

die Zeit ist tot now, get to work

Predrag Cvitanović and Han Liang

 $\begin{array}{l} \mbox{Georgia Tech} \\ \mbox{ChaosBook.org/overheads/spatiotemporal} \\ \rightarrow \mbox{Chaotic field theory slides} \end{array}$

December 6, 2021

the goal

build a chaotic field theory from the simplest chaotic blocks

using

- time invariance
- space invariance

of the defining partial differential equations

coin toss

e kicked rotor

- spatiotemporal cat
- o bye bye, dynamics

summary

spatiotemporal cat

insight 1 : how is turbulence described?

not by the evolution of an initial state

exponentially unstable system have finite (Lyapunov) time and space prediction horizons

but

by enumeration of admissible field configurations and their natural weights

insight 2 : symbolic dynamics for turbulent flows

applies to all PDEs with *d* translational symmetries

a *d*-dimensional spatiotemporal field configuration

$$\{\phi_{\mathbf{Z}}\} = \{\phi_{\mathbf{Z}}, \mathbf{Z} \in \mathbb{Z}^{\mathbf{d}}\}$$

is labelled by a *d*-dimensional spatiotemporal block of symbols

$$\{m_z\}=\{m_z,z\in\mathbb{Z}^d\},\$$

rather than a single temporal symbol sequence

(as is done when describing a small coupled few-"body" system, or a small computational domain).

insight 3 : description of turbulence by invariant 2-tori

1 time, 0 space dimensions

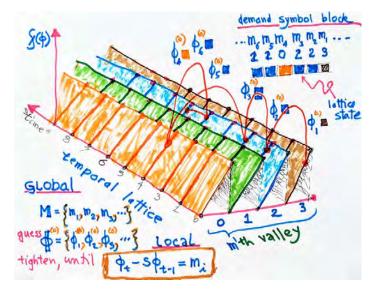
a phase space point is *periodic* if its orbit returns to itself after a finite time T; such orbit tiles the time axis by infinitely many repeats

1 time, d-1 space dimensions

a phase space point is *spatiotemporally periodic* if it belongs to an invariant *d*-torus \mathcal{R} , i.e., a block $M_{\mathcal{R}}$ that tiles the lattice state M, with period ℓ_j in *j*th lattice direction

insight 4 : can compute 'all' solutions

Bernoulliland - rough initial guesses converge



no exponential instabilities

what we still do not understand today

- solved so far only 1-dimensional spatiotemporal lattice, point group D₁
- Should all time-reversal symmetric systems be analyzed this way ?
- Should all dynamical systems should be solved on reciprocal lattice ?
- for 2-dimensional spatiotemporal chaotic field theory, still have to do this for square lattice point group D₄
- then, solve the problem of turbulence (Navier-Stokes, Yang-Mills, general relativity)

Verbrechen des Jahrhunderts : das Ende der Zeit

die Zeit ist tot also, an die Arbeit!

bye bye, dynamics

- goal : describe states of turbulence in infinite spatiatemporal domains
- Itheory : classify, enuremate all spatiotemporal tilings
- example : spatiotemporal cat, the simplest model of "turbulence"

there is no more time

there is only enumeration of admissible spacetime field configurations

crime of the century : this the end of time

time is dead now, get to work

in future there will be no future

goodbye

to long time and/or space integrators

they never worked and could never work

miaw

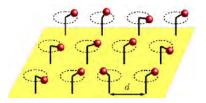
the stage is set for the quantum field theory of spatiotemporal cat, the details of which we leave to our always trustworthy friends Jon Keating and Marcos Saraceno

take-home :

traditional field theory

Helmholtz

chaotic field theory



damped Poisson, Yukawa