), a few more steps need to be taken. First, we write
(15) in the two-step recurrent form

xn+1 + xn−1 = 2xn cosT − x2
n sinT . (16)

Then we take the linear transformation x = σX +
cotT , where σ = (cos2 T − 2 cosT )/ sinT , and set a =
cos2 T − 2 cosT . Equation (16) becomes

Xn+1 +Xn−1 = 1− aX2
n . (17)

This is identical to the area-preserving case (b = −1) of
equation (2). So we see that the Hénon map (1) with
b = −1 is actually equivalent to the harmonic oscillator
system.

B. Dissipative case

Good and straightforward as the derivation for the
area-preserving case is, it is also quite limited. Ex-
am the derivation carefully we find the parameter a =
cos2 T − 2 cosT of the Hénon map is limited to the inter-
val (−1, 3). Therefore, many special chaotic properties
of the Hénon map is not accessible, including the whole
sequence of period doubling bifurcations that occurs for
a ≥ 3. To better develop the physical interpretation of
the complete Hénon map, the dissipative case is also in-
troduced.

Adding a damping term into the oscillator system with
a constant damping factor γ, we get the dissipative os-
cillator system governed by

dx

d t
= p ,

d p

d t
= −x− γp− x2

∞∑
n=−∞

δ(t− nT ) .
(18)

Similar to the area-preserving case, the effect of the
kick in each period is also given by (13). However, the
evolution between two kicks is a function of γ. For the
time interval (nT + ε, (n+ 1)T ), the system becomes

dx

d t
= p ,

d p

d t
= −x− γp .

(19)

Solving (19) we have

xn+1 =e−γT/2(xn cos(ωT )

+
1

ω
(pn − x2

n +
1

2
γxn) sin(ωT )) ,

pn+1 =e−γT/2[−ωxn sin(ωT )

+ (pn − x2
n +

1

2
γxn) cos(ωT )− 1

2
γxn+1 .

(20)

where ω =
√
1− 1

4γ
2. Again, take a transformation of

coordinate

x =σdX + ω cotωT ,

p =
ωσd

sinωT
eγT/2

[1 +
ω cotωT

σd
(1− γ

2ω
e−γT/2 sinωT )

+ e−γT/2(cosωT − γ

2ω
sinωT )X + Y ]

(21)

where

σd = ω cotωT [e−γT/2 cosωT − (1 + e−γT )] . (22)

This transformation leads us back to the Hénon map
given by (1), with the parameters given by

a = cosωT [e−γT cosωT − e−γT/2(1 + e−γT )] ,

b = −e−γT .
(23)

Expressing a in terms of b we have

a = − cotωT [b cosωT +
√−b(1− b)] . (24)

Therefore, by consider the area-contracting case(b <
1), parameter a is no more limited to the interval (−1, 3).
Yet, this doesn’t make all the dynamic properties acces-
sible to the oscillator system. As we have mentioned in
sect. II A, for a range of parameters (a, b), the Hénon map
have two fixed points. One of the fixed point is always un-
stable and the other one is at the origin and can be either
stable or unstable depending on the choice of parameters.
More specifically, the origin is stable for a < 3

4 (1 − b)2.
For the dissipative harmonic oscillator case, from (24) we
know a ≤ −b +

√−b(1 − b) ≤ 3
4 (1 − b)2, so the origin is

always stable. However, it is the case where the origin
is unstable that shows more interesting properties like
period doubling and strange attractor[3].

This stability can be broken by modifying the kick
coupling function. Setting the coupling function to be
f(x) = Ax+ 1

3x
3 we have

d pn = p(nT + ε)− p(nT ) = −A− x(nT )2 . (25)

The corresponding return map is given by

xn+1 =e−γT/2(xn cos(ωT )

+
1

ω
(pn − (A+ x2

n) +
1

2
γxn) sin(ωT )) ,

pn+1 =e−γT/2[−ωxn sin(ωT )

+ (pn − (A+ x2
n) +

1

2
γxn) cos(ωT )− 1

2
γxn+1 .

(26)
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FIG. 4: Figure given in ref. [3]. (a) “ strange attractor” of
the map with parameters γ = 0.05, T = 2.40794509, and
A = −8.73424. (b) Energy versus x for the same attractor.

where ω =
√
1− 1

4γ
2. Converting the return map to the

standard Hénon map through coordinate transformation
we get

b = −e−γT ,

a = −b(cos2 ωT −A
sin2 ωT

ω2
)−√−b(1− b) cosωT .

(27)

Since A is unlimited, a is unlimited too. Therefore pa-
rameters that make the origin unstable can be reached
and properties like the existence of strange attractor can
be studied.
In ref. [3], the dissipative harmonic oscillator sys-

tem with parameters γ = 0.05, T = 2.40794509, and
A = −8.73424 corresponding to a = 2.1 and b = −0.3 is
studied, and a strange attractor is claimed to be found.
Figure 4 shows the “strange attractor” together with the
variation of the harmonic potential energy of the same
oscillator system with respect to x generated by Heagy
in ref. [3].

C. Smooth force driven oscillator

As discussed above, the kick harmonic oscillator shows
a good connection with the Hénon map. However, it

FIG. 5: Figure given in ref. [3]. Strange attractor of kicked
system plotted with strange attractor of smoothly pulsed sys-
tem.

is attractive to explore whether such properties can be
transferred from the impulsively driven oscillator to an
oscillator driven by a smooth force, which can relate the
Hénon map to much more potential physical applications.
In ref. [3], such systems is also briefly discussed.

In order to study the smooth force driven harmonic
oscillator, the kick coupling function δ(t− nT ) in (10) is
replaced by a smooth pulse of finite width given by

Δ(t, ε) =N(ε)exp(
−1

ε2 − t2
) , |t| < ε ,

0 , |t| ≥ ε .
(28)

where the normalization constant is given by

N(ε) =
1

ε
√
πU( 12 , 0, 1/ε

2)
exp(

1

ε2
) . (29)

Numerical study with parameters γ = 0.05, T =
2.40794509, and A = −8.73424 is conducted for the s-
mooth force driven oscillator in ref. [3], and the result is
shown in Fig. 5.

The result shows that the smooth force driven system
gives a similar attractor structure, and that the impulsive
force is not critical for the connection between a harmonic
oscillator system and a ’Hénon-like’ map. This shows
a great potential of such systems to become useful for
experimental studies of chaotic dynamics.

IV. SUMMARY AND DISCUSSION

In this paper, we have reviewed the some dynamic
properties of the Hénon map. Due to its simply form
and interesting chaotic behaviors, the Hénon map has al-
ways been attractive as a mathematical model to study
deterministic chaos. Besides that, we have also showed
that it is possible to find interesting physical interpre-
tation of the Hénon map. The benefits of such an in-
terpretation is manifold. First, the connection between
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the Hénon map and the harmonic system makes it possi-
ble to use the chaotic properties of the Hénon map as a
theoretical guideline to explore special properties of such
oscillator systems. Second, the physical interpretations
of the Hénon map have brought us the possibility to s-
tudy the dynamic behavior of the Hénon map through
experimental studies of specific harmonic systems. Last
and most important, the interesting results shown here
have provides us a path through which efforts can be
put to find connections between mathematical tools and
physical systems, thus accelerate the exploration of both.
Indeed, there are a lot more topics related to this s-

tudy can be and worth being investigated. For the Hénon
map, more discussion about ways to find periodic orbits
and possible ways to relate them to the physical behav-
ior of harmonic oscillator systems would be interesting.
And regarding the map of the smooth force driven oscil-
lator, more detailed study showing its dynamics like the
cycles and bifurcations would be instructive. Further-
more, if we broaden our extent of study to other simple
nonlinear maps and other interesting physical systems,
we may find more hidden connections between existing
mathematical models and physical systems, and inter-
esting progresses may be made. For example, nonlin-
earity has always been a concern for resonating MEMS
devices development. Although nonlinear behaviors have
been shown to be beneficial in some applications, such as

increasing the bandwidth of inertial sensors[9] and re-
ducing temperature dependence of frequency of MEMS
resonators[10], due to the lack of systematical studies of
the chaotic behaviors of micro-mechanical systems, non-
linearity is avoided intentionally in most MEMS designs.
If an instructive connections between such systems and
any specific nonlinear models can be found, and solid the-
oretical base of the chaotic properties can be developed,
then fantastic applications will become possible. To sum-
marize, the Hénon map is not only the simplest map to
study chaotic dynamics, it also shows potentials to solve
problems in the physical world. And the exploration of
physical interpretations of simply nonlinear maps like the
Hénon map is more than a trivial thing. A good physical
interpretation of a mathematical system can be beneficial
for both the study of mathematics and physics.
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APPENDIX A: ADDITIONAL FIGURES
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FIG. 6: Different iterates of the Hénon map at (a, b) = (6,−1). The two fixed points are marked as red circles. The blue line
corresponds to forward iterates, and the green line corresponds to backward iterates. (a) Two more forward iterate of M. (b)
Two more backward iterate of M.

APPENDIX B: MATLAB CODES

Henon.m

%The Henon Map
function x1 = Henon( x0,a,b )
x1(1,1)=1−a*x0(1,1)ˆ2+b*x0(1,2);
x1(1,2)=x0(1,1);
end

Henon iver.m

%Backward Henon Map
function x0 = Henon inver( x1,a,b )
x0(1,1)=x1(1,2);
x0(1,2)=−1/b*(1−a*x1(1,2)ˆ2−x1(1,1));
end

trjactory.m

%% Henon Attractor
clc;
clear all;
a=1.4; b=0.3;
n=10000;
init=[0.1; 0.1];
x=zeros(n,2);
x(1,:)=init;
c=0;
for i=1:n−1

x(i+1,:)=Henon(x(i,:),a,b);
c=c+1;
plot(x(i,1),x(i+1,1));
hold on;

% if c<1000
% plot(x(i,1),x(i+1,1),'b*');
% hold on;
% else
% hold off;
% c=0;
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% end
end
xlabel('x n');
ylabel('x n + 1');

horseshoe.m

%% Henon Map Horseshoe
clc;
clear all;
a=6; b=−1;
x f1=(−(1−b)−sqrt((1−b)ˆ2+4*a))/(2*a);
x f2=(−(1−b)+sqrt((1−b)ˆ2+4*a))/(2*a);
n=10000;
x0=x f1−0.01+0.02*rand(n,2);
init step=4;
forward=init step+1;
backward=init step+1;
for i=1:forward

for j=1:n
x1(j,:)=Henon(x0(j,:),a,b);
if x1(j,1)<1&&x1(j,1)>−1&&x1(j,2)<1&&x1(j,2)>−1

plot(x1(j,1),x1(j,2));
hold on;

end
end
x0=x1;

end
x0=x f1−0.01+0.02*rand(n,2);
for i=1:backward

for j=1:n
x 1(j,:)=Henon inver(x0(j,:),a,b);
if x 1(j,1)<1&&x 1(j,1)>−1&&x 1(j,2)<1&&x 1(j,2)>−1

plot(x 1(j,1),x 1(j,2),'g');
hold on;

end
end
x0=x 1;

end
plot(x f1,x f1,'or',x f2,x f2,'or');
xlabel('x');
ylabel('y');


