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SUMMARY

Motivated by translational invariance and exponentially unstable dynamics, ‘spa-

tiotemporally chaotic’ or ‘turbulent’ flows are recast as a (D+1)-dimensional spatiotemporal

theory which treats space and time equally. Time evolution is replaced by a repertoire of

spatiotemporal patterns taking the form of (D+1) dimensional invariant tori (periodic or-

bits). Our claim is that the entirety of spacetime can be described as the shadowing of

a finite collection of ‘fundamental orbits’; periodic orbits of small spatiotemporal extent.

We demonstrate that not only can fundamental orbits be extracted from larger orbits, they

can also be used as the ‘building blocks’ of turbulence. That is, they can be combined

spatiotemporally to find both known and new solutions. In the future we aim to explain all

of these results by constructing a (D+1)-dimensional symbolic dynamics whose alphabet

is the set of fundamental orbits, however, in order to do so we must first confirm that all

fundamental orbits have been found. These ideas are investigated in the context of the

1+1 dimensional spacetime of the Kuramoto-Sivashinsky equation using the independently

developed Python package ’orbithunter’. This package intends to serve as a user friendly

and powerful framework for solving chaotic nonlinear partial differential equations; cur-

rently only implemented for the Kuramoto-Sivashinsky equation, however. This package

gives access to completely original spatiotemporal techniques, such as spatiotemporal clip-

ping and spatiotemporal gluing of orbits. A short preview of these techniques and how to

generalize them to other equations is also provided. By demonstrating robust and powerful

spatiotemporal techniques this work hopes to inspire others to take up the spatiotemporal

mantle and work towards a pattern based description of turbulence.

x



CHAPTER I

INTRODUCTION

Turbulence stands as one of the few remaining classical Physics problems yet to be fully

explained. Turbulence, and other spatiotemporally chaotic processes, typically take the

form of deterministic, nonlinear partial differential equations. The prototypical example of

a chaotic nonlinear system is the Navier-Stokes (NS) equation

ut + u · ∇u = −∇p
ρ

+ ν∇2u + f . (1)

Using a ‘dynamical systems formulation’ [132], the time evolution prescribed by (1) can be

posed as the traversal of an ∞-dimensional state space. While ∞-dimensional, dissipative

and strongly contracting flows are typically contained within finite-dimensional attractors or

‘inertial manifolds’ [21, 38, 110, 126, 127] in non-trivial, nonlinear ways [28, 49, 50, 125, 143,

144]. For the Navier-Stokes equation (1) the existence of such a manifold has not yet been

proven; however, spatiotemporal recurrences and dissipation seem to imply its existence. For

specific geometries such as plane-Couette flow [47] and pipe flow [13], it has been shown that

time invariant solutions: equilibria, periodic orbits, relative periodic orbits (often referred

to as ‘exact coherent structures’ in the fluid dynamics community [137, 138, 141]) shape the

geometry of the state space via their stable and unstable manifolds. These computational

results and their impact cannot be understated. Nearly all of these computational successes

have occurred on very small spatial domains, however. These domains, commonly referred to

as minimal cells, are large enough to support turbulence yet small enough such that finding

time invariant solutions remains computationally tractable [47, 48, 94, 135]. The inability to

extend these successes to larger spatial domains is the primary motivation behind this body

of work. The claim put forth here is that exponentially unstable dynamical equations, those

which have positive Lyapunov exponents [84, 104], are not the way forward for turbulence

research. Instead, we aim to explain turbulent flows as the shadowing of members of a finite

set of admissible spatiotemporal patterns [23]. Infinite spacetime can then be described as
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a collection of such patterns: no dynamics required.

These ideas are explored in the context of the Kuramoto-Sivashinsky equation

ut + uxx + νuxxxx +
1

2
(u2)x = 0 . (2)

a chaotic nonlinear reaction-diffusion equation [74, 117] often used as a numerical proving

ground for new approaches to turbulence [69, 107]. In-depth discussion of the Kuramoto-

Sivashinsky equation itself is reserved until sect. 1.1. The proposal is to study the infinite,

2-dimensional spacetime of the Kuramoto-Sivashinsky equation by developing a 2-dimen-

sional symbolic ‘dynamics’ (for lack of a better word) whose alphabet consists of funda-

mental spatiotemporal patterns. Each of these patterns is a invariant 2-torus of minimal

spatiotemporal extent, denoted fundamental periodic orbits. In this symbolic representation,

the columns code admissible time itineraries and rows encode the admissible spatial profiles.

The admissibility of these spatiotemporal patterns is determined by the grammar [24] of the

corresponding symbolic alphabet. Our claim is that the entirety of spacetime is explained

by the shadowing of these fundamental orbits. In other words, fundamental orbits are the so

called ‘building blocks’ of turbulence. This is an attractive proposition, as there have been

many attempts to find the fundamental structures necessary for sustaining turbulence in the

Navier-Stokes equations, the ‘self-sustaining process’ proposed by Waleffe [136] serving as a

prime example. It is possible that the proper structures have already been determined but

they have simply not been utilized properly, that is, they have not been used in conjunction

with a truly spatiotemporal theory.

Continuing with the description of fundamental orbits, the spatiotemporal dimensions

are assumed to be on the order of the important physical scales of whichever equation is

in question. Alternatively, it may be that the fundamental orbits and their spatiotempo-

ral configurations decide upon the physical scales, not the other way around. Provocative

statements such as this may be hard to digest for practitioners of dynamical systems theory,

or more generally, physicists. While we do not want to discard all physics related knowl-

edge of the Kuramoto-Sivashinsky equation, avoiding descriptions based on time dependent

processes is necessary. The hypothesis that the most important orbits are the smallest

2



originates from the theory of cycle expansions [2]. In these expansions, the dominant con-

tributions are provided by the shortest cycles (smallest orbits). The higher order terms

(larger orbits) of such expansions serve as curvature corrections [24].

Treatment of time and space in this manner is a new idea but analyzing fundamental

geometrical shapes and how they combine is not. In fact, the idea of there being fundamental

‘cells’ or volumes is not new either; until time is included. In their manuscript on pattern

formation, Cross and Hohenberg [22] discuss characteristic lengths and their relation to the

fractal dimension of attractors; defining extensive chaos in the process. They conjecture that

in the asymptotic limit of system size, the fractal dimension of attractors scale like Ld where

d is the Euclidean dimension of the system. This, they claim, provides a different correlation

length ξf such that the system is comprised of cells of volume ξdf and the number of cells

within the volume (L/ξf )d gives the fractal dimension of the attractor. The fundamental

orbits have a similar flavor to this; except that now time is included as well, such that these

cells are now spatiotemporal.

Study of important patterns occurs in other disciplines as well. There is the study of

topological defects in the context of nematic liquid crystals [34] and cosmology [133] as well

as the study of motifs in complex networks [87, 89], for a few examples. In the case of

liquid crystals, defects carry an additional energy cost. In cosmology, topological defects

are suspected as the possible source for the structures seen in the universe today [8]. Motifs

in complex networks are important because they represent subgraphs which appear much

more frequently than one would expect in randomized networks. Certain patterns seem to

be specific to different categories of networks (biological, technological, etc.) [89]. Clearly

these patterns and defects are special and deserve in-depth investigation; of course, in our

context these take the form of fundamental orbits.

In order to make any progress the computation problem must be tractable. This is

believed to be the case as the number of fundamental orbits is believed to be ‘small in num-

ber’. More precisely, the quantity which is actually believed to be ‘small in number’ are the

number of unique fundamental orbit families. Each element of these continuous families

has its own corresponding group orbit produced by continuous and discrete spatiotemporal
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symmetries. Note that using the phrase ‘small in number’ might be somewhat disingenuous,

as we are technically referring to an infinite set of solutions. These continuous families are

actually very useful; especially in the description of spatiotemporal shadowing of fundamen-

tal orbits. Shadowing is not an exact process; each shadowing event is not identical, even if

the underlying fundamental orbit being shadowed is believed to be the same. Similar, but

not identical, regions of spacetime can be explained by the shadowing of different members

of the same continuous family of orbits. This explanation of shadowing shares an intimate

relationship with the namesake of this thesis work, spatiotemporal tiling, a concept which we

believe is best presented visually. To begin, we note that all doubly periodic solutions are

infinite spacetime solutions by definition. The ‘tiling’ of an orbit is generated by discrete

translations of a compact fundamental domain. An example of such a tiling is displayed

in figure 2. When we make the statement that a region of spacetime is being shadowed by

an orbit, we mean that locally, the infinite tiling in figure 2 is being shadowed. In other

words, if we were to superimpose figure 2 (or its translations) on top of figure 1, the regions

of spacetime where ‘overlaps’ occur represent regions of spacetime where the tiling orbit

is being shadowed. A crude demonstration of shadowing is displayed in figure 3. Clearly,

the example tiling in figure 2 does not capture the complexity of figure 1. In other words

a single orbit tiling cannot account for the majority of space time; however, by including

more orbits in the description, more spacetime can be explained by shadowing. We can

demonstrate this by comparing figure 3 and figure 4. In figure 3, only a single orbit is used,

while in figure 4, multiple, symmetry related orbits are used. While this is a very crude

calculation, we believe it not only shows that more space-time can be covered by including

‘more orbits’, but also that a single spatiotemporal pattern and its symmetry related copies

are shadowed frequently (although not uniformly) throughout spacetime.

The goal is clear then: classify and enumerate all fundamental orbits and then use them

to reconstruct the entirety of spacetime; simple, right? This is akin to the statement that

all storms; past, present and future, can be derived by capturing the fundamental spa-

tiotemporal cloud formations. Clearly this is no small task, but we proceed in the following

4



manner: To begin, the Kuramoto-Sivashinsky equation is introduced and some motivat-

ing preliminary investigations are described. The Kuramoto-Sivashinsky equation is then

formulated as a spatiotemporal system; the equation being rewritten as a system of dif-

ferential algebraic equations and the symmetries recast using a spatiotemporal symmetry

group. After the equations and its symmetries have been formulated, the numerical op-

timization techniques used to collect orbits are derived in chapter 3, followed by the new

spatiotemporal ‘clipping’ method sect. 3.3 and spatiotemporal ‘gluing’ method sect. 3.5.

Using the numerical optimization methods, a collection of orbits is created. With this

collection, fundamental orbits are searched for, and found, using the combination of clip-

ping and numerical optimization. Orbits and fundamental orbits can then be combined

spatiotemporally to find progressively larger orbits via the spatiotemporal gluing method.

Lastly, a demonstration of the orbithunter computational package and its generalization

to other equations is presented in chapter 5.

In summary, the work presented here represents the beginning of a truly spatiotemporal

theory of chaos and turbulence based upon spatiotemporal patterns. Starting from scratch

in this manner has its share of disadvantages, as there is no large repertoire of work with

which to compare to. In other words, there is no possibility of building upon the work

of others, either computationally or theoretically. This constitutes a herculean endeavor,

and as a result, only the first part of the spatiotemporal odyssey is completed here. That

is, the work presented here focuses solely on new spatiotemporal numerical methods and

techniques that will be required for a full description of spacetime via symbolic dynamics.

These methods are packaged and presented as the open source code orbithunter.
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Figure 1: Simulation of “steady state turbulence” of the Kuramoto-Sivashinsky equation.
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Figure 2: Spatiotemporal tiling of a relative periodic orbit.
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Figure 3: Qualitative demonstration of spatiotemporal shadowing using a single orbit.
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Figure 4: Qualitative demonstration of spatiotemporal shadowing using multiple, symme-
try related orbits.
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1.1 Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky equation and its variants have been used to model many different

phenomena, including but not limited to: the dynamics of bright spots formed by self-

focusing laser beams, oscillations of plasma particles trapped in magnetic wells created

by the inhomogeneous magnetic field of a tokamak, Rayleigh-Bénard convection, flow of a

viscous fluid down a vertical plane, nonlinear saturation of Rayleigh-Taylor instability in

thin films for a few examples [64, 69, 79, 93, 107, 116, 118]. The Kuramoto-Sivashinsky

equation also has connections with other partial differential equations such as the Navier-

Stokes equation, the Kardar, Parisi, and Zhang (KPZ) equation and the stochastic Burgers

equation [40, 66]. For our purposes, we consider the Kuramoto-Sivashinsky equation as

a model for the velocity of a laminar flame front. The Kuramoto-Sivashinsky equation

presents itself as an interesting case study into chaotic dynamical systems, as evidenced

by investigations into the geometry of its state space [25] and the dimension of its inertial

manifold [28]. The reason why the Kuramoto-Sivashinsky equation is used instead of the

Navier-Stokes equation is for two reasons. First, its relative simplicity; second, the ease with

which the two dimensional space-time velocity field can be visualized. This visualization

makes our spatiotemporal arguments more compelling, easier to understand and also it

allows us to quickly develop an intuition as to what patterns constitute fundamental orbits.

The general spatiotemporal Kuramoto-Sivashinsky equation on a doubly periodic spa-

tiotemporal domain is given by

ut + uxx + νuxxxx +
1

2
(u2)x = 0 x ∈ [0, L] , t ∈ [0, T ] . (3)

The variable u = u(t, x) represents a spatiotemporal velocity field. The subscripts (·)x and

(·)t in (3) denote partial derivatives with respect to space and time. The roles of each

term of this equation are: uxx is an “anti-diffusion” term, pumping energy into the system

and feeding instabilities of large length scales, the ‘hyper-viscous’ term, uxxxx, provides

damping of small length scales, and lastly the nonlinear inertial term 1/2(u2)x transfers

energy between the large and small scales. The “hyper-viscosity” parameter ν plays a role

analogous to the role that the Reynolds number Re plays in the Navier-Stokes equation;
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instead of keeping this parameter we instead use the spatial dimension as a proxy, using the

following transformations which provide a dimensionless form of (3) Specifically, ν is scaled

out using with transformations x → xν1/2, t → tν, u → uν−1/2 such that x ∈ [0, Lν−1/2].

The periods of periodic solutions are also rescaled following the relation: Tp =
T ∗p
ν . Possible

avenues of study of the equation and its behavior include varying L while keeping ν = 1, or

varying ν while keeping L = 1 or 2π. The former of these two choices is utilized here. In

these dimensionless units the form of the spatiotemporal Kuramoto-Sivashinsky equation

utilized in this study is

ut + uxx + uxxxx +
1

2
(u2)x = 0 x ∈ [0, L] , t ∈ [0, T ] . (4)

When viewed as a dynamical system, an important physical scale is derived by linearizing

about the trivial solution u(t, x) = 0 and noting that the eigenvectors of the resulting

linearization are Fourier modes. This admits a spectrum defined by the polynomial (2πk
L )2−

(2πk
L )4 whose maximum on any given spatial domain occurs when k = L/(2π

√
2); in the

discrete setting, the discrete value of k closest to this will be referred to as the ‘most unstable

wavelength’. The spatial dimension of all figures are labeled in terms of this scale, which

allows for quick interpretation and verification of figures. For comparison to other studies,

L = 22 is the spatial domain size used in [11, 25, 28, 29, 45], which equals L/(2π
√

2) ≈ 2.5

in wavelength units. It is noted that it is also common to restrict the investigation to

symmetry invariant subspaces [1, 37, 64, 69, 78, 107]. We account for symmetries and

exploit their benefits, but for the most part do not require such restrictions; making our

results more generalizable.

1.2 Spatial integration

The steady solutions of (4), i.e., where ut = 0 have been investigated thoroughly [30, 51, 65,

88, 130]. By assuming ut = 0 the Kuramoto-Sivashinsky (4) can be integrated with respect

to space; which can be written as a three dimensional dynamical system; ux = v, vx =

w,wx = u2 − v − c. One of the motivating factors behind our spatiotemporal study was

similar in concept; except we did not assume ut = 0. In other words, we investigated the

dynamical system with periodic boundary conditions in time u(t) = u(t+T ), where x plays
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the role of the dynamical ‘time’. Using known periodic orbits we investigated whether it

was possible to define a spatial dynamical system, such that any invariant 2-torus could be

reproduced using only a single temporal strip and spatial integration. Similar to the three

dimensional spatial system just mentioned, define

u(0) ≡ u , u(1) ≡ ux , u(2) ≡ uxx , u(3) ≡ uxxx . (5)

The Kuramoto-Sivashinsky equation can then be written as a system of ordinary differential

equations

u(0)
x = u(1) ,

u(1)
x = u(2) ,

u(2)
x = u(3) , (6)

u(3)
x = −u(0)

t − u(2) − u(0)u(1) .

Given the time-periodic boundary condition, it is natural to expand the Kuramoto-Siva-

shinsky field u(x, tn) = un(x) as a temporal Fourier u(x, tn) = un(x) over M points of a

periodic temporal lattice tn = nT/M , n = 0, 1, · · · ,M − 1:

u(i)(t, x) =
M−1∑
n=0

ũ(i)(x) eiωntn , where ωn = 2πn/T . (7)

Now we write the equivalent expression in its Fourier representation, taking into consider-

ation a truncated number of Fourier modes N .

∂

∂x
ũ

(0)
k = ũ

(1)
k ,

∂

∂x
ũ

(1)
k = ũ

(2)
k ,

∂

∂x
ũ

(2)
k = ũ

(3)
k ,

∂

∂x
ũ

(3)
k = −iωkũ(0)

k − ũ(2)
k −

N/2−1∑
m=0

ũ(0)
m ũ

(1)
k−m .

(8)

Rewriting (5) in terms of temporal Fourier modes, we obtain a tower of ordinary differen-

tial equations, As a disclaimer, the equations and formulas written here will not be used

12



in the remainder of the text due to different numerical choices between this preliminary

investigation and the full spatiotemporal formulation.

The nonlinear term manifests as a convolutional sum in (8) however it is more practically

evaluated using transforms; this constitutes a pseudospectral method [6, 15, 16, 100, 113,

120].
N/2−1∑
m=0

ũ(0)
m ũ

(1)
k−m = F

{
u(0) · u(1)

}
(9)

The actual integration of these equations utilized MATLAB’s ODE integrator for stiff equa-

tions ode15s. The spatial integration results, demonstrated in figure 5, indicated that our

spatiotemporal formulation based on invariant 2-tori had merit. Spatial integration was

performed in two segments utilizing reversibility of the spatial system which results from

reflection symmetry. The error plot, figure 5, was half-cell shifted such that the boundaries

are displayed at x = L/2 for comparison purposes. Unfortunately, it was found that the

(a)
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(b)

Figure 5: (a) Spatially integrated orbit, (b) difference between spatial and temporal
integration.

trajectories diverge to infinity after very short ‘times’; from the literature on ‘chronotopic

Lyapunov analysis’ [44, 80, 81, 105], strange attractors in time ‘generally’ correspond to

a strange repellers in space. Therefore it is believed that the instabilities and diverging

results are not computational bugs, rather, features of the spatial system. As previously

mentioned, due to spatial reflection symmetry the system of equations (8) is a reversible

system with respect to space. Based upon this property, a possible remedy for these poor
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results might be the implementation of a symplectic or variational integrator; numerical

integration schemes used in Hamiltonian systems wherein energy conservation is necessary

[43, 72, 85]. However, (8) does not have ‘Hamiltonian’ structure; or at least we did not find

any way to show that it does; therefore, we used these results mainly as motivation for the

spatiotemporal formulation. Therefore, we moved past symplectic integrators and the spa-

tial system (8) in the process, having derived more motivation for a spatiotemporal method.

At the core of the spatiotemporal formulation is the ability to find invariant 2-tori of varying

size. This is accomplished by deriving a system of differential algebraic equations, defined

in terms of spatiotemporal Fourier modes. By variational techniques, we are able to solve

the corresponding boundary value problem, which is posed as a least-squares minimization

problem. The next chapter focuses on the tools to produce these equations such as Fourier

transforms, symmetries, and lastly the differential algebraic equations themselves.
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CHAPTER II

SPATIOTEMPORAL FORMULATION

2.1 Variational methods

Historically there have been a large number of studies of the Kuramoto-Sivashinsky equation

in the context of spatially periodic boundary conditions using Galerkin projections, trans-

forming (4) into a system of time dependent ordinary differential equations, one for each

spatial mode mode [1, 9, 64, 69, 96, 107]. Now, motivated by commuting space and time

translational invariance, a natural choice is to utilize spatiotemporal Fourier modes; pro-

ducing a set of differential algebraic equations. This is implemented using a pseudospectral

formulation, the defining property of which uses Fourier transforms and a grid of collocation

points to evaluate the nonlinear term [6, 15, 41, 100, 128]. Spectral methods are memory-

minimizing and accurate [6]; the main disadvantages being the programming difficulty and

implementation on irregular domains. Luckily for us, after some initial bumps and bruises,

the power of these methods truly begins to shine. The spatiotemporal formulation is predi-

cated upon the successful collection of invariant 2-tori; doubly periodic solutions to (4). For

brevity, the term ‘orbit’ shall refer to the various names for solutions of the spatiotemporal

formulation used so far: invariant 2-tori, doubly periodic orbits, periodic orbits, etc.

To begin, the spatiotemporal configuration manifold or tile on which an orbit is defined

will be denoted by Ω ≡ (T, L) such that

Ω = [0, T ]× [0, L] ⊆ R2 . (10)

Due to translational invariance these intervals can always begin at 0 without loss of general-

ity. Proofs regarding the existence and boundedness of spacetime solutions of the Kuramoto-

Sivashinsky equation, are not derived here, instead we assume the results from [64, 96, 123]

hold in order to satisfy these requirements. Continuing, the ‘governing equation’, the Kura-

moto-Sivashinsky equation (4) in this case, will be represented by the function f(v) where v

is referred to as the ‘state vector’. The state vector contains all variables required to define
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an orbit

v ≡ [u, pi]
> . (11)

where u = u(t, x) represents a spatiotemporal velocity field and represents all relevant

parameters pi (includes T, L). A finite dimensional state vector only formally exists af-

ter discretization, as solutions u(t, x) are inherently infinitely dimensional; However, even

though it is a slight abuse of notation, we favor simply writing v in place of explicitly

writing (u, pi). The orbits of f are then defined as the subset of functions u ∈ L2 which

satisfy the doubly periodic boundary conditions and exist in the appropriate Sobolev space;

u ∈ H1,4
f (Ω) ⊂ H1,4(Ω) where f(v) = 0 is satisfied identically on the tile Ω

H1,4
f (Ω) ≡ {u ∈ H1,4

per(Ω) | f(u) = 0 ∀(t, x) ∈ Ω} . (12)

The superscripts (1, 4) indicate functions once differentiable in time and four times differen-

tiable in space. A state v whose velocity field exists in H1,4
Ω (Ω). but does not satisfy f = 0

(prior to optimization, at least) will be referred to as an orbit approximation, guess orbit,

orbit guess, initial condition, etc. It follows that the larger the values of f (in magnitude)

the further the guess is from an orbit. Additionally, implicit in the definition (12) is the de-

pendence Ω = Ω(T,L); in other words the spatiotemporal domains on which orbits exist are

now functions of the spatiotemporal dimensions due to their inclusion as hyperparameters.

To find orbits, a variational formulation is used, one which poses the problem of solving

f(v) as a minimization problem. The derivation of the scalar cost functional or cost function

[7] which defines the minimization problem begins with the Lagrangian density or formal

Lagrangian [56]

L(t, x, pi, u, λ, ut, ux, uxx, uxxxx) =
1

2
λ[ut + uxx + uxxxx +

1

2
(u2)x] , (13)

which is a function of u(t, x), its partial derivatives, the parameters pi and finally the co-

state or adjoint variable λ(t, x). In numerical contexts, λ is often referred to as a ‘test’ or

‘trial’ function [6], it is assumed to exist in the appropriate Sobolev space, and satisfy the

same boundary conditions as u; it is also essentially a Lagrange multiplier. The factor of
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1/2 is simply for convenience later on. Defining the integral

S(λ, v) =

∫
Ω
L(t, x, pi, u, λ, ut, ux, uxx, uxxxx) . (14)

Requiring S = 0 , ∀λ yields the weak form, integral form or variational form of the Ku-

ramoto-Sivashinsky equation. This formulation is closely related to true spectral methods;

for example, selecting the space of trigonometric polynomials as the space for λ defines

the Galerkin method [16]. The benefit of the weak formulation typically results from the

application of integration-by-parts to (14); by doing so the differentiability requirements on

u can be reduced to only second order. The weak formulation is in fact not used to define

the optimization problem here; it is mentioned, however, because of previous investigations

into continuous symmetries and derivation of possible conservation laws associated with

Lie-Bäcklund symmetries [57, 59, 62], relegated to appendix B. Unfortunately, such analysis

proved fruitless but we admit this might be due to user error; the results are included for

posterity.

Returning back to the variational formulation; the problem of finding solutions f = 0 is

posed as finding the stationary points of the functional (14). To show that these stationary

points are indeed the orbits we are looking for, let us derive the Euler-Lagrange equations

of (14). These can be derived by the ‘functional derivatives’ of (13) with respect to u, λ.

The general form of the functional derivative is defined by the operator [62]

d

dwi
=

∂

∂q`
+

n∑
j=1

∑
µ1≤···≤µj

(−1)j
∂j

∂qµ1 . . . ∂qµj

(
∂

∂wi,µ1...µj

)
, (15)

where d is used to indicates the total derivative and ∂ indicates partial derivatives. The

variables wi representing u and λ and the configuration space variables t, x represented by

q`. The bounds on the inner sum (15) simply take care of repeating terms arising from the

commutation of derivatives. Application of (15) to (13) simply yields the generalization

of the Euler-Lagrange equations to more variables and higher order derivatives; yielding

the Kuramoto-Sivashinsky equation, its adjoint equation [62] as well as conditions on the
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partial derivatives with respect to parameters pi.

dL
du

=

(
∂

∂u
− ∂

∂x

∂

∂ux
− ∂

∂t

∂

∂ut
+

∂2

∂x2

∂

∂uxx
+

∂4

∂x4

∂

∂uxxxx

)
L ,

= −λt + λxx + λxxxx − uλx ,

dL
dλ

= ut + uxx + uxxxx +
1

2
(u2)x ,

dL
dpi

= λ
∂f

∂pi
. (16)

After the derivation of the Euler-Lagrange equations (16) we require λ = f such that the

Lagrangian density becomes

L(t, x, pi, u, ut, ux, uxx, uxxxx) =
1

2
|f |2 , (17)

and the action

S(f) =

∫
Ω

1

2
|f |2dtdx . (18)

Such that this specific choice for λ admits a least-squares optimization problem wherein the

the integral (18) only equals zero when f = 0 identically on the tile, the definition of strong

solutions to (4). The Euler-Lagrange equations also change accordingly; as can be seen by

substitution, all of the equations (16) are satisfied when λ = f = 0, the adjoint equation

trivially so. The problem of finding orbits is reframed as the least-squares minimization

problem: find v such that φ(v) = 0, where φ is the discretized form of the cost function,

written in vector norm as

φ(v) =
1

2
f>f = 0 . (19)

For everything that follows we shall assume the usage of an L2 norm. It should be noted

that the equation φ(v) = 0 is actually not equivalent to f(v) = 0 numerically. Assuming

machine precision is εc = 10−15, then there is no way of distinguishing a value f2 ≤ 10−15,

which makes all values of f ≤ 10−15/2, for all intents and purposes, equivalent. In this

regard, we are losing precision due to the quadratic formulation of cost functional. With
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the specific form of φ given by (19), orbits will be defined as its minima φ = 0, as f = 0

implies φ = 0. Hereafter, it is specifically the discrete function (19) which will be referred

to as the cost function; the value of the cost function corresponding to a particular state

v will be referred to as the residual of v. Before we move on, a disclaimer in regards to

the usage of the terminology ‘variational form’ and ‘variational formulation’. The authors

of [16] specify that this name only applies to ‘time independent problems with a spatially

symmetric operator’. In [6], the authors do not mention any such requirement, however they

do imply that the variational formulation represents the equations that result from applying

integration by parts to (14). Due to the lack of dynamics and the fact that our numerical

methods are defined by the variation of the cost function, making small corrections to reduce

the residual, we still refer to our formulation as variational.

2.2 Spatiotemporal Fourier Transforms

With the optimization problem properly defined we now need a discrete representation of

the governing equations and our orbit states v. Following the guide of J. P. Boyd [6], we let

the geometry determine our set of basis functions. Due to translational invariance, periodic

boundary conditions, and smoothness, a spatiotemporal Fourier basis is a natural choice

for the discrete representation of u(t, x).

The derivations that follow will be in terms of the (truncated) spatiotemporal discrete

Fourier series; taking advantage of the results regarding the convergence of truncated Fourier

series [16, 17] and other discretization related properties. This discrete formulation directly

connects to the computational codes and hence is more representative of the work performed

here than say, exposition regarding the tensor products of triginometric polynomials and

the corresponding function space. The tile Ω is discretized by a set of spatiotemporal grid

points, or collocation points [6, 15, 16], defined such that Ωnm = (tn, xm)

tn =
nT

N
, n ∈ 0, 1, . . . , N − 1 ,

xm =
mL

M
, m ∈ 0, 1, . . . ,M − 1 . (20)

For brevity, discretized tiles will also be referred to simply as tiles (10); in context it

should be fairly obvious if we mean the continuous or discrete version. It directly follows
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that the discretized velocity field u(tn, xm) is exactly the values of u(t, x) interpolated at

the collocation points; the interpolation determined by the values of the spatiotemporal

Fourier coefficients, soon to be derived. By electing to compute the nonlinear term (4) as a

product in physical space at the collocation points, as opposed to a convolution in spectral

space, we can classify our formulation as pseudospectral. An orbit in this framework is then

given by u(tn, xm) such that f(u(tn, xm)) = 0 at every collocation point. The benefits of

pseudospectral methods are numerous; most importantly they increase the accuracy of our

calculations while also minimizing the amount of computational memory required [6].

Instead of using an overly verbose and repetitive verbiage for the coefficients of the

Fourier basis function, i.e. spatiotemporal Fourier modes or spatiotemporal Fourier coeffi-

cients; they will simply be referred to as modes, unless specifically mentioned otherwise.

This avoids excessive usage of ‘spatiotemporal’ and ‘Fourier’; everything from here on out is

in one way or another, spatiotemporal. Likewise, discrete spatiotemporal real valued Fourier

transform (it can get even worse) will be cut short to either Fourier transform or simply

‘the’ transform of the field u(tn, xm).

Prior to the development of the real-valued transforms, we note that the transforms are

technically computed as

ũk(tn) =
1√
M

M−1∑
m=0

u(tn, xm)e−i(2πkm/M) ,

u(tn, xm) =
1√
M

M/2−1∑
k=1

ũk(tn)ei(2πkm/M) , (21)

we are simply separating real and imaginary parts to retrieve a real-valued form. These

transforms are computed via the numerical Python package SciPy [134], as they allow

for simple importation of optimized Fourier transform algorithms. While the transforms

are technically computed via (21), the Fourier transforms will be written in terms of a

truncated basis of cosines and sines, as it is beneficial to work with the SO(2) real-valued

representation of the modes. The primary reason being: if the computational degree of

freedom are complex numbers, then constraints are needed to ensure the dimensions (T,L)

are maintained as real numbers during the optimization process. The second reason is

that expanding in sines and cosines turns out to be very helpful for orbits with discrete
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spatiotemporal symmetries, due to the parity of said functions.

Moving on, the expressions of the Fourier modes and transforms are written such that

evaluating the expressions on paper will yield exactly the same result (up to machine pre-

cision, of course) as the computational codes. Before continuing to the discrete transforms

themselves, first define the spatiotemporal frequencies qk and ωj, defined by the discretiza-

tion of the tile

qk =
−2πk

L
where, k ∈ 1, . . .

M

2
− 1 ,

ωj =
−2πj

L
where, j ∈ 0, . . .

N

2
− 1 . (22)

For real valued input the negative frequency and positive frequency modes of the Fourier

transform are related by conjugation relations; hence only half of the spectrum (j, k non-

negative) are required to fully define u(tn, xm). Also, it is noted that products of the

form qkxm = 2πkm/M , the form that routinely appears in the discussions of spectral and

pseudospectral methods.

The spatiotemporal transform of u into the set of modes ũ is derived via the composition

of one-dimensional spatial and temporal transforms. Again, it should be stressed that in

the derivations that follow such that everything is written in order to agree with output of

the computational codes; uneasiness towards any strange conventions is likely mutual. The

numerically implemented spatial transform (and its inverse) for real valued input take the

following form

ek(tn) =

√
2

M

M−1∑
m=0

u(tn, xm) cos(qkxm) ,

fk(tn) =

√
2

M

M−1∑
m=0

u(tn, xm) sin(qkxm) ,

u(tn, xm) =

√
2

M

M
2
−1∑

k=1

ek(tn) cos(qkxm) + fk(tn) sin(qkxm) . (23)

The k = 0, M2 spatial modes are constrained to 0; hence why they are not included in

(23). This choice is related to Galilean invariance and hence it is reserved for the section

on spatiotemporal symmetries, sect. 2.3. The constraint on the Nyquist (M/2) mode is a

numerical convention; numerically, this mode is returned as the sum of the corresponding
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negative and positive modes. This, in combination with the conjugation relation, means that

this mode is purely real; this behavior, and the fact that the magnitude is typically small

for sufficiently large discretizations, means that we exclude this mode from calculations (i.e.

discarded after both space and time transforms).

ajk =

√
2

N

N−1∑
n=0

ek(T − tn) cos(ωjtn) ,

bjk =

√
2

N

N−1∑
n=0

ek(T − tn) sin(ωjtn) ,

cjk =

√
2

N

N−1∑
n=0

fk(T − tn) cos(ωjtn) ,

djk =

√
2

N

N−1∑
n=0

fk(T − tn) sin(ωjtn) ,

ek(T − tn) =

√
2

N

(a0k

2
+

N
2
−1∑

j=1

ajk cos(ωjtn) + bjk sin(ωjtn)
)
,

fk(T − tn) =

√
2

N

(c0k
2

+

N
2
−1∑

j=1

cjk cos(ωjtn) + djk sin(ωjtn)
)
. (24)

The spatiotemporal transform follows by taking the temporal transform of the spatial modes

ek(tn), fk(tn) (23). Due to the numerical implementation, time is technically parameterized

as T − tn, as the first row of the array in which u is stored corresponds to t = T and the

last row, t = 0. The expression (23) is still correct, but now that the time ordering matters,
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the time transform and its inverse must be written

ajk =

√
4

NM

N−1∑
n=0

M−1∑
m=0

u(T − tn, xm) cos(qkxm) cos(ωjtn) ,

bjk =

√
4

NM

N−1∑
n=0

M−1∑
m=0

u(T − tn, xm) cos(qkxm) sin(ωjtn) ,

cjk =

√
4

NM

N−1∑
n=0

M−1∑
m=0

u(T − tn, xm) sin(qkxm) cos(ωjtn) ,

djk =

√
4

NM

N−1∑
n=0

M−1∑
m=0

u(T − tn, xm) sin(qkxm) sin(ωjtn) ,

u(T − tn, xm) =

√
4

NM

M
2
−1∑

k=1

[(
a0k

2
+

N
2
−1∑

j=1

ajk cos(ωjtn) + bjk sin(ωjtn)

)
cos(qkxm)

+

(
c0k
2

+

N
2
−1∑

j=1

cjk cos(ωjtn) + djk sin(ωjtn)

)
sin(qkxm)

]
.

(25)

This is a technical detail very important when taking time derivatives; if overlooked then

the time derivative would be off by a negative sign. The transform (24) can be rewritten,

yielding

ek(tn) =

√
2

N

(a0k

2
+

N
2
−1∑

j=1

ajk cos(−ωjtn) + bjk sin(−ωjtn)
)
,

fk(tn) =

√
2

N

(c0k
2

+

N
2
−1∑

j=1

cjk cos(−ωjtn) + djk sin(−ωjtn)
)
. (26)

The convention is to use (24); this should only be viewed as a numerical parameterization of

the field u(t, x). This is not trying to imply anything regarding time reversal. As previously

mentioned, this is accommodated by including an extra negative sign in time differentation,

resulting from the negative sign accompanying ωj, i.e. −ωj in (26). Finally, substitution of
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(26) into (23) yields the spatiotemporal transform

ajk =

√
4

NM

N−1∑
n=0

M−1∑
m=0

u(tn, xm) cos(qkxm) cos(ω̃jtn) ,

bjk =

√
4

NM

N−1∑
n=0

M−1∑
m=0

u(tn, xm) cos(qkxm) sin(ω̃jtn) ,

cjk =

√
4

NM

N−1∑
n=0

M−1∑
m=0

u(tn, xm) sin(qkxm) cos(ω̃jtn) ,

djk =

√
4

NM

N−1∑
n=0

M−1∑
m=0

u(tn, xm) sin(qkxm) sin(ω̃jtn) ,

u(tn, xm) =

√
4

NM

M
2
−1∑

k=1

[(
a0k

2
+

N
2
−1∑

j=1

ajk cos(ω̃jtn) + bjk sin(ω̃jtn)

)
cos(qkxm)

+

(
c0k
2

+

N
2
−1∑

j=1

cjk cos(ω̃jtn) + djk sin(ω̃jtn)

)
sin(qkxm)

]

where, ω̃j = −ωj . (27)

Finally, we have arrived at a formula which defines u(tn, xm) in terms of spatiotemporal

Fourier modes. The expression (27) is very cumbersome, however, and so it will typically

be represented using the operators F ,F−1.

For the numerical derivations that follow, two different representations are used. The

first of the two representations defined is a tensor representation. The tensor arranges the

four sets of modes of (27) into blocks based on frequencies

ũ ≡


a0k c0k

ajk cjk

bjk djk

 . (28)

The zeroth j = 0 time modes are indicated separately because there are no analogous

terms in bjk, djk. This is an important factor to note for time differentiation, however,

for simplicity, the awkwardness of the zeroth mode will be implicit in the mode tensor

expression such that (28) will be simplified to

ũ ≡

ajk cjk

bjk djk

 . (29)
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In the context of the tensor notation the sets of modes {ajk, bjk, cjk, djk} will be referred to as

mode blocks. The shape of the mode tensor is fundamentally different when symmetries are

considered; therefore, a notation which is uniform regardless of symmetry is implemented.

Defining the set of indices as

k ∈ {1, ...,M/2− 1} ,

j ∈ {1, ..., N/2− 1} . (30)

Each of the mode blocks (29) is labeled by indices j, k. The set of all indices in (29) is

captured by the ordered pairs, defined via products of sets as

{j,k} ≡ {{{0}, {j}, {j}} × {{k}, {k}}} , (31)

where {j} and {k} are given by (30). This notation is simply to help keep track of the

dimensions of the mode tensor (29). For example the dimensions of the mode tensor (for

orbits without discrete symmetry) are

|{j,k}| = |{{{0}, {j}, {j}}| × |{{k}, {k}}}| ,

= (|{0}|+ |{j}|+ |{j}|)× (|{k}|+ |{k}|) ,

= (1 + (N/2− 1) + (N/2− 1))× (M/2− 1 +M/2− 1) ,

= (N − 1)× (M − 2) . (32)

This notation is not perfect, but it allows us to represent the ordering of modes within each

block, as well as the dimensions of the mode tensor. It is very important to get this ordering

correct for differentiation and other operators later on.

In anticipation of future derivations, one final convention involving the dimensionality of

the mode tensor and its indices (31) is introduced. Specifically, for the derivation of linear

operators will use Kronecker products with identity matrices; the dimensions of which are

given (32) or (30). Again, the following definitions allow for a catch-all notation without

having to constantly spell out individual cases for orbits with different symmetries; for a
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tensor equivalent with shape (32) we define

Ij ≡ IN/2−1 ,

Ik ≡ IM/2−1 ,

I|k| ≡ IM−2 ,

I|j| ≡ IN−1 . (33)

The last two identity matrices diagonals’ have dimension equal to the total number of space

and time indices, respectively. The sizes of the first two identities are the same across

all classes of orbits, but the latter two are not; the total number of indices dependent on

symmetry.

The second, vector representation requires two decisions to be made; how to order real

and imaginary components with respect to one another and how to order space and time

indices relative to each other. The convention here is to have the spatial index k as the

‘inner’ index and j as the outer index. For those familiar with programming parlance, this

would be equivalent to two nested ‘for-loops’. Alternatively, this can be viewed as taking

the mode tensor (29) and ‘stacking’ the rows in a vertical manner thereby ‘flattening’ the

tensor into a vector. To represent this visually, the vector can informally be written as

[ cos(ωjtn)︷ ︸︸ ︷
a(0,k)︸︷︷︸

cos(qkxm)

c(0,k)︸︷︷︸
sin(qkxm)

. . .

sin(ωjtn)︷ ︸︸ ︷
b(1,k)︸︷︷︸

cos(qkxm)

d(1,k)︸︷︷︸
sin(qkxm)

. . .
]>

. (34)

The labelling by trigonometric functions is mainly a means of demonstrating the pattern

with which indices are cycled through; no mathematical statements are being made in (34)

other than the ordering of the modes.

As one might suspect, the vector representation utilizes matrix representations of the

various operators relevant to the differential algebraic equations. For example, one of the

numerical methods described in chapter 3 directly solves the least-squares Newton equa-

tions; requiring explicit construction of the Jacobian (93). As the final task of this section,

the matrix representations of the Fourier transforms, F , F−1 are derived. These matrices

are derived by first constructing the matrix for a single instant in time or space, and then

using a Kronecker product to extend it to spacetime, i.e. make a block diagonal matrix
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whose blocks are simply copies of one another. The matrix representation of the Fourier

transforms can be constructed numerically by applying the Fourier transform to each col-

umn of an appropriately sized identity matrix; this yields a Vandemonde matrix wherein the

elements are powers of the roots of unity. The matrix representation of the linear operator

Fx over the complex numbers is

Fx =



1 1 1 1 . . . 1

1 r r2 r3 · · · r(M−1)

...
...

...
...

. . .
...

1 r(M
2

) r2(M
2

) r3(M
2

) · · · r(M
2

)(M−1)


, (35)

with r = cos(2π
M ) + i sin(2π

M ). The matrix has dimensions M/2 + 1 ×M ; the dimension

resulting from the conjugacy relations for real-valued input. The remaining steps are: to

account for the constraints on k ∈ {0, M2 } and convert (37) into a real-valued form. The

first of these two steps, accounting for the constraints, is handled by discarding the first

and last rows; i.e. a projection which discards the constrained modes.

Fx =


1 r r2 r3 · · · r(M−1)

...
...

...
...

. . .
...

1 r(M
2
−1) r2(M

2
−1) r3(M

2
−1) · · · r(M

2
−1)(M−1)

 . (36)

Substituting the identity rp = (cos(2π
M ) + i sin(2π

M ))p = (cos(2πp
M ) + i sin(2πp

M )) into (36) this

expression allows us to easily separate the real and imaginary components; concatenating the

imaginary components of this matrix to the bottom of the real component and multiplying

the entire matrix by a normalization factor

[Fx] ≡
√

2

M



1 cos(2π
M ) cos(4π

M ) · · · cos(
2(M − 1)π

M )

...
...

...
. . .

...

1 cos(
2(M2 − 1)π

M ) cos(
4(M2 − 1)π

M ) · · · cos(
2(M2 − 1)(M − 1)π

M )

0 sin(2π
M ) sin(4π

M ) · · · sin(
2(M − 1)π

M )

...
...

...
. . .

...

0 sin(
2(M2 − 1)π

M ) sin(
4(M2 − 1)π

M ) · · · sin(
2(M2 − 1)(M − 1)π

M )


. (37)
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The inverse of (37) can be derived by taking the matrix transpose of (37), namely, F−1
x =

F>x . Recall that (37) was constructed such that it returns the spatial modes defined at a

single instant in time u(t′, xm). The generalization to space time is therefore simply derived

by taking the Kronecker outer product of (37) with the identity matrix whose diagonal is

the same dimension as the time discretization. In other words, we are simply combining N

copies of the operator (37) into another, higher dimensional, operator M[Fx] = IN ⊗ Fx.

and likewise for the matrix inverse. Note that the Kronecker product is not commutative.

The matrix representation for the temporal transforms follows from the previous exposition

(37), the only difference being the inclusion of the zeroth mode. The temporal transform

matrix is then

[Ft] ≡
√

2

M



1/
√

2 1/
√

2 1/
√

2 . . . 1/
√

2

1 cos(2π
N ) cos(4π

N ) · · · cos(
2(N − 1)π

N )

...
...

...
. . .

...

1 cos(
2(N2 − 1)π

N ) cos(
4(N2 − 1)π

N ) · · · cos(
2(N2 − 1)(N − 1)π

N )

0 sin(2π
N ) sin(4π

N ) · · · sin(
2(N − 1)π

N )

...
...

...
. . .

...

0 sin(
2(N2 − 1)π

N ) sin(
4(N2 − 1)π

N ) · · · sin(
2(N2 − 1)(N − 1)π

N )



. (38)

The factors of
√

2 are written specifically such that the inverse is again given by transpo-

sition. The Kronecker product appears once again however with its position interchanged.

This is now a generalization of a temporal operator to spacetime, where (37) was the

generalization of a spatial operator. The identity matrix reflects the spatial dimension

M[Ft] = [Ft]⊗ I|k|. This concludes the definition of the spatial and temporal Fourier trans-

form matrices. The spatiotemporal version is created simply via the product M [Ft]M [Fx].

2.3 Spatiotemporal Symmetries

One of the most important aspects of this problem, both in terms of finding and classifying

solutions, is symmetry. The symmetries of the Kuramoto-Sivashinsky equation considered

in the spatiotemporal formulation include Galilean invariance and the symmetry group

G ≡ SO(2)×O(2). This spatiotemporal symmetry group provides a new perspective with
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which to view orbits and their symmetries. This in turn provides a new tool which greatly

benefits the computations to follow. It is important to first make the distinction between

equivariance and invariance. An orbit is invariant with respect to a symmetry operation g

if the discretized velocity field u(tn, xm) is exactly the same at every collocation point (or

equivalently the modes are exactly the same)

g · ũ = ũ . (39)

A solution is equivariant with respect to g if g · ũ 6= ũ but still represents a solution

g · f(ũ) = f(g · ũ) = 0 . (40)

Clearly, if an orbit is equivariant with respect to g1 and g2 then it is equivariant with respect

to g1 · g2; likewise for invariance. It logically follows that both equivariant symmetry opera-

tions and invariant symmetry operations exist in subgroups. Because invariance is a much

stricter requirement, a special name is given to its subgroup: isotropy group. Note that

the isotropy group is actually a subgroup of the equivariance subgroup. This distinction

is visualized in figure 7 using a shift-reflection invariant orbit. Moving forward, the state-

ments: ‘an orbit has a discrete symmetry’ and ‘an orbit with discrete symmetry’ are always

statements of invariance, not equivariance. Likewise, saying an orbit ‘has no symmetry’

is equivalent to saying that its isotropy subgroup is the trivial subgroup; i.e. containing

only the identity element. Much like everything else, the symmetry group SO(2) × O(2)

is also affected by discretization. For example, orbits will not be equivariant under arbi-

trary rotations, as they require interpolations of the field. In other words, orbits can only

by equivariant with respect to discrete rotations; making the largest possible equivariance

subgroup equal to CN ×DM .

2.3.1 Discrete spatiotemporal symmetries

We consider orbits with the following discrete symmetries: spatial reflection invariance,

spatiotemporal shift-reflection invariance (‘pre-periodic’ orbits) [29], and equilibria which

are invariant under spatial reflection and time translation. For continuous symmetries,

relative periodic orbits and relative equilibria are considered. The spatiotemporal symmetry
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group provides a new perspective on known symmetries, and it makes a connection to plane-

Couette flow. Namely, the notion of ‘pre-periodicity’ can be replaced by spatiotemporal

shift-reflection. To see how this presents itself, let us begin with the definition of a ‘pre-

periodic’ orbit. A pre-periodic orbit is an orbit which can be decomposed into a set of

‘fundamental domains’, whose exact definition is dependent upon the symmetry in question.

The importance of such domains is that a single fundamental domain can reproduce an entire

orbit via discrete symmetry operations. For pre-periodic orbits, the fundamental domains

are halves of the temporal extent. For a simple shift-reflection example, let us choose the

halves t1 ∈ [0, Tp/2] and t2 ∈ [Tp/2, Tp]. The fundamental domains are equivalent upon

spatial reflection u(t1, x) = σu(t2, x). In the spatiotemporal formulation, the notion of pre-

periodicity is replaced by spatiotemporal shift-reflection symmetry. This is analogous to the

shift-reflection which occurs in plane-Couette flow [47]. To show this, constrain the plane-

Couette shift-reflection to two dimensions; the correspondence between the shift reflection

in each system is self evident when explicitly written

s1w(z, x) = −w(Lz − z, x+
Lx
2

) ,

σ ◦ u(x, t) = = −u(L − x, t+
T

2
) . (41)

The real benefit of this formulation comes in the form of selection rules; constraints imposed

on the modes (29) by discrete symmetry invariance. It follows logically that the first goal

is then to derive these isotropy subgroups. First, let us define some discrete symmetry

operations. Let σ represent spatial reflection about x = L
2 such that

σu(tn, xm) = −u(tn, L − xm) , (42)

and let τ represent half-cell (T/2) translations in time

τu(tn, xm) = u(tn +
T

2
, xm) . (43)

Finally, define the spatiotemporal shift-reflection by the composition of these two operations

s = στ such that

στu(tn, xm) = −u(tn +
T

2
, L − xm) . (44)
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Figure 6: (a) An orbit, (b) its spatial reflection (equivariance) (c) its shift-reflection
(invariance).

As mentioned previously, we want a spatiotemporal description of antisymmetric and shift-

reflection orbits; by definition, these have isotropy subgroups Hσ = {e, σ} and Hστ =

{e, στ}, respectively. Both types of orbit are equivariant under time translations, spatial

half-cell shifts and spatial reflection, i.e. the subgroup CN ×D2. It was realized that these

isotropy groups are both subgroups of

G = {e, σ, τ, στ} = C2 × Z2 , (45)

consisting of the identity, spatial reflection, half-cell time translation, and spatiotemporal

shift-reflection, from left to right. Additionally, G is the isotropy subgroup of equilibria;

therefore is captures all of the discrete symmetries that we wanted to include. Using this

group, we find three ways to utilize and exploit symmetry invariance: a group theoretic

derivation using projection operators and irreducible subspaces, matrix representations of

said projection operators and substitution of symmetry operations into the invariance con-

dition g · ũ = ũ. The ‘group theoretic’ derivation was found to be relatively simple, but

this likely does not generalize to larger groups. The advantage of these group theoretic

calculations is that it results in a precise description of invariant subspaces and their re-

lation to one another. The second method, construction of the matrix representations of

the projection operators, provides a method of projecting other linear operators onto the

invariant subspaces. Lastly, the invariance condition provides an efficient manner to de-

rive the selection rules pertaining to each isotropy group; i.e. application of the symmetry

operations (42) and (44) to the modes (29).
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Figure 7: Equivariant orbits, (a) orbit with trivial isotropy group, (b) its spatial reflection,
(c) its shift-reflection, (d) its rotation by a quarter period in both space and time.

2.3.2 Projection operators and spatiotemporal symmetry invariant subspaces

The group theoretic calculations are nearly identical to those in [47, 69]; however, the

interpretation is necessarily different due to spatiotemporal nature of our group and the fact

that there are no longer any dynamics. To begin, teh first step is to define the character

table of (45) [54], shown in table 1. This character table leads to four linear projection

operators [24]

P (++) =
1

4
(1 + σ + τ + στ) ,

P (−+) =
1

4
(1− σ + τ − στ) ,

P (+−) =
1

4
(1 + σ − τ − στ) ,

P (−−) =
1

4
(1− σ − τ + στ) . (46)

Using these projection operators, the solution space (with discrete symmetry) can be de-

composed into the irreducible subspaces U = U(++) ⊕ U(+−) ⊕ U(−+) ⊕ U(−−). Applying

the projection operators (46) to the modes in tensor notation yields the four irreducible
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subspaces of modes

ũ(−−) =

ajk 0

bjk 0

∀k, j odd , ũ(−+) =

ajk 0

bjk 0

∀k, j even ,

ũ(+−) =

0 cjk

0 djk

∀k, j odd , ũ(++) =

0 cjk

0 djk

∀k, j even . (47)

A convenient interpretation of these four subspaces are based on being symmetric or an-

tisymmetric with respect to reflections about L/2 and half-cell time translations of T/2,

the latter contributing to the conditions regarding j taking odd or even values within each

subspace. The effect of exchanging the projection operators (46) and spatial differentiation

operator is derived; as this is directly relevant for the calculation of the nonlinear term in

(4)

DxP
(++) = P (−+)Dx ,

DxP
(+−) = P (−−)Dx ,

DxP
(−+) = P (++)Dx ,

DxP
(−−) = P (+−)Dx . (48)

Using these relations (48) we can produce the projections of the Kuramoto-Sivashinsky

equation onto the different irreducible subspaces

P (++)f = u
(++)
t + u(++)

xx + u(++)
xxxx +

1

2
∂x(P (−+)u2) ,

P (+−)f = u
(+−)
t + u(+−)

xx + u(+−)
xxxx +

1

2
∂x(P (−−)u2) ,

P (−+)f = u
(−+)
t + u(−+)

xx + u(−+)
xxxx +

1

2
∂x(P (++)u2) ,

P (−−)f = u
(−−)
t + u(−−)

xx + u(−−)
xxxx +

1

2
∂x(P (+−)u2) . (49)

With this we can determine the symmetry invariant subspaces or simply invariant subspaces.

This is similar to the notion of flow invariant subspaces except that there are no longer any

dynamics; ‘flow’ does not apply here. One method of deriving the invariant subspaces is to

simply assume a decomposition of u and then show that the sum of the relevant equations
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(49) commutes with combinations of the projection operators (49). For example, assume

u = P (++)u = u(++) and substitute into (49)

f(P (++)u) = u
(++)
t + u(++)

xx + u(++)
xxxx +

1

2
∂x((u(++))2) ,

= u
(++)
t + u(++)

xx + u(++)
xxxx +

1

2
∂x(P (−+)u2) ,

= u
(++)
t + u(++)

xx + u(++)
xxxx +

1

2
P (++)∂x(u2) ,

= P (++)f(u) . (50)

Where the (non-obvious) fact that (u(++))2 exists in the P (−+) subspace was used. Therefore

U(++) constitutes an invariant subspace. This is the invariant subspace containing all

equilibria. Using similar substitutions, we find that the symmetry invariant subspaces are

U(++), U(++) ⊕ U(−−), U(++) ⊕ U(+−) and U(++) ⊕ U(−+). Addition of the corresponding

projection operators (46) results in a more useful representation; three of which exactly

correspond to the invariances which motivated this entire derivation

P0 ≡ P (++) =
1

4
(1 + σ + τ + στ) ,

Pσ ≡ P (++) + P (+−) =
1

2
(1 + σ) ,

Pτ ≡ P (++) + P (−+) =
1

2
(1 + τ) ,

Pστ ≡ P (++) + P (−−) =
1

2
(1 + στ) . (51)

The invariant subspaces trivially follow from the projection operators (51)

U0 ≡ {ũ | P0 = ũ = ũ} ,

Uσ ≡ {ũ | Pσũ = ũ} ,

Uτ ≡ {ũ | Pτ ũ = ũ} ,

Uστ ≡ {ũ | Pστ ũ = ũ} , (52)

where ũ are the modes of (11). U0 represents the subspace of antisymmetric equilibria, Uσ

the spatial reflection invariant subspace, Uστ the shift-reflection invariant subspace, and

lastly Uτ with solutions ‘twice-repeating’ solutions, i.e. those symmetric with respect to

T/2; discussion deferred to the end of the symmetry discussion. The continuous spatial
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translations are eliminated from every subspace except U(++) ⊕ U(−+); shown by applying

the generator of translations (spatial differentiation) to the non-vanishing modes. Naturally

the definition of f in the shift-reflection and reflection invariant subspaces comes from the

substitution of u(++) +u(−−) and u(++) +u(+−), or any equivalent expressions, into f . This

is not a very useful representation of the equations; instead everything is described in terms

of the the mode tensor components (29) in sect. 2.4.

Table 1: Character table for discrete spatiotemporal symmetry group.

e σ τ στ

E 1 1 1 1
Γ1 1 1 -1 -1
Γ2 1 -1 1 -1
Γ3 1 -1 -1 1

2.3.3 Projection operator matrix representations

Using the invariance condition (39) is equivalent to applying the corresponding projection

operator (51) and finding which modes survive. The invariance condition will be used

to derive the selection rules in a functional form, but the matrix representations of the

projection operators (51) are useful for applying the selection rules to other linear operators.

The focus is only on reflection and shift-reflection invariance, such that the derivations

are limited to the matrix representations of Pσ and Pστ . All derivations will utilize the

conventions on the notation for identity matrices from (33). In what follows, ‘primed’

variables are simply temporary placeholders used in the construction of the final expression.

For the real and imaginary components of a single spatial mode, the spatial reflection

operator (with reflection axis x = L/2) is

M[σ
′′
] = diag(−1, 1) . (53)

This changes the sign of the real component of the mode. Generalizing to a set of M
2 − 1

spatial modes

M[σ
′
] = M[σ

′′
]⊗ Ik = diag(−Ik, Ik) . (54)
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The spatiotemporal version of (54) is a diagonal matrix consisting of N − 1 repeats of (54)

M[σ] = I(N−1) ⊗M[σ
′
] = diag(σ

′
0, σ

′
1, . . . , σ

′
N−1) , (55)

with (55) the projection operator Pσ can be defined as

M[Pσ] =
1

2
(I + σ) = diag(0, Ik, . . . ) . (56)

Which can be seen clearly keeps the spatially antisymmetric components of the modes with

respect to the ordering (34). The projection onto the space of equilibria is simply the respect

components of (56).

The shift-reflection projection operator requires both the temporal half-cell shift τ and

the reflection operator (55). Half-cell shift is equivalent to rotation by π such that (time

equivalent of) the expression (71) (SO(2) rotations for j modes) simplifies to

M[τ
′
] = diag(1, (−1)j , (−1)j) . (57)

This specific form of (57) is used to represent the fact that j follows the tensor index

convention defined in (31). The spatiotemporal version of (57) is achieved via another

Kronecker product; again this is a diagonal matrix with M−2 copies of τ
′
along its diagonal.

M[τ ] = M[τ
′
]⊗ I(M−2) = diag(τ

′
0, τ

′
1, . . . ) . (58)

Finally, using the Kronecker product identity (A ⊗ B)(C ⊗D) = (AC ⊗ BD) (if the sizes

are consistent) we have the projection operator as

M[Pστ ] =
1

2
(I + στ) ,

=
1

2
(I + (I(N−1) ⊗ σ

′
) · (τ ′ ⊗ I(M−2))) ,

=
1

2
(I + (τ

′ ⊗ σ′))) , (59)

where

M[(τ
′ ⊗ σ′)] ≡ diag((−1)j+1 Ik, (−1)j Ik, . . . ) . (60)

The indices within (60) are ordered according to the vector representation (34). Substitution

of (60) into (59) yields a diagonal matrix where the terms with j+ 1 survive for odd j, and
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the terms with j survive for even j. This yields diagonal alternates between two identity

matrix blocks and two zero blocks until while also abiding by the ordering of (31)

M[Pστ ] ≡ diag(0, Ik, Ik, 0, 0, Ik, Ik, 0, 0, . . . ) . (61)

It is important computationally to discard the modes whose projections are equal to zero.

Discarding the vanishing modes requires a modification of the projection operators (56),

(61). Note that the projection operators are diagonal matrices and that the vanishing modes

correspond to where the diagonal equals zero. Therefore, the vanishing modes are properly

discarded by removing these rows of the projection matrices. This concludes the derivation

of the two projection operators for antisymmetric and shift-reflection orbits. While these

explicit constructions are useful, the projections can be expressed more efficiently by direct

substitution of symmetry operations into the invariance condition.

2.3.4 Discrete symmetry selection rules

To derive the selection rules for each discrete symmetry, the reflection, time translation and

shift-reflection operations need to be defined in terms of the modes (29). Reflection and

(half period) time translation come immediately; shift-reflection is less obvious and hence

derived explicitly

στ u(tn, xm) = −
∑
k,j

(
ajk cos(ω̃j(tn + T/2)) + bjk sin(ω̃j(tn + T/2))

)
cos(qk(L − xm))

(
− cjk cos(ω̃j(tn + T/2))− djk sin(ω̃j(tn + T/2))

)
sin(qk(L − xm)) ,

=
∑
k,j

− cos(πj)
(

(ajk cos(ω̃jtn) + bjk sin(ω̃jtn))
)

cos(qkxm)

+ cos(πj)
(
− cjk cos(ω̃jtn)− djk sin(ω̃jtn)

)
sin(qkxm) ,

=
∑
k,j

(−1)j+1
(

(ajk cos(ω̃jtn) + bjk sin(ω̃jtn))
)

cos(qkxm)

+(−1)j
(
− cjk cos(ω̃jtn)− djk sin(ω̃jtn)

)
sin(qkxm) . (62)
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This results in the following tensor expressions for each operation

σũ =

−ajk cjk

−bjk djk

 , τ ũ =

(−1)jajk (−1)jcjk

(−1)jbjk (−1)jdjk

 , στ ũ =

(−1)j+1ajk (−1)jcjk

(−1)j+1bjk (−1)jdjk

 .

(63)

which, when substituted into the invariance condition (39), yield the following selection

rules. For the antisymmetric orbits, the selection rules and corresponding tensor notation

are derived by simply requiring the real spatial component mode blocks to vanish

ajk, bjk = 0 ∀j ,∀k . (64)

The non-vanishing modes can be represented in tensor form as

ũσ =

cjk
djk

 .
The selection rules for equilibria follow trivially from this by selecting only the zeroth

temporal modes,

ajk, bjk, djk = 0 ,

cjk = 0 ∀j 6= 0 . (65)

Therefore, the tensor form consists of only a single row of modes

ũ0 = [c0k] . (66)

The shift-reflection selection rules

ajk = bjk = 0 for j even ,

cjk = djk = 0 for j odd , (67)

seem harder to put into tensor format at first but luckily there is a trick that can be exploited

to yield a tidier expression. This is most easily seen by explicitly applying the selection

rules to (29).
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ũστ ≡



0 c0,k

a1,k 0

...
...

b1,k 0

0 d2,k

...
...


≡



c0,k

a1,k

...

b1,k

d2,k

...


. (68)

.

This staggered structure can be exploited by discarding the zeros and ‘shuffling’ the modes

together. By formatting the modes in this way, note that the temporal frequencies are

arranged in a manner identical to (29). In other words, no extra work is required to define

time differentiation. The down side is that the modes need to be ‘unshuffled’ before the

inverse transform can be applied, that is, the zeros present in (68) need to be reinserted.

The selection rules are incorporated into the definition of the temporal transforms to yield

a ‘symmetry invariant’ Fourier transform. By doing so, there is no possibility of forgetting

to apply the selection rules.

Before proceeding to continuous symmetries, here is a summary on what has been

covered for discrete symmetries. First, the distinction between equivariance and invariance

was made. By doing so, very specific definitions of group orbits and isotropy groups were

defined. It was realized that the isotropy subgroups of interest were both subgroups of

a larger group which is equivalent to the Klein four group. Owing to the structure of

this group, irreducible subspaces and their linear projection operators were defined. Four

symmetry invariant subspaces were then derived by acting on the Kuramoto-Sivashinsky

equation with combinations of these projection operators. Each of these subspaces has a

very useful set of constraints denoted as selection rules (equivalent to projection onto the

respective subspace). The selection rules were defined in both a functional form and as

matrices. Finally, the rules were incorporated into the temporal transforms, referring to

these new transforms as symmetry invariant Fourier transforms. For orbits within each

invariant subspace the redefined Fourier transforms remain orthogonal transformations.
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2.3.5 Continuous symmetries

There are two continuous symmetries that are accounted for, Galilean invariance and spatial

translation symmetry which results in relative periodic orbits. The first of these two sym-

metries, invariance under Galilean transformations, results in the following equivariance: if

u(t, x)is a solution, then u(t, x − ct) − c is also a solution (c being an arbitrary constant

speed or ‘mean flow’). This is handled with a simple constraint which constrains the mean

flow with respect to space

〈u〉(t) =

∫ L

0
dxu(x, t) = 0 . (69)

The practical method to enforce this is to simply discard the zeroth spatial modes, i.e. those

with k = 0. This is a conventional choice but not necessarily the best choice; there is to

be a longer discussion on this later, but the general idea is that reducing the group orbit

without purpose is not desirable. Finding orbits is the goal, not finding specific members

of group orbits. It is believed that reducing the dimension of the group orbit may reduce

the likelihood of finding that group orbit numerically. Regardless, the convention defined

by (69) is enforced.

The last spatiotemporal symmetry to discuss is spatial translation symmetry which

defines relative periodic orbits. To make a distinction between uniform rotations, this

symmetry will be referred to as spatial shift symmetry. A relative periodic orbit is defined

here as an orbit whose field u(tn, xm) is only periodic after accounting for a ‘spatial drift’

or ‘shift’. In other words, relative periodic orbits abide by the following relation

u(t, x) = g ◦ u(t+ T, x) , (70)

where g represents a spatial shift defined by the f . If this shift is not accounted for, the

u(t, x) will be discontinuous in time. To make the most out of the Fourier basis some

intervention is required to generate a truly periodic representation of the field.

Two ideas come to mind: either utilize a comoving reference frame, or slice (quotient)

the continuous symmetry [12]. The slicing method has a number of disadvantages and

so only a comoving frame is used. Namely, there is the notion of ‘in-slice’ time which

can induce sharp discontinuities in the field; a bad property for Fourier representations.
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Additionally, applying the slicing condition to the equations spatiotemporally results is

some quite confusing equations, much more than the comoving frame ansatz. The comoving

frame and its spatial shift needs to be formulated in dimensionless spatial units as opposed

to an angular quantity. This is important because T and L and s are changing in the

numerical optimization process and hence, they are coupled. The matrix representation of

SO(2) group elements for a spatial shift by an amount s is given by

g(s) ≡

 cos(qks) sin(qks)

− sin(qks) cos(qks)

 . (71)

Note that there is an extra negative sign contained within qk, again, kept in this form to

match the computational expressions (27). The specific ordering of the modes results in a

tri-band matrix, not a block diagonal matrix with blocks of dimension 2×2. In other words,

the index k indicate that each element (71) represents a diagonal matrix where k takes values

(30). This matrix applied to a set of spatial modes defined at a specific instant in time,

shifts them by s in the positive x direction. The spatiotemporal version of this operator,

that is, uniform spatial rotations of the entirety of u(tn, xm), is a block diagonal matrix

with N blocks; one for each value of tn. Both uniform spatial translations and comoving

rotations are applied in the spatial mode basis, as it makes more sense considering the

parameterization in time. The uniform shift (71) generalizes to spacetime via Kronecker

product as seen before in (58)

M[g(s)] = IN ⊗ g(s) , (72)

which, explicitly, equals

M[g(s)] = diag(g(s), g(s), . . . , g(s)) . (73)

The general idea originates in López et al. [82] where the field is kept in a comoving refer-

ence frame. The comoving reference frame transformation is a generalization of (73) where

the previously uniform shift s is replaced by a spatial shift linearly parameterized by time.

That is, at every discrete time tn, the field is shifted by an amount Stn/T via the sym-

metry operation g(Stn/T). For brevity let Sn ≡ S(tn) ≡ Stn/T. Using (71) the matrix
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representation of the comoving frame transformation is as follows

M[g(φn)] = diag(g(φN − 1), g(φN − 2), . . . ) . (74)

Note that the time is decreasing along the diagonal due to the conventions of the numerical

implementation. Using (74), the ansatz for relative periodic solutions can be written as

the modification of the spatiotemporal transform (27). The most succinct form of the

comoving transformation is writing the expression in terms of operators for the translations

and Fourier transforms.

u(tn, xm) = F−1
x

(
g−1(Stn/T)F−1

t (ũ)
)
. (75)

Where the action of g−1(Stn/T) maps xm → xm − Stn/T, a translation in the positive

spatial direction. Equivalently, this can be written as the inverse Fourier transform of

rotated spatial modes

g u(tn, xm) =

√
2

M

M
2
−1∑

k=1

(
ek(tn) cos(qkStn/T) + fk(tn) sin(qkStn/T)

)
cos(qkxm)

+
(
− ek(tn) sin(qkStn/T) + fk(tn) cos(qkStn/T)

)
sin(qkxm) ,

=

√
2

M

M
2
−1∑

k=1

ek(tn) cos(qk(xm − Stn/T)) + fk(tn) sin(qk(xm − Stn/T)) . (76)

An example of this transformation is displayed in figure 8.

An important detail is that (76) reproduces the u(tn, xm) which solves (4), however,

numerically the field is kept always kept in the comoving frame; such that symmetry op-

eration is not built into the temporal Fourier transform as it is for other symmetries. The

reasoning for this choice is that numerically we desire the modes corresponding to the pe-

riodic comoving frame only; the price being an additional term in the differential algebraic

equations. Note that this ansatz also accounts for relative equilibria, which are equilibria

in the comoving frame such that the vanishing modes of relative equilibria are

ajk = bjk = cjk = djk = 0 ∀ j > 0 . (77)

This concludes the discussion regarding continuous spatial translation symmetry, until

the derivation of the differential algebraic equations. Before moving on, one last comment
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regarding the subspace corresponding to Pτ of (51). This subspace contains the ‘twice-

repeating’ solutions of the Kuramoto-Sivashinsky equation. That is, any orbit has a repre-

sentation which exists in this invariant subspace, created by simply taking a tiling of size

[0, 2T]×[0, L]. Note that one must use this representation of the orbit otherwise it would not

be invariant under the transformation. This seems trivial at first, however, it does impose

selection rules; namely, the modes with odd temporal index j must vanish. One interpre-

tation of this is that shadowing an orbit for two full periods is a much stricter requirement

than shadowing for a single period; this strictness manifesting as selection rules. While

not without its hypothetical uses, this subspace and its selection rules are currently not

utilized. Hypothetically it is possible that spatiotemporal symmetry groups of higher order

(i.e. higher order cyclic subgroups) would permit more interesting invariances than simply

‘twice-repeating’ invariance. Why? For example, two repeats of a shift reflection orbit is

invariant under more combinations of symmetry actions. Compositions of quarter-cell and

three-quarter cell shifts with reflection leave the orbit invariant. However, these quarter

period shifts are not described by the discrete symmetry group used here; presenting open

doors for future investigations.

The spatiotemporal formulation offers a new perspective on the symmetries of the Ku-

ramoto-Sivashinsky equation. Previously, the reflection symmetry manifested as a flow-

invariant subspace, unstable to perturbations; the shift-reflection symmetry as ‘pre-periodic’

orbits which are quite different from one another. Now, every discrete spatiotemporal

symmetries manifests as a set of selection rules; constraints which require subsets of modes

to vanish (equal zero). Additionally, this spatiotemporal description demonstrates that

there is actually a relation between antisymmetric and shift-reflection orbits by way of

invariant subspaces (52). In regards to continuous symmetries, relative periodicity is now

described with comoving reference frames. This description benefits the numerical methods

as it affords a periodic representation of the field. Therefore, in summary, the symmetry

classes of orbits considered here include antisymmetric, shift-reflection, relative periodic,

equilibrium and relative equilibrium orbits.
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Figure 8: Relative periodic orbit (T,L) ≈ (78.36, 4.96(2π
√

2)), (a) in the comoving
reference frame, (b) in the physical reference frame. The spatial shift from (a) to (b) is
Sn = −1.37(2π

√
2)tn/T .

2.4 Differential algebraic equations

Now that the spatiotemporal Fourier transforms and spatiotemporal symmetries have been

properly derived, the Kuramoto-Sivashinsky equation can now be written as a system of

differential algebraic equations. These equations are derived by substitution of (27) into

(4); using the pseudospectral product to compute the nonlinear term. That is, computing

the elementwise product of the values of u at the collocation points. Technically speaking,

the equations are derived by substitution of the total Fourier series, using orthonormality

relations and truncation to define our finite set of differential algebraic equations. We do not

find it useful to provide such a derivation as it results in a convolution sum expression for the

nonlinear term; which, to reiterate, is not computed in the pseudospectral formulation. The

pseudospectral method requires operations involving tensors, vectors and matrices; These

operations include element-wise products of tensors and Kronecker outer products; the latter

only used for the explicit construction of linear operators. The element-wise multiplication

is required for both the pseudospectral product and also spectral differentiation; element-

wise products of modes and the corresponding powers of spatial or temporal frequencies.

This is slightly more complicated in the real-valued, SO(2), representation as it requires

tracking of an additional factor of −1 (equivalent to tracking the powers of i for the complex

representation) as well as some reordering of the modes for odd-ordered derivatives. These

details can be represented explicitly via the differentiation matrices, i.e. the generators of
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SO(2) rotations

M[∂x] ≡ I|j| ⊗

 0 qk

−qk 0

 , (78)

and for time

M[∂t] =


0 0 0

0 0 −ωj

0 ωj 0

⊗ I|k| . (79)

The time differentiation is close to the same form as (78) except for the inclusion of the

zeroth time modes and the additional factor of −1 due to the time ordering of u. We

remind the reader to recall the conventions of the signs of the frequencies (22), in case there

is any confusion regarding the signs of the terms in these generators. The derivatives of

higher order can be derived from the appropriate powers of (78) and (79). In the tensor

representation (29) the element-wise products for spatial derivatives up to fourth order are

∂xũ =

qkcjk −qkajk

qkdjk −qkbjk

 , ∂xxũ =

−q2
kajk −q2

kcjk

−q2
kbjk −q2

kdjk

 ,

∂xxxũ =

−q3
kcjk q3

kajk

−q3
kdjk q3

kbjk

 , ∂xxxxũ =

q4
kajk q4

kcjk

q4
kbjk q4

kdjk

 , (80)

∂tũ =

−ωjbjk −ωjdjk

ωjajk ωjcjk

 . (81)

Note that the zeroth j = 0 mode components in (81)are equal to zero due to the definition

(79). These derivatives are all that are required for the linear terms of (4). Using the

derivatives in tensor notation (81), (80) the linear component of the Kuramoto-Sivashinsky

equation written in tensor representation is

(∂t + ∂xx + ∂xxxx)ũ =

(−q2
k + q4

k)ajk − ωjbjk (−q2
k + q4

k)cjk − ωjdjk

(−q2
k + q4

k)bjk + ωjajk (−q2
k + q4

k)djk + ωjcjk

 . (82)

For the nonlinear term: in operator notation the pseudospectral implementation of the
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Kuramoto-Sivashinsky equation, the nonlinear term is written

f(v) ≡ 1

2
∂xF((F−1(ũ) · F−1(ũ)) . (83)

The product u2 is equal to the products of each of its components, i.e. the products

of sums within (27). The block wherein each product belongs is derived simply by not-

ing the parity of the trigonometric polynomials. For example, the parity of the product

F−1(ajk) ∗ F−1(cjk) can be crudely derived by inspection of the parity of products of the

form cos(ωjtn) cos(qkxm) cos(ωj′tn) sin(qk′xm). For non-vanishing components, the products

will be odd with respect to space and even with respect to time; the correspondence is then

cos(ωj) sin(qk) hence it lies in the Ñcjk mode block. Applying this logic to all other products

yields an expression for the nonlinear component of (83); let (·) represent the element-wise

product. Let a = F−1(ajk), b = F−1(bjk), c = F−1(cjk), d = F−1(djk). The full expression

of (83) in terms of the mode blocks is thenÑa Ñc

Ñb Ñd

 =

qkF(a · c+ b · d) − qk
2 F(a · a+ b · b+ c · c+ d · d))

qk F(a · b+ c · d) −qk F(a · d+ b · c)

 , (84)

such that the Kuramoto-Sivashinsky equation (4) in terms of spatiotemporal modes is

f(v) =

(−q2
k + q4

k)ajk − ωjbjk + Ña (−q2
k + q4

k)cjk − ωjdjk + Ñc

(−q2
k + q4

k)bjk + ωjajk + Ñb (−q2
k + q4

k)djk + ωjcjk + Ñd

 . (85)

To be explicit (85) can be written as a system of equations as well, this is included simply to

help the reader with interpretation of the tensor representation. Namely f = 0 is equivalent

to the system of equations

0 = (−q2
k + q4

k)ajk − ωjbjk + qkF(a · c+ b · d)

0 = (−q2
k + q4

k)bjk + ωjajk + qk F(a · b+ c · d)

0 = (−q2
k + q4

k)cjk − ωjdjk −
qk
2
F(a · a+ b · b+ c · c+ d · d))

0 = (−q2
k + q4

k)djk + ωjcjk − qk F(a · d+ b · c) . (86)

With the general expression (83) in place, the discrete symmetry variants of (85) can be

derived. This requires a modification to the pseudospectral product. The reason being the
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nonlinear term (83) for orbits with discrete symmetry (52) would yield P iF(F−1(ũ2)) = 0

for all mode components. This is not to say that the nonlinear term vanishes, rather, the

spatial differentiation is required to map the modes from the complement back into the

invariant subspace. This is simply the nature of the selection rules and their relation to

spatial differentiation (48). The accommodation employed is to take the spatial derivative

in the spatial mode basis, preceding the time transform (with its built in projection). With

this modification we are now fully equipped to handle the discrete symmetry variants of

(85). In the U0 subspace of antisymmetric equilibria the only non-zero modes are given by

(66); the non-vanishing components of (85) are then

f0(v) =

[
(−q2

k + q4
k)c0k − 1

2Ft(qkFx(F−1(c0k) · F−1(c0k)))

]
. (87)

Continuing on with the antisymmetric subspace Uσ using the selection rules (67)

fσ(v) =

(−q2
k + q4

k)cjk − ωjdjk + 1
2Ft(qkFx(c · c+ d · d)

(−q2
k + q4

k)djk + ωjcjk + Ft(qkFx(c · d))

 . (88)

Unfortunately there is no useful simplification for the shift reflection subspace as each block

has non-vanishing modes; however, it should be noted that the components of (85) also

obey the selection rules (67).

For relative periodic orbits and relative equilibria, substitution of the comoving frame

ansatz (76) into (4) generates an additional linear term via the time derivative of xm− Stn
T .

The result can explicitly be represented by an additional linear term of the form −S
T ∂xũ

such that

fS(v) =

(−q2
k + q4

k)ajk − ωjbjk + Ñajk (−q2
k + q4

k)cjk − ωjdjk + Ñcjk

(−q2
k + q4

k)bjk + ωjajk + Ñbjk (−q2
k + q4

k)djk + ωjcjk + Ñdjk


−

qk ST cjk −qk ST ajk

qk
S
T djk −qk ST bjk

 (89)

In order to explicitly construct the Jacobian of f and its adjoint it will be helpful to con-

struct (83) using matrices where possible. For brevity, the general case (i.e. no symmetry)

is simply included in the discrete symmetry case; allowed because the spatial differentia-

tion commutes with the time transform without projections; however, the comoving frame
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ansatz gets its own versions explicitly expressed. Note that the element-wise multiplication

(pseudospectral product u2) within the nonlinear term can be represented by multiplication

of the vector form of u with a diagonal matrix with u along its diagonal. In spite of this,

it benefits us to keep it in pseudospectral form, as later on the Jacobian will come more

naturally. To accommodate orbits with discrete symmetries, the nonlinear term is written

M[Ft∂xFx] = M[Ft]M[∂x]M[Fx] such that

f(v) = (M[∂t] + M[∂xx] + M[∂xxxx])ũ+
1

2
M[Ft∂xFx](F−1(ũ) · F−1(ũ)) , (90)

and

fS(v) = f(v)− S

T
M[∂x]ũ . (91)

Solving for the roots of (83) (and its symmetry subspace variants) is at the core of all

spatiotemporal computations. To do so it is necessary to derive the Jacobian of f , and its

action on vectors, with respect to all variables represented in v.

J ≡ ∂f

∂v
=
[∂f
∂ũ
,
∂f

∂T
,
∂f

∂L

]
,

J0 ≡
∂f0

∂v
=
[∂f
∂ũ
,
∂f

∂L

]
,

JS ≡
∂fS
∂v

=
[∂fS
∂ũ

,
∂fS
∂T

,
∂fS
∂L

,
∂fS
∂S

]
. (92)

These Jacobian matrices are defined by |ũ| equations (number of modes) and |ũ| + p un-

knowns (modes and parameters). Using the matrix representation (90) the Jacobian can

be easily defined using the ‘direct-matrix’ calculus [20]

(J)ũ = M[∂t] + M[∂xx] + M[∂xxxx] + M[Ft∂xFx] diag[F−1(ũ)] M[F−1] , (93)

and for relative periodic orbits

(JS)ũ = Jũ −
S

T
M[∂x] . (94)

where diag[F−1(ũ)] is a diagonal matrix with u as its elements. The derivatives with respect

to the parameters T,L apply to the frequencies within (83). The dependence on T and L is
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always in the form of inverse powers, i.e. T−1, L−4, and so on. The convention is to write

the partial derivatives in terms of the original factor; e.g. (−4/L)L−4 instead of (−4/L−5).

Computationally it allows us to represent everything in terms of scalar multiplication of

previously defined components. The partial derivative of f with respect to T is given by

∂f

∂T
= − 1

T
∂tũ , (95)

and likewise for the relative periodic orbits

∂fS
∂T

=
∂f

∂T
− 1

T

(
− S

T
∂xũ

)
. (96)

For the derivative with respect to the spatial period we have

∂f

∂L
=
(
− 2

L
∂xx −

4

L
∂xxxx

)
ũ− 1

2L
Ft∂xFx (F−1(ũ) · F−1(ũ)) , (97)

and for relative periodic orbits

∂fS
∂L

=
∂f

∂L
− 1

L

(
− S

T
∂xũ

)
. (98)

Finally, the partial derivative with respect to the spatial shift parameter for relative periodic

orbits

∂fS
∂S

= − 1

T
∂xũ . (99)

Another component required for the numerical techniques is to derive the adjoint of

(93). The general expression can be immediately derived by linearization of the adjoint

equation (16) with respect to λ and then using the matrix representation (90) such that

(J)>ũ = −M[∂t] + M[∂xx] + M[∂xxxx]−M[F ] diag(F−1(ũ)) M[F−1
x ∂xF−1

t ] , (100)

and

(JS)>ũ = (J)>ũ +
S

T
M[∂x] . (101)

In (100) and (101) the orthogonal property of operators has been utilized; i.e. the trans-

position results in the inverse operators. Unlike the Jacobian (93), the adjoint (100) is

never constructed explicitly. Instead, we require the matrix-vector product with the adjoint

Jacobian. In conventional numerical studies, matrix-vector products most commonly arise
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as finite-difference approximations of tangent space evolution. In the context of the pseu-

dospectral spatiotemporal method, we can compute these without such approximations,

as the Jacobian of the differential algebraic equations (83) and its adjoint are no longer

implicitly dependent on time evolution. In other words, this enables the pseudospectral

computation of the matrix-vector product with the Jacobian, avoiding the usage of finite

differences completely.

In summary, this chapter derived all of the necessary components to discretize and solve

the Kuramoto-Sivashinsky equation using a spatiotemporal Fourier mode basis, including:

the spatiotemporal Fourier transform (27), the differential algebraic equations (83), its

Jacobian (93) and adjoint Jacobian (100). Additionally, the spatiotemporal formulation

offers a new description of solutions of the Kuramoto-Sivashinsky equation with discrete

symmetries, via the inception of a spatiotemporal symmetry group. With these results

in place, the numerical optimization methods and other spatiotemporal techniques can be

developed.
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CHAPTER III

NUMERICAL METHODS

3.1 Optimization algorithms

Nearly every result of the numerical studies presented here involves solving the minimization

problem φ(v) = 0 in one way or another. Therefore, it is imperative to develop robust

numerical methods to accomplish just that. In this section we introduce the terminology

and the optimization algorithms used to derive all results. Recently, many new methods

have been made available in our computational codes, but they have not been tested enough

to be commented on. Additionally, while included, a number of the following algorithms

are unsuited to the Kuramoto-Sivashinsky equation. They are included, however, because

as they may useful to others in the future, and the inclusion of these extra algorithms comes

at no extra cost; each method comes in a ‘class’ as determined by SciPy, the computing

package they originate from [134]. Because of how they are grouped, making a single

algorithm available is equivalent to making all algorithms in that class available. SciPy and

NumPy constitute the main computational Python packages used in the spatiotemporal

numerical codes [53, 134]. To begin the discussion on numerical optimization let us first

introduce some terminology.

As a blanket term ‘the’ optimization of a guess orbit denotes the process of using any

one of the numerical algorithms in an attempt to monotonically decrease the residual (19).

The optimization of a guess orbit ṽ has converged if the residual becomes smaller than

some predetermined threshold or tolerance, denoted in the codes by tol. Currently only

the simplest requirement is imposed on the numerical methods, namely, we require that

regardless of the numerical method, the residual must be a strictly non-increasing function

φ(vn + δvn) < φ(vn) , (102)

where δvn is a ‘state correction’ produced by an optimization algorithm. If this monotonic

behavior is violated then we deem the guess orbit a failure. Some common ways of reducing
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the likelihood of failure include introducing a line-search, trust-region, and backtracking

techniques [27]. We elect to apply the latter, this takes the form of a damping parameter in

class of linear least-squares solvers, and as a step size in the custom descent methods. In the

solvers imported from other computational packages, there is less control and customization,

unfortunately. The least-squares approaches the problem by either iteratively or directly

solving the so-called ‘Newton equations’ [135]. The relevant Newton equations can be

derived by linearizing about an orbit v∗ = v + δv where f(v∗) = 0.

f(v + δv) ≈ f(v) + Jδv +O(δv2) . (103)

Substitution of zero for the LHS yields

Jδv = −f . (104)

The solution δv of (104) will be referred to as a Newton step or Newton correction. Note that

because T, L, S, are kept as independent variables, (104) represents an under-determined

system of equations, hence the reason why this is approached in a least squares manner.

The system of equations (104) is solved in one of two ways: explicit construction of the

Moore-Penrose pseudoinverse J+ = (J>J)−1J>, or applying iterative methods to the normal

equations

J>Jδv = −J>f . (105)

Newton’s method applied to a least-squares problem is commonly referred to as the Gauss-

Newton method [7, 27, 111]. The iterative methods available for solving the normal equa-

tions of the Newton system (105) include: MINRES [102], Bi-CG [35], Bi-CGSTAB [131],

GMRES [112], LGMRES [4], CG [55], CGS [119], QMR [42], and GCROT(m,k) [26]. The

linear least-squares solvers include LSQR [103], LSMR [39], and LSTSQ [106].

The last detail before providing the actual algorithm is the addition of backtracking.

Backtracking, sometimes categorized as an inexact line-search method [97], simply reduces

the step size taken in the direction of the Newton step derived by either the direct or

iterative methods’ solution to (105). The simplest form of backtracking is employed here,

which includes a coefficient which damps the Newton step

vn+1 = vn + τkδvn . (106)
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To ensure sufficient decrease in the residual, the step size τk is bounded from below by some

minimal value, typically on the order of 10−4. The strategy for producing τk is again, as

simple as possible; start with τ0 = 1 dividing it by a factor of two while the residual decrease

condition is not met. Before defending this simplistic choice, it is worth mentioning that

the plan is to eventually replace this crude condition with something more sophisticated

such as the Goldstein or Wolfe conditions [97], but, for now, we stick to simplicity. The

equations (105) are technically solved repetitively, generating a sequence of corrections; the

nth correction given by the solution to

J>(vn)J(vn)δvn+1 = −J>(vn)f(vn) . (107)

i.e. as J and f are functions of v, with every correction J(v), f(v) need to be updated; to

better represent the actual algorithm, this detail is accounted for by overwriting the current

state with the new state, and so the index notation of (107) is avoided.

Algorithm 1 Gauss-Newton method with backtracking

Require: N ≥ 1, tol > 0, v ∈ H1,4
per(Ω), 0 < τmin < 1, ρ ∈ (0, 1)

n⇐ 1
b⇐ −f(v)
r ⇐ 1

2b
2

while r > tol and n < N do
τ0 = 1
A⇐ J(v)
{SolveA δv = b for δv}
while 1

2f(v + τkδv)2 > r do
τk ⇐ ρτk−1

if τk < τmin then
return v

end if
end while
n⇐ n+ 1
v ⇐ v + τδv
b⇐ −f
r ⇐ 1

2b
2

end while
return v

The second main class of algorithms are the class of descent methods. The methods

in this class that are available for use are: conjugate gradient method (CG), the Broyden-

Fletcher-Goldfarb-Shanno method (BFGS), Newton-CG method [97], limited memory BFGS
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(L-BFGS-B) [14], the truncated Newton algorithm (TNC) [95] and the previously mentioned

adjoint descent algorithm [33]. These algorithms are characterized by their usage of local

gradient information to find directions in which to ‘descend’, i.e. reduce the residual. These

methods typically do not solve a least-squares system, i.e. (105), except for the ‘Newton

descent’ method [33, 76, 77].

The (custom) descent algorithms are formulated by introducing a fictitious time τ such

that f(v(τ))→ 0 as τ →∞. The corrections take the form δv = (∂τv)δτ such that

φ(v + (∂τv)δτ) ≤ φ(v) , (108)

where v(τ) is represented simply as v. The determine what we should choose for ∂τv, we

differentiate the cost function (19) with respect to τ

∂τφ =
[
J∂τv

]>
f , (109)

where J = ∂f
∂v is the Jacobian matrix (93). Therefore the minimization problem is defined

by choosing ∂τv such that (109) is a decreasing function of τ . The first such choice is to

require ∂τv to satisfy

J∂τv = −f , (110)

as

∂τφ = −|f |2 ≤ 0 . (111)

This choice defines the Newton descent method . Solving (110) for δv is exactly the same

as solving the ‘Newton system‘ or ‘Newton equations’ hence the moniker. The inclusion of

‘descent’ comes from the infinitesimal step size τ . Algorithms which fall into the ‘descent

method’ category are methods which use the cost function and local gradient information

in order to produce a ‘descent direction’ in which numerically stepping reduces the residual.

These conditions are similar but less precise than the Wolfe conditions or Armijo-Goldstein

conditions; the optimization considered here does not concern itself with finding an optimal

step length as defined by a line-searching procedure [97]. The alternative descent method

is the adjoint descent method [33]. This adjoint descent method is derived by noting that
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(109) can be written

∂τφ = (∂τv)>
[
J>f

]
, (112)

such that

∂τv = −J>f , (113)

yields

∂τφ = −
[
J>f

]2 ≤ 0 . (114)

This formulation includes the adjoint of the Jacobian hence the name ‘adjoint descent’.

There are a number of important details worth noting. First, it should be noted for the set

of differential algebraic equations, the Jacobian and its adjoint can be explicitly constructed;

they are not implicitly dependent on time evolution as is the typical case [24, 29, 33]. Going

even further, the adjoint itself actually does not even need to be explicitly constructed;

all that is required is the ability to calculate the matrix-vector product, which can be

done without the use of finite-difference approximations [10, 71]. The components of the

matrix-vector product J>f come immediately from adjoint Jacobian equation (100) and

the Euler-Lagrange equations for the parameters (16)

(J>f)ũ = −f t + fxx + fxxxx − u · fx ,

(J>f)pi = f>
∂f

∂pi
. (115)

As f can be computed in a matrix free manner, it follows that (115) can be as well. Lastly

it should be noted that the adjoint descent direction (113) is simply the negative gradient

of the cost-function. Therefore, (113) can be directly interpreted as the gradient descent

method. In practice the minimization problem was approached via the combination of the

adjoint descent method followed by the ‘LSTSQ’ algorithm which explicitly constructs the

pseudoinverse using a ‘divide-and-conquer’ singular value decomposition [134]. Therefore,

these two methods will be the main focus of the derivations, as the other methods have

been added very recently and no investigations have been made into their efficacy. Both of

these algorithms have custom implementations, meaning that they are not simply imported

from a computational package; hence, a more detailed description is readily available. In
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Algorithm 2 Adjoint descent method

Require: N ≥ 1, tol > 0, v ∈ H1,4
per(Ω), 0 < τmin < 1, ρ ∈ (0, 1)

n← 1
r ← 1

2f
2

while r > tol and n < N do
∂τv ← −J>(v)f(v)
while 1

2f(v + τk∂τv)2 > r do
τk ← ρτk−1

if τk < τmin then
return v

end if
end while
n⇐ n+ 1
v ← v + τk∂τv
r ⇐ 1

2f(v)2

end while
return v

fact customization of different algorithms is recommended because many of the ‘built-in’

methods do not take full advantage of the problem. For example, by virtue of having

differential algebraic equations, the matrix-vector product of the Jacobian with an arbitrary

vector can be written explicitly. In order to use these two numerical methods, given by

algorithm 1 and algorithm 2, to solve the minimization problem, initial guesses for orbits

are required.

3.2 Orbit hunting

A surprisingly hard component of finding periodic orbits in chaotic systems is finding good

candidates for initial conditions. Historically, initial conditions are produced by finding the

local minima of the recurrence function [3, 18, 31, 122]. A recurrence function calculates

the pairwise distance between points in a time series

R(t, t′) =
|u(t+ t′)− u(t)|

|u(t)| . (116)

A trajectory segment nearly closing on itself, or ‘close recurrence’, manifests as a local

minimum of the recurrence function. Therefore, finding these local minima yields guesses

for periodic orbits, in terms of the state space point and approximate period t′.

There are many problems with such methods however, especially in the limit of large
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dimensions. The most obvious disadvantages are related to the computation of the recur-

rence function; it requires time integration and computations of all (or perhaps a subsample)

pairwise distances. Both of these operations become more costly in the high dimensional

limit. While this is nothing to scoff at, there are two more disadvantages that are arguably

far worse. Firstly, the L2 norm used in the computation of pairwise distances does not

incorporate the geometry of the state space (this is not to imply these is a better or obvi-

ous choice of norm). In other words, two state-space points can be close in this norm, yet

very far away from each other dynamically; i.e. on opposite sides of an unstable manifold.

Therefore, even the minima if (116) are not guaranteed to yield ‘good’ initial conditions,

i.e. those which converge to orbits after application of numerical optimization methods.

This previous disadvantage, of course, is predicated on being able to find any minima of

adequate quality; something which is not guaranteed in finite time integration.

These weaknesses of recurrence methods are well known but improvements are con-

stantly being made. For instance, a recent development compares more than just the

difference between state space points. Methods that minimize the distance between seg-

ments of state space trajectories should be much more robust. For example, in Page &

Kerswell [101] dynamic mode decomposition (DMD) [114, 115] approach, the spatiotempo-

ral data in form of a time series of spatial snapshots yields a low-dimensional approximation

to the local tangent space. This, coupled with identification of repeated harmonics in the

DMD eigenvalue spectrum, makes possible detection of periodic orbits in short time series,

as short as a quarter of period of a given periodic orbit, i.e., much before any state space

recurrence. While the replacement of state space points by state space trajectories is a

much needed improvement over the pairwise point distances of traditional time-recurrence

methods, the method still has its limitations, such as only permitting the variability of the

temporal periods and, of course, using dynamics.

The downsides of close recurrences and potential improvements have been described, but

unfortunately there are few, if any, alternatives afforded to the dynamical systems formu-

lation. Fortunately, the robust nature of the spatiotemporal formulation and its numerical

methods allows us to find orbits using initial conditions produced by simply initializing
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Fourier modes to have random values; a concept which is so simple it is easy to overlook

how impressive it actually is. The construction of initial conditions in this manner contains

three steps: first, define a discretized tile, then initialize the values of the corresponding

modes with randomly sampled values. Lastly, apply any other desired pre-processing steps,

modifying the magnitude of the modes to attempt to emulate the physical scales of the

Kuramoto-Sivashinsky equation. This method of generating orbit guesses is the crudest of

all possible methods, while it does work it is not very efficient. The spatiotemporal tech-

niques: clipping described in sect. 3.3 and gluing described in sect. 3.5 methods are much

better alternatives. The issue, however, is that they require a collection of orbits to have

already been found (technically clipping can be applied to trajectories, but this is avoided

as it requires time integration).

The two requirements for defining a discretized tile are the dimensions of the tile (T,L)

and the corresponding dimensionality of the collocation grid (N,M). Determining the

dimension of the collocation points is important, however, only approximate guidelines

have been developed. The one requirement is that the discretization size scales with the tile

dimensions, motivated by the extensive chaos [32] of the Kuramoto-Sivashinsky equation;

the dimension of its inertial manifold scales as a function of L [37]. Therefore, it follows

that in order to resolve all ‘physical’ modes [28, 144], the discretization dimension must

also increase according to the dimension of the inertial manifold [36, 109]. When possible,

powers of two are utilized to exploit the efficiency of the fast Fourier transform. Tiles of

intermediate size are discretized following ‘power-of-two’ rules

N = max(2blog2(T)−1c, 16) ,

M = max(2blog2(L)c, 16) . (117)

Unfortunately, increasing the discretization by a factor of two is a nontrivial jump in com-

putational memory requirements; this is becomes dangerous as the discretization becomes

progressively larger. Therefore, it is useful to construct an alternative strategy which in-

creases in small increments as a function of tile dimensions. This strategy is supported by

the microextensive chaos of the Kuramoto-Sivashinsky equation [124]; the fractal dimension
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increases linearly even for small changes in L. This manifests as the strategy

N = max(b4T 1/2c, 16) ,

M = max(b6L1/2c, 16) . (118)

In order to ensure that the collocation grids have an even number of points in every dimen-

sion, they are floor divided and then multiplied by 2.

After a tile has been created the values of ũ need to be initialized. The main method

of producing initial conditions is to simply randomly initialize a set of modes and then

modulate them in such a way that the resulting spectrum mimics the physical scales of the

Kuramoto-Sivashinsky equation. This process of course also incorporates the selection rules

(64), (67) for guesses which have discrete symmetry.

The first step in initializing the mode values is to simple draw from a random normal

distribution. After this first step, a strategy for how to modulate the modes needs to

be decided upon. The most logical strategy is to create a spectrum which mimics the

relevant physical scales of the Kuramoto-Sivashinsky equation. The spatial physical scale is

determined by the most unstable wavelength discussed in chapter 1. A natural characteristic

time scale would be one derived from something intrinsic such as Lyapunov exponents. It

should be noted that while these strategies make the most logical sense, it can also be

beneficial to contradict our intuition and actually instantiate guesses with relatively large

magnitude high spatial frequency modes. This only works in the context of preconditioned

numerical methods, which effectively damp these modes and control the magnitude of the

partial derivatives with respect to the tile dimensions. The only reason why these methods

are believed to work is due to the variational formulation, the damping of the numerical

methodssect. 3.1 and the fact that these types of guesses start far away from any local

mimima.

The modulation strategies are described by the element-wise product of the random

modes with mollifying functions. These mollifiers are designed to be functions of the mode

indices (31) and possibly some extra parameters. As the mollifiers are identical for each

mode block (29), they can be described in terms of the mode indices j, k. The Gaussian
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mollifier takes the form (119), an example guess orbit is displayed in figure 9

ψjk = exp

(
− (j − µt)2

2σ2
t

− (k − µx)2

2σ2
x

)
. (119)

The ‘Gaussian-in-time-exponential-in-space’ (GTES) mollifier is given by (120)

ψjk = exp

(
− (j − µt)2

2σ2
t

− |k − µx|
σ2
x

)
. (120)

The two mollifiers (119), (120) are the only mollifiers dependent on j in a manner other

than simple truncation. The remainder of the mollifiers are the ‘exponential’

ψjk =


exp

(
− |k−µx|

σ2
x

)
∀k, j < j̃ else,

0

(121)

and ‘linear-exponential’

ψjk =


exp

(
− |(q2

k − q4
k)− (q2

k̃
− q4

k̃
)|
)
∀k, j < j̃ else,

0 .

(122)

and finally, the last mollifier simply consists of temporal mode truncation.

ψjk =


1 ∀k, j < j̃ else,

0 .

(123)

and of course there is the option for no modulation, although this is highly discouraged.

These modulations are not equally effective; many other functions have been tried for the

sake of experimentation. For large tiles the gaussian in time exponential in space modulation

seems to work well, but the smallest the residual has been made is order 1. It is therefore

hard to provide a recommendation for a single or ‘best’ manner with which to produce orbit

approximations. The numerical methods we employ do not seem to be interested in our

desire to produce a physically motivated construction method drawn from our experience

and intuition. Figure 9 and figure 14 represent initial guesses (with no symmetry) generated

by application of the mollifiers just described. In each figure, the initial mode values are

identical so that direct comparison of mollifiers (119)-(122) can be made.

Before moving on, we give some typical values for the previous initial condition creation

methods in the original numerical hunt. In this search, orbits’ tile dimensions were chosen
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Figure 9: Guess orbit created with Gaussian modulation.
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Figure 10: Guess orbit created with exponential modulation.
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Figure 11: Guess orbit created with ‘GTES’ modulation.
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Figure 12: Guess orbit created with ‘linear exponential‘ modulation.

from the ranges T ∈ [20, 200] and L ∈ [22, 88]. The spatial periods were chosen such that

the orbits’ tile dimensions ranged from sizes comparable to other studies L ≈ 2.5(2π
√

2

[25, 78] up to tiles deemed to be of ‘intermediate’ size L ≈ 7.5(2π
√

2; beyond which finding

orbits from random initial conditions is too inefficient. Most of the initial conditions were

generated by the simple time truncation modulation strategy (123); reason being the other

methods had not been developed yet. The discretization sizes abided by the powers of two

strategy (117). The optimization process consisted of two stages: first, the adjoint descent

method in algorithm 1 is applied to the orbit guess to bring the guess closer to an orbit, at

which point the guess is passed to the Gauss-Newton with backtracking algorithm, algorithm

2. In the adjoint descent method the default tolerance was originally set to be 10−4, the

maximum number of iterations dependent on the dimension of the tile; a value of 16NM

being the most common choice. Originally the tolerance of the Gauss-Newton algorithm

was set to be machine precision, i.e. 10−14 and the number of steps set to be quite large;

typically in the hundreds, due to the presence of backtracking. If the error tolerance was

met after application of the combination of these two algorithms, the corresponding orbit

is saved and stored in the collection, to be used in the application of gluing and clipping

in the future. The next numerical method, and the first original spatiotemporal method, is

the clipping method; the method which enables the hunt for fundamental orbits.

3.3 Orbit clipping

In order to find fundamental orbits, a numerical method which extracts small spatiotemporal

subdomains from larger orbits or trajectories is required. This technique is denoted clipping
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Figure 13: Guess orbit created without modulation.
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Figure 14: Guess orbit created with time truncation modulation.

and is defined as follows. Given any periodic orbit (or arbitrary spatiotemporal domain),

a ‘clipping’ is a window of spacetime which is extracted from an orbit or trajectory. The

process is exactly as the name suggests; first choose an orbit from which to clip. Then

transform said orbit into the physical field basis. The clipping consists of the collocation

points Ω′nm = {Ωnm | t−n ≤ tn ≤ t+n , x
−
m ≤ xm ≤ x+

m} and corresponding field values

u(t′n, x
′
m). In practice, the window boundaries are allowed to be specified as continuous

values. These boundaries are provided in terms of the ‘plotting coordinates’; this allows for

clipping based upon visual inspection. To prevent any confusion or miscalculation, every

dimension is rescaled to the interval [0, 1]. This is in anticipation of negative coordinates,

i.e. [−1, 1] for the wall-normal dimension in plane-Couette flow [47].

Iterating through each dimension, the clipping function finds and uses the nearest collo-

cation points as the actual boundaries; therefore the tile dimension returned will be typically

be different than what is provided; for this reason, we recommend using interpolation prior

to clipping, if higher precision is desired. An important detail to note is that the new tile
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must be have an even number of points in each dimension. Let n+ and n− represent the grid

points closest to the provided boundaries. If both are even or both are odd, no additional

operation is required. If one is odd and one is even, however, then N ′ = n+ − n− is odd,

which is not allowed (at least for the Kuramoto-Sivashinsky equation). The two solutions

are to modify n+, n− such that both are odd, or both are even. The former seemed more

prone to possible mistakes, hence the latter is used. This is accomplished by dividing both

values by two and taking the integer part, followed by multiplication by two.

By definition clippings do not obey the necessary boundary conditions or differentiability

requirements; hence, they do not exist in the necessary space of functions (12). Additional

processing steps are therefore required before using the clipping as an orbit guess. Specifi-

cally these extra steps consist of interpolation before the clipping and then truncation post

clipping; the former being mentioned previously. Upon interpolation the original orbit will

generally no longer be an orbit as determined by the residual at the collocation points; un-

less it was converged with a large enough number of points as to eliminate aliasing within

numerical precision. There are two reasons for the interpolation however: first, increasing

the resolution enables more control over the location of the clipping boundaries. Second,

due to the discontinuity at the boundaries, the modes will be contaminated by the Gibbs

phenomenon. Without interpolation, this error contaminates the low frequency modes due

to aliasing. Therefore the combination of interpolation and truncation is essentially an

anti-aliasing procedure; truncation of these high frequency modes essentially projects the

clipping onto onto the space of trigonometric polynomials thereby satisfying the boundary

conditions and differentiability requirements. The other method to improve a clipping is to

simply choose better locations for the window boundaries; that is, boundaries that mini-

mize the discontinuities. This process has not been automated (at least not yet) in order to

ensure that the returned orbit instance best represents the user’s desired clipping; however,

one could imagine a ‘flexible’ clipping routine which searches for the lowest residual clipping

by allowing the window boundaries to vary slightly. The last additional detail is to decide

whether or not to impose any symmetries onto the clipping. This is discouraged for dis-

crete symmetries unless it is glaringly obvious that the clipping exists in the antisymmetric
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or shift-reflection invariant subspaces. Even when this is case, it is still recommended to

assume no symmetry. Instead, the recommended approach is to clip assuming no sym-

metry, apply numerical optimization, convert to a discrete symmetry class and then use

optimizaiton once more.

In regards to continuous symmetry; if a certain pattern is being targeted and it is

believed to shadow a relative periodic orbit, then the clipping must be initialized as such

in order to capture this behavior. The ‘guess’ for the spatial shift S being calculated by

finding the shift value which minimizes the norm of the difference at the temporal boundary

u(0, x)− g ◦ u(tN−1, x). The reason behind these contradictory approaches for discrete and

continuous symmetries is that the selection rules can be satisfied by orbits assumed to have

no symmetry. However, orbits without symmetry can not capture relative periodic orbits

because it requires an extra degree of freedom; the spatial shift.

With these definitions, guess orbits can now be produced by clipping; with this, smaller

orbits shadowed by larger orbits can be found. The guess orbits’ tile dimensions depend on

the clipping, begging the question, how do we account for finding orbits corresponding to the

‘same’ pattern that were clipped differently? In other words, a different initial condition will

converge to a different orbit by virtue of the least-squares solving (105). This question and

more are explained by the next numerical method to be described, numerical continuation.

3.4 Orbit continuation

To explore the continuous families of orbits discovered later on, a practical continuation

method is required; that is, a method of constraining a dimension to a new value and up-

dating the modes and other dimensions via optimization. Such methods go by a handful of

names including pseudo-arclength continuation, homotopy methods, practical continuation

[97]. In the context of differential algebraic equations, this is accomplishing by simply im-

posing a constraint on the continuation dimension. Consequentially, the state vector’s (11)

dimension is reduced by 1; the linear systems (105) and descent directions (113) modified

accordingly. The application of these types of constraints are recommended only for the sake

of exploring continuous families of solutions. If we start with an orbit described by the state
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vector v defined on Ωnm, continuation of the spatial dimension would be performed by set-

ting L→ L′ such that Ω′nm = (tn, x
′
m) = (tn,

mL′

M ). To continue a solution to have L′ where

|L′−L| >> 0, the continuation must be subdivided into small steps, i.e. L
′
i = Li+δL where

i ∈ {0, . . . , (L′−L)
δL }. For each ‘step’, the dimension is constrained to L

′
i and then passed

through the optimization methods until convergence or failure. If the continuation fails, it

is assumed that the orbit does not exist on a tile of size Li, not that the numerical methods

have failed us. By ‘incorrectly’ changing the dimension in this way, the residual changes

according to the partial derivatives, i.e. ∆F = ∂F
∂L δL , and likewise for time. Because of

the form of these partial derivatives, it is recommended to make much smaller steps when

continuing with respect to space rather than time. Also, the spatial continuation problem

can actually, and likely should be, approached by continuation in time, if the temporal

period corresponding desired spatial dimension is known. For example, continuation of an

(idealized example) orbit defined on (T,L) = (15, 15) can be continued to (T,L) = (20, 20)

by either continuation in time, constraining T ′ until T ′+δT = 20, or by constraining space;

as the dimensions are dependent on one another. The former, constraining time, seems to

perform much better due to the order of the spatial derivatives, hence the larger amount

of error introduced by the constraint L′ = L+ δL. Therefore, it is recommended to either

continue in time (if spatial period is known) or to take much smaller spatial steps.

The second type of continuation utilized is discretization continuation. It can be useful

to increase and decrease the resolution of an orbit; while maintaining its status as an orbit

(residual beneath a threshold). To do so, we can apply truncation or interpolation, changing

the discretization size (the minimum increment being 2), followed by reapplication of the

optimization methods. It is possible to increase and decrease the discretization by amounts

larger than two; testing with respect to these step sizes has not been performed. For a

general discretization continuation (N,M)→ (N ′,M ′) this process is typically performed in

one of two ways, either one dimension at a time (N,M)→ (N ′,M)→ (N ′,M ′) (technically

the order is determined by the efficiency, in a computational memory sense) or by ‘cycling’

through the axes, (N,M) → (N + 2,M) → (N + 2,M + 2) → . . . . This concludes the

continuation definition, we will now move onto the final spatiotemporal method, gluing.
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3.5 Orbit gluing

The ultimate technique developed in the course of this research is referred to as gluing. This

technique is simple and intuitive; especially in the context of the two-dimensional spacetime

of the Kuramoto-Sivashinsky equation. The primary motivation for the development of the

gluing method was to develop a technique that could combine spatiotemporal configura-

tions of fundamental orbits. In practice, gluing can be applied to orbits of any size; if all

orbits are comprised of fundamental orbits then gluing larger orbits together is by all means

and purposes the same as gluing converged combinations of fundamental orbits together.

Therefore, every orbit added to the collection provides new opportunities to find even more

orbits. By alternating between gluing and optimization, progressively larger orbits can be

found. The two main challenges with gluing result from differences in tile dimension and

discontinuities along the gluing boundaries. The former of these issues is tackled in the

context of arbitrarily sized symbolic configurations. A configuration is a symbolic represen-

tation of the guess orbit; it is paramount to understand and so an example configuration

(124) and its resulting guess orbit figure 15 are demonstrated explicitly.s11 s12

s21 s22

 ≡
A B

B A

 (124)

. The easiest gluing method consists of crudely approximated all tiles as having the same

size; applying interpolation or truncation such that all collocation grids have the same

dimensions. The guess orbit is produced by simply joining all tiles and their corresponding

field values in the manner prescribed by the spatiotemporal configuration. The dimensions

of the guess orbit are set to be the average, multiplied by the dimension of the configuration

in the respective dimension. For example, the dimensions of a three-by-three configuration

st × sx = 3× 3 would equal (T̄ , L̄) = (st
∑

i Ti, sx
∑

i Li). This method implicitly assumes

that all tiles have approximately equal dimensions.

In the case of disparate dimensions, the advice we provide is to reconsider even per-

forming the gluing, or to apply the ‘strip-wise’ gluing correction. To explain the concept

behind strip-wise gluing, first ‘aspect-ratio correction’ needs to be explained. Let us use
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Figure 15: (a) Orbit ’A’, (b) Orbit ’B’, (c) the configuration ’AB BA’ in string notation,
equivalent to (124).

the simplest possible gluing configuration as an example; two orbits undergoing one dimen-

sional gluing, i.e. gluing a pair of orbits in space or time. For the sake of this example,

this is chosen to be space. It can be generally assumed that the two orbits exist on tiles

with differing dimensions T ′ 6= T
′′
, L′ 6= L

′′
(unless continuation was performed). In order

for gluing to be well defined numerically, the collocation grids must have the same number

of points along the dimensions which are transverse to the gluing. These two requirements

imply that the grid spacings are necessarily different, i.e. because T ′ 6= T
′′
, setting N

′
= N

′′

implies that t′n 6= t
′′
n (other than at 0). If no modifications were made, the simple gluing

previously described would result in the tile with dimensions T̄ = T ′+T
′′

2 , L̄ = L′ + L
′′

and

discretization sizes M = M ′+M ′′ = 2M ′, N = N ′ = N
′′

such that (T,L) = (nT̄N , mL̄M ). The

resulting tiles’ collocation grid spacing is necessarily different from the original (under the

current assumptions). With the current strategy of averaging or summing depending on

dimension the difference between original and final grid spacing scales with the difference
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of the original dimensions, i.e.

∆t′n −∆tn = =
T
′ − T ′′

2N
,

∆x′m −∆xm = =
L
′ − L′′

2M
. (125)

The relations end up looking the same because the number of points in time is constant but

the number of spatial points doubles in size. The deformations defined by (125) introduce

error locally, however. By the nature of the global basis functions and the nonlinearity

having dependence on L, the error is not so easily described.

The aspect-ratio correction aims to improve upon this by first rediscretizing the tiles

such that their grid spacings in the gluing dimension are as close as possible prior to gluing,

resulting in x̄m ≈ x′m ≈ x
′′
m. Assume that in the previous example L′ = 2L

′′
; the aspect ratio

correction corresponds to resizing by either interpolation or truncation such thatM ′ = 2M
′′
,

which ensures the grid spacings are the same, i.e. L′

M ′ = L
′′

M ′′
. In this idealized case, the

periods were integer multiples of one another; in reality this is never the case, hence the

new collocation grid is never error free with respect to the gluing dimension.

The ‘strip-wise gluing’ technique is essentially the extension of the aspect-ratio cor-

rection to arbitrarily sized (rectangular) spatiotemporal configurations. The complication

arises from the fact that the discretization must be identical in all transverse dimensions

during the gluing process. As the name suggests, strip-wise gluing is the decomposition

of the D dimensional gluing problem into many different 1-dimensional gluing problems.

Assume we are given a spatiotemporal configuration with dimensions (s1, s2, s3, s4), i.e. a

3+1 dimensional spacetime, and that all tiles start with identical discretizations. In the

one-dimensional example, the aspect-ratio correction could freely resize the tiles to have an

arbitary number of points in the gluing dimension. With the inclusion of more dimensions,

the necessary modification is that the total discretization size is fixed. Instead of freely

rediscretizing the gluing dimension the aspect-ratio correction in D dimensions determines

how to appropriately distribute the fixed number of points amongst the original tiles within

the strip, prior to gluing. For example, given a strip within the four dimensional configura-

tion, indexed in the four dimensional tensor as (0, 0, s3, 0), the total discretization would be
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(using identical sizes originally) s3 ∗N . Based on their periods in this dimension, s3 ∗N is

subdivided redistributed between the number of orbits (s3), to yield a strip of ‘aspect-ratio

corrected’ orbits, such that the sum of the new discretizations equal s3 ∗N . Using the two-

dimensional spacetime for a more concrete example, for clarity, imagine we start with four

orbits N = 32,M = 32; The total discretization will be N = 32, M̄ = 32 ∗ 4 = 128. Now

assume that the spatial periods of the four orbits can be written as fractions of the total,

L1 = L̄/8, L2 = L̄/4, L1 = 3L̄/8, L4 = L̄/4; the aspect ratio correction would rediscretize

the orbits prior to gluing according to M
′
1 = M̄/8, M

′
2 = M̄/4, M

′
3 = 3M̄/8, M

′
4 = M̄/4,

of course accounting for even valued Mi.

After this transformation, the corresponding tiles and their discretized fields are con-

catenated along the gluing dimension; resulting in a D − 1 spatiotemporal configuration.

This continues until a stripwise gluing has been performed in all D dimensions. The last

detail concerns how many stripwise gluings are performed; This is determined by the spa-

tiotemporal configuration; for a configuration of shape (s1, s2, s3, s4), if s1 is chosen as the

first dimension, there would be s2s3s4 strips, is this was followed up by strip-wise gluing in

the s2 dimension, then there would be s3s4 strips, and so on and so forth. Note that due

to the nature of strip-wise gluing, the gluing order is not a commutative process; therefore,

it should be chosen according to the dimensions of the spatiotemporal configuration or the

dimensions of the tiles therein.

The second main challenge of the gluing method results from the fact that there will be

discontinuities along the gluing boundaries. While we can always apply the interpolation-

truncation technique described in sect. 3.3 to glued orbits, it would be better to find a

technique which attacks the error at the source, i.e. reducing the magnitude of the dis-

continuities. Any transformation will affect the tangents of the glued orbit; therefore the

predisposition should be to favor simple, minor transformations. The crudest method which

is employed is to glue tiles consisting of fundamental orbits padded by regions of zeros, i.e.

the fundamental orbit fields’ compact support being a subdomain of the tile. This technique

is motivated by the fact that if all tiles are padded, then they will at least be continuous by

definition; however, it is not well motivated from a mathematical standpoint. An example
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Figure 16: A fundamental orbit with numerically zero-padded ‘border’.

of this ‘padding’ is shown in figure 16.

Only a single ‘smart’ technique has been developed so far; that is, a technique which

helps with the discontinuity error while also remaining computationally cheap, relative to

the optimization problem. This more expensive version of gluing explores the group orbits

of each constituent; finding the combination of representatives which produce the guess with

smallest residual. The original implementation of the gluing was designed such that it was

a process which ‘conserved’ the symmetry of orbits. In other words, antisymmetric orbits

could be glued to other antisymmetric orbits, and the resulting guess would be assumed

to be antisymmetric. In order to impose this condition, it was actually the fundamental

domains of each orbit with discrete symmetry that would be glued together. In the same

spirit, only the discrete symmetry component of the group orbit was used in the gluing of or-

bits with discrete symmetries. The original motivation was that it was unknown whether or

not different fundamental orbits existed in the different subspaces; in other words, with our

original choice the result from gluing would automatically be in the corresponding subspace.

However, upon further consideration it was determined that this is in fact not necessary;

even though they do not live in the group orbit of an antisymmetric solution, rotations of

antisymmetric orbits can be converged as orbits without symmetry. Therefore, the philos-

ophy now is to allow possible symmetry operations in order to minimize discontinuities at

the gluing boundaries. If so desired, then any discrete symmetry selection rules may be

applied afterwards. Some final recommendations for gluing: gluing orbits together which

have drastically different (transverse) dimensions is not recommended, even for pairwise

gluing. For example, gluing an L = 44 and L = 22 orbit, with respect to time; as this would

set L̄ = 33. Second, even when using orbits of approximately the same size, large gluing
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configurations are not recommended. Instead, the recommendation is to slowly build up

the tiling by alternating between tiling and converging; producing progressively better local

shadowings with which to glue.

A technique even more expensive than the group orbit search would include exploration

of each orbits’ continuous family; a detail to be discussed in detail in chapter 4. This is

typically not a tractable solution unless the size of the configuration is sufficiently small. In

actuality, it is not even recommended for pair-wise gluing, as each continuation would entail

multiple optimization runs, making the gluing process more complex than the original goal

of finding the glued orbit. However, if truly desired, the following is recommended: first

perform continuation to generate a sampling of each continuous family and then query the

saved members during the gluing process.

In summary, orbits can be found by applying numerical optimization methods sect. 3.1

to initial guesses created via the methods described in sect. 3.2. After orbits have been

found, the original spatiotemporal techniques, clipping sect. 3.3 and gluing sect. 3.5, as well

as numerical continuation sect. 3.4 can be applied. All three of these methods are used in

conjunction with the numerical optimization methods; inspiring more improvements to be

made in the future in chapter 6.
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CHAPTER IV

NUMERICAL EXPERIMENTS

The goal of this next chapter is to demonstrate numerical results; the orbithunter codes

were such a large endeavor that much of the actual physics is still under investigation.

Therefore, while there are many unanswered questions, the following should be sufficient to

display the power of the spatiotemporal methods developed in the previous chapter.

4.1 Preliminary testing

Before we began searching for orbits in full, we first tested the efficacy of the spatiotempo-

ral numerical methods using known periodic orbits [25]. The first such test was simply to

determine that coarse discretizations could be used to accurately represent orbits of various

dimensions. The predecessor to our work [75] states that they required upwards of 512 and

1024 points to discretize the temporal dimension; with our methods, orbits with compara-

ble periods require far fewer points, presumably from the accuracy of the pseudospectral

method. This is demonstrated in figure 17 wherein the same orbit is plotted (without in-

terpolation, contrary to most figures). This is important because the main limiting factor

for spatiotemporal methods is the number of computational degrees of freedom; the entire

orbit must be kept in the computational memory. It is imperative that we be able to find

periodic orbits with coarse resolutions, otherwise the problem is not computationally fea-

sible, at least without appealing to more complex computational resources such as cluster

based computing.

The first test demonstrated here simply rediscretizes a known solution to create an coarse

initial guess and then the optimization algorithms are applied, determining whether or not

the solution would converge to the ‘same’ orbit that it originated from. This rediscretization

test is shown in figure 17, the main takeaway being that coarse discretizations, much coarser

than the original, can be used to represent orbits. In fact, orbits can be ‘compressed’ in an

informational sense by applying discretization continuation to find the minimal collocation
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Figure 17: (a) Orbit with discretization (N,M) = (128, 32), (b) the same orbit converged
with (N,M) = (14, 14), (c) the orbit resulting from increasing (b)’s discretization back to
(N,M) = (128, 32).

grid size which converges to the ‘same’ orbit. The usage of ‘same’ here is because the

tile dimensions are changing and so typically not only will we find a different member of

the continuous family but in addition, it will be a different group orbit member. The

second of the preliminary numerical tests utilized the same orbit from figure 17, this time

around, a large amount of random noise was added to the physical field. To take the

worst case scenario, there was absolutely no pre-processing applied to the noise; the field

in figure 18 simply consists of the sum of the original field and values numerically drawn

from a random normal distribution. Additionally, the orbit was converged as an orbit

without symmetry; even though it started in the shift-reflection subspace. Therefore, the

noise provided contributions to the now re-included vanishing modes. By virtue of the

robustness of the hybrid numerical method, the noisy construction converged to the same

family of orbits figure 18, within the shift-reflection subspace. This seems to indicate that

the variational nature of the problem is not only able to converge a poor initial condition,

but also that there seems to be some memory of the original solution due to topology. Note

that preconditioning chapter A is utilized in the first stage of the optimization process,

meaning that the changes to tile size are in fact damped during the adjoint descent stage;

this might provide enough of a constraint to ‘remember’ the original orbit; a comment

included for transparency. One aspect of the numerical optimization which has not been

tested thoroughly is the best way to scale N,M as functions of T, L. The relationships

(118) and (117) are suggested, however, due to the nature of the differential algebraic

equations, N and M are not really independent of one another, contrary to what the

guidelines suggest. In any case, the results displayed in figure 18 and figure 17 gave us
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Figure 18: (a) The original orbit, (b) with additive noise (note the scale), (c) the converged
noisy guess.

confidence that the numerical methods were robust and efficient enough to not only find

orbits from random initial conditions; but also confidence that the clipping sect. 3.3 and

gluing sect. 3.5 techniques would work, which we shall now demonstrate.

4.2 Hunting results

The successful application of the optimization algorithms sect. 3.1 results in a collection

of orbits of varied tile dimensions, symmetries, but most importantly; spatiotemporal pat-

terns. In figure 19 and figure 20, the initial conditions from which the orbits were converged

are also displayed to give the reader a sense of the capabilities of the optimization algo-

rithms. The end goal is to search for the smallest and hopefully most frequently shadowed

orbits; the fundamental orbits of the Kuramoto-Sivashinsky equation, and so we limit the

size of the initial guesses created in this manner by placing a heuristic upper bound on the

tile dimensions (T,L), as described in sect. 3.2. The hypothesis is that if all fundamental

orbits are captured then the infinite spacetime can be described by combinations of the set

of fundamental orbits, as opposed to an infinite collection of orbits of increasing size.

The collection process continued until we were satisfied with our collection, determined

by whether or not we thought all fundamental patterns were accounted for. This numbers

around several thousand orbits with tile dimensions of intermediate size. The determina-

tion that most fundamental orbits were captured was a completely qualitative endeavor;

the search for orbits continued simply until we stopped seeing ‘new’ spatiotemporal pat-

terns. As a final example of their capabilities, we demonstrate the optimization techniques

applied to modulated initial conditions defined on much larger tiles. Unfortunately, these
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Figure 19: (a) Shift-reflection guess orbit, (b) converged orbit
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Figure 20: (a) Relative periodic guess orbit, (b) converged orbit.
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results do not have very small residual values, and so they should not be hailed as com-

plete victories. In spite of this, the point is to demonstrate that it is at least possible to

perform optimization on large spatiotemporal guesses, constructed via modulation strate-

gies sect. 3.2. The resulting orbit approximations at least exhibiting familiar structures (in

actuality, fundamental orbits). Not every initial condition performs equally well, of course;

this is demonstrated in figures 21 and 22 and figures 23 and 24 wherein two different mod-

ulation strategies are applied to the same modes. After adjoint descent, the initial tile

figures 21 and 23 with dimensions (T,L) ≈ (266.7, 33.7(2π
√

2)); figure 22 results in an orbit

approximation with O(1) residual and tile dimensions (T,L) ≈ (289.08, 36.4(2π
√

2)). Like-

wise, the orbit approximation displayed in figure 24 has O(1) residual and tile dimensions

(T,L) ≈ (299.2, 37.02(2π
√

2)). These approximations seem to be defined by large regions

of relatively uniform local spatial shift velocity; this is easiest to see in figure 21 where

the long, diagonal lines representing drifting wavelengths both in the positive and negative

spatial direction. The reason for this is unknown; however, we believe that it indicates

that there is a much deeper meaning or relationship between the reflection and continuous

spatial shift symmetries.

With a collection of orbits in tow, we could begin looking for fundamental orbits, first

deciding upon candidates by visual inspection, i.e. determining the most frequently occur-

ring spatiotemporal patterns, following by application of spatiotemporal clipping and more

numerical optimization.

4.3 Clipping results

To demonstrate the flexibility of the clipping method, we first demonstrate how orbits

can be found by clipping out of arbitrarily large spatiotemporal trajectories. This is shown

in figure 25 and figure 27, where a guess orbit with dimensions (T,L) ≈ (80, 2.02(2π
√

2)) is

clipped from a large spatiotemporal trajectory, without special care or planning other than

a quick visual inspection. This guess orbit is then sent to optimization, converging to an

orbit with dimensions (T,L) ≈ (113.2, 2.1(2π
√

2)), demonstrating that clippings and initial

conditions can be procured from time integration, if so desired; also demonstrating the

77



0 4 9 15 19 24 30
0

80

160

240

-3.5

3.5

Figure 21: Large guess orbit generated with Gaussian modulation.
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Figure 22: Result of applying adjoint descent to guess orbit created with Gaussian
modulation.

79



0 4 9 15 19 24 30
0

80

160

240

-3.7

3.7

Figure 23: Large guess orbit generated with GTES modulation.
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Figure 24: Result of applying adjoint descent to guess orbit created with GTES modu-
lation.
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Figure 25: Large spatiotemporal trajectory with dimensions (T,L) ≈ (512, 57.6(2π
√

2))
generated by time integration; used for clipping.

concept that spacetime consists of shadowing events. We encourage the reader to compare

the patterns within the orbit figure 27(b) with the three fundamental orbits in figure 35.

The clipping was procured simply by a quick visual inspect of the larger spatiotemporal

trajectory. There was no care in chosing where the clipping boundaries were placed. The

two different discretization strategies were employed, however; the power-of-two strategy

(117) did not converge while (118) did. This preliminary result indicates that clipping

can work when the clipping is extracted from large spacetime; we now proceed with the

primary goal of clipping: extracting fundamental orbits from orbits. In order to begin

the description of spacetime as a collection of fundamental orbit shadowings, we need, of
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Figure 26: Clipping, (T,L) ≈ (40, 3.71(2π
√

2)).
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Figure 27: (a) Clipping (T,L) ≈ (40, 3.7(2π
√

2)), (b) converged orbit (T,L) ≈
(73.8, 3.93(2π

√
2)).

course, a collection of the supposed fundamental orbits. We will refer to them by shorthand

names that capture their general behavior and makes a connection to the spatiotemporal

pattern they represent. This type of classification is relatively common in the study of

fluid flows [63, 90, 136]. Historically speaking, the very first application of clipping was not

figure 27, rather, it was the iterative clipping displayed in figure 28. This, very cautious,

version of clipping used multiple ‘small steps’, alternating between clipping and converging.

It was unknown how careful the clipping process needed to be, that is, the magnitude of

the difference in dimensions of a clipping and its originating orbit. The clipping proceeded

according to the alphabetical order of figure 28, as the orbits’ dimensions suggest. This

turned out to be much too conservative, and in our experience, clipping is typically more

flexible than gluing. For example, it is shown in figure 29 that the result of the iterative

clipping can be reproduced with only a single clipping step.

The result shown in figure 29(d) was the first ever fundamental orbit guess, tentatively

dubbed the ‘wiggle’ or ‘gap’ fundamental orbit. It was identified by noticing that it re-

peats twice within figure 28(a)-(b). The spatiotemporal wiggle can be converged in the

antisymmetric subspace, however for the purpose of its description we find it beneficial to

ignore its symmetry because the two-wavelength pattern appears more frequently than the

antisymmetric fundamental domain. The spatiotemporal wiggle orbit consists of two bent
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Figure 28: Example of iterative clipping. (a) Original orbit, (b) first converged clipping,
(c) second converged clipping, (d) converged fundamental orbit.
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Figure 29: (a) Original orbit, (b) clipping exterior, (c) clipping interior, (d) converged
clipping.

or ‘wiggling’ wavelengths occurring in an (exactly) antisymmetric manner. In the region of

spacetime between the wiggles the magnitude of the spatiotemporal velocity field is very

small, essentially near zero. The appearance of this small gap between the wiggles is ex-

plored via continuation sect. 4.4. The collection of the spatiotemporal wiggle not only

provided us with our first fundamental orbit but also provided us with an obvious guess

for the second fundamental orbit. If we look back at the iterative clipping procedure that

we just performed, in figure 28(c), we see that the spatiotemporal wiggle is spatially adja-

cent to an additional, single wavelength. Therefore it follows that our second fundamental

orbit candidate was the single wavelength equilibrium, as there is no other way to explain

85



(a)

0 1 2 3
0

10

-2.7

2.6

(b)

0 1 2 3
0

10

-2.7

2.6

(c)

0 1 2 3
0

10

-2.6

2.4

(d)

0 1
0

10

-2.6

2.6

Figure 30: (a) Original orbit, (b) clipping exterior, (c) clipping interior, (d) converged
clipping.

the spatiotemporal configuration of figure 28(c). Indeed, by clipping this single wavelength

equilibrium from the original periodic orbit another fundamental orbit was found, which we

now refer to as the spatiotemporal streak.

After collection of the spatiotemporal wiggle and spatiotemporal streak, the fundamen-

tal orbit collection was yet incomplete as the pattern emphasized in the introduction in

figure 1 had yet to be found. In the spirit of topological defects [34, 70, 87] we named this

fundamental orbit the spatiotemporal defect; it was found via the clipping demonstrated

in figure 30. The spatiotemporal defect epitomizes two very important mechanisms of the

Kuramoto-Sivashinsky equation: fluctuations in global wavelength count and local spatial

drift velocity. Both of these processes can be observed in any sufficiently large spatiotem-

poral simulation or orbit. The effect of the wavelength merger is that it decreases the

global wavelength count by one; however, due to linear instability, the region of spacetime

evacuated by the merger is soon filled by another wavelength; the net result is approxi-

mately a quarter-cell (or equivalently, half wavelength) spatial drift. Therefore, the defect

also describes local spatial shift velocity; the magnitude of which is determined by the spa-

tiotemporal defect family member being shadowed; this is explored in sect. 4.4. Neither

the spatiotemporal streak nor the spatiotemporal wiggle can account for this spatial shift

behavior, as they both exist in the antisymmetric subspace. These two properties highlight

the importance of the spatiotemporal defect. Due to the spatial shift it is clear that the

spatiotemporal defect was assumed to be a relative periodic orbit. Locating the spatiotem-

poral defect proved to be much more difficult than both the spatiotemporal wiggle and

spatiotemporal streak, in part due to the extra computational degree of freedom from the

spatial shift, and its sensitivity to where the temporal clipping boundaries are placed; an
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Figure 31: (a) Original orbit, (b) clipping exterior, (c) clipping interior, (d) converged
clipping.

issue that should be improved in the future. With the collection of the spatiotemporal

defect, the three fundamental orbits used in gluing had been found, their final versions

displayed in figure 35. At the time, however, the hunt for fundamental orbits continued

even after the collection of the spatiotemporal defect, as other fundamental orbits were still

thought to exist. The results were somewhat surprising; nearly every guess converged to the

spatiotemporal streak, spatiotemporal wiggle or spatiotemporal defect(or repeats thereof).

Examples of redundant clippings are shown in figures 31 and 33, which both converge to

two repeats of the spatiotemporal defect. The third example, seen figure 32, is not at all

obvious; until numerical continuation is performed, that is. A collection of these repeats is

displayed in figure 34, where it can be seen that orbits with the same pattern (or multiples

thereof) were found.

In summary, there seem to be three main fundamental orbits, originally found to exist

on tiles with approximate dimensions (0,≈ 0.7) for the spatiotemporal streak, ≈ (15.85, 1.5)

for the spatiotemporal defect and lastly ≈ (17.15, 2) for the spatiotemporal wiggle. As the

error in gluing is highly dependent on the tile dimensions, it would be highly beneficial to

have fundamental orbits which exist on identically sized tiles; especially with respect to the

spatial dimension, due to the higher order derivatives and the error induced by incorrect

approximation of L. This, and the existence of continuous families of fundamental orbits are

investigated in the next section, which describes the results from numerical continuation.
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Figure 32: (a) Original orbit, (b) clipping exterior, (c) clipping interior, (d) converged
clipping.
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Figure 33: (a) Original orbit, (b) clipping exterior, (c) clipping interior, (d) converged
clipping.

4.4 Continuation results

After our first search for fundamental orbits concluded, we actually believed that there were

four unique fundamental orbits, contradicting what was previously stated. Upon further

review two of these four fundamental orbits, displayed in figure 30 and figure 32 looked

quite similar visually, leading us to believe that they were related. In figure 38, this is

shown by numerical continuation; namely figure 38(c) is the continuation of figure 38(b)

to the exact spatial domain size that figure 32(d) exists on; they are likely not the same

exact orbit numerically, but it is entirely believable they exist within the same group orbit,

judging based on the spatiotemporal patterns.

This brought about a revelation regarding fundamental orbits that had been previously

overlooked; fundamental orbits exist in continuous families. This has significant meaning in

the context of shadowing. Two shadowings of the same fundamental orbit will look similar
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Figure 34: Repetitive results from the hunt for fundamental orbits.
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Figure 35: The (a) ‘streak’, (b) ‘defect’, (c) ‘wiggle’ fundamental orbits.
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but not identical in spacetime; differences which can now be quantified by the approximate

dimensions of the shadowing region. This property is precisely captured by continuous

families of fundamental orbits, wherein all members of the family are related by continuous

deformations of both tile and field.

Application of numerical continuation to the three fundamental orbits in figure 35 are

shown in figure 36, figure 37, and figure 38. Each of these figures displays three or four

members of the continuous family, such that the spatial dimension size increases from left

to right. With fundamental orbits existing in families, and all admissible orbits existing

as configurations of fundamental orbits, it might be accurate to say that all orbits exist in

continuous families because fundamental orbits exist in continuous families. It of course is

not known if every orbit exists in a continuous family, however, preliminary testing indi-

cates that this is the case, although the families might be ‘small’, relative to the intervals

of tile sizes that they exist on. This initially betrayed our intuition; in hyperbolic systems,

periodic orbits are isolated solutions by virtue of their unstable manifolds [24]. The meaning

of this and its effect on the symbolic dynamical grammar is currently unexplored, however,

it has dramatic implications in regards to the symbolic dynamics. Namely, it means that

the alphabet of this symbolic dynamics is not a rigid collection of symbols; each symbol,

that is, each fundamental orbit, is parameterized by its tile sizes. The implication is that

the symbolic alphabet is ‘rubbery’ which provides great boons, and banes. As the sym-

bolic dynamics has not been formalized yet, this is left to the discussion of future work in

chapter 6.

Each continuous family seems to exist on a finite interval of spatial periods, punctuated

by what are presumed to be bifurcations. The problem with such a description is that

the normal bifurcation analysis via linear stability is unavailable; without dynamics, we do

not currently know how to provide evidence of bifurcation. Also, it may be the case that

there has simply been a failure to track the family correctly. Therefore, the descriptions

which follow cover only the qualitative behaviors of the orbits believed to be members

of the same family. The spatiotemporal defect family is qualitatively described by three

members displayed in figure 38. In its large space limit, it changes into a relative equilibrium
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approximately at L ≈ 1.5(2π
√

2). In the limit of small spatial dimension, the temporal

period can be stretched to ridiculous amounts T in the hundreds, shadowing what is believe

to be a heteroclinic connection.

In the limit of small spatial size, continuation of the spatiotemporal wiggle, figure 37

finds the two-wavelength equilibrium solution; a member of the spatiotemporal streak fam-

ily. The implications of this are to be discussed shortly hereafter. In the limit of large

spatial dimension, the ‘stretching’ which occurred in the defect family seems to occur again.

Currently there is no explanation of why this occurs and what these orbits even represent.

Finally, the spatiotemporal streak family, displayed in figure 36, simply represents the n-cell

solutions of [51].

As described in the description of the spatiotemporal gluing method, gluing tiles of

disparate dimension introduces substantial amounts of error. It is beneficial, therefore, to

use numerical continuation to resize each fundamental orbit until they are of similar size.

Unfortunately it seems impossible to resize the fundamental orbits while also maintaining

their unique properties. To demonstrate this, the spatiotemporal wiggle and spatiotemporal

streak were numerically continued to the same spatial dimension as the spatiotemporal

defect, as it originally had the median spatial dimension prior to continuation.

The continuations of the streak and wiggle, show in figure 36 (b) and figure 37(a),

respectively, are nearly identical, after a quarter cell shift of either orbit; i.e. they are

within the same group orbit. This can be approximately shown by taking the the L2

norm of the difference of the discretized fields; |us − uw| ≈ 10−5, the non-zero magnitude

accredited to interpolation error. The spatiotemporal wiggle’s temporal derivative at this

spatial domain size has a norm on the order of machine precision, |ut| ≈ 10−14; meaning

that we have converged to an equilibrium. Therefore, if we are to maintain a trinary

symbolic alphabet, the spatiotemporal wiggle cannot be continued to the same domain size

as the spatiotemporal defect, as it no longer is distinct from the spatiotemporal streak. It

should be noted that the numerical continuation of the wiggle seems to be irreversible, if the

equilibrium solution from the spatiotemporal wiggle family figure 37 has its spatial domain

size increased, it does not return to the spatiotemporal wiggle family rather, it follows the
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Figure 36: Members of the streak fundamental orbit family.
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Figure 37: Members of the ‘gap/wiggle’ fundamental orbit family.

same pattern as the spatiotemporal streak fundamental orbit, its continuation producing

the n-cell equilibrium solution.

The fact that continuation of the spatiotemporal wiggle finds the two wavelength equi-

librium solution raises an interesting question, could the spatiotemporal defect and spa-

tiotemporal wiggle orbit families be recovered by manipulating the single wavelength spa-

tiotemporal streak solution? It turns out that, yes, this is indeed possible and is discussed

with the future work in chapter 6, displayed in figure 56. This seemingly throws a wrench

into what we think of as being fundamental at first. However, it is not simply that the

streak is the only fundamental pattern; rather, it is much more intimately involved with

symmetry. Perhaps it could be argued that the spatiotemporal streak family and symmetry

breaking represents the set of fundamental periodic orbits; currently this is an important

but open question.

Before moving onto gluing, let us quickly summarize what we know about continuous

families of our three proposed fundamental orbits. The spatiotemporal formulation is pred-

icated upon the existence of a finite set of fundamental orbits, the set of fundamental orbits

being the set of orbits which can ostensibly be used to construct and describe all other

orbits solutions. We believe that this collection consists of three unique fundamental orbit

continuous families. Each of these families was explored via continuation in L, resulting

in a collection of family members on at least some finite interval of L. To describe the
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Figure 38: Members of the ‘defect’ fundamental orbit family.

families (other than the streak, because it was relatively boring), we looked at the large

and small L limits of the spatiotemporal defect and spatiotemporal wiggle families. Each

of these families seems to have some deep connection with symmetry, however, we do not

know how to describe this yet. With the existence of these families, we now have a rubbery

symbolic alphabet with which to probe the grammar of the purported symbolic dynamics.

In other words, even though there are only ‘three’ fundamental orbits, we can describe all

spatiotemporal tile sizes by virtue of the different tile sizes within each family.

Currently, the formulation of the symbolic dynamics has not been completed, however,

we can test our ideas by virtue of the gluing method, described in sect. 3.5. That is, by

creating spatiotemporal combinations of fundamental orbits, and trying to find the orbits

being shadowed thereby. As we shall see, the three families current within our alphabet

is indeed sufficient to reproduce known solutions and produce new solutions, providing

empirical evidence that we are on the right track.

4.5 Gluing results

The gluing technique developed in sect. 3.5 is tested with progressively harder test cases.

First, we apply it to one-dimensional gluing in space and time. Next, small spatiotemporal

combinations are glued together both with and without the ‘strip-wise’ modification. Lastly,
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Figure 39: (a)-(b) Relative periodic orbits, (c) their temporal gluing.

we attempt to apply these ideas to arbitrarily large spatiotemporal configurations.

The first test case is one dimensional temporal configurations of orbits, the primary

example is displayed in figure 39 wherein two relative periodic orbits defined on tiles with

approximate dimensions (T1, L1) ≈ (83.11, 2.5(2π
√

2)) and (T2, L2) ≈ (85.66, 2.5(2π
√

2)).

The resulting orbit has dimensions (T, L) = (233.05, 2.5(2π
√

2)); defined on a collocation

grid with dimensions (N,M) = (68, 32) (included for this one example to give a sense of

how things scale). Next up is one-dimensional spatial gluing. For one-dimensional spa-

tial gluing, the emphasis is placed on the ability to perform the gluing repeatedly; this

opens the door to the possibility of slowly building up orbits spatially; possibly providing
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Figure 40: (a)-(b) Shift-reflection orbits, (c) their spatial gluing.
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Figure 41: (a)-(b) Shift-reflection orbits, (c) their spatial gluing.

access to progressively larger spatial geometries, one of the primary motivations for all of

this work. This is shown in two steps; in figure 40, two shift reflection orbits with dimen-

sions (T1, L1) ≈ (20.50, 2.5(2π
√

2)) and (T2, L2) ≈ (28.66, 2.5(2π
√

2)) are spatially glued,

resulting in a shift-reflection orbit with dimensions (T12, L12) ≈ (24.65, 4.8(2π
√

2)). This

result is then glued again with another shift-reflection orbit with dimensions (T3, L3) ≈

(66.70, 2.5(2π
√

2)) resulting in yet another shift-reflection orbit figure 41 with dimensions

(T123, L123) ≈ (45.75, 7.4(2π
√

2)). In this specific example, shift-reflection symmetry was

maintained in every step; showing how even discrete symmetries can be utilized in the glu-

ing process. Finally, we arrive at the culmination of all of the research and computational

codes developed for the spatiotemporal formulation, spatiotemporal gluing. We begin with

the triplet of fundamental orbits as our tentative tiling alphabet figure 35. Mentioned at the

end of sect. 3.5, arbitrary searches of the continuous families of fundamental orbits is not

viable; instead, the usage of different ‘tile sets’ is being investigated. These sets represent

numerical manipulations used to minimize the discontinuities at the boundaries through
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various means; zero padding, rescaling, usage of different continuous family members, dif-

ferent group orbit members, etc. Examples of these are displayed in figure 43, figure 42,

and figure 35; which are the ‘resized’, ‘spatially padded’ and ‘original’ tile sets respectively.

The defining quality of the spatially padded tile set is that the spatiotemporal fields are

zero-padded with respect to space, as the name implies. In the resized tile-set the streak is

numerically continued to a tile with larger spatial dimension, the defect numerically con-

tinued to have the same T as the wiggle. Note that these examples only represent a subset

of all tile sets used for experimentation. These fundamental orbits are glued together in

spatiotemporal configurations, befitting a symbolic description as shown in figure 44. Note

that usage of different tile sets could be represented by including the correponding tile size

in figure 44. Beginning with a spatiotemporal configuration of the smallest possible spa-

tiotemporal shape (2, 2), we see that in figure 45, a converged orbit is indeed found, however,

the defect in the bottom right of the configuration seems to not be present in the final or-

bit. In figure 46, the components of the inital spatiotemporal configuration can be visually

observed; if a liberal interpretation is allowed that is. meaning, that the two streaks in the

top left, t ≈ [15, T ], x ≈ [0, 2(2π
√

2)] seem to configure themselves into a wiggle. This type

of visual inspection points out a huge hole in the construction of the symbolic dynamics.

Namely, we may have numerical convergence, however, there is an inability to identify the

original spatiotemporal configuration within the resulting orbit. This presents us with a

difficult challenge; namely, how do we validate that our gluing results accurately represent

the spatiotemporal configuration we started with? Currently we have no good answer for

this, however we are exploring some possibilities, described in chapter 6. Regardless of these

complications, the results in figure 45 and figure 46 demonstrate that orbits can indeed be

found via the gluing of fundamental orbits. So, it may be a stretch to claim that these

are ‘the’ building blocks of spatiotemporal chaos for the Kuramoto-Sivashinsky equation,

however, we will claim that these fundamental orbits can be used as building blocks; an

exciting development.

It is important to investigate the different gluing options, their efficacy, and their po-

tential. Towards this end, two examples are provided which attempt to stress the effect
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Figure 42: The (a) ‘streak’, (b) ‘defect’, (c) ‘wiggle’ fundamental orbits in the ‘spatially
padded’ tile set.

(a)
(b) (c)

Figure 43: The (a) ‘streak’, (b) ‘defect’, (c) ‘wiggle’ fundamental orbits in the ‘resized’
tile set.

of different tile sets and different gluing strategies. In figure 47 and figure 48 the same

spatiotemporal configuration (using the same tile set) is constructed, the difference being

whether or not the strip-wise correction was applied. The residuals of the results are both

O(−1), however, the opinion taken here is the strip-wise result in figure 48 appears to be a

much better orbit approximation, determined by the visualization, not the residual. While

it did perform better, this hints at future issues for the strip-wise gluing technique, namely,

as the spatiotemporal configurations become progressively larger, the order in which the

dimensions are glued has a larger effect. Additionally, the strip-wise technique breaks down

in this limit, as the relative sizes of fundamental orbits between strips becomes distorted by

differences in strip dimensions. The next example is similar; however, instead of demon-

strating the difference between strip-wise and regular gluing, demonstrates how different

tile sets sect. 3.5 can result in wildly different orbit approximations. The initial guesses

are displayed in figure 49 and figure 51; the results in figure 50 and figure 52, respectively.

The approximations actually have nearly the same O(10−1) residual; however, the result

figure 52 seems much less like a ‘typical’ solution than figure 50.

Lastly, we include an excessively large spatiotemporal gluing, using a 30-by-30 spa-

tiotemporal configuration of different family members of the fundamental orbit families.

The idea behind using different members of the fundamental orbit families in order to

instill the large spatiotemporal domain with local spatial shift velocity, using figure 23 as
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Figure 44: (a) A symbolic configuration, (b) a guess orbit manifestation.
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Figure 45: (a) Two-by-two spatiotemporal configuration (b) converged orbit.

(a)

0 1 2 3 4
0

10

20

30

-3.0

3.0

(b)

0 1 2 3 4
0

10

20

30

40

-3.0

3.2

Figure 46: (a) Two-by-four spatiotemporal configuration (b) converged orbit.
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Figure 47: (a) 5-by-5 fundamental orbit gluing (85.7544, 8.4(2π
√

2)) (b) post-adjoint
descent orbit approximation (99.29, 10.1(2π

√
2).
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Figure 48: (a) 5-by-5 fundamental orbit gluing (85.7544, 8.4(2π
√

2)) (b) post-adjoint
descent orbit approximation (112.6, 8.6(2π

√
2).
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Figure 49: 10-by-10 symbolic configuration gluing using the ‘resized’ tile set, (T,L) ≈
(172, 16.1(2π

√
2)).
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Figure 50: Orbit approximation, generated by applying adjoint descent to figure 49;
(T,L) ≈ (195, 17.2(2π

√
2)).
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Figure 51: 10-by-10 symbolic configuration gluing using the ‘spatially padded’ tile set
(T,L) ≈ (172, 13.3(2π

√
2)). This is the same symbolic array as in figure 49
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Figure 52: (Disclaimer: this is considered an example of a poor result). Orbit approx-
imation resulting of application of adjoint descent to the 10-by-10 spatiotemporal gluing
using the spatially padded tile set; (T,L) ≈ (184, 19.3(2π

√
2)).
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Figure 53: 30-by-30 symbolic configuration gluing using an experimental tile set, including
local spatial translation velocity; (T,L) ≈ (424, 49(2π

√
2), O(105) residual.
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Figure 54: Orbit approximation resulting from 30-by-30 spatiotemporal configuration of
fundamental orbits; (T,L) ≈ (580, 54(2π

√
2), O(1) residual.
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motivation. By doing so, we produce a very large, approximate orbit defined on a spatiotem-

poral tile with dimensions ≈ (580, 54(2π
√

2)). The resulting orbit approximation still does

not accurately reproduce the variety of patterns embedded in the large spatiotemporal sim-

ulations such as figure 25. The residual is O(1), equally as bad as the much smaller orbit

approximation figure 48; indicating that large spatiotemporal domains can now at least be

approached numerically.

We pause to highlight the significance of these results; it is easy to forget that we are not

simply cutting and pasting images together. We have successfully used unstable periodic

orbits as building blocks to describe larger regions of spacetime; in the form of finding

larger orbits: displayed in figure 45 and figure 46. If the same could be said for the Navier-

Stokes equations then this would likely be revolutionary. In addition, this has allowed us to

approach very large spatiotemporal domains numerically. For some comparison, example

calculations from others have used L = 22 ≈ 2.5(2π
√

2) and L = 38.5 ≈ 4.33(2π
√

2) in the

antisymmetric subspace [12, 78]. These domain sizes are blown out of the water by figure 54;

which is an example of a calculation on a tile with spatial dimension L ≈ 54(2π
√

2).

These numerical results indicate to us that the spatiotemporal formulation has merit.

The path forward is now to determine all admissible spatiotemporal configurations; not an

easy prospect. While this process has yet to be formalized, we can work towards finding

all admissible combinations of fundamental orbits, based on numerical convergence. With

that said, the next chapter demonstrates some example codes; hopefully serving as an

advertisement for others to adopt the orbithunter framework.
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CHAPTER V

ORBITHUNTER

While still undergoing the final stages of development (packaging and setup tools), one of

the main deliverables of this thesis work is the numerical codes which have produced the

results described in chapter 4. Across the course of this research, many different rewrites of

the same integration routine, namely, the ETDRK4 routine [67] were encountered. These

mostly redundant rewrites of the same code indicated to me that some universal framework

was desperately needed, not only for the Kuramoto-Sivashinsky equation but for nonlinear

chaotic partial differential equations in general; unfortunately, no one else is aboard the

spacetime train as of yet. The goal of this framework is to allow researchers to immediately

compare results as well as incorporate others’ work directly into their own. Additionally, it

seemed like having open source code was the more honest and open approach, contradicting

the all too common occurrence of researchers having secret research codes that no one else

can use. Another motivation was simply the challenge or inability to utilize or adapt others’

codes. For these reasons the spatiotemporal techniques developed in chapter 3 and put on

display in chapter 4 have been packaged into what I now refer to as the Python computing

package ‘orbithunter’. This development required far more effort than the development of

the original research codes. The main goal was maximization of user friendliness, modularity

and to enable nimble calculations via notebooks. Modularity implies easy incorporation

of modules written for other equations; meaning the spatiotemporal techniques clipping,

gluing, etc. needed to be written in a manner agnostic of equation. While these tools

have not been tested for other equations, it is believed that they are at the very least well

positioned for generalization. As a disclaimer orbithunter’s development was entirely an

independent endeavor. The codes are written to be efficient, Pythonic and as simple as

possible; however, I can almost assuredly say there are improvements that could be made.

Note that the actual source code for the various spatiotemporal functions is not included in
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the description that follows; it is much more compactly represented on Github [52], and it

was decided that hundreds of pages of source code separated by page breaks was simply not

conducive to understanding. It it worth mentioning, however, that the source code follows

the Python conventions, except when Physics conventions take precedent. For example, the

convention for variables is to always write them in lowercase; however, the spatiotemporal

dimension is T not written in lowercase because t is used for the dimensionless time variable,

not the period.

5.1 Examples using the Kuramoto-Sivashinsky equation

The computational codes use object oriented programming based approach, based on the

custom Orbit class. This class serves as the general scaffolding for orbits of all possible

equations. It defines all functions required for the spatiotemporal techniques either as place-

holders which depend on the equation, or as general functions which do not depend at all on

equation. Therefore this class serves only as a template for other equations’ orbits and their

subclasses, and is never used explicitly. The current implementation only supports the Ku-

ramoto-Sivashinsky equation, whose base class is OrbitKS; the different symmetry classes

follow logically as subclasses; for spatiotemporal orbits this includes: RelativeOrbitKS,

AntisymmetricOrbitKS, and ShiftReflectionOrbitKS. Equilibria are special cases of spa-

tial reflection symmetry; relative equilibria are special cases of relative periodic orbits; it

follows naturally then that EquilibriumOrbitKS and RelativeEquilibriumOrbitKS exist

as subclasses of AntisymmetricOrbitKS and RelativeOrbitKS, respectively. Each of these

subclasses has overloaded expressions for symmetry specific calculations; this becomes very

convenient because general expressions such as the differential algebraic equation need only

be written once, even though operations such as spatial differentiation are defined differ-

ently for different symmetry classes. The remainder of this section is dedicated to providing

examples of the entire spatiotemporal process as laid out in chapter 4. The code snippets

are placed at the end of the section for formatting reasons.

The first step towards finding orbits or in fact any other computation, is the instantiation

of an class object. To do so, one need only call the OrbitKS as a function. This process
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is very flexible; control over it depends upon the amount of information specified by the

user. If the discretized state is provided (along with the basis it represents) using the

keyword arguments state and basis, then the discretization dimensions can be inferred

from the shape of the array, e.g. (32). Essentially, whenever necessary information is not

provided can be randomly generated. For example, if the state is not provided, then it

will be randomly generated; utilizing the modulation strategies described in sect. 3.2. The

code in listing 5.1 demonstrates various methods of guess orbit construction (lines with ‘#’

indicate comments). These examples are not mutually exclusive; it is possible to provide

the state and allow the parameters to be generated randomly, for example.

Numerical operations such as differentiation, calculation of the differential algebraic

equations, Fourier transforms, plotting, etc. are all accessed via methods and attributes of

the class instances. Most of these methods have their own set of keyword arguments which

specify various options; their description is left to the orbithunter documentation available

on Github [52]. A number of example computations using instance methods are displayed in

listing 5.2. These expressions convey how numerical expressions can be evaluated with ease.

It does not, however, demonstrate how easy it is to chain together operations, providing the

ability to perform a very complex calculation in a single line of code. This power is demon-

strated in listing 5.3, wherein the following operations are performed: first, an example

orbit is generated. Then, this orbit’s state is reflected with respect to space, translated 10

dimensionless units in time, differentiated with respect to space, rediscretized to 64 points

in time and space, and finally the field is plotted. This has not included the fact that binary

operations +,−, ∗, ∗∗, addition, subtraction, (scalar) multiplication, and exponentiation are

also defined. The second example in listing 5.3 computes the L2 norm of the difference be-

tween the squares of the evaluations of the differential algebraic equations. Note that the

chained calculations listing 5.3 do not really mean anything; they are simply a random

assortment of operations that can be chained together. Up to this point, all operations

have been described by either binary operators or instance methods, the spatiotemporal

techniques, however, are written as functions which take orbit instances (or a collection

thereof), perform some operation and return yet another orbit. The four main algorithms
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are optimization, clipping, continuation, and gluing. These techniques are accessed via the

functions: converge for optimization, clip for clipping, tile and glue for gluing, and lastly

for continuation, dimension continuation and discretization continuation. The de-

scription of these functions is presented in terms of the base Orbit class even though it is

never used, simply to be less verbose.

The first of these spatiotemporal applications, the converge function, provides access to

all numerical optimization methods described in chapter 3. This function’s only requirement

is a class instance, typically a guess orbit. If the residual of said orbit is already smaller

than the provided residual tolerance, the optimization routine is terminated. If this is not

the case, then the orbit instance is passed to a function dependent on the numerical method

specified by the method keyword argument. There are also a number of keyword arguments

which can be passed to tailor the numerical optimization process, such as the residual

tolerance, number of maximum iterations, etc. There is also a set of default values based on

numerical results that can be accessed through the key words precision and comp time.

Another useful key word is verbose which takes a boolean value. When true, the function

will print its progress, indicating iteration number, residual and parameter values. The

converge function returns another custom construct, an OrbitResult. This object is

essentially a copy of the SciPy’s OptimizeResult [134]. It contains the optimization statistics

such as targeted residual tolerance, residual at each iteration, number of iterations, current

status, etc. The default settings of the optimization function utilizes adjoint descent. This

function has by far the most options, for more details it is best to read the documentation

stored on Github [52]; this isn’t even considering the incredible amount of options that

the SciPy functions take. Most importantly, OrbitResult has the post-optimization orbit

instance, accessed by the orbit attribute. The benefit of this construct is that it takes

any user defined statistic as a keyword argument, so custom statistics can be incorporated

relatively easily. The issue is that this behavior hasn’t been implemented into converge

because its currently too vague to implement.

The clip function requires three arguments: an Orbit instance, the dimensions of the

clipping, and the class with which to initialize the clipping. If the clipping’s dimensions are
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chosen such that the clipping contains an approximately antisymmetric field, then it follows

logically to think to initialize the clipping as an AntisymmetricOrbitKS; however, the

safer bet is to assume no discrete symmetry, due to the approximative nature of clipping.

The dimensions of the clipping are provided as a tuple of tuples, each representing the

subinterval in each dimension which defines the clipping (‘tuple’ is a built-in Python data

type). For example, in the Kuramoto-Sivashinsky equation this represents a pair of tuples,

the first indicates which subinterval of time to clip, and the second is the subinterval of

space. Because the clipping is often based off of visual inspection, the dimensions provided

should match the conventions utilized in plotting. In the example of clipping from a large

spatiotemporal trajectory figure 25, the corresponding code is displayed in listing 5.5.

There are two functions which provide access to spatiotemporal gluing; glue and tile.

The glue function takes an array of Orbit instances and the orbit class constructor (Orbit

instead of Orbit(), note the parentheses). The only other arguments indicate whether

or not to use the strip-wise gluing strategy; if stripwise=True, then the order of the

strip-wise gluing axes can also be specified via gluing order which is a tuple of integers.

Often times it is more convenient and useful to provide an array of symbols, and a Python

dictionary which translates these symbols into orbits. This is the reason why the tile

function exists; it is literally just the glue function which takes symbolic configurations

and a Python dictionary as input. The tile simply maps the array of symbols into an array

of orbits, which is then passed to glue. For a visual example of such a mapping look to

figure 44. For the coding example, two equivalent methods of producing the same orbit

are given, one using tile and the other using glue. While not previously mentioned, a

useful utility for gluing and tiling is read fpo set. This function is used to load in a set of

predefined fundamental orbits included as part of the package. There are multiple sets to

choose from, representative of the fact that the investigation is still ongoing. The equation

(which defaults to the Kuramoto-Sivashinsky equation) can be specified as well as any

fundamental orbit dictionary relevant key word arguments. For example, the tile set used

in figure 44 used key word arguments, tileset=’extra space padded’, comoving=True,

and rescaled=True. This tile set is defined by zero-padding of the streak and defect orbits
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so that the relative spatial sizes are respected without having to apply strip-wise gluing.

The rescaling and comoving flags rescale the magnitude of each orbits’ fields to be the same,

and use the comoving representation of the defect, respectively. This rescaling is motivated

only by minimizing the discontinuities at the tile gluing boundaries.

Finally, the last pair of functions implement the two different forms of continuation

described in chapter 3. The more familiar type of continuation, using constraints to incre-

mentally change tile size, hoping to find the corresponding member of the orbit family, is

handled by the function dimension continuation. This function takes an orbit instance,

the new dimension value, the corresponding array axis, and lastly the step size for in-

crementing the dimension. Additionally, there is a flag variable save which, when true,

saves all intermediate family members. If false, then only the last output of the continua-

tion is returned, the intermediate states being overwritten. Lastly, because the continua-

tion requires repeated application of converge, key word arguments of the aforementioned

function are also accepted. The second type of continuation, represented by the function

discretization continuation, requires an orbit instance, the desired shape of the new

collocation grid, and a boolean flag variable, cycle which defaults to false. There are two

strategies for how to change the discretization; one dimension at a time (cycle=False) or

to cycle through the axes (cycle=True). The goal of this process is to find the ‘same’ orbit

converged on the tile with the new discretization size.
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Listing 5.1: OrbitKS instantiation

from orb i thunte r import *

# Create an o r b i t in s tance wi th randomly genera ted s t a t e and

# parameters .

example o rb i t 0 = OrbitKS ( )

# The same as above excep t a random seed f o r r e p r o d u c i b i l i t y

# ( g i v e s the same s t a t e and parameters wi th every c a l l )

example o rb i t 1 = OrbitKS ( seed=4)

# Deciding upon the var ious random i n i t i a l o r b i t parameters ;

# ranges f o r random va r i a b l e s dec ided by the ‘min ’ and ‘max ’

example o rb i t 2 = OrbitKS ( spectrum=’ g t e s ’ , T min=60, T max=80,

L min=22, L max=44, N=32, M=32)

# An example o f how cas t user prov ided data as an OrbitKS

example o rb i t 3 = OrbitKS ( s t a t e=user provided numpy array ,

b a s i s=’ f i e l d ’ , parameters =(100 , 100 , 0) )
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Listing 5.2: Evaluation of numerical expressions

from orb i thunte r import *

# In s t a n t i a t e a c l a s s in s tance .

example orb i t = OrbitKS ( )

# Compute the second order s p a t i a l d e r i v a t i v e

example orb i t dx2 = example orb i t . dx ( order=2)

# Compute the d i f f e r e n t i a l a l g e b r a i c equa t i ons

example orb i t dae = example orb i t . dae ( )

# Compute the ad j o i n t descen t d i r e c t i on , Jacobian ad j o i n t t imes dae .

examp l e o rb i t ad j = example orb i t . rmatvec ( example orb i t . dae ( ) )

# Spa t i a l r e f l e c t i o n o f the example o r b i t

e x amp l e o r b i t r e f l = example orb i t . r e f l e c t i o n ( )

Listing 5.3: Numerical operations

from orb i thunte r import *

# In s t a n t i a t e an o r b i t

example orb i t = OrbitKS (N=32, M=32)

# Binary opera t i ons

new orb i t = ((4 * example orb i t∗∗ 2)

= ( example orb i t + OrbitKS (N=32, M=32) ) **2)

# Chaining numerical opera t ion methods , p l o t the r e s u l t

example orb i t . r e f l e c t i o n ( ) . r o t a t e (10 , ax i s=0) . dx ( ) . p l o t ( )
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Listing 5.4: Clipping from large spatiotemporal trajectory

from orb i thunte r import *

# Read in the i n t e g r a t e d o r b i t saved f o r r e p r o d u c i b i l i t y

i n t e g r a t e d t r a j e c t o r y = read h5 ( ’ Orb i tKS tra j ec to ry . h5 ’ )

# The dimensions o f the subdomain to be c l i p p e d

c l ipp ing window = ((120 , 160) , ( 34 . 25 , 38) )

# The c l i p p e d subdomain s t o r ed in a Rela t iveOrbi tKS ins tance

c l i p p i n g r p o = c l i p ( i n t e g r a t e d t r a j e c t o r y , c l ipping window ,

c l i p p i n g c l a s s=RelativeOrbitKS )

Listing 5.5: Clipping from large spatiotemporal trajectory

from orb i thunte r import *

i n t e g r a t e d t r a j e c t o r y = read h5 ( ’ Orb i tKS tra j ec to ry . h5 ’ )

c l ipp ing window = ((120 , 160) , ( 34 . 25 , 38) )

c l i p p i n g = c l i p ( i n t e g r a t e d t r a j e c t o r y , c l ipping window ,

c l i p p i n g c l a s s=RelativeOrbitKS )
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Listing 5.6: Tile and glue

from orb i thunte r import *

import numpy as np

# Load the d e f a u l t t i l e s e t

t i l i n g d i c t i o n a r y = r e ad f p o s e t ( )

# Create a random symbo l i c array

np . random . seed (0 )

symbol array = (3*np . random . rand (5 , 5) ) . astype ( int )

# Convert symbo l i c array in t o array o f o r b i t s

a r r a y o f o r b i t i n s t a n c e s = np . array ( [ t i l i n g d i c t i o n a r y [ symbol ] for

symbol in symbol array . r av e l ( ) ]

) . reshape (∗ symbol array . shape )

# Glue the array o f o r b i t s , r e s u l t i n g in Relat iveOrbi tKS ins tance

g lued rpo = glue ( a r r a y o f o r b i t i n s t a n c e s , RelativeOrbitKS ,

s t r i pw i s e=True , g l u i n g o rd e r =(1 ,0) )

# Use t i l e ins tead , t a k e s symbols and d i c t as input

t i l e d r p o = t i l e ( symbol array , t i l i n g d i c t i o n a r y , RelativeOrbitKS ,

s t r i pw i s e=True , g l u i n g o rd e r =(1 ,0) )
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Listing 5.7: Continuation

from orb i thunte r import *

# Load the d e f a u l t t i l e s e t

example orb i t = OrbitKS (N=32, M=32)

# Try to converge o r b i t on a t i l e wi th l a r g e r time ex t en t

l a r g e r T o r b i t = d imens ion cont inuat ion ( example orb i t ,

example orb i t .T + 1 . 0 ,

ax i s =0, s t e p s i z e =0.5)

# Try to inc rea se i t s d i s c r e t i z a t i o n s i z e , save the in t e rmed ia t e s

# Note t ha t the prev ious opera t ion might have f a i l e d comple te ly ,

# or at some in t e rmed ia t e po in t between T and T+1.

l a rger NM orb i t = d i s c r e t i z a t i o n c o n t i n u a t i o n ( l a r g e r T o rb i t ,

(64 , 64) , c y c l e=True )

5.2 Generalization to other equations

Due to the modularity property, inclusion of new equations can be accomplished by devel-

oping and including small portions of code at a time. The following serves as a guideline for

the development of these new modules; a process which takes a surprisingly small amount

of work.

The general process is as follows: first, develop methods to parse input and initialize the

set of attributes necessary to fully describe an orbit instance. Next, define the transform

methods and numerical operations required to evaluate the differential algebraic equations,

matrix-vector products and potentially the Jacobian matrix depending on the numerical

method desired. It is recommended to pause development and test the performance of the

code at this point; visualization is the recommended method for this testing as it allows

quick interpretation of results.If the numerical optimization is providing valid results and is
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relatively efficient then the clipping, continuation and gluing methods are viable. Regarding

naming conventions; the documentation and naming conventions should follow the other

orbithunter modules; the base class for a new equation should consist of ‘Orbit’ followed

by an abbreviated equation name, i.e. OrbitKS. The names of all classes and subclasses

should use ‘CamelCase’ and represent the symmetry without being overly verbose. For

example, RelativeOrbitKS is used instead of RelativePeriodicOrbitKS; everything is

periodic hence the redundant verbiage can be removed.

The basic attributes which required for Orbit instances are the ‘state’, ‘basis’ and

‘parameters’ attributes. The ‘state’ attribute contains all state information in the basis

defined by the ‘basis’ attribute. Even for discrete systems where it does not quite make sense,

the default basis is ‘field’. Likewise, ‘parameters’ contain all parameters required to define

the orbit. In other words, the required variables are those which are required to define the

state vector (11). Parsing the input is performed by the parse state, parse parameters

methods. The underscore prefix is simply a python convention indicating the function is only

intended for internal use. The state parsing determines the dimensionality of the collocation

grid from a state provided as a NumPy array and the basis it is in. Likewise, the parameter

parsing essentially validates the values provided. Lastly, the random initial condition

method generates a state when none is provided; clearly if we do not have a state then we

cannot do anything else. Other requirements are the somewhat unaesthetic book-keeping

variables, field shape, dimensions, parameter labels, dimension labels. The first two

are properties, the second are static methods; that means they do not need to be provided

to instantiate an orbit, but they do need to be defined for the class. In order, these return

the shape of the collocation grid, the tile dimensions (i.e. subset of parameters), the string

labels given to the parameters and dimensions, respectively.

Once an orbit instance can be properly initialized, the next step is to develop the neces-

sary transforms, handled by the transform method. This method is a wrapper for all possi-

ble transformations, i.e. all possible initial and final bases. The actual transforms themselves

are written by the user and can be named whatever the user desires. The recommended

approach is to write the transforms themselves as internal methods (underscore prefix) and
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to label them by the dimensions, e.g. space transform and inv space transform for the

Kuramoto-Sivashinsky equation. Orbithunter does not require the transforms to be writ-

ten for each dimension individually, rather, discrete symmetries and their selection rules

typically require this decomposition into 1-D transforms.

The output of the transform method is an orbit instance whose state is in the new

basis, specified by the keyword argument ‘to’; e.g. orbit.transform(to=’modes’). The

only basis expected by orbithunter is the ‘field’ basis, as that is the basis in which the data

is saved.

The next step is to develop the requirements of the numerical optimization methods.

The orbithunter philosophy is to write general expressions in the base equation class, e.g.

OrbitKS, in terms of symmetry specific components. An example is given in terms of

ShiftReflectionOrbitKS and AntisymmetricOrbitKS and the evaluation of the differen-

tial algebraic equations (83). These two subclasses have equations which share the same

form; it is only the selection rules which are different. This affects differentiation and Fourier

transform methods, however, regardless of the selection rules spatial differentiation is still

performed by multiplication by spatial frequencies. In other words, the dae method can be

written in terms of general differentiation methods, and likewise the differentiation meth-

ods can be written generally as well, the only difference we can write the spatial derivative

functions generally, and delegate the specifics to the array of spatial frequencies. This is

very beneficial, there is only a need to rewrite the functions affected by selection rules as

opposed to all functions.

The methods required for optimization are the differential algebraic equations, the cost

function and the corresponding derivatives. dae, matvec, rmatvec, jacobian, state vector,

from numpy array, residual, cost function gradient. The dae method returns an or-

bit instance whose state is the evaluation of the differential algebraic equations. The

matvec and rmatvec methods both return matrix-vector products in the form of orbit

instances. The difference is that the former uses the Jacobian J, the latter, adjoint Jaco-

bian. The names of these methods is motivated by SciPy linear algebra conventions. The

jacobian method returns the Jacobian matrix (93) as a two dimensional NumPy array.
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The state vector method simply returns the current state and parameters in their vector

representation (11). The residual returns a float whose value is the given by (19) and finally

cost function gradient returns an orbit instance containing the matrix-vector product

of adjoint Jacobian and differential algebraic equations; in other words, the adjoint descent

direction. The method from numpy array parses the state vectors in NumPy array format

into orbit instances, taking constraints into account.

For clipping, the only extra requirements are the ability to reference the tile dimensions

in plotting and non-plotting units (which of course may be the same); all other operations

utilize the physical field basis and slices of the corresponding NumPy array.

For gluing, the actual concatenation of the orbit states is handled by NumPy. The

extra requirement consists solely of the method glue parameters. This function simply

returns the dimensions of the glued tile, given the dimensions of the constituent orbits.

The constituents’ dimensions are provided as the tuple of zipped (Python built-in) val-

ues, i.e. ((T1, T2, ...), (L1, L2, ...)). The zipping is handled in the gluing function itself;

glue parameters need only be able to parse this form of data.

Lastly, the continuation functions require the ability to constrain the various dimensions,

i.e. an attribute called constraints which contains a dictionary of booleans, and a method

constrain which changes the values from false to true when the specified axis is to be

constrained.

The following functions are not technically required, but likely necessary for gluing

and clipping to function properly. The functions include plot, reshape, and rescale.

Visualization is very useful for checking results; it can be less than straight forward in higher

dimensions, however. Accommodation of fundamental domains is also recommended, but

often times plotting the full solution is acceptable. Reshaping is (typically) necessary for

clipping and gluing. The reshape method requires pad and truncate methods, which

handle rediscretization by zero padding and truncation respectively. Rescaling has been

found to be useful but is definitely the least important of these three methods.

To recap, the spatiotemporal numerical codes have been bundled into a computational

Python package called orbithunter. The goal of this package is to make these spatiotemporal
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techniques accessible to all and also create a framework which allows for easy generalization

of these techniques to other equations. Examples of the main techniques such as clipping,

gluing, continuation, etc. are given in sect. 5.1. Likewise, a small walk for how to gener-

alize orbithunter to other equations is provided in sect. 5.2. The techniques, results, and

computational codes have all been detailed; our last endeavor is to come to a conclusion

and discuss future work.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

We have detailed a spatiotemporal formulation of turbulence which treats all continuous

dimensions with translational invariance equally and explains spatiotemporal solutions as

collections of fundamental orbits. By transforming the Kuramoto-Sivashinsky equation (4)

to a spatiotemporal Fourier mode basis (83) and solving the corresponding optimization

problem (19) sect. 3.1, we were able to create a collection of orbits with varying sizes and

symmetries. Once these solutions were found, the new spatiotemporal techniques devel-

oped by this work can be applied. These new techniques allow us to extract small orbits

from larger orbits, denoted ‘clipping’, developed in sect. 3.3 and build larger orbits from

by combining smaller orbits, denoted ‘gluing’, in sect. 3.5. The combination of these two

methods enables an algorithmic way of building up or breaking down solutions, providing

access to any tile size, theoretically. In other words, using these techniques have granted

us the opportunity to explore the space of solutions. Both of these techniques rely on

the robustness and efficiency of the optimization methods; therefore improvements should

always be searched for. Although the symbolic dynamics has yet to be formalized, the

combination of these techniques and methods provides a numerical foundation with which

to investigate. Specifically, by gluing members of the three continuous families of funda-

mental orbits we can begin to probe the grammar by searching for admissible orbits. Before

we can do so, however, we need to ensure that we have collected all fundamental orbits.

While we have acted so far as if there are only three fundamental orbit families, there are

examples of patterns which either represent new fundamental orbits or are some type of

emergent phenomenon resulting from certain spatiotemporal configurations; this has not

yet been determined. This is concerning, as we know from the work on cycle expansions

that short cycles have the greatest importance [19]; if we miss any of these we will not be

able to progress. Two examples are displayed in figure 55, wherein a higher order ‘defect’
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and an ensemble of streaks into some larger coherent structure are displayed. Likewise, it is

unknown if the local spatial shift velocities which occur in large simulations such as figure 25

manifest due to shadowing of different defect family members, or if some new fundamental

orbit is required. How do we test whether or not all important fundamental orbits have

been captured? One method, which currently can only be approached approximately, is

to reconstruct a very large spatiotemporal simulation using gluing. This would likely be a

much more involved construction than, for example, the huge tiling of figure 54. The idea

is to cover the large trajectory with the set of fundamental orbits; any large spatiotemporal

regions which cannot be covered would imply the existence of currently uncollected funda-

mental orbits. Not knowing whether or not we have captured all fundamental orbits begs

the question; what quantitatively makes the fundamental orbits, fundamental? We previ-

ously argued that it is the ‘irreducibility’ of minimal spatiotemporal orbits which constitute

this set. However, even the defect, streak and wiggle fundamental orbits can be decom-

posed into combinations of streaks and symmetry operations; quite literally, as displayed

in figure 56. In other words, the fundamental orbits may need a more in depth description

in terms of symmetry or perhaps even symmetry breaking; the spatiotemporal wiggle is

a 2-cell streak solution which has broken temporal translation invariance. Likewise, the

spatiotemporal defect might be the 2-cell streak solution with broken time translational

invariance and broken spatial reflection symmetry.

In regards to the computational scaling of spatiotemporal methods, they should capi-

talize on advances in computing, specifically the increase in number of computational cores

and parallel computing [139], better than the dynamical systems counterparts. Our spa-

tiotemporal formulation is in the same spirit but unfortunately more work is required as the

current spectral methods are global; the division into subdomains that Wang et al. [139]

use is not afforded to us. More specifically, their idea is that by subdividing spatiotemporal

domains into subdomains, the equations being solved locally on each subdomain, in parallel,

and then combined together at their boundaries. The first idea that comes to mind is to

use Chebyshev spectral methods with different boundary conditions [128].

The most important open question is how to incorporate continuous families into the
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Figure 55: Potential fundamental orbits, (a)-(b) higher-order defects, (c) ‘streak patch’.
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Figure 56: (a)-(b) Initial orbit guesses constructed from only streaks and symmetry
operations, (c)-(d) the orbits they converge to, respectively.
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proposed 2-dimensional spatiotemporal symbolic represention. The existence of continuous

families makes the determination of the symbolic represention’s grammar particularly dif-

ficult, as determining the grammar is ultimately an empirical process in this context. The

admissibility of every periodic orbit is dependent upon the convergence of the optimization

problem, which in turn depends on the quality of the guess orbit constructed via gluing as

well as the employed numerical algorithm. The former is directly dependent upon which

fundamental orbit family members are used in the construction of the initial guess orbit. In

either case, if numerically the guess does not converge, but the orbit is admissible, we have

a false negative. The course of action is to then improve the optimization and gluing meth-

ods, with respect to their frequency of convergence. The most obvious gluing improvements

include ‘proper’ usage of the fundamental orbit continuous families and group orbits. As

previously mentioned, continuous families will need to be incorporated into the symbolic

dynamics, therefore they should clearly be included in the gluing process. In other words,

instead of using three static representatives of the families we would need to reference a

sample of family members and their group orbits during the gluing. The goal being to min-

imize discontinuities at the gluing boundaries as well as differences between tile dimensions.

The problem with such an implementation is that the number of combinations of family

members and their group orbits quickly grows out of hand, making the gluing much more

complex than the original optimization problem, without knowing if this is even required.

Related to the inclusion of the group orbits during gluing; historically, when performing

simulations on a single spatially periodic domain, Galilean invariance has been invoked to

constrain the mean value of the velocity field to zero [24, 67]. This does not mean, how-

ever, that the local Galilean velocity should be zero; This detail could be included in each

gluing such that the local Galilean velocity of each fundamental orbit would be included

as a free parameter. This adds yet another factor into the already complicated gluing pro-

cess; however, by doing so we can theoretically construct better guesses by increasing the

agreement between fundamental orbits at their boundaries. In regards to improving the

numerical methods, searching for different algorithms, improving current algorithms, and

investigating the properties of the systems of equations are all possible avenues of study.
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It should be no surprise that the other type of error, false positives also occur; in other

words, numerical convergence does not always indicate admissibility; why? Imagine that

we construct a spatiotemporal configuration, assumed to be a spatiotemporal orbit without

symmetry. Then imagine that this converges to an equilibrium solution. Clearly, the original

spatiotemporal configuration is not represented by the converged solution. Therefore, in

addition to convergence we require some other means of validating the results; currently

this is limited to visual inspection. Visual inspection is not viable due to how poorly it

scales with the exponentially growing number of spatiotemporal configurations. The two

primary ideas for automating this validation process are convolutional neural networks and

persistent homology, both of which are to be included in the computational codes.

In regards to other equations, the generalization of orbithunter was discussed in chap-

ter 5. By virtue of this framework, this should take considerably less effort for others, as the

clipping, gluing, and numerical optimization methods have been written in a manner as to

be agnostic of equation. Therefore, one of the main goals is to simply advertise and attract

collaborators to either work on the Kuramoto-Sivashinsky equation or on new equations.

Currently, the next equation planned is Kolmogorov flow with periodic boundary equations;

some general examples of Kolmogorov flow are refs. [83, 122]. With this, our exploration

into a new spatiotemporal theory, and its computational successes comes to a close. Thank

you for reading this work.
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APPENDIX A

NUMERICAL EXTRAS

The following serves as a collection of small numerical details and definitions. Specifically,

to perform the tensor and matrix-vector based calculations two operations are required:

element-wise multiplication or element-wise product, and the Kronecker product between

two tensors.

The element-wise product goes by many names such as component-wise product, Schur

product, or Hadamard product [20, 121]. Typically these are defined and utilized with

matrices, but the generalization of this operation to tensors is straightforward. Given a pair

of tensors with dimensions j, k; the element-wise product is represented by the operator ·

and is defined as
m11 . . . m1k

...
. . .

...

mj1 . . . mjk

 ·

p11 . . . p1k

...
. . .

...

pj1 . . . pjk

 =


m11p11 . . . m1kp1k

...
. . .

...

mj1pj1 . . . mjkpjk

 . (126)

The product (126) is only well defined for tensors with the same number of elements;

element-wise multiplication is only defined for orbits whose tiles’ discretizations have the

same number of collocation points. Stated differently, the product u · u′ implies u(tn, xm) ·

u′(t′n, x
′
m), however in order to be defined mathematically we only require that N = N ′,M =

M ′. This is not the same as requiring the tile dimensions (T,L) to be identical; although

this is nearly always the case. The second operation is the Kronecker product ⊗ between

two matrices. For two matrices A,B of dimensions N × N (for simplicity) the Kronecker

product results in a N2 ×N2 via multiplication of each element of A by the matrix B

A⊗B =


a11B . . . a1kB

...
. . .

...

aj1B . . . ajkB

 . (127)
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The Kronecker product is used in chapter 2 to generalize the finite matrix representation

of a spatial operator or temporal operator to spacetime, via Kronecker product with the

appropriately sized identity matrix. Put very simply, the ‘generalization to spacetime’ just

means creating a block diagonal matrix whose blocks are copies of the original operator

that acts on either on a single space or time point.

The second important numerical detail is why I felt justified to use a fully aliased

pseudospectral method ref. [15]. My argument is that while aliasing can be devastating for

temporal evolution due to the contamination of the higher Fourier mode components by

their aliases, (k′ = k +N) where N is the number of collocation points, or discrete period,

the spatiotemporal problem has no dynamics and so the notion of ‘propagation of error’ does

not exist. To support these claims, I looked towards the comparison of aliased and de-aliased

calculations of the periodic, multidimensional Navier-stokes equations. Useful discussions

may be found in [41, 68, 91, 100]. All of these authors conclude that with sufficient

resolution, aliased calculations are quite acceptable. This is not without pushback; Moser,

Moin and Leonard caution against aliased calculations [92]. They present a single, poorly

resolved, aliased calculation of Taylor-Couette flow and compare it with three de-aliased

calculations, one poorly resolved, one moderately resolved, and one well resolved. Their

single aliased result is certainly much worse than their well resolved, de-aliased case, but

their poorly resolved, de-aliased case is no better than the aliased one. The interpretation of

these results is that any computation needs to have sufficient resolution. My interpretation

is that because they did not include a high resolution aliased calculation, their claims are

moot.

More motivation from Canuto, Hussaini, Quateroni and Zhang [15] are their fig. 7.1

and fig. 7.4, where the fully aliased but more resolved terms seem to beat out even the

dealiased computations in energy conservation of the Korteweg-de Vries (KdV) equation

for fig. 7.1. Their fig. 7.4 is a reproduction of the effects of aliasing in the transition to

turbulence in channel flow by Krist and Zang [73]. Only the high resolution (aliased) seems

to be physically representative of the actual solution, and even the dealiased computation

on a coarser discretization, while better than an aliased computation of same dimension,
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still does not prevent artificial oscillations. Currently the status of the spatiotemporal

formulation simply needs tools for computation of orbits within specified tolerances. The

discretization continuation tool included in orbithunter was added for this exact rea-

son; if there is ever the need for very accurate computation of a specific orbit, then the

discretization dimension can be increased (theoretically) until the orbit is ‘fully resolved’ in

terms of the convergence of Fourier modes. This flexibility in dimensionality has not been

thoroughly tested, unfortunately, and so it is unknown whether the results from figure 17

generalize.

Regarding the discretization sizes of orbit guesses; while not included in orbithunter, it

would be possible to survey the space of discretization sizes via interpolation, to find the

‘best’ discretization size, determined by the minimal residual value (pre-optimization). This

process had been tested in the past and went under the name ‘residual guided rediscretiza-

tion’, however, no conclusions were ever made. Likewise, the same idea can be applied to

converged orbits in order to compress orbit information into a minimal number of modes,

the idea being to attempt to nip computational memory problems in the bud by finding

the smallest dimensional representations of each orbit. The issue with this method is that

it currently requires visual inspection of each result to ensure the same orbit is still being

converged to.

One aspect that must be taken into consideration whenever a linear system is being

solved numerically is whether or not the results are accurate. One quantitative measure

of this is the condition number of the corresponding matrix [129]. The condition number

is calculated by taking the ratio of the largest and smallest singular values computed by

singular value decomposition. Broadly speaking, the condition number indicates how sen-

sitive the system is to error or perturbation. If the condition number large the system is

said to be “ill-conditioned” which in turn greatly affects the accuracy of solutions. For

chaotic initial value problems the magnitude of the condition number depends on the max-

imal Lyapunov exponent [140]. For our purposes, the quality of computational results is

quantified by the residual of the cost function, but this does not mean that the numerical

methods cannot be improved. For the newly implemented iterative methods, this can be
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accomplished by applying what is known as preconditioning [108]. Deciding on a specific

preconditioner to use is a dark art, but some general guidelines are that the preconditioner

should not be expensive to compute and it should approximately equal the inverse of the

ill-conditioned linear operator. As mentioned before, preconditioners should be cheap and

rescale the components in such a manner as to be of the same magnitude [97]. The stiffness

of the Kuramoto-Sivashinsky equation

rfks05com comes from the linear term; therefore the approximate inverse of the linear term

is used, such that the preconditioning can be represented by the matrix

P = diag
(

(|ωj|+ q2
k + q4

k)−1
)
. (128)

Although written in matrix form, the form of (128) allows it to be computed using element-

wise multiplication. Its inclusion (or at least the specific implementation here) can be

described in either a formal or practical sense. Introducing this into the definition of the

cost function (19) is akin to changing the norm used in computation of the residual. In

addition to rescaling the modes, it can also be useful to rescale the changes to parameters,

typically chosen to satisfy

P · δT =
δT

T
,

P · δL =
δL

L4 . (129)

The preconditioning given by (129) is mainly an attempt to imitate the effect of (128) for

the parameters (L, T).

When and why is this preconditioning used? Preconditioning of the form given by (128)

and (129) is typically only ever applied to random initial conditions created with strategies

that do not damp the higher order spatial frequency modes. In our experience, the behavior

of such initial conditions is that the changes to the spatial dimension become absurdly large;

far too large to be properly resolved by the number of modes. Therefore, to prevent this

rapid ‘expansion’, preconditioning is applied simply as a means of handling ‘poor’ initial

conditions.

Other set of operations used in the derivation of the matrix form of the Jacobian, in

the context of the elementwise product, are ‘direct-matrix calculus’ operations [20]. For
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an arbitrary matrix A (independent of ũ), functions F(ũ),G(ũ), the relevant chain and

product rules are

∂

∂ũ
(Aũ) = A ,

∂

∂ũ
(F(ũ) ·G(ũ)) = diag[G(ũ)]

∂F(ũ)

∂ũ
+ diag[F(ũ)]

∂G(ũ)

∂ũ
,

∂

∂ũ
(AF(ũ)) = A

∂F(ũ)

∂ũ
. (130)

It can be helpful to derive expressions using matrix calculus operations (130) such as to

create a second expression with which to compare to.

In regards to computational memory requirements of the spatiotemporal method; demon-

strated in figure 17, orbits can be compressed into a small number of modes. Other previous

studies that used spatiotemporal discretizations (fundamentally different in nature, how-

ever) utilized finite differences and therefore required upwards of 512 to 1024 discrete time

points, for short orbits [75]; clearly an unscalable requirement. Orbits of the same temporal

period (but not the same orbit) can sometimes be represented with as few as 16 temporal

modes. This reduction in the number of extra computational degree of freedom is how we

argue that these methods have a chance to be extended to higher dimensions. As a prelimi-

nary test of these ideas, one of the shortest periodic orbits from plane-Couette flow [46] was

discretized using 16 time points and then a spatiotemporal Fourier transform was applied.

Inspection of the magnitude of the spatiotemporal modes showed that while the discretiza-

tion had increased by a factor of 16, the number of modes above machine precision 10−14 in

magnitude was only equal to one quarter of this number. Further investigation is required,

but this seems to demonstrate that the increase in computational memory requirements

may not be nearly as bad as suspected.

One last comment regarding discretizations; can these coarse discretizations be com-

pared to results from dynamical systems’ formulation? The answer is yes; using interpola-

tion, a converged orbit had its collocation grid increased in size from [64, 32] to [4096, 512].

After a relatively small number of adjoint descent steps, a spatial strip was taken from the

approximate solution and integrated in time. This integration fully reproduced the high-

resolution orbit approximation within some errors. The orbit chosen had temporal period
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on order of T = 80. This demonstrates that the aliased, coarse simulations and numerical

results are valid and at least slightly protected from others criticisms.
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APPENDIX B

DISCRETE LAGRANGIAN METHODS

The general benefit of the weak formulation is that by using integration by parts the highest

order derivative can be made to be two. the differentiability requirements on u from fourth

to second order. This can be of great benefit in particular circumstances where shocks and

compressibility play a role. Applying integration by parts to (13), the weak form of the

Lagrangian density can be written

L =
1

2
(vut − uvt)− uxvx + uxxvxx +

u

3
(uvx − vux) , (131)

whose Euler-Lagrange equations result in the same Euler-Lagrange equations as (13); by

virtue of this property, we can use (131) to explore possible non-trivial continuous symme-

tries of the spatiotemporal formulation [99]. The problem is that the machinery is typically

applied in the context of dynamical systems; not our spatiotemporal formulation. Specif-

ically, the dynamics of λ play a key role in relating symmetries of the formal Lagrangian

to conservation laws satisfied by u. Ibragimov [56, 57, 58] developed conservation laws of

arbitrary differential equations by extending the Noether theorem to formal Lagrangians for

the extended system (u, λ), which can be restricted to the original system provided that it is

possible to express the solution of the adjoint variable λ in terms of u; which if interpreted

correctly, is covered by the choice λ = f . Others have also applied such techniques to dissi-

pative equations [142]. Motivated by continuous families and our variational formulation,

these techniques were applied to our system; however, no conclusive or useful results were

ever derived. While this is the case, these derivations are included for posterity purposes,

so that others may benefit or be able to correctly use them.

The main idea, and reason why we are not sure if these computations are correct, is

that it requires the Euler-Lagrange equations (16) to be at least ‘nonlinearly self-adjoint’.

If the substitution λ = u turns an adjoint equation into the original then the equation is
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said to be self adjoint. Other than self-adjointness there are also the notions of quasi-self

adjoint equations and nonlinearly adjoint equations refs. [59, 60, 61, 142]. The substitutions

that define quasi self-adjoint equations and nonlinearly self-adjoint equations are functions

v = ψ(u) and v = ψ(xi, u, u(n)) that transform the adjoint equation into (4) (the term

u(n) represents all derivatives up to order n). Therefore, making the substitution λ =

ψ(xi, u, u(n)) and solving the set of equations is similar to the determining equations which

produced the generators of the Lie algebra of infinitesimal symmetries.

Noether’s Theorem tells us that symmetries impart the Euler-Lagrange equations with

conservation laws [98]; therefore, if we can derive new non-trivial symmetries of our spa-

tiotemporal system then a conservation law can be derived, perhaps explaining our contin-

uous families. We already know the equations with which we intend to work with so we

may begin after introducing some notation. In order to derive conserved quantities using

the machinery of [57] we first need to find the vector fields that span the Lie algebra of

infinitesimal symmetries of our equations. Our description follows Theorem 2.36 from [99]

in terms of notation.

To begin, take an arbitrary vector field defined on the space X × U which contains the

independent variables xi and dependent variables uα such that

v = ξi(xi, uα)
∂

∂xi
+ ψα(xi, uα)

∂

∂uα
, (132)

where summation is implied by repeated indices. To create a vector field applicable to

our equations, we need to “prolong” (132) or perform a “jet prolongation” [86] to the

jet space of the same order as our equations, n. Informally this just means extending the

definition (132) to the same order as the equations being studied. The general formula for

the prolongation to the nth jet bundle is

pr(n)v = v + ψJα
∂

∂uαJ
, (133)

where the coefficients ψJα are given by

ψJα(x, u(n) = DJ(ψα − ξiuαi ) + ξiuαJ,i. (134)

We can now begin to apply this to our equation of interest, the Kuramoto-Sivashinsky
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equation, (4). Starting with the prolongation of the general vector field; we need the fourth

prolongation which seems like a lot of work (there is a coefficient for every combination of

partial derivatives, and each higher order coefficient becomes more involved due to increased

numbers of differentiation operations). Luckily, we already know that we are going to apply

the vector field to the Kuramoto-Sivashinsky equation such that instead of calculating all

2 + 4 + 8 + 16 jet prolongation coefficients (all combinations of t, x derivatives of order

one, two, three and four) we only need the coefficients which accompany vectors ∂
∂uJ

which

appear in the Kuramoto-Sivashinsky equation. Namely, {ψJ} = {ψt, ψx, ψxx, ψxxxx}, which

in turn creates the vector field specific to the Kuramoto-Sivashinsky equation

pr v(4) = ε(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ ψ(x, t, u)

∂

∂u
+ ψt(x, t, u(1))

∂

∂ut

+ ψx(x, t, u(1))
∂

∂ux
+ ψxx(x, t, u(2))

∂

∂uxx
+ ψxxxx(x, t, u(4))

∂

∂uxxxx
. (135)

All other higher order terms will annihilate when acting on the Kuramoto-Sivashinsky

equation. Note that the higher the “order” of the coefficient, the higher the order of the jet

bundle that the coefficients depend on. Now that we have the general form of the vector

field we can begin to derive the infinitesimal generators which span the Lie algebra. To

accomplish this, we will derive the determining equations which are produced by applying

(132) to the system of differential equations and equating to zero, that is

pr v(4)(G(u(α)(x, t), u
(α)
(1) (x, t), . . . , u

(α)
(n)(x, t))) = 0 . (136)

Performing this operation yields

ψt + ψxx + ψxxxx + uψx + ψux = 0 . (137)

We finally are forced to derive the coefficients ψJ and to include as many details as

possible we will write the exact formulas needed to derive them as well as the long form
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expressions that they are equal to

ψt = Dt(ψ(x, t, u)− ε(x, t, u)ux − τ(x, t, u)ut) + τ(x, t, u)utt+ ε(x, t, u)uxt

ψx = Dx(ψ(x, t, u)− ε(x, t, u)ux − τ(x, t, u)ut) + τ(x, t, u)utx+ ε(x, t, u)uxx

ψxx = D2
x(ψ(x, t, u)− ε(x, t, u)ux − τ(x, t, u)ut) + τ(x, t, u)utxx + ε(x, t, u)uxxx

ψxxxx = D4
x(ψ(x, t, u)− ε(x, t, u)ux − τ(x, t, u)ut) + τ(x, t, u)utxxx + ε(x, t, u)uxxxx , (138)

the long form expressions from each of these are given by substitution into (139). Separat-

ing the terms by coefficients of monomials yields the determining equations, as previously

mentioned
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ψt = u2
t (−τu)− τtut − utuxεu − εtux + utψu + ψt

ψx = −utτuux − utτx + u2
x (−εu)− uxεx + uxψu + ψx

ψxx = −utu2
xτuu − 2utuxτxu − utτuuxx

− utτxx + u3
x (−εuu) + u2

xψuu

− 2τuuxuxt − 2uxtτx − 2u2
xεxu

+ 2uxψxu − 3uxuxxεu − uxεxx

− 2uxxεx + uxxψu + ψxx

ψxxxx = −4utuxuxxxτuu − 3utu
2
xxτuu − 6utu

2
xuxxτuuu − utu4

xτuuuu

− 12utuxuxxτxuu − 4utu
3
xτxuuu − 6utu

2
xτxxuu − 4utuxτxxxu − 4utuxxxτxu

− 6utuxxτxxu − utτuuxxxx − utτxxxx − 12uxuxtuxxτuu

− 15uxu
2
xxεuu − 6u2

xuxxtτuu − 10u2
xuxxxεuu + 4uxuxxxψuu

+ 3u2
xxψuu − 4u3

xuxtτuuu − 10u3
xuxxεuuu + 6u2

xuxxψuuu

+ u5
x (−εuuuu) + u4

xψuuuu − 12u2
xuxtτxuu − 12uxuxtτxxu

− 12uxuxxtτxu − 16uxuxxxεxu − 24u2
xuxxεxuu + 12uxuxxψxuu

− 4u4
xεxuuu + 4u3

xψxuuu − 18uxuxxεxxu − 6u3
xεxxuu + 6u2

xψxxuu

− 4τuuxuxxxt − 4uxxxtτx − 4u2
xεxxxu + 4uxψxxxu − 5uxuxxxxεu − uxεxxxx

− 4uxxxxεx − 12uxtuxxτxu − 4τuuxtuxxx − 4uxtτxxx

− 12u2
xxεxu + 4uxxxψxu − 6τuuxxuxxt − 6uxxtτxx

+ 6uxxψxxu − 10uxxuxxxεu − 6uxxxεxx − 4uxxεxxx

+ uxxxxψu + ψxxxx (139)
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ψt + ψxx + ψxxxx = 0

−4τx = 0

−6τxx = 0

−2τx − 4τxxx = 0

−4εx + τt + τxx + τxxxx = 0

4ψxu − 6εxx = 0

−4τu = 0

4τxu = 0

−2εx − 4εxxx + τt + τxx + τxxxx + 6ψxxu = 0

−6τu = 0

−12τxu = 0

6τxxu = 0

4τxu − 10εu = 0

−12εxu + 6τxxu + 3ψuu = 0

3τuu = 0

3τuu = 0

ψ − εt − εxx − εxxxx + 2ψxu + 4ψxxxu = 0

−4τu = 0

−12τxu = 0

−2τu − 12τxxu = 0

−4εu + 2τxu + 4τxxxu = 0

4ψuu − 16εxu = 0

4τuu = 0

−2εu − 18εxxu + 2τxu + 4τxxxu + 12ψxuu = 0

−12τuu = 0

12τxuu = 0

4τuu = 0

12τxuu − 15εuu = 0

−2εxu − 4εxxxu + ψuu + 6ψxxuu = 0

−6τuu = 0

−12τxuu = 0

(140)
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τuu + 6τxxuu = 0

−10εuu = 0

−24εxuu + τuu + 6τxxuu + 6ψuuu = 0

6τuuu = 0

6τuuu = 0

−εuu − 6εxxuu + 4ψxuuu = 0

−4τuuu = 0

4τxuuu = 0

4τxuuu − 10εuuu = 0

ψuuuu − 4εxuuu = 0

τuuuu = 0

τuuuu = 0

−εuuuu = 0

ψx = 0

τx = 0

τx = 0

−εx + τt + τxx + τxxxx = 0

4τxu = 0

6τxxu = 0

3τuu = 0

2τxu + 4τxxxu = 0

4τuu = 0

12τxuu = 0

τuu + 6τxxuu = 0

6τuuu = 0

4τxuuu = 0

τuuuu = 0

τx = 0

(141)

While initially intimidating, these equations can be solved by noticing the lower order

equations such as τx = τu = 0 which means that τ can only be a function of t. Following

this reasoning we find that in fact

τ(x, t, u) = τ = c1

ε(x, t, u) = ε(t) = c3t+ c1

ψ(x, t, u) = ψ = c3 , (142)

such that the Lie algebra of infinitesimal symmetries is spanned by

v1 = ∂x

v2 = ∂t

v3 = t∂x + ∂u , (143)
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which are the generators of space and time translations, and Galilean transformations.

This is not surprising, as these symmetries have been previously described [12]. The reason

why this calculation was pursued in the first place was to see if there were any “hidden”

continuous symmetries afforded by a spatiotemporal formulation that were not present when

the problem was viewed as a dynamical system. This is true for discrete symmetries, but

unfortunately not so for continuous symmetries. To carry the calculation through to finality

we need to know the prolongations of (143) and their extensions to the adjoint variables,

as the Lie algebra needs to be extended to account for both Euler-Lagrange equations.

The prolongations of (143) result in

pr v1 = y1 = ∂x

pr v2 = y2 = ∂t

pr v3 = y3 = ∂x + ∂u − ux∂ut . (144)

We can now derive the extended versions of (144) such that we can apply them to the

formal Lagrangian (131). Once again we deploy the machinery of Ibragimov to extend

(144) to the adjoint variables. Unfortunately it seems that the symmetries were too simple

to actually have extensions to the adjoint variables, but we can still go forward with the

conservation law calculations regardless. Both Ibragimov [57] and Olver [99] work through

the proof that there is a conserved vector (as Ibragimov names it) such that its divergence

provides a conservation law (technically infinite number of conservation laws because they

are equations involving PDE solutions). The components of the conserved vector (one for

each independent variable) are given by

Ci = ξiL+Wα[
∂L
∂uαi

−Dj
∂L
∂uαij

+DjDk
∂L
∂uαijk

−+DjDkDl
∂L
∂uαijkl

]

+ Dj(W
α)[

∂L
∂uαij

−Dk
∂L
∂uαijk

+DkDl
∂L
∂uαijkl

]

+ DjDk(W
α)[

∂L
∂uαijk

−Dl
∂L
∂uαijkl

+DkDj
∂L
∂uαikj

−+DkDjDl
∂L
∂uαikjl

]

+ DjDkDl(W
α)[

∂L
∂uαijkl

] , (145)

where the equation has been extended to include all possible non-zero terms in the context
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of the Kuramoto-Sivashinsky equation, Wα is shorthand for ψα + ξiuαi . Applying this to

our generators yields one unique conservation law which we shall now detail.

For the Galilean transformation generator pr v3 = t∂x+∂u−ux∂ut the components equal

Cx = t ∗ L+W [
∂L
∂ux
−Dx

∂L
∂uxx

−D3
x

∂L
∂uxxxx

]

+ Dx(W )[
∂L
∂uxx

+D2
x

∂L
∂uxxxx

]

+ D2
x(W )[−Dx

∂L
∂uxxxx

]

+ D3
x(W )[

∂L
∂uxxxx

]

Ct = 0 ∗ L+ (1− tux)[
∂L
∂ut

] . (146)

Both expressions simplify to

Cx = t(utv + uxvx + uxvxxx + uxxxvx + uxxvxx) + uv − vx − vxxx

Ct = (1− tux)v , (147)

such that the conservation law is given by the divergence

Dx(Cx) +Dt(C
t) = 0

= vt − vux − uxvtt+ uvx + vux − vxx − vxxxx

+ t(vx(ut + uxx + uxxxx) + ux(vxx + vxxxx) + 2Dx(uxxvxx))

= t(vx(ut + uxx + uxxxx) + ux(−vt + vxx + vxxxx) + 2Dx(uxxvxx))

= 2Dx(uxxvxx) . (148)

This analysis is only relevant if there are non-trivial solutions to the adjoint equation,

because otherwise one does not know how to evaluate (148). One component which may

contain mistakes is the derivation of solutions to the adjoint equation; in this context only

allowed to be constant solutions by virtue of the form of ψ implying that the conserved

vector (148) is unfortunately a trivial conservation law. There are a number of reasons why

we believe this analysis fails to yield anything useful, the most obvious being that the Lie

algebra of infinitesimal symmetries seems too simple to be correct.

We still want a method of analysis for our variational formulation. There are two

avenues of pursuit towards this endeavor. The first is known as Hill’s formula [5]. It
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discusses how the determinant of a finite matrix of the Hessian of an action functional of

a discrete Lagrangian system, can be related to the eigenvalues of the monodromy matrix

corresponding to a critical point of said action functional, which represents a critical point.

Now, how to extend this to our formal Lagrangian, or if it even can be extended, is still

unknown.
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