
The problem I have is about the derivation of the fact that the escape rate
is the leading eigenvalue of the Perron-Frobenius-Operator. In order to calculate
the escape rate, one has to examine the asymptotic behaviour of the quantity

Γn =
1

|M|

∫
M
dx
∫
M
dy δ(y − fn(x)). (1)

Of course the dx-integral is nothing but the Perron-Frobenius-Operator Ln acting
on an uniform initial density i(x) = 1 ∀x ∈M:

Γn =
1

|M|

∫
M
dy (Lni) (y). (2)

If I understood it correctly, you argue in the following way: the initial density
i(x) can be expanded in terms of eigenfunctions of L,

i(x) =
∑
α

cαϕα(x), (3)

and therefore, for large n, Γn is dominated by λ0, the leading eigenvalue of L:
Γn ∼ λn0 as n→∞.

My first and most important question is the following: is the decomposition
(3) really possible in an open system?

If trajectories can escape and the invariant set Λ is only a subset ofM of zero
Lebesgue measure, I think the eigenfunctions ϕα must be zero almost everywhere.
Why? The eigenvalue condition

(Lnϕα)(y) =
∫
M
dx δ(y − fn(x))ϕα(x)

= λnαϕα(y) (4)

yields that ϕα can have nonzero values only on the set ∩nk=0f
k(M). This set

becomes arbitrary small for large n, and (4) holds for every n, if f is invertible, it
holds even for negative n. Then, all the ϕα must be concentrated on the invariant
set Λ, or at least on the set Λ∞+ := ∩∞k=0f

k(M), and it is impossible to expand
i(x) = 1 ∀x ∈M in terms of the eigenfunctions ϕα.

So how does it work? Do I have to think of the ϕα as functions that are a
little bit smoothed around Λ∞+ ? For large n, only points close to Λ∞+ contribute
to the dy-integral in (1). Or am I dead wrong?

If this problem is solved, there are two questions remaining. Is {ϕα} a basis
for a (properly chosen) function space? And can I be sure that the coefficient c0

in (3) isn’t zero? Otherwise λ0 would not be dominating.
Thank you very much for looking at this.
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