The problem I have is about the derivation of the fact that the escape rate is the leading eigenvalue of the Perron-Frobenius-Operator. In order to calculate the escape rate, one has to examine the asymptotic behaviour of the quantity

$$\Gamma_n = \frac{1}{|\mathcal{M}|} \int_{\mathcal{M}} dx \int_{\mathcal{M}} dy \,\delta(y - f^n(x)). \tag{1}$$

Of course the dx-integral is nothing but the Perron-Frobenius-Operator \mathcal{L}^n acting on an uniform initial density $i(x) = 1 \forall x \in \mathcal{M}$:

$$\Gamma_n = \frac{1}{|\mathcal{M}|} \int_{\mathcal{M}} dy \left(\mathcal{L}^n i\right)(y).$$
(2)

If I understood it correctly, you argue in the following way: the initial density i(x) can be expanded in terms of eigenfunctions of \mathcal{L} ,

$$i(x) = \sum_{\alpha} c_{\alpha} \varphi_{\alpha}(x), \qquad (3)$$

and therefore, for large n, Γ_n is dominated by λ_0 , the leading eigenvalue of \mathcal{L} : $\Gamma_n \sim \lambda_0^n$ as $n \to \infty$.

My first and most important question is the following: is the decomposition (3) really possible in an open system?

If trajectories can escape and the invariant set Λ is only a subset of \mathcal{M} of zero Lebesgue measure, I think the eigenfunctions φ_{α} must be zero almost everywhere. Why? The eigenvalue condition

$$(\mathcal{L}^{n}\varphi_{\alpha})(y) = \int_{\mathcal{M}} dx \,\delta(y - f^{n}(x))\varphi_{\alpha}(x)$$

= $\lambda_{\alpha}^{n}\varphi_{\alpha}(y)$ (4)

yields that φ_{α} can have nonzero values only on the set $\bigcap_{k=0}^{n} f^{k}(\mathcal{M})$. This set becomes arbitrary small for large n, and (4) holds for every n, if f is invertible, it holds even for negative n. Then, all the φ_{α} must be concentrated on the invariant set Λ , or at least on the set $\Lambda_{+}^{\infty} := \bigcap_{k=0}^{\infty} f^{k}(\mathcal{M})$, and it is impossible to expand $i(x) = 1 \ \forall x \in \mathcal{M}$ in terms of the eigenfunctions φ_{α} .

So how does it work? Do I have to think of the φ_{α} as functions that are a little bit smoothed around Λ^{∞}_{+} ? For large *n*, only points close to Λ^{∞}_{+} contribute to the *dy*-integral in (1). Or am I dead wrong?

If this problem is solved, there are two questions remaining. Is $\{\varphi_{\alpha}\}$ a basis for a (properly chosen) function space? And can I be sure that the coefficient c_0 in (3) isn't zero? Otherwise λ_0 would not be dominating.

Thank you very much for looking at this.