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symmetries are beautiful
our hymn to symmetry is a symphony in two movements:

1 symmetry induced interrelations amongst individual orbits
symmetry equates multiplets of equivalent orbits.
group operations that relate state space tiles do double
duty as letters of a symbolic dynamics alphabet

2 symmetries affect global densities of trajectories, the
factorization of spectral determinants



coordinate transformations transformation

x → M x

maps the vector x ∈M into M x ∈M. Transformation

f (x) → M−1f (x)

changes the coordinate system with respect to which the map
f (x) ∈M is measured

together, they yield

map in the transformed coordinates

f̂ (x) = M−1f (M x)



symmetry of dynamics dynamical system (M, f ) is invariant
under transformation g if

the “law of motion" is invariant:

f (x) = g−1f (gx) ,

dynamics retains its form in the transformed coordinate frame
for any state x ∈M



symmetry groups
finite group consists of a set of elements

G = {e, g2, . . . , gn}

and a group multiplication rule gj ◦ gi satisfying
closure: if gi , gj ∈ G, then gj ◦ gi ∈ G
associativity: gk ◦ (gj ◦ gi) = (gk ◦ gj) ◦ gi

identity e: g ◦ e = e ◦ g = g for all g ∈ G
inverse g−1: for every g ∈ G, there exists a unique element
h = g−1 ∈ G such that h ◦ g = g ◦ h = e.

|G| = n, the number of elements, is the order of the group



symmetry of a dynamical system group is a symmetry of a
dynamics, or, dynamical system (M, f ) is invariant /
G-equivariant under a symmetry group G if

for solution f (x) ∈M, y = gf (x) is also a solution
the “equations of motion" f : M→M (a discrete time map
f , or the continuous flow f t ) commute with all actions of G,

f (gx) = gf (x)

the “law of motion” retains its form in
symmetry-transformed coordinate frame

f (x) = g−1f (gx)

for any state x ∈M and any finite non-singular [d×d ] matrix
representation g of element g ∈ G



why “equivariant”? scalar function h(x) is

G-invariant:
if h(x) = h(gx) for all g ∈ G

map f : M→M maps vector into a different vector, hence a
slightly different invariance condition f (x) = g−1f (gx)

it is obvious from the context, but for verbal emphasis
mathematicians like to distinguish the two cases by
in/equi-variant



example : 3-disk pinball symmetry is D3

6 symmetries of three disks on an equilateral triangle. The
fundamental domain is indicated by the shaded wedge



example : discrete symmetries of 3-dimensional flows
3-dimensional flows three types of discrete symmetry groups of
order 2 can arise:

reflections: σ(x , y , z) = (x , y ,−z)

rotations: R(x , y , z) = (−x ,−y , z)

inversions: P(x , y , z) = (−x ,−y ,−z)



example : 1-d map with D1 symmetry 2-element symmetry
group D1 = C2 = {e, R} generated by a single reflection

f (−x) = −f (x)

Symmetry: if {xn} is a trajectory, than also {Rxn} is a trajectory
because

Rxn+1 = Rf (xn) = f (Rxn)



group orbit

group orbit of x ∈M:
the set of points g x generated by all actions g ∈ G

If G is a symmetry, intrinsic properties of an equilibrium (such
as Floquet exponents) or a cycle p (period, Floquet multipliers)
and its image under a symmetry transformation g ∈ G are equal

a symmetry thus reduces the number of dynamically distinct
solutions Mx0 of the system. So we also need to determine the
symmetry of a solution, as opposed to the symmetry of the
system



generic orbit is complicated... solutions of an equivariant
system can satisfy all of the system’s symmetries, a subgroup
of them, or have no symmetry at all

for a generic ergodic orbit f t(x) the trajectory and any of its
images under action of g ∈ G are distinct with probability one,
f t(x) ∩ gf t ′(x) = ∅ for all t , t ′. For compact invariant sets, such
as fixed points and periodic orbits, especially the short ones,
the situation is very different



symmetry of a solution

definition: symmetry of a solution
let p = Mp ⊂M be an orbit of the system. The set of group
actions Gp ⊆ G which maps the orbit into itself,

Gp = {g ∈ G : gMp = Mp} ,

is called the symmetry of the orbit Mp

we shall denote by subgroup Gp ⊂ G the maximal symmetry
group of Mp. For a discrete subgroup

Gp = {e, b2, b3, . . . , bh} ⊆ G ,

of order h = |Gp|, group elements map orbit points into orbit
points reached at different times



types of solution symmetries
(i) fully asymmetric a
(ii) Gp set-wise invariant cycles s built by repeats of relative

cycle segments s̃
(iii) subgroup GEQ-invariant equilibria or point-wise Gp-fixed

cycles b



example : symmetries of 1-d sawtooth map orbits reflection
symmetry group D1 = C2 = {e, R}, f (−x) = −f (x)
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(a) boundary fixed point C, asymmetric fixed points pair {L, R}
(b) symmetric 2-cycle LR
(c) asymmetric 2-cycles pair {LC, CR}



Asymmetric cycles: R generates a reflection of the orbit with
the same number of points and the same stability properties

Symmetric cycles: A cycle s is symmetric (or self-dual) if
operating with R on the set of cycle points reproduces the set.
The period of a symmetric cycle is even (ns = 2ns̃), and the
mirror image of the xs cycle point is reached by traversing the
irreducible segment s̃ (relative periodic orbit) of length ns̃,
f ns̃(xs) = Rxs

Boundary cycles: In the example at hand there is only one
cycle which is neither symmetric nor antisymmetric, but lies on
the boundary Fix(G): the fixed point C at the origin.



cosets Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup of order
h = |H|. The set of h elements {c, cb2, cb3, . . . , cbh}, c ∈ G but
not in H, is called left coset cH. For a given subgroup H the
group elements are partitioned into H and m − 1 cosets, where
m = |G|/|H|



multiplicity of a solution If Gp is the symmetry group of orbit
Mp, elements of the coset space g ∈ G/Gp generate the m− 1
distinct copies of Mp, so for discrete groups the multiplicity of
an equilibrium or a cycle p is mp = |G|/|Gp|.



classes b ∈ G is conjugate to a if b = c a c−1 where c is some
other group element. If b and c are both conjugate to a, they
are conjugate to each other

classes
application of all conjugations separates the set of group
elements into mutually not-conjugate subsets called classes

identity e is always in the class {e} of its own. This is the only
class which is a subgroup, all other classes lack the identity
element



classes importance of classes follows from the way coordinate
transformations act on mappings: action of elements of a class
(say reflections, or discrete rotations) is equivalent up to a
redefinition of the coordinate frame

we saw above that splitting of a group G into an solution
symmetry group Gp and m − 1 cosets cGp relates a solution
Mp to m − 1 other distinct solutions cMp

all of them have equivalent symmetries: the symmetry of orbit
c p is conjugate to the p symmetry subgroup, Gc p = c Gp c−1



next step is the key step:

if a set of solutions is equivalent by symmetry (a circle of
equilibria, let’s say), we would like to represent it by a single
solution (pick a representative point on the circle).

definition: Invariant subgroup
A subgroup H ⊆ G is an invariant subgroup or normal divisor if
it consists of complete classes. Class is complete if no
conjugation takes an element of the class out of H.



H divides G into H and m−1 cosets, each of order |H|. Think of
action of H within each subset as identifying its |H| elements as
equivalent. This leads to the notion of G/H as the factor group
or quotient group G/H of G, with respect to the normal divisor
(or invariant subgroup) H. Its order is m = |G|/|H|, and its
multiplication table can be worked out from the G multiplication
table class by class, with the subgroup H playing the role of
identity. G/H is homeomorphic to G, with |H| elements in a
class of G represented by a single element in G/H



so far we have discussed the structure of a group as an
abstract entity. Now we switch gears to what we really need this
for: describe the action of the group on the state space of a
dynamical system of interest

definition: fixed-point subspace
fixed-point subspace of a given subgroup H ⊂ G, G a
symmetry of dynamics, is the set state space points left
point-wise invariant under any subgroup action

Fix(H) = {x ∈M : h x = x for all h ∈ H} .

typical point in Fix(H) moves with time, but remains within
f (Fix(H)) ⊆ Fix(H) for all times. This suggests a systematic
approach to seeking compact invariant solutions. The larger the
symmetry subgroup, the smaller Fix(H), easing the numerical
searches, so start with the largest subgroups H first



definition: invariant subspace
Mα ⊂M is an invariant subspace if

{Mα : gx ∈Mα for all g ∈ G and x ∈Mα} .

{0} and M are always invariant subspaces. So is any Fix(H)
which is point-wise invariant under action of G.

We can often decompose the state space into smaller invariant
subspaces, with group acting within each “chunk" separately:

definition: irreducible subspace
a space Mα whose only invariant subspaces are {0} and Mα

is called irreducible.

as a first, coarse attempt at classification of orbits by their
symmetries, we take note three types of equilibria or cycles:
asymmetric a, symmetric equilibria or cycles s built by repeats
of relative cycles s̃, and boundary equilibria



classes asymmetric cycles: an equilibrium or periodic orbit is
not symmetric if {xa} ∩ {gxa} = ∅, where {xa} is the set of
periodic points belonging to the cycle a. Thus g ∈ G generate
|G| distinct orbits with the same number of points and the same
stability properties.

symmetric cycles: a cycle s is symmetric (or self-dual) if it has
a non-trivial symmetry subgroup, i.e., operating with
g ∈ Gp ⊂ G on the set of cycle points reproduces the set.
g ∈ Gp acts a shift in time, mapping the cycle point x ∈Mp into
f Tp/|Gp|(x)



Boundary solutions: an equilibrium xq or a larger compact
invariant solution in a fixed-point subspace Fix(G), gxq = xq for
all g ∈ G lies on the boundary of domains related by action of
the symmetry group. A solution that is point-wise invariant
under all group operations has multiplicity 1



example: group D1 - a reflection symmetric 1d map Consider a
1d map f with reflection symmetry f (−x) = −f (x). An example
is the bimodal “sawtooth" map, piecewise-linear on the state
space M = [−1, 1] split into three regions
M = {ML,MC ,MR} which we label with a 3-letter alphabet
L(eft), C(enter), and R(ight). The symbolic dynamics is
complete ternary dynamics, with any sequence of letters
A = {L, C, R} corresponding to an admissible trajectory.
Denote the reflection operation by Rx = −x



a symmetry reduces computation of periodic orbits to repeats
of shorter, relative periodic orbit segments

equivariance of a flow under a symmetry means that the
symmetric image of a cycle is again a cycle, with the same
period and stability.

the new orbit may be topologically distinct (in which case it
contributes to the multiplicity of the cycle) or it may be the same
cycle



relative periodic orbits a cycle is symmetric under symmetry
operation g if g acts on it as a shift in time, advancing the
starting point to the starting point of a symmetry related
segment. A symmetric cycle p can thus be subdivided into mp
repeats of a irreducible segment, “prime" in the sense that the
full state space cycle is a repeat of it. Thus in presence of a
symmetry the notion of a periodic orbit is replaced by the notion
of the shortest segment of the full state space cycle which tiles
the cycle under the action of the group. In what follows we refer
to this segment as a relative periodic orbit



relative periodic orbits relative periodic orbits (or equvariant
periodic orbits) are orbits x(t) in state space M which exactly
recur

x(t) = g x(t + T)

for a fixed relative period T and a fixed group action g ∈ G. This
group action is referred to as a “phase,” or a “shift.” For a
discrete group gm = e for some finite m, so the corresponding
full state space orbit is periodic with period mT.

The period of the full orbit is given by the mp × (period of the
relative periodic orbit), and the i th Floquet multiplier Λp,i is
given by Λ

mp
p̃,i of the relative periodic orbit. The elements of the

quotient space b ∈ G/Gp generate the copies bp, so the
multiplicity of the full state space cycle p is mp = |G|/|Gp|
symmetries of a 3-disk game of pinball

we illustrate these ideas with the



(a) (b) (c)

(d)

3-disk pinball cycles: (a) 12, 13, 23, 123. Cycle 132 turns
clockwise. (b) Cycle 1232; the symmetry related 1213 and
1323 not drawn. (c) 12323; 12123, 12132, 12313, 13131 and
13232 not drawn. (d) The fundamental domain, i.e., the 1/6th
wedge indicated in (a), consisting of a section of a disk, two
segments of symmetry axes acting as straight mirror walls, and
the escape gap to the left. The above 14 full-space cycles
restricted to the fundamental domain reduced to the two fixed
points 0, 1, 2-cycle 10, and 5-cycle 00111 (not drawn)



example: C3v = D3 invariance - 3-disk game of pinball As the
three disks are equidistantly spaced, our game of pinball has a
sixfold symmetry. The symmetry group of relabeling the 3 disks
is the permutation group S3; however, it is more instructive to
think of this group geometrically, as C3v (dihedral group D3),
the group of order |G| = 6 consisting of the identity element e,
three reflections across axes {σ12, σ23, σ13}, and two rotations
by 2π/3 and 4π/3 denoted {C, C2}. Applying an element
(identity, rotation by ±2π/3, or one of the three possible
reflections) of this symmetry group to a trajectory yields another
trajectory. For instance, σ12, the flip across the symmetry axis
going through disk 1 interchanges the symbols 2 and 3; it maps
the cycle 12123 into 13132. Cycles 12, 23, and 13 are related
to each other by rotation by ±2π/3, or, equivalently, by a
relabeling of the disks



subgroups of D3 are D1 = {e, σ}, consisting of the identity and
any one of the reflections, of order 2, and C3 = {e, C, C2}, of
order 3, so possible cycle multiplicities are |G|/|Gp| = 2, 3 or 6

The C3 subgroup Gp = {e, C, C2} invariance is exemplified by
2 cycles 123 and 132 which are invariant under rotations by
2π/3 and 4π/3, but are mapped into each other by any
reflection, and the multiplicity is |G|/|Gp| = 2



the Cv type of a subgroup is exemplified by the invariances of
p̂ = 1213. This cycle is invariant under reflection
σ23{1213} = 1312 = 1213, so the invariant subgroup is
Gp̂ = {e, σ23}, with multiplicity is mp̂ = |G|/|Gp| = 3; the cycles
in this class, 1213, 1232 and 1323, are related by 2π/3
rotations



a cycle of no symmetry, such as 12123, has Gp = {e} and
contributes in all six copies (the remaining cycles in the class
are 12132, 12313, 12323, 13132 and 13232)

Besides the above discrete symmetries, for Hamiltonian
systems cycles may be related by time reversal symmetry. An
example are the cycles 121212313 and
121212323 = 313212121 which have the same periods and
stabilities, but are related by no space symmetry



So far we have used symmetry to effect a reduction in the
number of independent cycles in cycle expansions. The next
step achieves much more:

1 Discrete symmetries can be used to restrict all
computations to a fundamental domain, the M/G
quotiented subspace of the full state space M.

2 Discrete symmetry tessellates the state space into copies
of a fundamental domain, and thus induces a natural
partition of state space. The state space is completely tiled
by a fundamental domain and its symmetric images



cycle 121212313 has multiplicity 6; shown here is
121313132 = σ23121212313. However, 121231313 which has
the same stability and period is related to 121313132 by time
reversal, but not by any C3v symmetry

1 cycle multiplicities induced by the symmetry are removed
by desymmetrization, reduction of the full dynamics to the
dynamics on a fundamental domain. Each
symmetry-related set of global cycles p corresponds to
precisely one fundamental domain (or relative) cycle p̃.
Conversely, each fundamental domain cycle p̃ traces out a
segment of the global cycle p, with the end point of the
cycle p̃ mapped into the irreducible segment of p with the
group element hp̃. The relative periodic orbits in the full
space, folded back into the fundamental domain, are
periodic orbits.



1 The group elements G = {e, g2, . . . , g|G|} which map the
fundamental domain M̃ into its copies gM̃, serve also as
letters of a symbolic dynamics alphabet.



if the dynamics is invariant under a discrete symmetry, the state
space M can be completely tiled by the fundamental domain
M̃ and its images Ma = aM̃, Mb = bM̃, . . . under the action
of the symmetry group G = {e, a, b, . . .},

M = M̃ ∪Ma ∪Mb · · · ∪M|G| = M̃ ∪ aM̃ ∪ bM̃ · · · .



Now we can use the invariance condition to move the starting
point x into the fundamental domain x = ax̃ , and then use the
relation a−1b = h−1 to also relate the endpoint y to its image in
the fundamental domain. While the global trajectory runs over
the full space M, the restricted trajectory is brought back into
the fundamental domain M̃ any time it exits into an adjoining
tile; the two trajectories are related by the symmetry operation
h which maps the global endpoint into its fundamental domain
image.
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sawtooth map with the D1 symmetry f (−x) = −f (x) restricted
to the fundamental domain. f (x) is indicated by the thin line,
and fundamental domain map f̃ (x̃) by the thick line.
(a) Boundary fixed point C is the fixed point 0. The asymmetric
fixed point pair {L,R} is reduced to the fixed point 2, and the full
state space symmetric 2-cycle LR is reduced to the fixed point
2
(b) The asymmetric 2-cycle pair {LC,CR} is reduced to 2-cycle
02
(c) All fundamental domain fixed points and 2-cycles



example: group D1 and reduction to the fundamental domain
Consider again the reflection-symmetric bimodal Ulam
sawtooth map f (−x) = −f (x), with symmetry group
D1 = {e, R}. The state space M = [−1, 1] can be tiled by
half-line M̃ = [0, 1], and RM̃ = [−1, 0], its image under a
reflection across x = 0 point. The dynamics can then be
restricted to the fundamental domain x̃k ∈ M̃ = [0, 1]; every
time a trajectory leaves this interval, it is mapped back using R



the fundamental domain map f̃ (x̃) is obtained by reflecting
x < 0 segments of the global map f (x) into the upper right
quadrant. f̃ is also bimodal and piecewise-linear, with
M̃ = [0, 1] split into three regions M̃ = {M̃0,M̃1,M̃2} which
we label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic
dynamics is again complete ternary dynamics, with any
sequence of letters {0, 1, 2} admissible



However, the interpretation of the “desymmetrized" dynamics is
quite different - the multiplicity of every periodic orbit is now 1,
and relative periodic orbits of the full state space dynamics are
all periodic orbits in the fundamental domain

In (a) the boundary fixed point C is also the fixed point 0. In this
case the set of points invariant under group action of D1,
M̃ ∩ RM̃, is just this fixed point x = 0, the reflection symmetry
point.



The asymmetric fixed point pair {L,R} is reduced to the fixed
point 2, and the full state space symmetric 2-cycle LR is
reduced to the fixed point 1. The asymmetric 2-cycle pair
{LC,CR} is reduced to the 2-cycle 01. Finally, the symmetric
4-cycle LCRC is reduced to the 2-cycle 02. This completes the
conversion from the full state space for all fundamental domain
fixed points and 2-cycles



(a)

(b)

(a) The pair of full-space 9-cycles, the
counter-clockwise 121232313 and the
clockwise 131323212 correspond to

(b) one fundamental domain 3-cycle
001.



example: 3-disk game of pinball in the fundamental domain
If the dynamics is symmetric under interchanges of disks, the
absolute disk labels εi = 1, 2, · · · , N can be replaced by the
symmetry-invariant relative disk→disk increments gi , where gi
is the discrete group element that maps disk i−1 into disk i . For
3-disk system gi is either reflection σ back to initial disk (symbol
‘0’) or rotation by C to the next disk (symbol ‘1’). An immediate
gain arising from symmetry invariant relabeling is that N-disk
symbolic dynamics becomes (N−1)-nary, with no restrictions
on the admissible sequences



an irreducible segment corresponds to a periodic orbit in the
fundamental domain, a one-sixth slice of the full 3-disk system,
with the symmetry axes acting as reflecting mirrors. A set of
orbits related in the full space by discrete symmetries maps
onto a single fundamental domain orbit. The reduction to the
fundamental domain desymmetrizes the dynamics and
removes all global discrete symmetry-induced degeneracies:
rotationally symmetric global orbits (such as the 3-cycles 123
and 132) have multiplicity 2, reflection symmetric ones (such as
the 2-cycles 12, 13 and 23) have multiplicity 3, and global orbits
with no symmetry are 6-fold degenerate.



Peculiar effects arise for orbits that run on a symmetry lines that
border a fundamental domain. The state space transformation
h 6= e leaves invariant sets of boundary points; for example,
under reflection σ across a symmetry axis, the axis itself
remains invariant. Some care need to be exercised in treating
the invariant “boundary" set M = M̃ ∩Ma ∩Mb · · · ∩M|G|.
The properties of boundary periodic orbits that belong to such
pointwise invariant sets will require a bit of thinking.



in our 3-disk example, no such orbits are possible, but they
exist in other systems, such as in the bounded region of the
Hénon-Heiles potential and in 1d maps. For the symmetrical
4-disk billiard, there are in principle two kinds of such orbits,
one kind bouncing back and forth between two diagonally
opposed disks and the other kind moving along the other axis
of reflection symmetry; the latter exists for bounded systems
only. While for low-dimensional state spaces there are typically
relatively few boundary orbits, they tend to be among the
shortest orbits, and they play a key role in dynamics



while such boundary orbits are invariant under some symmetry
operations, their neighborhoods are not. This affects the
Jacobian matrix Mp of the orbit and its Floquet multipliers

here we have used a particularly simple direct product structure
of a global symmetry that commutes with the flow to reduce the
dynamics to a symmetry reduced (d−1−N)-dimensional state
space M/G.



desymmetrization of Lorenz flow
Lorenz equation is invariant under G = {e, R}, where R is
[x , y ]-plane rotation by π about the z-axis:

(x , y , z) → R(x , y , z) = (−x ,−y , z) .

R2 = 1 condition decomposes the state space into
M = M+ ⊕M−, the z-axis M+ and the [x , y ] plane M−.

the 1-dimensional M+ subspace is the fixed-point subspace of
D1, with the z-axis points left point-wise invariant under the
group action

Fix(D1) = {x ∈M+ : g x = x for g ∈ {e, R}} .

A apoint x(t) in Fix(G) remains within x(t) ⊆ Fix(G) for all
times; the subspace M+ = Fix(G) is flow invariant. The Lorenz
equation is reduced to the exponential contraction to the EQ0
equilibrium,

ż = −b z .



in higher-dimensional state spaces the flow-invariant M+

subspace can itself be high-dimensional, with interesting
dynamics of its own. This subspace is a topological obstruction:
the number of winds of a trajectory around → a natural
symbolic dynamics



the state space is divided into a half-space fundamental domain
M̃ = M/D1 and its 180o rotation RM̃. Take the fundamental
domain M̃ to be the half-space between the viewer and P.
Then the full Lorenz flow is captured by re-injecting back into M̃
any trajectory that exits it, by a rotation of π around the z axis



(a) (b)

(a) Lorenz attractor plotted in [x ′, y ′, z], the doubled-polar angle
coordinates, with points related by π-rotation in the [x , y ] plane
identified. Stable eigenvectors of EQ0: e(3) and e(2), along the
z axis. Unstable manifold orbit W u(EQ0) (green) is a
continuation of the unstable e(1) of EQ0.

(b) Blow-up of the region near EQ1: The unstable eigenplane of
EQ1 is defined by Re e(2) and Im e(2), the stable eigenvector
e(3). The descent of the EQ0 unstable manifold (green) defines
the innermost edge of the strange attractor. As it is clear from
(a), it also defines its outermost edge



a state space redefinition that maps a pair of points related by
symmetry into a single point accomplished by expressing (x , y)
in polar coordinates (x , y) = (r cos θ, r sin θ), and then plotting
the flow in the “doubled-polar angle representation:”

(x ′, y ′) = (r cos 2θ, r sin 2θ)

= ((x2 − y2)/r , 2xy/r) ,



fundamental domain
if invariant under a set of discrete symmetries G, the state
space M is tiled by a set of symmetry-related tiles, and the
dynamics can be reduced to dynamics within one such tile, the
fundamental domain M/G

if the symmetry is continuous the dynamics is reduced to a
lower-dimensional desymmetrized system M/G

families of symmetry-related full state space cycles are
replaced by fewer, shorter “relative" cycles

notion of a prime periodic orbit is replaced by the notion of a
relative periodic orbit, the shortest segment of the full state
space cycle which tiles the cycle under the action of the group



terra incognita we have some inklings of the “terra incognita:”
for example, symplectic symmetry induces existence of
KAM-tori, and in general dynamical settings we are
encountering more and more examples of partially hyperbolic
invariant tori, isolated tori that are consequences of dynamics,
not of a global symmetry, and which cannot be represented by
a single relative periodic orbit, but require a numerical
computation of full (N+1)-dimensional compact invariant sets
and their infinite-dimensional linearized Jacobian matrices,
marginal in (N+1) dimensions, and hyperbolic in the rest



the main result of this chapter can be stated as follows: If a
dynamical system (M, f ) has a symmetry G, the symmetry
should be deployed to “quotient" the state space M/G, i.e.,
identify all x ∈M related by the symmetry

in presence of a discrete symmetry G, associated with each full
state space cycle p is a maximal symmetry subgroup Gp ⊆ G
of order 1 ≤ |Gp| ≤ |G|, whose elements leave p invariant. The
symmetry subgroup Gp acts on p as time shift, tiling it with |Gp|
copies of its shortest invariant segment, the relative periodic
orbit p̃. The elements of the coset b ∈ G/Gp generate
mp = |G|/|Gp| distinct copies of p



this reduction to the fundamental domain M̃ = M/G simplifies
symbolic dynamics and eliminates symmetry-induced
degeneracies. For the short orbits the labor saving is dramatic.
For example, for the 3-disk game of pinball there are 256
periodic points of length 8, but reduction to the fundamental
domain non-degenerate prime cycles reduces the number of
the distinct cycles of length 8 to 30.



there are no periodic orbits Amusingly, in this extension of
“periodic orbit” theory from unstable 1-dimensional closed
orbits to unstable (N + 1)-dimensional compact manifolds Mp
invariant under continuous symmetries, there are either no or
proportionally few periodic orbits. Likelihood of finding a
periodic orbit is zero. One expects some only if in addition to a
continuous symmetry one has a discrete symmetry, or the
particular invariant compact manifold Mp is invariant under a
discrete subgroup of the continuous symmetry. Relative
periodic orbits are almost never eventually periodic, i.e., they
almost never lie on periodic trajectories in the full state space,
unless forced to do so by a discrete symmetry, so looking for
periodic orbits in systems with continuous symmetries is a
fool’s errand



atypical as they are (no chaotic solution will be confined to
these discrete subspaces) they are important for periodic orbit
theory, as there the shortest orbits dominate.

we feel your pain, but trust us: once you grasp the relation
between the full state space M and the desymmetrized
G-quotiented M/G, you will find the life as a fundamentalist so
much simpler that you will never return to your full state space
confused ways of yesteryear.



Résumé initially we made a lame attempt to classify “all
possible motions:” (1) equilibria, (2) periodic orbits, (3)
everything else

now one can discern in the fog of dynamics outline of a more
serious classification - long time dynamics takes place on the
closure of a set of all invariant compact sets preserved by the
dynamics, and those are:
(1) 0-dimensional equilibria Mq

(2) 1-dimensional periodic orbits Mp, (3) global symmetry
induced N-dimensional relative equilibria Mtw

(3) (N+1)-dimensional relative periodic orbits Mp

(5) terra incognita



what if the “law of motion" retains its form in a family of
coordinate frames f (x) = g−1f (gx) related by a group of
continuous symmetries? The notion of “fundamental domain” is
of no use here. Instead, (read the next chapter, “Relativity of
cyclists”) continuous symmetries reduce dynamics to a
desymmetrized system of lower dimensionality, by elimination
of “ignorable" coordinates.
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