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Abstract. Motivated by Gutzwiller’s semiclassical quantization, in which unstable

periodic orbits of low-dimensional deterministic dynamics serve as a WKB ‘skeleton’

for chaotic quantum mechanics, we construct the corresponding deterministic skeleton

for infinite-dimensional lattice-discretized scalar field theories. In the field-theoretical

formulation, there is no evolution in time, and there is no ‘Lyapunov horizon’; there is

only an enumeration of lattice states that contribute to the theory’s partition sum, each

a global spatiotemporal solution of system’s deterministic Euler-Lagrange equations.

The reformulation aligns ‘chaos theory’ with the standard solid state, field theory,

and statistical mechanics. In a spatiotemporal, crystallographer formulation, the time-

periodic orbits of dynamical systems theory are replaced by periodic d-dimensional

primitive cell tilings of spacetime, each weighted by the inverse of its instability, its

Hill determinant. Hyperbolic shadowing of large cells by smaller ones ensures that the

predictions of the theory are dominated by the smallest primitive cells.

The form of the partition function of a given field theory is determined by the group

of its spatiotemporal symmetries, that is, by the space group of its lattice discretization,

best studied on its reciprocal lattice. Already one-dimensional lattice discretization is

of sufficient interest to be the focus of this paper. In particular, from a spatiotemporal

field theory perspective, ‘time’-reversal is a purely crystallographic notion, a reflection

point group, leading to a novel, symmetry quotienting perspective of time-reversible

theories and associated topological zeta functions.
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Dedicated to Fritz Haake 1941–2019 [87].

The year was 1988. Roberto Artuso, Erik Aurell and P.C. had just worked

out the cycle expansions formulation of the deterministic and semiclassical chaotic

systems [9, 10], and a Niels Bohr Institute “Quantum Chaos Symposium” was organized

to introduce the newfangled theory to unbelievers (for a history, see ChaosBook

http://ChaosBook.org/chapters/ChaosBook.pdf#section.A.4
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appendix A.4 Periodic orbit theory). In the first row (here figure 1) of the famed

auditorium where long ago Niels Bohr and his colleagues used to nod off, sat a man

with an impressive butterfly bow tie and a big smile. At the end of our presentation,

Fritz –for that was Fritz Haake– stood up and exclaimed

“Amazing! I did not understand a single word!”

And indeed, there is a problem of understanding what is ‘chaos’ as encountered in

different disciplines, so we start this offering to Fritz Haake’s memory by ‘a fair coin

toss’ theory of chaos (section 2), as was presented in the 1988 symposium, but in a

modern, field theorist’s vision. In those days ‘chaos’ was a phenomenon exhibited by

low-dimensional systems. In this and companion papers [58, 93] we develop a theory of

‘chaotic’ or ‘turbulent’ infinite-dimensional deterministic field theories. Deterministic

chaotic field theory is of interest on its merits, as a method of describing turbulence

in strongly nonlinear deterministic field theories, such as Navier-Stokes or Kuramoto-

Sivashinsky [91, 93], or as a Gutzwiller WKB ‘skeleton’ for a chaotic quantum field

theory [48, 98] or a stochastic field theory [55, 56, 59, 60, 124]. Lattice reformulation

aligns ‘chaos’ with standard solid state, field theory and statistical mechanics, but the

claims are radical: we’ve been doing ‘turbulence’ all wrong. In “explaining” chaos

we talk the talk as though we have never moved beyond Newton; here is an initial

state of a system, at an instant in time, and here are the differential equations that

evolve it forward in time. But when we -all of us- walk the walk, we do something

altogether different (see the references preceding eq. (67)), much closer to the 20th

century spacetime physics. Our papers realign the theory to what we actually do

when solving ‘chaos equations’, using not much more than linear algebra. In the field-

theoretical formulation, there is no evolution in time, and there is no ‘Lyapunov horizon’;

every contributing lattice state is a robust global solution of a spatiotemporal fixed point

condition, and there is no dynamicist’s exponential blowup of initial state perturbations.

To a field theorist, the fundamental object is global, the partition function sum

over probabilities of all possible spacetime field configurations. To a dynamicist, the

fundamental notion is local, an ordinary or partial differential time-evolution equation.

From the field-theoretic perspective, the spacetime formulation is fundamental, elegant

and computationally powerful, while moving in step-lock with time is only one of the

methods, a ‘transfer matrix’ for construction of the partition sum, a method at times

awkward and computationally unstable.

We start our introduction to chaotic field theory (section 1) by rewriting the

two most elementary examples of deterministic chaos, the forward-in-time first order

difference equation for the Bernoulli map (section 2), and the forward-in-time second

order difference equation for a one-dimensional lattice of coupled rotors (section 3) as,

respectively, the ‘temporal Bernoulli’ two-term discrete lattice recurrence relation, and

the ‘temporal cat’ three-term discrete lattice recurrence relation. We then apply the

approach to the simplest nonlinear field theories, the one-dimensional discretized scalar

φ3 and φ4 theories (sections 4.1 and 4.2).

http://ChaosBook.org/chapters/ChaosBook.pdf#section.A.4
http://ChaosBook.org/chapters/ChaosBook.pdf#section.A.4
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Figure 1. (Color online) The simplest of all chaotic field theories is the

‘spatiotemporal cat’, a deterministic Klein-Gordon field theory on a hypercubic lattice,

with an unstable, “anti-harmonic” rotor at each lattice site, a cat that runs away rather

than pushes back. In contrast to its elliptic sibling, the Helmholtz equation and its

oscillatory solutions, spatiotemporal cat’s lattice states are hyperbolic and unstable.

Their spacetime generalization, the simplest of all chaotic field theories, is the

‘spatiotemporal cat’ [58, 96, 97], a discretization of the Klein-Gordon equation, a

deterministic scalar field theory on a d-dimensional hypercubic lattice, with an unstable

“anti-harmonic” rotor φz at each lattice site z, a rotor that gives rather than pushes

back, coupled to its nearest neighbors. Dear Fritz, if you lack inclination to plunge into

what follows, please take home figure 1. In contrast to its elliptic sibling, the Helmholtz

equation and its oscillatory solutions, spatiotemporal cat’s lattice states are hyperbolic

and ‘turbulent’, just as in contrast to oscillations of a harmonic oscillator, Bernoulli coin

flips are unstable and chaotic.

The key to constructing partition sums for deterministic field theories (section 1) are

the Hill determinants of the ‘orbit Jacobian matrices’ (section 6) that describe the global

stability of linearized deterministic equations. How is this global, high-dimensional

orbit stability related to the stability of the conventional low-dimensional, forward-in-

time evolution (section 5)? The two notions of stability are related by Hill’s formulas

(section 7, Appendix B), relations that rely on higher-order derivative equations being

rewritten as sets of first order ODEs, relations equally applicable to mechanical, energy

conserving systems, as to viscous, dissipative systems.

In order to explain the key ideas, we focus in this paper on one-dimensional field

theories, postponing the two-dimensional Bravais lattices’ subtleties to the sequel [58].

In section 9 we show that the partition function of a given field theory is determined by

the group of its symmetries, i.e., by the space group of its lattice discretization. Lattice

discretization of the theory enables us to apply solid state computational methods, such

as the reciprocal lattice and space group crystallography, to what are conventionally
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Figure 2. (Color online) Discretization of a one-dimensional field theory.

Horizontal: t coordinate, with lattice sites marked by dots and labelled by t ∈ Z.

(a) A periodic field φ(t), plotted as a function of continuous coordinate t. (b) A

corresponding discretized period-5 primitive cell lattice state Φ = φ0φ1φ2φ3φ4, with

discretized field φt plotted as a bar centred at lattice site t. In what follows we use

‘lattice units’ a = 1. Continued in figure 6.

dynamical system problems (section 10). On the level of counting lattice states, their

topological zeta functions are purely group-theoretic Lind zeta functions (section 11).

As long as the only symmetry is time translation, we recover the conventional periodic

orbit theory [53] (section 11.1). However, from a spatiotemporal field theory perspective,

‘time’-reversal is a purely crystallographic notion, leading to –to us very surprising–

dihedral space group zeta function for the ‘time-reversible’ theories (section 11.2).

Our results are summarized and open problems discussed in section 12. The

work that forms the basis of our formulation of chaotic field theory is reviewed

in Appendix A. For additional material -online talks and related papers- see

ChaosBook.org/overheads/spatiotemporal. Icon on the margin links the block of

text to a supplementary online video.

1. Deterministic lattice field theory

A scalar field φ(x) over d Euclidean coordinates can be discretized by replacing the

continuous space by a d-dimensional hypercubic integer lattice Zd, with lattice spacing

a, and evaluating the field only on the lattice points [135, 138]

φz = φ(x) , x = az = lattice point , z ∈ Zd , (1)

see figure 2. A field configuration (here in one spatiotemporal dimension)

Φ = · · ·φ−3φ−2 φ−1 φ0 φ1φ2φ3φ4 · · · , (2)

takes any set of values φz ∈ R in system’s ∞-dimensional state space. A periodic field

configuration Φ satisfies

Φ(x+R) = Φ(x) (3)

https://ChaosBook.org/overheads/spatiotemporal/
https://youtube.com/embed/EWLQJ6ZpUWQ
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for any discrete translation R in the Bravais lattice

L =
{ d∑

i=1

niai | ni ∈ Z
}

(4)

where the d independent integer lattice vectors {a1, a2, · · · , ad} define a primitive cell.

A field configuration occurs with probability density

p(Φ) =
1

Z
e−S[Φ] , Z = Z[0] . (5)

Here Z is a normalization factor, given by the partition function, the integral over

probabilities of all configurations,

Z[J] =

∫
dΦ e−S[Φ]+Φ·J , dΦ =

L∏
z

dφz , (6)

where J = {jz} is an external source jz that one can vary site by site, and S[Φ] is the

action that defines the theory (discussed in more detail in section 4). The dimension of

the partition function integral equals the number of lattice sites NL.

Motivated by WKB semi-classical, saddle-point approximations [98] to the

partition function (6), in this paper we describe their deterministic underpinning, the

corresponding deterministic field theory, with partition function built from solutions to

the variational saddle-point condition

F [Φc]z =
δS[Φc]

δφz
= 0 , (7)

with a global deterministic solution Φc satisfying this local extremal condition on every

lattice site. We shall refer to the defining condition (7) as system’s ‘Euler–Lagrange

equation’, keeping in mind that the field theories studied here might have a Lagrangian

formulation (for example, scalar φk field theories of section 4), or be dissipative (for

example, temporal Bernoulli, spatiotemporal Hénon for non-area preserving parameter

values, Kuramoto-Sivashinsky or Navier-Stokes equations).

In order to distinguish a solution to the Euler–Lagrange equations (7) from an

arbitrary field configuration (2), we refer to the solutions as lattice states, each a set of

lattice site field values

Φc = {φc,z} , (8)

that satisfies the condition (7) globally, over all lattice sites. For a finite lattice L one

needs to specify the boundary conditions (bc’s). The companion article [96] tackles the

Dirichlet bc’s, a difficult, time-translation symmetry breaking, and from the periodic

orbit theory perspective, a wholly unnecessary, self-inflicted pain. All that one needs to

solve a field theory are the n-periodic, time-translation enforced bc’s that we shall use

here.

An example is the 1 spatiotemporal dimension block of fields of period n = 5

primitive cell sketched in figure 2 (b),

Φc = φ0φ1φ2φ3φ4 , (9)
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with its infinite repetition sketched in figure 7 (1). The first field value φ0 in the block is

evaluated on the lattice site 0, the second φ1 on the lattice site 1, the (n+ 1)th φn = φ0

on the lattice site n, with kth lattice site field value φk = φ`, where ` = k (mod n).

What we call here a chaotic ‘field’ at a discretized spacetime lattice site z, a solid

state physicist would call a ‘particle’ at crystal site z, coupled to its nearest neighbors.

A solid state physicist endeavours to understand N -particle chaotic systems in many-

body or ‘large N ’ settings, where in practice N not much larger than 2 can be ‘large’.

Chaotic field theory is ab initio formulated for infinite time and infinite space lattice,

but its periodic theory description is -thanks to hyperbolicity– often accurate already for

N = 2, 3, · · ·, where N is the number of sites in a primitive cell that tiles the spacetime.

Each lattice state is a distinct deterministic solution Φc to the discretized

Euler–Lagrange equations (7), so its probability density is a NL-dimensional Dirac delta

function (that’s what we mean by the system being deterministic), a delta function per

site ensuring that Euler–Lagrange equation (7) is satisfied everywhere,

pc(Φ) =
1

Z
δ(F [Φ]) , Φ ∈Mc , (10)

where Mc is a small neighborhood of lattice state Φc. In section 7 we verify that

this definition agrees with the forward-in-time Perron-Frobenius probability density

evolution [54]. However, we find field-theoretical formulation vastly preferable to

the forward-in-time formulation, especially when it comes to higher spatiotemporal

dimensions [58].

As is case for a WKB approximation [98], the deterministic field theory partition

sum has support only on lattice field values that are solutions to the Euler–Lagrange

equations (7), and the partition function (5) is now a sum over configuration state

space (2) points, what in theory of dynamical systems is called the ‘deterministic trace

formula’ [53],

Z[0] =
∑
c

∫
Mc

dΦ δ(F [Φ]) =
∑
c

1

|DetJc|
, (11)

and we refer to the [NL×NL] matrix of second derivatives

(Jc)z′z =
δFz′ [Φc]

δφz
= S[Φc]z′z (12)

as the orbit Jacobian matrix, and to its determinant DetJc as the Hill determinant.

Support being on state space points means that we do not need to worry about

potentials being even or odd (thus unbounded), or the system being energy conserving

or dissipative, as long as its nonwandering lattice states Φc set is bounded in state space.

In what follows, we shall deal only with deterministic field theory and mostly omit the

subscript ‘c’ in Φc.

How is a deterministic chaotic field theory different from a conventional field theory?

By “spontaneous breaking of the symmetry” in a conventional theory one means that a

solution does not satisfy a symmetry such as φ→ −φ; we always work in the “broken-

symmetry” regime, as almost every ‘turbulent’, spatiotemporally chaotic deterministic
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solution breaks all symmetries. We work ‘beyond perturbation theory’, in the anti-

integrable, strong coupling regime, in contrast to much of the literature that focuses on

weak coupling expansions around a ‘ground state’. And, in contrast to [14, 95, 131, 160,

186], our ‘far from equilibrium’ field theory has no added dissipation, and is not driven

by external noise. All chaoticity is due to the intrinsic unstable deterministic dynamics,

and our trace formulas (11) are exact, not merely saddle points approximations to the

exact theory.

1.1. Lattice Laplacian

Lattice free field theory is defined by action [162]

S0[Φ] =
1

2
Φ>
(
−� + µ21

)
Φ , (13)

where the ‘discrete Laplace operator’, ‘central difference operator’, or the ‘graph

Laplacian’ [41, 88, 136, 149, 156, 157]

�φz =
∑

||z′−z||=1

(φz′ − φz) for all z, z′ ∈ L (14)

is the average of the lattice field variation φz′−φz over the sites nearest to the site z. For

example, for a hypercubic lattice in one and two dimensions this discretized Laplacian

is given by

�φt = φt+1 − 2φt + φt−1 (15)

�φjt = φj,t+1 + φj+1,t − 4φjt + φj,t−1 + φj−1,t . (16)

For the free field theory action (13) the Euler–Lagrange equation (7) is the

discretized screened Poisson equation [80], also known as the Yukawa or Klein–Gordon

equation, where µ2 > 0 is the Klein–Gordon mass-squared.

1.2. One-dimensional lattice field theories

Discrete time evolution is frequently recast into a one-dimensional temporal lattice

field theory form, by anyone who rewrites a dynamical systems discrete time evolution

problem as a k-term recurrence, for example in [55, 56, 60, 79]. As already in one

spatiotemporal dimension there is much to be learned about the role symmetries play

in solving lattice field theories, that is what we will focus on in this paper (time-

reversal sections 9 and 11), with 2-dimensional spatiotemporal field theories studied

in the sequel [58].

We start with the first order difference equation that we call ‘temporal Bernoulli’

(section 2),

−φt+1 + (sφt −mt) = 0 (17)

in order to motivate the two-component field formulation (B.1) of second-order

difference Euler–Lagrange equations (51) that we call, in the cases considered here,

https://youtube.com/embed/V4pyM2vuXL0
https://youtube.com/embed/qOkt0X7AZPo
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the ‘temporal cat’ (section 3.2), ‘temporal φ3 theory’ (section 4.1), and ‘temporal φ4

theory’ (section 4.2), respectively:

−φt+1 + 2φt − φt−1 + µ2φt −mt = 0 (18)

−φt+1 + 2φt − φt−1 + µ2 (1/4− φ2
t ) = 0 (19)

−φt+1 + 2φt − φt−1 + µ2(φt − φ3
t ) = 0 . (20)

Qualifier ‘temporal’ is used here to emphasize that we view one-dimensional examples

as special cases of ‘spatiotemporal’ field theories; much of our methodology for d-

dimensional deterministic field theories can be profitably explained by working out 1-

dimensional field theories. Lurking here is the totality of the map-iteration dynamical

systems theory, but the reader will find it more profitable, and less confusing, to think of

these simply as lattice problems, and forget that the subscript t often stands for ‘time’.

So, what is a ‘chaotic’, or ‘turbulent’ field theory? As we shall see in section 10,

all of the above, as well as their higher-dimensional spatiotemporal siblings are ‘chaotic’

for sufficiently large ‘stretching parameter’ s, or ‘Klein-Gordon mass’ µ2. Our goal here

is to make this ‘spatiotemporal chaos’ tangible and precise, by acquainting the reader

what we believe are some of the simplest examples of chaotic field theories.

2. A fair coin toss

The very simplest example of a deterministic law of evolution that gives rise to ‘chaos’

is the Bernoulli map, figure 3 (a), which models a coin toss. Starting with a random

initial state, the map generates, deterministically, a sequence of tails and heads with

50-50% probability.

We introduce the model in its conventional, time-evolution dynamical formulation,

than reformulate it as a lattice field theory, solved by enumeration of all admissible

lattice states, field configurations that satisfy a global fixed point condition, and use

this simple setting to motivate (1) the fundamental fact : for a given lattice period,

the Hill determinant of stabilities of global solutions counts their number (section 8.1),

and (2) the topological zeta function counts their translational symmetry group orbits

(section 8.2).

2.1. Bernoulli map

The base-2 Bernoulli shift map,

xt+1 =

{
f0(xt) = 2xt , xt ∈M0 = [0, 1/2)

f1(xt) = 2xt (mod 1) , xt ∈M1 = [1/2, 1)
, (21)

is shown in figure 3 (a). If the linear part of such map has an integer-valued slope, or

‘stretching’ parameter s ≥ 2,

xt+1 = sxt (22)

https://youtube.com/embed/CQ21AITMy84
https://www.random.org/coins/?num=2&cur=40-antique.aurelian
https://youtube.com/embed/Twbe1bAH678
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(a) (b)

f(x)

x0 1

1

1 3 5 6 4 2

Figure 3. (Color online) (a) The ‘coin toss’ map (21), together with the 0 fixed

point, and the 01 2-cycle. Preimages of the critical point xc = 1/2 partition the unit

interval into {M0,M1}, {M00,M01,M10,M11}, . . ., subintervals. (b) The base-s

Bernoulli map, here with the ‘dice throw’ stretching parameter s = 6, partitions the

unit interval into 6 subintervals {Mm}, labeled by the 6-letter alphabet (25). As the

map is a circle map, x5 = 1 = 0 = x0 (mod 1).

that maps state xt into a state in the ‘extended state space’, outside the unit interval,

the (mod 1) operation results in the base-s Bernoulli circle map,

φt+1 = sφt (mod 1) , (23)

sketched as a dice throw in figure 3 (b). The (mod 1) operation subtracts mt = bsφtc,
the integer part of sφt, or the circle map winding number, to keep φt+1 in the unit

interval [0, 1), and partitions the unit interval into s subintervals {Mm},

φt+1 = sφt −mt , φt ∈Mmt , (24)

where mt takes values in the s-letter alphabet

m ∈ A = {0, 1, 2, · · · , s− 1} . (25)

The Bernoulli map is a highly instructive example of a hyperbolic dynamical system.

Its symbolic dynamics is simple: the base-s expansion of the initial point φ0 is also its

temporal itinerary, with symbols from alphabet (25) indicating that at time t the orbit

visits the subintervalMmt . The map is a ‘shift’: a multiplication by s acts on the base-s

representation of φ0 = .m1m2m3 · · · (for example, binary, if s = 2) by shifting its digits,

φ1 = f(φ0) = .m2m3 · · · . (26)

Periodic points can be counted by observing that the preimages of critical

points {φc1, φc2, · · ·φc,s−1} = {1/s, 2/s, · · · , (s− 1)/s} partition the unit interval into s

subintervals {M0,M1, · · · ,Ms−1}, s2 subintervals {Mm1m2}, . . ., sn subintervals, each

containing one unstable period-n periodic point φm1m2···mn , with stability multiplier sn ,

see figure 3. The Bernoulli map is a full shift, in the sense that every itinerary is

https://www.random.org/dice/
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admissible, with one exception: on the circle, the rightmost fixed point is the same as

the fixed point at the origin, φs−1 = φ0 (mod 1), so these fixed points are identified

and counted as one, see figure 3. The total number of periodic points of period n is thus

Nn = sn − 1 . (27)

2.2. Temporal Bernoulli

To motivate our formulation of a spatiotemporal chaotic field theory to be developed

below, we now recast the local initial value, time-evolution Bernoulli map problem as a

temporal lattice fixed point condition, the problem of enumerating and determining all

global solutions.

‘Temporal’ here refers to the lattice site field φt and the winding number mt taking

their values on the lattice sites of a one-dimensional temporal integer lattice t ∈ Z.

Over a finite lattice segment, these can be written compactly as a lattice state and the

corresponding symbol block

Φ> = (φt+1, · · · , φt+n) , M> = (mt+1, · · · ,mt+n) , (28)

where (· · ·)> denotes a transpose. The Bernoulli equation (24), rewritten as a first-order

difference equation

−φt+1 + (sφt −mt) = 0 , φt ∈ [0, 1) , (29)

takes the matrix form

J Φ−M = 0 , J = −r + s 11 , (30)

where the [n×n] matrix

rjk = δj+1,k , r =


0 1

0 1
. . .

0 1

1 0

 , (31)

implements the shift operation (26), a cyclic permutation that translates forward-in-

time lattice state Φ by one site, (rΦ)> = (φ2, φ3, · · · , φn , φ1). The time evolution law

(24) must be of the same form for all times, so the operator r has to be time-translation

invariant, with rn+1,n = r1n = 1 matrix element enforcing its periodicity.

As the temporal Bernoulli condition (30) is a linear relation, a given block M, or

‘code’ in terms of alphabet (25), corresponds to a unique temporal lattice state ΦM.

That is why Percival and Vivaldi [149] refer to such symbol block M as a linear code.

The temporal Bernoulli, however, is not a linear dynamical system: as illustrated by

figure 3, it is a set of piecewise-linear s-stretching maps and their compositions, one for

each state space region MM.

https://youtube.com/embed/2Rl-KKsiXFw
https://youtube.com/embed/wjQ1DmwhkEM
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2.3. Bernoulli as a continuous time dynamical system

The discrete time derivative of a lattice configuration Φ evaluated at the lattice site t is

given by the difference operator [75]

φ̇t =

[
∂Φ

∂t

]
t

=
φt+1 − φt

∆t
. (32)

The temporal Bernoulli condition (30) can be thus viewed as forward Euler method, a

time-discretized, first-order ODE dynamical system

Φ̇ = v(Φ,M) , (33)

where the ‘velocity’ vector field v is given by

v(Φ,M) = (s− 1) Φ−M ,

with the time increment set to ∆t = 1, and perturbations that grow (or decay) with

rate (s− 1). By inspection of figure 3 (a), it is clear that for shrinking, s < 1 parameter

values the orbit is stable forward-in-time, with a single linear branch, 1-letter alphabet

A = {0}, and the only lattice states being the single fixed point φ0 = 0, and its repeats

Φ = (0, 0, · · · , 0). However, for stretching, s > 1 parameter values, the Bernoulli system

(more generally, Rényi’s beta transformations [159]) that we study here, every lattice

state ΦM is unstable, and there is a lattice state for each admissible symbol block M.

A fair coin toss, summarized. We refer to the global temporal lattice condition (30)

as the ‘temporal Bernoulli’, in order to distinguish it from the 1-time step Bernoulli

evolution map (23), in preparation for the study of spatiotemporal systems to be

undertaken in [58]. In the lattice formulation, a global temporal lattice state ΦM is

determined by the requirement that the local temporal lattice condition (29) is satisfied

at every lattice site. In spatiotemporal formulation there is no need for forward-in-time,

close recurrence searches for the returning periodic points. Instead, one determines

each global temporal lattice state ΦM at one go, by solving the fixed point condition

(7). The most importantly for what follows, the spatiotemporal field theory of [58],

this calculation requires no recourse to any explicit coordinatization and partitioning of

system’s state space.

3. A kicked rotor

Temporal Bernoulli is the simplest example of a chaotic lattice field theory. Our next

task is to formulate a deterministic spatiotemporally chaotic field theory, Hamiltonian

and energy conserving, because (a) that is physics, and (b) one cannot do quantum

theory without it. We need a system as simple as the Bernoulli map, but mechanical.

So, we move on from running in circles, to a mechanical rotor to kick.

The 1-degree of freedom maps that describe kicked rotors subject to discrete time

sequences of angle-dependent force pulses P (qt), t ∈ Z,

https://youtube.com/embed/kWrvgeqYaBU
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qt+1 = qt + pt+1 (mod 1), (34)

pt+1 = pt + P (qt) , (35)

with 2πq the angle of the rotor, p the momentum conjugate to the angular coordinate

q, and the angular pulse P (qt) = P (qt+1) = −V ′(qt) lattice periodic with period 1,

play a key role in the theory of deterministic and quantum chaos in atomic physics,

from the Taylor, Chirikov and Greene standard map [38, 121], to the cat maps that

we turn to now. The equations are of the Hamiltonian form: eq. (34) is q̇ = p/m in

terms of discrete time derivative (32), i.e., the configuration trajectory starting at qt
reaches qt+1 = qt + pt+1∆t/m in one time step ∆t. Eq. (35) is the time-discretized

ṗ = −∂V (q)/∂q: at each kick the angular momentum pt is accelerated to pt+1 by the

force pulse P (qt)∆t, with the time step and the rotor mass set to ∆t = 1, m = 1.

3.1. Cat map

The simplest kicked rotor is subject to force pulses P (q) = µ2q proportional to the

angular displacement q: in that case, the map (34,35) is of form(
qt+1

pt+1

)
= J

(
qt
pt

)
(mod 1) , J =

(
µ2 + 1 1

µ2 1

)
. (36)

The (mod 1) makes the map a discontinuous ‘sawtooth,’ unless µ2 is a positive integer.

The map is then a Continuous Automorphism of the Torus known as the Thom-Anosov-

Arnol’d-Sinai ‘cat map’ [7, 63, 173], extensively studied as the simplest example of a

chaotic Hamiltonian system.

The determinant of the one-time-step Jacobian is det J = 1, i.e., the forward-in-

time mapping is area-preserving. Let s = tr J = µ2 + 2 be the trace of the Jacobian.

For |s| > 2 the J characteristic equation

Λ2 − sΛ + 1 = 0 , (37)

has real roots (Λ , Λ−1) and a positive Lyapunov exponent λ > 0,

Λ = eλ =
1

2
(s+

√
(s− 2)(s+ 2)) , s = tr J = Λ + Λ−1 . (38)

The eigenvalues are functions of the stretching parameter s, and for |s| > 2 the cat map

(36) is a fully chaotic Hamiltonian dynamical system.

3.2. Temporal cat

In order to motivate our formulation of d-dimensional spatiotemporal chaotic field

theories, to be developed in [58], we now recast the local initial value, Hamiltonian

time-evolution as a global solution to the Euler–Lagrange equations.

The two-component field at the temporal lattice site t, φt = (qt, pt) ∈ (0, 1]×(0, 1] is

kicked rotor’s the angular position and momentum. Hamilton’s equations (34,35) induce
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forward-in-time evolution on a 2-torus (qt, pt) phase space. Eliminating the momentum

by Hamilton’s discrete time velocity eq. (34),

(qt, pt) =

(
qt,
qt − qt−1

∆t

)
, (39)

setting the time step to ∆t = 1, and forgetting for a moment the (mod 1) condition,

the forward-in-time Hamilton’s first order difference equations are brought to the second

order difference, three-term recurrence Euler–Lagrange equations for scalar field φt = qt,

φt+1 − 2φt + φt−1 + V ′(φt) = 0 . (40)

But that is Newton’s Second Law: “acceleration equals force,” so Percival and

Vivaldi [149] refer to this formulation as ‘Newtonian’. Here we follow Allroth [2], Mackay,

Meiss, Percival, Kook & Dullin [71, 115, 129, 130, 132], and Li and Tomsovic [119] in

referring to it as ‘Lagrangian’.

For the cat map (36), the Lagrangian passage (39) to the scalar field φt leads to

the Percival-Vivaldi ‘two-configuration representation’ [149](
φt
φt+1

)
= JPV

(
φt−1

φt

)
−

(
0

mt

)
, JPV =

(
0 1

−1 s

)
, (41)

with matrix JPV acting on the two-dimensional space of successive configuration points

(φt−1, φt)
>. As was case for the Bernoulli map (29), the cat map (mod 1) condition (36)

is enforced by integers mt ∈ A, where for a given integer stretching parameter s the

alphabet A ranges over |A| = s+1 possible values for mt,

A = {1, 0, . . . s−1} , (42)

necessary to keep φt for all times t within the unit interval [0, 1). (We find it convenient

to have symbol mt denote mt with the negative sign, i.e., ‘1’ stands for symbol ‘−1’.)

Written out as a second-order difference equation, the Percival-Vivaldi map (41)

takes a particularly elegant form, that we shall refer to as the temporal cat (18),

−φt+1 + (s φt −mt)− φt−1 = 0 , (43)

or, in terms of a lattice state Φ, the corresponding symbol block M (28), and the [n×n]

time translation operator r (31),

(−r + s 11− r−1) Φ = M , (44)

very much like the temporal Bernoulli condition (30), with the winding numbers M

taking their values on the lattice sites of a one-dimensional temporal lattice t ∈ Z.

As was the case for temporal Bernoulli (30), the condition (41) is a linear relation:

a given ‘code’ {mt} in terms of alphabet (42) corresponds to a unique temporal sequence

{φt}. That is why Percival and Vivaldi [149] refer to such symbol block M as a linear

code. As for the Bernoulli system, mt can also be interpreted as ‘winding numbers’ [113],

or, as they shepherd stray points back into the unit torus, as ‘stabilising impulses’ [149].

The cat map, however, is not a linear dynamical system: it is a set of piecewise-linear

maps and their convolutions, one for each state space region MM.

https://youtube.com/embed/RjV30zx_Pp0
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The lattice formulation (43) lends itself immediately to d-dimensional generaliza-

tions. An example is the Gutkin and Osipov [97] spatiotemporal cat in d = 2 dimen-

sions [58], an Arnold cat map-inspired Euclidean scalar field theory of form (13) for

which the Euler–Lagrange equation (7) is a five-term recurrence relation

−φj,t+1 − φj,t−1 + (2s φjt −mjt)− φj+1,t − φj−1,t = 0 , (45)

where we refer to parameter s, related to the Klein-Gordon mass in (13) by µ2 = d(s−2),

as the ‘stretching parameter’.

3.3. Temporal cat as a continuous time dynamical system

Recall that the Bernoulli first-order difference equation could be viewed as a time-

discretization of the first-order linear ODE (33). The second-order difference equation

(43) can be interpreted as the second order discrete time derivative d2/dt2, or the

temporal lattice Laplacian (15),

�φt ≡ φt+1 − 2φt + φt−1 = (s− 2)φt −mt , (46)

with the time step set to ∆t = 1. In other words, if we include the cat map forcing

pulse (35) P (φt) = −V ′(φt) = (s− 2)φ−mt into the definition of the on-site potential,

the force is linear in the angular displacement φ, so the temporal cat Euler–Lagrange

equation takes form (see free action (13))

(−� + µ2 11) Φ = M , (47)

where the Klein-Gordon mass µ is related to the cat-map stretching parameter s by

µ2 = s− 2.

Here we study the strong stretching, s > 2 case, known as the discrete screened

Poisson equation [69, 80, 89, 105, 106, 157], whose solutions are hyperbolic. We refer to

the Euler–Lagrange equation (47) as the ‘temporal cat’, both to distinguish it from the

forward-in-time Hamiltonian cat map (36), and in the anticipation of the spatiotemporal

cat to be discussed in the sequel [58]. The field φt compactification to unit circle makes

the spatiotemporal cat a strongly nonlinear deterministic field theory, with nontrivial

symbolic dynamics.

Temporal cat, summarized. In the spatiotemporal formulation a global temporal lattice

state

Φ> = (φt, φt+1, · · · , φt+k) (48)

is not determined by a forward-in-time ‘cat map’ evolution (36), but rather by the fixed

point condition (7) that the local, three-term discrete temporal lattice Euler–Lagrange

equations (43) are satisfied at every lattice point. This temporal one-dimensional lattice

reformulation is the bridge that takes us from the single cat map (36) to the higher–

dimensional coupled “multi-cat” spatiotemporal lattices [58, 96, 97].

https://youtube.com/embed/rTh_I0KOasY
https://youtube.com/embed/uyu1O3tZgFM


Chaotic lattice field theory 15

4. Nonlinear field theories

The ‘mod 1’ in the definition of the ‘linear’ kicked rotor, makes the cat map (36) a highly

nonlinear, discontinuous map. In contrast, discretized scalar d-dimensional Euclidean

φk theories [137] are defined by smooth, polynomial actions (6) given as lattice sums

over the Lagrangian density

S[Φ] =
∑
z

{
1

2

d∑
µ=1

(∂µφ)2
z + V (φz)

}
, (49)

with nonlinear self-interaction [185]

V (φ) =
µ2

2
φ2 − g

k!
φk , k ≥ 3 , (50)

where V (φ) is a local nonlinear potential [4–6, 72, 82, 120], the same for every lattice site

z, µ2 ≥ 0 is the Klein-Gordon mass-squared, g ≥ 0 is the strength of the self-coupling,

and we set lattice constant to unity, a = 1, throughout. The signs of the terms of (50)

reflect our focus on deterministic spatiotemporal chaos, i.e., we shall study systems for

whom all solutions are unstable.

The discrete Euler–Lagrange equations (7) now take form of three-term recurrence,

second-order difference equations

−�φz + V ′(φz) = 0 . (51)

4.1. A φ3 field theory

The simplest such nonlinear action turns out to correspond to the paradigmatic

dynamicist’s model of a two-dimensional nonlinear dynamical system, the Hénon

map [101]

xt+1 = 1− a x2
t + b yt

yt+1 = xt . (52)

For the contraction parameter value b = −1 this is a Hamiltonian map (see (66) below).

The Hénon map is the simplest map that captures chaos that arises from the smooth

stretch & fold dynamics of nonlinear return maps of flows such as Rössler [161]. Written

as a 2nd-order inhomogeneous difference equation [72], (52) takes the temporal Hénon

three-term recurrence form, time-translation and time-reversal invariant Euler–Lagrange

equation (19),

−φt+1 + (a φ2
t − 1)− φt−1 = 0 . (53)

Just as the kicked rotor (34,35), the map can be interpreted as a kicked driven

anaharmonic oscillator [100], with the nonlinear, cubic Biham-Wenzel [23] lattice site

potential (50)

V (φ) =
1

2
µ2φ2 − 1

3!
g φ3 , (54)

https://youtube.com/embed/F-iOrF-G-1M
https://youtube.com/embed/cKuPh3sfW5c
https://youtube.com/embed/PxV7q8R-NOc


Chaotic lattice field theory 16

giving rise to kicking pulse (35), so we refer to this field theory as φ3 theory. As

discussed in detail in [183], one of the parameters can be rescaled away by translations

and rescalings of the field φ, and the Euler–Lagrange equation of the system can brought

to various equivalent forms, such as the Hénon form (53), or the anti-integrable form

(19),

− 1

d

∑
||z′−z||=1

(φz′ − φz) + µ2 (1/4− φ2
t ) = 0 . (55)

For a sufficiently large ‘stretching parameter’ a, or ‘mass parameter’ µ2, the lattice states

of this φ3 theory are in one-to-one correspondence to the unimodal Hénon map Smale

horseshoe repeller, cleanly split into the ‘left’, positive stretching and ‘right’, negative

stretching lattice site field values. A plot of this horseshoe, given in, for example,

ChaosBook Example 15.4 is helpfull in understanding that state space of deterministic

solutions of strongly nonlinear field theories has fractal support. Devaney, Nitecki,

Sterling and Meiss [64, 169, 170] have shown that the Hamiltonian Hénon map has a

complete Smale horseshoe for ‘stretching parameter’ a values above

a > 5.699310786700 · · · . (56)

In numerical [53] and analytic [77] calculations we fix (arbitrarily) the stretching

parameter value to a = 6, in order to guarantee that all 2n periodic points φ = fn(φ) of

the Hénon map (52) exist, see table D1. The symbolic dynamics is binary, as simple as

the Bernoulli map of figure 3 (a), in contrast to the temporal cat which has nontrivial

pruning, see table D2.

4.2. A φ4 field theory

If a symmetry forbids the odd-power potentials such as (54), one starts instead with the

Klein-Gordon [5, 21, 22, 27, 29] quartic potential (50)

V (φ) =
1

2
µ2φ2 − 1

4!
g φ4 , (57)

leading, after some translations and rescalings [183], to the Euler–Lagrange equation for

the lattice scalar φ4 field theory (20),

− 1

d

∑
||z′−z||=1

(φz′ − φz) + µ2(φt − φ3
t ) = 0 . (58)

Topology of the state space of φ4 theory is very much like what we had learned for the

unimodal Hénon map φ3 theory, except that the repeller set is now bimodal. As long

as µ2 is sufficiently large, the repeller is a full 3-letter shift. Indeed, while Smale’s first

horseshoe [167], his fig. 1, was unimodal, he also sketched the φ4 bimodal repeller, his

fig. 5.

http://ChaosBook.org/chapters/ChaosBook.pdf#exmple.15.4
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4.3. Computing lattice states for nonlinear theories

Unlike the temporal Bernoulli (17) and the temporal cat (18), for which the lattice

state fixed point condition (7) is linear and easily solved, for nonlinear lattice field

theories the lattice states are roots of polynomials of arbitrarily high order. While

Friedland and Milnor [82], Endler and Gallas [76, 77] and others [32, 168] have developed

a powerful theory that yields Hénon map periodic orbits in analytic form, it would

be unrealistic to demand such explicit solutions for general field theories on multi-

dimensional lattices. We take a pragmatic, numerical route [92, 183], and search for the

fixed-point solutions (7) starting with the deviation of an approximate trajectory from

the three-term recurrence (51), given by the lattice deviation vector

vt = −�φt + V ′(φt) , (59)

and minimizing this error term by any suitable variational or optimization method,

possibly in conjunction with a high-dimensional variant of the Newton method [57, 92,

116, 147, 181].

5. Forward-in-time stability

Consider a temporal lattice with a d-component field on each lattice site t, with time

evolution given by a d-dimensional map (1st order difference equation)

φt − f(φt−1) = 0 , φt = {φt,1, φt,2, . . . , φt,d} . (60)

A small deviation ∆φt from φt satisfies the linearized equation

∆φt − Jt−1 ∆φt−1 = 0 , (Jt)ij =
∂f(φt)i
∂φt,j

, (61)

where Jt = J(φt) is the 1-time step [d×d] Jacobian matrix, evaluated on lattice site t.

The formula for the linearization of nth iterate of the map

Jn = Jn−1Jn−2 · · · J1J0 (62)

in terms of 1-time step Jacobian matrix (61) follows by chain rule for iterated functions.

For a period-n primitive cell lattice state Φc we refer to this forward-in-time [d×d]

matrix as the Floquet (or monodromy) matrix.

If the only symmetry of the system is time translation (the map (60) is the same

at all temporal lattice sites, but not invariant under a lattice reflection), a lattice state

Φp is prime if it is not a repeat of a shorter period lattice state. Evaluated at lattice

site t0, its Floquet matrix is

Jp = Jnp−1Jnp−2 · · · J1J0 . (63)

Consider a lattice state Φ which is mth repeat of a period-n prime lattice state

Φp (for a sketch, see figure 7 (1)). Due to the multiplicative structure (62) of Jacobian

matrices, the Floquet matrix for the mth repeat of a prime period-n lattice state Φp is

Jmn(φ0) = Jn(φ(m−1)n) · · · Jn(φn)Jn(φ0) = Jmp . (64)

https://youtube.com/embed/r7DtAeQON5c
https://youtube.com/embed/JYP6sqcxhh0
https://youtube.com/embed/vOaIjt44lCM
https://youtube.com/embed/4bJAcix9pE0
https://youtube.com/embed/JAvOcKjGTVM
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Hence it suffices to restrict our considerations to the Floquet matrix of prime lattice

states.

For example, for the Hamiltonian, b = −1 Hénon map (52), the 1-time step Jacobian

matrix (61) is

Jt =

(
−2a φt −1

1 0

)
, (φt, ϕt) = f t(φ0, ϕ0) . (65)

So, once we have a determined a temporal Hénon lattice state Φp, we have its Floquet

matrix Jp. When Jp is hyperbolic, only the expanding eigenvalue Λ1 = 1/Λ2 needs to be

determined, as the determinant of the Hénon 1-time step Jacobian matrix (65) is unity,

det Jp = Λ1Λ2 = 1 . (66)

The map is Hamiltonian in the sense that it preserves areas in the [φ, ϕ] plane.

6. Orbit stability

The discretized Euler–Lagrange F [Φc] = 0 fixed point condition (7) is central to the

theory of robust global methods for finding periodic orbits. In global multi-shooting,

collocation [39, 68, 90], and Lindstedt-Poincaré [178–180] searches for periodic orbits,

one discretizes a periodic orbit into n sites temporal lattice configuration [57, 66, 67,

116], and lists the field value at a point of each segment

Φ> = (φ0, φ1, · · · , φn−1) . (67)

Starting with an initial guess for Φ, a zero of function F [Φc] can then be found by

Newton iteration, which requires an evaluation of the [n×n] orbit Jacobian matrix

Jtt′ =
δF [Φc]t
δφt′

. (68)

The temporal Bernoulli condition (30) and the temporal cat discretized Euler–-

Lagrange equation (44) can be viewed as searches for zeros of the vector of n functions

F [ΦM] = JΦ−M = 0 (69)

temporal Bernoulli: J = −r + s 11 (70)

temporal cat: J = −r + s 11− r−1 , (71)

with the entire periodic lattice state ΦM treated as a single fixed point (φ0, φ1, · · · , φn−1)

in the n-dimensional state space unit hypercube Φ ∈ [0, 1)n .

For uniform stretching systems, such as the temporal Bernoulli and the temporal

cat, [n×n] orbit Jacobian matrix J is a circulant, time-translation invariant matrix.

Written out as matrices they are, respectively, temporal Bernoulli (70)

J =



s −1 0 0 . . . 0 0

0 s −1 0 . . . 0 0

0 0 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . s −1

−1 0 0 0 . . . 0 s


, (72)

https://youtube.com/embed/RvDGNXUMX_c
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and temporal cat (71)

J =



s −1 0 0 . . . 0 −1

−1 s −1 0 . . . 0 0

0 −1 s −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . s −1

−1 0 0 0 . . . −1 s


. (73)

While in Lagrangian mechanics matrices such as (73) are often called “Hessian”, here we

refer to them collectively as ‘orbit Jacobian matrices’, to emphasize that they describe

the stability of any dynamical system, be it energy-conserving, or a dissipative system

without a Lagrangian formulation.

Solutions of a nonlinear field theory, such as the lattice state sketched in figure 2 (b),

are in general not translation invariant, so the orbit Jacobian matrix (68) (or the ‘discrete

Schrödinger operator’ [28, 166])

Jc =



s0 −1 0 0 · · · 0 −1

−1 s1 −1 0 · · · 0 0

0 −1 s2 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · sn−2 −1

−1 0 0 0 · · · −1 sn−1


(74)

is not a circulant matrix: each lattice state Φc has its own orbit Jacobian matrix

Jc = J [Φc], with the ‘stretching factor’ st = V ′′(φt) + 2 at the lattice site t a function

of the site field φt.

The orbit Jacobian matrix of a period-(mn) lattice state Φ, which is a mth repeat

of a period-n prime lattice state Φp, has a tri-diagonal block circulant matrix form that

follows by inspection from (74):

J =


sp −r −r>

−r> sp −r
. . . . . . . . .

−r> sp −r

−r −r> sp

 , (75)

where block matrix sp is a [n×n] symmetric Toeplitz matrix

sp =


s0 −1 0

−1 s1 −1
. . . . . . . . .

−1 sn−2 −1

0 −1 sn−1

 , r =


0 · · · 0

. . .
...

1 0

 , (76)

and r and its transpose enforce the periodic bc’s. This period-(mn) lattice state Φ

orbit Jacobian matrix is as translation-invariant as the temporal cat (73), but now
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under Bravais lattice translations by multiples of n. As discussed in section 9, one can

visualize this lattice state as a tiling of the integer lattice Z by a generic lattice state

field decorating a tile of length n. The orbit Jacobian matrix J is now a block circulant

matrix which can be brought into a block diagonal form by a unitary transformation,

with a repeating [n×n] block along the diagonal, see section 10.2.1.

7. Stability of an orbit vs. its time-evolution stability

The orbit Jacobian matrix J [Φc]z′z is a high–dimensional linear stability matrix for the

extremum condition F [Φc] = 0, evaluated on the lattice state Φc. How is the stability

so computed related to the dynamical systems’ forward-in-time stability?

As we shall show now, the two notions of stability are related by Hill’s formula

|DetJc| = |det( 11− Jc)| (77)

which relates the characteristic polynomial of the forward-in-time evolution periodic

orbit Floquet matrix (monodromy matrix) Jc to the determinant of the global orbit

Jacobian matrix Jc.
While first discovered in a Lagrangian setting, Hill’s formulas apply equally well to

dissipative dynamical systems, from the Bernoulli map of section 2 to Navier-Stokes and

Kuramoto-Sivashinsky systems [91, 93], with the Lagrangian formalism of [26, 115, 129,

177] mostly getting in the way of understanding them. We find the discrete spacetime

derivations given below a good starting point to grasp their simplicity.

Why do we need them? Let’s say that an n-periodic φt+n = φt lattice state Φc

is known ‘numerically exactly’, that is to say, to a high (but not infinite) precision.

One way to present the solution is to list the field value φ0 at a single temporal lattice

site t = 0, and instruct the reader to reconstruct the rest by stepping forward in time,

φt = f t(φ0). However, for a linearly unstable orbit a single field value φ0 does not suffice

to present the solution, because there is always a finite ‘Lyapunov time’ horizon tLyap
beyond which f t(φ0) has lost all memory of the entire lattice state Φc. This problem is

particularly vexing in searches for ‘exact coherent structures’ embedded in turbulence,

where even the shortest period solutions have to be computed to the (for a working

fluid dynamicist excessive) machine precision [85, 86, 184], in order to complete the first

return to the initial state. And so the “· · · sensitivity to · · ·” incantations of introductory

chaos courses [1, 53, 99, 146, 172] bear no relation to what we actually do in practice.

In practice, instead of relaying on forward-in-time numerical integration, global

methods for finding periodic orbits [39] view them as equations for the vector fields

φ̇ on spaces of closed curves, or, as we shall see [57, 58, 93, 96, 116], on D-tori

spacetime tilings. In numerical implementations (67) one discretizes a periodic orbit

into sufficiently many short segments [39, 66–68, 90], and lists one field value for each

segment (φ1, φ2, · · · , φn) . For a n-dimensional discrete time map f obtained by cutting

the flow by n local Poincaré sections, with the periodic orbit now of discrete period n,

https://youtube.com/embed/y4SdeDFCLYk
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every trajectory segment can be reconstructed by short time integration, and satisfies

φt+1 = ft(φt) , (78)

to high accuracy, as for sufficiently short times the exponential instabilities are

numerically controllable. That is why a very rough, but topologically correct global

guess can robustly lead to a solution that forward-in-time methods fail to find.

7.1. Hill’s formula for a 1st order difference equation

As Hill’s formula is fundamental to our formulation of the spatiotemporal chaotic field

theory, we rederive it now in three ways, relying on nothing more than elementary linear

algebra. Here is its first, ‘multi-shooting’ derivation (where the reader is invited to take

care of the convergence of the formal series used).

Consider a temporal lattice with a d-component field (60). It suffices to work out a

temporal period n = 3 example to understand the calculation for any period. In terms

of the [3d×3d] generalized (31) block shift matrix r

r =

 0 11d 0

0 0 11d
11d 0 0

 , (79)

where 11d is the d-dimensional identity matrix, the orbit Jacobian matrix (68) has a

block matrix form

Jc = 11− r−1J , J =

 J0 0 0

0 J1 0

0 0 J2

 , (80)

where Jt = J(φt) is the 1-time step [d×d] Jacobian matrix (61). Next, consider

r−1J =

 0 0 J2

J0 0 0

0 J1 0

 , (r−1J)2 =

 0 J2J1 0

0 0 J0J2

J1J0 0 0

 , (81)

and note that the n = 3 repeat of r−1J is block-diagonal

(r−1J)3 =

 J2J1J0 0 0

0 J0J2J1 0

0 0 J1J0J2

 , (82)

with [d×d] blocks along the diagonal cyclic permutations of each other. The trace of

the [nd×nd] matrix for a period n lattice state Φc

Tr(r−1J)k =
∞∑
m=1

δk,mn n tr Jmc , Jc = Jn−1Jn−2 · · · J1J0 (83)

is non-vanishing only if k is a multiple of n, where Jc is the forward-in-time [d×d]

Floquet matrix of the period-n lattice state Φc, evaluated at lattice site 0. Evaluate the
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Hill determinant DetJc by expanding

ln DetJc = Tr ln( 11− r−1J) = −
∞∑
k=1

1

k
Tr(r−1J)k

= − tr
∞∑
m=1

1

m
Jmc = ln det( 11d − Jc) , (84)

where ‘Tr, Det ’ refer to the big, [nd×nd] global matrices, while ‘tr, det’ refer to the

small, [d×d] time-stepping matrices.

The orbit Jacobian matrix Jc evaluated on a lattice state Φc that is a solution of the

temporal lattice first-order difference equation (60), and the dynamical, forward-in-time

Jacobian matrix Jc are thus connected by Hill’s formula (77) which relates the global

orbit stability to the Floquet, forward-in-time evolution stability. This version of Hill’s

formula applies to all first-order difference equations, i.e., systems whose evolution laws

are first order in time.

Perhaps the simplest example of Hill’s formula is afforded by the temporal Bernoulli

lattice (30). The site field φt is a scalar, so d = 1, the 1-time step [1×1] time-evolution

Jacobian matrix (61) is the same at every lattice point t, Jt = s, the orbit Jacobian

matrix (30) is the same for all lattice states of period n, and (see section 8.1) in this

case the Hill’s formula (77) counts the numbers of lattice states

temporal Bernoulli: Nn = |DetJ | = sn − 1 , (85)

in agreement with the time-evolution count (27); all itineraries are allowed, except that

the periodicity of rn = 11 accounts for 0 and s−1 fixed points (see figure 3) being a

single periodic point.

7.2. Hill’s formula for the trace of an evolution operator

Our second derivation redoes the first, but now in the ChaosBook evolution operator

formulation of the deterministic transport of state space orbits densities [54], setting

up the generalization of the time-periodic orbit theory to the spacetime-periodic orbit

theory [58].

For a d-dimensional deterministic map (60) the Perron-Frobenius operator

L ρ(φt+1) =

∫
M
ddφt L(φt+1, φt) ρ(φt) (86)

maps a state space density distribution ρ(φt) one step forward-in-time. Applied

repeatedly, its kernel, the d-dimensional Dirac delta function

L(φt+1, φt) = δ(φt+1 − f(φt)) , (87)

satisfies the semigroup property

L2(φt+2, φt) =

∫
M
ddφt+1 L(φt+2, φt+1)L(φt+1, φt) = δ(φt+2 − f 2(φt)) . (88)

http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.19
http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.19
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The time-evolution periodic orbit theory [53] relates the long time chaotic averages to

the traces of Perron-Frobenius operators

trLn =

∫
M
ddφLn(φ, φ) =

∫
M
ddφ δ(φ− fn(φ)) , (89)

and their weighted evolution operator generalizations, with support on all deterministic

period-n temporal lattice states φc = fn(φc). Usually one evaluates this trace by

restricting the d-dimensional integral over M to an infinitesimal open neighborhood

c around a lattice site field φc,0,

trc Ln =

∫
c

ddφ0 δ(φ0 − fn(φ0)) =
1

|det( 11− Jc)|
, (90)

where Jc is the forward-in-time [d×d] Floquet matrix (83) evaluated at the period-n

primitive cell temporal site field φc,0.

Alternatively, one can use the group property (88) to insert integrations over all n

temporal lattice site fields, and rewrite Ln as a product of one-time-step operators L:

trLn =

∫
dΦ

n−1∏
t=0

δ(φt+1 − f(φt)) , dΦ =
n−1∏
t=0

ddφt , (91)

where φn = φ0. The lattice site field φt is a d-component field (60), so a period-n

primitive cell lattice state Φ is (nd)-dimensional, with the (nd)-dimensional Dirac delta

function of the deterministic field theory form (11),

trLn =

∫
dΦ δ(r Φ− f(Φ)) , (92)

where r is the cyclic [nd×nd] version of the time translation operator (79), and f(Φ)

acts within d-dimensional blocks (60) along the diagonal. We recognize the argument

(60) of this (nd)-dimensional Dirac delta function as the Euler–Lagrange equation (7)

of the system,

F [Φc] = rΦc − f(Φc) = 0 ,

with lattice state Φc satisfying the local Euler–Lagrange equation (60) lattice site by

site. Now evaluate the trace by integrating over the d components of the n lattice site

fields,

trc Ln =

∫
Mc

dΦ δ(F [Φ]) =
1

|DetJc|
, (93)

where Jc = J [Φc] is the [nd×nd] orbit Jacobian matrix (68) of a period-n lattice state

Φc, andMc is an (nd)-dimensional infinitesimal open neighborhood of Φc. By comparing

the trace evaluations (90) and (93), we see that we have again proved Hill’s formula (77)

for first-order, forward-in-time difference equations, this time without writing down any

explicit matrices such as (80-82).

In dynamical systems theory, one often replaces higher order derivatives (for

example, Euler–Lagrange equations) by multi-component fields satisfying first order

equations (for example, Hamilton’s equations), and the same is true for discrete time
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systems, where a kth order difference equation is the discrete-time analogue of a kth

order differential equation [75]. For example, the cat map and Hénon map are usually

presented as discrete time evolution over a two-component phase space (36) and (52),

rather than the three-term scalar field recurrence conditions (43) and (53).

One could compute a Hill determinant for such system using the forward-in-time

Hill’s formula for the k-component lattice site field, with the corresponding [kn×kn]

orbit Jacobian matrix determinant (93), or use the recurrence relation to reduce the

dimension of the orbit Jacobian matrix. For example, in section 3.2, in passage from

the Hamiltonian to the Lagrangian formulation, the k = 2 component phase space field

(qt, pt) is replaced by 1 component scalar field φt. And using the 1 component scalar

field one can compute the [n×n] orbit Jacobian matrices such as (72-74), whose Hill

determinant equals the forward-in-time [2×2] phase space |det( 11− Jc)|. Appendix B,

our third derivation of a Hill’s formula, is an example of such relation.

8. Hill determinants

Having shown that the inverse of Hill determinant 1/|DetJc| gives us the lattice state’s

probability (10) in the deterministic partition function, our next task is to compute it.

As we shall see in section 10.2, that is often best done on the reciprocal lattice. But first

we show that on hypercubic lattices we can visualize a Hill determinant geometrically,

as the volume of the associated fundamental parallelepiped.

8.1. Fundamental fact

Consider temporal Bernoulli and temporal cat. The orbit Jacobian matrix J stretches

the state space unit hypercube Φ ∈ [0, 1)n into the n-dimensional fundamental

parallelepiped, and maps each periodic lattice state ΦM into an integer lattice Zn site,

which is then translated by the winding numbers M into the origin, in order to satisfy

the fixed point condition (69). Hence Nn , the total number of the solutions of the

fixed point condition equals the number of integer lattice points within the fundamental

parallelepiped, a number given by what Baake et al [13] call the ‘fundamental fact’,

Nn = |DetJ | , (94)

i.e., fact that the number of integer points in the fundamental parallelepiped is equal to

its volume, or, what we refer to as its Hill determinant.

The action of the orbit Jacobian matrix J for period-2 lattice states (periodic

points) of the Bernoulli map of figure 3 (a), suffices to convey the idea. In this case, the

[2×2] orbit Jacobian matrix (30), the unit square basis vectors, and their images are

J =

(
2 −1

−1 2

)
,

Φ(B) =

(
1

0

)
→ Φ(B′) = J Φ(B) =

(
2

−1

)
,

https://youtube.com/embed/Ztt1v8uGCUE
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(a) (b)

Figure 4. (Color online) (a) The Bernoulli map (21) periodic points ΦM = (φ0, φ1)

of period 2 are the 0 = (0, 0) fixed point, and the 2-cycle Φ01 = (1/3, 2/3), see

figure 3 (a). They all lie within the unit square [0BCD], which is mapped by the orbit

Jacobian matrix −J (96) into the fundamental parallelepiped [0B′C ′D′]. Periodic

points ΦM are mapped by J onto the integer lattice, JΦM ∈ Zn , and are sent back into

the origin by integer translations M, in order to satisfy the fixed point condition (69).

Note that this fundamental parallelepiped is covered by 3 unit area quadrilaterals,

hence |DetJ | = 3. (b) Conversely, in the flow conservation sum rule (106) sum

over all lattice states M of period n, the inverse of the Hill determinant defines the

‘neighborhood’ of a lattices state as the corresponding fraction of the unit hypercube

volume.

Φ(D) =

(
0

1

)
→ Φ(D′) = J Φ(D) =

(
−1

2

)
, (95)

i.e., the columns of the orbit Jacobian matrix are the edges of the fundamental

parallelepiped,

J =
(

Φ(B′)Φ(D′)
)
, (96)

see figure 4 (a), and N2 = |DetJ | = 3, in agreement with the periodic orbit count (27).

In general, the unit vectors of the state space unit hypercube Φ ∈ [0, 1)n point along

the n axes; orbit Jacobian matrix J stretches them into a fundamental parallelepiped

basis vectors Φ(j), each one a column of the [n×n] matrix

J =
(
Φ(1)Φ(2) · · ·Φ(n)

)
. (97)

The Hill determinant

DetJ = Det
(
Φ(1)Φ(2) · · ·Φ(n)

)
, (98)

is then the volume of the fundamental parallelepiped whose edges are basis vectors

Φ(j). Note that the unit hypercubes and fundamental parallelepipeds are half-open, as

indicated by dashed lines in figure 4 (a), so that their translates form a partition of

the extended state space (22). For another example of fundamental parallelepipeds, see

figure 5.

For temporal cat the total number of lattice states is again, as for the Bernoulli

system, given by the fundamental fact (94). However, while for the temporal Bernoulli
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(a) (b)

Figure 5. (Color online) (a) For s = 3, the temporal cat (44) has 5 period-2

lattice states ΦM = (φ0, φ1): Φ00 fixed point and period-2 lattice states {Φ01,Φ10},
{Φ12,Φ21}. They lie within the unit square [0BCD], and are mapped by the [2×2]

orbit Jacobian matrix −J (100) into the fundamental parallelepiped [0B′C ′D′], as

in, for example, Bernoulli figure 4. The images of periodic points ΦM land on the

integer lattice, and are sent back into the origin by integer translations M = m0m1,

in order to satisfy the fixed point condition JΦM + M = 0. (b) A 3-dimensional [blue

basis vectors] unit-cube stretched by −J (101) into the [red basis vectors] fundamental

parallelepiped. For s = 3, the temporal cat (44) has 16 period-3 lattice states: a Φ000

fixed point at the vertex at the origin, [pink dots] 3 period-3 orbits on the faces of

the fundamental parallelepiped, and [blue dots] 2 period-3 orbits in its interior. An n-

dimensional state space unit hypercube Φ ∈ [0, 1)n and the corresponding fundamental

parallelepiped are half-open, as indicated by dashed lines, so the integer lattice points

on the far corners, edges and faces do not belong to it.

every sequence of alphabet letters (25) but one is admissible, for temporal cat the

condition (43) constrains admissible winding numbers blocks M.

For period-1, constant field lattice states φt+1 = φt = φt−1 it follows from (43) that

(s− 2)φt = mt ,

so the orbit Jacobian matrix is a [1× 1] matrix, and there are

N1 = s− 2 (99)

period-1 lattice states. This is easy to verify by counting the admissible mt values. Since

φt ∈ [0, 1), the range of mt is mt ∈ [0, s − 2). So three of the (42) temporal cat letters

are not admissible: 1 is below the range, and s− 2 and s− 1 are above it.

The action of the temporal cat orbit Jacobian matrix can be hard to visualize,

as a period-2 lattice field is a 2-torus, period-3 lattice field a 3-torus, etc.. Still, the

fundamental parallelepiped for the period-2 and period-3 lattice states, figure 5, should

suffice to convey the idea. The fundamental parallelepiped basis vectors are the columns

of J . The [2×2] orbit Jacobian matrix (73) and its Hill determinant are

J =

(
s −2

−2 s

)
, N2 = DetJ = (s− 2)(s+ 2) , (100)
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(compare with the lattice states count (D.5)), with the resulting fundamental

parallelepiped shown in figure 5 (a). Period-3 lattice states for s = 3 are contained

in the half-open fundamental parallelepiped of figure 5 (b), defined by the columns of

[3×3] orbit Jacobian matrix

J =

 s −1 −1

−1 s −1

−1 −1 s

 , N3 = DetJ = (s− 2)(s+ 1)2 , (101)

again in agreement with the periodic orbit count (D.5). The 16 period-3, s = 3 lattice

states ΦM = (φ0, φ1, φ2) are the Φ000 fixed point at the vertex at the origin, 3 period-

3 orbits on the faces of the fundamental parallelepiped, and 2 period-3 orbits in its

interior.

In this example there is no need to go further with the fundamental fact Hill

determinant evaluations, as the explicit formula for the numbers of periodic lattice

states is well known [108, 113]. The temporal cat equation (43) is a linear 2nd-

order inhomogeneous difference equation (3-term recurrence relation) with constant

coefficients that can be solved by standard methods [75] that parallel the theory of linear

differential equations. Inserting a solution of form φt = Λt into the mt=0 homogenous

2nd-order temporal cat condition (43) yields the characteristic equation (37) with roots

{Λ , Λ−1}. The result is that the number of temporal lattice states of period n is

Nn = |DetJ | = Λn + Λ−n − 2 , (102)

often written as

Nn = 2Tn(s/2)− 2 , (103)

where Tn(s/2) is the Chebyshev polynomial of the first kind (this discussion continues

in section 10.2).

Note that in the temporal lattice reformulation, both temporal Bernoulli and

temporal cat happen to involve two distinct lattices:

(i) In the latticization (1) of a time continuum, one replaces a time-dependent field φ(t)

at time t ∈ R of any dynamical system by a discrete set of its values φt = φ(a t),

at time instants t ∈ Z. Here the subscript ‘t’ indicates a coordinate over which the

field φ lives.

(ii) A peculiarity of the temporal Bernoulli and temporal cat is that the field φt, (23)

and (41), is confined to the unit interval [0, 1), imparting an integer lattice structure

onto the intermediate calculational steps in the extended state space (22) on which

the orbit Jacobian matrix J acts. Nothing like that applies to general nonlinear

field theories of section 4.

8.2. Periodic orbit theory

How come that a Hill determinant (94) counts lattice states?
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For a general, nonlinear fixed point condition F [Φ] = 0, expansion (84) in terms

of traces is a cycle expansion [9, 47, 53], with support on periodic orbits. Ozorio de

Almeida and Hannay [3] were the first to relate the number of periodic points to a

Jacobian matrix generated volume; in 1984 they used such relation as an illustration of

their ‘principle of uniformity’: “periodic points of an ergodic system, counted with their

natural weighting, are uniformly dense in phase space.” In periodic orbit theory [47, 52]

this principle is stated as a flow conservation sum rule, where the sum is over all lattice

states M of period n,∑
|M|=n

1

| det( 11− JM)|
= 1 , (104)

or, by Hill’s formula (77),∑
|M|=n

1

|DetJM|
= 1 . (105)

For the Bernoulli and temporal cat systems the ‘natural weighting’ takes a particularly

simple form, as the Hill determinant of the orbit Jacobian matrix is the same for all

periodic points of period n, DetJM = DetJ , whose number is thus given by (85). For

example, the sum over the n = 2 lattice states is,

1

|DetJ00|
+

1

|DetJ01|
+

1

|DetJ10|
= 1 , (106)

see figure 4 (b). Furthermore, for any piece-wise linear system all curvature

corrections [50] for orbits of periods k > n vanish, leading to explicit lattice state-

counting formulas of kind reported in this paper.

In the case of temporal Bernoulli or temporal cat, the hyperbolicity is the same

everywhere and does not depend on a particular solution Φc, counting periodic orbits is

all that is needed to solve a cat-map dynamical system completely; once periodic orbits

are counted, all cycle averaging formulas [51] follow.

Fritz, this is the ‘periodic orbit theory’. And if you don’t know, now you know.

9. Translations and reflections

Though this exposition is nominally about ‘evolution in time’, ‘time’ is such a loaded

notion, a straightjacket hard to escape, that it is best to forget about ‘time’ for time

being, and think instead like a crystallographer, about lattices and the space groups

that describe their symmetries.

Of necessity, there are many group-theoretic notions a crystallographer must

juggle (see ChaosBook sect. 11.2), but only a few key things to understand. For a

one-dimensional lattice, there are only two kinds of qualitatively different symmetry

transformations,

(i) translations (109) and reflections (111), which reverse the direction of translation.

https://youtube.com/embed/Al7iFxJkMMo
http://chaosbook.org/chapters/ChaosBook.pdf#section.27.4
https://www.youtube.com/watch?v=_JZom_gVfuw
http://ChaosBook.org/chapters/ChaosBook.pdf#section.11.2
https://youtube.com/embed/QSPGT0XK2PI


Chaotic lattice field theory 29

(ii) There are two kinds of reflections (121), across a lattice site, and across a mid-point

between lattice sites, figure 6.

(iii) While the lattice L and its space group G are both infinite, orbits of lattice states

are finite and described by finite cyclic and dihedral groups, figure 7.

(iv) A lattice state has one of the 4 possible symmetries, figure 9. They are the building

blocks of zeta functions of section 11.

Should the reader find symmetries of infinite lattices too obstruse: to understand

all that one needs to know about translations and reflections, it suffices to understand

the symmetries of a triangle and a square, figure 8.

9.1. Internal symmetries

In addition to the spacetime symmetries, a field theory might have an internal symmetry,

a group of transformations that leaves the Euler–Lagrange equations invariant, but acts

only on a lattice site field, not on the spacetime lattice.

The φ4 action (57) is invariant under the D1 reflection φz → −φz. The temporal

Bernoulli (29) and temporal cat (43) Euler–Lagrange equations are invariant under D1

inversion of the field though the center of the 0 ≤ φz < 1 unit interval:

φ̄z = 1− φz mod 1 . (107)

If Φ = {φz} is a lattice state of the system, its inversion Φ̄ = {φ̄z} is also a lattice state.

So every lattice state of the temporal Bernoulli and the temporal cat either belongs to a

pair of asymmetric lattice states {Φ, Φ̄}, or is symmetric under the inversion. Figures 10

and 13 illustrate such symmetries.

In principle, the internal symmetries should also be quotiented, but to keep things

as simple as possible, they are not quotiented in this paper.

9.2. Symmetries of one-dimensional lattices, sublattices

A space group G is the set of all translations and rotations that puts a crystallographic

structure L in coincidence with itself. To make the exposition as simple as possible, here

we focus on one-dimensional crystals, with sites labeled by integer lattice L = Z. Their

space groups crystallographers [70] call line groups. There are only two one-dimensional

space groups G: p1, or the infinite cyclic group C∞ of all lattice translations, and p1m,

the infinite dihedral group D∞ of all translations and reflections [114],

D∞ = {· · · , r−2, σ−2, r−1, σ−1, 1, σ, r1, σ1, r2, σ2, · · ·} . (108)

A half of the elements are translations (‘shifts’; for finite period lattices, ‘rotations’).

r0 = 1 denotes the identity, and the r1 = r, r2 = r2, · · ·, rk = rk, · · ·, denote translations

by 1, 2, · · · , k, · · · lattice points. They form the infinite cyclic group

C∞ = {· · · , r−2, r−1, 1, r1, r2, r3, · · ·} , (109)

a subgroup of D∞, in crystallography called the translation group.

https://en.wikipedia.org/wiki/Line_group
https://en.wikipedia.org/wiki/Line_group
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The other half of elements are reflections σ2
k = 1 (‘inversions’, ‘time reversals’,

‘flips’), defined by first translating by k steps, and then reflecting over the 0th lattice

point, resulting in a ‘translate-reflect’ operation

σk = σrk . (110)

The defining property of translate & reflect groups (‘dihedral’ groups, ‘flip

systems’ [114]) is that any reflection reverses the direction of the translation

σkr = r−1σk . (111)

The group multiplication (or ‘Cayley’) table for successive group actions gigj follows:

rj σj
ri ri+j σj−i
σi σi+j rj−i

. (112)

Multiplication either adds up translations, or shifts and then reverses their direction.

The order in which the elements gigj act is right to left, i.e., a group element acts on

the expression to its right.

A crystallographer organizes the subgroups of a space group G by means of Bravais

lattices La (4), sublattices of the lattice Z, each defined here by a one-dimensional

primitive cell of period n, given by a lattice vector a of integer length n,

La = {ja | j ∈ Z} , (113)

with the lattice generated by the infinite translation group of all discrete translations

replaced by

rj → rja

multiples of a, resulting in

Ha = {· · · , r−2a, r−a, 1, ra, r2a, · · ·} , (114)

infinite translation subgroup of C∞. You can visualize a lattice state invariant under

subgroup Ha as a tiling of the lattice Z by a generic lattice state over tile of length n.

Another family of subgroups of D∞ is obtained by substituting elements of D∞
(108) by

rj → rja , σ → σk 0 ≤ k < n ,

resulting in n infinite dihedral subgroups

Ha,k = {· · · , r−2a, σkr−2a, r−a, σkr−a, 1, σk, ra, σkra, r2a, σkr2a, · · ·} , (115)

each given by a primitive cell of period n, with reflection across a symmetry point shifted

k half-steps, see (124).
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9.3. Classes

Definition: A class is the set of elements left invariant by conjugation with all

elements g of the group G, where an element b is conjugate to element a if

b = g a g−1 . (116)

By (111), a conjugation by any reflection reverses the direction of translation

σirjσ−i = r−j , (117)

so every translation pairs up with the equal counter-translation to form

identity class {1} , j = 0 (118)

translation classes {rj, r−j} , j = 1, 2, 3, · · · . (119)

The r0 = 1 commutes with all group elements, and is thus always a class by itself.

From the multiplication table (112) it follows that a conjugate of a reflection

ri σjr
−1
i = σj−2i , σiσjσ

−1
i = σ2i−j . (120)

is a reflection related to it by a 2i translation. Hence the even subscript reflections

belong to one class, and the odd subscript reflections to the other:

even {σ2m} , m ∈ Z
odd {σ2m+1} . (121)

By (120) rHn,kr
−1 = Hn,k−2, so for odd n, all subgroups Hn,k are conjugate subgroups,

and for even n, Hn,k separate into 2 sets of conjugate subgroups,

even {H2m,2j} , 0 ≤ j < m

odd {H2m,2j+1} , (122)

each containing m subgroups.

9.4. Reflections

What’s the difference between an ‘odd’ and an ‘even’ reflection? Every element in a

class is equivalent to any other of its elements. So, to understand what everybody in a

given class does, it suffices to work out what a single representative does: it suffices to

analyse the Hn,0 and Hn,1 to account for all Hn,k.

So far, we have only discussed the abstract structure of the space group D∞ and

its subgroups. But the difference between an ‘odd’ and an ‘even’ is easiest to grasp by

working out the action of σk on a lattice state.

Even class. Take σ = σ0 as a representative of all even reflections σ2m, and act on a

lattice state (8):

Φ = · · ·φ−3φ−2 φ−1 φ0 φ1φ2φ3φ4 · · ·
σΦ = · · ·φ5φ4φ3φ2φ1φ0 φ−1φ−2φ−3 · · · , (123)

with φ0 indicating that the field at the lattice site 0 is unchanged by the reflection, see

figure 6 (even).

https://youtube.com/embed/2j2K7p-ocu4
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(even) (odd)

Figure 6. (Color online) There are two classes of lattice state reflections, even

(123) and odd (124). (Even) reflection σ exchanges (blue φj) ↔ (red φ−j) marked by

dashed line reflection axis, with lattice site 0 fixed. (Odd) reflection σ1 = σr swaps

the ‘blues’ and the ‘reds’ by a lattice translation Φ → rΦ, followed by a reflection σ.

The result is a reflection across the midpoint of the [01] interval, marked by full line

reflection axis. See figure 2 (b) for the notation. Continued in figure 7.

Odd class. Take σ1 as a representative of all odd reflections σ2m+1. The result is:

Φ = · · ·φ−3φ−2φ−1 φ0 φ1φ2φ3φ4 · · ·
rΦ = · · ·φ−3φ−2φ−1φ0 φ1 φ2φ3φ4φ5 · · ·
σ1Φ = σrΦ = · · ·φ6φ5φ4φ3φ2 φ1|φ0φ−1φ−2φ−3 · · · , (124)

where φj indicates the field value at the lattice site 0, and | indicates a reflection across

midpoint between lattice sites 0 and 1, see figure 6 (odd).

More generally, one can say that the subscript k in the ‘translate-reflection’ (110)

operation σk = σrk advances the reflection point by k/2 steps, and then reflects across
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it.

If you do not find the two kinds of reflections intuitive, the distinction becomes

crystal clear once you have a look at the smallest Bravais lattices, lattices of periods 3

and 4, figure 8.

9.5. Symmetries of a system and of its solutions

What’s the deal about classes? A ‘class’ is a refinement of our intuitive notion that

“rotations are rotations, and translations are translations.” Translated into a more

familiar language, conjugation (116) is central to all of physics: a ‘law’ F (Φ) is invariant

if it retains its form in all symmetry related coordinate frames,

F (Φ) = g−1F (gΦ) , (125)

where g is a representation of group element g ∈ G. If this holds, we say that G is the

symmetry of the system.

For example, the ‘temporal Bernoulli’ Euler–Lagrange equation (30) retains its form

under conjugation by any C∞ translation (109),

ri(s1− r1)r−1
i Φ = (s1− r1)Φ , (126)

while the Euler–Lagrange second-order difference equations (51), ‘temporal cat’,

‘temporal Hénon’, and ‘temporal φ4 theory’ Euler–Lagrange equations (18), (19) and

(20) retain their form also under any D∞ reflection.

Given that G is the symmetry of the system does not mean that G is also the

symmetry of its solutions, or what we here call lattice states. They can satisfy all of

system’s symmetries, a subgroup of them, or have no symmetry at all. For example, a

generic lattice state (8) sketched in figure 6 has no symmetry beyond the identity, so

its symmetry group is the trivial subgroup {e}; any translation rj or reflection σk maps

it into a different, distinct lattice state, as shown in figure 7. At the other extreme,

the constant lattice state φj = φ is invariant under any translation or reflection - its

symmetry group is the full G, the symmetry of the system. In between, there are lattice

states whose symmetry is a subgroup of G.

9.6. What are ‘lattice states’? Orbits?

For evolution-in-time, every period-n periodic point is a fixed point of the nth iterate

of the 1 time-step map. In the lattice formulation, the totality of finite-period lattice

states is the set of fixed points of all Ha and Ha,k subgroups of D∞.

You can visualize a lattice state invariant under (‘fixed by’) subgroup Ha,k as a

tiling of the lattice Z by a lattice state tile of length n, symmetric under reflection σk,

see figure 9 (b-c).

Definition: Orbit or G-orbit of a lattice state Φ is the set of all lattice states

MΦ = {gΦ | g ∈ G} (127)

https://youtube.com/embed/ue42-tr-tSY
https://youtube.com/embed/IgYxosgHXWE
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(1)

(r1)

(r2)

(r3)

(r4)

(σ)

(σ1)

(σ2)

(σ3)

(σ4)

Figure 7. (Color online) (1) A primitive cell a with asymmetric lattice state

Φ = φ0φ1φ2φ3φ4, no reflection symmetry, outlined in bold, is invariant under the

translation subgroup H5. Its C∞ orbit are the n = 5 distinct lattice states (1) to (r4),

obtained by all of the C5 translations. Its D∞-orbit are 2n = 10 distinct lattice states,

5 translations (1) to (r4) and 5 translate-reflections (σ) to (σ4), obtained by all of the

D5 actions. See figure 2 (b) for the notation. Continued in figure 8.
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into which Φ is mapped under the action of group G. We label the orbit MΦ

by any lattice state Φ belonging to it.

As an example, the D∞ orbit of the period-5 lattice state is shown in figure 7.

Definition: Symmetry of a solution. We shall refer to the maximal subgroup

GΦ ⊆ G of actions which permute lattice states within the orbit MΦ, but leave

the orbit invariant, as the symmetry GΦ of the orbit MΦ,

GΦ = {g ∈ GΦ | gMΦ =MΦ} . (128)

An orbit MΦ is GΦ-symmetric (symmetric, set-wise symmetric, self-dual) if the action

of elements of GΦ on the set of lattice states MΦ reproduces the orbit.

Definition: Index of orbit MΦ is given by

mΦ = |G|/|GΦ| (129)

(see Wikipedia [182] and Dummit and Foote [73]).

And now, a pleasant surprise, obvious upon an inspection of figures 7 and 9: what

happens in the primitive cell, stays in the primitive cell. Even though the lattices L, La

are infinite, and their symmetries D∞, Ha, Ha,k are infinite groups, the Bravais lattice

states’ orbits are finite, described by the finite group permutations of the infinite lattice

curled up into a primitive cell periodic n-site ring.

Indeed, to grasp everything one needs to know about translations rj (for regular

polygons, ‘rotations’), and reflections σk, it suffices to understand the symmetries of an

equilateral triangle (dihedral group D3) and a square (dihedral group D4), depicted in

figure 8. It is clear by inspection that an n-sided regular polygon has n-fold translational

symmetry and n reflection symmetry axes. The group of such symmetries is the finite

dihedral group

Dn = {1, σ, r, σ1, r2, σ2, · · · , rn−1, σn−1} (130)

of order 2n. A half of its elements are the n cyclic group Cn translations rj. The other

half are the n reflections σk, one for the reflection across each symmetry axis. The group

multiplication table is the same as the D∞ (112), but with all subscripts mod n. As in

(117), conjugation by any reflection reverses the direction of translation

σirjσ−i = rn−j , 0 < j < n , (131)

so every translation pairs up with the equal counter-translation to form a 2-element

class (119).

The distinction between the classes of even and odd reflections (121) is visually

self-evident by inspection of figure 8: the symmetry axes either connect opposite lattice

sites, or bisect the edges, or both, if n is odd (a triangle, for example). One can say

that k in the ‘translate-reflection’ (110) operation σk advances the reflection point by k

1/2 steps, and then reflects across it.
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Figure 8. (Color online) Consider a period-n primitive cell tiling of a one-

dimensional lattice L. With L curled into a ring of n lattice sites, actions of the

infinite dihedral group D∞ reduce to translational and reflection symmetries of (D3)

an equilateral triangle, n = 3 lattice sites; (D4) a square, n = 4 lattice sites; all group

operations that overlie an n-sided regular polygon onto itself. The n translations rj
permute the sites cyclically. The n dihedral group Dn translate-reflect σk elements

(130) reflect the sites across reflection axes, exchanging red and blue sites. For even

n, an even reflection (dashed line reflection axis), here σ, leaves a pair of opposite

sites fixed (marked yellow), while an odd reflection axis (full line), here σ1, bisects

the opposite edges, and flips all sites. For odd n, every reflection half-axis leaves a

site fixed (dashed line), and bisects the opposite edge (full line). This periodic ring

visualization makes it obvious that any symmetric lattice state is reflection invariant

across two points on the lattice, see figure 9.
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(a) (o)

(ee) (eo)

Figure 9. (Color online) A Bravais lattice state Φ has one of the 4 possible

symmetries, illustrated by: (a) No reflection symmetry: an H5 invariant period-5

lattice state (133). For its G-orbit, see figure 7. (o) Odd period, reflection-symmetric:

an H9,8 invariant period-9 lattice state (134), reflection symmetric over the lattice sites

interval [8-9] midpoint and over the lattice site 4. (ee) Even period, even reflection-

symmetric: an H10,0 invariant period-10 lattice state (135), reflection symmetric over

lattice sites 0 and 5. (eo) Even period, odd reflection-symmetric: an H10,9 invariant

period-10 lattice state (136), reflection symmetric over the [4-5] and [9-10] interval

midpoints. Horizontal: lattice sites labelled by t ∈ Z. Vertical: value of field φt,

plotted as a bar centred at lattice site t. Time reversed blocks indicated in blue,

boundary sites in yellow. Even reflection axes dashed, odd reflections full line.

For a polygon with an odd number of lattice sites (a triangle, for example), we see

by contemplating the triangle of figure 8, as well as by taking mod n of the conjugation

relation (120), that all reflections are in the same conjugacy class {σj}: there is no

splitting into odd and even cases, in contrast to the infinite lattice case (121).

For a polygon with an even number of lattice sites (a square, for example), one must

distinguish the ‘long’ axes that connect lattice sites (we label them by even numbers

0, 2, · · ·) from the ‘short’ symmetry axes that bisect opposite edges (labelled by odd

numbers 1, 3, · · ·). The corresponding reflections belong to different Dn (subclasses of

(121)),

even reflections {σ, σ2, σ4, · · · , σn/2}
odd reflections {σ1, σ3, · · · , σn/2+1} . (132)

9.7. Symmetries of lattice states

A Bravais lattice state Φ has one of the four symmetries:

asymmetric, no reflection symmetry

(a) φ0φ1φ2φ3 · · ·φn−1 (133)

index mΦ = 2n
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lattice state invariant under the translation group Hn . Its G-orbit, generated by all

actions of D∞, results in 2n distinct, Dn related lattice states. This is illustrated by

the H5-invariant lattice state Φ of figure 7. Its D5 orbit are 2n = 10 lattice states, 5

translations and 5 translate-reflections.

Next, the reflection-symmetric lattice states. As illustrated in figures 6 and 8,

there are two classes (121) of lattice state reflections: even, across a lattice site, and

odd, across the mid-point between a pair of adjacent lattice sites. However, as is evident

by inspection of figure 8, curling up the lattice L into a primitive cell periodic n-site ring

implies that an axis cuts the ring twice, and constrains the possible reflection points to

three configurations:

odd period n = 2m+ 1

(o) φ0φ1φ2 · · ·φm|φm · · ·φ2φ1 (134)

index mΦ = n

lattice state invariant under the dihedral group Hn,k, illustrated by the H9,8 invariant

lattice state Φ of figure 9 (o).

even period n = 2m+ 2 , even reflection k

(ee) φ0φ1φ2 · · ·φmφm+1φm · · ·φ2φ1 (135)

index mΦ = n

lattice state invariant under the dihedral group Hn,k, k even, illustrated by the H10,0

invariant lattice state Φ of figure 9 (ee).

even period n = 2m, odd reflection k

(eo) φ1φ2φ3 · · ·φm|φm · · ·φ2φ1| (136)

index mΦ = n

lattice state invariant under the dihedral group Hn,k, k odd, illustrated by the H10,9

invariant lattice state Φ of figure 9 (eo).

The lattice state symmetry GΦ (128) of the above (o)–(eo) reflection-symmetric

lattice states Φ is the reflection group D1 = {1, σk}. This symmetry means two things:

(1) The D∞ orbits of reflection-symmetric lattice states contain only translations, as

any reflection amounts to a cyclic group Cn translation. (Reflect a lattice state in

figure 9 (b-d) over any lattice site or mid-interval: the result is its translation.)

(2) The prime lattice state is a ‘half’ of the primitive cell, the length m orbit,

Φ̃ = (φ1φ2φ3 · · ·φm) , (137)

give or take some boundary sites.

To develop intuition about how one reconstructs the period-n orbit from this length-m

block it is helpful to have a look at explicit matrix representation of the dihedral group

Dn actions.
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9.8. Permutation representation

A lattice state Φ over a primitive cell a can be assembled into an n-dimensional vector

whose components are lattice site fields

Φ> = (φ0, φ1, φ2, φ3, · · · , φn−1) . (138)

Matrices that reshuffle the components of such vectors form the permutation

representation of a finite group G. They give us a different perspective on the above

three kinds of symmetric solutions.

The permutation representation of 1-step lattice translation r acts on a Bravais

lattice state by the off-diagonal [n×n] matrix (31). This is a cyclic Cn permutation that

translates the lattice state Φ ”forward-in-time” by one site,

(rΦ)> = (φ1, φ2, · · · , φn−1, φ0) .

A permutation representation of a Dn translate-reflect operation is essentially an anti-

diagonal matrix that reverses the order of site fields, up to a cyclic permutation

(σkΦ)> = (φn−1, · · · , φ2, φ1, φ0) .

Even periods : The shortest even period symmetric lattice state is the period-2

lattice state Φp
> = (φ0, φ1) such as the temporal cat (100). For example, for temporal

Hénon (53) there is only one period-2 prime orbit, consisting of lattice state

Φp =
1

a

(
−1−

√
a− 3

−1 +
√
a− 3

)
, (139)

and its translation rΦp. Its symmetry, Φp
> = (φ0 φ1) is of (ee) type (135), indicated as

yellow lattice sites fields in figure 9 (ee). Its orbit Jacobian matrix is of the nonlinear

field theory form (74)

J =

(
s0 −2

−2 s1

)
. (140)

This lattice state is ‘all boundary points’, too short to illustrate a symmetry reduction

to a Dn prime orbit. Still, as we show in figure 12 (b), its relation to the block circulant

structure of repeated-tile orbit Jacobian matrix (75) and its contribution to φ3 field

theory spectrum is instructive.

Odd periods : In odd dimensions, the n translate-reflect matrices of Dn are related

by translations (120). For example, for a period-3 lattice state without symmetry

Φ> = (φ0, φ1, φ2) , they are

σ =

 1 0 0

0 0 1

0 1 0

 , σ1 =

 0 1 0

1 0 0

0 0 1

 , σ2 =

 0 0 1

0 1 0

1 0 0

 .

In agreement with (134), figure 8 and figure 9 (o), these reflections keep one lattice site

fixed (for each permutation matrix σk there is only one ‘1’ on the diagonal), swap the

rest.
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To get some insight into the length-m prime lattice state Φ̃ (137), consider next

a period-5 reflection symmetric lattice states that tile the infinite lattice L with a

reflection-fixed φ0 , and a length-2 block Φ̃ = (φ1, φ2),

Φ> = (φ0φ1φ2|φ2φ1) . (141)

Actions of D5 permutation representation illustrates that the fixed lattice states Φ of σk
are related by cyclic translations:

σΦ =


1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0




φ0

φ1

φ2

φ2

φ1

 =


φ0

φ1

φ2

φ2

φ1



σ4(r−2Φ) =


0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0




φ2

φ1

φ0

φ1

φ2

 =


φ2

φ1

φ0

φ1

φ2

 . (142)

What is the orbit stability of such lattice state? The symmetry conditions are the

Bravais lattice state 5-periodicity mod 5, and the even reflection across φ0 :

φi = φi+5 , φ−i = φi . (143)

A lattice state satisfies the Euler–Lagrange equation (51)

−φt−1 + 2φt − φt+1 + V ′(φt) = 0 , (144)

on the period-5 primitive cell,

−φ1 + 2φ0 − φ1 + V ′(φ0) = 0

−φ0 + 2φ1 − φ2 + V ′(φ1) = 0

−φ1 + 2φ2 − φ2 + V ′(φ2) = 0

−φ1 + 2φ2 − φ2 + V ′(φ2) = 0

−φ0 + 2φ1 − φ2 + V ′(φ1) = 0 , (145)

where we have used (143). The result are symmetry reduced equations, modified by the

two reflection bc’s,

−2φ1 + 2φ0 + V ′(φ0) = 0

−φ0 + 2φ1 − φ2 + V ′(φ1) = 0

−φ1 + φ2 + V ′(φ2) = 0 , (146)

with an asymmetric three-dimensional orbit Jacobian matrix (74)

Jo =

 s0 −2 0

−1 s1 −1

0 −1 s2 − 1

 . (147)
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So, for a reflection-symmetric lattice state of odd period, one has to impose the even

φ0 and odd | reflection bc’s in order to define the orbit Jacobian matrix for the prime

orbit Φ̃ (137).

The form of orbit Jacobian matrices for all bc’s of section 9.7, specialized to

temporal cat but easily generalized to general nonlinear field theories, is given in

Appendix C.

Why bother? ChaosBook.org [53] bemoans more than 20 times that in it the time-

reversal symmetric orbits are not accounted for (here that is accomplished in section 11).

But for long periods, almost all lattice states are of asymmetric type (133). Why do we

obsess about symmetric lattice states so much? How important are they?

The reason is that periodic orbit expansions are dominated by short orbits, with

the longer ones only providing exponentially small corrections. But almost all short-

period lattice states are symmetric; for example, for the φ3 field theory, the first two

asymmetric lattice states of are of period 6.

10. Reciprocal lattice

If the orbit Jacobian matrix is invariant under time translation, its eigenvalue spectrum

and Hill determinant can be efficiently computed using tools of crystallography, such as

the discrete Fourier transform, a discretization approach that goes all the way back to

Hill’s 1886 paper [102].

Think of a solution of a discrete time dynamical system as a one-dimensional lattice

state with the field on each site labeled by integer time. A time period-n lattice state

lives on a discrete 1-torus (a ring or chain or necklace) of period-n, and if system’s law

is time-invariant, its orbit, the set of lattice states related to it by cyclic translations,

are physically equivalent (figure 7). The symmetry is the cyclic group Cn, and one only

needs to count and distinguish Cn orbits, compute only one lattice state per each orbit.

The smart way to do this is by a discrete Fourier transform. Were the lattice

d-dimensional (4), defined by primitive cell vectors {a}, a crystallographer would

immediately move to the reciprocal lattice, L̃b = {kb | k ∈ Z} , with reciprocal lattice

basis vectors {b} satisfing b·a = 2π . On the reciprocal lattice translations are quotiented

out, and calculations are restricted to a finite Brilluoin zone (Bloch’s theorem of solid

state physics). Here we work on a one-dimensional lattice with unit lattice spacing 1, so

the reciprocal lattice spacing is 2π/1 = 2π, with the (first) Brillouin zone from k = −π
to k = π (we give an example in figure 12).

The cyclic group Cn elements are generated by the [n×n] shift matrix (31) which

translates a lattice state (9) forward-in-time by one site, (rΦ)> = (φ1, φ2, · · · , φn−1, φ0).

After n shifts, the lattice state returns to the initial state, yielding the characteristic

equation for the matrix r

rn − 11 = 0 , (148)

http://ChaosBook.org


Chaotic lattice field theory 42

0.5 1
Re0

Im
ϕ
˜

0

(a)

-0.2 -0.1 0.1 0.2
Re

-0.2

-0.1

0.1

0.2

Im
ϕ
˜

1

(b)

-0.2 -0.1 0.1 0.2
Re

-0.2

-0.1

0.1

0.2

Im
ϕ
˜

2

(c)

Figure 10. (Color online) The reciprocal lattice (φ̃0, φ̃1, φ̃2) Fourier components

of the seven C3-equivariant period-3 lattice states, s = 2 temporal Bernoulli system

(29). In φ̃1 and φ̃2 complex planes, reciprocal lattice states lie on vertices of the 2

equilateral triangles, one for each C3 orbit, while the component at the origin is the

fixed point Φ = (0, 0, 0). The C3 fundamental domain indicated by red border lines

contains non-zero reciprocal lattice states whose phases lie in the [−2π/6, 2π/6) wedge,

one reciprocal lattice state for each distinct C3 orbit.

whose eigenvalues are nth roots of unity, with the n complex eigenvectors also built

from roots of unity

{λk} = {1, ω, ω2, · · · , ωn−1} , ω = e2πi/n

ẽk =
1
√
n

(1, ωk, ω2k, . . . , ωk(n−1)) , k = 0, 1, . . . , n − 1 . (149)

10.1. Reciprocal lattice states

In the {ẽk} Fourier basis, a real n-dimensional lattice state vector Φ is mapped onto a

n-dimensional complex reciprocal lattice vector

Φ̃ = (φ̃0, φ̃1, φ̃2, . . . , φ̃n−1) , (150)

with the kth Fourier mode of magnitude |φ̃k| and phase eiθk .

On the reciprocal lattice, the shift matrix is diagonal, rjk = ωk δjk, and the ‘time’

dynamics is breathtakingly simple: no matter what the dynamical system is, in one time

step Φ→ rΦ, the kth Fourier mode phase is incremented by a fraction of the circle,

(φ̃0, φ̃1, φ̃2, . . . , φ̃n−1)→ (φ̃0, ωφ̃1, ω
2φ̃2, . . . , ω

n−1φ̃n−1)

eiθk → ei(θk+2πk/n) , (151)

so reciprocal lattice states literally run in circles; for non-zero k and |φ̃k|, all reciprocal

lattice states lie on vertices of regular complex plane n-gons, inscribed in circles of radius

|φ̃k|, one circle for each orbit.

As a concrete example, consider the period-3 lattice states of the temporal Bernoulli

(29) for stretching parameter s = 2. It is a linear problem and all lattice states are easily

computed by hand, one for each symbol block M. There is always the fixed point lattice
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Figure 11. (Color online) The 121 period-5 reciprocal lattice states of the s = 3

temporal cat (43). (a,b,c) The reciprocal lattice φ̃0, φ̃1, φ̃2 complex planes. The state

at the origin is the fixed point (0, 0, 0, 0, 0). As in figure 10, all non-zero reciprocal

lattice states lie on vertices of regular pentagons (not drawn here) that form orbits

under C5 cyclic permutations. (d,e,f) The C5 fundamental domain contains M5 = 24

non-zero reciprocal lattice states whose phases lie in the [−2π/10, 2π/10) wedge, one

reciprocal lattice state for each distinct C5 orbit.

state (0, 0, 0) at the origin, and the remaining lattice states belong to M3 = 2 period-3

orbits, where Mn is the number of orbits of period n. Discrete Fourier transform maps

these 2 orbits into reciprocal lattice (φ̃0, φ̃1, φ̃2) triangles, see figure 10. The time-step

r acts on the φ̃1, φ̃2 components by complex 1/3-circle phase rotations exp(2πi/3) and

exp(4πi/3), respectively: reciprocal lattice states connected by blue lines in figure 10 lie

on a circle and belong to the same orbit. In this example the two orbits happen to lie

on the same circle, as they are related by the internal D1 : φi → 1−φi symmetry of the

Bernoulli system, see section 9.1.

10.1.1. Cn fundamental domain. Divide each k > 0 complex φ̃k plane of a period-

n reciprocal lattice state into n equal wedges, and call one of them the ‘fundamental

domain’, for example the wedge bordered by [−π/n, π/n). Under n discrete rotations

the fundamental domain completely tiles the complex plane. We exclude the fixed point

lattice state φ̃k = 0 at the origin from the domain, as it belongs to a time invariant

subspace.

As is clear by inspection of figure 10, every kth complex plane regular n-gon has

precisely one vertex, i.e., a single reciprocal lattice state per each orbit, in the interior
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of the fundamental domain, or on its border. For the period-3 reciprocal lattice states

shown in figure 10, there are 2 points in both k = 2 and k = 3 complex plane fundamental

domain, one lattice state for each period-3 orbit.

Consider next the 121 period-5 reciprocal lattice states of the s = 3 temporal cat

(43), figure 11 (a,b,c). Excluding the fixed point φ̃k = 0 lattice state at the origin, there

are M5 = 24 reciprocal lattice states in the figure 11 (d,e,f) fundamental domain, each

representing n = 5 lattice states in its orbit, so the total number of lattice states is

N5 = 1 + 5M5 = 1 + 5× 24 = 121, in agreement with table D2.

The set of period-5 reciprocal lattice states of Figure 11 clearly exhibits symmetries

beyond the cyclic C5, in particular under reflections across the axes drawn in red. It

also turns out that for the temporal cat the φ̃1 complex plane looks the same as the

φ̃4 complex plane, and φ̃2 the same as φ̃3, so we do not plot them here. Furthermore,

for period n not a prime number, some |φ̃k| might vanish. We shall return to these

symmetries in section 10.3.

10.2. Spectra of orbit Jacobian matrices

As the period of a lattice state gets longer, the orbit Jacobian matrix becomes larger and

the Hill determinant becomes harder to compute. For a period-n lattice state, J is a

matrix with n eigenvalues and eigenvectors. What are they? What are the magnitudes

of these eigenvalues?

10.2.1. Spectra of translationally invariant orbit Jacobian matrices. Orbit Jacobian

matrices of the temporal Bernoulli (70) and temporal cat (71) consist of only identity

matrix and cyclic shift matrix, whose eigenvectors are discrete Fourier basis (149), so

they are diagonalized by discrete Fourier transform. In the space of reciprocal lattice

states, orbit Jacobian matrices (70) and (71) are diagonal, each diagonal element an

eigenvalues of orbit Jacobian matrices, for the temporal Bernoulli

(s 11− r) ẽk = (s− ωk) ẽk , (152)

and for the temporal cat

(−r + s 11− r−1) ẽk =

[
s− 2 cos

(
2πk

n

)]
ẽk . (153)

Determinants are products of eigenvalues, so the temporal Bernoulli Hill determinant

for any period-n lattice state is

Det (s 11− r) =
n−1∏
k=0

(s− ωk) = sn − 1 , (154)

in agreement with the time-evolution count (27) and Hill’s formula calculation (85).

The temporal cat Hill determinant is

Det (−r + s 11− r−1) =
n−1∏
k=0

[
s− 2 cos

(
2πk

n

)]
= 2Tn (s/2)− 2 , (155)

https://youtube.com/embed/w67SSTkEXQw
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Figure 12. (Color online) Infinite lattice orbit Jacobian matrix first Brillouin zone

spectra, as functions of the reciprocal lattice wavenumber k. For time-reversal invariant

systems the spectra are k → −k symmetric. (a) The temporal cat E(k) spectrum (158).

Any period-n lattice state spectrum consists of n discrete points embedded into E(k),

for example period-3 (red triangles) and period-4 (magenta diamonds) lattice states

eigenvalues (161). There are only 4 reciprocal lattice states, as k = π and k = −π
differ by a reciprocal lattice translation, and are counted only once. (b) The temporal

Hénon E(k)± spectrum (164) of the infinite lattice tiled by the period-2 lattice state,

together with the eigenvalues of repeats (165) for 1st repeat, 3rd repeat (red triangles)

and 4th repeat (magenta diamonds).

confirming the 2nd-order inhomogeneous difference equation calculation (103).

The orbit Jacobian matrix (68) of a period-n lattice state is an [n×n] matrix. For an

infinite lattice state, the orbit Jacobian matrix is an infinite-dimensional linear operator.

For example, the temporal cat infinite-dimensional orbit Jacobian matrix has the form

(71), where the time translation operator r implements the translation on the infinite

lattice. The orbit Jacobian matrix commutes with the time translation operator, so its

symmetry is the infinite cyclic group of integer lattice translations (109). By Bloch’s

theorem an eigenstate of the linear operator J is of form

ψk(t) = eiktuk(t) , (156)

where uk(t) is a period-1 periodic function. The orbit Jacobian matrix only acts on the

field over the integer lattice, on which the periodic function uk(t) is a constant. The

eigenstates

(ψk)t = ψk(t) = eikt , t ∈ Z , (157)

are plane waves on the lattice. The wavenumber k of the eigenstate ψk can always be

restricted to the first Brillouin zone, k ∈ [−π, π). Action of the orbit Jacobian matrix

(71) on the wavenumber k eigenstate (157) yields eigenvalue

E(k)ψk = Jψk = (s− 2 cos k)ψk , (158)

plotted in the first Brillouin zone in figure 12 (a). The infinite lattice spectrum contains

all eigenvalues of orbit Jacobian matrices for any period-n lattice state. The period-n
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boundary condition is

ψk(t+ n) = ψk(t) , (159)

hence the wavenumber k is restricted to the n first Brillouin zone values k = 2πl/n,

where l is an integer, with eigenvalues

Ekψk = Jψk = (s− 2 cos k)ψk , k =
2πl

n
, l ∈ Z , (160)

in agreement with (153). For example, for the period-1, period-3 and the period-4 lattice

states the wavenumbers and corresponding eigenvalues are, respectively

(k0) = (0) , (λ0) = (s− 2)

(k−1, k0, k1) = (−2π

3
, 0,

2π

3
)

(λ−1, λ0, λ1) = (s+ 1, s− 2, s+ 1)

(k−1, k0, k1, k2) = (−π
4
, 0,

π

4
,
π

2
)

(λ−1, λ0, λ1, λ2) = (s, s− 2, s, s+ 2) , (161)

plotted in figure 12 (a).

In summary: for a field theory with translationally invariant, uniform stretching

parameter s orbit Jacobian matrices, eigenvalues of any lattice state are embedded in a

single first Brillouin zone spectrum E(k), the blue curve in figure 12 (a). As long as the

Klein-Gordon mass µ2 = s − 2 > 0 is positive, all lattice states are unstable, and the

field theory is chaotic.

10.2.2. Spectra of nonlinear field theories. For a nonlinear field theory, the orbit

Jacobian matrix (74) of a general prime lattice state is not translationally invariant.

The orbit Jacobian matrix of a repeat of a period-n prime lattice state, however, is a

tri-diagonal block circulant matrix (75), which commutes with the translation operator

rn . For an infinite lattice state tiled by repeats of a period-n prime lattice state Φp

(see figure 7 (1) for a sketch), the infinite-dimensional orbit Jacobian matrix is invariant

under rn translation subgroup (114). Now we can apply Bloch’s theorem to Bravais

lattice nZ, with an eigenstate of the orbit Jacobian matrix a plane wave times a periodic

function (156), where uk(t) is a periodic function with period n. The wavenumber k is

restricted in the first Brillouin zone of the Bravais lattice nZ, k ∈ [−π/n, π/n). Using

the Bloch’s theorem (156) we can find the eigenvalue spectrum of the orbit Jacobian

matrix of a prime lattice state Φp’s repeats.

This infinite lattice spectrum contains eigenvalues of orbit Jacobian matrix of the

infinite repeat of the prime lattice state Φp. To find eigenvalues of the orbit Jacobian

matrix of the mth repeat of Φp (75), we need to only use the period-(mn) eigenstates,

which satisfy:

ψk(t+mn) = ψk(t) . (162)

The wavenumber k must exist on the reciprocal lattice of the Bravais lattice spanned

by (mn), i.e., k = 2πl/(mn), where l is an integer.
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As an example, consider the temporal Hénon period-2 lattice state Φp (139), with

a two-dimensional repeating block (140) orbit Jacobian matrix. The orbit Jacobian

matrix of an infinite lattice state tiled by repeats of Φp is the infinite-dimensional linear

operator

J =



. . . . . .

. . . s1 −1

−1 s0 −1

−1 s1
. . .

. . . . . .


,

(
s0

s1

)
=

(
−2− 2

√
a− 3

−2 + 2
√
a− 3

)
(163)

whose eigenstates are plane waves of form (156), where uk(t) is periodic with period 2.

Now there are two families of J eigenvalues:

E(k)±ψk = Jψk = −2(1±
√
a− 3 + cos2 k)ψk , (164)

plotted in the first Brillouin zone k ∈ [−π/2, π/2) in figure 12 (b).

The eigenvalues of the orbit Jacobian matrices of the mth repeat of Φp are 2m

points in the spectrum (164), at k = 2πl/(2m), where l is an integer. For example, for

the single repeat (see orbit Jacobian matrix (140)), the 3rd repeat and the 4th repeat

the wavenumbers and corresponding eigenvalues are, respectively

(k0) = (0) , (λ±0 ) = (−2± 2
√
a− 2)

(k−1, k0, k1) = (−π
3
, 0,

π

3
)

(λ±−1, λ
±
0 , λ

±
1 ) = (−2±

√
4a− 11,−2± 2

√
a− 2,−2±

√
4a− 11)

(k−1, k0, k1, k2) = (−π
4
, 0,

π

4
, π/2)

(λ±−1, λ
±
0 , λ

±
1 , λ

±
2 ) = (−2±

√
4a− 10,−2± 2

√
a− 2,

− 2±
√

4a− 10,−2± 2
√
a− 3) , (165)

plotted in figure 12 (b).

In summary: for a nonlinear field theory, each period-n prime lattice state Φp has

up to n distinct eigenvalues {λ(j)}, each with its own infinite lattice spectrum family

E(k)(j) into which eigenvalues of all repeats of Φp are embedded.

10.3. Reciprocal lattice visualization of system’s symmetries

When we block-diagonalize the permutation representation of section 9.8 into Dn

irreps, the lattice states are projected into the irrep subspaces. An example are the

period-3 reciprocal lattice states of s = 3 temporal cat shown in figure 13. The

permutation representation is block diagonalized by basis vectors: e0 = 1/
√

3(1, 1, 1),

e1 =
√

2/3(1, cos(2π/3), cos(4π/3)) and e2 =
√

2/3(0, sin(2π/3), sin(4π/3)). The basis

vector e0 spans the subspace of the symmetric one-dimensional irrep A0, invariant under

D3 actions. In the two-dimensional irrep E subspace spanned by basis vectors (e1, e2) the

translation operator r rotates the reciprocal lattice states clockwise by 2π/3, while the
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Figure 13. (Color online) Period-3 reciprocal lattice states of the s = 3 temporal

cat, plotted in the D3 permutation representation irreducible subspaces A0 + E. (a)

A0 representation is the one-dimensional, time invariant ‘center of mass’ of the orbit.

(b) In contrast to the Cn complex irreps of figure 10, the two-dimensional irreps Ek of

Dn are real. In the Ek planes reciprocal lattice states related by cyclic permutations

and reflections lie on vertices of n-gons or pairs of n-gons. For D3 they lie on triangles,

with cyclic sets connected by blue lines. The 2 big triangles are a single D3 6-lattice

states orbit, what for C3 is a pair of 3-lattice states orbits, with time reversal symmetry

ignored. The remaining 3 smaller triangles are 3 time-reversal symmetric orbits. The

small pair in the center would be two distinct radius D3 orbits, where they not related

by the internal symmetry D1 : φi → 1 − φi specific to the spatiotemporal cat (see

section 9.1). The state in the center is the fixed point φ0 = 0. Red dashed lines are

the reflection axes of the D3 group. Note that there are 4 reciprocal lattice states on

each reflection axis.

reflection operator σ reflects the lattice states across the horizontal axis. In figure 13

lattice states that are related by translations are connected by blue lines. The red

dashed lines are reflection operators’ reflection axes. The 2 big triangles are related by

reflection, and thus form a 6 reciprocal lattice states D3-orbit. The remaining 3 triangles

are 3 orbits of symmetric lattice states, self dual under reflection.

10.3.1. Dn fundamental domain. If the space of the field configuration has Dn

symmetry, the subspace of the two-dimensional irrep E1 can be divided into 2n copies

by the irrep. One can choose the fundamental domain to be the region with polar angle

between 0 and π/n, assuming that the horizontal axis is one of the reflection axis of

the irrep E1. Each orbit only appears once in the fundamental domain, as shown in

figure 13. Note that the two translational orbits related by the time reflection are a

single orbit of the dihedral group.

What happens when lattice states appear on the boundary of the fundamental

domain? There are two possible situations. The first situation is that the lattice state
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belongs to an orbit with index less than the order of the symmetry group. For example,

in figure 13 subspace of E, there are 3 points in the fundamental domain with polar

angle equal to 0 or π/3. These 3 points are representative lattice states of orbits with

time reflection symmetry. The indices of these orbits are 3 instead of 6.

The second situation is that the index of the orbit of the lattice state is equal to

the order of the symmetry group but the component in the subspace is 0. For example,

Φ =
1

104
(17, 51, 49, 43, 25, 75)

is a period-6 lattice state of the s = 3 temporal Bernoulli (17). Using the discrete

Fourier transform this lattice state becomes:

φ̃ =

(
5

2
√

6
, 0,
−5− 3i

√
3

13
√

6
,−
√

3

4
√

2
,
−5 + 3i

√
3

13
√

6
, 0

)
.

This is a period-6 lattice state. It belongs to an orbit that contains 6 different lattice

states. The k = 1 component of this lattice state is 0, which is on the boundary of the

fundamental domain. To put this kind of lattice states into the fundamental domain one

needs to divide other subspaces. For this lattice state the k = 2 and k = 3 components

are not 0. The irreps divide the k = 2 subspace into 3 copies and the k = 3 subspace

into 2 copies. One way to choose the fundamental domain in these subspaces is: the

argument of the component in the k = 1 subspace is 0 ≤ arg(φ̃1) < π/3; if the k = 1

component is 0, the arguments of the components in the k = 2 and k = 3 subspaces

are 0 ≤ arg(φ̃2) < 2π/3 and 0 ≤ arg(φ̃3) < π. Each orbit is guaranteed to visit this

fundamental domain exactly once.

Time-reversal invariant field configurations are confined to subspaces of the

system’s ∞-dimensional state space, as only ‘half’ of the primitive cell field values

are independent, the other half being a repeat in the reverse order. The orbit Jacobian

matrix of the corresponding prime lattice state is evaluated in a time-reversal invariant

subspace. An example of such prime lattice state orbit Jacobian matrix was given in

(147). Appendix C lists all orbit Jacobian matrices of the temporal cat prime lattice

state with time-reversal symmetry. The corresponding Hill determinants, together with

the fundamental fact of section 8.1, are then used to count the time-reversal symmetric

lattice states.

11. Lind zeta function

For a discrete time dynamical system φt+1 = f (φt) , period-n solutions (in present

context, the period-n primitive cell lattice states) are fixed points of the nth iterate

map fn . While the symmetry of a time-invariant dynamical ‘law’ f is the infinite cyclic

group C∞, the group of all temporal lattice translations, for a period-n solution the

symmetry is n-steps translation subgroup Hn .

This observation motivates definition of a general group-theoretic fixed-points

counting generating function that relates the number of lattice states to the number of
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prime orbits for any state space map f :M→M with a symmetry group G, a counting

function that applies equally well to multi-dimensional lattice field theories [58] as to

the one-dimensional theories considered here.

Let G be a group whose action α : G ×M → M permutes elements of a set M.

The Lind zeta function [123] is then defined as

ζLind(t) = exp
(∑

H

NH

|G/H|
t|G/H|

)
, (166)

where the sum is over all subgroups H of G of index |G/H| <∞, and NH is the number

of states in M invariant under action of (i.e., fixed points of) subgroup H,

NH = |{Φ ∈M : all h ∈ H α(h,Φ) = Φ}| . (167)

The index |G/H| is best explained by working out a few examples.

In the lattice field theory setting, M is the set of all lattice states. For one-

dimensional lattice field theories, the group G is either the infinite cyclic group C∞ of

all lattice translations (109), or the infinite dihedral group D∞ of all translations and

reflections (108). Their finite-index subgroups H are, respectively, infinite translation

subgroups Ha (114), or Ha and infinite dihedral subgroups Ha,k (115).

11.1. C∞ or Artin-Mazur zeta function

Assume that the symmetry group of a given discrete time dynamical system is the

group of temporal lattice translations C∞, i.e., that the system’s defining law is time

invariant. The infinite translation subgroup Ha (114) leaves primitive cell of period n

(113) invariant, so the sum over H in (166) can be replaced by the sum over periods n,

with Nn the number of lattice states of period n. For C∞ subgroups Hn (contemplate

the C∞ column of figure 7) the index is

|C∞/Hn| = n . (168)

The Lind zeta function (166) now takes form of the Artin-Mazur zeta function [8, 50]

ζAM(z) = exp
( ∞∑
n=1

Nn

n
zn
)
, (169)

which, from symmetry perspective, is the statement that the law governing the

dynamical system is time invariant.

The number of prime orbits of period n can be computed recursively by subtracting

repeats of shorter prime orbits [50],

Mn =
1

n

(
Nn −

d<n∑
d|n

dMd

)
, (170)

where d’s are all divisors of n.

https://youtube.com/embed/QAus4P4p7lA
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In what sense is ζAM(z) a lattice state counts generating function? Given the

ζAM(z), the number of periodic points of period n is given by its logarithmic derivative

(see ChaosBook [50])∑
n=1

Nnz
n =

1

ζAM
z
d

dz
ζAM . (171)

Examples of ζAM(z) lattice state counts for scalar lattice field theories studied here are

given in Appendix D.1.

11.2. D∞ or Kim-Lee-Park zeta function

If the assumed symmetryG is not the maximal symmetry group, let’s say we assume only

G = C∞ whereas the full symmetry is D∞, Lind zeta function (166) reduces to the Artin-

Mazur zeta (D.4) which counts reflection symmetry-related lattice states as belonging

to separate ‘prime orbits’, a problem that repeatedly bedevils the ChaosBook.org

exposition of periodic orbit theory.

So our next task is to evaluate Lind zeta function when the symmetry group G of

temporal lattice of a given dynamical system is the infinite dihedral group D∞, the group

of all translations and reflections, i.e., system’s defining law is time and time-reversal

invariant. For the infinite translation Ha subgroup (114) the index is (as illustrated by

figure 7)

|D∞/Hn | = 2n . (172)

As explained in section 9.7, the D∞ orbits of reflection-symmetric lattice states contain

only translations, so the index of each infinite dihedral subgroup Ha,k (115) is

|D∞/Hn,k| = n . (173)

The Lind zeta function (166) now has contributions from periodic lattice states,

whose index is (172), and symmetric periodic lattice states, index (173):

ζD∞(t) = exp
( ∞∑
n=1

Nn

2

t2n

n
+
∞∑
n=1

n−1∑
k=0

Nn,k
tn

n

)
. (174)

Nn counts the number of lattice states invariant under the translation group Hn, while

Nn,k counts the the number of lattice states invariant under the dihedral group Hn,k. So

the first sum yields the square root of the Artin-Mazur zeta function
√
ζAM(t2). The

zeta function is factorized into:

ζD∞(t) =
√
ζAM(t2) ζs(t) . (175)

The second factor ζs(t) is the contribution from the time-reversal symmetric lattice

states.

ζs(t) = exp
( ∞∑
n=1

n−1∑
k=0

Nn,k

n
tn
)
. (176)

http://chaosbook.org/chapters/ChaosBook.pdf#section.18.7
http://ChaosBook.org
https://youtube.com/embed/Y1j1mNq-RxE


Chaotic lattice field theory 52

The number of reflection-symmetric lattice states does not depend on the location

of the reflection point k, only on the type of symmetry (see the class counts (122) and

(132)), so

Nn,k =


Nn,0 if n odd

Nn,0 if n and k are even

Nn,1 if n even and k is odd ,

(177)

and the Lind zeta function takes the form that we refer to as the Kim-Lee-Park [114]

zeta function

ζD∞(t) =
√
ζAM(t2) eh(t), (178)

where

h(t) =
∞∑
m=1

{
N2m−1,0 t

2m−1 + (N2m,0 +N2m,1)
t2m

2

}
. (179)

11.2.1. Euler product form of Kim-Lee-Park zeta function. The state space M of a

D∞ invariant dynamical system is the union

M =Ma ∪Ms , (180)

where Ma is the set of pairs of asymmetric orbits (133), each element of the set a

forward-in-time orbit and the time-reversed orbit, and Ms is the set of time reversal

symmetric orbits, invariant under reflections (134–136). Kim et al [114] show that the

contribution of a single prime orbit p to the Kim-Lee-Park zeta function is:

1/ζD∞(t)|p =

{
1− tnp if p ∈Ma ,
√

1− t2np exp
(
− tnp

1−tnp

)
if p ∈Ms ,

(181)

with the zeta function written as a product over prime orbits:

1/ζD∞(t) =
∏

pa∈Ma

(1− tnpa )
∏

ps∈Ms

√
1− t2nps exp

(
− tnps

1− tnps

)
, (182)

to be expanded as a power series in t.

The Euler product form of topological zeta functions makes it explicit that they

count prime orbits, i.e., sets of equivalent lattice states related by symmetries of the

problem. Appendix D.2 verifies by explicit temporal cat calculations that the Kim-Lee-

Park zeta function indeed counts infinite dihedral group D∞ orbits and the corresponding

lattice states.

12. Summary

How to think about matters spatiotemporal? As our intuition about motions of fluids

is so much better than about turbulent quantum field theories, here we briefly describe

the recent lack of progress in turbulence that underpins ideas developed in this paper.

While dynamics of a turbulent system might appear so complex to defy any precise

description, the laws of motion drive a spatially extended system through a repertoire
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of recognizable unstable patterns (clouds, say), each defined over a finite spatiotemporal

region [91, 93]. The local dynamics, observed through such finite spatiotemporal

windows, can be thought of as a visitation sequence of a finite repertoire of finite

patterns. To make predictions, one needs to know how often a given pattern occurs,

and that is a purview of periodic orbit theory [49]. The early 2000’s rapid progress in

the description of turbulence in terms of such ‘exact coherent structures’ [86, 103, 112]

has since slowed down to a crawl due to our inability to extend the theory and the

computations to spatially large or infinite computational domains [34].

In dynamics, we have no fear of the infinite extent in time. That is periodic orbit

theory’s [53] raison d’être; the dynamics itself describes the infinite time invariant sets

by a hierarchical succession of periodic orbits, of longer and longer finite periods (with no

artificial external periodicity imposed along the time axis). And, since 1990’s we know

how to deal with spatially extended, temporally infinite regions by tiling them with

spatiotemporally periodic tiles [40, 58, 78, 86, 93]. A time periodic orbit is computed in

a finite time, with period T, but its repeats “tile” the time axis for all times. Similarly,

a spatiotemporally periodic “tile” or “periodic orbit” is computed on a finite spatial

region L, for a finite period T, but its repeats in both time and space directions tile the

infinite spacetime.

These ideas open a path to determining exact solutions on spatially infinite

regions, and many physical turbulent flows come equipped with D spatial translational

symmetries. For example, in a pipe flow at transitional Reynolds number, the azimuthal

and radial directions (measured in viscosity length units) are compact, while the pipe

length is infinite. If the theory is recast as a d-dimensional space-time theory, d = D+1 ,

spatiotemporally translational invariant recurrent solutions are d-tori (and not the 1-

dimensional temporal periodic orbits of the traditional periodic orbit theory), and the

symbolic dynamics is likewise d-dimensional (rather than a one-dimensional temporal

string of symbols).

This changes everything. Instead of studying time evolution of a chaotic system,

one now studies the repertoire of spatiotemporal patterns compatible with a given PDE,

or, in the discretized spacetime, a given partial difference equation. There is no more

time evolution in this vision of nonlinear dynamics ! Instead, there is a state space of all

spatiotemporal patterns, and the likelihood that a given finite spatiotemporally pattern

can appear, like the mischievous grin of Cheshire cat, anywhere, anytime in the turbu-

lent evolution of a flow. A bold vision, but how does it work?

It is in this context of working out the geometry of Hopf’s [104] infinite-dimensional

state spaces of turbulent fields (not three-dimensional visualizations of fluids!), that

we find the lessons learned from discretized field theories very helpful. Already one-

dimensional lattice discretization teaches us so much that it merits this paper by itself,

with the intricacies of higher dimensional Bravais lattices reserved for the sequel [58].

We have learned that, in order to describe turbulence, one has to think globally but

act locally. Turbulence is described by a catalogue of spatiotemporal patterns (‘lattice

https://youtube.com/embed/gDNjOGGBJZY
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states’ in the present, discretized field theory context; ‘tiles’ in the PDE settings [58, 93]),

each a numerically exact global solution satisfying local deterministic Euler–Lagrange

equations lattice site by site. Stripped to its essentials, the problem is to systematically

enumerate them, compute them, and determine their relative importance:

(i) Lattice states. Each solution Φc is a zero of a global fixed point condition

F [Φc] = 0 .

Together, these solutions form the deterministic scaffold, the ∞-dimensional state

space of spatiotemporal ‘patterns’ explored by deterministic (or semiclassical or

stochastic) turbulence.

(ii) Global stability is given by the orbit Jacobian matrix

Jij =
δF [Φc]i
δφj

.

In the field-theoretical formulation there is no evolution in time; Hill’s formulas

relate the two notions of stability.

(iii) Hill determinants

DetJ

determine the numbers of spatiotemporal orbits and the weight of each. In

the discrete spacetime, the time-periodic orbits of dynamical systems theory are

replaced by periodic d-dimensional primitive cell tilings (d-tori) of spacetime, each

weighted by the inverse of its instability, its Hill determinant. The weighted sum

over spatiotemporal patterns leads to chaotic field theory partition sums (11) much

like those of solid state, field theory, and statistical mechanics.

(iv) Symmetries. The reciprocal lattice states are organized by rules of crystallography.

In particular, from a spatiotemporal field theory perspective, ‘time’-reversal is

a purely crystallographic notion, a reflection point group, leading to a dihedral

symmetry quotienting of time-reversible theories and to the associated

(v) topological zeta functions of, to us, surprising form. In principle, zeta functions

encapsulate all the predictions of the theory. In contrast to conventional solid state

calculations, the hyperbolic shadowing of large primitive cells by smaller ones [96,

97] ensures that the predictions of the theory are dominated by the smallest cells.

What lies ahead? We know how to enumerate two-dimensional spacetime Bravais

lattices, count and compute lattice states and their Hill determinants [58], but at present

we have no dynamical zeta function analogous to the Lind zeta counting function for

the 1- and higher-dimensional deterministic lattice field theories.
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We are grateful to Karol Życzkowski, Sven Gnutzmann, Henning Schomerus and Thomas

Guhr for including us in this remembrance and celebration of Fritz Haake.



Chaotic lattice field theory 55

Fritz was not the only doubter. During the 2016 Kadanoff Symposium Steve
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neural manifolds. This paper thus sets up the necessary underpinnings for the quantum

field theory of the spatiotemporal cat, the details of which we leave to our friends Jon

Keating and Marcos Saraceno.
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Appendix A. Historical context

Anyone who had ever thought of an integer, or looked at a crystal, or discretized a

PDE, or constructed a secure cryptographic key, or truncated a Fourier series, or solved

turbulence, eventually writes a paper much like this one. Our reading list is currently
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at 3,000 references, and there is not much here what no eye has seen, what no ear has

heard, and what no human mind has conceived.

Still, we did not know that the dynamicist’s Arnold cat (see ChaosBook

example 14.12) is but the Klein-Gordon field theory (13) in disguise, and that the lattice

form (43) of the theory is so much more elegant than the cat map (36) or the Hénon

map (52). A cat is Hooke’s wild, ‘anti-harmonic’ sister. For s < 2 Hooke rules, with

restoring oscillations around the resting state. For s > 2 cats rule, with exponential

runaway, wrapped globally around a state space torus. Cat is to chaos what harmonic

oscillator is to order. There is no more fundamental example of chaos in mechanics.

For small stretching parameter values, s < 2, discretized Euler–Lagrange equation

(51) describes a set of coupled penduli, with oscillatory solutions, known as the discrete

Helmholtz equation in applied math [65, 80, 122], as the tight-binding model, the discrete

Schrödinger equation, the Harper’s or Azbel-Hofstadter model in solid state physics [45,

46, 74, 134, 148], and the critical almost Mathieu operator in mathematical physics [166],

with quadratic action (13) written as Hamiltonian

H =
∑
`

|`〉ε0〈`|+
∑
`m

|`〉U`m〈m| , U`m =

{
U `,m nearest neighbors

0 otherwise

with the stretching factor s = −ε0/U in (46). Equilibria or steady solutions of the

d-dimensional Frenkel-Kontorova Hamiltonian lattice [12, 136], and discrete breather

solutions [29] of the discrete nonlinear Klein-Gordon system that describe the motion

of particles under the competing influence of an onsite potential field and the nearest

neighbor attraction

d2φz
dt2
−�φz + V ′(φz) = 0 , z ∈ Zd , (A.1)

are also examples of what we here call a ‘nonlinear lattice field theory’. In contrast

to the above mostly oscillatory, often weakly coupled mechanical systems, the d-

dimensional spatiotemporal, everywhere hyperbolic discretized strongly coupled field

theory developed here [58, 96] is a descendant of Gutkin’s many-particle quantum

chaos [97].

Much of the work on one-dimensional φ3 (temporal Hénon) and φ4 field theories

has already been carried out in 1990’s, within the anti-integrability framework [11, 12,

169]. Our work is a continuation of Torcini, Politi and collaborators [84, 109, 117,

118, 153–155] 1990’s chronotopic approach to spatiotemporal chaos, and the multi-

dimensional spatiotemporal φ3 field theory pioneered by Sterling [171] in his 1999

PhD thesis. Sterling studies Hénon map lattices in both Hamiltonian and Lagrangian

formulations, and introduces the multidimensional ‘symbol tensor’ (Bunimovich and

Sinai [35] ‘symbolic representation’, Coutinho and Fernandez [44] ‘spatiotemporal code’,

Just [110] ‘symbol lattice’, MacKay [128] ‘symbol table’, Pethel, Corron and Bollt [150]

‘symbol pattern’, and, in our notation [58, 96, 97] symbol block or winding number

M, see (28)). He focuses on the ‘destruction of chaos’ as one lowers the stretching

parameter a, a much harder problem than what we address here. Luckily for us,

http://ChaosBook.org/chapters/ChaosBook.pdf#exmple.14.12
http://ChaosBook.org/chapters/ChaosBook.pdf#exmple.14.12
https://youtube.com/embed/qzsBtAm5FHc
https://www.proquest.com/docview/304508605
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the strong coupling, strong local stretching field theories’ deterministic solutions are

protected by anti-integrability and live on horseshoes, safely away from the regions of

intermediate stretches, where dragons live.

The reformulation of the lattice field theory three-term recurrence (18–20) in terms

of the two-component field (B.1) is a generalization of the passage from the Lagrangian

to the Hamiltonian formulation, also known as the ‘transfer matrix’ formulation of lattice

field theories [135, 138] and Ising models [111, 145]. We chose to prove it here using

only elementary linear algebra, not only because the Lagrangian formalism [26] is not

needed for the problem at hand, but because it actually obscures the generality of Hill’s

formula, which applies to all systems, the dissipative ones, such as the Hill’s formula (41)

for the Bernoulli system, as well at the special cases, such as the contraction parameter

value b = −1 for which -in general dissipative- Hénon map (52) happens to exhibit an

additional symplectic, time-reversal symmetry.

For forward-in-time evolution (36), the [2×2] Jacobian matrix Jn (the monodromy

matrix of a periodic orbit) describes the growth of an initial state perturbation in n

steps. For the corresponding ‘Lagrangian’ system, with action S, the first variation

of the action δS = 0 yields the Euler–Lagrange equations (7), (44), while the second

variation, the [n×n] orbit Jacobian matrix (71), describes the stability of the entire

periodic orbit. In the classical mechanics context, Bolotin and Treschev [26] refer to J
as the ‘Hessian operator’, but, as it is clear from our Bernoulli discussion, section 6, and

the applications to Kuramoto-Sivashinsky and Navier-Stokes systems [93], the notion of

global (in)stability of orbits applies to all dynamical systems, not only the Hamiltonian

ones.

His 1878-1886 study [102] of the stability of planar motion of the Moon around the

Earth led Hill to the Hill’s formula (77). In Lagrangian setting, orbit Jacobian matrix

J is the Hessian, the second variation of the action functional. The discrete-time Hill’s

formula for one-dimensional lattices with the nearest neighbor interactions that we use

here was derived by Mackay and Meiss [129] in 1983 (see also Allroth [2] eq. (12)). Why

Hill deserves the credit, and why celestial mechanics and quantum mechanics go hand-

in-hand here, is explained in chapter 5 of Gutzwiller’s beautiful monograph [98], as well

as in Viswanath’s masterly calculation of Hill’s lunar orbit [178]. Reader conversant with

celestial literature might have hard time recognizing the three-term recurrences whose

Hill determinants we compute here. What took Hill from the spatial continuum to an

integer lattice is the fact that the Fourier modes for a compact orbit form a discrete set.

Hill’s recurrence relations are made explicit in chapter 4 of Toda’s 1967 theory of Toda

lattices [176], the classical mechanics of one-dimensional lattices (chains) of particles

with nearest neighbor interaction, discrete and infinite in space, continuous in time

(their unexpected symmetries are discussed in chapter 4 of Gutzwiller monograph [98]).

In his lunar application Hill was lucky: DetJc that he computed in a [3×3] Fourier

modes matrix truncation turned out to be a quite good approximation. But his is a

remarkable formula in the limit of n → ∞ infinitesimal time steps, a formula that

relates the ∞-dimensional functional Hill determinant DetJc to a determinant of the
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finite [d×d] matrix Jc, and it took Poincaré [151] to prove that Hill’s truncated Fourier

modes calculation is correct in the continuum limit.

While first discovered in a Lagrangian setting, Hill’s formulas apply equally well

to dissipative dynamical systems, from the Bernoulli map of section 2 to Navier-Stokes

and Kuramoto-Sivashinsky systems [91, 93], with the Lagrangian formalism of [26, 115,

129, 177] mostly getting in the way of understanding them. Historically, dynamicists

always compute Jc. However, in field theory it is the Hill determinant DetJc that is

the computationally robust quantity that one should evaluate.

The fundamental fact (94) which equates the number of periodic points in the

fundamental parallelepiped with its volume, i.e., its Hill determinant, has a long history

in the theory of integer lattices, and a key role in cryptography [16, 18, 20, 61, 133]. In

two dimensions this formula is known since 1899 as Pick’s theorem, in higher dimensions

it was stated by Nielsen [31, 144] in 1920, and rederived several times since in different

contexts, for example in 1997 by Baake et al [13]. For the task at hand, Barvinok [17]

lectures offer a clear and simple introduction to integer lattices, and a proof of the

‘fundamental fact’ (94).

Poincaré [152] was the first to recognize the fundamental role periodic orbits play in

shaping ergodic dynamics. The first step in this program is a census of periodic orbits,

addressed in [8, 25, 30, 33, 36, 37, 50, 125, 126, 187], starting with 1950’s Myrberg

investigations of periodic orbits of quadratic maps, in what was arguably the first

application of computers to dynamics [139–143]. Such orbit counts are most elegantly

encoded by topological zeta functions of section 11. In 1966 Ihara [107] defined the zeta

function of an undirected graph Γ by analogy to Euler’s product form of a zeta function,

ζIhara(z)Γ =
∏
[C]

1

1− z|C|
, (A.2)

where the product is over all equivalence classes of prime (non-self retracing) loops C of

Γ, and |C| denotes the length of C. Ihara zeta functions [19, 42, 43, 62, 94, 107, 156, 158,

163, 164, 175, 188] are ‘graph-theoretic analogues of discrete Laplacians’ [174] defined

here in (14). Even though ‘undirected’ refers to no preferential time direction, they

do not appear related to the time-reversal, group-theoretic Kim-Lee-Park zeta function

(178) deployed here. Still, as discussed in section 11.2.1, Ihara’s idea that zeta function

can be written as a product (A.2) over prime orbits holds.

In preparing this manuscript we have found expositions of Lagrangian dynamics

for discrete time systems by MacKay, Meiss and Percival [129, 130, 132], and Li and

Tomsovic [119] particulary helpful. The orbit Jacobian matrix (75) of a period-(mn)

lattice state Φ was studied by Gade and Amritkar [83] in 1993. The exposition of

section 9 owes much to MacKay [127] 1982 PhD thesis’ chapter on reversible maps, and

Endler and Gallas Hamiltonian Hénon map orbit polynomials [76, 77].

https://en.wikipedia.org/wiki/Pick%27s_theorem
http://www.math.lsa.umich.edu/~barvinok/lectures.pdf
https://en.wikipedia.org/wiki/Pekka_Myrberg
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Appendix B. Hill’s formula for a 2nd order difference equation

Consider a map of form φt+1 = g(φt−1, φt), where φt is a scalar field (examples are

the kicked rotor (40) and the three-term recurrence relations (18-20)). Such a map

can be replaced by a pair of 1st order difference equations for the two-component field

φ̂t = (ϕt, φt) at the temporal lattice site t,

φ̂t+1 = f̂(φ̂t) =

(
φt

g(ϕt, φt)

)
. (B.1)

As in section 7.2, the trace of the nth iterate of the forward-in-time Perron-

Frobenius operator can be evaluated in two ways. First, using the Dirac delta kernel of

the operator Ln ,

trLn =

∫
M
d2φ̂0 δ(φ̂0 − f̂n(φ̂0)) . (B.2)

Restricting the integration to an infinitesimal open neighborhood of the two-component

field (ϕc,0, φc,0) at lattice site 0, the period n lattice state Φc contribution to the trace is

again 1/|det( 11− Jc)|, with Jc the forward-in-time [2×2] Floquet matrix (83), a product

of the 1-time step Jacobian matrices (61)

Jt =

(
0 1

∂g(ϕt,φt)
∂ϕt

∂g(ϕt,φt)
∂φt

)
, (B.3)

where (ϕt, φt) = f̂ t(ϕc,0, φc,0).

Alternatively, the trace can be evaluated as 2n-dimensional integral over a product

of one-time-step Perron-Frobenius operators (91),

trLn =

∫ n−1∏
t=0

[
d2φ̂t δ(φ̂t+1 − f̂(φ̂t))

]
=

∫ n−1∏
t=0

[dϕtdφt δ(ϕt+1 − φt) δ(φt+1 − g(ϕt, φt))] , (B.4)

with a one-dimensional Dirac delta for each field component (B.1). With the periodic

bc’s φ̂t+n = φ̂t, the dϕt integration eliminates the ϕt components, resulting in the n-

dimensional scalar field integral

trLn =

∫
dΦ

n−1∏
t=0

δ(φt+1 − g(φt−1, φt)) , dΦ =
n−1∏
t=0

dφt , (B.5)

or, in the lattice state notation,

trLn =

∫
dΦδ(F [Φ]) , F [Φ] = rΦ− g(r−1Φ,Φ) . (B.6)

where Φ and g(r−1Φ,Φ) are n-dimensional column vectors with t-th components φt and

g((r−1Φ)t,Φt), respectively, r is the cyclic [n×n] time translation operator (31), and the

saddle-point condition F [Φc] = 0 is the Euler–Lagrange equation (7) of the system. The
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rest is as in (93); the trace is the the deterministic partition sum (11) over all lattice

states,

trc Ln =

∫
Mc

dΦ δ(F [Φ]) =
1

|DetJc|
, (B.7)

where Jc is the [n×n] orbit Jacobian matrix evaluated on the period-n lattice state Φc,

enclosed by an infinitesimal open neighborhood Mc. Comparing the traces (90) and

(B.7), we see that we have again proved the Hill’s formula (77).

Note that nowhere in the derivation have we assumed that the system has a

Lagrangian formulation: this version of Hill’s formula applies to any 2nd order difference

equation, or three-term recurrence of form φt+1 = g(φt−1, φt), for example, any

dissipative Hénon map (52) as well as its special b = −1 Hamiltonian case (53).

Appendix C. Orbit Jacobian matrices of Dn prime orbits

As shown in (147), the orbit Jacobian matrix in the linear space of the prime lattice

state with time reversal symmetry has a different form compared to the orbit Jacobian

matrix that acts on a Bravais lattice state. It only acts on ‘half’ of the primitive cell

and the cyclic translational symmetry is broken.

Consider possible symmetries of periodic lattice states of the temporal cat. If a

lattice state has odd period n, reflection symmetry (o) defined by (134), the prime

lattice state is a m+ 1–dimensional vector:

Φ̃> = (φ0, φ1, φ2, φ3, · · · , φm) . (C.1)

And the [(m+ 1)× (m+ 1)] symmetry reduced orbit Jacobian matrix is:

Jo =



s −2 0 . . . 0 0

−1 s −1 . . . 0 0

0 −1 s . . . 0 0
...

...
...

. . .
...

...

0 0 . . . . . . s −1

0 0 . . . . . . −1 s− 1


. (C.2)

If lattice states have symmetries defined by (135) or (136), the symmetry reduced orbit

Jacobian matrices are [(m+ 1)× (m+ 1)] matrix:

Jee =



s −2 0 . . . 0 0

−1 s −1 . . . 0 0

0 −1 s . . . 0 0
...

...
...

. . .
...

...

0 0 . . . . . . s −1

0 0 . . . . . . −2 s


, (C.3)
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or [m×m] matrix:

Jeo =



s− 1 −1 0 . . . 0 0

−1 s −1 . . . 0 0

0 −1 s . . . 0 0
...

...
...

. . .
...

...

0 0 . . . . . . s −1

0 0 . . . . . . −1 s− 1


. (C.4)

The determinants of these symmetry reduced orbit Jacobian matrices are the stabilities

of the lattice states in the time-reflection symmetric subspace. Using the fundamental

fact, one can compute the number of time-reversal invariant lattice states of temporal

cat.

Note that even though the symmetry reduced orbit Jacobian matrices are not

circulant matrices, they share eigenvalues with circulant orbit Jacobian matrices (73),

because the eigenvectors of the circulant orbit Jacobian matrices are Fourier modes

and can be written as symmetric and anti-symmetric vectors. The determinants of the

symmetry reduced orbit Jacobian matrices are:

DetJo =

(n−1)/2∏
j=0

(
s− 2 cos

2πj

n

)
=
√

(s− 2) DetJ ,

DetJee =

(n−2)/2∏
j=0

(
s− 2 cos

2πj

n

)
=
√

(s− 2) (s+ 2) DetJ ,

DetJeo =

n/2∏
j=0

(
s− 2 cos

2πj

n

)
=

√
(s− 2)

(s+ 2)
DetJ , (C.5)

where DetJ is given in (102). DetJ , DetJo, DetJee and DetJeo count numbers of

periodic lattice states that satisfy the symmetries defined by (133–136) respectively.

MacKay [127] and Endler and Gallas [76] give tables of lattice states and their

orbits counts, together with the counts of symmetric lattice states and orbits.

Appendix D. Counting lattice states using zeta functions

Appendix D.1. Counting lattice states using Artin-Mazur zeta function

Let us first evaluate ζAM for scalar lattice field theories studied here.

Bernoulli. The number of Bernoulli system period-n lattice states is given in (27), so

1/ζAM(z) = exp
(
−
∞∑
n=1

sn − 1

n
zn
)

=
1− sz
1− z

. (D.1)

The numerator (1 − sz) says that a Bernoulli system is a full shift [50]: there are s

fundamental lattice states, in this case fixed points {φ0, φ1, · · · , φs−1}, and every other
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lattice state is built from their concatenations and repeats. The denominator (1 − z)

compensates for the single overcounted lattice state, the fixed point φs−1 = φ0 (mod 1)

of figure 3, and its repeats. If the stretching factor s = β is not an integer, the map

(23) is called the ‘β-transformation’. For its Artin-Mazur zeta function see [81].

Counting Bernoulli prime orbits. Substituting the Bernoulli map topological zeta func-

tion (D.1) into (171) we obtain∑
n=1

Nnz
n = z + 3z2 + 7z3 + 15z4 + 31z5 + 63z6 + 127z7

+ 255z8 + 511z9 + 1023z10 + 2047z11 · · · , (D.2)

in agreement with the lattice states count (85). The number of prime orbits of period

n is given recursively by subtracting repeats of shorter prime orbits (170), hence∑
n=1

Mnz
n = z + z2 + 2z3 + 3z4 + 6z5 + 9z6 + 18z7

+ 30z8 + 56z9 + 99z10 + 186z11 · · · , (D.3)

in agreement with the usual numbers of binary symbolic dynamics prime cycles [50].

Temporal cat. Substituting the number of temporal cat period-n lattice states given

in (102) into the Artin-Mazur zeta (169), Isola [108] obtains

1/ζAM(z) = exp
(
−
∞∑
n=1

Λn + Λ−n − 2

n
zn
)

=
1− sz + z2

(1− z)2
. (D.4)

Conversely, given the topological zeta function, the generating function for the number

of temporal lattice states of period n is given by the logarithmic derivative (171),
∞∑
n=0

Nnz
n =

2− sz
1− sz + z2

− 2

1− z

= (s− 2)
[
z + (s+ 2)z2 + (s+ 1)2z3

+ (s+ 2) s2z4 + (s2 + s− 1)2z5 + · · ·
]
, (D.5)

which is indeed the generating function for Tn(s/2), the Chebyshev polynomial of the

first kind (103). Why Chebyshev? Essentially because Tk(x) are also defined by a

three-term recurrence:

T0(x) = 1 , T1(x) = x ,

− Tk+1(x) + 2xTk(x)− Tk−1(x) = 0 for k ≥ 2 . (D.6)

Temporal Hénon. The problem of counting orbits for the Hénon map (52) was first

addressed in 1979 by Simó [165]. For the complete horseshoe, a = 6 Hénon map repeller

there are 2n period-n lattice states, so

1/ζAM(z) = exp
(
−
∞∑
n=1

2n

n
zn
)

= 1− 2z . (D.7)

The numbers of the shortest period lattice states and prime orbits are listed in table D1.
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n 1 2 3 4 5 6 7 8 9 10 11

Nn 2 4 8 16 32 64 128 256 512 1024 2048

Mn 2 1 2 3 6 9 18 30 56 99 186

Table D1. Nn and Mn are the numbers of the period-n lattice states and orbits,

respectively, for the a = 6 Hénon map.

n 1 2 3 4 5 6 7 8 9 10

Mn 1 2 5 10 24 50 120 270 640 1500

Nn 1 5 16 45 121 320 841 2205 5776 15125

Nn,0 1 5 4 15 11 40 29 105 76 275

Nn,1 1 1 4 3 11 8 29 21 76 55

Table D2. Lattice state and prime orbit counts for the s = 3 temporal cat. Mn is

the number of period-n prime orbits (see Bird and Vivaldi [24]). Nn , Nn,0 and Nn,1

are numbers of lattice states that are invariant under group actions of Hn , Hn,0 and

Hn,1 respectively.

φ4 field theory. The same as the temporal Hénon, with 2→ 3 replacement in (D.7).

Appendix D.2. Counting temporal cat lattice states using Kim-Lee-Park zeta function

As the symmetry of temporal cat is D∞, the number of lattice states for temporal

cat given by the C∞ Hill determinant (102) miscounts states related by reflections. In

this case one uses the fundamental fact to count each type the time reversal invariant

lattice states separately. As an example, consider temporal cat with s = 3. The

Hill determinants of the symmetry reduced orbit Jacobian matrices (C.5) count the

corresponding lattice states:

Nn =
(
Λn/2 − Λ−n/2

)2
,

Nn,0 = Λn/2 − Λ−n/2 , n odd,

Nn,0 =
√

5
(
Λn/2 − Λ−n/2

)
, n even,

Nn,1 =
1√
5

(
Λn/2 − Λ−n/2

)
, n even. (D.8)

Substitute into (179) to count symmetric lattice states:

h(t) =
∞∑
m=1

[
N2m−1,0 t

2m−1 + (N2m,0 +N2m,1)
t2m

2

]
=

Λ1/2t

1− Λt2
− Λ−1/2t

1− Λ−1t2
+

√
9

5

Λt2

1− Λt2
−
√

9

5

Λ−1t2

1− Λ−1t2
. (D.9)
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Using the definition of the Kim-Lee-Park zeta function (176–179), generating functions

of the lattice state counts are

t
∂

∂t
ln ζa(t2) =

∞∑
n=1

Nnt
2n

= t2 + 5t4 + 16t6 + 45t8 + 121t10 + 320t12 + 841t14

+ 2205t16 + 5776t18 + 15125t20 + . . . , (D.10)

and

h(t) =
∞∑
m=1

[
N2m−1,0 t

2m−1 +
(N2m,0 +N2m,1)

2
t2m
]

= t+ 3t2 + 4t3 + 9t4 + 11t5 + 24t6 +

29t7 + 63t8 + 76t9 + 165t10 + . . . , (D.11)

in agreement with the numbers of lattice states with period up to 10 listed in the

table D2. Kim-Lee-Park zeta function counts as advertised.
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Phys. 207, 572–578 (2021).

[5] S. Anastassiou, A. Bountis, and A. Bäcker, “Homoclinic points of 2D and 4D
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Mainieri, G. Tanner, and G. Vattay (Niels Bohr Inst., Copenhagen, 2023).
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[101] M. Hénon, “A two-dimensional mapping with a strange attractor”, Commun.

Math. Phys. 50, 94–102 (1976).

http://dx.doi.org/10.1103/PhysRevE.51.3939
http://dx.doi.org/10.1103/PhysRevE.51.3939
https://doi.org/10.1103/PhysRevE.51.3939
https://doi.org/10.1103/PhysRevE.51.3939
http://Channelflow.org
http://dx.doi.org/10.1017/S002211200800267X
http://dx.doi.org/10.1017/S002211200800267X
https://doi.org/10.1017/S002211200800267X
http://dx.doi.org/10.1088/1751-8121/abe167
http://dx.doi.org/10.1088/1751-8121/abe167
https://doi.org/10.1088/1751-8121/abe167
http://dx.doi.org/10.1007/978-1-4613-0163-9
http://books.google.com/books?vid=ISBN1421407949
http://dx.doi.org/10.1137/s1064827599359278
http://dx.doi.org/10.1137/s1064827599359278
https://doi.org/10.1137/s1064827599359278
https://doi.org/10.1137/s1064827599359278
https://ChaosBook.org/projects/theses.html
https://orbithunter.readthedocs.io
https://ChaosBook.org/overheads/spatiotemporal/
https://ChaosBook.org/overheads/spatiotemporal/
http://dx.doi.org/10.1007/978-3-7643-8604-7_5
http://dx.doi.org/10.1007/978-3-7643-8604-7_5
https://doi.org/10.1007/978-3-7643-8604-7_5
http://dx.doi.org/10.1103/physreve.54.4908
https://doi.org/10.1103/physreve.54.4908
https://doi.org/10.1103/physreve.54.4908
http://dx.doi.org/10.1088/1361-6544/abd7c8
http://dx.doi.org/10.1088/1361-6544/abd7c8
https://doi.org/10.1088/1361-6544/abd7c8
http://dx.doi.org/10.1088/0951-7715/29/2/325
http://dx.doi.org/10.1088/0951-7715/29/2/325
https://doi.org/10.1088/0951-7715/29/2/325
http://books.google.com/books?vid=ISBN9781461209836
http://dx.doi.org/10.1007/978-3-662-04506-0
http://dx.doi.org/10.1016/0167-2789(92)90012-c
https://doi.org/10.1016/0167-2789(92)90012-c
https://doi.org/10.1016/0167-2789(92)90012-c
http://dx.doi.org/10.1007/978-0-387-21830-4_8
https://doi.org/10.1007/978-0-387-21830-4_8
https://doi.org/10.1007/978-0-387-21830-4_8


REFERENCES 70

[102] G. W. Hill, “On the part of the motion of the lunar perigee which is a function

of the mean motions of the sun and moon”, Acta Math. 8, 1–36 (1886).

[103] B. Hof, C. W. H. van Doorne, J. Westerweel, F. T. M. Nieuwstadt, H. Faisst, B.

Eckhardt, H. Wedin, R. R. Kerswell, and F. Waleffe, “Experimental observation of

nonlinear traveling waves in turbulent pipe flow”, Science 305, 1594–1598 (2004).

[104] E. Hopf, “A mathematical example displaying features of turbulence”, Commun.

Pure Appl. Math. 1, 303–322 (1948).

[105] G. Y. Hu and R. F. O’Connell, “Analytical inversion of symmetric tridiagonal

matrices”, J. Phys. A 29, 1511 (1996).

[106] G. Y. Hu, J. Y. Ryu, and R. F. O’Connell, “Analytical solution of the generalized

discrete Poisson equation”, J. Phys. A 31, 9279 (1998).

[107] Y. Ihara, “On discrete subgroups of the two by two projective linear group over

p-adic fields”, J. Math. Soc. Japan 18, 219–235 (1966).

[108] S. Isola, “ζ-functions and distribution of periodic orbits of toral automorphisms”,

Europhys. Lett. 11, 517–522 (1990).

[109] A. K. Jiotsa, A. Politi, and A. Torcini, “Convective Lyapunov spectra”, J. Phys.

A 46, 254013 (2013).

[110] W. Just, “Equilibrium phase transitions in coupled map lattices: A pedestrian

approach”, J. Stat. Phys. 105, 133–142 (2001).

[111] B. Kastening, “Simplified transfer matrix approach in the two-dimensional Ising

model with various boundary conditions”, Phys. Rev. E 66, 057103 (2002).

[112] G. Kawahara and S. Kida, “Periodic motion embedded in plane Couette

turbulence: Regeneration cycle and burst”, J. Fluid Mech. 449, 291 (2001).

[113] J. P. Keating, “The cat maps: quantum mechanics and classical motion”,

Nonlinearity 4, 309–341 (1991).

[114] Y.-O. Kim, J. Lee, and K. K. Park, “A zeta function for flip systems”, Pacific J.

Math. 209, 289–301 (2003).

[115] H.-T. Kook and J. D. Meiss, “Application of Newton’s method to Lagrangian

mappings”, Physica D 36, 317–326 (1989).
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[161] O. E. Rössler, “An equation for continuous chaos”, Phys. Lett. A 57, 397–398

(1976).

[162] H. J. Rothe, Lattice Gauge Theories - An Introduction (World Scientific,

Singapore, 2005).

[163] S. Saito, “A proof of Terras’ conjecture on the radius of convergence of the Ihara

zeta function”, Discrete Math. 341, 990–996 (2018).

[164] I. Sato, “Bartholdi zeta functions of group coverings of digraphs”, Far East J.

Math. Sci. 18, 321–339 (2005).
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