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Appendix A

A brief history of chaos

Laws of attribution

1. Arol'd’s Law : everything that is discovered is
named after someone else (including Arnol'd’s
law)

2. Berry’'s Law: sometimes, the sequence of
antecedents seems endless. So, nothing is
discovered for the first time.

3. Whiteheads'’s Law. Everything of importance has
been said before by someone who did not discover
it.

—M.V. Berry

(R. Mainieri and P. Cvitanovic)

RYING TO PREDICT the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was imanttfor determining
the longitude of ships while traversing open seas.

Kepler's Rudolphine tables had been a great improvemenforegious tables,
and Kepler was justly proud of his achievements. He wrotéénintroduction to
the announcement of Kepler's third lal#armonice MundiLinz, 1619) in a style
that would not fly with the contempora®hysical Review Lettersditors:

What | prophesied two-and-twenty years ago, as soon as dwised

the five solids among the heavenly orbits—what | firmly bedeblong before

| had seen Ptolemyidarmonics-what | had promised my friends in the title
of this book, which | named before | was sure of my discovelyatgixteen
years ago, | urged as the thing to be sought-that for whicimegTycho
Brahé, for which | settled in Prague, for which | have dedatee best part
of my life to astronomical contemplations, at length | haveught to light,
and recognized its truth beyond my most sanguine expenatiti is not
eighteen months since | got the first glimpse of light, threenths since
the dawn, very few days since the unveiled sun, most adneirabbaze
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upon, burst upon me. Nothing holds me; | will indulge my sdciery; |
will triumph over mankind by the honest confession that Iéhatolen the
golden vases of the Egyptians to build up a tabernacle for oy far away
from the confines of Egypt. If you forgive me, | rejoice; if yave angry, |
can bear it; the die is cast, the book is written, to be redteeiow or in
posterity, | care not which; it may well wait a century for ader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood siile dilewton.
The formalism that we use today was developed by Euler andabag. By the
end of the 1800’s the three problems that would lead to themaif chaotic
dynamics were already known: the three-body problem, thedic hypothesis,
and nonlinear oscillators.

A.0.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive thggdliorbits of Kepler
and set an example of how equations of motion could be solyedtegrating.
But the motion of the Moon is not well approximated by an elipvith the Earth

at a focus; at least thdfects of the Sun have to be taken into account if one wants

to reproduce the data the classical Greeks already podseBselo that one has
to consider the motion of three bodies: the Moon, the Eartt,the Sun. When
the planets are replaced by point particles of arbitrarysessthe problem to be
solved is known as the three-body problem. The three-bodplem was also
a model to another concern in astronomy. In the Newtonianehofithe solar
system it is possible for one of the planets to go from antéliprbit around the
Sun to an orbit that escaped its dominion or that plunged iigh it. Knowing

if any of the planets would do so became the problem of thelisyatf the solar
system. A planet would not meet this terrible end if solatesysconsisted of
two celestial bodies, but whether such fate could befalhim three-body case
remained unclear.

After many failed attempts to solve the three-body probleatural philosophers
started to suspect that it was impossible to integrate. Hualuechnique for
integrating problems was to find the conserved quantitisantities that do not
change with time and allow one to relate the momenta andiposidiferent
times. The first sign on the impossibility of integrating tieee-body problem
came from a result of Burns that showed that there were nceceed quantities
that were polynomial in the momenta and positions. Burr&litalid not preclude
the possibility of more complicated conserved quantitidss problem was settled
by Poincaré and Sundman in two veryfdrent ways.

In an attempt to promote the journatta MathematicaMittag-Leffler got the
permission of the King Oscar Il of Sweden and Norway to eshlal mathematical
competition. Several questions were posed (although tigewould have preferred
only one), and the prize of 2500 kroner would go to the besitrgsgion. One of
the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract eacr attcording
to Newton'’s laws, under the assumption that no two points evilide, try
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to find a representation of the coordinates of each point aiassin a
variable that is some known function of time and for all of whwalues the
series converges uniformly.

This problem, whose solution would considerably extendumaterstanding
of the solar system, ...

Poincaré’s submission won the prize. He showed that ceedeguantities that
were analytic in the momenta and positions could not exist. sfow that he
introduced methods that were very geometrical in spiri¢t ithportance of state
space flow, the role of periodic orbits and their cross sastidhe homoclinic
points.

The interesting thing about Poincaré’s work was that it dat solve the
problem posed. He did not find a function that would give therdmates as
a function of time for all times. He did not show that it was ibspible either,
but rather that it could not be done with the Bernoulli tecfuei of finding a
conserved quantity and trying to integrate. Integratiomubd@seem unlikely from
Poincaré’s prize-winning memoir, but it was accomplistgdthe Finnish-born
Swedish mathematician Sundman. Sundman showed that grateethe three-
body problem one had to confront the two-body collisions.ditkethat by making
them go away through a trick known as regularization of thiésson manifold.
The trick is not to expand the coordinates as a function oé tinbut rather as a
function of ¥t. To solve the problem for all times he used a conformal mapant
strip. This allowed Sundman to obtain a series expansiothécoordinates valid
for all times, solving the problem that was proposed by Wkiss in the King
Oscar II's competition.

The Sundman’s series are not used today to compute thettnagscof any
three-body system. That is more simply accomplished by migalenethods or
through series that, although divergent, produce betteremigal results. The
conformal map and the collision regularization mean thaiséries arefeectively
in the variable 1- e ¥, Quite rapidly this gets exponentially close to one, the
radius of convergence of the series. Many terms, more telnars any one has
ever wanted to compute, are needed to achieve numericatigemce. Though
Sundman’s work deserves better credit than it gets, it didiveoup to Weirstrass'’s
expectations, and the series solution did not “considgmtend our understanding
of the solar system.” The work that followed from Poincaig d

A.0.2 Ergodic hypothesis

The second problem that played a key role in development abtéh dynamics
was the ergodic hypothesis of Boltzmann. Maxwell and Bo#tmmhad combined
the mechanics of Newton with notions of probability in ortieccreate statistical
mechanics, deriving thermodynamics from the equationsazfranics. To evaluate
the heat capacity of even a simple system, Boltzmann hadke engreat simplifying
assumption of ergodicity: that the dynamical system wouit every part of
the phase space allowed by conservation laws equally ofteis.hypothesis was
extended to other averages used in statistical mechardosascalled the ergodic
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hypothesis. It was reformulated by Poincaré to say thatjedtory comes as close
as desired to any phase space point.

Proving the ergodic hypothesis turned out to be veffialilt. By the end
of twentieth century it has only been shown true for a fewesyst and wrong
for quite a few others. Early on, as a mathematical necegbigyproof of the
hypothesis was broken down into two parts. First one woubthghat the mechanical
system was ergodic (it would go near any point) and then onddvshow that
it would go near each point equally often and regularly sd tha computed
averages made mathematical sense. Koopman took the fijpsinspeoving the
ergodic hypothesis when he noticed that it was possible faymeilate it using
the recently developed methods of Hilbert spaces. This wasnportant step
that showed that it was possible to take a finite-dimensiowalinear problem
and reformulate it as a infinite-dimensional linear prohlefhis does not make
the problem easier, but it does allow one to useftedént set of mathematical
tools on the problem. Shortly after Koopman started leoguion his method,
von Neumann proved a version of the ergodic hypothesispgiiithe status of a
theorem. He proved that if the mechanical system was ergihdin the computed
averages would make sense. Soon afterwards Biffidublished a much stronger
version of the theorem.

A.0.3 Nonlinear oscillators

The third problem that was very influential in the developmehthe theory
of chaotic dynamical systems was the work on the nonlineeill@®rs. The
problem is to construct mechanical models that would aidumgterstanding of
physical systems. Lord Rayleigh came to the problem thrdughnterest in
understanding how musical instruments generate sounte fiirst approximation
one can construct a model of a musical instrument as a liregdltator. But real
instruments do not produce a simple tone forever as therloszllator does, so
Lord Rayleigh modified this simple model by adding frictiondamore realistic
models for the spring. By a clever use of negative frictioncheated two basic
models for the musical instruments. These models have rhared pure tone
and decay with time when not stroked. In his boltke Theory of Sountord
Rayleigh introduced a series of methods that would proveeggéneral, such as
the notion of a limit cycle, a periodic motion a system goeseardless of the
initial conditions.

A.1 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birldhon the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developetiva directions.
One direction took an abstract approach and consideredndgabsystems as
transformations of measurable spaces into themselvesld @a@iclassify these
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transformations in a meaningful way? This lead Kolmogomthe introduction
of the concept of entropy for dynamical systems. With entrap a dynamical
invariant it became possible to classify a set of abstrasaycal systems known
as the Bernoulli systems. The other line that developed fhenergodic hypothesis
was in trying to find mechanical systems that are ergodic. r§adic system could
not have stable orbits, as these would break ergodicity. nSI888 Hadamard
published a paper with a playful title of ... billiards’.where he showed that the
motion of balls on surfaces of constant negative curvasieyérywhere unstable.
This dynamical system was to prove very useful and it wastalgeby Birkhdf.
Morse in 1923 showed that it was possible to enumerate thesarba ball on a
surface of constant negative curvature. He did this by thtcing a symbolic code
to each orbit and showed that the number of possible codes eponentially
with the length of the code. With contributions by Artin, Higad, and H. Hopf it
was eventually proven that the motion of a ball on a surfaceooftant negative
curvature was ergodic. The importance of this result estapest physicists, one
exception being Krylov, who understood that a physicaldsill was a dynamical
system on a surface of negative curvature, but with the tumyaconcentrated
along the lines of collision. Sinai, who was the first to shbetta physical billiard
can be ergodic, knew Krylov's work well.

The work of Lord Rayleigh also received vigorous developmérprompted
many experiments and some theoretical development by vaRale Dufing,
and Hayashi. They found other systems in which the nonlinseillator played
a role and classified the possible motions of these systerh& cbncreteness
of experiments, and the possibility of analysis was too mofctemptation for
Mary Lucy Cartwright and J.E. Littlewood.f], who set out to prove that many
of the structures conjectured by the experimentalists la@oretical physicists did
indeed follow from the equations of motion. Birkffidvad found a ‘remarkable
curve’ in a two dimensional map; it appeared to be ndfedéntiable and it
would be nice to see if a smooth flow could generate such a cditve work of
Cartwright and Littlewood lead to the work of Levinson, whio turn provided
the basis for the horseshoe construction of S. Smale.

[chapter 11]

In Russia, Lyapunov paralleled the methods of Poincaré initidted the
strong Russian dynamical systems school. Andronov caoriedlith the study of
nonlinear oscillators and in 1937 introduced together \Ritimtryagin the notion
of coarse systems. They were formalizing the understangi@mgered from the
study of nonlinear oscillators, the understanding thatyradrthe details on how
these oscillators work do noffact the overall picture of the state space: there
will still be limit cycles if one changes the dissipation qrisg force function
by a little bit. And changing the system a little bit has theajradvantage of
eliminating exceptional cases in the mathematical armly3oarse systems were
the concept that caught Smale’s attention and enticed histudy dynamical
systems.

A.2 Chaos with us

(R. Mainieri)
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In the fall of 1961 Steven Smale was invited to Kiev where hé Araol'd,
Anosov, Sinai, and Novikov. He lectured there, and spenttafidime with
Anosov. He suggested a series of conjectures, most of whiats@v proved
within a year. It was Anosov who showed that there are dynalnggstems
for which all points (as opposed to a non-wandering set) athei hyperbolic
structure, and it was in honor of this result that Smale namthede systems
Axiom-A. In Kiev Smale found a receptive audience that haehbiinking about
these problems. Smale’s result catalyzed their thoughdsiratiated a chain of
developments that persisted into the 1970's.

Smale collected his results and their development in th& i®&@ew article on
dynamical systems, entitled “Bérentiable dynamical systems.” There are mam/amer 11]
great ideas in this paper: the global foliation of invariaets of the map into
disjoint stable and unstable parts; the existence of a Bleogeand enumeration
and ordering of all its orbits; the use of zeta functions tmgtdynamical systems.

The emphasis of the paper is on the global properties of thardical system, on
how to understand the topology of the orbits. Smale’s acctakes you from a
local differential equation (in the form of vector fields) to the glotzgdological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little enoonfusing. The
general character of entropy was understood by Weiner, vebmed to have
spoken to Shannon. In 1948 Shannon published his result§amiation theory,
where he discusses the entropy of the shift transformatiéolmogorov went
far beyond and suggested a definition of the metric entronadrea preserving
transformation in order to classify Bernoulli shifts. Theggestion was taken
by his student Sinai and the results published in 1959. 1) Béhlin connected
these results to measure-theoretical notions of entropg.nExt step was published
in 1965 by Adler and Palis, and also Adler, Konheim, McAndréwese papers
showed that one could define the notion of topological eptrapd use it as
an invariant to classify continuous maps. In 1967 Anosov Siwhi applied
the notion of entropy to the study of dynamical systems. I \vathe context
of studying the entropy associated to a dynamical systemnSimai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systemsstatistical mechanics;
this has been a very fruitful relationship. It adds measot®ns to the topological
framework laid down in Smale’s paper. Markov partitionsidé/the state space
of the dynamical system into nice little boxes that map irdcheother. Each
box is labeled by a code and the dynamics on the state space tmagodes
around, inducing a symbolic dynamics. From the number ofebaxeeded to
cover all the space, Sinai was able to define the notion obpytof a dynamical
system. In 1970 Bowen came up independently with the sangs,ddthough
there was presumably some flow of information back and feeftbrie these papers
got published. Bowen also introduced the important concégthadowing of
chaotic orbits. We do not know whether at this point the refat with statistical
mechanics were clear to every one. They became expliciteimibrk of Ruelle.
Ruelle understood that the topology of the orbits could leeiied by a symbolic
code, and that one could associate an ‘energy’ to each drbé.energies could
be formally combined in a ‘partition function’ to generatetinvariant measure
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of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundatiof the statistical
mechanics approach to chaotic systems, research turneddgirg particular
cases. The simplest case to consider is 1-dimensional riapstopology of the
orbits for parabola-like maps was worked out in 1973 by Maitis, Stein, and
Stein. The more general 1-dimensional case was worked dl76 by Milnor
and Thurston in a widely circulated preprint, whose exteneersion eventually
got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, ateinSnspired
Feigenbaum to study simple maps. This lead him to the disg@fe¢he universality
in quadratic maps and the application of ideas from fieldtheo dynamical
systems. Feigenbaum’s work was the culmination in the stfdydimensional
systems; a complete analysis of a nontrivial transition haos. Feigenbaum
introduced many new ideas into the field: the use of the realization group
which lead him to introduce functional equations in the gtokdynamical systems,
the scaling function which completed the link between dyicamsystems and
statistical mechanics, and the use of presentation furtis the dynamics of
scaling functions.

The work in more than one dimension progressed very slowdyisustill far
from completed. The first result in trying to understand tipotogy of the orbits
in two dimensions (the equivalent of Metropolis, Stein, &@téin, or Milnor
and Thurston’s work) was obtained by Thurston. Around 19W&r$ton was
giving lectures “On the geometry and dynamics dfebmorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not Bpplied in physics,
but much of the classification that Thurston developed caokbained from the
notion of a ‘pruning front’ developed independently by @vibvic.

Once one develops an understanding for the topology of thiesaf a dynamical
system, one needs to be able to compute its properties.ethsllalready generalized
the zeta function introduced by Artin and Mazur so that itlddae used to compute
the average value of observables. Thgidlilty with Ruelle’s zeta function is
that it does not converge very well. Starting out from Snsatddservation that a
chaotic dynamical system is dense with a set of periodidgrhlvitanovi¢ used
these orbits as a skeleton on which to evaluate the averdgdservables, and
organized such calculations in terms of rapidly convergiyge expansions. This
convergence is attained by using the shorter orbits usedasia for shadowing
the longer orbits.

This account is far from complete, but we hope that it willhgét a sense of
perspective on the field. It is not a fad and it will not die amg soon.

A.3 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.

— Joe Keller, after being asked to define applied
mathematics
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The history of the periodic orbit theory is rich and curioasd the recent
advances are to equal degree inspired by a century of sepdeaelopment of
three disparate subjects; Iclassical chaotic dynamicsnitiated by Poincaré
and put on its modern footing by SmalegZ], Ruelle 28], and many others;
2. quantum theorynitiated by Bohr, with the modern ‘chaotic’ formulation by
Gutzwiller [12, 17]; and 3. analyticnumber theoryinitiated by Riemann and
formulated as a spectral problem by Selbeif, [3]. Following totally different
lines of reasoning and driven by veryfldirent motivations, the three separate
roads all arrive at formally nearly identicédace formulas zeta functionsand
spectral determinants

That these topics should be related is far from obvious. €ciion between
dynamics and number theory arises from Selberg’s obsenvétiat description
of geodesic motion and wave mechanics on spaces of congtgative curvature
is essentially a number-theoretic problerA. posteriorji one can say that zeta
functions arise in both classical and quantum mechaniausedn both the dynamical
evolution can be described by the action of linear evoluf@riransfer) operators
on infinite-dimensional vector spaces. The spectra of thpseators are given by
the zeros of appropriate determinants. One way to evaligttgrdinants is to

A . . section 17.1

expand them in terms of tracdeg det= tr log, and in this way the spectrum o{‘b
an evolution operator becames related to its traces, egqgic orbits. A perhaps
deeper way of restating this is to observe that the tracedtasperform the same
service in all of the above problems; they relate the specwiilengths (local
dynamics) to the spectrum of eigenvalues (global average®) for nonlinear
geometries they play a role analogous to that the Fouriesfioam plays for the
circle.

]

[exercise 4.1]

In M. Gutzwiller words:

“The classical periodic orbits are a crucial stepping stortkee understanding
of quantum mechanics, in particular when then classicaesyss chaotic.
This situation is very satisfying when one thinks of Poitgoa&ho emphasized
the importance of periodic orbits in classical mechaniascbuld not have
had any idea of what they could mean for quantum mechanic®& s€h
of energy levels and the set of periodic orbits are compléargrio each
other since they are essentially related through a Fouaesform. Such
a relation had been found earlier by the mathematiciansarstindy of the
Laplacian operator on Riemannian surfaces with constayetive curvature.
This led to Selberg’s trace formula in 1956 which has exab#ysame form,
but happens to be exact. The mathematical proof, howevéadsd on
the high degree of symmetry of these surfaces which can bea@d to
the sphere, although the negative curvature allows for maone diferent
shapes.”
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A.4 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn't.

— A. Pais, Inward Bound: of Matter and Forces in
the Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in hiiae at the Niels
Bohr Institute beaming with the unparalleled glee of a bopWas just committed
a major mischief. The starting words of the manuscript hgistgpenned are

The failure of the Copenhagen School to obtain a reasonable .

34 years old at the time, Dieter was a gtykind of guy, always in sandals and
holed out jeans, a left winger and a mountain climber, waykinound the clock
with his students Gregor and Klaus to complete the work tiudtr Bimself would
have loved to see done back in 1916: a ‘planetary’ calculatibthe helium
spectrum.

Never mind that the ‘Copenhagen School’ refers not to thejo&thtum theory,
but to something else.  The old quantum theory was no theogll;ait was
a set of rules bringing some order to a set of phenomena whiftaddlogic of
classical theory. The electrons were supposed to desdabetpry orbits around
the nucleus; their wave aspects were yet to be discovereazifclindations seemed
obscure, but Bohr's answer for the once-ionized helium tdrbgen ratio was
correct to five significant figures and hard to ignore. The aldrmjum theory
marched on, until by 1924 it reached an impasse: the helilgntspn and the
Zeeman #&ect were its death knell.

Since the late 1890’s it had been known that the helium spectonsists of
the orthohelium and parahelium lines. In 1915 Bohr suggettat the two kinds
of helium lines might be associated with two distinct shagfesbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to workheproblem, and
wrote to Rutherford: “I have used all my spare time in the fasnths to make
a serious attempt to solve the problem of ordinary heliunttspem .. .| think
really that at last | have a clue to the problem.” To otherealues he wrote that
“the theory was worked out in the fall of 1916” and of havingaibed a “partial
agreement with the measurements.” Nevertheless, the Bammerfeld theory,
while by and large successful for hydrogen, was a disastendatral helium.
Heroic dforts of the young generation, including Kramers and Heisembwere
of no avail.

For a while Heisenberg thought that he had the ionizatioargt for helium,

which he had obtained by a simple perturbative scheme. Héevenathusiastic
letters to Sommerfeld and was drawn into a collaboratiorh Witax Born to
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compute the spectrum of helium using Born’s systematicupeative scheme.
In first approximation, they reproduced the earlier calbofes. The next level
of corrections turned out to be larger than the computéete The concluding
paragraph of Max Born’s classic “Vorlesungen Uber Atomhaexk” from 1925
sums it up in a somber tone:

(...) the systematic application of the principles of theagum theory

(...) gives results in agreement with experiment only irsthoases where
the motion of a single electron is considered; it fails ewvethie treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not yeatinsistent.
(...) A complete systematic transformation of the clagsizechanics into
a discontinuous mechanics is the goal towards which thetgoatheory
strives.

That year Heisenberg fared a bout of hay fever, and the old quantum theory
was dead. In 1926 he gave the first quantitative explanafitedelium spectrum.
He used wave mechanics, electron spin and the Pauli exalpsiaciple, none of
which belonged to the old quantum theory, and planetarytdfielectrons were
cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It wasthe fault
of the old quantum mechanics, but rather it reflected thek &d understanding of
the subtleties of classical mechanics. Today we know wlest thissed in 1913-
24: the role of conjugate points (topological indices) glafassical trajectories
was not accounted for, and they had no idea of the importahperimdic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods efdld quantum
mechanics has been fixed. Leopold and Percijeddfided the topological indices
in 1980, and in 1991 Wintgen and collaboratofs §] understood the role of
periodic orbits. Dieter had good reasons to gloat; while rimt of us were
preparing to sharpen our pencils and supercomputers i ¢odapproach the
dreaded 3-body problem, they just went ahead and did it. \Whaik—and much
else—is described in this book.

One s also free to ponder what quantum theory would looktibkiay if all this
was worked out in 1917. In 1994 Predrag Cvitanovit gavelaiteSeattle about
helium and cycle expansions to—inter alia—Hans Bethe, wed it so much that
after the talk he pulled Predrag aside and they trotted @velains’ secret place:
the best lunch on campus (Business School). Predrag askéolild Quantum
Mechanics look dferent if in 1917 Bohr and Kramekt al. figured out how to
use the helium classical 3-body dynamics to quantize h&fium

Bethe was very annoyed. He responded with an exasperatied ilodBethe
Deutschinglish (if you have ever talked to him, you can dosiee over yourself):

“It would not matter at all!”
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A.4.1 Berry-Keating conjecture

A very appealing proposal in the context of semiclassicalngaation is due
to M. Berry and J. KeatingZl]. The idea is to improve cycle expansions by
imposing unitarity as a functional equation ansatz. Théeoggpansions that they
use are the same as the original ongsl] described above, but the philosophy
is quite diferent; the claim is that the optimal estimate for low eigéums of
classically chaotic quantum systems is obtained by takiegreal part of the
cycle expansion of the semiclassical zeta function, @latthe appropriate cycle
length. M. Sieber, G. Tanner and D. Wintgen, and P. Dahldumst that their
numerical results support this claim; F. Christiansen an@v®anovi¢ do not
find any evidence in their numerical results. The usual Riewaiegel formulas
exploit the self-duality of the Riemann and other zeta fiomst, but there is no
evidence of such symmetry for generic Hamiltonian flows.oAlom the point
of hyperbolic dynamics discussed above, proposal in iteeatiform belongs to
the category of crude cycle expansions; the cycles arefEbiya single external
criterion, such as the maximal cycle time, with no regardtfiertopology and the
curvature corrections. While the functional equation eohjre is maybe not in
its final form yet, it is very intriguing and worth pursuing.

The real life challenge are generic dynamical flows, whiciméither of the
above two idealized settings.
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Commentary

Remark A.1 Notion of global foliations. ~ For each paper cited in dynamical systems
literature, there are many results that went into its dgumlent. As an example, take
the notion of global foliations that we attribute to Smales far as we can trace the
idea, it goes back to René Thom; local foliations were alyassed by Hadamard. Smale
attended a seminar of Thom in 1958 or 1959. In that seminamitvas explaining
his notion of transversality. One of Thom’s disciples inmced Smale to Brazilian
mathematician Peixoto. Peixoto (who had learned the iestithe Andronov-Pontryagin
school from Lefschetz) was the closest Smale had ever cofii¢hen to the Andronov-
Pontryagin school. It was from Peixoto that Smale learnezlibtructural stability, a
notion that got him enthusiastic about dynamical systemmst blended well with his
topological background. It was from discussions with P&xbat Smale got the problems
in dynamical systems that lead him to his 1960 paper on Moesgualities. The nextyear
Smale published his result on the hyperbolic structure efrtbn-wandering set. Smale
was not the first to consider a hyperbolic point, Poincackdieeady done that; but Smale
was the first to introduce a global hyperbolic structure. B¥d Smale was already
lecturing on the horseshoe as a structurally stable dyr@mystem with an infinity of
periodic points and promoting his global viewpoint. (R. Kiari)

Remark A.2 Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin tried

to use geometry to establish positive Lyapunov exponeni&atok and J.-M. Strelcyn
carried out the program and developed a theory of generalrdigal systems with singularities.
They studied uniformly hyperbolic systems (as strong ass@nts), but with sets of
singularities. Under iterations a dense set of points hiessingularities. Even more
important are the points that never hit the singularity skt.order to establish some
control over how they approach the set, one looks at trajiestthat apporach the set by
some givere", or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the getmof billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was muchemobust. Look at the
discontinuity set (geometry of it matters not at all), takeeaneighborhood around it.
Given that the Lebesgue measure‘isand the stability grows not faster than (distarice)
A. Katok and J.-M. Strelcyn proved that the Lyapunov expaignon-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Nuwsvgroblem has no
invariant Lebesgue measure. Assuming uniform hypertipligiith singularities, and
tying together Lebesgue measure and discontinuities, et ghat the stability grows
not faster than (distance)Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Loreazahd Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all troublénislifferentials. For the
Hénon attractor, already theflirentials are nonhyperbolic. The points do not separate
uniformly, but the analogue of the singularity set can bewietd by excising the regions
that do not separate. Hence there are 3 levels of ergodiersgst

1. Anosov flow

2. Anosov flow+ singularity set: For the Hamiltonian systems the genersé da
studied by A. Katok and J.-M. Strelcyn, and the billiardsechg Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Resi
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3. Hénon case: The first proof was given by M. Benedicks an@dtleson $7]. A
more readable proof is given in M. Benedicks and L.-S. Youlrig [

(based on Ya.B. Pesin’'s comments)

Remark A.3 Einstein didit?  The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einsteiif]. The total discussion is a one sentence remark.
Einstein being Einstein, this one sentence has been deenfiedesit to give him the
credit for being the pioneer of quantum chats,[18). We asked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Pais bath knew nothing about
the 1917 article. However, Theo Geisel has unearthed aereferthat shows that in early
20s Born did have a study group meeting in his house thatesiiRIbincaré’s Méchanique
Céleste [9]. In 1954 Fritz Reiche, who had previously followed Einstas professor of
physics in Wroclaw (??), pointed out to J.B. Keller that I8 geometrical semiclassical
quantization was anticipated by the long forgotten papekbiyinstein [L6]. In this way

an important paper written by the physicist who at the time tti& president of German
Physical Society, and the most famous scientist of his tzame to be referred to for the
first time by Keller [L9], 41 years later. But before lan Percival included the topimal
phase, and Wintgen and students recycled the Helium atoowikg Méchanique Céleste
was not enough to complete Bohr’s original program.

Remark A.4 Sources. The tale of appendik.4, aside from a few personal recollections,
is in large part lifted from Abraham Pais’ accounts of the éenof the old quantum
theory [, 7], as well as Jammer’s accounf[ In August 1994 Dieter Wintgen died in a
climbing accident in the Swiss Alps.
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Appendix B

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas Kuhn, The Structure of Scientific
Revolutions

way beyond what we can exhaustively cover. Here we recapitid few

THE SUBJECT OF LINEAR ALGEBRA generates innumerable tomes of its own, and is
essential concepts that ChaosBook relies on. The punclBigeg):

Hamilton-Cayley equatiofif (M — 4;1) = 0 associates with each distinct root
Ai of a matrixM a projection ontath vector subspace
M - 451
P = .
Ai — /lj

j#i
B.1 Linear algebra

The reader might prefer going straight to sé&:®.

Vector space. AsetV of element,y, z,... is called avector(or linear) space
over a fieldF if

(a) vector addition“+” is defined inV such thatV is an abelian group under
addition, with identity elemert;

(b) the set ilosedwith respect tascalar multiplicationand vector addition

ax+y) = ax+ay, abeF, XxyeV
(@a+b)x = ax+bx
albx) = (abx
1Ix = X, 0x =0. (B.1)
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Here the fieldF is eitherR, the field of reals numbers, @, the field of complex
numbers. Given a subs¥g c V, the set of all linear combinations of elements of
Vo, or thespanof Vy, is also a vector space.

Abasis. {e,..., ¥} s any linearly independent subset\6ivhose span i¥.
The number of basis elemerdss thedimensiorof the vector spac¥.

Dual space, dual basis. Under a general linear transformatigre GL(n, F), the
row of basis vectors transforms by right multiplicationed® = >, (g71)i, e,
and the column ofky’s transforms by left multiplication ag’ = gx. Under
left multiplication the column (row transposed) of basistees gy transforms
asg(j) = (g")j*ey, where thedual repg’ = (g™)7 is the transpose of the inverse
of g. This observation motivates introduction ofiaal representation spacé,
the space on whicBL(n, F) acts via the dual reg’.

Definition. If V is a vector representation space, thendhal spaceV is the set
of all linear forms onV over the fieldF.

If {elV), -, ¥} is a basis o/, thenV is spanned by théual basisiguy. - - -, &)},
the set ofd linear formsey, such that

K k
e - &9 =4,

where:ﬁ‘j< is the Kronecker symbokS‘j< = 1if j = k, and zero otherwise. The
components of dual representation space vegtar¥ will here be distinguished
by upper indices

0Ly YY) (B.2)
They transform undeBL(n, F) as
y® = @)%y (B.3)

ForGL(n, F) no complex conjugation is implied by thaotation; that interpretation
applies only to unitary subgroup$(n) c GL(n,C). g can be distinguished from
g" by meticulously keeping track of the relative ordering af thdices,

@2 - (@) Pa. (B.4)

Algebra. A set of r elementst, of a vector spac§™ forms an algebra if, in
addition to the vector addition and scalar multiplication,
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(a) the set ilosedwith respect to multiplicatioly - 7 — 7, so that for any
two elements,, tz € 7, the product, - tz also belongs tG™:

r-1
tetg= Y Top'ty,  Tap €C; (B.5)
y=0

(b) the multiplication operation idistributive

(ta+t5) t, = to-t,+t5-t,
to-(tg+1) = to-tg+ty-t,.

The set of numbers,z” are called thestructure constantsThey form a matrix
rep of the algebra,

(ta)s” = Tap” s (B.6)

whose dimension is the dimension of the algebra itself.

Depending on what further assumptions one makes on theptizdtion, one
obtains diferent types of algebras. For example, if the multiplicattomssociative

(ta-tg) -ty =ta-(ts- 1)),
the algebra isissociative Typical examples of products are thmtrix product
(to 1) = WM.  teeVeV, (®.7)
and theLie product
(e 19)5 = LA - R,  taeVeV (B.8)

which defines a.ie algebra

B.2 Eigenvalues and eigenvectors

Eigenvalues of adxd] matrix M are the roots of its characteristic polynomial

detM — A1) = ﬂ(ni —2)=0. (B.9)
Given a nonsingular matrid, with all 2; # O acting ond-dimensional vectors
x, we would like to determineigenvector®l) of M on whichM acts by scalar
multiplication by eigenvalug;

Me® = 20 (B.10)
If 4 # 4;, € and€eld) are linearly independent, so there are at mbslistinct
eigenvalues, which we assume have been computed by somednatid ordered

by their real parts, R& > ReAj, .
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If all eigenvalues are distinct &) ared linearly independent vectors which can
be used as a (non-orthogonal) basis for dsimensional vectox € RY

x=x e+ 3e? 4. 4 xgdD, (B.11)
From (B.10) it follows that matrix M — 4;1) annihilatese),
M - 40P = (3, - )&,

and the product of all such factors annihilates any vectothe matrixM satisfies
its characteristic equatior(9),

d

]—[(M —Al=o0. (B.12)

i=1

This humble fact has a name: the Hamilton-Cayley theoreme lfielete one term
from this product, we find that the remainder projectsnto the corresponding
eigenvector:

[ = ai2x = [ e - 2)xe?.

j# j#i

Dividing through by the {; — 1;) factors yields therojection operators

M - 4;1
p = = B.1
: 4 Ai — 4 ’ B.13)

which areorthogonalandcomplete

r
PiPj = 6jPj, (nosum onj), ZP‘ 1. (B.14)
-1

By (B.10) every column ofP; is proportional to a right eigenvectef), and its
every row to a left eigenvecta;). In general, neither set is orthogonal, but by the
idempotence conditiorB(14), they are mutually orthogonal,

&y e = col. (B.15)

The non-zero constantis convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan fiméents. It follows from the characteristic
equation B.12) that 4; is the eigenvalue dfl on P; subspace:

MP; = A4iP; (no sum on). (B.16)
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UsingM = M1 and completeness relatioB.(4) we can rewriteM as
M = 1Py + AoPs + -+ + AgPy. (B.17)

Any matrix functionf (M) takes the scalar valug.;) on theP; subspacef(M)P; =
f(4)P; , and is easily evaluated through gigectral decomposition

f(M) =" ()P (8.18)

This, of course, is the reason why anyone but a fool works imigtlucible reps:
they reduce matrix (AKA “operator”) evaluations to manigiihns with numbers.

Example B.1 Complex eigenvalues. As M has only real entries, it will in general
have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not
surprising, but also the corresponding eigenvectors can be either real or complex. All
coordinates used in defining the flow are real numbers, so what is the meaning of a
complex eigenvector?

If A, As1 €igenvalues that lie within a diagonal [2x 2] sub-block M’ ¢ M form
a complex conjugate pair, {Ax, Aks1} = {p + iw,u — iw}, the corresponding complex
eigenvectors can be replaced by their real and imaginary parts, {e®, ek} — (Ree®), Im ).
In this 2-d real representation the block M’ — N consists of the identity and the
generator of S ((2) rotations

(n —w)_ (1 O) (O 71)
N= (a) u ) - /J(O 1)7%1 o)
Trajectories of X = N X, x(t) = J'x(0), where

Jt=gN=gn (C(_)Swt —sin wt) i (B.19)
sinwt  coswt

spiral infout around (x,y) = (0,0), see figure 4.4, with the rotation period T and the

expansion/contraction multiplier along the eV eigendirection per a turn of the spiral;
[exercise B.1]

T=2r/w, Aradial = €', Aj= e (B.20)
We learn that the typical turnover time scale in the neighborhood of the equilibrium

(x,y) = (0,0) is of order ~ T (and not, let us say, 1000T, or 102T). A j multipliers give
us estimates of strange-set thickness.

While for a randomly constructed matrix all eigenvalues distinct with
probability 1, that is not true in presence of symmetries.at\dfan one say about
situation whered, eigenvalues are degeneralg, = Aj = Aiz1 = -+ = Ajyd,-1?
Hamilton-Cayley B.12) now takes form

r
]—[(M — D)% =0, Z do =d. (B.21)
a=1 «

We distinguish two cases:
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Second, as P; satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

@ - ().3)
feap &) = {(3 1),(1 -1),

with overall scale arbitrary. The matrix is not hermitian , so {€} do not form an orthogonal
basis. The left-right eigenvector dot products &y - €9, however, are orthonormal (B.15)
by inspection.

B.3 Stability of Hamiltonian flows

¢

(M.J. Feigenbaum and P. Cvitanovic)

The symplectic structure of Hamilton’s equations buys usmonore than the
incompressibility, or the phase space volume conservaiioded to in sect7.1
The evolution equations for any g dependent quantit®) = Q(q, p) are given by
(14.32.

In terms of the Poisson brackets, the time evolution eqndtoQ = Q(q, p)
is given by (4.39. We now recast the symplectic condition.11) in a form
convenient for using the symplectic constraintsNdnWriting x(t) = X' = [p’, q']
and the fundamental matrix and its inverse

[ 99 g

— J a -1_| o0 a
M—[a_g ﬁ] M -[5_% 5_%], (B.29)

aq ap g Ip

we can spell out the symplectic invariance conditi@riL():

ﬁq’k E)p{( a p’k 6q’k

a0, a9 ~ °

9G0P _ B IG _

apop;  opap;

9G0P PG o (B.30)
g dp; A Ap; i '

From (7.18) we obtain

og _ 9P op

_ S L W WL
ooy op’ op;  oqi’ op;  op’ od;  og

(B.31)

Taken together,R.31) and B.30) imply that the flow conserves the, g} Poisson
brackets

S, _ 0999 69 0q _
{gi.qj} = ap,aq,  op, o, =
{pi.pj} = 0, {pi,qj} = dij (B.32)
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i.e., the transformations induced by a Hamiltonian flowaeeonical preserving
the form of the equations of motion. The first two relations symmetric under
i, j interchange and yiel®(D — 1)/2 constraints each; the last relation yiel$
constraints. Hence only 2 — 2D(D - 1)/2 - D? = 2D? + D elements ofM
are linearly independent, as it behooves group elementsea$ytmplectic group
S 2D).

B.4 Monodromy matrix for Hamiltonian flows

©

(G. Tanner)

It is not the fundamental matrix of the flow, but theonodromymatrix, which
enters the trace formula. This matrix gives the time depecelef a displacement
perpendicular to the flow on the energy manifold. Indeed, veaver some
trivial parts in the fundamental matriM. An initial displacement in the direction
of the flow x = wVH(X) transfers according téx(t) = x(t)st with 6t time
independent. The projection of any displacementsgron VH(X) is constant,
i.e., VH(x(t))ox(t) = 6E. We get the equations of motion for the monodromy
matrix directly choosing a suitable local coordinate systen the orbitx(t) in
form of the (non singular) transformatidf(x(t)):

M(x(t)) = UT(x(t)) M(x(D)) U(X(0)) (B.33)
These lead to

M o= LM
C

with U (LU - V) (B.34)

Note that the properties a) — c) are only fulfilled fist and L, if U itself is
symplectic.

Choosingxg = VH(t)/[VH(t)]? and % as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix iB.83) at any timet. Setting
U= (. x5 X]..... X0 ,) gives

1 * = L% 0 * =* . *
010..0 00O0..0

M=l 0 = : L=|0 = , (B.35)
o m o |
0 = 0 =

The matrixm is now the monodromy matrix and the equation of motion aremgiv
by

m=Im. (B.36)
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The vectorsxy, ..., Xo4-2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the malti{x) can be written
down explicitly, i.e.,

X -y -Uwgd v/
- |y x —we we

U(t) = (X(s X1, Xg, XZ) “lu v x/q2 7y/q2 (837)
vo-uyet o xe

with x™ = (x.y;u.v) andq = |VH| = |[X. The matrixU is non singular and

symplectic at every phase space poifexcept the equilibrium points = 0). The
matrix elements fot are given B.39). One distinguishes 4 classes of eigenvalues
of m.

o stableor elliptic, if A = e andv €]0, 1[.

e marginal if A = £1.

e hyperbolic inverse hyperbolicif A = €4, A = —e*!; 1 > 0 is called the
Lyapunov exponent of the periodic orbit.

o loxodromig if A = 4% with uand¥ real. This is the most general case
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.en,is a [2x2] matrix, the eigenvalues are determined
by

_ Tr(m) + \/Tr(m)2 -4

P 5 , (B.38)
i.e., Tr(m) = 2 separates stable and unstable behavior.
Thel matrix elements for the local transformatidd.87) are
Ty = I = 6 = FE s )= )+ 200y~ ) + )
=(hxhy + hyhy)(hxx + By = huy = hw)]
T = q—lzl(hi 1)y + D) + (02 + ) (e + D)
=2(hxhy + hyhv)(hxu + hyy) = 2(hchy - huh\/)(hxy - hw)]
Tor = (0 + h))(huu + hw) = (0 + 1) (o + Ny
+2(hyhy - hyhv)(hxu - hyv) +2(hyhy + hyhu)(hxv + hyu)
T = T, (B.39)

with h;, hjj is the derivative of the HamiltoniaH with respect to the phase space
coordinates and = [VH[2.
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Exercises

B.1. Real representation of complex eigenvalues.
(Verification of exampld.1.) A, Ak+1 eigenvalues form
a complex conjugate paifdx, A1} = {p + iw, p — iw}.
Show that

(a) corresponding projection operators are complex
conjugates of each other,

P=Pc, P =P,

where we denotBy by P for notational brevity.
(b) P can be written as

1 )
P= E(RHQ)’

exerAppStab - 1feb2008.tex

whereR = Py + Py,1 andQ are matrices with re
elements.

©  (pn)-2 Q)

(d) -+ AkPy+ A Pys1+- - - complex eigenvalue pair
the spectral decompositioB (17) is now replace
by a real [2x2] matrix

ol )

or whatever is the clearest way to write this
representation.

(P. Cvitanovit



Appendix C

Implementing evolution

C.1 Koopmania

the language of functional analysis, by introducing Kle@pman operatqr
whose action on a state space funcggx) is to replace it by its downstream
value timet later,a(x) — a(x(t)) evaluated at the trajectory poirdt):

THE way in which time evolution acts on observables may be rephrased

K'a(x) = a(f'(x). (R

Observablea(x) has no explicit time dependence; all the time dependence
comes from its evaluation aft) rather than ak = x(0).

Suppose we are starting with an initial density of repres@r pointsp(x):
then the average value afx) evolves as

ot o L t
@ = o [ darioet) = o [ axrtand] oo,

An alternative point of view (analogous to the shift from tHeisenberg to the
Schrodinger picture in quantum mechanics) is to push dyeceraftects into the
density. In contrast to the Koopman operator which advativedrajectory by
timet, the Perron-Frobenius operatd?(10 depends on the trajectory point time
t in the past, so the Perron-Frobenius operator is the adjditite Koopman
operator

fM dx [K'a()] p(x) = fM dxax) [Lp()] . (C.2)

Checking this is an easy change of variables exercise. Fite fiimensional
deterministic invertible flows the Koopman operator1) is simply the inverse of
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the Perron-Frobenius operatd#(6), so in what follows we shall not distinguish
the two. However, for infinite dimensional flows contractiiogward in time and
for stochastic flows such inverses do not exist, and therengad to be more
careful.

The family of Koopman'’s operato{g(‘}ték forms a semigroup parameterized
by time

(@ k%=1
(b) K'K' =x™" v >0 (semigroup property) ,

with thegeneratorof the semigroup, the generator of infinitesimal time tratigshs
defined by

A = lim %(7(‘—1).

t—0*

(If the flow is finite-dimensional and invertibleAl is a generator of a group). The
explicit form of A follows from expanding dynamical evolution up to first order

asin @.5:

Aa) = fim < (a(f'(9) - a09) = v(xaa0o. €3

lim
t—0*

Of course, that is nothing but the definition of the time detiixe, so the equation
of motion fora(x) is

(g_t —y{) a(¥) = 0. (c4)

[appendix C.2]

The finite time Koopman operato€ (1) can be formally expressed by exponentiating
the time evolution generatofi as

K=" (C.5)

[exercise C.1]

The generatorA looks very much like the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothibgt a translation by
timex velocity:

eVira(x) = a(x + tv). (C.6)

As we will not need to implement a computational formula fengrale” in
what follows, we relegate making sense of such operatorpgeralixC.2. Here
we limit ourselves to a brief remark about the notion of “¢pem” of a linear
operator.
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[exercise 14.10]

[appendix C.2]
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The Koopman operatok acts multiplicatively in time, so it is reasonable to
suppose that there exist constaMs> 0, 8 > 0 such that|%?|| < Mée” for all
t > 0. What does that mean? The operator norm is define in the gainters
which we defined the matrix norms in sedt2 We are assuming that no value
of K'p(x) grows faster than exponentially for any choice of functigr), so that
the fastest possible growth can be bounded*hya reasonable expectation in the
light of the simplest example studied so far, the exact escaie (5.20. If that
is so, multiplyingK! by e we construct a new operater?%! = %) which
decays exponentially for large||e#)|| < M. We say thae ¥%! is an element
of aboundedsemigroup with generatafl — 1. Given this bound, it follows by
the Laplace transform

ﬁdte‘”‘K‘:ﬁ, Res> 3, (C.7)

that theresolventoperator ¢ — A)~! is bounded (“resolvent= able to cause
separation into constituents)

2] < [ aremer = 2

If one is interested in the spectrum %f, as we will be, the resolvent operator
is a natural object to study. The main lesson of this briefleass that for the
continuous time flows the Laplace transform is the tool thatdgs down the
generator in 14.29 into the resolvent form1(4.31) and enables us to study its
spectrum.

[section J.2]

C.2 Implementing evolution
(R. Artuso and P. Cvitanovit)

,
J We now come back to the semigroup of operatifs We have introduced
the generator of the semigroup4(27) as

If we now take the derivative at arbitrary times we get

(Sxe)n - im w(17(9) = (F'(x)

-0 n

W) 720

= (K'w) (9

%=f1(x)
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which can be formally integrated like an ordinaryfdrential equation yielding [exercise C.1]

K= A, (c.8)

This guarantees that the Laplace transform manipulatioesdt.14.5are correct.

Though the formal expression of the semigro@pgj is quite simple one has to
take care in implementing its action. If we express the egptal through the

power series

N Nl
K = Eﬂ s (C.9)
o ©

we encounter the problem that the infinitesimal generatdr2() contains non-
commuting pieces, i.e., there arg¢ combinations for which the commutator does
not satisfy

7}
6_xi’vj(x)] =0.

To derive a more useful representation, we follow the sfsatesed for finite-
dimensional matrix operators in sects2 and4.3and use the semigroup property
to write

t/or

x =[] x"
m=1

as the starting point for a discretized approximation tathinuous time dynamics,
with time stepsr. Omitting terms from the second order onwards in the expansi
of K7 yields an error of orde®(57%). This might be acceptable if the time step
ot is suficiently small. In practice we write the Euler product

t/oT
Kt = ﬂ (1 + 6t Agm) + O©T?) (C.10)
m=1

where

o T a_l//
(Amy) () = vi(f™7(x)) 0% 3= fmoe(x)

As far as thex dependence is concernet™ acts as

X1 X1

gl L ' } (c.11)
% % +6Tvi(X)
Xd Xd

appendMeasure - 17nov2004.tex



APPENDIX C. IMPLEMENTING EVOLUTION 667 EXERCISES 668

Note that the billiard flow§.11) is an example of such symplectic integrator. In
that case the free flight is interrupted by instantaneoubreféctions, and can be
integrated out.

[exercise 2.6]
We see that the product forre (10) of the operator is nothing else but a prescription
for finite time step integration of the equations of motion this case the simplest
Euler type integrator which advances the trajectorysbyvelocity at each time
step.
Commentary

C.2.1 A symplectic integrator
Remark C.1 Koopman operators. The “Heisenberg picture” in dynamical systems

theory has been introduced by Koopman and Von Neumana][ see also ref.q].
Inspired by the contemporary advances in quantum mechaizpman [] observed

in 1931 thatk! is unitary onL?(u) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operator@kh/h) —the kernel of£'(y, x) introduced

in (14.16 (see also secil5.9 is the analogue of the Green'’s function discussed here in
[exercise C.2] chapter30. The relation between the spectrum of the Koopman operairckassical
ergodicity was formalized by von Neuman#].[ We shall not use Hilbert spaces here

§
J The procedure we described above is only a starting poimbéwe sophisticated
approximations. As an example on how to get a sharper bourtdeoerror term
consider the Hamiltonian flowA = 8+ C, 8 = p.z,%, C= —6iV(q),il. Clearly
the potential and the kinetic parts do not commute. We maksesef the formal
solution (C.10) by splitting it into infinitesimal steps and keeping ternsta 572

in
and the operators that we shall stugjl not be unitary. For a discussion of the relation
R 1 s between the Perron-Frobenius operators and the Koopmaatopefor finite dimensional
KT = KT+ ﬂ(&) [B+2C,[B,Cl] +---, (C.12) deterministic invertible flows, infinite dimensional comtting flows, and stochastic flows,
see Lasota-Mackey] and Gaspardq).
where

- o Remark C.2 Symplectic integration. The reviews [] and [5] offer a good starting
KO = @30 B 3078 (C.13) point for exploring the symplectic integrators literatuF®r a higher order integrators of
type (C.13, checkref. 3.

The approximate infinitesimal Liouville operatd?‘” is of the form that now
generates evolution as a sequence of mappings induced ), a free flight by
1678, scattering byraV(q'), followed again by:s78 free flight:

e%&s{‘l} . {q’}z{q—%’p}
p o P

gc[d] [ _ q Exercises
P p’ P+ oroVv(d)
155 (O q” q- %rpn C.1. Exponential form of semigroup elements. ) Check (C.12 are not vanishing by showing that
ez . (= p (C.14) that the Koopman operator and the evolution generator
P P commute, K'A = AK", by considering the action of [8,C] = _p(vui - Vfﬁ) .
both operators on an arbitrary state space funat{eh ap aq

Collecting the terms we obtain an integration rule for thjsetof symplectic flow

which is better than the straight Euler integratidh 1(1) as it is accurate up to C.3. Symplectic leapfrog integrator. = Implement (.13

for 2-dimensional Hamiltonian flows; compare it v

orderér®: Runge-Kutta integrator by integrating trajectorie
) C.2. Non-commutativity. ~ Check that the commutators in some (chaotic) Hamiltonian flow.
Onhet = On—0T pn—@r?v(qn—&pn/Z)
Prir = Pn+ 679V (On — 67Pn/2) (C.15)
References

The fundamental matrix of one integration step is given by
[C.1] B.O. KoopmanProc. Nat. Acad. Sci. USA7, 315 (1931).

M = 1 -67/2 1 0 1 -61/2 C.16
“lo 1 J\eov 2)lo 1 | (C.16) [C.2] J.von Neumanmnn. Math.33, 587 (1932).
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Appendix D

Symbolic dynamics techniques

prime factorization for dynamical itineraries of se€l.2 illustrates the
sense in which prime cycles are “prime” - the product stnectof zeta
functions is a consequence of the unique factorizationgqatgf symbol sequences.

THE KNEADING THEORY for unimodal mappings is developed in sédtl. The

D.1 Topological zeta functions for infinite subshifts
(P. Dahlgvist)

)

J The Markov graph methods outlined in chapi€rare well suited for
symbolic dynamics of finite subshift type. A sequence of wlefined rules leads
to the answer, the topological zeta function, which turnistowe a polynomial.
For infinite subshifts one would have to go through an infis#équence of graph
constructions and it is of course venfiiiult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the gaalbe reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta funat for unimodal
maps with one external paramefgi(x) = Ag(X). As usual, symbolic dynamics is
introduced by mapping a time series xi_1% X+1 . .. onto a sequence of symbols
...S-1SS+1... where

§=0 % <X
=C X=X
s=1 x>X (D.1)

andx is the critical point of the map (i.e., maximumg@j In addition to the usual
binary alphabet we have added a sym@dior the critical point. The kneading
sequencé, is the itinerary of the critical point. The crucial obsereatis that no
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1(©) Lop@/(1-2) 1(C) Zon@/(1-2)
ic 1001C

101C 10011C

101110T 1001C

H®(1) [l -2") 10011@

1011C 100C

101111T 10001@

101° (1-22)/(1+2) || 1000C

1011111C 10001C

10111 1000C

1011C 10000C

10110C 10000

10C (1-z2-2) 10000@

1001@ 10° (1-29/(1-2
10010C

Table D.1: All ordered kneading sequences up to length seven, as webras longer kneading
sequences. Harmonic extensidf(1) is defined below.

periodic orbit can have a topological coordinate (see $&dt.1) beyond that of
the kneading sequence. The kneading sequence thus inderdes in the list of
periodic orbits (ordered according to maximal topologicabrdinate), cycles up
to this limit are allowed, all beyond are pruned. All unimbaeps (obeying some
further constraints) with the same kneading sequence taus the same set of
periodic orbitsand the same topological zeta function. fbpelogical coordinate
of the kneading sequence increases with increasing

The kneading sequence can be of one of three types

1. It maps to the critical point again, aftariterations. If so, we adopt the
convention to terminate the kneading sequence wi@ and refer to the
kneading sequence as finite.

2. Preperiodic, i.e., itis infinite but with a periodic tail.

3. Aperiodic.
As an archetype unimodal map we will choose tivet map

AX x€[0,1/2]

XHf(X):{A(l—x) xe @21 (0-2)

where the parametex € (1,2]. The topological entropy ib = logA. This
follows from the fact any trajectory of the map is boundecs &scape rate is
strictly zero, and so the dynamical zeta function

1760 = [](1=55) = [1(2-(3)") = veepte)
P p

has its leading zero at= 1.
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The set of periodic points of the tent map is countable. A eqnence of
this fact is that the set of parameter values for which theallivgy sequence is
periodic or preperiodic are countable and thus of measureare consequently
the kneading sequence is aperiodic for almostAallFor general unimodal maps
the corresponding statement is that the kneading sequspeiiodic for almost
all topological entropies.

For a given periodic kneading sequence of peripd , = PC =
s1% ... S5-1C there is a simple expansion for the topological zeta functithen
the expanded zeta function is a polynomial of degree

n-1 i
Vi@ = [ |- =1-2 ) az, a=]]C1° (0-3)
p i=0 j=1

andag = 1.

Aperiodic and preperiodic kneading sequences are acabtiotedy simply
replacingn by co.

Example. Consider as an example the kneading sequénce: 10C. From
(D.3) we get the topological zeta functiondop(?d = (1-2)(1-z- 7), see
tableD.1. This can also be realized by redefining the alphabet. Theforlidden
subsequence is 100. All allowed periodic orbits, exd&ptan can be built from
a alphabet with letters 18nd 1 We write this alphabet &40, 1; 0}, yielding the
topological zeta function /Liop(2) = (1 - 2)(1 - z— Z2). The leading zero is the
inverse golden meam = (V5 - 1)/2.

Example. As another example we consider the preperiodic kneadugesee
Ka = 101, From 0.3) we get the topological zeta functioriélop(2) = (1-2)(1-
27°)/(1 + 2), see tabléD.1. This can again be realized by redefining the alphabet.
There are now an infinite number of forbidden subsequencasmely 102"0
wheren > 0. These pruning rules are respected by the alphgigt; 1,0},
yielding the topological zeta function above. The pole ia teta functior;’gj},(z)
is a consequence of the infinite alphabet.

An important consequence db (3) is that the sequende;} has a periodic tail
if and only if the kneading sequence has one (however, theziogh may difer
by a factor of two). We know already that the kneading seceiémeaperiodic for
almost allA.

The analytic structure of the function represented by tfiaite seriesy’ &z
with unity as radius of convergence, depends on whetheathefta;} is periodic
or not. If the period of the tail it we can write

a@
1-N

Yéop@ = p@ + @1+ 2" +ZN..) = p@) +

for some polynomial$(z) andqg(2). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. Arriapée sequence of
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codficients would formally correspond to infinifé and it is natural to assume
that the singularities will fill the unit circle. There is iadd a theorem ensuring
that this is the case6[], provided thea’s can only take on a finite number of
values. The unit circle becomesatural boundary already apparent in a finite
polynomial approximations to the topological zeta funatias in figurel3.4 A
function with a natural boundary lacks an analytic conttimraoutside it.

To conclude: The topological zeta functiofib, for unimodal maps has the
unit circle as a natural boundary for almost all topologieatropies and for the
tent map D.2), for aimost allA.

Let us now focus on the relation between the analytic streadfithe topolo-
gical zeta function and the number of periodic orbits, oneail3.6), the number
N, of fixed points off"(x). The trace formula is (see setB.4)

g

Ny =trT" = igg dzz"
" dz

1
i 109 £iop

wherey, is a (circular) contour encircling the origin= 0 in clockwise direction.
Residue calculus turns this into a sum over zexmnd poles, of g;,%)

. N 1 ,d 1
Ny = Z 7" - Z 20"+ﬁf}idzz”d—zloggmFI

20:r<|z0|<R Zpir<|zpl<R

and a contribution from a large circlg. For meromorphic topological zeta func-
tions one may leR — co with vanishing contribution fromyg, andN, will be a
sum of exponentials.

The leading zero is associated with the topological entrapydiscussed in
chapterl3.

We have also seen that for preperiodic kneading there wldbes on the unit
circle.

To appreciate the role of natural boundaries we will considévery) special
example. Cascades of period doublings is a central conoefié description of
unimodal maps. This motivates a close study of the function

=@ =[]a-2) . (D.4)
n=0

This function will appear again when we derie. ).

The expansion oE(z) begins a€(2) = 1-z- 2+ 2 -2 +2.... The radius
of convergence is obviously unity. The simple rule govegrtime expansion will
effectively prohibit any periodicity among the déeients making the unit circle
a natural boundary.
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It is easy to see th&(z) = 0 if z = exp(2rm/2") for any integerm andn.
(Strictly speaking we mean tha(z) — 0 whenz — exp(2rm/2") from inside).
Consequently, zeros are dense on the unit circle. One carslatsy that singular
points are dense on the unit circle, for instafi(g)| — co whenz — exp(2rm/3")
for any integem andn.

As an example, the topological zeta function at the accutiounlgpoint of
the first Feigenbaum cascadelfgh(2) = (1 - 22(2. ThenN, = 2*1if n =
2, otherwiseN, = 0. The growth rate in the number of cycles is anything but
exponential. It is clear thafl, cannot be a sum of exponentials, the contgiir
cannot be pushed away to infinitR is restricted toR < 1 andN, is entirely
determined b)JyR which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some speages and we
know that the unit circle is a natural boundary for almostAall But how does
it look out there in the complex plane for some typical parf@mealues? To
explore that we will imagine a journey from the origir= 0 out towards the unit
circle. While traveling we let the paramet&rchange slowly. The trip will have a
distinct science fiction flavor. The first zero we encountehésone connected to
the topological entropy. Obviously it moves smoothly aray. When we move
outward to the unit circle we encounter zeros in increasieigsiies. The closer
to the unit circle they are, the wilder and stranger they molMeey move from
and back to the horizon, where they are created and destthyedgh bizarre
bifurcations. For some special values of the parametenttieivcle suddenly gets
transparent and and we get (infinitely) short glimpses ofteerovorld beyond the
horizon.

We end this section by deriving ed3.6) and ©.6). The impenetrable prose
is hopefully explained by the accompanying tables.

We know one thing from chaptéi0, namely for that finite kneading sequence
of lengthn the topological polynomial is of degree The graph contains a node
which is connected to itself only via the symbol 0. This imeglithat a factor
(1 - 2) may be factored out antbp(2) = (1 -2 i":‘ol aZ. The problem is to find
the codficientsg;.

periodic orbits| finite kneading sequences
P1=A%(P)
pPC
PO
POPC
POP1
POP1POPC
l l
H>(P) H*(P)

Table D.2: Relation between periodic orbits and finite kneading sege®im a harmonic cascade.
The stringP is assumed to contain an odd number of 1's.

The ordered list of (finite) kneading sequences tableand the ordered list of
periodic orbits (on maximal form) are intimately related tableD.2 we indicate
how they are nested during a period doubling cascade. Eweitg fineading

chaptefdahlqvist.tex 30nov2001.tex



APPENDIX D. SYMBOLIC DYNAMICS TECHNIQUES 675

sequenc®C is bracketed by two periodic orbitB1 andP0. We haveP1 < PC <

PO if P contains an odd number of 1's, aid < PC < P1 otherwise. From
now on we will assume tha® contains an odd number of 1's. The other case
can be worked out in complete analogy. The first and seconudric of PC

are displayed in tabl®.2. The periodic orbifP1 (and the corresponding infinite
kneading sequence) is sometimes referred to as the antharextension oPC
(denotedA™(P)) and the accumulation point of the cascade is called thadraic
extension ofPC [14] (denotedH™(P)).

A central result is the fact that a period doubling cascad®@it not interfered
by any other sequence. Another way to express this is thaeading sequence
PC and its harmonic are adjacent in the list of kneading seqsetacany order.

1(C) 4iop@/(1-2)
P, = 100C 1-z2-2-2

H®(Py) = 10001001100.. |1-z-Z-2-2+2+2+7-7...
P’ = 1000LC 1-z2-Z-2-2+7

A®(P;) = 1000110001.. |[1-z-ZP-Z-Z+2-2-7-7
P, = 100@C 1-z2-2-2-72

Table D.3: Example of a step in the iterative construction of the liskiéading sequencéxC.

TableD.3 illustrates another central result in the combinatorickredading
sequences. We suppose tiaC and P,C are neighbors in the list of order 5
(meaning that the shortest finite kneading sequéti€ebetweenP;C andP,C is
longer than 5.) The important result is tH(t (of lengthn” = 6) has to coincide
with the firstr’ — 1 letters of bothH*(P1) and A*(P2). This is exemplified in
the left column of tableD.3. This fact makes it possible to generate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation pditft (P;) is
GHRE@) . (05
and just beforéd™(P5)
pr@/(1-2) . (D.6)

A short calculation shows that this is exactly what one walithin by applying
(D.3) to the antiharmonic and harmonic extensions directlyyidex that it applies
to {51(2) andZ5 (). This is the key observation.

Recall now the product representation of the zeta funcion = [TpX -
Z%). We will now make use of the fact that the zeta function aisged with
P’C is a polynomial of orden’. There is no periodic orbit of length shorter than
n + 1 betweerH*(P;) and A*(Py). It thus follows that the cd&cients of this
polynomial coincides with those ob(5) and O.6), see TableD.3. We can thus
conclude that our rule can be applied directlyPte.

This can be used as an induction step in proving that the arebe applied
to every finite and infinite kneading sequences.
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Remark D.1 How to prove things. The explicit relation between the kneading sequence
and the cofficients of the topological zeta function is not commonly seehe literature.

The result can proven by combining some theorems of MilndrEmurston [3. That
approach is hardly instructive in the present context. Qarivdtion was inspired by
Metropolis, Stein and Stein classical papér][ For further detail, consultqd].

D.1.1 Periodic orbits of unimodal maps

A periodic point(or acycle point) x; belonging to a cycle of period is a real
solution of

f(x) = f(FC.. f00) .. ) =%, i=012..,n-1 (D.7)

Thenth iterate of a unimodal map crosses the diagonal at nidsn2s. Similarly,

the backward and the forward Smale horseshoes interseabsitZntimes, and

therefore there will be 2or fewer periodic points of length. A cycle of length

n corresponds to an infinite repetition of a lengtlsymbol string, customarily
indicated by a line over the string:

S=(s1%%..- %) = 5%S%.. &

If 515, .- 5 is the symbol string associated with, its cyclic permutation

Sl 1. .- 1 corresponds to the poink_; in the same cycle. A cycle

is calledprimeif its itinerary S cannot be written as a repetition of a shorter block
S

Each cycle yields rational values ofy. The repeating stringi, S, ... S
contains an odd number “1"s, the string of well ordered sytsibgws . . . w, has
to be of the double length before it repeats itself. The valisea geometrical sum
which we can write as the finite sum

22n 2n
NEEENSE 22n—_1ZW1/2t
=1

Using this we can calculate th€S) for all short cycles.

Here we give explicit formulas for the topological coordmaf a periodic
point, given its itinerary. For the purpose of what followsis convenient to
compactify the itineraries by replacing the binary alpliage= {0, 1} by the
infinite alphabet

{a1, 8, 83,84, --; 0} = {1,10,100 100Q. .. ; 0} . (D.8)

In this notation the itinerar = aajad - - - and the corresponding topological
coordinate ?7?) are related by(S) = .1011k0' - - .. For example:

S = 11101110100100Q. = aapaiaiaazas...
(S) .101101001110000. = .1%'0%120'110%180%. ..
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Cycle points whose itineraries startwith =w, = ... =w; =0, wj;1 = 1 rema_in
on the left branch of the tent map fioterations, and satisfy(0. .. 0S) = y(S)/2'.

A periodic point(or acyclepoint) x belonging to a cycle of periodis a real
solution of

04) = F(FC.. f(x)..)) =%, i=012....n—1. (D.9)

The nth iterate of a unimodal map has at mo$t Ronotone segments, and
therefore there will be 2or fewer periodic points of length. A periodic orbit
of length n corresponds to an infinite repetition of a lengthsymbol string,
customarily indicated by a line over the string:

S=(s1%8-- )T =% &

As all itineraries are infinite, we shall adopt conventioatth finite string itinerary
S = 519%... S stands for infinite repetition of a finite block, and routinel
omit the overline. IfS;S;. .., is the symbol string associated wikh, its cyclic
permutatior§cSa1 - .- 51 - - - S1 corresponds to the poing_; in the same cycle.
A periodic orbitp is calledprimeif its itinerary S cannot be written as a repetition
of a shorter blocks’.

Periodic points correspond to rational valuegpbut we have to distinguish
evenandodd cycles. The even (odd) cycles contain even (odd) numbey iof
the repeating block, with periodic points given by

521101 ... 1¢ even

N o . (D.10)
g (L+20%x . 100 ---19) odd

y(aaj-~-akaf)={

wheren =i+ j+---+k+ (is the cycle period. The maximal value cycle point
is given by the cyclic permutation & with the largesta; as the first symbol,

followed by the smallest availablg as the next symbol, and so on. For example:

1) = y(@) = .1010L.. = .10 = 2/3
(10) = y(a) = .1%0%... = 1100 = 4/5
#(100) = y(as) = .1%0%... = 111000 = 8/9
7(101) = y(apa) = .120'... = 110 = 6/7

An example of a cycle where only the third symbol determihesmhaximal value
cycle point is

$(1101110)= y(aparapayay) = .11011010010016 100/129.

Maximal values of all cycles up to length 5 are given in table!
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D.2 Prime factorization for dynamical itineraries

s
J The Mdbius function is not only a number-theoretic funitibut can be
used to manipulate ordered sets of noncommuting objectsagisymbol strings.
LetP = {p1, p2, ps, - - -} be an ordered set piimestrings, and

N == {ppns Bl

j €N, k € Z,, be the set of all strings obtained by the ordered concatenation of
the “primes” p;. By construction, every string has a unique prime factorization.
We say that a string has a divisgiif it containsd as a substring, and define the
string divisionn/d asn with the substringd deleted. Now we can do things like
this: definingt, := t',‘,llt';z2 ti;,'J we can write the inverse dynamical zeta function
(18.2 as

[T@-t0) = > unta,
p n

and, if we care (we do in the case of the Riemann zeta functibe)dynamical
zeta function as .

1
]] " Zﬂ:tn (D.11)

A striking aspect of this formula is its resemblance to thetdezation of
natural numbers into primes: the relation of the cycle egman(.11) to the
product over prime cycles is analogous to the Riemann zetrdiee17.10
represented as a sum over natural numbers vs. its Eulerginmpresentation.

We now implement this factorization explicitly by decompagsrecursively
binary strings into ordered concatenations of prime s&ringhere are 2 strings
of length 1, both prime:p; = 0, p, = 1. There are 4 strings of length 2:
00, 01, 11, 10. The first three are ordered concatenationgiwfes: 00 =
pi, 01 = pipp, 11 = pg; by ordered concatenations we mean thap, is
legal, butpyp; is not. The remaining string is the only prime of lengthp3, =
10. Proceeding by discarding the strings which are coneéiters of shorter
primesp‘;1 pgz e p'j(', with primes lexically ordered, we generate the standatd li
of primes, in agreement with tabl.1: 0, 1, 10, 101, 100, 1000, 1001, 1011,
10000, 10001, 10010, 10011, 10110, 10111, 100000, 100@@D1D, 100011,
100110, 100111, 101100, 101110, 101111, This factorization is illustrated in
tableD.4.
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factors | string || factors | string ||_factors | string |—=—re string

L 0 p? 0000 pi 00000 |0 =—G5701
P2 1 p¥p | 0002 oooot || FiBs | 0101
%pz 0011 p%p2 ooon1 || P3PePe | O
2

P2 00 plpz 0111 plpZ 00111 | 2° | 0101
P1P2 0Ll pa 1111 || PPz | 01111 pipe | 01000
P 11 r:éps 0010 pg 11111 pops | 11000
Ps 10 || pypops | 0110|| PjPs | 00010 pip; | 01001
P3ps 1110 || P2peps | 00110 pep; | 11001

000 2 1010 p1p§p3 01110 pips | 01011

P%PZ 001 |l pyp, | 0100| plps | 11110 Peps | 11011
plpz 011 || pops 1100 || pip2 | 01010]|| Po 10000
3 111 || pips 0101 || pyp? 11010 Po 10001
p1p3 010 || p2ps 1101 p§p4 00100 || P11 10010
P23 110 || ps 1000 p1p2ps | 01100 P12 10011
P4 100 P7 1001 p2p4 11100 P13 10110
Ps 101 || pg 1011 p§p4 10100 | P4 10111

Table D.4: Factorization of all periodic points strings up to length riioi ordered
concatenationg'fp‘f--~p'§“ of prime stringsp; = 0, p» = 1, ps = 10, ps = 100, ...
, Pa= 10111.

D.2.1 Prime factorization for spectral determinants

J Following sectD.2, the spectral determinant cycle expansions is obtained
by expanding= as a multinomial in prime cycle weights
_ k _
F= ]_l Z Cpktp = Z Tpilpgzp?f ) (D.12)

p k=0 kikoks=0

where the sum goes over all pseudocycles. In the above wedefined

C

—T

I
N

il (D.13)

Tplp2pe =
[exercise 17.10]
A striking aspect of the spectral determinant cycle expanisiits resemblance
to the factorization of natural numbers into primes: as weealy noted in secb.2,
the relation of the cycle expansioB.(L2) to the product formulal(7.9 is analogous
to the Riemann zeta represented as a sum over natural nuwgeriss Euler
product representation.

This is somewhat unexpected, as the cycle weights facteszetly with
respect tor repetitions of a prime cycletpp , = t, but only approximately
(shadowing with respect to subdividing a string into prime substringsp, ~

tPltP2~

The codficientsC y have a simple form only in & given by the Euler formula
(21.34. In higher dimension€ x can be evaluated by expanding7(9, F(2) =

chaptefappendSymb.tex 23mar98.tex

APPENDIX D. SYMBOLIC DYNAMICS TECHNIQUES 680

Hp Fp, where

SRR
Fp=1- — |+ = — ...
DR

Expanding and recollecting terms, and suppressing thyele label for the moment,
we obtain

Fp

DGt Ck=(-)a/Dx,
r=1
k

k
Dy = ]_[d,:ﬂ]_[(l ) (D.14)

r=1 a=1r=1

where evaluation ofy requires a certain amount of not too luminous algebra:

C =1
¢ =1
1
¢ = 5(—-dl) [ﬂ(1+ua)—]—[(1 ua)]
1 (dyd
C3 = 3—(%+2d1d2—3d3)
1( 8
= 6[]—[(1+2ua+2ua+ua)
a=1

d d
+2 ]_[(1— Ua — U2+ 1) — 3]_[(1 - ug)]
a=1 a=1

etc. For example, for a general 2-dimensional map we have

1. W+Up, Ula(l+Uu)(d+up)+ud+us
Fp=l-—t+ 2 - t
D1 D2 Ds

..(D.15)

We discuss the convergence of such cycle expansions inl gect.

With 7 ot .. defined as above, the prime factorization of symbol striegs i

unique in the sense thasch symbol string can be written as a unique concatenation
of prime stringsup to a convention on ordering of primes. This factorizai®a
nontrivial example of the utility of generalized Mobiuversion, sectD.2.

How is the factorization of secD.2 used in practice? Suppose we have
computed (or perhaps even measured in an experiment) aleprycles up to
lengthn, i.e., we have a list ofy's and the corresponding fundamental matrix
eigenvalues\p1, Ap2,... Apg. Acycle expansion of the Selberg product is obtained
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by generating all strings in order of increasing lengtllowed by the symbolic
dynamics and constructing the multinomial

F= Z . (D.16)

wheren = 515, - - - 5}, § range over the alphabet, in the present ¢@s. Factorizing
every stringn = $1S---§j = p'f p'gzu-p‘j“ as in tableD.4, and substituting
rpil p... we obtain a multinomial approximation 2 For examplerp01001010101=
7001001010101 = TooTo:3: @NT3, Tgp2 @re known functions of the corresponding
cycle eigenvalues. The zeros Bfcan now be easily determined by standard
numerical methods. The fact that as far as the symbolic digsais concerned,
the cycle expansion of a Selberg product is simply an avesageall symbolic

strings makes Selberg products rather pretty.

To be more explicit, we illustrate the above by expressingatyi strings as
concatenations of prime factors. We start by compubihgthe number of terms
in the expansion[.12) of the total cycle lengtim. SettingCpt§ = 2%~ in (D.12),
we obtain

So the generating function for the number of terms in the Sgliproduct is the
topological zeta function. For the complete binary dynamie haveN, = 2"
contributing terms of length:

0

1 1 .
Stop = 41_[‘)(1_2%) :_1_222222n

n=0

Hence the number of distinct terms in the expansibriLp) is the same as the
number of binary strings, and conversely, the set of bin&ings of lengthn
sufices to label all terms of the total cycle lengtin the expansion§.12).
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Appendix E
Counting itineraries
E.1 Counting curvatures

NE coNseQUENCE Of the finiteness of topological polynomials is that the citttions
to curvatures at every order are even in number, half wititipesand half

with negative sign. For instance, for complete binary ledue(18.7), (5%
Cs = —looo1 — too11 — to111 — totorts
+totoor + totors + toosts + toasts. (E.1)

We see that 2terms contribute ta;, and exactly half of them appear with a
negative sign - hence if all binary strings are admissithiis, term vanishes in the

counting expression.
g exp [exercise E.2]

Such counting rules arise from the identity

B 1-tp2
l:[(1+tp)—l:[ T (E2)

Substitutingtp, = 2" and using {3.19 we obtain for unrestricted symbol dynamics
with N letters

ﬁ(1+ zv) = 11__’:1222 =1+Nz+ izk(Nk_ N<L)
P k=2

The 2" codfticient in the above expansion is the number of terms coninipud
Cn curvature, so we find that for a complete symbolic dynamidsl efymbols and
n > 1, the number of terms contributing ¢g is (N — 1)N*1 (of which half carry
a minus sign). )
[exercise E.4]
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We find that for complete symbolic dynamics Mfsymbols anch > 1, the
number of terms contributing ta, is (N — 1)N™1. So, superficially, not much
is gained by going from periodic orbits trace sums whichNfétontributions of
n to the curvature expansions witl(1 — 1/N). However, the point is not the

number of the terms, but the cancelations between them.

Exercises

E.1. Lefschetz zeta function. Elucidate the relation
betveen the topological zeta function and the Lefschetz
zeta function.

E.2. Counting the 3-disk pinball counterterms.  Verify
that the number of terms in the 3-disk pinball curvature
expansion18.39 is given by

l—[(1+tp) =

p

1-32-28

This means that, for example; has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(18.39.

E.3. Cycle expansion denominators. Prove that the
denominator oy is indeedDy, as asserted).14).

E.4. Counting subsets of cycles. The techniques
developed above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynamical
system with a complete binary tree, a repeller map®)
with two straight branches, which we label 0 and 1.
Every cycle weight for such map factorizes, with a factor
to for each 0, and factot; for each 1 in its symbol
string. The transition matrix trace4 .5 collapse to
tr(TK) = (to + t1)¥, and V¢ is simply

l_[(l—tp)=l—t0—11 (E.4)

p

exerAppCount - 210ct98.tex

1+tp
1-32- 226—1 32+ 2P 24(6+122+2£ll 1-to-ty 1

1-32- -
= 1+32+28+62 + 128 + 208 + 487 + 842 + 184° HE.3) l+to+ti+ ),

Substituting into the identity
1-tp
H(l+tp) = ]_[ -1,

p p

we obtain

-t 2tot
= $_l+to+tl+%
—to-t

n-.

1
) 2 (k 1)t0t"(1*§ 5

n=2 k=

Hence forn > 2 the number of terms in the expansion
?! with k 0's andn — k 1's in their symbol sequences
is Z(Ejf) This is the degeneracy of distinct cycle
eigenvalues in fig.?!; for systems with non-uniform
hyperbolicity this degeneracy is lifted (see fig. ?!).

In order to count the number of prime cycles in each
such subset we denote wit,x (n = 1,2,...; k =
{0,1forn = 1; k = 1,...,n—-1forn > 2) the
number of primen-cycles whose labels contakzeros,
use binomial string counting and Mdbius inversion and
obtain

Mo = M1z =1

> (m)(k/m) n>2k=1...,n-

m|

NMnk

n
k

where the sum is over aih which divide botn andk.

Appendix F
Finding cycles

(C. Chandre)

F.1 Newton-Raphson method

F.1.1 Contraction rate

CQNSIDER a d-pivenstonaL Map X' = f(X) with an unstable fixed point.. The
Newton-Raphson algorithm is obtained by iterating theofelhg map
=909 = x= (I - () - X).
The linearization ofy nearx, leads to
X+ € =X+ €= (I) - D) + I()e - X — ) + O(llel?),
wheree = x — x,. Therefore,

X =X, = O((x— x*)z).

After n steps and if the initial guess is close tox., the error decreases
super-exponentially

9"(%0) - x. = O((0 - x)7).
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F.1.2 Computation of the inverse

The Newton-Raphson method for findimgcycles of d-dimensional mappings
using the multi-shooting method reduces to the followingatimpn

Figure F.1: lllustration of the optimal Poincaré
surface. The original surfacg = 0 yields a large ~ °°f
1 _Df(xn) 01 Fy distancex — f(x) for the Newton iteration. A much tr ‘ ‘ ‘ ‘ ‘
-Df(xq) 1 o2 F> better choice iy = 0.7. A8 T oa o5 o8 1 12
1 AP Bl U (F1)
~Df(x-1) 1 on Fn vi = 1+ ya(ui — 1). The choice of andg is such thatyi| < 1. It is easy to see
that if Refsj) < 1 one has to choosg = 1, and if Refj) > 1, = -1. If 1is
whereDf(X) is the [d x d] Jacobian matrix of the map evaluated at the paint chosen such that
andém = X, — Xm andFpy = Xy — f(Xm-1) ared-dimensional vectors. By some
starightforward algebra, the vectaig are expressed as functions of the vectors 2Re) - 1]
Fm: O<y< min =7 _—
i=l..d |y — 12
m n
Sm=— BumiFi - Brmt (1- B, )—1 BinFi. (F2) e}ll the e}genvalues oy have modulus less that one. The F:ontract_lon rate at the
" ; " ™ " ; " fixed point for the mam is then max|1 + ye (u — 1)l. We notice that if Re() =

1, itis not possible to stabilize, by the set of matricegC.
From the construction o€, we see that®choices of matrices are possible. For
example, for 2-dimensional systems, these matrices are

e<{loa) (0 Moo )}

For 2-dimensional dissipative maps, the eigenvalueshg&(u;)Reu,) < detDf <
1. The case (Rgg) > 1.Refrz) > 1) which is stabilized by ) has to be

s
J Consider a-dimensional map’ = f(x) with an unstable fixed point.. discarded. The minimal set is reduced to three matrices.
The transformed map is the following one:

form=1,...,n, wherefm = Df(Xm)Df(Xm-1) - -- Df(x) for k < mandBim =
1 for k > m. Therefore, findingn-cycles by a Newton-Raphson method with
multiple shooting requires the inversing oftk{d] matrix 1-D f () D f (Xn-1) - - - D f(X1).

F.2 Hybrid Newton-Raphson/ relaxation method

F.2.1 Newton method with optimal surface of section
X =g(x) = x+yC(f(x) - %), 0%

) ) ) . ) ) (F. Christiansen)
wherey > 0 andC is ad x d invertible constant matrix. We notice thatis also

a fixed point ofg. Consider the stability matrix at the fixed point In some systems it might be hard to find a good starting guessfired point,
something that could happen if the topology amndhe symbolic dynamics of the
flow is not well understood. By changing the Poincaré sectine might get a

d
Ao = d_'i X=X, = 1+yC(Ar-1) better initial guess in the sense thaand f(x) are closer together. In figufel
there is an illustration of this. The figure shows a Poincagétion,y = 0, an
The matrixC is constructed such that the eigenvalues\gre of modulus less initial guessx, the corresponding(x) and pieces of the trajectory near these two
than one. Assume tha; is diagonalizable: In the basis of diagonalization, the points.

matrix writes: . . - .
If the Newton iteration does not converge for the initial ggrewe might have

to work very hard to find a better guess, particularly if tsigia high-dimensional

Ag=1+yC(Ar - 1), system (high-dimensional might in this context mean a Hamian system with
3 degrees of freedom.) But clearly we could easily have a nbatter guess

where A; is diagonal with elements;. We restrict the set of matrice to by simply shifting the Poincaré section yo= 0.7 where the distance — f(x)
diagonal matrices witdj = & whereg = +1. ThusAy is diagonal with eigenvalues would be much smaller. Naturally, one cannot see by eye tise sigface in

appendCycle - 3jun2008.tex appendCycle - 3jun2008.tex



APPENDIX F. FINDING CYCLES 687

higher dimensional systems. The way to proceed is as folliMeswant to have
a minimal distance between our initial guesand the image of thig(x). We
therefore integrate the flow looking for a minimum in the aisted(t) = |f'(x)—X.
d(t) is now a minimum with respect to variations if(x), but not necessarily with
respect tax. We therefore integrate either forward or backward in time. Doing
this we minimized with respect ta, but now it is no longer minimal with respect
to f!(x). We therefore repeat the steps, alternating betweenatimgex and f!(x).

In most cases this process converges quite rapidly. Thé issatrajectory for
which the vector {(x) — X) connecting the two end points is perpendicular to the
flow at both points. We can now choose to define a Poincaracidf section as
the hyper-plane that goes througland is normal to the flow at. In other words
the surface of section is determined by

(X' =X)-v(x) = 0. (F.3)

Note thatf(x) lies on this surface. This surface of section is optimahm sense
that a close return on the surface is a local minimum of thiadée betweerx
and fY(x). But more importantly, the part of the stability matrix thégescribes
linearization perpendicular to the flow is exactly the dtgbbf the flow in the
surface of section whefi(x) is close tox. In this method, the Poincaré surface
changes with each iteration of the Newton scheme. Shouldatee Want to put
the fixed point on a specific Poincaré surface it will only beatter of moving
along the trajectory.
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Appendix G

Transport of vector fields

Man who says it cannot be done should not interrupt man
doing it.
—Sayings of Vattay Gabor

relaxation exponents (dynamo rates) of vector fields caxpessed in terms

I N THIS APPENDIX We show that the multidimensional Lyapunov exponents and
of leading eigenvalues of appropriate evolution operators

G.1 Evolution operator for Lyapunov exponents

§
J Lyapunov exponents were introduced and computed fbniaps in sectl5.3.2
For higher-dimensional flows only the fundamental matrigess multiplicative,

not individual eigenvalues, and the construction of thelwgian operator for
evaluation of the Lyapunov spectra requires the extendi@valution equations

to the flow in the tangent space. We now develop the requisitery.

Here we construct a multiplicative evolution operat@.4) whose spectral
determinant G.8) yields the leading Lyapunov exponent oflaimensional flow
(and is entire for Axiom A flows).

The key idea is to extending the dynamical system by the terggece of the
flow, suggested by the standard numerical methods for ei@iuaf Lyapunov
exponents: start atp with an initial infinitesimal tangent space vectg0) €
T My, and let the flow transport it along the trajectou®) = f(xo).

The dynamics in thex(n) € U x TUy space is governed by the system of
equations of variationsl]:

x=Vv(X), n=Dv(X)n.
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HereDv(x) is the derivative matrix of the flow. We write the solution as
x(®) = f'(x0). () = M'(x0) - 70, (G.1)

with the tangent space vectgrtransported by the stability matrik'(x) =
IX(t)/0x%o.

As explained in sect. 1, the growth rate of this vector is multiplicative along
the trajectory and can be representedhéd = |n(t)|/I7(0)u(t) whereu(t) is a
“unit” vector in some nornjl.||. For asymptotic times and for almost every initial
(%0, 17(0)), this factor converges to the leading eigenvalue ofitiearized stability
matrix of the flow.

We implement this multiplicative evaluation of stabiliigenvalues by adjoining
the d-dimensional transverse tangent space T My; n(X)v(x) = O to the @+1)-
dimensional dynamical evolution spage M c R%1. In order to determine the
length of the vector; we introduce a homogeneousdtdrentiable scalar function
g(m) = Iinll. It has the propertg(An) = |Alg(n) for any A. An example is the
projection of a vector to itdth component

m
172

g = ndl.

nd

Any vectorn € T Uy can now be represented by the prodget Au, whereu
is a “unit” vector in the sense that its normljigl| = 1, and the factor

Al(%0, Uo) = g((t)) = g(M'(x0) - Uo) G2

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stregctsiotor is multiplicative
along the trajectory:

A (0, Ug) = A" (X(1), u(t)) A' (0, Uo)-

[exercise G.1]
Theu evolution constrained t&T gy, the space of unit transverse tangent vectors,

is given by rescaling ofG.1):

u =Ri(xu) = MY(x) - u. (G.3)

A‘( u)

Egs. G.1), (G.2) and (G.3) enable us to defineraultiplicative evolution operator
on the extended spatéx ET g

S(u’ — R(x, u))

L1(X, U5 xu) = §(x = () IAY(x,u)p-1

(G.4)

appendApplic - 30may2003.tex

APPENDIX G. TRANSPORT OF VECTOR FIELDS 690

whereg is a variable.

To evaluate the expectation value of |ad(x, u)| which is the Lyapunov exponent
we again have to take the proper derivative of the leadingre@ue of G.4).
In order to derive the trace formula for the operat@r4) we need to evaluate
TrL' = [dxdu £(u, x;u, x). The [ dxintegral yields a weighted sum over prime
periodic orbitsp and their repetitions:

rT
t P
L= z:pzhdau ME) | Apr.
(u - R (xp, u))
Apr = - ¢ .
- fg TN ©9

whereMj, is the prime cyclep transverse stability matrix. As we shall see below,
Ap, is intrinsic to cyclep, and independent of any particular cycle poipt

We note next that if the trajectorf/(x) is periodic with periodr, the tangent
space containd periodic solutions

a(xX(T +t) =a(x®), i=1..d,

corresponding to thd unit eigenvectorge;, e, - - -, €4} of the transverse stability
matrix, with “stretching” factors@.2) given by its eigenvalues

Mp(X) - &(x) = Apia(x), i=1..d (no summation o)

The fdu integral in G.5) picks up contributions from these periodic solutions.
In order to compute the stability of th#h eigendirection solution, it is convenient
to expand the variation around the eigenveetan the stability matrix eigenbasis
éu = Y, 6uy e . The variation of the mapQ.3) at a complete periotl= T is then
given by

T _ Msu  M-e (dge) .,
RE@) = Ge g(M-a)Z( ou M ‘5”)
Apk og(e)
kZﬂA—m(eK—a g )6uk. ©.6)

The 6u; component does not contribute to this sum sig@ + dug) = 1+ dy
impliesdg(e)/du; = 1. Indeed, infinitesimal variationfi must satisfy

d
gu+su)=gu)=1 = Zduf?ﬁw
=1

=0,
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so the allowed variations are of form

_ dg(e)
6U—;(e‘ a7y o <1,

and in the neighborhood of the eigenvector thg{ du integral can be expressed
as
f du = f l_[dq(.
9 ket

Inserting these variations into tlfedu integral we obtain

fdu é(e +0u—R'(e) - sR"(a) +...)
g

- fﬂ dac6((1 - Aw/A)Cc+-..)

k#i

_ H 1
11— Ak/Ail’

ki

and the[ du trace (3.5 becomes

d

1 1
Ap = - . (G.7)
;‘ | Api ¥ D 11— AGu/ A |

The corresponding spectral determinant is obtained byreiosgthat the Laplace
transform of the tracel@.23 is a logarithmic derivative TL(s) = —dislog F(s)
of the spectral determinant:

esTpr
F(B,s) = exp| - ; W_ML)‘AW(@ . (G.8)

This determinant is the central result of this section. &g correspond to the

eigenvalues of the evolution operatd?.f), and can be evaluated by the cycle
expansion methods.

The leading zero of®.8) is called “pressure” (or free energy)

P(B) = 0(B)- (G.9)

The average Lyapunov exponent is then given by the firstaliresof the pressure
atg=1:

1=P(1). (G.10)
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The simplest application ofy.8) is to 2-dimensional hyperbolic Hamiltonian
maps. The stability eigenvalues are related\ay= 1/A, = A, and the spectral
determinant is given by

Z"e 1
FB.2 = exp|-) —————5A
.2 P ;rmwu—mpz or (B)
AL |18 Al -3
Aps(B) = | A5 (G.11)

—_— st — .
1-1AY  1-1/A%

The dynamics ¢.3) can be restricted to & unit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobixn&m this neighborhood
the largest eigenvalue of the Jacobi matrix is the only fix@dtpand the spectral
determinant obtained by keeping only the largest term\fhesum in G.7) is also
entire.

In case of maps it is practical to introduce the logarithmhef keading zero
and to call it “pressure”

P(B) = log zo(B). (G.12)

The average of the Lyapunov exponent of the map is then giyethd first
derivative of the pressure At= 1:

1=P(1). (G.13)

By factorizing the determinanty.11) into products of zeta functions we can
conclude that the leading zero of the.§) can also be recovered from the leading
zeta function

Np

1/¢0(8.2) = exp[— » i

. G.14
2 TiAgp (G.14)

This zeta function plays a key role in thermodynamic apfiices as we will will
see in Chapte?2.

G.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An plaisithe magnetic
field of the Sun which is “frozen” in the fluid motion. A pasdiy@volving vector
field V is governed by an equation of the form

GV +u-VV-V.Vu=0, (G.15)
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whereu(x, t) represents the velocity field of the fluid. The strength ef Wiector
field can grow or decay during its time evolution. The amdifien of the vector
field in such a process is called the "dynanfteet.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of tie fieh an exponent

V(x,1) ~ V(x)e, (G.16)

wherey is called the fast dynamo rate. The goal of this section ishtawsthat
periodic orbit theory can be developed for such a highly timial system as
well.

We can write the solution of3.15 formally, as shown by Cauchy. L&t a)

be the position of the fluid particle that was at the paigttt = 0. Then the field
evolves according to

V(x,t) =Jd@t)V(a0) , (G.17)

whereJ(a,t) = d(x)/d(a) is the fundamental matrix of the transformation that
moves the fluid into itselk = x(a, t).

We writex = f!(a), wheref! is the flow that maps the initial positions of the
fluid particles into their positions at tinte Its inversea = f~'(x), maps particles
at timet and positiorx back to their initial positions. Then we can writ8.(L7)

Vi(x,t) = Z fd3a L}i(x.a)Vj@0) , (G.18)
i
with
_ - 9%
Lii(x.a) =@~ f I(><))6—aj : (G.19)

For large times, theffect of £! is dominated by its leading eigenvalues' with
Revo) > Rev), i = 1,2, 3,.... In this way the transfer operator furnishes the fast
dynamo ratey := vg.

The trace of the transfer operator is the sum over all pariodiit contributions,
with each cycle weighted by its intrinsic stability

TrLt= Z TpZ 'det |6(t —1T)). (G.20)

We can construct the corresponding spectral determinaungiesd

S 1 P Say
F(s) = exp|— -l (G.21)
Zp:; r ldet(l— M5")
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Note that in this formuli we have omitted a term arising frdra §acobian transformation
along the orbit which would give * tr M}, in the numerator rather than just

the trace ofM,. Since the extra term corresponds to advection along thig orb
and this does not evolve the magnetic field, we have chosegntaré it. It

is also interesting to note that the negative powers of tkehlan occur in the
denominator, since we have! in (G.19.

In order to simplifyF(s), we factor the denominator cycle stability determinants
into products of expanding and contracting eigenvaluesafsdimensional fluid
flow with cycles possessing one expanding eigenvalygwith |Ap| > 1), and
one contracting eigenvalug, (with || < 1) the determinant may be expanded
as follows:

|det(l - |v|5')|_1 =11 - A= 0 = 1,0 ZO kZ(; A (G22)
]

With this decomposition we can rewrite the exponentGn(l) as

T o oo
l|(: t+1A );S D IDIDIEI LRI NN CES)
e

ZZ

p jk=0r=1

which has the form of the expansion of a logarithm:

ZZ log (1 - &TlaplAF15) +log (1 - LA A5Y)| . (G.24)

The spectral determinant is therefore of the form,

F(9) = Fe(9Fc(9) (G.25)
where
Fe9=[][]@-tn) . (G.26)
P jk=0
Fe9 =[] [](2-t). (G.27)
P k=0
with
(i A
T,
tp = Svupw ) (G.28)

p
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The two factors present iff(s) correspond to the expanding and contracting
exponents. (Had we not neglected a termGn2(), there would be a third factor
corresponding to the translation.)

For 2-d Hamiltonian volume preserving systemss 1/A and G.26) reduces
to

) tp k+1 eSTP
Fe(s) = ]—[ ]_[[1- W] . Wik (G.29)
P

k=0

With op = Ap/IApl, the Hamiltonian zeta function (the= k = 0 part of the
product G.27)) is given by

Va9 = [ [(1-ope™) . (G.30)
P

This is a curious formula — the zeta function depends onlyhenreturn times,
not on the eigenvalues of the cycles. Furthermore, theiigient

AvYA 2
(L-MA-/A) " 1L-AE-YA)

when substituted intoQ.25), leads to a relation between the vector and scalar
advection spectral determinants:

Fayn(9) = F3(9)/dayn(9) - (G.31)

The spectral determinants in this equation are entire fpetyolic (axiom A)
systems, since both of them correspond to multiplicativeraiors.

In the case of a flow governed by a map, we can adapt the forniGlas)
and .30 for the dynamo determinants by simply making the substitut

NI (G.32)

wheren, is the integer order of the cycle. Then we find the spectradrd@hant
Fe(2) given by equation@.29 but with

"
th= — G.33
p IApl ( )
for the weights, and
1/Zayn(2) = Hp(l - G'pznp) (G.34)
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for the zeta-function

Formapswith finite Markov partition the inverse zeta functio®.34) reduces
to a polynomial forz since curvature terms in the cycle expansion vanish. For
example, for maps with complete binary partition, and whifixed point stabilities
of opposite signs, the cycle expansion reduces to

1/Zayn(s) = 1. (G.35)

For suchmapsthe dynamo spectral determinant is simply the square ofdalais
advection spectral determinant, and therefore all itsszare double. In other
words, for flows governed by such discrete maps, the fastrdgrate equals the
scalar advection rate.

In contrast, for 3-dimensiondlows the dynamo fect is distinct from the
scalar advection. For example, for flows with finite symbdijoamical grammars,
(G.3]) implies that the dynamo zeta function is a ratio of two entieterminants:

1/Zayn(s) = den(S)/FS(S) . (G.36)

This relation implies that foflowsthe zeta function has double poles at the zeros
of the scalar advection spectral determinant, with zerothefdynamo spectral
determinant no longer coinciding with the zeros of the scatbvection spectral
determinant; Usually the leading zero of the dynamo spledi#tarminant is larger
than the scalar advection rate, and the rate of decay of tlymetia field is no
longer governed by the scalar advection.

[exercise G.2]

Commentary

Remark G.1 Dynamo zeta. The dynamo zeta3.34) has been introduced by Aurell
and Gilbert P] and reviewed in ref.§]. Our exposition follows ref.19].

Exercises
G.1. Stretching factor.  Prove the multiplicative property piecewise linear map
of the stretching factoi@.2). Why should we extend the ”
hase space with the tangent space? _ ) 1+rax if x<Q,
p P 9 p f(x)_{ T-bx if x>0 (G.37
G.2. Dynamo rate. Suppose that the fluid dynamics is on an appropriate surface of secti@lf > 2). Suppos

highly dissipative and can be well approximated by the also that the return time is constantfor x < 0 andT;
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for x > 0. Show that the dynamo zeta is Calculate the dynamo and the escape rates analytically
IS RS + if b = a? andT, = 2T,. Do the calculation for the case
Yday(9) =1 + e, (G.38) when you reverse the signs of the slopes of the map.
Show also that the escape rate is the leading zero of What is the diference?
1/40(9) = 1-€e¥2/a—e"To/h. (G.39)
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Discrete symmetries of dynamics

ASIC GROUP-THEORETIC NOTIONS are recapitulated here: groups, irreducible representsti

B invariants. Our notation followirdtracks.eu

The key result is the construction of projection operatmsifinvariant matrices.
The basic idea is simple: a hermitian matrix can be diagpedli If this matrix
is an invariant matrix, it decomposes the reps of the grotp direct sums of
lower-dimensional reps. Most of computations to follow lempent the spectral
decomposition

M = A1P1 + A2P2 + - + APy,

which associates with each distinct rogtof invariant matrixM a projection
operator (.17):

M - 251

P = .
A = 4

j#i

Sects.H.3 andH.4 develop Fourier analysis as an application of the general
theory of invariance groups and their representations.

H.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanovic)

We definggroup, representationsymmetry of a dynamical systeamdinvariance

698
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Group axioms. AgroupG s a set of elementi, g, g3, . . . for whichcomposition
or group multiplication g o g1 (which we often abbreviate agg;) of any two
elements satisfies the following conditions:

1. Ifg1,02 € G, thengz 0 g; € G.
2. The group multiplication is associativgs o (g2 o g1) = (g3 © g2) © 0.

3. The groupG containsidentityelemente such thago e = eog = g for every
elemenyg € G.

4. For every elemeng € G, there exists a unique == g* € G such that
ho g=go h=e

A finite group is a group with a finite number of elements
G={e0,....09q};
where|G|, the number of elements, is tbeder of the group.

Example H.1 Finite groups: Some finite groups that frequently arise in
applications:
e C, (also denoted Z,): the cyclic group of order n.

e D, the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

e S,: the symmetric group of all permutations of n symbols, order n!.

Example H.2 Lie groups: Some compact continuous groups that arise in
dynamical systems applications:

o S! (also denoted T1): circle group of dimension 1.

e Tp=S'xSt... xSt mtorus, of dimension m.

e SQ2): rotations in the plane, dimension 1. Isomorphic to S*.

0O(2) = SQ2) x Dy1: group of rotations and reflections in the plane, of dimension
1

U(1): group of phase rotations in the complex plane, of dimension 1. Isomorphic
to SQ2).

e S ((3): rotation group of dimension 3.

S U(2): unitary group of dimension 3. Isomorphic to S O(3).

o GL(n): general linear group of invertible matrix transformations, dimension n.
e SQ(n): special orthogonal group of dimension n(n — 1)/2.

e O(n) = SQ(n) x D1: orthogonal group of dimension n(n — 1)/2.

e S (n): symplectic group of dimension n(n + 1)/2.

e SU(n): special unitary group of dimension n? — 1.

appendSymm - 4feb2008.tex

APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 700

Example H.3 Cyclic and dihedral groups: The cyclic group C, c S O2) of order n
is generated by one element. For example, this element can be rotation through 2z /n.

The dihedral group D, c O(2), n > 2, can be generated by two elements one at least
of which must reverse orientation. For example, take o corresponding to reflection in
the x-axis. o2 = €; such operation o is called an involution. C to rotation through 2z /n,
then Dy, = (o, C), and the defining relations are o> = C" = e, (Co’)? = e.

Groups are defined and classified as abstract objects bynthiiplication
tables (for finite groups) or Lie algebras (for Lie groups)h&¥concerns us in
applications is theiactionas groups of transformations on a given space, usually a
vector space (see appendixl), but sometimes arfiine space, or a more general
manifold M.

Repeated index summation. Throughout this text, the repeated pairs of ugiparer
indices are always summed over

n
Ga"% = ) Ga’, (H.1)
b=1

unless explicitly stated otherwise.

General linear transformations. Let GL(n,F) be the group of general linear
transformations,

GL(n,F)={g:F" > F"|det@) # O} . (H.2)

UnderGL(n, F) a basis set of is mapped into another basis set by multiplication
with a [nxn] matrix g with entries in fieldf (F is eitherR or C),

g2 = (g s

As the vectorx is what it is, regardless of a particular choice of basis eurthis
transformation its coordinates must transform as

)Q:gabxb-

Standard rep. We shall refer to the set ohxn] matricesg as astandard rep
of GL(n, F), and the space of afi-tuples i, X2, ..., X,)", X € F on which these
matrices act as thetandard representation space V

Under a general linear transformatigre GL(n, F), the row of basis vectors
transforms by right multiplication & = e g, and the column ok,’s transforms
by left multiplication asx’ = gx. Under left multiplication the column (row
transposed) of basis vectoe§ transforms ag’” = g'e’, where thedual rep
g" = (g 17 is the transpose of the inverse gf This observation motivates
introduction of adual representation spadé the space on whicL(n,F) acts
via the dual reg’.
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Dual space. If V is a vector representation space, thendhal spacé? is the
set of all linear forms o over the fieldF.
If (€D, ..., e} is a (right) basis of/, thenV is spanned by theual basis
(left basis){e). - - -, ga)}, the set ofn linear formseyjy such that
e e = o/,

whered? is the Kronecker symbols = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will herdigiinguished by
upper indices

OhYo YD), (H.3)

They transform undeBL(n, F) as
y®= (@ (H.4)

ForGL(n, F) no complex conjugation is implied by th@otation; that interpretation
applies only to unitary subgroups Gf.(n, C). g can be distinguished from by
meticulously keeping track of the relative ordering of thdices,

B-a’, @5l (H.5)

Defining space, dual space. In what followsV will always denote thelefining
n-dimensional complex vector representation space, thasisy the initial, “elementary
multiplet” space within which we commence our deliberasiolong with the

defining vector representation spaceomes thelual ndimensional vector representation

spaceV. We shall denote the corresponding elemer¥ diy raising the index, as
in (H.3), so the components of defining space vectors, resp. dutdrse@re
distinguished by lower, resp. upper indices:

x
1l

(X1, X2, - > %n) »
O& 4, X,

xeV
XeV.

x|

(H.6)

Definingrep. LetG be a group of transformations acting linearly\dywith the
action of a group elemegte G on a vectorx € V given by an fixn] matrix g

X;:\:gabxb ab=12...,n. (H.7)

We shall refer ta,° as thedefining repof the groupG. The action ofy € G on a
vectorg e V is given by thedual rep[nxn] matrix g':

X2 = b(g’r)ba - gabxb_ (ng)
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In the applications considered here, the gr@uwill almost always be assumed
to be a subgroup of thenitary group in which caseg™ = g', and? indicates
hermitian conjugation:

(QT)ab = (%" = gba' (H.9)

Hermitian conjugation s effected by complex conjugation and index transposition:
Complex conjugation interchanges upper and lower indicassposition reverses
their order. A matrix ihermitianif its elements satisfy

(M2 = M2. (H.10)

For a hermitian matrix there is no need to keep track of thativel ordering of
indices, aMp? = (MT)p2 = M3,

Invariant vectors.  The vectorg € V is aninvariant vectorif for any transformation
geG

g=099. (H.11)
If a bilinear formM (x,y) = X2May,, is invariant for allg € G, the matrix
Ma® = ga‘g°aMc (H.12)

is aninvariant matrix Multiplying with g,® and using the unitary conditiomi(9),
we find that the invariant matriceemmutewith all transformationg € G:

[9.M] =0. (H.13)

Invariants. We shall refer to an invariant relation betwepvectors inV and
g vectors inV, which can be written as a homogeneous polynomial in terms of
vector components, such as

HOCY, ZT, 9 = hPcaexoyasr 2, (H.14)

as aninvariant in V94 @ VP (repeated indices, as always, summed over). In this
example, the cdcientsh® ge are components of invariant tengoe V3 ® V2.
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Matrix group on vector space. We will now apply these abstract group definitions
to the set of i x d]-dimensional non-singular matricés B, C, ... € GL(d) acting

in ad-dimensional vector spadé € RY. The product of matriced andB gives

the matrixC,

Cx=B(AX) = (BA)xeV, Vxe V.

The identity of the group is the unit matrkwhich leaves all vectors i unchanged.
Every matrix in the group has a unique inverse.

Matrix representation of a group. Letus now map the abstract groGchomeomorphically
on a group of matriceB(G) acting on the vector spadg i.e., in such a way that
the group properties, especially the group multiplicatiare preserved:

1. Anyg e Gis mapped to a matrik(g) € D(G).

2. The group produat; o g1 € G is mapped onto the matrix produbig, o
1) = D(g2)D(qy).

3. The associativity is preserve@(gs o (g o 91)) = D(g3)(D(g2)D(q1)) =
(D(93)(D(g2))D(g0)-

4. The identity elemen¢ € G is mapped onto the unit matrix(e) = 1 and
the inverse elemerg ! € G is mapped onto the inverse matiig?) =
(D@1 =Dg).

We call this matrix grouD(G) a linear or matrixepresentatiorof the groupG
in therepresentation space.WVe emphasize hefknear’ in order to distinguish
the matrix representations from other representatiorigithaot have to be linear,
in general. Throughout this appendix we only consider limepresentations.

If the dimensionality oV is d, we say the representation is ésdimensional
representation We will often abbreviate the notation by writing matride&) €
D(G) asg, i.e.,x’ = gx corresponds to the matrix operatigh= z‘le D(9)ij X;-

Character of arepresentation. The character of,(g) of ad-dimensional representation
D(g) of the group elemerd € G is defined as trace

d
xa(@) = rD(@) = > Di(9).
i=1

Note thaty(e) = d, sinceD;j(e) = g for 1 <i, j <d.
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Faithful representations, factor group. If the mappingG onD(G) is an isomorphism,
the representation is said to fethful. In this case the order of the group of
matricesD(G) is equal to the ordeG| of the group. In general, however, there
will be several elements € G that will be mapped on the unit matrx(h) = 1.

This property can be used to define a subgrblup G of the groupG consisting

of all elements € G that are mapped to the unit matrix of a given representation.
Then the representation is a faithful representation ofabtr group GH.

Equivalent representations, equivalence classesA representation of a group

is by no means unique. If the basis in theimensional vector spa&éis changed,

the matrice(g) have to be replaced by their transformati@igg), with the new
matricesD’(g) and the old matriceB(g) are related by an equivalence transformation
through a non-singular matri@

D'(g =CD(@C™.

The group of matriceB’(g) form a representation’(G) equivalent to the representation
D(G) of the groupG. The equivalent representations have the same structure,
although the matrices look ftiérent. Because of the cylic nature of the trace the
character of equivalent representations is the same

x(@) = > Dj(g) =trD'(g) = tr (CD(G)C?) .

i=1

Regular representation of a finite group. Theregularrepresentation of a group
is a special representation that is defined as follows: Coentiie elements of

a finite group into a vectofgs, @, ..., gg}. Multiplication by any elemeng,
permuteggs, 0o, . . ., g} €Ntries. We can represent the elenggrity the permutation
it induces on the components of vectgy, gz, ...,gg}. Thusfori, j=1,...,[G|,

we define theegular representation

) 3 6j|| if gvgi = g|‘ with Ii = l, . ..,lGls
Dij(gv) = { 0 otherwise

In the regular representation the diagonal elements of @itioes are zero except
for the identity elemeng, = ewith g,g; = gi. So in the regular representation the
character is given by

_| Gl for g=e,
,\/(g)—{ 0 for g#e.

H.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational gaidtom Hermann
Weyl on the “so-called first main theorem of invariant théory
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“All invariants are expressible in terms of a finite number amthem We
cannot claim its validity for every grouf; rather, it will be our chief task to
investigate for each particular group whether a finite intgdpasis exists or not;
the answer, to be sure, will turn oufiamative in the most important cases.”

It is easy to show that any rep of a finite group can be broughtnitary
form, and the same is true of all compact Lie groups. Hencehiat follows, we
specialize to unitary and hermitian matrices.

H.2.1 Projection operators

ForM a hermitian matrix, there exists a diagonalizing unitaryriraC such that

0 0
L 0 .. 0
- 0 A
cMC = 0 0 L o |- 19
0 1
Az ...
0 0 o

Here 4; # A; are ther distinct roots of the minimatharacteristic(or seculaj
polynomial

ﬁ(M -4i1)=0. (H.16)
i=1

In the matrixC(M — 1,1)C the eigenvalues correspondingtpare replaced
by zeroes:

A1 — A2
A1— A2

A3 — A2
da— Ay

and so on, so the product over all factaw € 121)(M — A31). .., with exception
of the (M — 111) factor, has nonzero entries only in the subspace assdaiate
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Aq:

100

010 0

00 1

c[|m-anct =] Jeu-a)

j#1 j#1

Thus we can associate with each distinct rai projection operatotP;,

M-2;1
p = []24 H.17
I j#i A=A ( )

which acts as identity on thi¢h subspace, and zero elsewhere. For example, the
projection operator onto thg subspace is

C. (H.18)

The diagonalization matrixC is deployed in the above only as a pedagogical
device. The whole point of the projector operator formalisrthat weneverneed

to carry such explicit diagonalization; all we need are whet invariant matrices
M we find convenient, the algebraic relations they satisfgl, @thonormality and
completeness d?;: The matrice$®; areorthogonal

PiPj = 6ijPj . (no sum onj), (H.19)

and satisfy theompleteness relation
r
PLEES (H.20)
i=1

As tr (CP,C") = tr P;, the dimension of thih subspace is given by
d=trP;. (H.21)

It follows from the characteristic equationi (16) and the form of the projection
operator (.17) that ; is the eigenvalue di1 on P; subspace:

MP; = 4P , (no sum on). (H.22)
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Hence, any matrix polynomidi(M) takes the scalar valuig2;) on theP; subspace
f(M)P; = ()P . (H.23)

This, of course, is the reason why one wants to work with urogule reps: they
reduce matrices and “operators” to pure numbers.

H.2.2 Irreducible representations

Suppose there exist several linearly independent invddad] hermitian matrices
M1, Mo, ..., and that we have usdd; to decompose thd-dimensional vector
spaceV = V1 6 Vo8 ---. CanM3,Mg,... be used to further decomposg?

Further decomposition is possible if, and only if, the in&at matrices commute:

[M1,Mz] =0, (H.24)

or, equivalently, if projection operato; constructed fromM, commute with
projection operator®; constructed fronM 1,

Pin = PjPi . (H.25)

Usually the simplest choices of independent invariant icedrdo not commute.
In that case, the projection operat&sonstructed fronM ; can be used to project
commuting pieces dfl,:

MY =PMaP,  (nosumori).

ThatM g) commutes withiV; follows from the orthogonality oP;:

M. Ma] = 3" 4MD.P]=0. (H.26)
j

Now the characteristic equation fmg) (if nontrivial) can be used to decompose
V; subspace.

An invariant matrixM induces a decomposition only if its diagonalized form
(H.15) has more than one distinct eigenvalue; otherwise it is gntamal to the
unit matrix and commutes trivially with all group element.rep is said to be
irreducibleif all invariant matrices that can be constructed are pribpoal to the
unit matrix.
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According to H.13), an invariant matriM commutes with group transformations

[G,M] = 0. Projection operatorg{(17) constructed fronM are polynomials in
M, so they also commute with ajle G:

[G,P] =0 (H.27)

Hence, adixd] matrix rep can be written as a direct sum dfd;] matrix reps:
G=1G1= ZPiGPj :ZPiGPi :ZGi' (H.28)
0] i i

In the diagonalized repH.18), the matrixg has a block diagonal form:

g 0 0
CgC'=|0 @ O g=) ClgCi. (H.29)
0 0 - i

The repg; acts only on thedi-dimensional subspac¥ consisting of vectors
Pig, g € V. In this way an invariantdxd] hermitian matrixM with r distinct
eigenvalues induces a decomposition af-dimensional vector spacé into a
direct sum ofd;-dimensional vector subspacés

v Vviewe.. . eV. (H.30)

H.3 Lattice derivatives

Consider a smooth functiof(x) evaluated on a finitd-dimensional lattice
b =p(X), x = af = lattice point, £ € Z9, (H.31)

whereaiis the lattice spacing and there &€ points in all. A vectorp specifies a
lattice configuration. Assume the lattice is hyper-cubig etri, € {fig, iz, - - -, Ag}
be the unit lattice cell vectors pointing along ttigositive directions]ﬁ#| =1.
Thelattice partial derivativeis then

dx-+ah) — 09 _ ren, — 9t

(au‘ﬁ)l = a a

Anything else with the correcd — 0 limit would do, but this is the simplest
choice. We can rewrite the derivative as a linear operatprintsoducing the
hopping operatoi(or “shift,” or “step”) in the directiornu

(h,,)lj = Se4 - (H.32)
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As h will play a central role in what follows, it pays to understiawhat it does,
so we write it out for the 1-dimensional case in its fiN>k N] matrix glory:

01
01
01
h= . . (H.33)
0 1
1 0

We will assume throughout that the latticepisriodicin eachr, direction; this is
the easiest boundary condition to work with if we are inteyésn large lattices
where surfaceféects are negligible.

Applied on the lattice configuratian = (¢1, ¢2, - - -, #n), the hopping operator

shifts the lattice by one sitd¢ = (¢2, ¢3,- -, dn, $1). Its transpose shifts the
entries the other way, so the transpose is also the inverse

h™t=h'. (H.34)

The lattice derivative can now be written as a multiplicatity a matrix:

B = %(hy—l)fj ®;.

In the 1-dimensional case th&l k N] matrix representation of the lattice
derivative is:

(H.35)

1 -1
To belabor the obvious: On a finite lattice Nf points a derivative is simply a
finite [Nx N] matrix. Continuum field theory is a world in which the latics so
fine that it looks smooth to us. Whenever someone calls sangeéim “operator,”

think “matrix.” For finite-dimensional spaces a linear aggeris a matrix; things
get subtler for infinite-dimensional spaces.

H.3.1 Lattice Laplacian

In order to get rid of some of the lattice indices it is conegtito employ vector
notation for the terms bilinear ip, and keep the rest lumped into “interaction,”

2
S0l =~ 070~ = [(h - 1) a]" - (ny 1)+ Silal. (H.36)
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For example, for the discretized Landau HamiltonM#A/2 = gng/2, C = g/a?,
and the quartic terrd, [¢] is local site-by-sitey;,s,eae, = =41 BUSe,,005050 5641 SO
this general quartic coupling is a little bit of an overkiiiut by the time we get
to the Fourier-transformed theory, it will make sense as ener@um conserving
vertex H.62).

In the continuum integration by parts movgsaround; on a lattice this amounts
to a matrix transposition

()] (b~ 1)6] =67 (2 -1 (- 1)-.

If you are wondering where the “integration by parts” minignss, it is there in
discrete case at well. It comes from the identity = —h~%9. The combination
A =h19?

d
ai -9(h-1)= —322( %(h;1+h;,)) (H.37)

is thelattice Laplacian We shall show below that this Laplacian has the correct
continuum limit. Itis the simplest spatial derivative alled forx — —xsymmetric
actions. In the 1-dimensional case tiN{N] matrix representation of the lattice
Laplacian is:

2 1 1
1 -2 1
1 1 -2 1
6= ) , (H.38)
1
1 1 -2

The lattice Laplacian measures the second variation of d fielacross three
neighboring sites. You can easily check that it does whaséwend derivative
is supposed to do by applying it to a parabola restrictededdttice,¢, = ¢(¢),
where¢(¢) is defined by the value of the continuum functip(x) = x? at the
lattice point¢.

H.3.2 Inverting the Laplacian

Evaluation of perturbative corrections ifg.21) requires that we come to grips
with the “free” or “bare” propagatoM . While the the Laplacian is a simple
difference operatoi+{.38), its inverse is a messier object. A way to compute is to
start expandindgv as a power series in the Laplacian

M = mgzl n %ZZ[ ] . (H.39)
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As A is a finite matrix, the expansion is convergent foftisiently Iargerr'()z. To
get a feeling for what is involved in evaluating such seri@gluateA? in the
1-dimensional case:

6 -4 1 1 -4
-4 6 -4 1
, 1|1 -4 6 -4 1
M= L 4 (H.40)
6 -4
-4 1 1 -4 6

What A3, A4, --- contributions look like is now clear; as we include highed an
higher powers of the Laplacian, the propagator matrix fifis while theinverse
propagator is dferential operator connecting only the nearest neighboegtopagator
is integral operator, connecting every lattice site to amgplattice site.

This matrix can be evaluated as is, on the lattice, and somastiis evaluated
this way, butin case at hand a wonderful simplification feidrom the observation
that the lattice action is translationally invariant. Welwhow how this works in
sect.H.4.

H.4 Periodic lattices

Our task now is to transfornM into a form suitable to evaluation of Feynman
diagrams. The theory we will develop in this section is aggiie only tdranslationally
invariant saddle point configurations. bifurcation

Consider the #ect of ag — h¢ translation on the action
1 Bdo
_ T nTpm-ln . s P90 4
Sthg] = —5¢"-h"™M g~ ,§=1(h¢)€'

As M1 is constructed fromh and its inverse M~ and h commute, and the
bilinear term ish invariant. In the quartic terrh permutes cyclically the terms
in the sum, so the total action is translationally invariant

1 w
Sthol = Slg] = 3¢ Mg~ 2R 3 gt (H.41)
to=1

If a function (in this case, the actid®{¢]) defined on a vector space (in this case,
the configurationp) commutes with a linear operatbr then the eigenvalues of

h can be used to decompose theector space into invariant subspaces. For a
hyper-cubic lattice the translations irfiirent directions commuté,h, = h,h,,

so it is suficient to understand the spectrum of the 1-dimensional sp#étator
(H.33). To develop a feeling for how this reduction to invarianbspaces works

in practice, let us continue humbly, by expanding the scdpmindeliberations

to a lattice consisting of 2 points.
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H.4.1 A 2-point lattice diagonalized

The action of the shift operatdr (H.33) on a 2-point latticep = (¢1,¢2) is to
permute the two lattice sites

"=( o

As exchange repeated twice brings us back to the origindigromtion,h? = 1,
and the characteristic polynomial lofis

(h+1)h-1)=0,

with eigenvaluegy = 1, 1; = —1. Construct now the symmetrization, antisymmetrization

projection operators

Coh-al 1 1101
Po = Qo- A1 _§(1+h)_2(1 1) (H.42)
h-1 1 1/1 -1
P = —1—1‘2(1_h)‘§(—1 1) (H.43)

Noting thatPy + P1 = 1, we can project the lattice configuratignonto the two
eigenvectors ofi:

¢ = 1l¢=Po-¢+ P19,
¢\ (p1+¢2) 1 1\ (p1-¢2) 1 (1
(¢2) Y ﬁ(l)+ N ﬁ(—l) (H.44)
= $oflo + 1y . (H.45)

As PoP; = 0, the symmetric and the antisymmetric configurations foans
separately under any linear transformation constructem frand its powers.

In this way the characteristic equatit¥ = 1 enables us to reduce the 2-
dimenional lattice configuration to two 1-dimensional qraswhich the value of
the shift operator (shift matrix) is a numberg € {1, -1}, and the eigenvectors are
fg = %(1, 1),A; = %(1, —1). We have inserted/2 factors only for convenience,
in order that the eigenvectors be normalized unit vectors.w& shall now see,
(do. ¢1) is the 2-site periodic lattice discrete Fourier transfarfthe field (1, ¢2).

H.5 Discrete Fourier transforms

Now let us generalize this reduction to a 1-dimensionalqukci lattice withN
sites.
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Each application oh translates the lattice one step;Nhsteps the lattice is
back in the original configuration 5 4

500 3
o W o2
Ke) LSS
N o oo
h™ =1 o on-r,
o o
K
o o N-2

oo

so the eigenvalues dfare theN distinct N-th roots of unity

j2r
N

N-1
hN-1:ﬂ(h—wk1):o, w=¢ (H.46)
k=0

As the eigenvalues are all distinct aNdn number, the space is decomposed into

N 1-dimensional subspaces. The general theory (expoundegpendixH.2)
associates with thieth eigenvalue of a projection operator that projects a configuration
¢ ontok-th eigenvector oh,

h-2;1
Pe= [ A, (H.47)

A factor (h — 1;1) kills the j-th eigenvectoip; component of an arbitrary vector
in expansiong = --- + q?j(pj + ---. The above product kills everything but the
eigendirectionpy, and the factof ], (A« — 4;) ensures thaly is normalized as a

projection operator. The set of the projection operatoc®implete

Z Pc=1 (H.48)
k

and orthonormal
PkPj = okjPx (no sum ork) . (H.49)

Constructing explicit eigenvectors is usually not a the lesy to fritter one’s
youth away, as choice of basis is largely arbitrary, and fathe content of the
theory is in projection operators][ However, in case at hand the eigenvectors
are so simple that we can forget the general theory, andromhshe solutions of
the eigenvalue condition

h ek = o (H.50)
by hand:
01 1 1
01 WX wk
1 01 w 1 w
— . x* |=w— 3K
VN ~ e W| @
0 1 : :
1 0/ u(N-1k WwN-1K
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The ¥/ VN factor is chosen in order thak be normalized unit vectors
; 1
Yok = ) 1 =1, (no sum ork)
N 0
o = L N (H.51)
The eigenvectors are orthonormal
wﬁ pj =0k, (H.52)

as the explicit evaluation oﬁ; - ¢ yieldg thAeKronecker delta function for a
periodic lattice N

7
N

¢

el

(ke (H.53)

Z| =

Okj =

T
o

The sum is over th&l unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unkess j (mod N), in which
case each term in the sum equals 1.

The projection operators can be expressed in terms of teewgtorsfi.50),
(H.51) as

(PO = (pule)e = ¥, (o sum o). (H54)

The completenessH(48) follows from (H.53), and the orthonormality H.49)
from (H.52).

éx, the projection of the configuration on thé-th subspace is given by

Pe-®) = dulewe (no sum ork)
- 18
- o4 = i 2ZkC H55
Pk (84 TN & eV, ( )

We recognizely as thediscrete Fourier transfornof ¢,. Hopefully rediscovering
it this way helps you a little toward understanding why Feutiransforms are full
of €XP factors (they are eigenvalues of the generator of transigtiand when
are they the natural set of basis functions (only if the thesrtranslationally
invariant).
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H.5.1 Fourier transform of the propagator

Now insert the identityy; Px = 1 wherever profitable:
M =1M1= " PMPe = > ailpp M - gl
Kk Kk
The matrix

Mige = (] - M - @) (H.56)

is the Fourier space representationMf No need to stop here - the terms in
the action .41) that couple four (and, in general, 3,-4;) fields also have the
Fourier space representations

Yortrty 000 bty = Viakoky PPl Pigy -

Viko ko = Yorbrt( k) (Pio) ey - - (Pi0)es
1 i
EE D Vertty € RO (H.57)
Citn

According to {H.52) the matrixUy, = (¢1)¢ = ﬁe‘ %K is a unitary matrix, and
the Fourier transform is a linear, unitary transformatiob™ = 3 P, = 1 with
Jacobian det = 1. The form of the actionH.41) does not change under— ¢
transformation, and from the formal point of view, it does natter whether we
compute in the Fourier space or in the configuration spa¢ewhatarted out with.
For example, the trace ™ is the trace in either representation

trM = Z Mee = Z Z(PkM Pw)ee
7 7

kk'

Z Z(wk)z(wi M - @)(f)e = Zfskk’ Mg =trM . (H.58)
W 7 ke

From this it follows that tM™ = trM", and from the tr In= Intr relation that
detM = detM. In fact, any scalar combination ¢fs, J's and couplings, such as
the partition functiorZ[J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what’s the pay-back?

H.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equatiod.$0) to converth matrices into scalars. If
M commuteswith h, then (p; -M - ¢r) = Mdke, and the matrixM acts as
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a multiplication by the scalaMy on thek-th subspace. For example, for the
1-dimensional version of the lattice Laplacian.g7) the projection on thé-th
subspace is

G doo) = 5[50 0910
= % (cos(%k) - 1) Skk (H.59)

In the k-th subspace the bare propagatét.59) is simply a number, and, in
contrast to the mess generated by39), there is nothing to inverting~*:

FOM o) = (Goledr = L Ok’ , H.60
) O el

wherek = (ki, ke, ---,k,) is ad-dimensional vector in th&ld-dimensional dual
lattice.

Going back to the partition functior26.21) and sticking in the factors of
linto the pilinear part of the interaction, we replace thetighd, by its Fourier
transformJy, and the spatial propagatdvlj. by the diagonalized Fourier transformed
(Go)k

IM-3= 30T @l M-w)eg - D = ) FiGonde. (H61)
kk k

What's the price? The interaction ter®[¢] (which in (26.21) was local in the
configuration space) now has a more challendindependence in the Fourier
transform versionH.57). For example, the locality of the quartic term leads to
the 4-vertexnomentum conservation the Fourier space

1 N
Sif¢l = qYattat $udedude = —ﬁUZ(¢f)4 =

=1

N
1 .~ o~
= —pu N3d/2 Z 00Ky +katka+ks Py PkoPkaPhs - (H.62)
(ki)

H.6 C,, factorization

If an N-disk arrangement haSy symmetry, and the disk visitation sequence is
given by disk labelge; ezes . . .}, only the relative incremenjs = 6.1 — § modN
matter. Symmetries under reflections across axes incrbhasgroup toCyy and
add relations between symbolg;} and{N — g} differ only by a reflection. As
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ci= Q(: %\\ N

Figure H.1: Symmetries of four disks on a square. A~ o
fundamental domain indicated by the shaded wedge.

a consequence of this reflection increments become dectematil the next
reflection and vice versa. Consider four equal disks placedhe vertices of

a square (figuréd.1). The symmetry group consists of the identéythe two
reflectionsoy, oy acrossx, y axes, the two diagonal reflectiongs, 024, and the
three rotation<,, Cy andCf‘1 by anglest/2, 7 and 3r/2. We start by exploiting
theC,4 subgroup symmetry in order to replace the absolute lapel$l, 2, 3, 4} by
relative incrementg; € {1, 2, 3}. By reflection across diagonals, an increment by 3
is equivalent to an increment by 1 and a reflection; this newsy will be called

1. Our convention will be to first perform the increment andntte change the
orientation due to the reflection. As an example, considefithdamental domain
cycle 112. Taking the disk 4 disk 2 segment as the starting segment, this symbol
string is mapped into the disk visitation sequencg2113,,1. .. = 123, where the
subscript indicates the increments (or decrements) betweighboring symbols;
the period of the cycld12 is thus 3 in both the fundamental domain and the
full space. Similarly, the cycl&12 will be mapped into 42 11 53.12,13,21 =
121323 (note that the fundamental domain symbalofresponds to a flip in
orientation after the second and fifth symbols); this time pleriod in the full
space is twice that of the fundamental domain. In particitee fundamental
domain fixed points correspond to the following 4-disk cgcle

4-disk reduced
12 o 1
1234 o 1
13 o 2

Conversions for all periodic orbits of reduced symbol peiess than 5 are listed
in tableH.6.

This symbolic dynamics is closely related to the group-tego structure
of the dynamics: the global 4-disk trajectory can be geedrétly mapping the
fundamental domain trajectories onto the full 4-disk spbgehe accumulated
product of theC4, group elementsy; = C, g» = C2, 01 = 0diagC = Taxis:
whereC is a rotation byr/2. In the112 example worked out above, this yields
Ou12 = Q0101 = C2Corayis = Odiag: listed in the last column of table.6. Our
convention is to multiply group elements in the reverse owdéh respect to the
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Table H.1: Ca, correspondence between the ternary fundamental domaire mycles
p and the full 4-disk{1,2,3,4 labeled cyclesp, together with theC,, transformation
that maps the end point of thecycle into an irreducible segment of tipecycle. For
typographical convenience, the symbabfisect.H.6 has been replaced by 0, so that the
ternary alphabet i, 1, 2}. The degeneracy of thgcycle ism, = 8n/np. Orhit 2 is the
sole boundary orbit, invariant both under a rotatiomtand a reflection across a diagonal.
The two pairs of cycles marked bg)(and b) are related by time reversal, but cannot be

mapped into each other 18, transformations.

p__p hp p p hp
0 12 Oy 0001 12121414 o4
1 1234 Cy 0002 12124343 ay
2 13 Co, 013 0011 12123434 C»
01 1214 024 0012 1212 414134342323C3
02 1243 ay 0021 @) 1213414234312324 C%
12 12413423 Cj 0022 1213 e
001 121232343414 Cy 0102 @) 1214232134324143Cy
002 121343 C, 0111 12143234 013
011 121434 oy 0112 ) 12142123 oy
012 121323 o1 0121¢) 12132124 oy
021 124324 o3 0122 12131413 o2
022 124213 Oy 0211 12432134 %
112 123 e 0212 12431423 24
122 124231342413 Cy4 0221 12421424 T4
0222 12424313 oy
1112 1234234134124123C,4
1122 12313413 >
1222 124241313424 2313Ci’
Oy

®

L
Y

Cof” |

L/

®

Figure H.2: Symmetries of four disks on a rectangle
A fundamental domain indicated by the shaded wedc

N

,
A3

e

symbol sequence. We need these group elements for our epxtis¢ dynamical
zeta function factorizations.

TheC,y, group has four 1-dimensional representations, either sstnen(A;)
or antisymmetric £&2) under both types of reflections, or symmetric under one and
antisymmetric under the otheB{, B,), and a degenerate pair of 2-dimensional
representation&. Substituting theC4, characters

Caw |A A B B E
e |1 1 T 2
C; [1 1 1 1 -2
CsCi|1 1 -1 -1 0
Oaxes | 1 -1 1 -1 0
Odiag | 1 -1 -1 1 0
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into (19.19 we obtain:

hs A A By B, E
e (1- tg)8 = (1-tp) @Q-tp) @Q-tp) @Q-t5) @Q-tp)*
Co (1-1)* = (A-t) (1-tp) (A-tp) (1-tp) (@A+tp)*
ChCl (1-th? = (-t (I-tp) (Q+tp) (L+tp) (L+13)?
oaxes (1-t9)* = (1-t;) (1+t) (1-tp) (L+tp) (1-13)?
O diag: a- t;’))4 = (1- tﬁ) @+ tr)) @+ tp) a- tr)) a- tﬁ)z

The possible irreducible segment group eleménptare listed in the first column;
oaxesdenotes a reflection across either the x-axis or the y-antgaiag denotes
a reflection across a diagonal (see figtkd). In addition, degenerate pairs of
boundary orbits can run along the symmetry lines in the fplicge, with the
fundamental domain group theory weiglits = (C + 0«)/2 (axes) anc, =
(C2 + 013)/2 (diagonals) respectively:

AN A B B E
(1 - tp)(1 - Ots)(L — tp)(L - Otp)(L + tp)?
(1 - tp)(1 - Ots)(L - Ot)(L - t)(L + tp)>(H.63)

axes: (I~ t§)?
diagonals: (% t3)?

(we have assumed thigtdoes not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here onlyidigeral orbitsl3, 24
occur; they correspond to ti2fixed point in the fundamental domain.

TheA; subspace €4, cycle expansion is given by

(1 -1t0)(1 - t2)(1 - t2)(1 — tor)(1 — to2)(1 — t12)

(1 = to02)(1 — to02)(1 — to11)(1 — to12)(1 — to2n)(1 — to22)(1 — t112)
(1~ t122)(1 ~ tooo1)(1 — too02)(1 — too11)(1 — too12)(1 — too21) - - -
= 1-to—t1—t2— (tor — tot1) — (toz — tot2) — (t12 — tal2)

~(too1 — toto1) — (tooz — totoz) — (to11 — tator)

1/in

—(toz2 — taloz) — (tr12 — tits2) — (t122 — tot12)
—(to12 + top1 + totatz — tot12 — titoz — totos) . ... (H.64)

(for typographical conveniencejdreplaced by 0 in the remainder of this section).
For 1-dimensional representations, the characters caaledt the symbol strings:
xa(hp) = (1), yg,(hp) = (=)™, x,(hp) = (-1)**™, whereng andn; are the
number of times symbols 0, 1 appear in fhsyibol string. FoiB; all t, with an
odd total number of 0’s and 1's change sign:

1, = (L+1to)(1+t)(1~-t2)(1 - toa)(L + to2)(L + t12)
(1 + too1)(1 — too2)(1 + to11)(1 — to12)(1 — toa1) (1 + to22)(1 — t112)
(1 +t122)(1 ~ tooon)(L + tooo2)(L — toor1)(L + too12)(L + tooz1) - - -
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= 1+to+t1—t2— (tor —tots) + (toz — tot2) + (t12 — tal2)
+(too1 — toto1) — (tooz — totoz) + (toa1 — tatos)
+(to2z — tatoz) — (t112 — tat12) + (t122 — tat12)
—(to12 + toga + totatz — tot12 — tatoz — totoa) . ... (H.65)

The form of the remaining cycle expansions depends cryagllthe special role
played by the boundary orbits: bl (63) the orbitt, does not contribute t8, and
Bi,

1Zn, (1+1t0)(1 - ta)(1 + tor)(1 + to2)(1 — t12)
(1 = to02)(1 — to02)(1 + toa1)(L + tor2)(L + tozn)(1 + to22)(1 — t112)
(1= t222)(1 + toooD)(L + tooo2)(1 — too11)(1 — too12)(1 — too2) - - -
= 1+to—ty+ (tor —tots) + oz —t12

~(too1 — toto1) — (tooz — totoz) + (to11 — titor)

+lo22 — taz2 — (ta12 — tata2) + (toaz + toza — tot1z — tatoo) . . (H.66)

and

g, = (1-to)(1+1t)(L+tor)(1—tox)(1 + t12)
(1 + too)(L — too2)(L — tor1)(L + tor2)(1 + to21)(1 — toz2)(1 - t112)
(1 + t222)(1 + tooo) (L — tooo2)(L — toor1)(1 + too12)(1 + tooza) - - -
= 1-to+ty+ (tor —tots) — tox + t12
+(too1 — toto1) — (tooz — totoz) — (to11 — tator)
—to22 + t122 — (ta12 — tats2) + (toaz + toza — totaz — tatoo) . . (H.67)

In the above we have assumed thafoes not change sign undej, reflections.
For the mixed-symmetry subspaEdhe curvature expansion is given by

e = 1+ta+ (-t +t?) + (2tooz — toto” — 2tiiz + tots?)
+(2too11 — 2too22 + 2atooz — tor? — to? + 2t1122— 2atiaz
+112% — t0?11%) + (2tooooz — 2too112+ 2totoo11 — 2toor21— 2Aooz11
+2to0222— 2tatooz2+ 2to1012+ 2to1021— 2o1102— tator® + 2tozoz2
~totos? + 2t1110— 211200+ 2tot1122 — 212120+ tot1o® — tolo’ts
+2to0a(—to? + 11%) — 2t11a(~to? + 11%)) (H.68)

Aquick test of the, = (Alezgglggzgé factorization is &orded by the topological
polynomial; substitutind, = Z% into the expansion yields

in =1-3z, 1/{p, =1/, =1, 1/{g,=1/e=1+2Z,

in agreement with(3.40. [exercise 16.9]
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Table H.2: Cy, correspondence between the ternfyl, 2} fundamental domain prime
cycles p'and the full 4-disk{1,2,3,4 cycles p, together with theC,, transformation
that maps the end point of thecycle into an irreducible segment of tipecycle. The
degeneracy of the cycle ismy = 4ng/n,. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each oth&:pyransformations. The full
space orbit listed here is generated from the symmetry egtioade by the rules given in
sect.H.7, starting from disk 1.

p P 9 p P g

0 14 oy 0001 14143232 C,
1 12 oy 0002 14142323 oy
2 13 Cy 0011 1412 e

01 1432 C 0012 14124143 oy
02 1423 ox 0021 14134142 oy
12 1243 oy 0022 1413 e

001 141232 oy 0102 14324123 oy
002 141323 C; 0111 14343212 C;
011 143412 oy 0112 14342343 oy
012 143 e 0121 14312342 oy
021 142 e 0122 14313213 C,

022 142413 oy 0211 14212312 oy
112 121343 C; 0212 14213243 C,
122 124213 oy 0221 14243242 C;
0222 14242313 oy
1112 12124343 oy
1122 1213 e
1222 12424313 oy

H.7 C,, factorization

An arrangement of four identical disks on the vertices of eamegle hasC,,
symmetry (figureH.2b). Cy, consists ofe, oy, oy, Ca}, i.€., the reflections across
the symmetry axes and a rotation by

This system fiords a rather easy visualization of the conversion of a K-dis
dynamics into a fundamental domain symbolic dynamics. Atdeaving the
fundamental domain through one of the axis may be folded bsck reflection
on that axis; with these symmetry operatiaps= ox andg; = oy we associate
labels 1 and 0, respectively. Orbits going to the diagongtlyosed disk cross the
boundaries of the fundamental domain twice; the produdtesge two reflections
is justCy = oyoy, to which we assign the label 2. For example, a ternary string
0010201.. is converted into 12143123, and the associated group-theory
weight is given by.. . g19092909190%-

Short ternary cycles and the corresponding 4-disk cyckeBsied in tableH.7.
Note that already at length three there is a pair of cycle8 {0143 and 02k 142)
related by time reversal, babt by anyC,, symmetries.

The above is the complete description of the symbolic dynarfair 4 sificiently
separated equal disks placed at corners of a rectangle. udqiifehe fundamental
domain requires further partitioning, the ternary degwipis insuficient. For
example, in the stadium billiard fundamental domain onedadsstinguish between
bounces & the straight and the curved sections of the billiard wallthat case
five symbols sfiice for constructing the covering symbolic dynamics.
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The groupCy, has four 1-dimensional representations, distinguishethéiy
behavior under axis reflections. Theg representation is symmetric with respect
to both reflections; thé\, representation is antisymmetric with respect to both.
The B; and By representations are symmetric under one and antisymnuetier
the other reflection. The character table is

Cu|A A B B
e 1 1 1 1
C |1 1 -1 -1
ox | 1 -1 1 -1
oy |1 -1 -1 1

Substituted into the factorized determinatfd (19, the contributions of periodic
orbits split as follows

gp AL A B1 By

e (1-tp)* = (1-tp) (@-tp) (QA-tp) (L-tp)
Cx (1- '[g)2 = (1-tp) (A-ty) (@A-tp) (Q-tp)
ox (1-t)? = (1-t) (1+t) (1-tp) 1+t
op (102 = (-t 1+t (+t) (-t

Cycle expansions follow by substituting cycles and thedugrtheory factors from
tableH.7. ForA; all characters arel, and the corresponding cycle expansion is
given in (H.64). Similarly, the totally antisymmetric subspace factatian A; is
given by H.65), the B, factorization ofC4,. ForB; all t, with an odd total number
of 0's and 2's change sign:

1, = (L+1to)(1-t)(L+t2)(1 +tor)(L — to2)(1 + t12)
(1= to02)(1 + too2)(1 + toa1)(L — t012)(1 — toan)(1 + to22)(1 + t112)
(1 - t222)(1 + tooo1)(1 — tooo2) (1 — too11)(1 + too12)(1 + too21) - - -
= 1+to—t1+ 1+ (tor — tots) — (toz — totz) + (t12 — tato)
~(too1 — totos) + (tooz — totoz) + (tor1 — tator)
+(to22 — tatoz) + (t112 — tit12) — (t122 — tats2)
—(to12 + toza + totatz — tot12 — tatoz — tatoa) . . . (H.69)

For B all t, with an odd total number of 1's and 2's change sign:

1/¢s, = (L1-1to)(1+t)(1+t2)(L+ tor)(L + tox)(1 - ta2)
(1 +to02)(1 + to02)(1 - toa1)(1 — to12)(1 — tozn)(1 — to22)(1 + t112)
(1 + t122)(1 + togoD)(1 + tooo2) (1 — too11)(1 — too12)(1 — too21) - . -
= 1-to+t1+1t2+ (tor —tot1) + (toz — tot2) — (tiz — tal2)
+(too1 — totos) + (tooz — totoz) — (toa1 — tator)
—(to22 — tato) + (t112 — tit12) + (t122 — tats2)
—(to12 + toga + totatz — tot12 — tatoz — tatoa) . ... (H.70)
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Note that all of the above cycle expansions group long otbgether with their
pseudoorbit shadows, so that the shadowing argumentsrieegence still apply.

The topological polynomial factorizes as

1 1 1
—=1+z

1-3z2 , —=—=
i, B (B,

§_A1:

consistent with the 4-disk factorizatioh3.40).

H.8 Hénon map symmetries

We note here a few simple symmetries of the Hénon n3ap8(. Forb # O the
Hénon map is reversible: the backward iteration31.9) is given by

X1 = ~5(1- 28~ %), (H.71)

Hence the time reversal amountsites 1/b, a — a/b? symmetry in the parameter
plane, together wittx — —x/b in the coordinate plane, and there is no need to
explore the & b) parameter plane outside the sthps {-1,1}. Forb = -1 the
map is orientation and area preserving ,

Xn-1=1-ax — Xni1, (H.72)

the backward and the forward iteration are the same, andathewandering set
is symmetric across the,.1 = X, diagonal. This is one of the simplest models of
a Poincaré return map for a Hamiltonian flow. For the origoereversingy = 1
case we have

Xne1=1— X + Xni1. (H.73)

and the non-wandering set is symmetric across¢he= —x, diagonal.

Commentary

Remark H.1 Literature This materialis covered in any introduction to linear aligeh,

2, 3] or group theory {1, 10]. The exposition given in sectsl.2.1andH.2.2is taken
from refs. B, 7, 1]. Who wrote this down first we do not know, but we like Harter's
exposition B, 9, 17] best. Harter's theory of class algebré&gsos a more elegant and
systematic way of constructing the maximal set of commutimgriant matriced/; than
the sketch fered in this section.
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Remark H.2 Labeling conventions While there is a variety of labeling conventioris]|
8] for the reducedC4, dynamics, we prefer the one introduced here because obig cl
relation to the group-theoretic structure of the dynamties:global 4-disk trajectory can
be generated by mapping the fundamental domain trajestorito the full 4-disk space
by the accumulated product of tli, group elements.

Remark H.3 Cy symmetry  Cy is the symmetry of several systems studied in the
literature, such as the stadium billiartl(], and the 2-dimensional anisotropic Kepler

potential {].

Exercises

H.1. Amlagroup? Show that multiplication table

-0 o0 T®O

-0 o0oT® D0
0O —+~To0nolw
DO —+~0ao|lo
QD wTolo
TO Do oo
DT O®O -

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appertdis.)

From W.G. Harter 7]

H.2. Three coupled pendulums with aC, symmetry.
Consider 3 pendulums in a row: the 2 outer ones of
the same masgs and length, the one midway of same
length but dfferent mas#, with the tip coupled to the
tips of the outer ones with springs offftiesk. Assume
displacements are smak,/| < 1.

(a) Show that the acceleration matkix —axis

wherea = k/ml, ¢ = k/MI andb = g/I.

(b) Check that§ R] = O, i.e., that the dynamics is
invariant undeiC, = {e R}, whereR interchanges the
outer pendulums,

010
100

0 01
R- }

(c) Construct the corresponding projection operators
P, and P_, and show that the 3-pendulum system
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X1 a+b —a 0 X1
% |=—-| -c 2c+b -c X2 J R H.3.
X3 0 -a a+b X3

decomposes into a-d subspace, with eigenva
(w)2 = a+ b, and a 2d subspace, with acceleral
matrix (trust your own algebra, if it strays from whe
stated here)

a+b -v2a

a® =
-vV2c c+b

The exercise is simple enough that you can do it wi
using the symmetry, so: construRt, P_ first, use the
to reducea to irreps, then proceed with compu
remaining eigenvalues af

(d) Does anything interesting happerMf= m?

The point of the above exercise is that almost al
the symmetry reduction is only partial: a me
representation of dimensiahgets reduced to a sef
subspaces whose dimensioif® satisfy Y, d® = d
Beyond that, love many, trust few, and paddle your
canoe.

From W.G. Harter 7]

Laplacian is a non-local operator.

While the Laplacian is a simple tri-diagonaligirenc
operator H.39), its inverse (the “free” propagator
statistical mechanics and quantum field theory)
messier object. A way to compute is to start expar
propagator as a power series in the Laplacian

1 1o 1
LA et (H.74

As A is a finite matrix, the expansion is conver
for sufficiently largen?. To get a feeling for what
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invariant, exercisél.4. H5
H.4. Lattice Laplacian diagonalized.  Insert the identity

> P® = 1 wherever you profitably can, and use the
References

involved in evaluating such series, show thatis:

6 -4 1 1 -4
4 6 -4 1
111 -4 6 -4 1
A% == (H.75
= 1 -a (H.75)
6 -4
-4 1 1 -4 6
What A3, A% ... contributions look like is now

clear; as we include higher and higher powers of the
Laplacian, the propagator matrix fills up; while the
inverse propagator is dferential operator connecting
only the nearest neighbors, the propagator is integral
operator, connecting every lattice site to any other lattic
site.

This matrix can be evaluated as is, on the lattice,
and sometime it is evaluated this way, but in case
at hand a wonderful simplification follows from the
observation that the lattice action is translationally

. Fix Predrag’s lecture od Feb 5, 2008.
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eigenvalue equatiorH(50) to convert shifth matrices
into scalars. 1M commutesvith h, then (p; M) =
M®s, and the matriXM acts as a multiplication by
the scalai® on thekth subspace. Show that for the 1-
dimensional version of the lattice Laplacian.B88) the
projection on théth subspace is

(6l A@) = %(cos(%"k) - 1) S . (H.76)

In the kth subspace the propagator is simply a number,
and, in contrast to the mess generatedHby §), there is
nothing to evaluating:

e = O
Kme1-A mzfﬁ(cosmk/N—l)

L(H.77)

wherek is a site in theN-dimensional dual lattice, and
a=L/N is the lattice spacing.

Are theC3
frequencies on pp. 4,5 correct? If not, write the correct
expression for the beat frequency.

[H.1] I. M. Gel'fand, Lectures on Linear AlgebréDover, New York 1961).

[H.2] S.Lang,Linear Algebra(Addison-Wesley, Reading, MA 1971).

[H.3] K. Nomizu, Fundamentals of Linear AlgebréChelsea Publ., New York

1979).
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Appendix |

Convergence of spectral
determinants

I.1 Curvature expansions: geometric picture

will note that the numerical convergence of cycle exparsfonsystems such

as the 3-disk game of pinball, takl&.2.2 is very impressive; only three input
numbers (the two fixed poin 1 and the 2-cycl@0) already yield the escape rate
to 4 significant digits! We have omitted an infinity of unstabycles; so why does
approximating the dynamics by a finite number of cycles warkvsll?

I F YOU HAS SOME EXPERIENCE With numerical estimates of fractal dimensions, you

Looking at the cycle expansions simply as sums of unrelavatributions is
not specially encouraging: the cycle expansiv®.9 is not absolutely convergent
in the sense of Dirichlet series of set8.6 so what one makes of it depends on
the way the terms are arranged.

The simplest estimate of the error introduced by approximgagmooth flow
by periodic orbits is to think of the approximation as a téssan of a smooth
curve by piecewise linear tiles, figuiell

I.1.1 Tessalation of a smooth flow by cycles

One of the early high accuracy computationg efas due to Euler. Euler computed
the circumference of the circee of unit radius by inscribimtg it a regular polygon
with N sides; the error of such computation is proportional-tcos(2r/N) o« N=2.

In a periodic orbit tessalation of a smooth flow, we cover thase space bg™
tiles at thenth level of resolution, whera is the topological entropy, the growth
rate of the number of tiles. Hence we expect the error in afprating a smooth
flow by €™ linear segments to be exponentially small, of oridef oc &2,

726
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I.1.2 Shadowing and convergence of curvature expansions

We have shown in chapté that if the symbolic dynamics is defined by a finite
grammar, a finite number of cycles, let us say the kitstms in the cycle expansion
are necessary to correctly count the pieces of the Cantogeswtrated by the
dynamical system.

They are composed of products of non—intersecting loopshenMarkov
graph, seel(3.13. We refer to this set of non—intersecting loops adtimelamental
cycles of the strange set. It is only after these terms haga beluded that the
cycle expansion is expected to converge smoothly, i.ey forln > k are the
curvaturesc, in (9.2??) a measure of the variation of the quality of a lirzeal
covering of the dynamical Cantor set by the lengttycles, and expected to fall
off rapidly with n.

The rate of fall-df of the cycle expansion céiicients can be estimated by
observing that for subshifts of finite type the contribusioinom longer orbits
in curvature expansions such ds(7) can always be grouped into shadowing
combinations of pseudo-cycles. For example, a cycle viitariaryab= s;; - - - s,
will appear in combination of form

Yg=1-~(tab—tato) ~ .

with ab shadowed by cycl@ followed by cycleb, wherea = s;5--- Sy, b =
Sl S-1Sn, ands labels the Markov partitionMs, (10.4) that the trajectory
traverses at thkth return. If the two trajectories coincide in the firstsymbols,
at themth return to a Poincaré section they can land anywhere iphhse space
M

[£Ta0x) — T (xa.)| ~ 1.,

where we have assumed that théis compact, and that the maximal possible
separation acros$lis O(1). Herex, is a point on thé& cycle of periodT,, andx,, ..

is a nearby point whose trajectory tracks the cgder the firstm Poincaré section
returns completed at the tinig_. An estimate of the maximal separation of the
initial points of the two neighboring trajectories is aakgd by Taylor expanding
aroundxy . = Xz + 0Xa...

afT2(xq)
ox

fla() - 1 (xa.) ~ “0Xa. = Ma-6Xa. .

hence the hyperbolicity of the flow forces the initial poiaf®ieighboring trajectories
that track each other for at leastconsecutive symbols to lie exponentially close

1
0. o —
™
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Similarly, for any observablel6.1) integrated along the two nearby trajectories
OATa
AT (xa ) ~ ATe0g) + ——| -0,
X -~
S0

TaConst
[Aal

|AT(xa.) = ATa(xq)| oc

B

As the time of return is itself an integral along the trajegtoeturn times of nearby
trajectories are exponentially close

TaConst

Ta. - T
Ta. al o Aal

5

and so are the trajectory stabilities

TaConst

Ta, — Ta /.
|AT2 (%) = AT2(xg)| o« TR

Substitutingtap one finds

b —lalb _ g o sTat o Ta)
tab

AalAp ‘
Aab '

Since with increasingn segments oab come closer t@, the diferences in action
and the ratio of the eigenvalues converge exponentiallly thi¢ eigenvalue of the
orbita,

Ta+To—Tap~ CONStx A3, [AaAb/Aas| ~ €XpECONSYAap)

Expanding the exponentials one thus finds that this termartyisle expansion is
of the order of

tib — tata-1p ~ CONSEX typAs) . (1.1)

Even though the number of terms in a cycle expansion growsresgially, the
shadowing cancellations improve the convergence by amexjtial factor compared
to trace formulas, and extend the radius of convergenceegdefiodic orbit sums.
Tablel.1 shows some examples of such compensations between loreg @il
their pseudo-cycle shadows.
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n tab — talo Tan— (Ta+To) | log[Zele] ab-a-b

2 [ -5.2346515078410° | 4.8580292737410° -6.3x107 01-01

3| -7.9602860013910° | 5.2171310143210° -9.8x10° 001-001

4| -1.03326529874107 | 5.2985819941910* -1.3x10° 0001-0001

5| -1.2748152201810° | 5.3551357469%10° -1.6x10* | 00001-60001
6 | -1.5254470482810' | 5.4099988262510° -1.8x10° | 000001-00001
2 [ -5.2346515078410% | 4.8580292737%107 -6.3x107 01-01

3| 5.3041475299610° | -3.6709365669010° 7.7x10° 011-0%1

4| -5.4093426168010° | 3.1492576131810" -9.2x10* 0111-0111

5| 4.9912950883810' | -2.6729282279510° 1.0x10* | 01111-01111
6 | -4.3924600058810' | 2.2708711626810° -1.0x10° | 011111-01111

Table I.1: Demonstration of shadowing in curvature combinations afleweights of
form tap — tatp, the 3-disk fundamental domain cyclesRat d = 6, table27.2 The ratio
AaAp/Aap is approaching unity exponentially fast.

Itis crucial that the curvature expansion is grouped (amaicated) by topologically
related cycles and pseudo-cycles; truncations that ignpogy, such as inclusion
of all cycles withT < Tmax Will contain orbits unmatched by shadowed orbits,
and exhibit a mediocre convergence compared with the aunevaixpansions.

Note that the existence of a polezt 1/c implies that the cycle expansions
have a finite radius of convergence, and that analytic coations will be required
for extraction of the non-leading zeros of¢l Preferably, one should work with
cycle expansions of Selberg products, as discussed inl&2t2

I.1.3 No shadowing, poorer convergence

Conversely, if the dynamics is not of a finite subshift typeere is no finite
topological polynomial, there are no “curvature” correns, and the convergence
of the cycle expansions will be poor.

I.2  Onimportance of pruning

If the grammar is not finite and there is no finite topologicaelypomial, there
will be no “curvature” expansions, and the convergence béllpoor. That is
the generic case, and one strategy for dealing with it is tbdigood sequence of
approximate but finite grammars; for each approximate granuycle expansions
yield exponentially accurate eigenvalues, with succesapproximate grammars
converging toward the desired infinite grammar system.

When the dynamical system’s symbolic dynamics does nothéinée grammar,
and we are not able to arrange its cycle expansion into awevatombinations
(18.7), the series is truncated as in s€@.5 by including all pseudo-cycles such
that|Ap, --- Ap| < |Apl, whereP is the most unstable prime cycle included into
truncation. The truncation error should then be of ol@&" ™ Tp/|Ap|), with h
the topological entropy, arel™ roughly the number of pseudo-cycles of stability
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~ |Ap|. In this case the cycle averaging formulas do not convergeifgiantly
better than the approximations such as the trace forn20l4.§.

Numerical results (see for example the plots of the accucdcthe cycle
expansion truncations for the Heénon map in réf) [ndicate that the truncation
error of most averages tracks closely the fluctuations duleet@rregular growth
in the number of cycles. It is not known whether one can exple sum rules
such as the mass flow conservati@d.(L]) to improve the accuracy of dynamical
averaging.

.3 Ma-the-matical caveats

“Lo duca e io per quel cammino ascoso intrammo a
ritornar nel chiaro monde; e sanza cura aver d’alcun riposa
salimmo su, el primo e io secondo, tanto ch'i’ vidi de le
cose belle che porta ‘I ciel, per un perutgio tondo.”

—Dante

§
J The periodic orbit theory is learned in stages. At first giarit seems
totally impenetrable. After basic exercises are gone tjinput seems totally
trivial; all that seems to be at stake are elementary maaiijoms with traces,
determinants, derivatives. But if start thinking about ydliget a more and more
uncomfortable feeling that from the mathematical pointiefw this is a perilous
enterprise indeed. In chaptet we shall explain which parts of this enterprise are
really solid; here you give a fortaste of what objections a mathimat might
rise.

Birkhoff’s 1931 ergodic theorem states that the time averdged) exists
almost everywhere, and, if the flow is ergodic, it impliesttte(x)) = (a) is a
constant for almost akk. The problem is that the above cycle averaging formulas
implicitly rely on ergodic hypothesis: they are strictlyroect only if the dynamical
system is locally hyperbolic and globally mixing. If one éakag derivative of
both sides

ps)eH = fM dx(y - F1(9)AMps(x),

and integrates over

[ av a—aﬁpﬁw)]ﬂ:o + t;’—jﬁzo [ avoots) -

0
[ axAoapo09+ [ ox @p,xx)\ﬂ:o,

one obtains in the long time limit

aJs
= fM dy po(x) (a(x)) - (12)
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This is the expectation valud§.12 only if the time averagel(.4) equals the
space averagelb.9), (a(x)) = (a), for all x except a subset € M of zero
measure; if the phase space is foliated into non-commungcaubspaced =
M1 + M, of finite measure such thdt(M;) N M, = 0 for all t, this fails. In
other words, we have tacitly assumed metric indecompasaloil transitivity.
We have also glossed over the nature of the “phase sp&te’For example,
if the dynamical system is open, such as the 3-disk game @iaflinM in the
expectation value integrall.2? is a Cantor set, the closure of the union of all
periodic orbits.  AlternativelyM can be considered continuous, but then the
measurepg in (1.2) is highly singular. The beauty of the periodic orbit theory
is that instead of using an arbitrary coordinatizationMdfit partitions the phase
space by the intrinsic topology of the dynamical flow anddmithe correct measure
from cycle invariants, the stability eigenvalues of peitoalbits.

Were we to restrict the applications of the formalism onlysystems which
have been rigorously proven to be ergodic, we might as wédl @ip the shop
right now. For example, even for something as simple as #@oH mapping we
do not know whether the asymptotic time attractor is strageeriodic. Physics

. . . . . . Igexercise 15.1]
applications require a more pragmatic attitude. In theecgsipansions approac

we construct the invariant set of the given dynamical systsm closure of the
union of periodic orbits, and investigate how robust areaherages computed
on this set. This turns out to depend very much on the obslenbaing averaged
over; dynamical averages exhibit “phase transitions”,targbove cycle averaging
formulas apply in the “hyperbolic phase” where the averageldminated by
exponentially many exponentially small contributionst, flail in a phase dominated
by few marginally stable orbits. Here the noise - always gmésno matter how
weak - helps us by erasing an infinity of small traps that therdgnistic dynamics
might fall into.

Still, in spite of all the caveats, periodic orbit theory idbeautiful theory,
and the cycle averaging formulas are the most elegant andrfidvool available
today for evaluation of dynamical averages for low dimenal@haotic deterministic
systems.

.4 Estimate of thenth cumulant

An immediate consequence of the exponential spacing ofigemealues is that
the convergence of the Selberg product expandiohZ) as function of the topological
cyclelengthF(2) = },,CnZ", is faster than exponential. Considet-alimensional
map for which all fundamental matrix eigenvalues are equgk Ap1 = Ap2 =

-+ = Apg. The stability eigenvalues are generally not isotropicvéaer, to
obtain qualitative bounds on the spectrum, we replace aliilgy eigenvalues
with the least expanding one. In this case theycle contribution to the product
(17.9 reduces to

)

Fo@d = H (1—tpu',§“k2*”‘+k“)
kykg=0
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e §

_ d-1+K (k+d—1)
s () S

3 () ) (.3

k=0 (=0

i}
o

In one dimension the expansion can be given in closed f@h8B6), and the
codficientsCy in (D.12) are given by

K(k-1)
2

u
p= (-1k—P ¢k (1.4)
o moa-u)

Hence the ca@écients in the=(2) = 3, C,2" expansion of the spectral determinant
(18.17) fall off faster than exponentially, 48, ~ u™™1/2_ |n contrast, the cycle
expansions of dynamical zeta functions fall of “only” expatially; in numerical
applications, the diierence is dramatic.

In higher dimensions the expansions are not quite as comj&et leading
power ofu and its coéficient are easily evaluated by use of binomial expansions
(1.3) of the (1+tuk)™ factors. More precisely, the leading terms intk codficients
are of form

o+ um1+2n‘q+,..+1mj t1+m1+mz+...+mJ +..

[ Jaa+uym
k=0

d+m
my () Jar 951
= ...+(uﬁt RN c= LILIT LN

Hence the ca@icients in theF(2) expansion fall & faster than exponentially, as
u™™ The Selberg products are entire functions in any dimengimvided that
the symbolic dynamics is a finite subshift, and all cycle eigdues are diiciently
bounded away from 1.

The case of particular interest in many applications are2tdeHamiltonian
mappings; their symplectic structure implies thgt= A1 = 1/Ap2, and the
Selberg productl(7.13 In this case the expansion corresponding 2.89) is
given by @1.39 and the cofiicients fall df asymptotically a€, ~ u™".
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Appendix J

Infinite dimensional operators

(A. Wirzba)

His APENDIX, taken from ref. [], summarizes the definitions and properties

I of trace-class and Hilbert-Schmidt matrices, the deteamts over infinite
dimensional matrices and regularization schemes for oetior operators
which are not of trace-class.

J.1 Matrix-valued functions

(P. Cvitanovit)

As a preliminary we summarize some of the properties of fonstof finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

A= A= Sa00. SR

Derivatives of products of matrices are evaluated by thénahde

d dA dB
A matrix and its derivative matrix in general do not commute
d , dA dA
The derivative of the inverse of a matrix, follows frogg(AA‘l) =0:
d,1_ 1dAl 2.4)

dx TAdxXA
733
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A function of a single variable that can be expressed in terhaslditions and
multiplications generalizes to a matrix-valued functionrbplacing the variable
by the matrix.

In particular, the exponential of a constant matrix can Hendd either by its
series expansion, or as a limit of an infinite product:

_ vl 0_
= ZEA, A=1 (3.5)
k=0
1 N
= N||an(1+ﬁA) (3.6)

The first equation follows from the second one by the binoithi@brem, so these
indeed are equivalent definitions. That the terms of of@{gt~2) or smaller do
not matter follows from the bound

_ N N N
(1+x e) <(1+x+6xN) <(1+x+e) ,

whereloxy| < €. If lim §xy — 0 asN — oo, the extra terms do not contribute.

Consider now the determinant

det@) = Jim (det (1+ A/N)N .

To the leading order in/N
1 -2

det(1+A/N) =1+ NtrA+ O(N™).

hence
1 N
dete” = lim (1 F AT O(N’Z)) =rA 3.7)

Due to non-commutativity of matrices, generalization ofiadtion of several
variables to a function is not as straightforward. Expm@ssnvolving several
matrices depend on their commutation relations. For exeyrthe commutator
expansion

éABe™ = B +t[A,B] + ;[A,[A,B]] + g[A, [A[A,B]]] +--- (3.8)

sometimes used to establish the equivalence of the Heigpabe Schrodinger
pictures of quantum mechanics follows by recursive evalnaift derivatives

d (Ap ta) _ A A
d_t(e Be™) =€[A,Ble™.
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Manipulations of such ilk yield
eA+BIN — ANGB/N _ Z—;Z[A, B] + O(N7%),
and the Trotter product formula: B, C andA = B + C are matrices, then

¢ = Jim ()’ (1.9)

J.2 Operator norms
(R. Mainieri and P. Cvitanovic)

§
J The limit used in the above definition involves matrices -rapars in
vector spaces - rather than numbers, and its convergencbecahecked using
tools familiar from calculus. We briefly review those tookrd, as throughout the
text we will have to consider manyftirent operators and how they converge.

Then — o convergence of partial products

Enz [ (1+%A)

0<m<n

can be verified using the Cauchy criterion, which states tthetsequencé¢E,}
converges if the dierenced|Ex — E||| — 0 ask, j — co. To make sense of this we
need to define a sensible nofim - ||. Norm of a matrix is based on the Euclidean
norm for a vector: the idea is to assign to a matvixa norm that is the largest
possible change it can cause to the length of a unit vector ~

Ml = suplIMAll, [IAll =1. (3.10)
n

We say thafl-|| is the operator norm induced by the vector ndirth Constructing
a norm for a finite-dimensional matrix is easy, but Mdeen an operator in an
infinite-dimensional space, we would also have to spec#sitacer belongs to.
In the finite-dimensional case, the sum of the absolute salfithe components of
a vector is also a norm; the induced operator norm for a mistnixith components
M;; in that case can be defined by

M| = miaXZ|Mij|~ (3.11)

The operator normJ(11) and the vector normJ(10 are only rarely distinguished
by different notation, a bit of notational laziness that we shétlolgh
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Now that we have learned how to make sense out of norms of topgrave

can check that )
[exercise J.1]

lle) < Al (3.12)
[exercise 2.9]

As ||A]| is a number, the norm of” is finite and therefore well defined. In
particular, the exponential of a matrix is well defined fdnaellues oft, and the
linear diferential equation4.10 has a solution for all times.

J.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref][ Refs. [7, 10, 11, 14] should

be consulted for more details and proofs. The trace classHibdrt-Schmidt
property will be defined here for linear, in general non-hiéem operatorsA e
L(H): H — H (whereH is a separable Hilbert space). The transcription to
matrix elements (used in the prior chapters) is simgly= (¢i, A¢;) where{sn}

is an orthonormal basis off and( , ) is the inner product i+ (see sectJ.5
where the theory ofon Koch matrice®f ref. [17] is discussed). So, the trace
is the generalization of the usual notion of the sum of thegalial elements of a
matrix; but because infinite sums are involved, not all ojpesawill have a trace:

Definition:

(@) An operatorA is calledtrace class A € 1, if and only if, for every
orthonormal basiggn}:

D K Al < oo (9.13)
n

The family of all trace class operators is denotedy

(b) An operatorA is calledHilbert-Schmidt, A € 7, if and only if, for every
orthonormal basiggn}:

D IAgI? < oo
n

The family of all Hilbert-Schmidt operators is denoted y.

Bounded operatorsare dual to trace class operators. They satisfy the thexfivitp
condition: [(y, Bg)| < Cllwlll|¢]] with C < co andy, ¢ € H. If they have eigenvalues,
these are bounded too. The family of bounded operators teléyB(#) with
the norm||B|| = SUme% for ¢ € H. Examples for bounded operators are
unitary operators and especially the unit matrix. In fagerg bounded operator

can be written as linear combination of four unitary operaito

Abounded operatdC is compactif it is the norm limit of finite rank operators.

appendWirzba - 9dec2002.tex



APPENDIX J. INFINITE DIMENSIONAL OPERATORS 737

An operatorA is calledpositive A > 0, if (A¢,¢) > 0 Y¢ € H. Notice that
ATA > 0. We defindA| = VATA.

The most important properties of the trace and Hilbert-Sdhilasses are
summarized in (see refsz,[9]):

(@) J1 and 9, are =ideals., i.e., they are vector spaces closed under scalar

multiplication, sums, adjoints, and multiplication witbinded operators.
(b) A e g;ifandonly if A = BC with B,C € .
(c) J1 c 92 c Compact operators.

(d) For any operatoA, we haveA € 7> if Y, [|A¢n|? < oo for a single basis.
For any operatoA > 0 we haveA € 71 if X, [{¢n, Adn)| < oo for a single
basis.

(e) If Ae g1, Tr(A) = X(¢n, A¢n) is independent of the basis used.

(f) Tris linear and obeys TA) = Tr(A); Tr(AB) = Tr(BA) if either A € J1
andB boundedA bounded and € 71 or bothA,B € J>.

(9) J2 endowed with the1 inner produ¢\, By, = Tr(A"B) is a Hilbert space.
If Al = [Tr(ATA)]z, then||All2 > ||All and 7> is the]| ||o-closure of the
finite rank operators.

(h) g1 endowed with the normA||; = Tr( VATA) is a Banach spacejA|; >
[IAll2 > [IAll and 77 is the|| ||1-norm closure of théinite rank operators. The
dual space off; is B(H), the family of bounded operators with the duality
(B,A) = Tr(BA).

(i) If A,B € J2, then||AB|l1 < [All2IIBll. If A € J2 andB € B(H), then
IABII2 < lIAI2IBIL. If A € 71 andB € B(H), thenllABIlx < [IAll1IBI.

Note the most important property for proving that an operatdrace class is the
decompositior{b) into two Hilbert-Schmidt ones, as the Hilbert-Schmidt pdp
can easily be verified in one single orthonormal basis (sge Property(e)
ensures then that the trace is the same in any basis. Pegf{ajtand (f) show
that trace class operators behave in complete analogy te fiank operators.
The proof whether a matrix is trace-class (or Hilbert-Satjnor not simplifies
enormously for diagonal matrices, as then the second papragerty (d) is
directly applicable: just the moduli of the eigenvalues {an case of Hilbert-
Schmidt — the squares of the eigenvalues) have to be summedarger to answer
that question. A good strategy in checking the trace-classacter of a general
matrix A is therefore the decomposition of that matrix into two neasiB and
C where one, saf, should be chosen to be diagonal and either just barely of
Hilbert-Schmidt character leaving enough freedom for @stqerB or of trace-
class character such that one only has to show the boundefdmés
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J.4 Determinants of trace class operators

This section is mainly based on ref§, [L.0] which should be consulted for more
details and proofs. See also refs1,[14].

Pre-definitions (Alternating algebra and Fock spaces):
Given a Hilbert spaceH, @"H is defined as the vector space of multi-linear

functionals onH with ¢ ® --- ® ¢ € ®"H in caseds,...,¢n € H. N (H)
is defined as the subspacessfH spanned by the wedge-product

1
GLAApn = =i Z (M) Pn(1) ® -+ ® Pr(n)]

* n€Pn

where®;, is the group of all permutations of letters ande(r) = +1 depending
on whetherr is an even or odd permutation, respectively. The inner poiiu
A"(H) is given by

(@1 A Adnmi A~ Ama) = det{(gi, 7))

where defij} = 3 ep, €(m)arr(1) - - - @e(n)- A"(A) is defined as functor (a functor
satisfies\"(AB) = A"(A) A"(B)) on A\"(H) with

NP @1 A~ A d0) = AL A - A Ay

Whenn = 0, \"(H) is defined to beC and A\"(A) as 1.C — C.

Properties: If A trace class, i.eA € 71, then for any, Ak(A) is trace class, and
for any orthonormal basig,} the cumulant

T(A @)= Y @@ n A g AG, A AABY) <o

ip<--<ik

is independent of the basis (with the understanding thalT&) = 1).

Definition: LetA € 71, then det (+ A) is defined as
det@ +A) = ) Tr ( AK(A)) (.14)
k=0

Properties:

Let A be a linear operator on a separable Hilbert spat@nd {¢;}7" an
orthonormal basis.
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@ XpoTr (/\k(A)) converges for eacA € 7;.

(b) Idet@ + A)| < [132 (1 +;(A)) wherey(A) are thesingular values ofA,
i.e., the eigenvalues pA| = VATA.

(c) Idet + A)l < exp(lAll2).

(d) ForanyAi,...,Aq € Ju, (z1.....z) + det(1+ 3, zAj) is an entire
analytic function.

(e) If A,B e J1,then
det@ + A)detd + B) = det(1+A +B+AB)

= det((1+A)(1+B))
= det((1+B)(1+A)) . (J.15)

If A € 71 andU unitary, then
det(U™(1+ A)U) = det(1+ U™'AU) = det(l + A) .

(f) If A e J1,then @+ A)is invertible if and only if det{ + A) # 0.

(g) If 2+ 0isann-times degenerate eigenvaluefk 71, then det{ + zA) has
azero ofordenatz=-1/A.

(h) For anye, there is aC.(A), depending oA € 71, so that/det(l + zA)| <
Ce(A) exp(el2).

(i) ForanyA € 91,

N(A)
det@+A) = [ | (1+ ;) (3.16)

=1

N(A)

where here and in the foIIowirigj(A)}J 1 are the eigenvalues éfcounted

with algebraic multiplicity .
(j) Lidskii's theorem:For anyA € 71,

N(A)
Tr(A) = Z Aj(A) < 0.
j=1

]

(k) If A e g1, then

N(AMA))

n(Nw) =5 (e

=1

D ALA) A (A) < oo,

1<ji<<jksN(A)
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0 If AeJy,then

det(1+2A) = )" # D A A) <. (317)
k=0 1<ji<<jksN(A)

(m) If A € 73, then foriz small (i.e.Jzl maX; (A)| < 1) the serie$i2 ) ZTr ((-A)¥) /k
converges and

det(1+ zA)

exp[— Z %Tr ((—A)k)]
k=1
exp(Trin(l + zA)) . (J.18)

(n) The Plemelj-Smithies formul@efineam(A) for A € 71 by

. am(A)
det(l +7A) = )" 2" g (3.19)
m=0
Thenam(A) is given by them x m determinant:
Tr(A) m-1 0 0
Tr(A%)  Tr(A) m-2 0
Tr(A%)  Tr(A? Tr(A 0
am(A) = (. ) (. ) ( ) (J.20)
1
Tr(A™  Tr(AMD) Tr(AM2) ... Tr(A)

with the understanding thato(A) = 1 andai(A) = Tr(A). Thus the
cumulanty(A) = am(A)/m! satisfy the following recursion relation

cm(A) %Z(—l)k”cm_k(A) Tr(AY) form>1
k=1

co(A) = 1. (3.21)

Note that in the context of quantum mechanics formuld9 is the quantum
analog to the curvature expansion of the semiclassicalfastdion with Tr(A™)
corresponding to the sum of all periodic orbits (prime arsbakpeated ones) of
total topological lengthm, i.e., letc(s.c.) denote then'™ curvature term, then the
curvature expansion of the semiclassical zeta functionivisngby the recursion
relation

1¢ ke+mH-1 tp(k)r
= Z(—l) Cmek(s.C.) Z [p /" formx>1
k=1 pr>0 1- (l)
wnﬁ[p]r:k Ap

1. J.22)

Cm(s.c)

Co(s.C.)
In fact, in the cumulant expansiod.(9 as well as in the curvature expansion
there are large cancelations involved. Let us order — withasi of generality —
the eigenvalues of the operatdre 7; as follows:

[l > |2l = -+ = [di-al 2 4] = |djsal > -+
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(This is always possible because Efi(f) [4i] < «.)  Then, in the standard
(Plemelj-Smithies) cumulant evaluation of the determinaq. (.19, we have
enormous cancelations of big numbers, e.g. atkthecumulant orderK > 3),

all the intrinsically large ‘numberst, 211,, ..., 522,13, ... and many more
have to cancel out exactly until onfy1j, «..<j.<na) 4j; - - - 4j, IS finally left over.
Algebraically, the fact that there are these large carioaktis of course of no
importance. However, if the determinant is calculated miza#y, the big cancelations
might spoil the result or even the convergence. Now, theature expansion of

the semiclassical zeta function, as itis known todgty)e semiclassical approximation
to the curvature expansion (unfortunately) in the PlerBefjithies form. As the
exact quantum mechanical result is approximated semictdlys the errors introduced
in the approximation might lead to bidfects as they are done with respect to large
guantities which eventually cancel out and not — as it woddbcourse better

— with respect to the small surviving cumulants. Thus it widoé very desirable

to have a semiclassical analog to the reduced cumulant sixpe@l.17) or even

to (J.19 directly. It might not be possible to find a direct semicleakanalog for

the individual eigenvalues;. Thus the direct construction of the semiclassical
equivalent to J.16 is rather unlikely. However, in order to have a semiclaasic
“cumulant” summation without large cancelations — s&é79 — it would be just
suficient to find the semiclassical analog of each complete cambyl.17 and

not of the single eigenvalues. Whether this will eventuilypossible is still an
open question.

J.5 Von Koch matrices

Implicitly, many of the above properties are based on therthef von Koch
matrices [1, 12, 13]: An infinite matrix 1 — A = |6 — ajll{°, consisting of
complex numbers, is called a matrix with ahsolutely convergent determinant

if the seriesy’ |aj,k, aj,k, - - - &j,.k,| CONverges, where the sum extends over all pairs
of systems of indicesj(, jo,---, jn) and ki, ke, - - -, ky) which differ from each
other only by a permutation, arjd < j» <--- jn (n=1,2,---). Then the limit

r!il”ﬂ delH(SJ'k - ajk||2 =detl - A)

exists and is called the determinant of the matrix A. It can be represented in
the form

- - o |ai ax am
1 a: a 1 ji Ak
det@ - A)=1- § ajj + o g ‘aij ait‘_ﬁ § A& Ak Am |+
= =i Cjkm=l| @mj @mk amm

where the series on the r.h.s. will remain convergent evireinumbersy (j, k =
1,2,---) are replaced by their moduli and if all the terms obtainedekyanding
the determinants are taken with the plus sign. The matriA is calledvon Koch
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matrix, if both conditions

r

-

|a”| < oo, (J.23)
=

)

gl < oo (3.24)

k=1

are fulfilled. Then the following holds (see ref.1} 13]): (1) Every von Koch
matrix has an absolutely convergent determinant. If theetes of a von Koch
matrix are functions of some parametefaji = ajc(u), j.k = 1,2,---) and both
series in the defining condition converge uniformly in thendin of the parameter
i, then asn — oo the determinant dif — ax(u)ll] tends to the determinant
det(L+ A(w)) uniformly with respect teu, over the domain gt. (2) If the matrices
1- A andl- B are von Koch matrices, then their proddct C = (1- A)(1- B)

is a von Koch matrix, and

det(l - C) = det(l — A) det(L - B).

Note that every trace-class matixe 71 is also a von Koch matrix (and that
any matrix satisfying conditionJ(24 is Hilbert-Schmidt and vice versa). The
inverse implication, however, is not true: von Koch matsieee not automatically
trace-class. The caveat is that the definition of von Kochrioet is basis-dependent,
whereas the trace-class property is basitependentAs the traces involve infinite
sums, the basis-independence is not at all trivial. An exarfigp an infinite matrix
which is von Koch, but not trace-class is the following:

2/j for i—-j=-1 and jeven,
Ajj = 2/i  for i-j=+1 and ieven,
0 else,
ie.
01 O 0 0 0
10 O 0 0 0
00 0O Y2 O 0
00 Y2 0 0 0
A= (J.25)
00 O 0 0 13
00 O 0

Obviously, condition {.23 is fulfilled by definition. Second, the conditiod.g4

is satisfied ag> ; 2/n? < co. However, the sum over the moduli of the eigenvalues
is just twice the harmonic serigs, ; 1/n which does not converge. The matrix
(J.25 violates the trace-class definitioh {3, as in its eigenbasis the sum over the
moduli of its diagonal elements is infinite. Thus #iesoluteconvergence is traded
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for a conditionalconvergence, since the sum over the eigenvalues themseines

be arranged to still be zero, if the eigenvalues with the saméulus are summed
first. Absolute convergence is of course essential, if suave o be rearranged

or exchanged. Thus, the trace-class property is indispéngar any controlled
unitary transformation of an infinite determinant, as thesré will be necessarily

a change of basis and in general also a re-ordering of thesmonding traces.
Therefore the claim thaa Hilbert-Schmidt operator with a vanishing trace is
automatically trace-class false. In general, such an operator has to be regularized
in addition (see next chapter).

J.6 Regularization

Many interesting operators are not of trace class (althahegj might be in some
Jp with p> 1 - an operatoA is in 7, iff Tr/AP < oo in any orthonormal basis).
In order to compute determinants of such operators, an sgtenf the cumulant
expansion is needed which in fact corresponds to a regatane procedured,
105

E.g. letA € Jp with p < n. Define

n-1
Ry(zA) = (1 + ZA) exp[z %Ak] -1
k=1

as the regulated version of the operat&r Then the regulated operatBg(zA) is
trace class, i.eRy(zA) € J1. Define now def(1 + zA) = det(l + Ry(zA)). Then
the regulated determinant

N(zA)

det(1+7A) = ]—[

=1

n- 1 A
(1+21j(A)) exp ‘( ) < o, (3.26)

k=1

exists and is finite. The corresponding Plemelj-Smithiemtda now readsi0]:

det(1 + zA) = Z zm“m (A) . 3.27)

with a/m)(A) given by them x m determinant:

agl"’ m-1 0 - 0
oW g{') m-2 -~ 0
RG] Q) 0
™(A) T3 0’; 7 . (J.28)
1
QRG] Q) Q)
om Oma Tm2 "~ 01
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where
@ _ [ Tr(A% k>n
K10 k<n-1

As Simon [L0] says simply, the beauty 028 is that we get dg{1 + A) from
the standard Plemelj-Smithies formulhi9 by simply setting Trd\), Tr(A?), ...,
Tr(A™1) to zero.

See also ref.][5] where{;} are the eigenvalues of an elliptic (pseuddfetiential
operatorH of ordermon a compact or bounded manifold of dimensib® < 1y <
A1 < ---andig T +c0. and the Fredholm determinant

-4

k=0

is regulated in the cage= d/m > 1 as Weierstrass product

(3.29)

= A A2 Al
AQ) = ﬂ[( )exp{ 5 Zﬁﬁ+"'+—[u]ag‘l]

k=0

where L] denotes the integer part of This is, see ref.]5], the unique entire
function of orde having zeros &t} and subject to the normalization conditions

In A(0) = i InAQ0) = In A(0) =

d/ll 1

Clearly (.29 is the same as)(29; one just has to identifg = -1, A = 1/H and
n-1=[u]. An example is the regularization of the spectral deteamin

A(E) = det[(E - H)] (3.30)

which — as it stands — would only make sense for a finite dinossibasis (or
finite dimensional matrices). In refL{] the regulated spectral determinant for the
example of the hyperbola billiard in two dimensions (thius 2, m = 2 and hence

p =1)is given as

A(E) = det [(E - H)Q(E, H)]
where

Q(E.H) = -HefH

exerAppWirzba - 12jun2008.tex



EXERCISES 745

such that the spectral determinant in the eigenbadis(afith eigenvalue&, # 0)
reads

AGE) = ]_[(1_ EEn)eE/En ‘o

n

Note thatH~? is for this example of Hilbert-Schmidt character.

Exercises

J.1. Norm of exponential of an operator. Verify
inequality 0.12:

) < e
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Appendix K

Statistical mechanics recycled

(R. Mainieri)

sPIN sYsTEM With long-range interactions can be converted into a chaoti
dynamical system that isftierentiable and low-dimensional. The thermodynamic

limit quantities of the spin system are then equivalent tglbme averages
of the dynamical system. In this way the spin system averegiebe recast as the
cycle expansions. If the resulting dynamical system isyditakthe convergence to
the thermodynamic limit is faster than with the standardgfer matrix techniques.

K.1 The thermodynamic limit

There are two motivations to recycle statistical mechargog gets better control
over the thermodynamic limit and one gets detailed inforomabn how one is
converging to it. From this information, most other quaesitof physical interst
can be computed.

In statistical mechanics one computes the averages ofwvatides. These are
functions that return a number for every state of the systkay,are an abstraction
of the process of measuring the pressure or temperatureasd.altpe average of
an observable is computed in the thermodynamic limit — timé lof system with
an arbitrarily large number of particles. The thermodyrlimit is an essential
step in the computation of averages, as it is only then thataliserves the bulk
properties of matter.

Without the thermodynamic limit many of the thermodynamioperties of
matter could not be derived within the framework of statetimechanics. There
would be no extensive quantities, no equivalence of ensesnland no phase
transitions. From experiments it is known that certain gjtias are extensive, that
is, they are proportional to the size of the system. Thisigme for an interacting
set of particles. If two systems interacting via pairwiségptials are brought close
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together, work will be required to join them, and the finaht@nergy will not be
the sum of the energies of each of the parts. To avoid the cobfilitween the
experiments and the theory of Hamiltonian systems, onesnggstems with an
infinite number of particles. In the canonical ensemble tiobgbility of a state is
given by the Boltzman factor which does not impose the coasien of energy; in
the microcanonical ensemble energy is conserved but thizrBahn factor is no
longer exact. The equality between the ensembles only eppethe limit of the
number of particles going to infinity at constant densitye phiase transitions are
interpreted as points of non-analyticity of the free endrgshe thermodynamic
limit. For a finite system the partition function cannot haveero as a function of
the inverse temperatugk as it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in #tedy of field
theories. A field theory can be first defined on a lattice and the lattice spacing
is taken to zero as the correlation length is kept fixed. Thistiouum limit
corresponds to the thermodynamic limit. In lattice spacings the correlation
length is going to infinity, and the interacting field theognde thought of as a
statistical mechanics model at a phase transition.

For general systems the convergence towards the thermmityhanit is slow.
If the thermodynamic limit exists for an interaction, theneergence of the free
energy per unit volumé is as an inverse power in the linear dimension of the
system.

f(8) — % (K.1)

wheren is proportional tovY/d, with V the volume of thed-dimensional system.
Much better results can be obtained if the system can beideddoy a transfer
matrix. A transfer matrix is concocted so that the traceifitih power is exactly
the partition function of the system with one of the dimensigproportional to
n. When the system is described by a transfer matrix then theecgence is
exponential,

f(8) - e (K.2)

and may only be faster than that if all long-range correfatiof the system are
zero — that is, when there are no interactions. Thefment« depends only on
the inverse correlation length of the system.

One of the dfficulties in using the transfer matrix techniques is that tesm
at first limited to systems with finite range interactions. af transitions can
happen only when the interaction is long range. One can tapfwoximate the
long range interaction with a series of finite range intéoast that have an ever
increasing range. The problem with this approach is that fiormally defined
transfer matrix, not all the eigenvalues of the matrix cgpand to eigenvalues of
the system (in the sense that the rate of decay of correfatfonot the ratio of
eigenvalues).
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Knowledge of the correlations used in conjunction with &nglize scaling
to obtain accurate estimates of the parameters of systethphéase transitions.
(Accurate critical exponents are obtained by series expasisr transfer matrices,
and infrequently by renormalization group arguments or dd@arlo.) In a phase
transition the coficient « of the exponential convergence goes to zero and the
convergence to the thermodynamic limit is power-law.

The computation of the partition function is an example afrectional integral.
For most interactions these integrals are ill-defined amglire some form of
normalization. In the spin models case the functional irstiegs very simple,
as “space” has only two points and only “time” being infinigesho be dealt with.
The same problem occurs in the computation of the trace offiea matrices
of systems with infinite range interactions. If one tries éonpute the partition
functionZ,

Zn=tr T"

whenT is an infinite matrix, the result may be infinite for any This is not to
say thaiz, is infinite, but that the relation between the trace of an ajperand the
partition function breaks down. We could try regularizitng texpression, but as
we shall see below, that is not necessary, as there is a péitsical solution to
this problem.

What will described here solves both of these problems imédd context:
it regularizes the transfer operator in a physically megfuinway, and as a a
consequence, it allows for the faster than exponentialegence to the thermodynamic
limit and complete determination of the spectrum. The steshieve this are:

Redefine the transfer operator so that there are no limitdvied except for
the thermodynamic limit.

Note that the divergences of this operator come from thetfedttit acts on
a very large space. All that is needed is the smallest subspattaining
the eigenvector corresponding to the largest eigenvaheeGibbs state).

Rewrite all observables as depending on a loffakgive field. The eigenvector
is like that, and the operator restricted to this space ¢etrdass.

Compute the spectrum of the transfer operator and obsegvaaigic.

K.2 Ising models

The Ising model is a simple model to study the cooperatiieces of many small
interacting magnetic dipoles. The dipoles are placed ottiedand their interaction
is greatly simplified. There can also be a field that includes dfects of an
external magnetic field and the averageet of the dipoles among themselves.
We will define a general class of Ising models (also called spstems) where the
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dipoles can be in one of many possible states and the intemaatxtend beyond
the nearest neighboring sites of the lattice. But before xtenel the I1sing model,
we will examine the simplest model in that class.

K.2.1 Ising model

One of the simplest models in statistical mechanics is theglsmodel. One
imagines that one has a 1-dimensional lattice with smallmatsgat each site that
can point either up or down.

©) (©) o @) o O @) o O.

Each little magnet interacts only with its neighbors. Ifitl®th point in the same
direction, then they contribute an energy to the total energy of the system; and
if they point in opposite directions, then they contributg. The signs are chsen
so that they prefer to be aligned. Let us suppose that we haweall magnets
arranged in a line: A line is drawn between two sites to indi¢hat there is an
interaction between the small magnets that are locatedatrsite

0—0—0—0—0—0—0—0—0. (3

(This figure can be thought of as a graph, with sites beindgoesriand interacting
magnets indicated by edges.) To each of the sites we assaciatriable, that we
call a spin, that can be in either of two states: fipdr down (). This represents
the two states of the small magnet on that site, and in gemerakill use the
notation to represent the set of possible values of a spin at any ditsites
assume the same set of values. A configuration consists ighags a value to
the spin at each site; a typical configuration is

0—0—0—0—0—0—0—0—0 . (K4

The set of all configurations for a lattice withsites is called2j and is formed
by the Cartesian produ€g x Qq--- x Qo, the product repeated times. Each
configurations € Q" is a string ofn spins

o= (00,01 On)s (K.5)

In the example configuratiork(4) there are two pairs of spins that have the
same orientation and six that have the opposite orientatidrerefore the total
energyH of the configuration is) x 6 — J x 2 = 4J. In general we can associate
an energyH to every configuration

H(@) = ) 35(o.01a). (K.6)
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where

+1 if g1=072

6(o1,02) = { -1 ifoi#os e

One of the problems that was avoided when computing the gmeg what to do

at the boundaries of the 1-dimensional chain. Notice thetrdten, (K.6) requires
the interaction of spim with spinn + 1. In the absence of phase transitions the
boundaries do not matter much to the thermodynamic limitwaadvill connect
the first site to the last, implementing periodic boundamditions.

Thermodynamic quantities are computed from the partitiomcfion 2" as
the sizen of the system becomes very large. For example, the free epergite
f at inverse temperatugis given by

1
p— — i —_ (n)
1) = lim ~InZ®. (K.8)

The partition functionz®™ is computed by a sum that runs over all the possible
configurations on the 1-dimensional chain. Each configumationtributes with
its Gibbs factor exp{BH(c")) and the partition functioZ™ is

z0(g) = Z gPH() (K.9)

n
oeQp

The partition function can be computed using transfer mesti This is a
method that generalizes to other models. At first, it is gelithysterious that
matrices show up in the study of a sum. To see where they camg fve can
try and build a configuration on the lattice site by site. Thst fihing to do is to
expand out the sum for the energy of the configuration

Z0(g) = Y Hlenrdgiraca) . oony (K.10)

oeQn

Let us use the configuration ii(4). The first site isr; =1. As the second site is
1, we know that the first term ink(10) is a terme®”. The third spin ig|, so the
second term ink.10) is €Y. If the third spin had been, then the term would
have beer? but it would not depend on the value of the first spin This means
that the configuration can be built site by site and that topuienthe Gibbs factor
for the configuration just requires knowing the last spineatid\Ve can then think
of the configuration as being a weighted random walk wherk st&p of the walk
contributes according to the last spin added. The randork také place on the
Markov graph
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Choose one of the two sites as a starting point. Walk alongadioywed edge
making your choices randomly and keep track of the accumdlatight as you
perform then steps. To implement the periodic boundary conditions make s
that you return to the starting node of the Markov graph. éfiralk is carried out
in all possible 2 ways then the sum of all the weights is the partition functitm
perform the sum we consider the matrix

J a8
T(B) = :—BﬁJ eeeJ

(K.11)

As in chapterl0the sum of all closed walks is given by the trace of powers ef th
matrix. These powers can easily be re-expressed in ternfedivo eigenvalues
A1 andA, of the transfer matrix:

Z0@E) = r T(B) = 1@B)" + 128)". (K.12)

K.2.2 Averages of observables

Averages of observables can be re-expressed in terms ofghevectors of the
transfer matrix. Alternatively, one can introduce a modifieansfer matrix and
compute the averages through derivatives. Sounds fafiliar

K.2.3 General spin models

The more general version of the Ising model — the spin modelgit-be defined
on a regular latticeZP. At each lattice site there will be a spin variable that can
assumes a finite number of states identified by th&@get

The transfer operatof was introduced by Kramers and Wanniér][to study
the Ising model on a strip and concocted so that the traces oftitpower is the
partition functionZ, of system when one of its dimensionsris The method
can be generalized to deal with any finite-range interactiérthe range of the
interaction isl, then7™ is a matrix of size 2x 2-. The longer the range, the larger
the matrix.

K.3 Fisher droplet model

In a series of articles?[J], Fisher introduced the droplet model. It is a model for
a system containing two phases: gas and liquid. At high teatpess, the typical
state of the system consists of droplets of all sizes floatitige gas phase. As the
temperature is lowered, the droplets coalesce, formimgtadroplets, until at the
transition temperature, all droplets form one large onds ®ha first order phase
transition.
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Although Fisher formulated the model in 3-dimensions, thalytic solution
of the model shows that it is equivalent to a 1-dimensioriickagas model with
long range interactions. Here we will show how the model carsdived for an
arbitrary interaction, as the solution only depends on 8yentotic behavior of
the interaction.

The interest of the model for the study of cycle expansiorissiselation to
intermittency. By having an interaction that behaves agptigally as the scaling
function for intermittency, one expects that the analytiocture (poles and cuts)
will be same.

Fisher used the droplet model to study a first order phaseiti@m [20].
Gallavotti [21] used it to show that the zeta functions cannot in generaktemded
to a meromorphic functions of the entire complex plane. Tioplét model has
also been used in dynamical systems to explain features derfazking, see
Artuso [22]. In computing the zeta function for the droplet model we digcover
that at low temperatures the cycle expansion has a limitidsaf convergence,
but it is possible to factorize the expansion into the prodfiewo functions, each
of them with a better understood radius of convergence.

K.3.1 Solution

The droplet model is a 1-dimensional lattice gas where edehcan have two
states: empty or occupied. We will represent the empty btafeand the occupied
state by 1. The configurations of the model in this notatiamthen strings of
zeros and ones. Each configuration can be viewed as groupsitiguous ones
separated by one or more zeros. The contiguous ones reptieselioplets in the
model. The droplets do not interact with each other, but tidé/idual particles
within each droplet do.

To determine the thermodynamics of the system we must assiggnergy
to every configuration. At very high temperatures we woulgest a gaseous
phase where there are many small droplets, and as we detheatssmperature
the droplets would be expected to coalesce into larger ontisati some point
there is a phase transition and the configuration is dorrdriayeone large drop.
To construct a solvable model and yet one with a phase ti@msite need long
range interaction among all the particles of a droplet. Crace is to assign a
fixed energy#d, for the interactions of the particles of a cluster of sizeln a
given droplet one has to consider all the possible clustaradd by contiguous
particles. Consider for example the configuration 011101@as two droplets,
one of size three and another of size one. The droplet of sieehas only one
cluster of size one and therefore contributes to the endriyea@onfiguration with
6,. The cluster of size three has one cluster of size three, lwaters of size two,
and three clusters of size one; each cluster contributidgtarm to the energy.
The total energy of the configuration is then

H(0111010)= 461 + 20, + 163. (K.13)
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If there where more zeros around the droplets in the abovégtmation the
energy would still be the same. The interaction of one sitth wie others is
assumed to be finite, even in the ground state consisting ofgéesdroplet, so
there is a restriction on the sum of the cluster energiesdiye

a=) fh<w. (K.14)

n>0

The configuration with all zeros does not contribute to thergy

Once we specify the functiafh, we can computed the energy of any configuration,

and from that determine the thermodynamics. Here we willuata the cycle
expansion for the model by first computing the generatingtfon

cep =y 720 (.15)

n>0

and then considering its exponential, the cycle expan&ach partition function
Z, must be evaluated with periodic boundary conditions. Sceifwere computing
Z3 we must consider all eight binary sequences of three bitswdren computing
the energy of a configuration, say 011, we should determi@etiergy per three
sites of the long chain

...011011011011..

In this case the energy would le + 26,. If instead of 011 we had considered
one of its rotated shifts, 110 or 101, the energy of the conrditipn would have
been the same. To compute the partition function we only neednsider one
of the configurations and multiply by the length of the configion to obtain the
contribution of all its rotated shifts. The factoyrlin the generating function
cancels this multiplicative factor. This reduction willtrtmld if the configuration
has a symmetry, as for example 0101 which has only two rosdtificconfigurations.
To compensate this we replace theTactor by a symmetry factor/&(b) for
each configuratio. The evaluation of5 is now reduced to summing over all
configurations that are not rotated shift equivalent, andcalethese the basic
configurations and the set of all of theBa We now need to evaluate

COEDY j(—;‘)e*ﬂ”b’ : (K-16)
beB

The notation - | represents the cardinality of the set.

Any basic configuration can be built by considering the sedroplets that
form it. The smallest building block has size two, as we missi put a zero next
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to the one so that when twoftBrent blocks get put next to each other they do not

coalesce. The first few building blocks are

size droplets
3 001 011

4 0001 0011 0111
Each droplet of size contributes with energy

Wy = Z (N=k+ 1)f. (K.18)

1<k<n

So if we consider the sum

Z % (ZZE—ﬁH(Ol) + B(ePHO0D | gpHOLY) |

n>1
+ (g PHO00L) | BH(O0LD) | oHOLID) . .)” (K.19)

then the power im will generate all the configurations that are made from many

droplets, while thez will keep track of the size of the configuration. The factor
1/nis there to avoid the over-counting, as we only want the bemnfigurations
and not its rotated shifts. Thegri factor also gives the correct symmetry factor in
the case the configuration has a symmetry. The sum can befghply noticing
that it is a logarithmic series

—In(1- (e + e+ ey 4., (K.20)

where theH(b) factors have been evaluated in terms of the droplet ereVigie

A proof of the equality of K.19) and K.20) can be given , but we there was not
enough space on the margin to write it down. The series thaibtacted from
one can be written as a product of two series and the logasithitten as

“In(1-@F+Z2+2+ - )ze™M + PeM 4. (K.21)

The product of the two series can be directly interpreteti@génerating function
for sequences of droplets. The first series adds one or mare wea configuration
and the second series add a droplet.

There is a whole class of configurations that is not includettié above sum:
the configurations formed from a single droplet and the vactweonfiguration.
The vacuum is the easiest, as it has zero energy it only bates az. The sum
of all the null configurations of all sizes is

> % (K.22)

n>0
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The factor Xnis here because the originalhad them and the null configurations
have no rotated shifts. The single droplet configuratioss b not have rotated
shifts so their sum is

n

a1...13
—sH11...
z"e— (K.23)

n>0 n

Because there are no zeros in the above configuration dusital size exist and
the energy of the configuration is);, 6« which we denote bya

From the three sum&(21), (K.22), and K.23) we can evaluate the generating
functionG to be

Gzp) = - In(L-2) - In(L - z6#) — In(1 - 1%2 Sl Zety. (K.24)

n>1

The cycle expansiog~1(z B) is given by the exponential of the generating
functione ¢ and we obtain

CHap) = (-6 - A1+ ) FeP) (K.25)

n>1

To pursue this model further we need to have some assumpiomst the
interaction strengths,. We will assume that the interaction strength decreases
with the inverse square of the size of the cluster, thai,is; —1/n2. With this we
can estimate that the energy of a droplet of sizeasymptotically

Wh ~ —n+ Inn+()(%). (K.26)

If the power chosen for the polynomially decaying interacthad been other than
inverse square we would still have the droplet term propoéi ton, but there
would be no logarithmic term, and th@ term would be of a dferent power.
The term proportional ta survives even if the interactions fall§§@xponentially,
and in this case the correction is exponentially small ina&gmptotic formula.
To simplify the calculations we are going to assume that topldt energies are
exactly

Wh=-n+Inn (K.27)

in a system of units where the dimensional constants are daesvaluate the
cycle expansionK{.25) we need to evaluate the constanthe sum of all the,,.
One can write a recursion for thig

O = Wh — Z (n—Kk+ 1) (K.28)

1<k<n
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and with an initial choice fop; evaluate all the others. It can be verified that
independent of the choice éf the constandis equal to the number that multiplies
thenterm in K.27). In the units used

a=-1. (K.29)

For the choice of droplet energi{ 27) the sum in the cycle expansion can be
expressed in terms of a special function: the Lerch trargsealg, . Itis defined
by

z
¢L(zsc) = Z hros’ (K.30)
n=0

excluding from the sum any term that has a zero denominabe.L€rch function
converges fotz < 1. The series can be analytically continued to the complex
plane and it will have a branch point at= 1 with a cut chosen along the
positive real axis. In terms of Lerch transcendental fuorctive can write the
cycle expansionK.25) using K.27) as

Mep) = (1-2¢) (1- 2L+ 9L(2€, 5. 1) (K.31)

This serves as an example of a zeta function that cannot &eded to a meromorphic
function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the Isstaioot of
(K.31). The root can come from any of the two factors. For largeeaifg (low
temperatures) the smallest root is determined from thezél) factor, which gave
the contribution of a single large drop. For sng{large temperatures) the root is
determined by the zero of the other factor, and it correspaadhe contribution
from the gas phase of the droplet model. The transition sostnen the smallest
root of each of the factors become numerically equal. Thisrd@nes the critical
temperaturgg; through the equation

1-e?(1+r(Bc) = 0 (K.32)

which can be solved numerically. One finds titat = 1.40495. The phase
transition occurs because the roots from twidedent factors get swapped in their
roles as the smallest root. This in general leads to a firgrgoase transition.
For largep the Lerch transcendental is being evaluated at the branich, pod
therefore the cycle expansion cannot be an analytic fumetidow temperatures.
For large temperatures the smallest root is within the sadiuconvergence of
the series for the Lerch transcendental, and the cycle sigpahas a domain of
analyticity containing the smallest root.

As we approach the phase transition point as a functiog tife smallest
root and the branch point get closer together until at exdb# phase transition
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they collide. This is a dficient condition for the existence of a first order phase
transitions. In the literature of zeta functions] there have been speculations on
how to characterize a phase transition within the formalidine solution of the
Fisher droplet model suggests that for first order phassitrans the factorized
cycle expansion will have its smallest root within the radidfi convergence of one
of the series except at the phase transition when the rd@eslvith a singularity.
This does not seem to be the case for second order phaséidresi

The analyticity of the cycle expansion can be restored if aresiler separate
cycle expansions for each of the phases of the system. Ifpaate the two terms
of £~1in (K.31), each of them is an analytic function and contains the srsialbot
within the radius of convergence of the series for the relegavalues.

K.4 Scaling functions

There is a relation between general spin models and dynasystem. If one
thinks of the boxes of the Markov partition of a hyperbolistgm as the states
of a spin system, then computing averages in the dynamisaisyis carrying
out a sum over all possible states. One can even construnatheal measure of
the dynamical system from a translational invariant “iatgion function” call the
scaling function.

There are many routes that lead to an explanation of whatlmgdanction

is and how to compute it. The shortest is by breaking away fileenhistorical
development and considering first the presentation funatiba fractal. The
presentation function is a simple chaotic dynamical sysfieyperbolic, unlike
the circle map) that generates the fractal and is closefteelto the definition

of fractals of Hutchinson43] and the iterated dynamical systems introduced by
Barnsley and collaboratord J]. From the presentation function one can derive
the scaling function, but we will not do it in the most elegéaghion, rather we
will develop the formalism in a form that is directly appliia to the experimental
data.

In the upper part of figur&.1 we have the successive steps of the construction
similar to the middle third Cantor set. The construction ésel in levels, each
level being formed by a collection of segments. From onel levthe next, each
“parent” segment produces smaller “children” segmentsdoyaving the middle
section. As the construction proceeds, the segments bepeoximate the Cantor
set. In the figure not all the segments are the same size, sentseger and some
are smaller, as is the case with multifractals. In the middiel Cantor set, the
ratio between a segment and the one it was generated fronaglyeg/3, but in
the case shown in the figure the ratiofei from /3. If we went through the last
level of the construction and made a plot of the segment nuiauhe: its ratio to
its parent segment we would have a scaling function, asatelicin the figure.
A function giving the ratios in the construction of a fracisithe basic idea for a
scaling function. Much of the formalism that we will intrackiis to be able to
give precise names to every segments and to arrange thedéhef segments
so that the children segments have the correct parent. Ifaveot take these
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Figure K.1: Construction of the steps of the scaling

function from a Cantor set. From one level to the

next in the construction of the Cantor set the covers - = -
are shrunk, each parent segment into two children
segments. The shrinkage of the last level of thg -
construction is plotted and by removing the gaps ong *[ ~ ~ -

has an approximation to the scaling function of the °° _

Cantor set. ! positon

Figure K.2: A Cantor set presentation function. The \
Cantor set is the set of all points that under iteration do-/ S
not leave the interval [@]. This set can be found by iy oo
backwards iterating the gap between the two branches
of the map. The dotted lines can be used to find these_ | : | IR o
backward images. At each step of the construction one: :

is left with a set of segments that form a cover of the = — — = @
Cantor set. ‘

%

precautions, the scaling function would be a “wild functiorarying rapidly and
not approximated easily by simple functions.

To describe the formalism we will use a variation on the gatidmap that
appears in the theory of period doubling. This is becausedh#inatorial manipulations
are much simpler for this map than they are for the circle mape scaling
function will be described for a one dimensional nfagas shown in figureé<.2.

Drawn is the map

F(X) =5x(1-x) (K.33)

restricted to the unit interval. We will see that this map lsoaa presentation
function.

It has two branches separated by a gap: one over the lefopasfithe unit
interval and one over the right. If we choose a potnat random in the unit
interval and iterate it under the action of the nia{K.33), it will hop between the
branches and eventually get mapped to minus infinity. Art@dint is guaranteed
to go to minus infinity if it lands in the gap. The hopping of {ha&int defines the
orbit of the initial pointx: X > X; > Xp + ---. For each orbit of the map we
can associate a symbolic code. The code for this map is fofmed0s and 1s
and is found from the orbit by associating a &if< 1/2 and a 1 ifx; > 1/2, with
t=012...

Most initial points will end up in the gap region between the toranches.
We then say that the orbit point has escaped the unit intefta points that do
not escape form a Cantor set(or Cantor dust) and remain trapped in the unit
interval for all iterations. In the process of describingthé points that do not
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escape, the malp can be used as a presentation of the Cantaf sahd has been
called a presentation function by Feigenbauiri [

How does the maj “present” the Cantor set? The presentation is done in
steps. First, we determine the points that do not escapenthénterval in one
iteration of the map. These are the points that are not paéneaap. These points
determine two segments, which are an approximation to thrgo€aet. In the
next step we determine the points that do not escape in twnatidas. These are
the points that get mapped into the gap in one iteration, @semext iteration
they will escape; these points form the two segmeﬂﬁé andA(ll) at level 1 in
figure K.2. The processes can be continued for any number of iteratibmse
observe carefully what is being done, we discover that dt etep the pre-images
of the gap (backward iterates) are being removed from theinteirval. As the
map has two branches, every point in the gap has two pre-snagel therefore
the whole gap has two pre-images in the form of two smallesg@p generate all
the gaps in the Cantor set one just has to iterate the gap bad&wEach iteration
of the gap defines a set of segments, with iitieiterate defining the segments
Af(”) at leveln. For this map there will be™segments at level, with the first few
drawn in figureK.2. Asn — o the segments that remain for at leadterates
converge to the Cantor sét

The segments at one level form a cover for the Cantor set @&@fidgim a cover
that all the invariant information about the set is extrdcfne cover generated
from the backward iterates of the gap form a Markov partifienthe map as a
dynamical system). The segmel{m{(”)} at leveln are a refinement of the cover
formed by segments at level- 1. From successive covers we can compute the
trajectory scaling function, the spectrum of scalinfe), and the generalized
dimensions.

To define the scaling function we must give labels (nhameshdéosegments.
The labels are chosen so that the definition of the scalingtifum allows for
simple approximations. As each segment is generated fromvanse image
of the unit interval, we will consider the inverse of the gnettion functionF.
Becaused- does not have a unique inverse, we have to consider restsctifF.

Its restriction to the first half of the segment, from 0 #21has a unique inverse,
which we will call F51, and its restriction to the second half, fron2lto 1, also
has a unique inverse, which we will cmgl. For example, the segment labeled
A®)(0,1) in figureK.2 is formed from the inverse image of the unit interval by
mappingA©, the unit interval, withF;* and therF;2, so that the segment

A2, 1) = Fg* (F;* (A)) . (K.34)

The mapping of the unit interval into a smaller interval isavldetermines its
label. The sequence of the labels of the inverse maps islteédfthe segment:

AV e, ..., 6) = Fgll oF1to...F ! (A(O)) .

€ €n

The scaling function is formed from a set of ratios of segmésigth. We use
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| - | around a segmem (¢) to denote its size (length), and define

A (e, e, ..., &)l

e e = AOD(ey, .. en)l

We can then arrange the ratiof)(e1, e, . . . , &) next to each other as piecewise
constant segments in increasing order of their binary labhe), . . ., &, so that the
collection of steps scan the unit interval. As— o this collection of steps will
converge to the scaling function.

K.5 Geometrization

The L operator is a generalization of the transfer matrix. It getse by considering
less of the matrix: instead of considering the whole matiipossible to consider
just one of the rows of the matrix. The operator also makes explicit the vector
space in which it acts: that of the observable functions.e@lables are functions
that to each configuration of the system associate a number:energy, the
average magnetization, the correlation between two sitess in the average
of observables that one is interested in. Like the transfarir) the £ operator
considers only semi-infinite systems, that is, only the pittie interaction between
spins to the right is taken into account. This may sound umrsgtric, but it
is a simple way to count each interaction only once, even gesavhere the
interaction includes three or more spin couplings. To detfieel operator one
needs the interaction energy between one spin and all theriésright, which is
given by the functior. The £ operators defined as

Ly(@) = ) gloor)e o).

T0eQo

To each possible value i)y that the spinocg can assume, an average of the
observableg is computed weighed by the Boltzmann fac®f?. The formal
relations that stem from this definition are its relation lte free energy when
applied to the observablehat returns one for any configuration:

1 n
-pfB) = n'm@ n In L%
and the thermodynamic average of an observable

g
@=Jm m

Both relations hold for almost all configurations. Theseatiehs are part of
theorem of Ruelle that enlarges the domain of the Perrobefias theorem and
sharpens its results. The theorem shows that just as trsfdramatrix, the largest
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eigenvalue of theC operator is related to the free-energy of the spin systeaisdt
hows that there is a formula for the eigenvector related éddhgest eigenvalue.
This eigenvectojp) (or the corresponding one for the adjoifit of £) is the Gibbs
state of the system. From it all averages of interest insstesii mechanics can be
computed from the formula

(@) = <pldlo) -

The Gibbs state can be expressed in an explicit form in tefth@anteractions,
but it is of little computational value as it involves the Gébstate for a related spin
system. Even then it does have an enormous theoretical. viadter we will see
how the formula can be used to manipulate the space of olidesvento a more
convenient space.

The geometrization of a spin system converts the shift dyceifmecessary
to define the Ruelle operator) into a smooth dynamics. Thégjisvalent to the
mathematical problem in ergodic theory of finding a smoottbedding for a
given Bernoulli map.

The basic idea for the dynamics is to establish the a set o§ gpsuch that

Fs(0)=0

and

FoioFg,0--0F; (0) = ¢p(+.01,02,...,0n, = —,...).

This is a formal relation that expresses how the interadida be converted into
a dynamical systems. In most examples is a collection of maps from a subset
of RP to itself.

If the interaction is complicated, then the dimension of ke of maps may
be infinite. If the resulting dynamical system is infinite Bave gained anything
from the transformation? The gain in this case is not in teofredded speed of
convergence to the thermodynamic limit, but in the fact thatRuelle operator
is of trace-class and all eigenvalues are related to thesygtem and not artifacts
of the computation.

The construction of the higher dimensional system is donbdsyowing the

state space reconstruction technique from dynamicalmgst8tate space reconstruction

can be done in several ways: by using delay coordinates, ihg derivatives of
the position, or by considering the value of several indepan observables of
the system. All these may be used in the construction of thevalgnt dynamics.
Just as in the study of dynamical systems, the exact methesl miot matter for
the determination of the thermodynamid¥«) spectra, generalized dimension),
also in the construction of the equivalent dynamics the textaaice of observable
does not matter.
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We will only consider configurations for the half line. Ths because for
translational invariant interactions the thermodynanmiaitlon half line is the
same as in the whole line. One can prove this by consideriegitterence in
a thermodynamic average in the line and in the semiline antghaoe the two as
the size of the system goes to infinity.

When the interactions are long range in principle one haseoify the boundary
conditions to be able to compute the interaction energy obrfiguration in
a finite box. If there are no phase transitions for the intevac then which
boundary conditions are chosen is irrelevant in the theymachic limit. When
computing quantities with the transfer matrix, the longgamteraction is truncated
at some finite range and the truncated interaction is thetols@luate the transfer
matrix. With the Ruelle operator the interaction is neventated, and the boundary
must be specified.

The interactionp(c) is any function that returns a number on a configuration.
In general it is formed from pairwise spin interactions

$0) = D Sror, I0)

n>0

with different choices od(n) leading to diferent models. 18(n) = Lonlyifn=1
and ) otherwise, then one has the nearest neighbor Isinglnibdén) = n=2, then
one has the inverse square model relevant in the study ofdhddproblem.

Let us say that each site of the lattice can assume two valuesind the set
of all possible configurations of the semiline is the QetThen an observableg
is a function from the set of configuratiofsto the reals. Each configuration is
indexed by the integers from 0 up, and it is useful to thinkhef tonfiguration as
a string of spins. One can append a spjio its beginningy V o, in which case
7 is at site Ogwy at site 1, and so on.

The Ruelle operatal is defined as

£y = " glwo v n)e o).

wpeQo

This is a positive and bounded operator over the space ofdealiobservables.
There is a generalization of the Perron-Frobenius theoseRukelle that establishes
that the largest eigenvalue #fis isolated from the rest of the spectrum and gives
the thermodynamics of the spin system just as the largesteadue of the transfer
matrix does. Ruelle also gave a formula for the eigenveetiated to the largest
eigenvalue.

The dfificulty with it is that the relation between the partition ftioo and the
trace of itsnth power, trL" = Z, no longer holds. The reason is that the trace of
the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observalego), ..., xi(o)}. The idea
is to choose the observables in such a way that from theiesabm a particular
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configurationo the configuration can be reconstructed. We also introduee th
interaction observablds;,.

To geometrize spin systems, the interactions are assuntetittanslationally
invariant. The spins- will only assume a finite number of values. For simplicity,
we will take the interactiogp among the spins to depend only on pairwise interactions,

$(0) = $00,01,02,.) = Joo0+ ) Sy I1(1), (K.35)

n>0

and limitog to be in{+, —}. For the 1-dimensional Ising modek is the external
magnetic field andly(n) = 1 if n = 1 and 0 otherwise. For an exponentially
decaying interactiod;(n) = e *". Two- and 3-dimensional models can be considered
in this framework. For example, a strip of spinslok co with helical boundary
conditions is modeled by the potenti&l(n) = 61 + dn.

The transfer operatdf was introduced by Kramers and Wanni&F][to study
the Ising model on a strip and concocted so that the traces oftitpower is the
partition functionZ, of system when one of its dimensionsisThe method can be
generalized to deal with any finite-range interaction. ¢ tange of the interaction
is L, then7™ is a matrix of size 2x 2. The longer the range, the larger the matrix.
When the range of the interaction is infinite one has to defiegt operator by
its action on an observablg Just as the observables in quantum mechaugics,
is a function that associates a number to every state (coafign of spins). The
energy density and the average magnetization are exanfpeservables. From
this equivalent definition one can recover the usual tramagrix by making all
quantities finite range. For a semi-infinite configuratioe: {oo, o1, ...}

T9(0) = g+ Vv 0)e PV 4 g(— v o)e V) | (K.36)

By + vV oo we mean the configuration obtained by prepending the beginning

of o resulting in the configuration+, 0o,01,...}. When the range becomes
infinite, tr7 ™" is infinite and there is no longer a connection between theetra
and the partition function for a system of sizéthis is a case where matrices give
the wrong intuition). Ruelle]3] generalized the Perron-Frobenius theorem and
showed that even in the case of infinite range interactioatatigest eigenvalue of
the7 operator is related to the free-energy of the spin systentrencbrresponding
eigenvector is related to the Gibbs state. By applyin the constant observable
u, which returns 1 for any configuration, the free energy pterfsis computed as

-Bt(p) = lim % In17"ul. (K.37)

To construct a smooth dynamical system that reproduces rispegties of
7, one uses the phase space reconstruction technique ofrétatkal. [6] and
Takens [], and introduces a vector of state observables = {x1(c), ..., Xo(0)}.
To avoid complicated notation we will limit the discussianthe example(c) =
{X,(0), Xx_(0)}, with x,.(0) = ¢(+ V o) andx_(o) = ¢(- V o); the more general
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case is similar and used in a later example. The observatdesstricted to those

g for which, for all configurationsr, there exist an analytic functiod such that
G(x1(0),...,xp(0)) = g(o). This at first seems a severe restriction as it may
exclude the eigenvector corresponding to the Gibbs statanlbe checked that
this is not the case by using the formula given by Ruel!g for this eigenvector.

A simple example where this formalism can be carried outtigte interaction
¢(c) with pairwise exponentially decaying potentii(n) = a" (with |a] < 1). In

this casep(c) = Yns0dop.0n@ and the state observables atgo) = 3100 o, @"

andx (o) = Yne06-0,a" In this case the observable gives the energy of
spin at the origin, and_ the energy of a spin.

Using the observables, andx_, the transfer operator can be re-expressed as

TGN = Y} G 1V o). x (7o) e, (K-38)
nel+—)

In this equation the only reference to the configuratiors when computing the
new observable values. (7 vV o) andx_(n v o). The iteration of the function that
gives these values in terms xf(c) andx_(o) is the dynamical system that will
reproduce the properties of the spin system. For the sicxplerentially decaying
potential this is given by two mapB,. andF_. The mapF, takes{x, (o), X (o)}
into {X, (+ Vo), x_(+ VvV o)} which is{a(1+ x,),ax } and the mag-_ takes{x,, x_}
into {ax,,a(1 + x_)}. In a more general case we have mépshat takex(o) to
X(n Vv o).

We can now define a new operatgr

£6() €760 = > G(F,(0)e, (K.39)

nel+.-)

where all dependencies orhave disappeared — if we know the value of the state
observables, the action of£ on G can be computed.

A dynamical system is formed out of the mapg. They are chosen so
that one of the state variables is the interaction energye €m consider the
two mapsF, and F_ as the inverse branches of a hyperbolic nfaphat is,
f1(x) = {F.+(x).F_(X)}. Studying the thermodynamics of the interactipris
equivalent to studying the long term behavior of the orbitthe mapf, achieving
the transformation of the spin system into a dynamical syste

Unlike the original transfer operator, th€ operator — acting in the space
of observables that depend only on the state variables — tsacé-class (its
trace is finite). The finite trace gives us a chance to relaertéte ofL" to the
partition function of a system of size We can do better. As most properties of
interest (thermodynamics, fallfcof correlations) are determined directly from its
spectrum, we can study instead the zeros of the Fredholmmaietant det (1 z£)
by the technique of cycle expansions developed for dyndmsicstems P]. A
cycle expansion consists of finding a power series exparisicihe determinant
by writing det (1- z£) = exp(tr In(1- z£)). The logarithm is expanded into a
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power series and one is left with terms of the fornfrto evaluate. For evaluating
the trace, thel operator is equivalent to

£6(9= [ dyaty - 100)e 60 (K.40)

from which the trace can be computed:

eBHX)
trL" = _— K.41
o B BTG (e4n

with the sum running over all the fixed points #f" (all spin configurations of a
given length). Herd ©" is f composed with itseli imes, andH(x) is the energy
of the configuration associated with the pointIn practice the mag is never

constructed and the energies are obtained directly frorsghmeconfigurations.

To compute the value of #£" we must compute the value & f©"; this
involves a functional derivative. To any degree of accuraayumberx in the
range of possible interaction energies can be represewtaditite string of spins
€, such asx = ¢(+, e, €1,...,—, —,...). By choosing the sequeneeto have a
large sequence of spins the numberx can be made as small as needed, so in
particular we can represent a small variationgfy). As x.(e) = ¢(+ Vv ¢€), from
the definition of a derivative we have:

m
8% = tim HEVI™) —0(0) (K.42)
moe (™)
where;(™ is a sequence of spin strings that makg™) smaller and smaller. By
substituting the definition of in terms of its pairwise interactiod(n) = na"™
and taking the limit for the sequence®” = {+,—,—.....0%me1 Tms2s ...} ONE
computes that the limitisif y = 1, 1ify < 1, and 0 ify > 1. It does not
depend on the positive value af Wheny < 1 the resulting dynamical system is
not hyperbolic and the construction for the operafofails, so one cannot apply
it to potentials such as (2)Y". One may solve this problem by investigating the
behavior of the formal dynamical systemjas» 0.

The manipulations have up to now assumed that the mspsmooth. If
the dimensionD of the embedding space is too smdil,may not be smooth.
Determining under which conditions the embedding is smaéoth complicated
question [5]. But in the case of spin systems with pairwise interactidris
possible to give a simple rule. If the interaction is of thenfo

$) =D Sooan ) PN (K.43)

n>1 k

where py are polynomials andey| < 1, then the state observables to use are
Xsk(o) = X 6+Jnnsaﬂ. For eachk one usesqy, X1k, - - . Up to the largest power
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Q+v+va)

05 1
Figure K.3: The spin adding map.. for the potential

J(n) = Y rPa™. The action of the map takes the
value of the interaction energy betweeand the semi-
infinite configuration{c1, 0, o3, ...} and returns the

. . . . 0 1 1
interaction energy between and the configuration o o5 T
{+,01,02,03,...}. o)

Orwe T

X & x
oL *ex " 1
o X x
o x
4 - . x |
" X
6 . X ]

Figure K.4: Number of digits for the Fredholm
method ¢) and the transfer function methodk)(
The size refers to the largest cycle considered in the ‘ el
Fredholm expansions, and the truncation length in the %, 5 10 15 20
case of the transfer matrix. size

N

in the polynomialpy. An example is the interaction withy(n) = n?(3/10). It

leads to a 3-dimensional system with variablgg, x10, andxzo. The action

of the mapF, for this interaction is illustrated figurk.3. Plotted are the pairs
{¢p(+Vo), p(+V+Vo)}. This can be seen as the strange attractor of a chaotic system
for which the variablesq, X1.0, andx, o provide a good (analytic) embedding.

The added smoothness and trace-class offloperator translates into faster
convergence towards the thermodynamic limit. As the retcooed dynamics is
analytic, the convergence towards the thermodynamic ifnféister than exponential [,
16]. We will illustrate this with the polynomial-exponentiatteractions K.43)
with y = 1, as the convergence is certainly faster than exponerftial s 1,
and the case af” has been studied in terms of another Fredholm determinant by
Gutzwiller [17]. The convergence is illustrated in figuke4 for the interaction
n?(3/10)". Plotted in the graph, to illustrate the transfer matrixvegence, are
the number of decimal digits that remain unchanged as tfgerafthe interaction
is increased. Also in the graph are the number of decimatgdipiat remain
unchanged as the largest power offr considered. The plot isfiectively a
logarithmic plot and straight lines indicate exponenyidiist convergence. The
curvature indicates that the convergence is faster thaonextial. By fitting, one
can verify that the free energy is converging to its limitwejue as exp{n*/3)).
Cvitanovi¢ [L7] has estimated that the Fredholm determinant of a map bn a
dimensional space should converge as erff(/®)), which is confirmed by these
numerical simulations.
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Résumé

The geometrization of spin systems strengthens the cdondmtween statistical
mechanics and dynamical systems. It also further estaslishe value of the
Fredholm determinant of th& operator as a practical computational tool with
applications to chaotic dynamics, spin systems, and sassicial mechanics. The
example above emphasizes the high accuracy that can beeditédy computing
the shortest 14 periodic orbits of period 5 or less it is gaedio obtain three digit
accuracy for the free energy. For the same accuracy withnafemmatrix one
has to consider a 256 256 matrix. This make the method of cycle expansions
practical for analytic calculations.

Commentary

Remark K.1 Presentation functions.  The best place to read about Feigenbaum’s
work is in his review article published ihos Alamos Scienc@geproduced in various
reprint collections and conference proceedings, suchfafie Feigenbaum’siournal

of Statistical Physicarticle [1LJ] is the easiest place to learn about presentation functions

Remark K.2 Interactions are smooth Inmost computational schemes for thermodynamic
quantities the translation invariance and the smoothrfes® dasic interaction are never
used. In Monte Carlo schemes, aside from the periodic bayedaditions, the interaction

can be arbitrary. In principle for each configuration it @bbe possible to have aftérent
energy. Schemes such as the Sweneson-Wang cluster fliggorgtam use the fact that
interaction is local and are able to obtain dramatic spgesituthe equilibration time for

the dynamical Monte Carlo simulation. In the geometrizapoogram for spin systems,

the interactions are assumed translation invariant ando8morhe smoothness means
that any interaction can be decomposed into a series of thahdepend only on the spin
arrangement and the distance between spins:

¢(0‘0, 01,072,.. ) = J()O'g + Zﬁ(ag,o'n)Jl(n) + Z&(ag,a'nl,o—nQ)Jz(nl, nz) + -

where theJx are symmetric functions of their arguments and dtege arbitrary discrete
functions. This includes external constant fields) (but it excludes site dependent fields
such as a random external magnetic field.

Exercises

K.1. Not all Banach spaces are also Hilbert.  If we are to find an inner produgt , - ) (so thatB is also a Hilbe

given a nornj|-|| of a Banach spads, it may be possible
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spaceH) such that for all vector$ € B, we have
£l = ¢F, HHY2.

This is the norm induced by the scalar product. If we
cannot find the inner product how do we know that
we just are not being clever enough? By checking the o ) ) .
parallelogram law for the norm. A Banach space can b§-5- Infinite symbolic dynamics L_et_¢r_ be afunctlo_n that
made into a Hilbert space if and only if the norm satisfies ~ réturns zero or one for every infinite binary string::

the parallelogram law. The parallelogram law says that {0, " - {01} Its value is represented byer, e, . . )
for any two vectors andg the equality where theg are either 0 or 1. We will now define an

operator7” that acts on observables on the space of
binary strings. A functiora is an observable if it has
bounded variation, that is, if

Assume that whenever there is a bond connecting two
sites, there is a contributiai(c, oj) to the energy.

IF -+ gl + 11 = gi? = 20111 + 2lgli?,

must hold.

Consider the space of bounded observables with the
norm given byllall = sup,.q-la(o)l. Show that there

is no scalar product that will induce this norm.

lall = supla(er, €, . . )| < .
&}

For these functions

K.2. Automaton for a droplet. Find the Markov — a0 0
graph and the weights on the edges so that the energies Talene...) =a0 e .. Jo0 e e .. ) +all e,
of configurations for the droplet model are correctly . . B .
generated. For any string starting in zero and ending The functtlotm |s"a}ssum(;d Sui: thslt arl:y’ﬁfs matrix th
in zero your diagram should yield a configuration the representations- in @ lave the Markov property (the
weighte™@, with H computed along the lines ak(13) matrix, if read as an adjacency graph, corresponds to
and K.18) ’ a graph where one can go from any node to any other
RS L node).
Hint: the Markov graph is infinite.
K.3. Spectral determinant for a” interactions ~ Compute (a) (easy) Consider a finite versidh of the operator
the spectral determinant for 1-dimensional Ising model 7
with the interaction
Tha(en, €,....6) =
(o) = Z a6(oo, k) - a0, e, €,...,6-1)0(0, €1, &, ..., 1) +
>0 al,e,€,....e-1)01, a1, €,. .., 6n-1) .
Takea as a number smaller thar2. Show thatT, is a 2' x 2" matrix. Show that its
(a) Whatis the dynamical system this generates? That trace is bounded by a number independent of
is, findF, andF_ as used inK.39). (b) (medium) With the operator norm induced by the
(b) Show that function norm, show thaf” is a bounded operator.
d a 0 (c) (hard) Show thal is not trace-class. (Hint: check
d_xF“ o= 0 a if 7~ is compact).
K.4. Ising model on a thin strip Compute the transfer Classes of operators are nested; trace-classmpact
matrix for the Ising model defined on the graph bounded.
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Appendix L

[K.23] Hutchinson

Noisgquantum corrections

(G. Vattay)

mechanics when is small. Can we improve the trace formula by addi @%
quantum corrections to the semiclassical terms? A similastion can
be posed when the classical deterministic dynamics isrbistliby some way
Gaussian white noise with strengfh The deterministic dynamics then can be
considered as the weak noise liit— 0. The dfect of the noise can be taken
into account by adding noise corrections to the classieaktformula. A formal
analogy exists between the noise and the quantum probleis.amblogy allows
us to treat the noise and quantum corrections together.

THE GUTZWILLER TRACE FORMULA IS Only a good approximation to the quantum

L.1 Periodic orbits as integrable systems

From now on, we use the language of quantum mechanics, siaeedre convenient
to visualize the results there. Where it is necessary wedigiiuss the dierence
between noise and quantum cases.

First, we would like to introduce periodic orbits from an soal point of
view, which can convince you, that chaotic and integrablgtesys are in fact
not as diferent from each other, than we might think. If we start orbitshe
neighborhood of a periodic orbit and look at the picture amRloincaré section
we can see a regular picture. For stable periodic orbits thetgp form small
ellipses around the center and for unstable orbits they forperbolas (See Fig.
L.1).

The motion close to a periodic orbits is regular in both ca3éss is due to
the fact, that we can linearize the Hamiltonian close to &it,cand linear systems

Figure L.1: Poincaré section close to a stable and an unstable peddulic
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are always integrable. The linearized Hamilton’s equatiolose to the periodic
orbit (gp(t) + 0, pp(t) + p) look like

+03gH (0p(b). Pp(t))d + 85,H(@p(b). Pp(t)p. (L.1)
~03gH (@p(®), Pp(1))a — A3oH(@p (D). Pp(®) P, (L2)

where the new coordinategand p are relative to a periodic orbit. This linearized

equation can be regarded addimensional oscillator with time periodic frequencies.

These equations are representing the equation of motioreidusmdant way since
more than one combination of p andt determines the same point of the phase
space. This can be cured by an extra restriction on the Vesiah constraint the
variables should fulfill. This constraint can be derivedirthe time independence
or stationarity of the full Hamiltonian

OH(ap(t) + ¢, pp(t) + P) = 0. (L.3)

Using the linearized form of this constraint we can eliminaie of the linearized

equations. Itis very useful, although technicallffidult, to do one more transformation

and to introduce a coordinate, which is parallel with the kamian flow (x;)
and others which are orthogonal. In the orthogonal direstiwe again get linear
equations. These equations withdependent rescaling can be transformed into
normal coordinates, so that we get tiny oscillators in the neordinates with
constant frequencies. This result has first been derivedincré for equilibrium
points and later it was extended for periodic orbits by Viin@l'd and co-workers.

In the new coordinates, the Hamiltonian reads as

d-1
1 1
Ho(X), Pi, %n, Pn) = Epﬁ U0+ ) E(pﬁ £ 0x). (L4
n=1

which is the general form of the Hamiltonian in the neighloadh of a periodic
orbit. The+ sign denotes, that for stable modes the oscillator potestositive
while for an unstable mode it is negative. For the unstablelespw is the
Lyapunov exponent of the orbit

wn=INApn/Tp, (L.5)

where Ap is the expanding eigenvalue of the Jacobi matrix. For thbleta
directions the eigenvalues of the Jacobi matrix are coedesithw as

Apn =€, (L6)

The Hamiltonian close to the periodic orbit is integrablel @an be quantized by
the Bohr-Sommerfeld rules. The result of the Bohr-Somntedeiantization for
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the oscillators gives the energy spectra

En

hwn (jn + %)for stable modes, (L.7)

En = —ihwn (jn + %)for unstable modes,

wherej, = 0,1,.... Itis convenient to introduce the indes¢ = 1 for stable and
s, = —i for unstable directions. The parallel mode can be quantizggicitly
trough the classical action function of the mode:

% 95 pydx = %Sn(Em) = h(m+ %) (L.8)

wherem, is the topological index of the motion in the parallel difent This
latter condition can be rewritten by a very useful trick ithe equivalent form

@a- éSH(Em)/h—impn/Z) =0 (L.9)

The eigen-energies of a semiclassically quantized permdit are all the possible
energies

d-1
E=En+ ) En (L.10)
n=1

This relation allows us to change ih.9) Ey, with the full energy minus the
oscillator energie€, = E - Y, En. All the possible eigenenergies of the periodic
orbit then are the zeroes of the expression

Ap(E) = ]—l (1 — &SIE-Enhisnwn(in+1/2))/h-impn/2) (L.11)

a5 d-1
If we Taylor expand the action arourigito first order
S|(E+¢€) = S|(E) + T(E)e, (L.12)

whereT (E) is the period of the orbit, and use the relations@hd the eigenvalues
of the Jacobi matrix, we get the expression of the Selberdymto

&Sp(E)/h-impr/2
Ap(E) = | | [1—7. . (L.13)
(1/2+]n)
J1eeaddo1 [n prﬂ "

If we use the right convention for the square root we get éxé#uee d dimensional
expression of the Selberg product formula we derived froenGlutzwiller trace
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formula in ? . Just here we derived it in dférent way! The functiom\p(E) is
the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to congtiaiéunction
which is zero, whenever the energy coincides with the BS tipethenergy of one
of the periodic orbits, we have to take the product of theserdenants:

A(E) = ]—[ Ap(E). (L.14)
P

The miracle of the semiclassical zeta function is, that iftalke infinitely many
periodic orbits, the infinite product will have zeroes ndteise energies, but close
to the eigerenergies of the whole system !

So we learned, that both stable and unstable orbits arerattiegsystems and
can be individually quantized semiclassically by the oldhBSommerfeld rules.
So we almost completed the program of Sommerfeld to quagéreral systems
with the method of Bohr.Let us have a remark here. In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximatioh?). Sommerfeld
would never do this ! At that point we loose some importantipien compared
to the BS rules and we get somewhat worse results than a sssiadl formula
is able to do. We will come back to this point later when wewdische quantum
corrections.To complete the program of full scale Bohr-Sommerfeld gatibn
of chaotic systems we have to go beyond the linear approxdmatround the
periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel andnal coordinates
can be written as the ‘harmonic’ plus ‘anaharmonic’ peratidn

H(i, Py, %0, Pn) = Ho(Xj, Pjs Xn, Pn) + Ha(X), X0, Pn), (L.15)

where the anaharmonic part can be written as a sum of homoggpelynomials
of X, and p, with x; dependent cd&cients:

HAGK X B) = L HK(OG, X, pr) (L.16)
k=3

HEOG X, ) = ) HE o xR (L17)
S lp+my=k

This classical Hamiltonian is hopeless from Sommerfeld®pof view, since it

is non integrable. However, Birkffioin 1927 introduced the concept of normal

form, which helps us out from this problem by giving successitegrable approximation
to a non-integrable problem. Let’s learn a bit more about it!

SIt is really a pity, that in 1926 Schrodinger introduced thave mechanics and blocked the
development of Sommerfeld’s concept.
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L.2 The Birkhoff normal form

Birkhoff studied the canonical perturbation theory close to an ibguin point of

a Hamiltonian. Equilibrium point is where the potential lzasiinimumvVU = 0
and small perturbations lead to oscillatory motion. We éa@drize the problem
and by introducing normal coordinatggsand conjugate momentunpg the quadratic
part of the Hamiltonian will be a set of oscillators

d
1
Ho(xn. Pr) = ) 5(Pf + wi). (L18)
n=1

The full Hamiltonian can be rewritten with the new coordasat

H(%n, pn) = Ho(%n, Pn) + Ha(Xn, Pn), (L.19)

whereHp is the anaharmonic part of the potential in the new coordmafThe
anaharmonic part can be written as a series of homogenebumpuals

)

HaGn Pr) = > HI(, po). (L.20)
=3

HioG,p) = > hlxp™, (L.21)
ll+mi=j

wherehljrn are real constants and we used the multi-indices (I4, ..., 1) with
definitions

= Z In, X 1= x'llx'zledd

Birkhoff showed, that that by successive canonical transformatio@san introduce
new momentums and coordinates such, that in the new coteditiee anaharmonic
part of the Hamiltonian up to any giveampolynomial will depend only on the
variable combination

1

0= S+ whd). (L22)

wherex, and p, are the new coordinates and momentums,dguis the original
frequency. This is called the Birklficnormal form of degreé\:

N

H(, pr) = ) Hi(ra, . 7a), (L.23)
j=2
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whereH! are homogeneous degr¢golynomials ofr-s. This is an integrable
Hamiltonian, the non-integrability is pushed into the rémdar, which consists of
polynomials of degree higher th&h We run into trouble only when the oscillator
frequencies are commensurate e.g. it is possible to find @f sgtegersm, such
that the linear combination

d
Z WnlMh,
n=1

vanishes. This extra problem has been solved by Gustavst®6ith and we call

the the object Birkhfi-Gustavson normal form. The procedure of the successive
canonical transformations can be computerized and canrdedcaut up to high
orders ¢ 20).

Of course, we pay a price for forcing the system to be intdgrap to degree
N. For a non-integrable system the high order terms behave wildly and the
series is not convergent. Therefore we have to use this tvefudly. Now, we
learned how to approximate a non-integrable system witlgaesee of integrable
systems and we can go back and carry out the BS quantization.

L.3 Bohr-Sommerfeld quantization of periodic orbits

There is some dlierence between equilibrium points and periodic orbits. The
Hamiltonian (.4) is not a sum of oscillators. One can transform the parallel
part, describing circulation along the orbit, into an datdr Hamiltonian, but this
would make the problem extremelyflicult. Therefore, we carry out the canonical
transformations dictated by the Birkfiprocedure only in the orthogonal directions.
The x; coordinate plays the role of a parameter. After the transédion up to
orderN the Hamiltonian I(.17) is

N
H(X“, B> 71, ---Td—l) = Ho(X”, Py, 71, “"Td_l)+z UJ(X”, T1yeees Td_]_), (L24)
j=2

whereU! is a jth order homogeneous polynomiale with x; dependent cdgcients.
The orthogonal part can be BS quantized by quantizing thigichdal oscillators,
replacingr-s as we did inl(.8). This leads to a one dimensionalective potential
indexed byja, ..., jd-1

o 1 N :
HOG. Pl J o Ja2) = 5PF + UG + ) hson(in +2/2)+ (L.25)

n=1

N
+ " UK s (j + 1/2), hpwa(jz + 1/2), . ha-10g-1(ju-a + 1/2)),
k=2
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where j, can be any non-negative integer. The term with inké proportional
with 7¥ due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given sgof

So(E. 1. jit) = 95 pidx = (L.26)

n=1

d-1
- 95 dx, J E~ > iswn(in +1/2) = UK. 1. . ja-1) = 2rA(m + my/2),

whereU contains all thex; dependent terms of the Hamiltonian. The spectral
determinant becomes

Ap(E) = ]—l (1 — &Sp(Ejtmna-1)/h-mpn/2) (L.27)

[ dd-1

This expression completes the Sommerfeld method and tefiew to quantize
chaotic or general Hamiltonian systems. Unfortunatelgrum mechanics postponed
this nice formula until our book.

This formula has been derived with the help of the semiatas&ohr-Sommerfeld
quantization rule and the classical normal form theory.etdj if we expand,
in the exponent in the powers bf

N
Sp=) 1Sk
k=0

we get more than just a constant and a linear term. This f@ralikady gives
us corrections to the semiclassical zeta function in all grewof7. There is a
very attracting feature of this semiclassical expansiarin S, shows up only
in the combinatiors,wn(jn + 1/2). A term proportional withi* can only be a
homogeneous expression of the oscillator energies(jn + 1/2). For example
in two dimensions there is only one possibility of the fuontl form of the order
k term

Sk = &(E) - wX(j + 1/2)K,

wherecy(E) is the only function to be determined.

The corrections derived sofar ateublysemiclassical, since they give semiclassical
corrections to the semiclassical approximation. What aaentym mechanics
add to this ? As we have stressed in the previous section,xde guantum
mechanics is not invariant under canonical transformatidm other context, this
phenomenon is called the operator ordering problem. Sime@perators and
p do not commute, we run into problems, when we would like totevdown
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operators for classical quantities lix&p?. On the classical level the four possible
orderingsxpxp ppxx pxpxandxxppare equivalent, but they arefidirent in
the quantum case. The expression for the endrgd6] is not exact. We have to
go back to the level of the Schrodinger equation if we woikld to get the exact
expression.

L.4 Quantum calculation of 7 corrections

The Gutzwiller trace formula has originally been deriveohirthe saddle point
approximation of the Feynman path integral form of the pgaper. The exact
trace is a path-sum for all closed paths of the system

TrG(x, X, t) = f dxG(x, x, 1) = f DxdSeI", (L.28)

WherefZ)x denotes the discretization and summation for all pathswé tength
tin the limit of the infinite refinement an8l(x, t) is the classical action calculated
along the path. The trace in the saddle point calculationdgara for classical
periodic orbits and zero length orbits, since these are tireraa of the action
6S(x,t) = O for closed paths:

TIG(X.) =gt + ) [ DeeosOn, (L.29)
pePO

wheregp(t) is the zero length orbit contribution. We introduced the/iceordinate

&p with respect to the periodic orbiy(t), x = &p + Xp(t). Now, each path sum
fDEp is computed in the vicinity of periodic orbits. Since the diadpoints
are taken in the configuration space, only spatially distperiodic orbits, the
so called prime periodic orbits, appear in the summatiodarSwthing new has
been invented. If we continue the standard textbook calonlacheme, we have
to Taylor expand the action &, and keep the quadratic term in the exponent
while treating the higher order terms as corrections. Thercan compute the
path integrals with the help of Gaussian integrals. The l@gtphere is that we
don’t compute the path sum directly. We use the correspaedeptween path
integrals and partial ffierential equations. This idea comes from Maslojvend

a good summary is in ref6]. We search for that Schrodinger equation, which
leads to the path sum

f D @S0, (L30)

where the action around the periodic orbit is in a multi disienal Taylor expanded
form:

S(x t) = Z SB)(x = Xp(t)"/nl. (L.31)
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The symboln = (ng,ny, ..., ng) denotes the multi index id dimensionsn! =
l_lid:l n! the multi factorial and X — xp(t))" = []f':l(x@ — Xpi (1)), respectively.
The expansion cdgcients of the action can be determined from the Hamilton-
Jacobi equation

&S + %(VS)z +U =0, (L.32)

in which the potential is expanded in a multidimensionalldageries around the
orbit

U9 = D un(x = xp()"/n!. (L.33)
n
The Schrodinger equation

2
indw = Hy = —%Aw +Uy, (L.34)

with this potential also can be expanded around the peradit. Using the WKB
ansatz

v = S/t (L.35)

we can construct a Schrodinger equation correspondinggivea order of the
Taylor expansion of the classical action. The Schrodireggration induces the
Hamilton-Jacobi equatiorn.(32) for the phase and the transport equation of Maslov
and Fjedoriuk [] for the amplitude:

O + VoVS + %tpAS - %Ag@ =0. (L.36)
This is the partial dierential equation, solved in the neighborhood of a periodic

orbit with the expanded actioih. (31), which belongs to the local path-suin 0).

Ifwe know the Green'’s functio@p(£, £, t) corresponding to the local equation
(L.36), then the local path sum can be converted back into a trace:
f D/ I SOV - TiG (2, £, 1). (L.37)
The saddle point expansion of the trace in terms of locaksdlcen becomes

TIG(x, X, t) = TrGw(X, X, t) + Z TIGp(&, &', 1), (L.38)
p
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whereGw(x, X', t) denotes formally the Green’s function expanded around zer
length (non moving) periodic orbits, known as the Weyl tefih [Each Green’s
function can be Fourier-Laplace transformed indepengemttl by definition we
get in the energy domain:

TIG(x, X, E) = go(E) + Z TIGy(£, &', E). (L.39)
p

Notice, that we do not need here to take further saddle pairtime, since we
are dealing with exact time and energy domain Green’s fansti indexGreen’s
functionlenergy dependent

The spectral determinant is a function which has zeroeseatitien-energies
E, of the Hamilton operatoH. Formally it is

A(E) = det € - H) = l—[(E —Ep).

The logarithmic derivative of the spectral determinanthis trace of the energy
domain Green'’s function:

1 d
TIG(x, X,E) = > ———— = ——logA(E). L.40
(X B)= D g, = gg094® (L.40)

We can define the spectral determinag{E) also for the local operators and we
can write

d
TIGy(£.£'.E) = 52109 Ap(E). (L.41)

Using (L.39) we can express the full spectral determinant as a produdhé&®
sub-determinants

AE) = YO [ [ ap(B),
p

whereW(E) = fE 0o(E")dE’ is the term coming from the Weyl expansion.

The construction of the local spectral determinants candme easily. We
have to consider the stationary eigenvalue problem of tted Bchrodinger problem
and keep in mind, that we are in a coordinate system movinetheg with the
periodic orbit. If the classical energy of the periodic odmincides with an eigen-
energyE of the local Schrodinger equation around the periodictpthien the
corresponding stationary eigenfunction fulfills

UplEt+Ty) = f AEGple. &, U+ Towple 1) = € Ey(e ), (L42)
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whereT), is the period of the prime orbjt. If the classical energy of the periodic
orbit is not an eigeaenergy of the local Schrodinger equation, the non-statipn
eigenfunctions fulfill

WhE L+ Tp) = f A&’ Gp(é, &, t+ Tplp(€, 1) = e ETo/M AL (Bl (1), (L.43)

wherel = (I, 15, ...) is a multi-index of the possible quantum numbers of thelloca
Schrddinger equation. If the eigenvaluél;(E) are known the local functional
determinant can be written as

Ap(E) = | @~ A(E). (L.44)
|

sinceAp(E) is zero at the eigerenergies of the local Schrodinger problem. We
can insert the ansatt.85) and reformulatel(.43) as

i ST (1 + Tp) = e ETo/M Al (E)er SO (). (L.45)

The phase change is given by the action integral for one g&fo+ Tp) — S(t) =
fOT" L(t)dt. Using this and the identity for the acti@p(E) of the periodic orbit

.
Sp(E) = Sgpdq: f "Ldt+ ET,, (L.46)
0
we get
i Bl (t+Tp) = A(E)eh (). (L.47)

Introducing the eigen-equation for the amplitude

@p(t+Tp) = R p(E)eh (D). (L.48)

the local spectral determinant can be expressed as a prémuttte quantum
numbers of the local problem:

Ap(E) = [ (2 - Rip(E)er#®). (L.49)
|

Sincen is a small parameter we can develop a perturbation seriethéor
. ix\M . . . .
amplitudesgh(t) = 550 (%)" ¢§™ (1) which can be inserted into the equation
(L.36) and we get an iterative scheme starting with the semidalssolutiony'©:

1
060+ VgOTS + ZJO6s = 0, (L.50)

oD 4 ymDyg 4 %‘pl(rm-l)AS WCY
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The eigenvalue can also be expanded in poweis/@f

Rp(E) = eXp{i(%) Cfr;)} (L.51)

m=0

=expCNIL + c<1) ( )( (c‘l))2+cf?g)+..‘. (L.52)

The eigenvalue equatioh.@8) in 2 expanded form reads as

@+Ty) = expC e,
et +To) = expCNe M + Cilei(m)],
A2+ Ty) = expCOA0 + B0 + €+ 5CAALER)

and so on. These equations are the conditions selectingigeavectors and
eigenvalues and they hold for &ll

Itis very convenient to expand the functio,u'é”)(x, t) in Taylor series around
the periodic orbit and to solve the equatiohs5(l) in this basis {(], since only
a couple of cogficients should be computed to derive the first correctionss Th
technical part we are (§;omg to publish elsewheile DOne can derive in general
the zero order tern€(® = izvy + SO (I + 1) up;. whereup; = log A, are
the logarithms of the eigenvalues of the monodromy malfix and vy, is the
topological index of the periodic orbit. The first correctiis given by the integral

a _ T A‘Pllgo)(t)
Cl,p = dt O
0 wp (1)

When the theory is applied for billiard systems, the wavecfiom should
fulfill the Dirichlet boundary condition on hard walls, eigshould vanish on the
wall. The wave function determined frorh.36) behaves discontinuously when
the trajectoryxy(t) hits the wall. For the simplicity we consider a two dimemsib
billiard system here. The wave function on the wall before lounce t( o ) is
given by

Yin(X Y(X). 1) = (X, Y(¥), t_o)eSCYR L)/, (L.54)

wherey(x) = Y2x2/2! + Y3x3/3! + Y4x4/4! + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave functioithe wall after the
bounce ;o) is

Wout%, Y(X), 1) = @(X, Y(X), t0)eSCYL0)/h, (L.55)
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The sum of these wave functions should vanish on the hard Wait implies that
the incoming and the outgoing amplitudes and the phaseglated as

S(x ¥(x). t-0) = S(x. Y(¥). t:0). (L.56)

and

(% Y(¥), t-o) = —¢(X, Y(X), t0). (L.57)

The minus sign can be interpreted as the topological phasengdrom the hard
wall.

Now we can reexpress the spectral determinant with the igehvalues:

AE) =€ ET[H(l Rp(E)er®®). (L.58)

This expression is the quantum generalization of the sess@al Selberg-product
formula [L1]. A similar decomposition has been found for quantum Bakepsn
in ref. [12]. The functions

GYE) = [ |- R p(E)ei>®) (L.59)
P

are the generalizations of the Ruelle typé][zeta functions. The trace formula
can be recovered front (40):

7Sp(E)
,d100R.p (E)) »(E)e (L.60)
dE 1-R, (E)e,,Sp(E

TIG(E) = go(E)+—Z(T (E)-in

We can rewrite the denominator as a sum of a geometric seibwa get

dlogR.p(E)

(R (E)) el (L6D)

TIG(E) = Go(E) + = Z(Tp(E) in
prI

The new indexr can be interpreted as the repetition number of the prime orbi
p. This expression is the generalization of the semiclaksiaae formula for
the exact quantum mechanics. We would like to stress heaettth perturbation
calculus introduced above is just one way to compute theneadiees of the local
Schrddinger problems. Non-perturbative methods can bd te calculate the
local eigenvalues for stable, unstable and marginal orbitserefore, our trace
formula is not limited to integrable or hyperbolic systernitscan describe the
most general case of systems with mixed phase space.
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Figure L.2: A typical bounce on a billiard wall. The wall can be charaieted by the local
expansiony(x) = Y2x2/2! + Y3x3/3! + Yax /4! + ...

The semiclassical trace formula can be recovered by drgphssub-leading
term—izidlog R p(E)/dE and using the semiclassical eigenvdRﬁ%(E) =& =
e e Zili+1/2uni - Symmation for the indexésyields the celebrated semiclassical
amplitude

e—ir vpit

O)(E)Y =
2R = rqera vy e (L62)

To have an impression about the improvement caused by tméugunaorrections
we have developed a numerical codé][which calculates the first correcti 1|)
for general two dimensional billiard systems . The first eotion depends only on
some basic data of the periodic orbit such as the lengthedfek flights between
bounces, the angles of incidence and the first three Tay[maresion cofficients
Y2, Y3, Yq4 of the wall in the point of incidence. To check that our newaloc
method gives the same result as the direct calculation di¢lygeaman integral, we
computed the first t:orrectionCE)l()J for the periodic orbits of the 3-disk scattering
system [4] where the quantum corrections have been We have foundragree
up to the fifth decimal digit, while our method generates ¢hasmbers with any
desired precision. Unfortunately, thez O cosficients cannot be compared to
ref. [15], since thel dependence was not realized there due to the lack of general
formulas (.58) and (.59). However, thd dependence can be checked on the 2
disk scattering system.{]. On the standard examplé4, 15, 16, 18], when the
distance of the center&)is 6 times the disk radius, we got

1
c® = ——_(-0.629° - 0.31292 + 1.4379 + 0.625
! \/ZE( )

For| = 0 and 1 this has been confirmed by A. Wirzba][ who was able to
computecgl) from his exact quantum calculation. Our method makes itiptess
to utilize the symmetry reduction of Cvitanovi¢ and Ecldtaand to repeat the
fundamental domain cycle expansion calculation of r&d] vith the first quantum
correction. We computed the correction to the leading 22@&eperiodic orbits
with 10 or less bounces in the fundamental domain. Tableowstthe numerical
values of the exact quantum calculatidis], the semiclassical cycle expansiari]
and our corrected calculation. One can see, that the ertbe @brrected calculation
vs. the error of the semiclassical calculation decreas#s tve wave-number.
Besides the improved results, a fast convergence up to sirdedigits can be
observed, which is just three decimal digits in the full domzalculation [L5].
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s

s,/

Figure S.1: Geometry of the 3-disk pinball.

sing@
(@ Sy S, S3
3 2 1 3 2 1
sing 29 X é;/ ¢
(b) Sy S, Sz
1 3 2 1
sing

(c) Sz S3
Figure S.2: (a) The phase space of the 3-disk pinball. (b) The part of@bpace which remains
on the table for one more iterate. (c) The images of the diskseé iteration.

escape, then hit disk “2" , and then escape again, when increasing the arc length
parameter in the manner indicated in figure S.1 (a). Thus—if the disks are sulfficiently
well separated—there are two strips of initial conditions which do not escape. By
symmetry this yields figure S.1 (b) where the numbers indicate onto which disk these
initial trajectories are going to end up on. By time reversal Figure S.1 (c) shows the
strips labeled by disk where the pinball came from.

Combining figure S.1(b) and (c) we obtain three sections, which are the same
except for the labeling of the disks. One of such section is shown in figure S.3.

The billiard map enjoys a certain monotonicity, as depicted in figure S.4, which
easily verified by inspecting figure S.1. It says that any curve connecting the two
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sing

S
Figure S.3:The intersection of one iterate images and preimages.

Map
TN

sing | L sing

S S
Figure S.4: Monotonicity of the billiard map.
boundaries of one of the strips gets mapped to a curve within the image of that strip
running all the way across from top to bottom.
This, in particular, means that the intersections of the image of the previous disk
and the initial conditions to land onto the next disk, see figure S.3, will map onto (thin)

strips running across from to to bottom, as shown in figure S.5.

Map
7N

sing | ! sing

S S

Figure S.5:Images in the second iterate. This is, of course, schenfigfibacause we dropped the
labels of the disks; in fact, the two intersection regionsmaapped onto two dlierent disks.

Finally, since the images of the intersection regions run all the way across in
the vertical direction, we can iterate the argument. Every time the number of strips
doubles, and we find regions of states which can go to either of the two neighboring
disks at every step. Hence any symbol sequence with no repeat of consecutive
symbols can be realized.
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APPENDIX S. SOLUTIONS 823 APPENDIX S. SOLUTIONS 824

Chapter 19. Discrete symmetries factorize spectral deter-

minants
1.4
1.2 Solution 19.2 - Sawtooth map desymmetrization. No solution available as yet.
1 Solution 19.3 - 3-disk desymmetrization.
> 0.8
0.6 . L
0.4 b) The shortest cycle with no symmetries is 121213
0.2 ¢) The shortest fundamental domain cycle cycle whose time reversal is not obtained
0 by a discrete symmetry is 010011 It corresponds to 121313212323 the full
4 5 6 7 8 9 10 space.
a
Figure S.12: Plot of the escape rate versagor
the logistic map<,;1 = ax,(1-x,) calculated from Ben Web
the first five periodic orbits. Solution 19.4 - C, factorizations: the Lorenz and Ising systems. No solution
available as yet.
Solution 18.2 - Escape rate for a 1- d repeller We can compute an approximate Solution 19.5 - Ising model.  No solution available as yet.

functional dependence of the escape rate on the parameter a using the stabilities of
the first five prime orbits computed above, see (S.22). The spectral determinant (for

a>4)is Solution ??- Characters. No solution available as yet.

Solution 19.6 - One orbit contribution.  No solution available as yet.

2z 87

F o=l Eae- e

(S.24)

N 2(32- 18a+ 17a% — 16a% + 14a’ — 6a° + a°)
(@a-3)@a-1p1+a)(a2-5a+7)@2+a+1)

2a(a-2)V(a®-2a-7)
(22-5a+7)@-2a-7)(@2+a+ 1))

The leading zero is plotted in figure S.12; it always remains real while the other two
roots which are large and negative fora > 5.13. .. become imaginary below this critical
value. The accuracy of this truncation is clearly worst for a — 4, the value at which
the hyperbolicity is lost and the escape rate goes to zero.

(Adam Priigel-Bennet)

Solution 18.3 - Escape rate for the Ulam map. The answer is worked out in
Nonlinearity 3, 325; 3, 361 (1990).

Solution 18.11 - Escape rate for the R dssler system. No solution available as
yet.

soluRecyc - 15n0v2007.tex soluSymm - 13jul2000.tex
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APPENDIX S. SOLUTIONS 827

The only terms that survive are those for which j = i — 1 (that is the top diagonal in
the figure) thus

)

1-u)P, = u’lz u?

i=1

and
A-ua-wp=ut(WP+ut+— W+ ) =u
Thus
u
Pz ——
T E-ua-w
In general
(1 _ U)Pn — uin+i",1+~-+\1 _ uin+in,1+~»+(i1+l)
in>in_1>i1>0 in>in-1>11>0
(S.26)
— u—l Z uin+in,1+---+2i2 (827)

in>in 15221
since only the term iy = i, — 1 survives. Repeating this trick

QY- P =u? ) e

in>in_1>i3>2

and
n
l_l(l _ ul) Pn= y @2+ n(n-1) — n(n-1)/2
i=1
Thus
un(n—l)/z
Prn= =
i (1-u)

(Adam Priigel-Bennet)

Solution 21.3 - Euler formula, 2nd method.  The coefficients Qy in (21.4) are given
explicitly by the Euler formula

1 A—l A—k+1

Q=TATT-AZ  T-A

(S.28)

soluConverg - 12jun2003.tex

APPENDIX S. SOLUTIONS 828

Such a formula is easily proved by considering the finite order product

j+1

i
Wiy = [|a+2) = ) 1
1=0 1=0

Since we have that

L+ 2"YWizy) = L+ 2Wihzy),
we get the following identity for the coefficients

Tm+ Ty = Ty +Ty™ m=1,....
Starting with T'o = 1, we recursively get

1-y1* _ A=Y -y

T )

the Euler formula (21.5) follows once we take the j — co limit for |y| < 1.

(Robert Artuso)
Solution 21.3 - Euler formula, 3rd method.  First define
fu:= Ja+uh. (S.29)
k=0
Note that
f(t,u) = (1 +t)f(tu,u), (S.30)
by factoring out the first term in the product. Now make the ansatz
fltu) = ) t'gy(u) , (5:31)
n=0
plug it into (S.30), compare the coefficients oft" and get
0n(U) = U"gn(U) + U™ g (U) . (S.32)

Of course go(u) = 1. Therefore by solving the recursion (S.32) and by noting that

Shtk= ”("2’ 1 one finally arrives at

n(n-1)
z

u
[N 639

On(U) =

soluConverg - 12jun2003.tex
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APPENDIX S. SOLUTIONS 831 APPENDIX S. SOLUTIONS 832

Chapter 23. Intermittency Chapter ??. Continuous symmetries

Solution ?7?- To be constructed:  Rotate coordinates x'= gx:
(No solutions available.)

L(X,y) = 8(gy - F(9). = Idetg| ™" 6(y - F(x)). = L(x.y) = |detg] L(gx, gy)..

For a compact semisimple Lie group |detg| = 1, hence (?7?).

solulnter - 13jul2000.tex soluRpo - 19sep2007.tex
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APPENDIX S. SOLUTIONS 841

Solution 30.2 - Green'’s function. The Laplace transform of the (time-dependent)
quantum propagator

K(G,0.1) = > én(@)e ™ gy (q)

is the (energy-dependent) Green’s function

- l o LEt— & - g% /
Gad.Exie) = 5 [ dtelE I Y e = @)
n

1 o i )
= D o) [ el

t=0

B - 1 -t (E-EUR =
2. @ g e e

When ¢ is positive, € i = 0, so

Pn(@er(a)

G(q.q,E+ig) = — .
@q ) - E-E,+ie

(Bo Li)

soluQmech - 25jan2004.tex

APPENDIX S. SOLUTIONS 842

Chapter 31. WKB quantization

Solution 31.1 - Fresnel integral.  Start by re-expressing the integral over the infinite
half-line:

1 fm 2 2 fm e
—_— dx ez = — dx e, acR, a=#0.
Vor J-w Var Jo

When a > 0, the contour vanishes, as it contains no pole:

. 0
ﬁdz g?l2a _ f dx &% +f +f digmdx=0
c 0 ¢ Je

f - f * RS 2Rty = 0. (s.41)
(o4 0

So

2 f"" 2 2 f‘” iz -2 _ -
= dx ez = — dx eze zaze'4\/a= Via
V2r Jo V2r Jo 2 R

In the a < O case take the contour

7 /2ia a 3 0 Sz o2
dze = dx ez + + e'iexadx
c 0 o Jo
o 2 i o 2
= f dxe‘ﬁ—e"ﬁf dx ez =0.
0 o

Again

2 0 2 I
— dx e =¢e's ,
o VA

and, as one should have perhaps intuited by analyticity arguments, for either sign of a
we have the same Gaussian integral formula

1 o 2 ira
— | dxe =jaY2dim = Via.
=l

The vanishing of the C" contour segment (S.41) can be proven as follows: Substitute
z = Ré? into the integral

= fz R 2R A = fﬁ R(cos Bisin 2 2aR doicl
o o

soluWKB - 25jan2004.tex
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APPENDIX S. SOLUTIONS 851

Limits of integration may depend on particular situation. If limits are infinite, then

fe’sz/”dds: (f e’§/”ds) = (nh)9/?

We substitute this into | and get the answer. (R. Paskauskas)

Solution 33.2 - Jacobi gymnastics. We express the Jacobi matrix elements in
det (L — J) with the derivative matrices of S

I +S-1Sqq St
det(l—J):det( *>qa>aa v )

~Saq + SaaSqSqa | +SeeSqh

We can multiply the second column with Sqq from the and substract from the first
column, leaving the determinant unchanged

| S#
det (1- J) = det a9__ )
( ) ( —Sqq = Sgqg | + Sqqsq%}

Then, we multiply the second column with Sqq from the right and compensate this by
dividing the determinant with detSqq

|
detSyq.
—Saq —Sqg Sqq+ Sqq )/ aa

det(1-J) = det(
Finally we subtract the first column from the second one
det(1- 3)) = det( o be e e oo )/detsq,q.
aq T Oqq SOt Ogq qq+ Sqq
The last determinant can now be evaluated and yields the desired result (33.2)

det(1- J;) = detSqq + Sqq + Sqq + Sqg)/detSqq.

soluTraceScl - 11jun2003.tex
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Chapter 34. Quantum scattering

Solution 34.2 - The one-disk scattering wave function.

TCEEDY (Hﬁ)(kr) o H&“(kr))ém“‘"*"k) :

H® (ka)
HP (k

(Forr < a, y(F) = 0 of course.)

soluScatter - 4sep98.tex
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APPENDIX S. SOLUTIONS 853 APPENDIX S. SOLUTIONS 854

Chapter 36. Helium atom Chapter 37. Diffraction distraction

(No solutions available.) (No solutions available.)

soluHelium - 12jun2003.tex soluWhelan - 12jun2003.tex
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Chapter B. Linear stability

Solution B.1 - Real representation of complex eigenvalues.

1 [ R R

(P. Cvitanovic)

soluAppStab - 1feb2008.tex
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Chapter C. Implementing evolution

(No solutions available.)

soluAppMeasure - 12jun2003.tex
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APPENDIX S. SOLUTIONS 857 APPENDIX S. SOLUTIONS 858

Chapter D. Symbolic dynamics techniques Chapter E. Counting itineraries

Solution E.1 - Lefschetz zeta function. Starting with dynamical zeta function
ref. [13] develops the Atiyah-Bott-Lefschetz fixed point formula and relates is to Wey!
characters. Might be worth learning.

(No solutions available.)

soluAppSymb - 12jun2003.tex soluAppCount - 22jan2005.tex
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APPENDIX S. SOLUTIONS 861 APPENDIX S. SOLUTIONS 862

Chapter J. Infinite dimensional operators Chapter K. Statistical mechanics recycled

Solution J.1 - Norm of exponential of an operator. No solution available.
(No solutions available.)

soluAppWirzba - 2sep2008.tex soluStatmech - 12jun2003.tex



Appendix T

Projects

the techniques learned in the course with some applicafionterest to

Y ou ARE URGED t0 work through the essential steps in a project that conshine

you for other reasons. It is OK to share computer programssaold, but
otherwise each project should be distinct, not a group ptojehe essential steps

are:

e Dynamics

o U~ W N

. construct a symbolic dynamics

. count prime cycles

. prune inadmissible itineraries, construct Markov geaipappropriate
. implement a numerical simulator for your problem

. compute a set of the shortest periodic orbits

. compute cycle stabilities

e Averaging, numerical

1.

estimate by numerical simulation some observable dyatike the
escape rate,

. or check the flow conservation, compute something like-yfa@unov

exponent

e Averaging, periodic orbits

. implement the appropriate cycle expansions
. check flow conservation as function of cycle length trtioca if the

system is closed

. implement desymmetrization, factorization of zeta fiows, if dynamics

possesses a discrete symmetry

. compute a quantity like the escape rate as a leading zersméctral

determinant or a dynamical zeta function.

863

APPENDIX T. PROJECTS 864

. or evaluate a sequence of truncated cycle expansionsvéoages,

such as the Lyapunov exponentand difusion codicients

6. compute a physically intersting quantity, such as thelootance
7. compute some number of the classical/anquantum eigenvalues, if

appropriate

projects - 24mar98.tex



APPENDIX T. PROJECTS 865
T.1 Deterministic diffusion, zig-zag map

To illustrate the main idea of chaptéd, tracking of a globally dtusing orbit

by the associated confined orbit restricted to the fundaahestl, we consider a
class of simple & dynamical systems, chains of piecewise linear maps, wlhiere a
transport cofficients can be evaluated analytically. The translationairsgtry
(24.10 relates the unbounded dynamics on the real line to the dipsastricted

to a “fundamental cell” - in the present example the unitrivakcurled up into a
circle. An example of such map is the sawtooth map

AX x€ [0,1/4 + 1/4A]
f() ={ —Ax+(A+1)/2 xe[1/4+1/4A,3/4—-1/4A] . (T.1)
AX+(1-A) X € [3/4-1/4A,1]

The corresponding circle maf(x) is obtained by modulo the integer part. The
elementary cell mag (x) is sketched in figurd.1l. The map has the symmetry
property

f(®R = -f(-8). (T2)

so that the dynamics has no drift, and all odd derivativeh@fjenerating function
(24.3 with respect t@ evaluated g8 = 0 vanish.

The cycle weights are given by

&M
ty=2"— T.3
P Al )
The difusion constant formula for d-maps is
a2
l<n >(
=-—= T4
2 (T.4)
where the “mean cycle time” is given by
3 (Npy + -+ Ny
n 1 T.5
e = azz:(o B =2 Yl (T-5)
the mean cycle displacement squared by
P 1 @ -+ fip)?
a2 K P1 Pk
i - 1 s T.6
(), = = YR |Ap1 yw (T.6)

and the sum is over all distinct non-repeating combinataf®ime cycles. Most

of results expected in this projects require no more thanipand paper computations.

Implementing the symmetry factorizatioP4(.35 is convenient, but not essential
for this project, so if you find sect9.1.1too long a read, skip the symmetrization.

ProblemgprojDDiff1.tex 7aug2002.tex
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;(x)

Figure T.1: (a)-(f) The sawtooth mapr(1) for the

6 values of parameterfor which the folding point
of the map aligns with the endpoint of one of the 7
intervals and yields a finite Markov partition (from
ref. [1]). The corresponding Markov graphs are
given in figureT.2.

T.1.1 The full shift

—

45 2 67 3
{a)

Ll LA N - e )
I

145 2 67 3
(e}

X

X

866

;(x)

— TR =l

f(x)

ok G102 o=l o

1 45267 3%
(£)

Take the mapT.1) and extend it to the real line. As in example of fig@£3
denote bya the critical value of the map (the maximum height in the uglt)c

(1.7

Describe the symbolic dynamics that you obtain whes an integer, and derive

the formula for the dfusion constant:

(A2 -1)(A-3)

D=
96A

forA=4a-1, acZ.

(T.8)

If you are going strong, derive also the fromula for the hialégera = (2k+1)/2,
A = 4a+ 1 case and emalil it to DasBuch@nbi.dk. You will need to partitM,

into the left and right halfM; = Mg U My, as in the derivation of24.21).

ProblemgprojDDiff1.tex 7aug2002.tex

[exercise 24.1]
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Figure T.2: (a) The sawtooth mapr(l) partition
tree for figureT.1 (a); while intervalsi, Mo, Ms
map onto the whole unit intervalf (M;) =
f(Mp) = f(Ms) = M, intervals M4, Ms map
onto My only, f(Ms) = f(Ms) = M, and
similarly for intervals Mg, M7. An initial point
starting out in the intervaM;, M, or Mz can

land anywhere on the unit interval, so the subtrees
originating from the corresponding nodes on the
partition three are similar to the whole tree and

can be identified (as, for example, in figur@ 13,

yielding (b) the Markov graph for the Markov

partition of figureT.1 (a). (c) the Markov graph
in the compact notation o2¢.26.

T.1.2 Subshifts of finite type

@

867

We now work out an example when the partition is Markov, altftothe slope is
not an integer number. The key step is that of having a pamtitthere intervals
are mappednto unions of intervals. Consider for example the case in which
A =4a-1, where 1< a < 2. Afirst partition is constructed from seven intervals,
which we label{ M1, Ma, Ms, Mo, Mg, Mz, M3}, with the alphabet ordered as
the intervals are laid out along the unit interval. In gehte critical valuea will

not correspond to an interval border, but now we chaosech that the critical
point is mapped onto the right borderdft;, as in figureT.1(a). The critical value
of f()is f(A4—’/'\1) =a-1= (A - 3)/4. Equating this with the right border @#;,

x = 1/A, we obtain a quadratic equation with the expanding solutica 4. We
have thatf (M) = f(Ms) = My, so the transition matrixlQ.2) is given by

S

1l

_|

<

11
PR R R R R
OO O0OO0OOoR
OO O0OOOoR
PR R R R R

P OOOOoOOo

P OOOOoOOo

[

[

b2 (T.9)

and the dynamics is unrestricted in the alphabet

{1, 41 51 2, 63,73, 3,}.

One could diagonalizeT(9) on the computer, but, as we saw in seid.4 the
Markov graph figurer.2 (b) corresponding to figuré.1 (a) ofers more insight
into the dynamics. The dynamical zeta function

¢ = 1-(1+t+13) — 2(tra + t37)

z zZ
1/, = 1- 3X —4cosh6’A—

3

(T.10)

follows from the loop expansiorlg.13 of sect.13.3

ProblemgprojDDiff1.tex 7aug2002.tex
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figureT.1 A D
3 0
(a) 4 1—10
(b) ) V5 +2 qg
(©) {(VI7+5) %
©) 5 g
(d) 1(V33+5) | 1+ V33
1
(e) 12 V2+3 2,
( 1(V33+7) | 1+ PR
7 7

Table T.1: The difusion constant as function of the slopefor thea = 1,2 values of
(T.8) and the 6 Markov partitions of figure 1

The material flow conservation se2f.3and the symmetry factorizatiof4.35
yield

o[ a)l )

which indeed is satisfied by the given valueof Conversely, we can use the
desired Markov partition topology to write down the corresging dynamical
zeta function, and use th¢{(0, 1) = 0 condition to fixA. For more complicated
transition matrices the factorizatio®4.35 is very helpful in reducing the order
of the polynomial condition that fixes.

The difusion constant follows fron2@.36 and (T.4)

(M = (1 + %)(—%) - (), = %

Think up other non-integer values of the parameter for witielsymbolic dynamics
is given in terms of Markov partitions: in particular considhe cases illustrated
in figure T.1 and determine for what value of the paramedezach of them is
realized. Work out the Markov graph, symmetrization faizetion and the diusion
constant, and check the material flow conservation for easte.c Derive the
diffusion constants listed in tablel. It is not clear why the final answers tend to
be so simple. Numerically, the case of figlré (c) appears to yield the maximal
diffusion constant. Does it? Is there an argument that it shaukbB

The seven cases considered here (see fabldigureT.1and (T.8)) are the 7
simplest complete Markov partitions, the criterion beihgttthe critical points
map onto partition boundary points. This is, for example atvhappens for
unimodal tent map; if the critical point is preperiodic to anstable cycle, the

ProblemgprojDDiff1.tex 7aug2002.tex
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grammar is complete. The simplest example is the case inhwthie tent map
critical point is preperiodic to a unimodal map 3-cycle, ihigh case the grammar
is of golden mean type, withOO_ substring prohibited (see figur0.13. In
case at hand, the “critical” point is the junction of brareleand 5 (symmetry
automatically takes care of the other critical point, atjthection of branches 6
and 7), and for the cases considered the critical point mapsthe endpoint of
each of the seven branches.

One can fill out parameteraxis arbitrarily densely with such points - each of
the 7 primary intervals can be subdivided into 7 intervalgivied by 2-nd iterate
of the map, and for the critical point mapping into any of #has 2 steps the
grammar (and the corresponding cycle expansion) is finite sa on.

T.1.3 Diffusion codficient, numerically

(optional:)
Attempt a numerical evaluation of

D= % lim }(9@ . (T.11)

Study the convergence by comparing your numerical resuliset exact answers
derived above. Is it better to use few initialahd average for long times, or to
use many initialxYor shorter times? Or should one fit the distributionxéfwith

a Gaussian and get tli2 this way? Try to plot dependence DBfon A; perhaps
blow up a small region to show that the dependancB oh the parametea is
fractal. Compare with figurg4.5and figures in refs.1f, 2, 8, 9].

T.1.4 D is a nonuniform function of the parameters

(optional:)

The dependence @ on the map parametéy is rather unexpected - even though
for larger A more points are mapped outside the unit cell in one iteratioa
diffusion constant does not necessarily grow. An interpretatiothis lack of
monotonicity would be interesting.

You can also try applying periodic orbit theory to the savttomap (.1) for
a random “generic” value of the parameterfor exampleA = 6. The idea is to

bracket this value of\ by the nearby ones, for which higher and higher iterates
of the critical valuea = (A + 1)/4 fall onto the partition boundaries, compute the

exact difusion constant for each such approximate Markov partitéom study
their convergence toward the value Dffor A = 6. Judging how dficult such
problem is already for a tent map (see sé&.6 and appendiD.1), this is too
ambitious for a week-long exam.

refsProjDDi{f1 - 4aug2000.tex
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T.2 Deterministic diffusion, sawtooth map

To illustrate the main idea of chaptéd, tracking of a globally diusing orbit

by the associated confined orbit restricted to the fundaahestl, we consider in
more detail the class of simpledldynamical systems, chains of piecewise linear
maps 24.9. The translational symmetr4.10 relates the unbounded dynamics
on the real line to the dynamics restricted to a “fundameced! - in the present
example the unit interval curled up into a circle. The cqueesling circle map
f(x) is obtained by modulo the integer part. The elementary elp f(X) is
sketched in figur@4.3 The map has the symmetry property

f® = -f(-9, (T.12)

so that the dynamics has no drift, and all odd derivativeb®fenerating function
(24.3 with respect t@ evaluated gB = 0 vanish.

The cycle weights are given by

)
tp= Zn”m . (T.13)

The difusion constant formula for d-maps is

A2
1<n >[
=—— T.14
2, (T.14)
where the “mean cycle time” is given by
J 1 7 g Npy o+ N
Ny, =z——— =-) (-2 — B T.15
R v I M b vy v (729
the mean cycle displacement squared by
2 1 , (Ap, + - -+ + iy )2
) = | = Y (e R T.16
()= 3 76.0),0 = 2 Y kAl (1-16)

and the sum is over all distinct non-repeating combinatafmime cycles. Most

of results expected in this projects require no more thanipand paper computations.

T.2.1 The full shift

Reproduce the formulas of se@4.2.1for the difusion constanD for A both
even and odd integer.

ProblemgprojDDiff2.tex 7aug2002.tex

References 872

figure24.4 A D
a3
(@) 2+ V6 |1-326
15+2V2
(b) 2V2+2 T
(c) 5 1
(d) 3+16 gsﬁ
(e) 3+ V7 e
6 2
6

Table T.2: The difusion constant as function of the slopefor the A = 4,6 values of
(24.20 and the 5 Markov partitions like the one indicated in figide4

T.2.2 Subshifts of finite type

We now work out examples when the partition is Markov, altffothe slope is
not an integer number. The key step is that of having a paatitthere intervals
are mappeantounions of intervals.

Start by reproducing the formula4.29 of sect.24.2.3for the difusion constant
D for the Markov partition, the case where the critical pomitriapped onto the
right border ofiy, .

Think up other non-integer values of the parametdor which the symbolic
dynamics is given in terms of Markov partitions: in parteutonsider the remaining
four cases for which the critical point is mapped onto a boafea partition in
one iteration. Work out the Markov graph symmetrizationtdaization and the
diffusion constant, and check the material flow conservatioedoh case. Fill in
the difusion constants missing in table2. It is not clear why the final answers
tend to be so simple. What value af appears to yield the maximalftlision
constant?

The 7 cases considered here (see tali?eand figure24.4) are the 7 simplest
complete Markov partitions in the4 A < 6 interval, the criterion being that the
critical points map onto partition boundary points. In cas@and, the “critical”
point is the highest point of the left branch of the map (syrmmnautomatically
takes care of the other critical point, the lowest point & kft branch), and for
the cases considered the critical point maps into the entipbeach of the seven
branches.

One can fill out parameteraxis arbitrarily densely with such points - each of
the 6 primary intervals can be subdivided into 6 intervalgivied by 2-nd iterate
of the map, and for the critical point mapping into any of #as 2 steps the
grammar (and the corresponding cycle expansion) is finite sa on.

T.2.3 Diffusion codficient, numerically

(optional:)

ProblemgprojDDiff2.tex 7aug2002.tex
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Attempt a numerical evaluation of

1
D=3 im = (). (T.17)

NI =

Study the convergence by comparing your numerical resuiliset exact answers
derived above. Is it better to use few initialahd average for long times, or to
use many initialxYor shorter times? Or should one fit the distributionxéfwith

a Gaussian and get tliz this way? Try to plot dependence bBfon A; perhaps
blow up a small region to show that the dependancB oh the parametea is
fractal. Compare with figurg4.5and figures in refs.1f, 2, 8, 9].

T.2.4 D is a nonuniform function of the parameters

(optional:)

The dependence @ on the map parametéy is rather unexpected - even though
for larger A more points are mapped outside the unit cell in one iteratioa
diffusion constant does not necessarily grow. Figeies taken from ref. §]
illustrates the fractal dependence offdsion constant on the map parameter. An
interpretation of this lack of monotonicity would be intstiag.

You can also try applying periodic orbit theory to the saviomap @4.9) for

a random “generic” value of the parameterfor exampleA = 4.5. The idea is

to bracket this value ok by the nearby ones, for which higher and higher iterates
of the critical valuea = A/2 fall onto the partition boundaries, compute the exact
diffusion constant for each such approximate Markov partitiord study their
convergence toward the value Bf for A = 4.5. Judging how dficult such
problem is already for a tent map (see sé&.6 and appendixD.1), this is too
ambitious for a week-long exam.
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