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Abstract

The present text treats various aspects of the Rossler nonlinear
equation system.

The leading Lyapunov exponent is calculated to clarify the chaotic
behaviour of the system. The exponent is calculated numerically, first,
integrating the equation system directly, and secondly, at the end of
the text, using the periodic orbit theory. Symbolic dynamics includ-
ing kneading theory is applied to find the admissible orbits of the
system. The topological entropy of a return map is calculated using
the topological (-function.
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1 The Rossler System

1.1 Trajectories and Stability

In general a nonlinear system of differential equations is written as,
x = v(x) (1)

such that the tangent vector to the solution curve, the velocity field x, is
equal to the vector field v evaluated at the local value x. The solution
curve to an initial point xg, the flow, is denoted by ¢'(xp) =: x(t). The set
{¢'(x0)|t > 0} is called the orbit or the trajectory starting at xo. Trajectories
in the present text are all found with the application of the fourth order
Runge-Kutta algorithm.

For purposes of chaotic physics it is not convenient to consider solution curves
of initial points individually. Individual points are “non-existing” behind
glasses of finite precision and systems showing noticeable sensitivity on initial
conditions thus are unpredictable over larger time scales. In order to set up
time scales of predictability we extent our considerations to neighborhoods of
initial points, i.e. swarms of surrounding points. In particular the temporal
evolution of the initial point Xy is compared to the evolution of zy perturbed
by an initial infinitesimal displacement 7y, x¢ + 7.

The evolution of the quantity |n(¢)|/|no|, where n(t) := ¢! (x¢ + 10) — ¢*(z0),
is described in terms of Lyapunov exponents. The Lyapunov exponent A is
defined as the limit

A= lim —In
t=oo t |

1, ) o)

For practical purposes we make a little rewriting of the definition. First we
make the following Taylor expansion to linear order

n(t) +x(t) = ¢'(x0 +10) = ¢'(x0) + I*(x0)10 (3)
where J? is the Jacobian matrix,

3, = 200 (@)

X=X0

and see that the linearized neighbourhood changes with the Jacobian,

n(t) = J'(xo)mo (5)



If we now substitute (5) into (2) we obtain the following expression for the
Lyapunov exponent,

1
A = lim-In Jt(xo)ﬂ
= lim ~1Inlg] (Jt)TJtng‘ (6)
t—oo 2t 0
where the normalisation of the 7y is dropped since limy o, —1/t1n |5 = 0

Using the expression above the Lyapunov exponent is easily found once we
know how to integrate the Jacobian matrix numerically. The Jacobian matrix
is easily shown to satisfy the equation,

d t . t : 0 _
) =Dv(x)I'(x),  with 3°(x) = 1 (7)

where (Dv(x))ij = Ov;(x)/0z;. Note that the Jacobian matrix satisfies a
system of equations similarly to the trajectories and therefore is calculated
by the Runge-Kutta algorithm too. For practical purposes we cannot go to
the infinite time limit of (6) therefore attention is paid to the asymptotic

behaviour, i.e. we plot 1/21n |n] (Jt)TJtn0| versus time.

The Lyapunov exponent defined above is associated to the largest absolute
valued eigenvalue of the Jacobian matrix, but actually there is an exponent
for each eigenvalue AL, The largest eigenvalue, however, will be the domi-
nating when the system evolves. This is clarified by the following expansion,
where {uy, ... ,uy} denotes the eigenvectors of the symmetric matrix (Jt)JrJt
and 70 = > o,

B T = 3 Ay
oS e )

where the last approximation is brought about by the asymptotic behav-

ior In |(uz-)T(Jt)TJtuz-| ~ 2)\;t. We see that the largest Lyapunov exponent
dominates the latter sum of (8) as long as 7y is not perpendicular to the
dominating eigen direction.

Below the leading Lyapunov exponent of the Rossler system is found and the
non-leading exponents are found in connection with periodic orbits only.

The Rossler system is given by the following system of coupled non-linear
equations

T = —y—=z

T+ ay
2 = b+z2(r—c
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Figure 1: The Réssler attractor based on one solution curve to the equation system.
The reason why the attractor is approximated by a single trajectory is due to the
assumption that the attractor has a dense set of initial points that brings a generic
trajectory about. A generic trajectory is dense on the attractor.

Note that the system includes one nonlinear term only, the quadratic term
zx, and therefore is one of the simplest systems with chaotic behaviour.
Though the equations are simple much effort is still needed to understand the
underlying dynamics of the system. In the present text the valuesa = b = 0.2
and ¢ = 5.7 are used. These values show by numerically integration that the
system has a strange attractor, i.e. a fractal attractor.

Figure 2 shows cross sections of the Rossler attractor at various angles and
how two initial points are stretched apart and afterwards folded back, similar
to the baker’s map. The stretch and fold property in particular is what causes
the attractor to be fractal.

Figure 3 shows a plot of 1/21n|n] (Jt)TJtn0| versus time, i.e. a plot for esti-
mating the Lyapunov exponent. As the plot shows the temporal dependence
is not exactly a straight line, small oscillations and larger humps appear.
The small oscillations are due to minor variations in the stretching, i.e. the
stretching power fluctuates locally. The larger hump, the sudden fall to a low
level, is caused by the spatial limits of the attractor, two trajectories cannot
separate further than the spatial extent of the attractor and therefore such
a fall is generated when the trajectories suddenly are folded close together.
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Figure 2: The figure shows cross sections in cylindrical coordinate at siz different
angles, where the zy-plane is measured in polar coordinates. The angles relatively
to the z-axis are written as title of the plots. The first plot at 300° shows the
unstretched line - the dough used to knead pastry. As we go through the plots the
dough is stretched (nearby trajectories separate), folded and then compressed back
into a line. The stretch and fold leaves us with a cantor set of surfaces, but since
the compressing in the Rossler system is very effective (crunchy pastry) we cannot
see traces of the cantor set. Note that we cut o little of the graph at 90° since it
extended to 18.5. The leading Lyapunov exponent is a measure of how fast two
nearby trajectories separate, the effectiveness of the stretching.
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Figure 3: Plot used for calculating the Lyapunov exponent of the Réssler attractor.
We see that the almost straight part of the curve turns in to a sudden fall, and
afterwards resumes to increase with an almost linear growth equal to the preceding.
If the graph was continued intervals of growth equal to the Lyapunov exponent and
humps would alternately appear.

The almost straight part of the curve is the part of interest and we therefore
use it as an estimate of the Lyapunov exponent by fitting it with a straight
line. The Lyapunov exponent for the Rossler system assumes the value 0.09
and the positive value makes the attractor unstable, i.e. nearby trajectories
separate.

1.2 Return Maps

We shall now focus on relating the three dimensional flow to a one dimen-
sional map. Such a relation will simplify much of the work on the flow since
maps generally are more accessible, therefore maps are the subject of the
subsequent sections. First step in building up such a relation is to make a
cross section €2 of the flow, in particular we choose the set,

Q@ = {(z,y,2)|x =0,y > 0} (9)

Figure 1 shows that the trajectories are not tangent to €2 (thus the cross
section is called a Poincaré section) and after some time 7, an initial point
y €  will return to Q, ¢™(y) € 2, where the time of return is a function of
y. We can now reduce the flow to a map by the following function fq,

Yn+1 = fﬂ(yn) = ¢Tyn (yn)7 Yns Yn+1 €2 (10)

The function fq is called a return map with respect to €2 . The present €2
is the only cross section used and therefore we omit the subscript €2 on fq.
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Figure 4: Return map on the cross section {(z,y,z)|z =0,y > 0}.

Figure 4 shows the return map for the Rossler system using €2 and ignoring
the z-coordinate. The shape is almost unimodular, i.e.the map has a strictly
increasing branch on an interval [a;c¢), a turning point called the critical
point ¢ and a strictly decreasing branch on (¢;b], but a unimodular map
ought to have the same functional value for a and b. Our return map does
not meet the last criterion. With a little imagination, however, we extend
the left hand, respectively the right hand branch, such that they both reach
the horizontal axis. Our imagination will not change the dynamics of the
system, we rather attach extensions to domains where the system does not
come as long as the transient part of the trajectories is omitted. The transient
part is the part traced before getting sufficiently close to the attractor. In
fact, the transient part adds single points outside the smooth curve of the
return map, the points vary as we change the initial value of the z-coordinate,
and hence a unimodular map is generally not obtained by including a large
number of transient trajectories. Therefore it only makes sense to ignore the
z-coordinate after the transient trajectory, and use one generic trajectory
only. The unimodularity mirrors the stretch and fold behaviour shown in
figure 2, the stretch brings the strictly monotone parts of the unimodular
map about and the folding separates the map in increasing and decreasing
branches, analogous to the behaviour seen in many known chaotic systems
such as the baker’s transformation.

In practice the return maps were constructed by making a file of 3000 returning-
points of a generic trajectory, excluding the transient part. Since the file of
returning points is limited the return map varies with the initial point and
the number of returns of the construction trajectory. Furthermore the finite
integration precision causes the trajectories alternately to move away from
and approach the attractor, therefore some small glitches occur on the return



map. However the attraction is so strong that we for practical purposes get a
reliable return map simply by applying a local interpolation, i.e. the glitches
have little spatial extent. Particularly we used a quadratic interpolation, but
did also try a local quadratic estimate; both approaches gave the same result
for the present purpose. The return map In section 2.1 we will show the
return map is significant for statements about the flow.

1.3 Periodic Orbits

Periodic orbit An orbit is said to be periodic if there is a point x and a
time 7" such that ¢ (x) = x and ¢'(x) # x for 0 < ¢t < T'. The periodic orbit
is given by the set {¢'(x)|0 < ¢ < T}.

In the search for periodic orbits a Poincaré section is used as basis for the
initial points, we choose the €2 defined above. The topological length n of a
periodic orbit denotes the number of times a trajectory has hit the Poincaré
section when returning to the initial point x for the first time. The technique
used for finding periodic orbits of topological length n was Newton’s method
implemented with multi point shooting. The multi point shooting was very
efficient’, whenever we were able to come up with a good initial guess of
points included in the orbit. To help making good guesses we used the
return map and the symbolic dynamics described below. In section A we
tabulate characteristics of the periodic orbits up to topological length 7. The
Lyapunov exponents of periodic orbits result from integrating the Jacobian
matrix around the orbit and then use the eigenvalues A;, found after run, in
the expression,

= —In A (1)

(3 Tp (3

In general the periodic orbits of the Rossler system has one expanding direc-
tion |A.| > 1 one contracting |A.| < 1 and one marginal direction |A,,| = 1,
hence the periodic orbits are all unstable. As an example consider the fig-
ures shown below. The figures are projections of the periodic orbits on the
xy-plane, and show a period one, two and three orbit respectively. The ver-
tical line is the projection of the return map and the symbols are used in the
subsequent section. On the left are the corresponding eigenvalues tabulated
together with the leading Lyapunov exponent.

!Efficient means that the algorithm converges fast, and not that the time used to
program the algorithm was efficient. Indeed the efficiency for programming the algorithm
seemed to be non polynomially (exponentially).

7



A, | 1000000000006

A, | -2.403953531827

A, | -1.287858708564E-14

. | 0.149141556638

A, | 1000000000114 m T
A, | -3.512006981516 E 0
A, | 1.658641011821B-17 | -

). | 0.106831136551 ::

A, | 1000000000686

A, | -2.341923503691

A, | -2.748210188065E-13

. | 0.048583166951

The estimation of the contracting eigenvalue is quite difficult, since it changes
dramatically with the precision used for calculations. Figure 5 shows the
size of the contracting eigenvalue from the period one orbit as the precision
changes from floating points (~ 107%) to double precision (~ 107'6). We
see that floating points are insufficient for estimation, and double precisions
might give a clue about the order of the eigenvalue (~ 107'*). Other fac-
tors such as the integration step size (dt=0.00001) have influence on the
calculations so we are not directly able to conclude on basis of the figure.

2 Admissible Orbits

2.1 Symbolic Dynamics

This section introduces symbolic dynamic as used in the subsequent kneading
theory.

Symbolic dynamics denotes a particular class of dynamical systems, which
is very useful when modelling smooth and hence more complicated systems.
Take the return map above as an example. We will now code it, using a
ternary alphabet A = {0, 5,1}, where z,,41 = f(z,) denotes the return map.

8
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Figure 5: The contracting eigenvalue plotted versus the number of decimals used
through the calculations.

The interval M, on which f is defined, is separated in two disjoint intervals
My and M. These are the intervals where f increases and decreases respec-
tively. The letter % is introduced as symbol for the critical point x. = M%,
though it is a little beside standard notation it is useful as we shall see in
the subsequent section. The dynamics g, f(xo), f%(20),... = ToT1T3 ... is
coded by symbols sps;ss ... using the recipe

0, z, e M,
1 —
9y Tn = Ze

1, z, e M,

Sp =

To each initial point xy € M we associate a symbolic sequence by the map
ToT1Tg ... — S9S1S2, ..., S+(QZ‘0) = SpS1S2... .

St (x0) is called the itinerary of xy, where the superscript + indicates that the
symbolic sequence specifies the future dynamic, i.e. the behavior succeeding
the initial point. We cannot make a past itinerary since the dynamic is not
invertible; the return map is surjective. A finite sequence of symbols from
our alphabet is called a block, and a block s;, s;j11, ..., siiy, is allowed by our
dynamical system if

7(M) #0

Consider as an example the block 1000, which is forbidden, due to the sub-
block of three zeros. Why three zeros in succession are forbidden either can
be seen by the intersection of sets above or by the geometrical argument
given in figure 6.
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Figure 6: From the figure we see it is not possible to obtain a block with more than
two zeros in succession, since all trajectories will intersect values greater or equal
to the plotted piece of a trajectory, thus the block 1000 is forbidden in the Rdssler
system.

A symbolic sequence is called admissible if it contains no forbidden blocks,
otherwise it is inadmissible. We denote the subset of admissible symbolic
sequences of all symbolic sequences by ¥ = {a € A{®123}|q is admissible},
the subset is called a subshift. Finally we put in some dynamics to our
symbolic system by introducing the shift operator o,

0(805182...) = S189283 . ..

Note that the subshift is invariant to the shift operator, since a block s; ...s,
remains allowed though its first symbol is removed,

ﬂ M) #0 = ﬂf U= (M,;) # 0. (12)
The implication follows from the fact that f(M, N M) C f(M,) N f(My)
and if f7"(M,) N f7™(My) # 0 then

D F(f ™ (Ma) N f™ (M) C f (M) N f D (M).

Therefore the evolution of the system does not go from being admissible to
inadmissible by making a time step ahead.

The point about symbolic dynamics might be put into a single equality, which
is due to its conjugacy to the original dynamics,

ogoSt(z)=S5"0o f(z)

10



However the dynamical systems might not be completely conjugate, depend-
ing on whether S* is surjective only or bijective. Anyway, S* is our way to
relate the two points of viewing the dynamics.

From these more mathematical details we return to the present concern about
the Rossler system. The new way of seeing the system equips us with a
very useful shorthand notation for periodic orbits. Consider for instance the
periodic orbits shown in figure 7. These periodic orbits are named after their
path in the system, for instance are the period two orbit named 010101 ... if
it starts in the left and increasing part of the return map and 101010. .. if the
right part. The names are abbreviated using a overline, i.e.010101... = 0L.
In particular the two period two orbits are just two sides of the same part,
hence they are considered equal. Likewise we do the same identification
to the period three orbits 001,010 and 100, and in general each shift of a
periodic orbit is represented with the same cycle - namely the prime cycle.
An important property about the symbolic names for the periodic orbits is

01

011

001

10

x(n+1)
4

Figure 7: The period two and the period three orbits of the Rdssler system respec-
tively. The drawn orbits are the one dimensional versions of the orbits sketched in
the preceding section.

the uniqueness of the names when considering maps like the present, hence
no more than one period two orbit occurs with the name 01.

From the preceding remarks and figure 6 we should not expect to find the
periodic orbit 0001 since it contains the forbidden block 1000. Next section
introduces an effective way to find admissible periodic orbits, orbits without
forbidden blocks.

11



2.2 Kneading Theory

In the preceding chapter we saw that some orbits (itineraries) seemed inad-
missible by our dynamical system, but no quantification of the word admis-
sible was achieved, however. The kneading theory, walked through below,
turns out to be very useful for such a quantification.

The idea is to find an ordering of our shift space and put up a border, regard-
ing the ordering, between admissible and inadmissible itineraries. Admissible
orbits are then found on one side of the border and inadmissible on the other.
The border is brought about, as we shall see, by considering the symbolic
encoding of the critical point.

Kneading sequence and value, let x. denote the critical point of a uni-
modular map, then the kneading sequence K is equal to the future itinerary

of f(xc),
K= S+(f(xc))

Figure 8 shows the first 9 iterations of the critical point, and it has the
kneading sequence,

K pisssior = 100101111111010110010 .. . . (13)

Note that the cobwebbing after 5 iterations is getting nearby the fixed point
(1), and therefore stays in the neighbourhood for a while, i.e. we obtain the
shown block of ones.

1+1)

,,,,,,,,,,,,,

x(n+1)
6.09

T T T T T T T T T T
0 2 4 6 8 607 608 609 610 611
x(n) x(n)

Figure 8: Kneading sequence of our Réssler return map. The right figure shows
a zoom on the fizpoint.

Next we define an ordering (Katok,[2]) on our shift space ¥. Let a, B € ¥ be
two itineraries, then we denote a < [ if there exists an n such that a; = ;

12



for1 <i<nand

((1 —2ay) (1 - 2%_1)) (1+a,) < ((1 —2B) (1 — 25n_1)) (1+ Ba)
(14)

Note that the product (1 —2ag) - - - (1 — 2c,_1) either has absolute value one
or equals zero. The latter case occurs when of(a) = 5 for some 0 < i < n,
and in particular for that case o'™'(a) = o*'(3) = K. If a equals the
itinerary S*(zo) of an initial point g, the sign in the former case tells us,

whether f™(z) is increasing or decreasing, since

sign((f")'(z0)) = sign(f'(zo)f'(z1) -+ f'(¥n-1))
= (1-2a1) (1 =205 1) (15)

Where the last expression is brought about by the properties of our symbolic
coding, see section 2.1.

Let x¢ and yo denote two initial points where S™(x¢) < S*(y0). We will now
show that xq < yo. First we notice that the future itineraries, in order to
satisfy (14), not will assume the value $ at the first (n-1)’th tuplets, since we
then would obtain equality. Moreover is S;" (x) = S;" (yo) for 1 < i < n and
S;H(xo) # S;F(yo). We consider the two possibilities of sign of (™) separately.
If the sign is positive, i.e. f"(z) increases on an interval containing xy and
Yo, we have that,

(1= 28 (o)) -+ (1 = 28, (20)) ) (1 + Sy (20))
< (=28 (o)) (1= 25, () ) (1 + S (1))
which implies,
S (20) < S (o)

Therefore the itinerary of xy has a “smaller” symbolic value at n tuplet than
Yo, and consequently f™(xg) < f™(yo). Since f™ is increasing on an interval
containing xy and 3y we have xy < yp. A similar argument applies for the case
when f™ is decreasing, and once more we obtain xy < yp. We then managed
to see the coordinates follow the ordering invoked on the shift space.

Subsequently we might contrapose the argument to achieve the result, zy <
Yo implies ST (xy) = ST (yp). Particularly, the contraposed argument tells us
that the ordering on our shift space follows the ordering of the coordinate
space but not strictly, in other words an interval of coordinates might result
in the same itinerary.

13



The point that makes the shift space ordering above useful is its relation
to the standard ordering of the real numbers?, the ordering is “preserved”
(almost). We know, from the return map, that our dynamical system is for-
bidden to assume values above f(z.),i.e. f¥(z) < f(x.), k € N. If the system
after some n iterations equals the critical value then the itinerary shifted by
o™ equals the kneading sequence 0" (S (z)) = ST(f"(z)) = ST(f(z.)) = K,
otherwise we have strict inequality, f*(z) < f(z.), hence ST(f*(z)) =<
ST(f(xz.)) = K, k € N. So a necessary condition for an itinerary St to
be admissible is o*(S*) < K, k € N. Actually the condition is sufficient for
the strict ordering (Katok, [2]),

Admissibility. If a € ¥ is a symbol sequence and o'(a) < K for all i > 0
then there exists an initial point = such that o = St (z).

Now we have a tool for extracting the admissible orbits of the Rossler attrac-
tor, and it is very easily applied indeed. For instance are the periodic orbit
0001 inadmissible, since ¢*(0001) = 10001000100 .. £ 10010111111 ... = K.
The technique for fast comparison of two symbolic sequences is to count the
number of ones appearing in the sequences before they have a non-equal tu-
plet. If the number of ones is even or odd and the first non-equal tuplets are
the n’th then

a < g, if 2?;11 a; 1s even.
a = B,if 31« s odd.
The technique for comparing symbolic sequences was implemented on a com-

puter which quickly found that the following prime cycles up to topological
length 10 are admissible for the Rossler system,

an<ﬁn:»{

[np ] P |
1 T
2 01
3 001 011
4 0111
5 01011 01111
6 001011 010111 011111
7 0101011 0110111 0101111 0111111
8 01011011 01010111 01101111 00101111 01011111 01111111

00101101

9 010110111 010101111 011011111 001011011 010111111 011111111
011010111 011101111 001001011 010101011

10 | 0101101111 0101011111 OL10111111 0010111111 0101111111 OILI111111
0101111011 0101110111 0110110111 0111011111 0101011011 0101010111
0010110111 0010110101 0010111101 0010I10111

’In mathematical terms we could make the relation of the two orderings strict by
partitioning the real numbers in equivalence classes, where an equivalence class associated
to a number x is the set {y|ST(y) = ST(x)}, then z < y & ST (x) < ST(y).

14



2.3 How to Find the Kneading Sequence?

The kneading sequence (13) was estimated regarding it as a function of the
integration time step and the number of returns of the construction trajec-
tory. For a selected set of integration times the corresponding return map
was calculated and thereafter the kneading sequence was found. The return
map in each case was based on a generic trajectory having 4000 returns.

As we decrease the time step we expect to get closer to the true orbit as well
as getting a better return map. Therefore the correction for each decrement
is expected to grow negligible and in particular fast enough for convergence.
The table below shows the kneading sequences Ka; as function of the time
step At,

K, = 100101111110110010111
Kos = 100101111111101001011
Ko = 100101111111010010010
Kos = 100101111111010110710
Ko = 100101111111010110010
Koos = 100101111111010110010
Koor = 100101111111010110010

Within our finite precision the kneading sequence seems to converge and
therefore we take K g9, as the estimate used throughout the present text.
This kneading sequence was actually confirmed by K ; and 10000 returns
since they both agreed on the first 21 tuplets. The tendency was that for
large integration time steps the inaccuracy was averaged out by demanding
a larger number of returns.

The kneading sequence behavior for various timesteps are moreover demon-
strated in the extraction of the topological (-functions, see figure 11.

3 (-functions

3.1 Cycle Expansions and Shadowing
The subsequent sections will not go in to theoretical details about the (-
function but restrict themselves to use of the (-function’s tremendous ap-

plicability. For the present purpose the (-function is expressed in the Fuler

15



product representation

1
]_/C = H(]. — tp), where tp = meﬁnpznp (16)
P p

The (-function for the Rosssler system is a polynomial of the unbounded
order 2", and might be expanded in increasing order as shown in the table
below, where we tabulate the admissible prime orbits up to order 6,

n, | Cycle expansion

1

—to1

—(to11 — to1t1) — toor

to111 — tor1t1) + toort

tor011 — tor1tor) — (tor111 — tornit1) + toortor

tooto11 — tor1toor + toortoit1) — (foro111 — toitorrr) — (forriir — torriit)
tortor1ts — toio11t1)

=S

SOk W N~ O

—(
—(
—(
—(

Some terms are shadowed by products of lower order terms, and the shad-
owing, indeed, makes the (-function useful. The infinite product generating
the (-function would be awkward to handle if it converged slowly, but the
individual terms are almost matched by their shadow and gaurentees fast con-
vergence by use of a finite cycle length truncations. Some terms, however,
remains unshadowed and to check the convergence we make a test of qual-
ity of the finite truncation. Trajectories in the Rossler system are confined
for infinite times, the flow is conservated, hence the fraction of trajectories
leaving the system (the escape rate) equals zero. The (-function mirrors the
vanishing escape rate by satisfying (chapter 12.1 of [1]),

1
¢(1)
The quality test is to see how the truncated (-function (y (expanded to

polynomial order N) satisfies the equality above as a function of N. Figure
9 shows the result.

=0 (17)

Moreover stability ordering was applied on the cycle expansions (chapter 10.5
of [1]), i.e. the shadows (pseudocycles) were ordered with respect to some
maximal stability value, e.g. the absolute value of the maximal expanding
eigenvalue of the data set, and all pseudocycles having a product of expand-
ing eigenvalues exceeding this maximum were dropped. Using the stability
ordering brings almost the same results about as the results found by use of
the ordering in the table above (see below).
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Figure 9: log (n(1) versus N. Though we have few observation points the tendency
15 obvious the convergence seems exponentially, and we should expect to come up
with a useful result by applying the cycle expansion.

We will now focus on the return map and its topological (-function.

Unimodal maps like the present return map do have a remarkable simple
expansion rule of its topological (-function. The expansion is given in terms
of the kneading sequence, the border between admissible and inadmissible
orbits, and explicitly written as (chapter B.2 of [1])

00 [

@ “[[0-=0-9> s, a=[[D%  (8)
p i=0 j=1

where ayp = 1 and K denotes the value of the j’th tuplet of the kneading
sequence K. The expansion as written above assumes that the kneading
sequence is non-periodic. For periodic orbits of topological length n, oo is
substituted with n — 1. The expansion rule for our estimated and proba-
bly non-periodic kneading sequence tells us to evaluate an infinite sum, but
we are only capable of approximating by a finite number of the lowest or-
der terms. Fortunately is the convergence, by adding terms of higher order
successively, fast and with the limited kneading sequence we are enabled to
estimate the topological entropy with good precision. The leading root z, of

the (-function is related to the topological entropy trough, zy = e™".

Plugging the kneading sequence (13) into (18) leads to the following trun-
cated inverse topological (-function,

1/¢a(z) = 1 — =z — 22 — 22 + 24 4+ 28 — 25 4+ 7
Y I S [ IR § R | £ T Rt

_Gl6 4 AT 4 I8 4 19 20 21
(19)



which has the leading root 0.6006432. .., hence the topological entropy,

h = —10g0.600643 ... = .50975...

The leading root above is the best estimate allowed by the kneading sequence
at hand and figure 10 shows how the logarithmic distance of the leading root
to the best estimate varies as we include more and more terms in the poly-
nomial expansion, and indeed the truncation approximations are converging
fast, exponentially. Figure 11 shows a double logarithmic plot of how the
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Figure 10: Plot of the logarithm distance between the leading root and the best
estimate as a function of the polynomial versus order.

leading root of 1/(y; changes in logarithmic distance to the best estimate
as the integration time step is varied. The convergence seems to be poly-
nomial of the approximately order 6, and hence quite fast as the time steps
decreases. The almost monotone behaviour of the points confirms that by
decreasing the time steps the kneading sequence converges.

3.2 The Lyapunov Exponent

We will now find the Lyapunov exponent of the returmap using two different
approaches.

The first approach is in principle similar to the approach in section 1.1, for
1-d maps, the logarithmic distance of two initially nearby trajectories are
plotted as function of the number of iterations. The slope of the estimated
line through the resulting distances is the Lyapunov exponent of the return
map, and it assumes the value \,,, ~ 0.42.
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Figure 11: Logaritmic distance to the best estimate of the leading root versus the
integration time step.

The second approach is to consider the Lyapunov exponent as the dynamical
average of the local divergence rate A(z) = log|f(x)'|. The average results
from the cycle averaging formula (chapter 10.2.1 and 12.2.1 of [1]),

1 log [Ap,| + -+ -+ log |A,,|
)\rm — -1 k+1 pP1 Dk 20
e 271 EREEoY 2
where the cycle mean of n is found from
+eetn
— _1 k)-l—lnpl Pk . 21
(n)e = (1) (21)

™

If we plug in the data set from the table in section A to the formulas above
the Lyapunov exponent assumes the value A,,, ~ 0.43. Figure 12 shows the
logarithmic distance to 0.43 as function of the truncation /N, and as in the
case of the flow conservation test the behaviour seems exponentially conver-
gent.

The particular reader might have noticed that the present Lyapunov expo-
nents are not equal to the estimate given in section 1.1, where we found the
flow exponent Ay ~ 0.09. They are not supposed to be equal, since going
from flows to return maps implies that the time of one return on the flow is
set to unity. An infinitesimal distance dy, on the return map is increased by
a factor e’ after one iteration,

Sy ~ ey,
contrary to the flow where

6y = AT Syy = e o dy.

19



-2 -1

Logarithmic distance to the best estimate.
-3
|
o

-5

Figure 12: The figure shows the logarithmic distance to the best estimate found
for N=9.

Ty, denotes the time of return to the Poincaré section. Therefore the flow and
the return map Lyapunov exponents are related through some characteristic
time 7. of one round on the attractor.

>‘rm ~ TC)\f

To get an idea of the difference between the two Lyapunov exponents we
could use the following fraction as the characteristic time 7. = (T)¢/(n)c,
where (T'). is the mean cycle period found by inserting 7" in (21) and 7, then
is the cycle mean time per cycle mean length. By calculating the means we
obtain that 7. ~ 5.81, hence the values of Ay ~ 0.09 and A, ~ 0.43 agrees
since 0.43/5.81 ~ 0.07.

It is a time demanding task to calculate the Lyapunov exponents through
the periodic orbit theory, but once the preparations are done, the applica-
bility reaches much farther. For instance is the formula (21) extendable to
other observables of the system, and the results achieved so far makes the
evaluation a minor task. The elements used for the orbit theory calculations
were

e A return map was found.

The kneading theory was applied to the return map and used to extract
the admissible periodic orbits.

The Newton method was used to find the spatial location of the ad-
missible orbits.

The stabilities of the individual periodic orbits were calculated by im-
plementing the fourth order Runge-Kutta algorithm.
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e The (-function was expanded in terms of prime orbit stabilities.

e Finally we used the dynamical (-function average.

A Data of the Periodic Orbits

Below we tabulate single points and the expanding eigenvalues of the periodic
orbits up to topological length seven. Throughout the text we used periodic
orbits up to topological length nine.

lnp | p | Yinitial Zinitial ‘ A |
1 1 6.091763319056803 1.299731937639821 | -2.4039535318268
2 01 | 3.915804049621049  3.692833386542665 | -3.5120069815161
3| 001 | 2.278281031720258 7.416480984019008 | -2.3419235232340
011 | 2.932877559129124  5.670805943881501 5.3449081538885
4 | OL11 | 3.466758713211455 4.506217531477667 | -16.6967406980700
5 | 01011 | 4.162798782914948 3.303903338609633 | -23.1995830097831
OTTIT | 3.278914359770783  4.890452922955567 |  36.8863297988981
6 | 001011 | 2.122093931936202 7.886172854283211 | -6.8576654190825
OTOTIT | 4.059210605826523  3.462265228606606 |  61.6490940089068
OTTTIT | 3.361494458061049 4.718206217035575 | -92.0825560711089
7 | 0101011 | 3.842769382372052  3.815493592299824 | 77.7611048852412
OTT0TIT | 3.025956697151134  5.451444475664179 | -95.1838846735358
OTOTTIT | 4.102255295518855  3.395643547170646 | -142.2379888163439
OTTTIIT | 3.327986189581191  4.787462810306583 | 218.0283602810993
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