
georgia tech PHYS 4267/7224

introduction to nonlinear dynamics and chaos
instructor: P Cvitanović
spring semester 2007

take-home final exam
due no later than 10:50am, Thursday, May 3

[delivered either to Jonathan or Predrag, 5th floor Howey]

1 Fluttering flame front

The only road to intuition about chaotic dynamics is by experimentation. Try
to work through the essential steps in this take-home exam, applying the tech-
niques learned in the course to a real-life research problem. In what follows, I
have indicated which steps are exam questions, and which are optional. I do
not expect you to get through the whole length of the exam in the time allotted;
do as much as feels right. You might start, for example, with exercise 6 which
is easier than the main, turbulent theme.

Star student Henriette Roux would like to understand turbulence. How
does she get started? The steps are:

2 Thinking

1. Have a dream: In case at hand, Hopf[1] and Spiegel[2, 3, 4] vision of
turbulence: the dynamics drives the fluid through a repertoire of unsta-
ble patterns. As we watch a turbulent system evolve, every so often we
catch a glimpse of a familiar pattern. For any finite spatial resolution,
for a finite time the system follows approximately a pattern belonging
to a finite alphabet of admissible patterns, and the long term dynamics
can be thought of as a walk through the space of such patterns, just as
chaotic dynamics with a low dimensional attractor can be thought of as
a succession of nearly periodic (but unstable) motions.

In this exam we apply this vision to the flame flutter of gas burning on
your kitchen stove. We are happy if in a few days of analysis we succeed
in simulating the system numerically, and develop intuition about turbu-
lence deploying basic nonlinear dynamics notions: the equilibria, stabili-
ties, stability eigenvectors, bifurcations, periodic orbits, onset of chaos.
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2. Pose the problem: A flame front is described by the Kuramoto-Sivashinsky
[KS] equation

ut = −1
2
(u2)x − uxx − uxxxx . (1)

Here t ≥ 0 is the time and x ∈ [0, L] is the periodic space coordinate.
In what follows we use interchangeably the “dimensionless system size”
L̃, or the periodic domain size L = 2πL̃, as the system parameter. The
subscripts x and t denote the partial derivatives with respect to x and t;
ut = du/dt, uxxxx stands for 4th spatial derivative of the “velocity of the
flame front” u = u(x, t) at position x and time t. The term (u2)x makes
this a nonlinear system.

Please read the chapter “Turbulence?" [5]

3. Rethink: As the “flame front velocity” u(x, t) = u(x + 2π, t) is periodic
on the x ∈ [0, 2π] interval, expand it in a spatial Fourier basis:

u(x, t) =
+∞

∑
k=−∞

ak(t)eikx/L̃ . (2)

Since u(x, t) is real,

ak = a∗−k . (3)

Show that substituting (2) into (1) yields the infinite ladder of evolution Exam question
equations for the complex Fourier coefficients ak(t):

ȧk = vk(a) = ((k/L̃)2 − (k/L̃)4) ak − i
k

2L̃

+∞

∑
m=−∞

amak−m . (4)

As ȧ0 = 0, the solution integrated over space is constant in time. We set
this average velocity to zero, a0 =

∫
dx u(x, t) = 0. The coefficients ak

are in general complex functions of time. Use (3) to further simplify the
tower of evolution equations.

4. The constant solution u(x, t) = 0 is an equilibrium point of (1). For this
“laminar” equilibrium the stability matrix is diagonal,

Akj(a) =
(

k2/L̃2 − k4/L̃4
)

δkj , (5)

and so is the Jacobian matrix Jt
kj = δkje(k/L̃)2(1−(k/L̃)2)t .

Show that from (5) it follows that the |k| < L̃ long wavelength modes of Exam question
this equilibrium are linearly unstable, and the |k| > L̃ short wavelength
modes are stable. For L̃ < 1, u(x, t) = 0 is the globally attractive stable
equilibrium, i.e., the dissipation is so strong that any flame front burns
out.
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5. Determine the most unstable mode ak. It sets the mean wavelength in the Exam question
plots to follow.

6. Starting with L̃ = 1 the solutions go through a rich sequence of bifurca-
tions. What kind of bifurcation takes place as L̃ < 1 → L̃ > 1? As L̃ Exam question
increases, are there any further bifurcations from the u(x, t) = 0 equilib-
rium, and if so, of what type?

3 Why are you doing this?

A theory of turbulence should predict measurable properties of turbulent flows,
such as their mean energies and their energy dissipation rates.

Please read the section “Energy budget" of chapter “Turbulence?" [5].

1. The time-dependent average velocity-squared

E =
1
L

∫ L

0
dx

u2

2
(6)

has a physical interpretation as the average “kinetic energy” density of
the flame front. Derive the power/dissipation energy rate equation Exam question

Ė = P − D , P =
〈
(ux)2

〉
, D =

〈
(uxx)2

〉
. (7)

KS is a far-from equilibrium system: the power P pumped in by the anti-
diffusion uxx is balanced by the hypervicosity uxxxx dissipation rate D.
In principle, these are experimentally observable quantities, used in what
follows as flow diagnostics.

This is all H. Roux can extract from the problem by thinking, unassisted by
experimentation. Next,

4 Computing

1. Implement a numerical simulator for your problem. Some options:

(a) Divide the x interval into a grid of N points, replace space deriva-
tives (1) by approximate discrete derivatives, and integrate a finite
set of first order differential equations for the discretized spatial
components uj(t) = u(jL/N, t).

(b) Integrate numerically the Fourier modes (4), truncating the ladder
of equations to N modes, set ak = 0 for k > N. N has to be
sufficiently large that no harmonics ak important for the dynamics
with k > N are truncated. On the other hand, computation time
increases with the increase of N. Empirically, for this exploration
N = 16, 32, 64, 128 truncations were sufficiently accurate.
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(c) Use Davidchack implementation of Kassam and Trefethen code[6],
ChaosBook.org/extras/#PDEs .

5 Fishing

From here on we turn to numerical experimentation. Take L sufficiently large
so that the dynamics can be spatiotemporally chaotic, but not so large that we
would be overwhelmed by many short wavelength modes needed in order to
accurately represent the dynamics.

My advice: start on terra firma, small system size L̃ = 1, low truncation N,
and increase L̃ a little bit, integrate until the trajectory has settled down; then
increase L̃ a little bit again, restart from the trajectory just computed, integrate
until has settled down. Repeat. Sometimes stop incrementing the trajectory, in-
crement N instead and check how sensitive is your attractor to truncation num-
ber N. I have not test-run this calculation, but I believe you will sail through a
sequence of bifurcations and enter chaos, perhaps via period-doubling route.
This “adiabatic” approach has advantage of (almost) always starting you close
to the attractor, thus avoiding long transients typical of random starting condi-
tions.

The problem with high-dimensional truncations of (4) is that the dynamics
is difficult to visualize. The simplest (but not the smartest) visualization is to
examine trajectory’s projections onto any three Fourier coefficient axes ai, aj, ak
(real or imaginary parts). Better are projections onto 2 or 3 basis vectors - see
Davidchack code for examples.

1. Plot a long trajectory for L = 22, using the same vector basis as David- Exam question
chack. Is your dynamics qualitatively the same as in his plots?

2. Plot several interesting long orbits to get some sense for the attractors for Exam question
different values of system size L

3. If you are integrating in the Fourier space, track also the evolution of
u(x, t), by inverse Fourier transform of (2).

4. Plot a spatiotemporal solution u(x, t) for the chaotic, L̃ = 22 attractor. Exam question
Hopf wanted us to see recurrent patterns, that is to say, the unstable spa-
tiotemporally periodic solutions of our equations. This can be done, but
is hard work. Other solutions exhibit the same overall gross structure - a
few wiggles here and there, continuously in flux and yet so alike.

5. Explore bifurcation sequences by plotting the time-averaged values (E, P, D)
of (E, P, D) defined in (7), for small increments of 1 < L < 25 (I have not Exam question
test-run this, but am hopeful).

6. find some numerically stable equilibria and/or periodic orbits (if any)
within 1 < L < 25 window of system sizes Optional
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7. Drastic truncations tend to mangle the dynamics. Do you get any chaos Optional
for small N, something like N < 9 nd L < 22?

8. Do you get any stable periodic orbits for L̃ = 22? (if you do, we would Optional
love to see them)

9. determine values of system sizes L for stable cycles → unstable cycles Optional
bifurcations (estimate by trial and error)

10. diagnose L values at which chaos sets in, or vanishes again Optional

11. Try to find numerically some equilibria for L̃ > 1 (hard). As explained in Optional
section “Equilibria of equilibria" of chapter “Turbulence?" [5], these are
periodic orbits of a 3d dynamical system, and they might be to difficult
to find within a week take-home exam. We provide a pre-computed set
of equilibria within the matlab code, ChaosBook.org/extras/#PDEs for
you to use.

12. Try to estimate stability eigenvalues of these eigenvalues by numerical Optional
experimentation (how fast do they spiral out, etc.).

13. Estimate the leading Lyapunov exponent for the turbulent flow at L̃ = 22 Optional

14. Poincaré sections: One of the first recommended steps in analysis of
chaotic flows is to view the dynamics to a Poincaré section. Fix (arbi- Optional
trarily) the Poincaré section to be the hyperplane Re a1 = 0, and integrate
(4) with the initial conditions a1 = 0, and arbitrary values of the coor-
dinates a2, . . . , aN, where N is the truncation order. When a1 becomes 0
the next time, the coordinates a2, . . . , aN are mapped into (a′2, . . . a′N) =
P(a2, . . . , aN). Does the long-time attractor look confined to a smaller
subspace, foliated as a nice fractal?

6 How strange is the Hénon attractor?

Let us switch gears for a moment, and perform a numerical experiment that
will enable you to do a part of this exam even if all your integration programs
are in shambles.

You might have wondered why I often state values of system parameters
5 significant figures, if all we want is to get a qualitative feeling for the flame
front flutter?

The problem is that it is extremely hard to prove that an attractor is chaotic.
Adding an extra dimension to a truncation of the system (4) introduces a small
perturbation, and this can (and often will) throw the system into a totally dif-
ferent asymptotic state. A chaotic attractor for N = 15 can become a period
three window for N = 16, and so on.
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Numerical studies indicate that for a = 1.4, b = 0.3 the attractor of the
Hénon map (see figure 5.32 in the Tél and Gruiz book[7])

xn+1 = 1− ax2
n + byn

yn+1 = xn .

is “strange". Reproduce the Hénon picture of his “strange attractor” by numer- Exam question
ical iteration of the map. Next, repeat the numerical experiment for the map
with parameter a = 1.39945219 (right: all digits are significant - it is a craftily
designed perturbation precise to 10−8!). If you wait long enough (100,000’s of
iterations), the attractor should undergo a dramatic change. What do you get? Exam question

The moral of this numerical experiment is that “strange attractors” are not
structurally stable. If we compute, for example, the Lyapunov exponent λ(L̃, N)
for the strange attractor of the N-modes truncation of the system (4), there is
no reason to expect λ(L̃, N) to smoothly converge to the limit value λ(L̃, ∞) as
N → ∞.

Now, have a Carlsberg, perhaps the best beer in some parts of Copenhagen,
and a good summer.
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