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Appendix A

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law : everything that is discovered is
named after someone else (including Arnol’d’s
law)

2. Berry’s Law : sometimes, the sequence of
antecedents seems endless. So, nothing is
discovered for the first time.

3. Whiteheads’s Law: Everything of importance has
been said before by someone who did not discover
it.

—M.V. Berry

(R. Mainieri and P. Cvitanović)

T   the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was important for determining
the longitude of ships while traversing open seas.

Kepler’s Rudolphine tables had been a great improvement over previous tables,
and Kepler was justly proud of his achievements. He wrote in the introduction to
the announcement of Kepler’s third law,Harmonice Mundi(Linz, 1619) in a style
that would not fly with the contemporaryPhysical Review Letterseditors:

What I prophesied two-and-twenty years ago, as soon as I discovered
the five solids among the heavenly orbits–what I firmly believed long before
I had seen Ptolemy’sHarmonics–what I had promised my friends in the title
of this book, which I named before I was sure of my discovery–what sixteen
years ago, I urged as the thing to be sought–that for which I joined Tycho
Brahé, for which I settled in Prague, for which I have devoted the best part
of my life to astronomical contemplations, at length I have brought to light,
and recognized its truth beyond my most sanguine expectations. It is not
eighteen months since I got the first glimpse of light, three months since
the dawn, very few days since the unveiled sun, most admirable to gaze
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upon, burst upon me. Nothing holds me; I will indulge my sacred fury; I
will triumph over mankind by the honest confession that I have stolen the
golden vases of the Egyptians to build up a tabernacle for my God far away
from the confines of Egypt. If you forgive me, I rejoice; if youare angry, I
can bear it; the die is cast, the book is written, to be read either now or in
posterity, I care not which; it may well wait a century for a reader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood still since Newton.
The formalism that we use today was developed by Euler and Lagrange. By the
end of the 1800’s the three problems that would lead to the notion of chaotic
dynamics were already known: the three-body problem, the ergodic hypothesis,
and nonlinear oscillators.

A.0.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits of Kepler
and set an example of how equations of motion could be solved by integrating.
But the motion of the Moon is not well approximated by an ellipse with the Earth
at a focus; at least the effects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already possessed. To do that one has
to consider the motion of three bodies: the Moon, the Earth, and the Sun. When
the planets are replaced by point particles of arbitrary masses, the problem to be
solved is known as the three-body problem. The three-body problem was also
a model to another concern in astronomy. In the Newtonian model of the solar
system it is possible for one of the planets to go from an elliptic orbit around the
Sun to an orbit that escaped its dominion or that plunged right into it. Knowing
if any of the planets would do so became the problem of the stability of the solar
system. A planet would not meet this terrible end if solar system consisted of
two celestial bodies, but whether such fate could befall in the three-body case
remained unclear.

After many failed attempts to solve the three-body problem,natural philosophers
started to suspect that it was impossible to integrate. The usual technique for
integrating problems was to find the conserved quantities, quantities that do not
change with time and allow one to relate the momenta and positions different
times. The first sign on the impossibility of integrating thethree-body problem
came from a result of Burns that showed that there were no conserved quantities
that were polynomial in the momenta and positions. Burns’ result did not preclude
the possibility of more complicated conserved quantities.This problem was settled
by Poincaré and Sundman in two very different ways.

In an attempt to promote the journalActa Mathematica, Mittag-Leffler got the
permission of the King Oscar II of Sweden and Norway to establish a mathematical
competition. Several questions were posed (although the king would have preferred
only one), and the prize of 2500 kroner would go to the best submission. One of
the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract each other according
to Newton’s laws, under the assumption that no two points ever collide, try
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to find a representation of the coordinates of each point as a series in a
variable that is some known function of time and for all of whose values the
series converges uniformly.

This problem, whose solution would considerably extend ourunderstanding
of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quantities that
were analytic in the momenta and positions could not exist. To show that he
introduced methods that were very geometrical in spirit: the importance of state
space flow, the role of periodic orbits and their cross sections, the homoclinic
points.

The interesting thing about Poincaré’s work was that it didnot solve the
problem posed. He did not find a function that would give the coordinates as
a function of time for all times. He did not show that it was impossible either,
but rather that it could not be done with the Bernoulli technique of finding a
conserved quantity and trying to integrate. Integration would seem unlikely from
Poincaré’s prize-winning memoir, but it was accomplishedby the Finnish-born
Swedish mathematician Sundman. Sundman showed that to integrate the three-
body problem one had to confront the two-body collisions. Hedid that by making
them go away through a trick known as regularization of the collision manifold.
The trick is not to expand the coordinates as a function of time t, but rather as a
function of 3√t. To solve the problem for all times he used a conformal map into a
strip. This allowed Sundman to obtain a series expansion forthe coordinates valid
for all times, solving the problem that was proposed by Weirstrass in the King
Oscar II’s competition.

The Sundman’s series are not used today to compute the trajectories of any
three-body system. That is more simply accomplished by numerical methods or
through series that, although divergent, produce better numerical results. The
conformal map and the collision regularization mean that the series are effectively

in the variable 1− e−
3√t. Quite rapidly this gets exponentially close to one, the

radius of convergence of the series. Many terms, more terms than any one has
ever wanted to compute, are needed to achieve numerical convergence. Though
Sundman’s work deserves better credit than it gets, it did not live up to Weirstrass’s
expectations, and the series solution did not “considerably extend our understanding
of the solar system.’ The work that followed from Poincaré did.

A.0.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dynamics
was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann had combined
the mechanics of Newton with notions of probability in orderto create statistical
mechanics, deriving thermodynamics from the equations of mechanics. To evaluate
the heat capacity of even a simple system, Boltzmann had to make a great simplifying
assumption of ergodicity: that the dynamical system would visit every part of
the phase space allowed by conservation laws equally often.This hypothesis was
extended to other averages used in statistical mechanics and was called the ergodic
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hypothesis. It was reformulated by Poincaré to say that a trajectory comes as close
as desired to any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the end
of twentieth century it has only been shown true for a few systems and wrong
for quite a few others. Early on, as a mathematical necessity, the proof of the
hypothesis was broken down into two parts. First one would show that the mechanical
system was ergodic (it would go near any point) and then one would show that
it would go near each point equally often and regularly so that the computed
averages made mathematical sense. Koopman took the first step in proving the
ergodic hypothesis when he noticed that it was possible to reformulate it using
the recently developed methods of Hilbert spaces. This was an important step
that showed that it was possible to take a finite-dimensionalnonlinear problem
and reformulate it as a infinite-dimensional linear problem. This does not make
the problem easier, but it does allow one to use a different set of mathematical
tools on the problem. Shortly after Koopman started lecturing on his method,
von Neumann proved a version of the ergodic hypothesis, giving it the status of a
theorem. He proved that if the mechanical system was ergodic, then the computed
averages would make sense. Soon afterwards Birkhoff published a much stronger
version of the theorem.

A.0.3 Nonlinear oscillators

The third problem that was very influential in the development of the theory
of chaotic dynamical systems was the work on the nonlinear oscillators. The
problem is to construct mechanical models that would aid ourunderstanding of
physical systems. Lord Rayleigh came to the problem throughhis interest in
understanding how musical instruments generate sound. In the first approximation
one can construct a model of a musical instrument as a linear oscillator. But real
instruments do not produce a simple tone forever as the linear oscillator does, so
Lord Rayleigh modified this simple model by adding friction and more realistic
models for the spring. By a clever use of negative friction hecreated two basic
models for the musical instruments. These models have more than a pure tone
and decay with time when not stroked. In his bookThe Theory of SoundLord
Rayleigh introduced a series of methods that would prove quite general, such as
the notion of a limit cycle, a periodic motion a system goes toregardless of the
initial conditions.

A.1 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birkhoff on the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developed intwo directions.
One direction took an abstract approach and considered dynamical systems as
transformations of measurable spaces into themselves. Could we classify these
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transformations in a meaningful way? This lead Kolmogorov to the introduction
of the concept of entropy for dynamical systems. With entropy as a dynamical
invariant it became possible to classify a set of abstract dynamical systems known
as the Bernoulli systems. The other line that developed fromthe ergodic hypothesis
was in trying to find mechanical systems that are ergodic. An ergodic system could
not have stable orbits, as these would break ergodicity. So in 1898 Hadamard
published a paper with a playful title of ‘... billiards ...,’ where he showed that the
motion of balls on surfaces of constant negative curvature is everywhere unstable.
This dynamical system was to prove very useful and it was taken up by Birkhoff.
Morse in 1923 showed that it was possible to enumerate the orbits of a ball on a
surface of constant negative curvature. He did this by introducing a symbolic code
to each orbit and showed that the number of possible codes grew exponentially
with the length of the code. With contributions by Artin, Hedlund, and H. Hopf it
was eventually proven that the motion of a ball on a surface ofconstant negative
curvature was ergodic. The importance of this result escaped most physicists, one
exception being Krylov, who understood that a physical billiard was a dynamical
system on a surface of negative curvature, but with the curvature concentrated
along the lines of collision. Sinai, who was the first to show that a physical billiard
can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It prompted
many experiments and some theoretical development by van der Pol, Duffing,
and Hayashi. They found other systems in which the nonlinearoscillator played
a role and classified the possible motions of these systems. This concreteness
of experiments, and the possibility of analysis was too muchof temptation for
Mary Lucy Cartwright and J.E. Littlewood [15], who set out to prove that many
of the structures conjectured by the experimentalists and theoretical physicists did
indeed follow from the equations of motion. Birkhoff had found a ‘remarkable
curve’ in a two dimensional map; it appeared to be non-differentiable and it
would be nice to see if a smooth flow could generate such a curve. The work of
Cartwright and Littlewood lead to the work of Levinson, which in turn provided
the basis for the horseshoe construction of S. Smale.

[chapter 11]

In Russia, Lyapunov paralleled the methods of Poincaré andinitiated the
strong Russian dynamical systems school. Andronov carriedon with the study of
nonlinear oscillators and in 1937 introduced together withPontryagin the notion
of coarse systems. They were formalizing the understandinggarnered from the
study of nonlinear oscillators, the understanding that many of the details on how
these oscillators work do not affect the overall picture of the state space: there
will still be limit cycles if one changes the dissipation or spring force function
by a little bit. And changing the system a little bit has the great advantage of
eliminating exceptional cases in the mathematical analysis. Coarse systems were
the concept that caught Smale’s attention and enticed him tostudy dynamical
systems.

A.2 Chaos with us

(R. Mainieri)
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In the fall of 1961 Steven Smale was invited to Kiev where he met Arnol’d,
Anosov, Sinai, and Novikov. He lectured there, and spent a lot of time with
Anosov. He suggested a series of conjectures, most of which Anosov proved
within a year. It was Anosov who showed that there are dynamical systems
for which all points (as opposed to a non–wandering set) admit the hyperbolic
structure, and it was in honor of this result that Smale namedthese systems
Axiom-A. In Kiev Smale found a receptive audience that had been thinking about
these problems. Smale’s result catalyzed their thoughts and initiated a chain of
developments that persisted into the 1970’s.

Smale collected his results and their development in the 1967 review article on
dynamical systems, entitled “Differentiable dynamical systems.” There are many

[chapter 11]
great ideas in this paper: the global foliation of invariantsets of the map into
disjoint stable and unstable parts; the existence of a horseshoe and enumeration
and ordering of all its orbits; the use of zeta functions to study dynamical systems.
The emphasis of the paper is on the global properties of the dynamical system, on
how to understand the topology of the orbits. Smale’s account takes you from a
local differential equation (in the form of vector fields) to the globaltopological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confusing. The
general character of entropy was understood by Weiner, who seemed to have
spoken to Shannon. In 1948 Shannon published his results on information theory,
where he discusses the entropy of the shift transformation.Kolmogorov went
far beyond and suggested a definition of the metric entropy ofan area preserving
transformation in order to classify Bernoulli shifts. The suggestion was taken
by his student Sinai and the results published in 1959. In 1960 Rohlin connected
these results to measure-theoretical notions of entropy. The next step was published
in 1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these papers
showed that one could define the notion of topological entropy and use it as
an invariant to classify continuous maps. In 1967 Anosov andSinai applied
the notion of entropy to the study of dynamical systems. It was in the context
of studying the entropy associated to a dynamical system that Sinai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems andstatistical mechanics;
this has been a very fruitful relationship. It adds measure notions to the topological
framework laid down in Smale’s paper. Markov partitions divide the state space
of the dynamical system into nice little boxes that map into each other. Each
box is labeled by a code and the dynamics on the state space maps the codes
around, inducing a symbolic dynamics. From the number of boxes needed to
cover all the space, Sinai was able to define the notion of entropy of a dynamical
system. In 1970 Bowen came up independently with the same ideas, although
there was presumably some flow of information back and forth before these papers
got published. Bowen also introduced the important conceptof shadowing of
chaotic orbits. We do not know whether at this point the relations with statistical
mechanics were clear to every one. They became explicit in the work of Ruelle.
Ruelle understood that the topology of the orbits could be specified by a symbolic
code, and that one could associate an ‘energy’ to each orbit.The energies could
be formally combined in a ‘partition function’ to generate the invariant measure
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of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the statistical
mechanics approach to chaotic systems, research turned to studying particular
cases. The simplest case to consider is 1-dimensional maps.The topology of the
orbits for parabola-like maps was worked out in 1973 by Metropolis, Stein, and
Stein. The more general 1-dimensional case was worked out in1976 by Milnor
and Thurston in a widely circulated preprint, whose extended version eventually
got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, and Stein inspired
Feigenbaum to study simple maps. This lead him to the discovery of the universality
in quadratic maps and the application of ideas from field-theory to dynamical
systems. Feigenbaum’s work was the culmination in the studyof 1-dimensional
systems; a complete analysis of a nontrivial transition to chaos. Feigenbaum
introduced many new ideas into the field: the use of the renormalization group
which lead him to introduce functional equations in the study of dynamical systems,
the scaling function which completed the link between dynamical systems and
statistical mechanics, and the use of presentation functions as the dynamics of
scaling functions.

The work in more than one dimension progressed very slowly and is still far
from completed. The first result in trying to understand the topology of the orbits
in two dimensions (the equivalent of Metropolis, Stein, andStein, or Milnor
and Thurston’s work) was obtained by Thurston. Around 1975 Thurston was
giving lectures “On the geometry and dynamics of diffeomorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not beenapplied in physics,
but much of the classification that Thurston developed can beobtained from the
notion of a ‘pruning front’ developed independently by Cvitanović.

Once one develops an understanding for the topology of the orbits of a dynamical
system, one needs to be able to compute its properties. Ruelle had already generalized
the zeta function introduced by Artin and Mazur so that it could be used to compute
the average value of observables. The difficulty with Ruelle’s zeta function is
that it does not converge very well. Starting out from Smale’s observation that a
chaotic dynamical system is dense with a set of periodic orbits, Cvitanović used
these orbits as a skeleton on which to evaluate the averages of observables, and
organized such calculations in terms of rapidly convergingcycle expansions. This
convergence is attained by using the shorter orbits used as abasis for shadowing
the longer orbits.

This account is far from complete, but we hope that it will help get a sense of
perspective on the field. It is not a fad and it will not die anytime soon.

A.3 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.
— Joe Keller, after being asked to define applied

mathematics
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The history of the periodic orbit theory is rich and curious,and the recent
advances are to equal degree inspired by a century of separate development of
three disparate subjects; 1.classical chaotic dynamics, initiated by Poincaré
and put on its modern footing by Smale [23], Ruelle [28], and many others;
2. quantum theoryinitiated by Bohr, with the modern ‘chaotic’ formulation by
Gutzwiller [12, 17]; and 3. analyticnumber theoryinitiated by Riemann and
formulated as a spectral problem by Selberg [20, 3]. Following totally different
lines of reasoning and driven by very different motivations, the three separate
roads all arrive at formally nearly identicaltrace formulas, zeta functionsand
spectral determinants.

That these topics should be related is far from obvious. Connection between
dynamics and number theory arises from Selberg’s observation that description
of geodesic motion and wave mechanics on spaces of constant negative curvature
is essentially a number-theoretic problem.A posteriori, one can say that zeta
functions arise in both classical and quantum mechanics because in both the dynamical
evolution can be described by the action of linear evolution(or transfer) operators
on infinite-dimensional vector spaces. The spectra of theseoperators are given by
the zeros of appropriate determinants. One way to evaluate determinants is to

[section 17.1]
expand them in terms of traces,log det= tr log, and in this way the spectrum of
an evolution operator becames related to its traces, i.e., periodic orbits. A perhaps
deeper way of restating this is to observe that the trace formulas perform the same
service in all of the above problems; they relate the spectrum of lengths (local
dynamics) to the spectrum of eigenvalues (global averages), and for nonlinear
geometries they play a role analogous to that the Fourier transform plays for the
circle.

[exercise 4.1]

In M. Gutzwiller words:

“The classical periodic orbits are a crucial stepping stonein the understanding
of quantum mechanics, in particular when then classical system is chaotic.
This situation is very satisfying when one thinks of Poincaré who emphasized
the importance of periodic orbits in classical mechanics, but could not have
had any idea of what they could mean for quantum mechanics. The set
of energy levels and the set of periodic orbits are complementary to each
other since they are essentially related through a Fourier transform. Such
a relation had been found earlier by the mathematicians in the study of the
Laplacian operator on Riemannian surfaces with constant negative curvature.
This led to Selberg’s trace formula in 1956 which has exactlythe same form,
but happens to be exact. The mathematical proof, however, isbased on
the high degree of symmetry of these surfaces which can be compared to
the sphere, although the negative curvature allows for manymore different
shapes.”
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A.4 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn’t.

— A. Pais,Inward Bound: of Matter and Forces in
the Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in his office at the Niels
Bohr Institute beaming with the unparalleled glee of a boy who has just committed
a major mischief. The starting words of the manuscript he hasjust penned are

The failure of the Copenhagen School to obtain a reasonable .. .

34 years old at the time, Dieter was a scruffy kind of guy, always in sandals and
holed out jeans, a left winger and a mountain climber, working around the clock
with his students Gregor and Klaus to complete the work that Bohr himself would
have loved to see done back in 1916: a ‘planetary’ calculation of the helium
spectrum.

Never mind that the ‘Copenhagen School’ refers not to the oldquantum theory,
but to something else. The old quantum theory was no theory atall; it was
a set of rules bringing some order to a set of phenomena which defied logic of
classical theory. The electrons were supposed to describe planetary orbits around
the nucleus; their wave aspects were yet to be discovered. The foundations seemed
obscure, but Bohr’s answer for the once-ionized helium to hydrogen ratio was
correct to five significant figures and hard to ignore. The old quantum theory
marched on, until by 1924 it reached an impasse: the helium spectrum and the
Zeeman effect were its death knell.

Since the late 1890’s it had been known that the helium spectrum consists of
the orthohelium and parahelium lines. In 1915 Bohr suggested that the two kinds
of helium lines might be associated with two distinct shapesof orbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to work on the problem, and
wrote to Rutherford: “I have used all my spare time in the lastmonths to make
a serious attempt to solve the problem of ordinary helium spectrum . . . I think
really that at last I have a clue to the problem.” To other colleagues he wrote that
“the theory was worked out in the fall of 1916” and of having obtained a “partial
agreement with the measurements.” Nevertheless, the Bohr-Sommerfeld theory,
while by and large successful for hydrogen, was a disaster for neutral helium.
Heroic efforts of the young generation, including Kramers and Heisenberg, were
of no avail.

For a while Heisenberg thought that he had the ionization potential for helium,
which he had obtained by a simple perturbative scheme. He wrote enthusiastic
letters to Sommerfeld and was drawn into a collaboration with Max Born to
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compute the spectrum of helium using Born’s systematic perturbative scheme.
In first approximation, they reproduced the earlier calculations. The next level
of corrections turned out to be larger than the computed effect. The concluding
paragraph of Max Born’s classic “Vorlesungen über Atommechanik” from 1925
sums it up in a somber tone:

(. . . ) the systematic application of the principles of the quantum theory
(. . . ) gives results in agreement with experiment only in those cases where
the motion of a single electron is considered; it fails even in the treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not really consistent.
(. . . ) A complete systematic transformation of the classical mechanics into
a discontinuous mechanics is the goal towards which the quantum theory
strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum theory
was dead. In 1926 he gave the first quantitative explanation of the helium spectrum.
He used wave mechanics, electron spin and the Pauli exclusion principle, none of
which belonged to the old quantum theory, and planetary orbits of electrons were
cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It wasnot the fault
of the old quantum mechanics, but rather it reflected their lack of understanding of
the subtleties of classical mechanics. Today we know what they missed in 1913-
24: the role of conjugate points (topological indices) along classical trajectories
was not accounted for, and they had no idea of the importance of periodic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods of the old quantum
mechanics has been fixed. Leopold and Percival [5] added the topological indices
in 1980, and in 1991 Wintgen and collaborators [8, 9] understood the role of
periodic orbits. Dieter had good reasons to gloat; while therest of us were
preparing to sharpen our pencils and supercomputers in order to approach the
dreaded 3-body problem, they just went ahead and did it. Whatit took–and much
else–is described in this book.

One is also free to ponder what quantum theory would look liketoday if all this
was worked out in 1917. In 1994 Predrag Cvitanović gave a talk in Seattle about
helium and cycle expansions to–inter alia–Hans Bethe, who loved it so much that
after the talk he pulled Predrag aside and they trotted over to Hans’ secret place:
the best lunch on campus (Business School). Predrag asked: “Would Quantum
Mechanics look different if in 1917 Bohr and Kramerset al. figured out how to
use the helium classical 3-body dynamics to quantize helium?”

Bethe was very annoyed. He responded with an exasperated look - in Bethe
Deutschinglish (if you have ever talked to him, you can do thevoice over yourself):

“It would not matter at all!”
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A.4.1 Berry-Keating conjecture

A very appealing proposal in the context of semiclassical quantization is due
to M. Berry and J. Keating [21]. The idea is to improve cycle expansions by
imposing unitarity as a functional equation ansatz. The cycle expansions that they
use are the same as the original ones [2, 1] described above, but the philosophy
is quite different; the claim is that the optimal estimate for low eigenvalues of
classically chaotic quantum systems is obtained by taking the real part of the
cycle expansion of the semiclassical zeta function, cut off at the appropriate cycle
length. M. Sieber, G. Tanner and D. Wintgen, and P. Dahlqvistfind that their
numerical results support this claim; F. Christiansen and P. Cvitanović do not
find any evidence in their numerical results. The usual Riemann-Siegel formulas
exploit the self-duality of the Riemann and other zeta functions, but there is no
evidence of such symmetry for generic Hamiltonian flows. Also from the point
of hyperbolic dynamics discussed above, proposal in its current form belongs to
the category of crude cycle expansions; the cycles are cut off by a single external
criterion, such as the maximal cycle time, with no regard forthe topology and the
curvature corrections. While the functional equation conjecture is maybe not in
its final form yet, it is very intriguing and worth pursuing.

The real life challenge are generic dynamical flows, which fitneither of the
above two idealized settings.
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Commentary

Remark A.1 Notion of global foliations. For each paper cited in dynamical systems
literature, there are many results that went into its development. As an example, take
the notion of global foliations that we attribute to Smale. As far as we can trace the
idea, it goes back to René Thom; local foliations were already used by Hadamard. Smale
attended a seminar of Thom in 1958 or 1959. In that seminar Thom was explaining
his notion of transversality. One of Thom’s disciples introduced Smale to Brazilian
mathematician Peixoto. Peixoto (who had learned the results of the Andronov-Pontryagin
school from Lefschetz) was the closest Smale had ever come until then to the Andronov-
Pontryagin school. It was from Peixoto that Smale learned about structural stability, a
notion that got him enthusiastic about dynamical systems, as it blended well with his
topological background. It was from discussions with Peixoto that Smale got the problems
in dynamical systems that lead him to his 1960 paper on Morse inequalities. The next year
Smale published his result on the hyperbolic structure of the non-wandering set. Smale
was not the first to consider a hyperbolic point, Poincaré had already done that; but Smale
was the first to introduce a global hyperbolic structure. By 1960 Smale was already
lecturing on the horseshoe as a structurally stable dynamical system with an infinity of
periodic points and promoting his global viewpoint. (R. Mainieri)

Remark A.2 Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponents. A. Katok and J.-M. Strelcyn
carried out the program and developed a theory of general dynamical systems with singularities.
They studied uniformly hyperbolic systems (as strong as Anosov’s), but with sets of
singularities. Under iterations a dense set of points hits the singularities. Even more
important are the points that never hit the singularity set.In order to establish some
control over how they approach the set, one looks at trajectories that apporach the set by
some givenǫn, or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the geometry of billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was much more robust. Look at the
discontinuity set (geometry of it matters not at all), take an ǫ neighborhood around it.
Given that the Lebesgue measure isǫα and the stability grows not faster than (distance)n.
A. Katok and J.-M. Strelcyn proved that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Now the problem has no
invariant Lebesgue measure. Assuming uniform hyperbolicity, with singularities, and
tying together Lebesgue measure and discontinuities, and given that the stability grows
not faster than (distance)n, Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Lorenz, Lozi and Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all trouble isin differentials. For the
Hénon attractor, already the differentials are nonhyperbolic. The points do not separate
uniformly, but the analogue of the singularity set can be obtained by excising the regions
that do not separate. Hence there are 3 levels of ergodic systems:

1. Anosov flow

2. Anosov flow+ singularity set: For the Hamiltonian systems the general case is
studied by A. Katok and J.-M. Strelcyn, and the billiards case by Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Pesin.
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3. Hénon case: The first proof was given by M. Benedicks and L.Carleson [32]. A
more readable proof is given in M. Benedicks and L.-S. Young [13].

(based on Ya.B. Pesin’s comments)

Remark A.3 Einstein did it? The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einstein [16]. The total discussion is a one sentence remark.
Einstein being Einstein, this one sentence has been deemed sufficient to give him the
credit for being the pioneer of quantum chaos [17, 18]. We asked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Pais, and both knew nothing about
the 1917 article. However, Theo Geisel has unearthed a reference that shows that in early
20s Born did have a study group meeting in his house that studied Poincaré’s Méchanique
Céleste [19]. In 1954 Fritz Reiche, who had previously followed Einstein as professor of
physics in Wroclaw (??), pointed out to J.B. Keller that Keller’s geometrical semiclassical
quantization was anticipated by the long forgotten paper byA. Einstein [16]. In this way
an important paper written by the physicist who at the time was the president of German
Physical Society, and the most famous scientist of his time,came to be referred to for the
first time by Keller [19], 41 years later. But before Ian Percival included the topological
phase, and Wintgen and students recycled the Helium atom, knowing Méchanique Céleste
was not enough to complete Bohr’s original program.

Remark A.4 Sources. The tale of appendixA.4, aside from a few personal recollections,
is in large part lifted from Abraham Pais’ accounts of the demise of the old quantum
theory [6, 7], as well as Jammer’s account [2]. In August 1994 Dieter Wintgen died in a
climbing accident in the Swiss Alps.
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Appendix B

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas Kuhn, The Structure of Scientific
Revolutions

T     generates innumerable tomes of its own, and is
way beyond what we can exhaustively cover. Here we recapitulate a few
essential concepts that ChaosBook relies on. The punch line(B.22):

Hamilton-Cayley equation
∏

(M − λi1) = 0 associates with each distinct root
λi of a matrixM a projection ontoith vector subspace

Pi =
∏

j,i

M − λ j1
λi − λ j

.

B.1 Linear algebra

The reader might prefer going straight to sect.B.2.

Vector space. A setV of elementsx, y, z, . . . is called avector(or linear) space
over a fieldF if

(a) vector addition“+” is defined inV such thatV is an abelian group under
addition, with identity element0;

(b) the set isclosedwith respect toscalar multiplicationand vector addition

a(x + y) = ax + ay , a, b ∈ F , x, y ∈ V

(a+ b)x = ax + bx

a(bx) = (ab)x

1x = x , 0x = 0 . (B.1)
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Here the fieldF is eitherR, the field of reals numbers, orC, the field of complex
numbers. Given a subsetV0 ⊂ V, the set of all linear combinations of elements of
V0, or thespanof V0, is also a vector space.

A basis. {e(1), · · · , e(d)} is any linearly independent subset ofV whose span isV.
The number of basis elementsd is thedimensionof the vector spaceV.

Dual space, dual basis. Under a general linear transformationg ∈ GL(n, F), the
row of basis vectors transforms by right multiplication ase( j) =

∑

k(g−1) j
k e(k),

and the column ofxa’s transforms by left multiplication asx′ = gx. Under
left multiplication the column (row transposed) of basis vectors e(k) transforms
ase( j) = (g†) j

ke(k), where thedual repg† = (g−1)T is the transpose of the inverse
of g. This observation motivates introduction of adual representation spacēV,
the space on whichGL(n, F) acts via the dual repg†.

Definition. If V is a vector representation space, then thedual spaceV̄ is the set
of all linear forms onV over the fieldF.

If {e(1), · · · , e(d)} is a basis ofV, thenV̄ is spanned by thedual basis{e(1), · · · , e(d)},
the set ofd linear formse(k) such that

e( j) · e(k) = δk
j ,

whereδk
j is the Kronecker symbol,δk

j = 1 if j = k, and zero otherwise. The
components of dual representation space vectors ¯y ∈ V̄ will here be distinguished
by upper indices

(y1, y2, . . . , yn) . (B.2)

They transform underGL(n, F) as

y′a = (g†)a
byb . (B.3)

ForGL(n, F) no complex conjugation is implied by the† notation; that interpretation
applies only to unitary subgroupsU(n) ⊂ GL(n,C). g can be distinguished from
g† by meticulously keeping track of the relative ordering of the indices,

(g)b
a→ ga

b , (g†)b
a→ gb

a . (B.4)

Algebra. A set of r elementstα of a vector spaceT forms an algebra if, in
addition to the vector addition and scalar multiplication,
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(a) the set isclosedwith respect to multiplicationT · T → T , so that for any
two elementstα, tβ ∈ T , the producttα · tβ also belongs toT :

tα · tβ =
r−1∑

γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (B.5)

(b) the multiplication operation isdistributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbersταβγ are called thestructure constants. They form a matrix
rep of the algebra,

(tα)β
γ ≡ ταβγ , (B.6)

whose dimension is the dimension of the algebra itself.

Depending on what further assumptions one makes on the multiplication, one
obtains different types of algebras. For example, if the multiplicationis associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra isassociative. Typical examples of products are thematrix product

(tα · tβ)c
a = (tα)b

a(tβ)
c
b , tα ∈ V ⊗ V̄ , (B.7)

and theLie product

(tα · tβ)c
a = (tα)b

a(tβ)
c
b − (tα)b

c(tβ)
a
b , tα ∈ V ⊗ V̄ (B.8)

which defines aLie algebra.

B.2 Eigenvalues and eigenvectors

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M − λ1) =
∏

(λi − λ) = 0 . (B.9)

Given a nonsingular matrixM , with all λi , 0, acting ond-dimensional vectors
x, we would like to determineeigenvectorse(i) of M on whichM acts by scalar
multiplication by eigenvalueλi

Me(i) = λie(i) . (B.10)

If λi , λ j , e(i) ande( j) are linearly independent, so there are at mostd distinct
eigenvalues, which we assume have been computed by some method, and ordered
by their real parts, Reλi ≥ Reλi+1.
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If all eigenvalues are distinct e( j) ared linearly independent vectors which can
be used as a (non-orthogonal) basis for anyd-dimensional vectorx ∈ Rd

x = x1 e(1) + x2 e(2) + · · · + xd e(d) . (B.11)

From (B.10) it follows that matrix (M − λi1) annihilatese(i),

(M − λi1)e( j) = (λ j − λi)e( j) ,

and the product of all such factors annihilates any vector, so the matrixM satisfies
its characteristic equation (B.9),

d∏

i=1

(M − λi1) = 0 . (B.12)

This humble fact has a name: the Hamilton-Cayley theorem. Ifwe delete one term
from this product, we find that the remainder projectsx onto the corresponding
eigenvector:

∏

j,i

(M − λ j1)x =
∏

j,i

(λi − λ j)xie(i) .

Dividing through by the (λi − λ j) factors yields theprojection operators

Pi =
∏

j,i

M − λ j1
λi − λ j

, (B.13)

which areorthogonalandcomplete:

PiP j = δi j P j , (no sum onj) ,
r∑

i=1

Pi = 1 . (B.14)

By (B.10) every column ofPi is proportional to a right eigenvectore(i), and its
every row to a left eigenvectore(i). In general, neither set is orthogonal, but by the
idempotence condition (B.14), they are mutually orthogonal,

e(i) · e( j) = cδ j
i . (B.15)

The non-zero constantc is convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan coefficients. It follows from the characteristic
equation (B.12) thatλi is the eigenvalue ofM on Pi subspace:

MP i = λiPi (no sum oni) . (B.16)
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UsingM = M 1 and completeness relation (B.14) we can rewriteM as

M = λ1P1 + λ2P2 + · · · + λdPd . (B.17)

Any matrix function f (M ) takes the scalar valuef (λi ) on thePi subspace,f (M )Pi =

f (λi )Pi , and is easily evaluated through itsspectral decomposition

f (M ) =
∑

i

f (λi)Pi . (B.18)

This, of course, is the reason why anyone but a fool works withirreducible reps:
they reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

Example B.1 Complex eigenvalues. As M has only real entries, it will in general
have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not
surprising, but also the corresponding eigenvectors can be either real or complex. All
coordinates used in defining the flow are real numbers, so what is the meaning of a
complex eigenvector?

If λk, λk+1 eigenvalues that lie within a diagonal [2×2] sub-block M ′ ⊂ M form
a complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}, the corresponding complex
eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} → {Ree(k), Im e(k)}.
In this 2−d real representation the block M ′ → N consists of the identity and the
generator of S O(2) rotations

N =
(
µ −ω
ω µ

)

= µ
(
1 0
0 1

)

+ ω
(
0 −1
1 0

)

.

Trajectories of ẋ = N x, x(t) = Jt x(0), where

Jt = etN = etµ
(
cosωt − sin ωt
sin ωt cosωt

)

, (B.19)

spiral in/out around (x, y) = (0, 0), see figure 4.4, with the rotation period T and the
expansion/contraction multiplier along the e( j) eigendirection per a turn of the spiral:

[exercise B.1]

T = 2π/ω , Λradial = eTµ , Λ j = eTµ( j)
. (B.20)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T). Λ j multipliers give
us estimates of strange-set thickness.

While for a randomly constructed matrix all eigenvalues aredistinct with
probability 1, that is not true in presence of symmetries. What can one say about
situation wheredα eigenvalues are degenerate,λα = λi = λi+1 = · · · = λi+dα−1?
Hamilton-Cayley (B.12) now takes form

r∏

α=1

(M − λα1)dα = 0 ,
∑

α

dα = d . (B.21)

We distinguish two cases:
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Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {
(
1
1

)

,
(

1
−3

)

}

{e(1), e(2)} = {( 3 1 ) , ( 1 −1 )} ,

with overall scale arbitrary.The matrix is not hermitian , so {e( j)} do not form an orthogonal
basis. The left-right eigenvector dot products e( j) · e(k), however, are orthonormal (B.15)
by inspection.

B.3 Stability of Hamiltonian flows

(M.J. Feigenbaum and P. Cvitanović)

The symplectic structure of Hamilton’s equations buys us much more than the
incompressibility, or the phase space volume conservationalluded to in sect.7.1.
The evolution equations for anyp, q dependent quantityQ = Q(q, p) are given by
(14.32).

In terms of the Poisson brackets, the time evolution equation for Q = Q(q, p)
is given by (14.34). We now recast the symplectic condition (7.11) in a form
convenient for using the symplectic constraints onM. Writing x(t) = x′ = [p′, q′]
and the fundamental matrix and its inverse

M =





∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p



 , M−1 =





∂q
∂q′

∂q
∂p′

∂p
∂q′

∂p
∂p′



 , (B.29)

we can spell out the symplectic invariance condition (7.11):

∂q′k
∂qi

∂p′k
∂q j
−
∂p′k
∂qi

∂q′k
∂q j

= 0

∂q′k
∂pi

∂p′k
∂p j
−
∂p′k
∂pi

∂q′k
∂p j

= 0

∂q′k
∂qi

∂p′k
∂p j
−
∂p′k
∂qi

∂q′k
∂p j

= δi j . (B.30)

From (7.18) we obtain

∂qi

∂q′j
=
∂p′j
∂pi

,
∂pi

∂p′j
=
∂q′j
∂qi

,
∂qi

∂p′j
= −

∂q′j
∂pi

,
∂pi

∂q′j
= −

∂p′j
∂qi

. (B.31)

Taken together, (B.31) and (B.30) imply that the flow conserves the{p, q} Poisson
brackets

{qi , q j} =
∂qi

∂p′k

∂q j

∂q′k
−
∂q j

∂p′k

∂qi

∂q′k
= 0

{pi , p j} = 0 , {pi , q j} = δi j , (B.32)
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i.e., the transformations induced by a Hamiltonian flow arecanonical, preserving
the form of the equations of motion. The first two relations are symmetric under
i, j interchange and yieldD(D − 1)/2 constraints each; the last relation yieldsD2

constraints. Hence only (2D)2 − 2D(D − 1)/2 − D2 = 2D2 + D elements ofM
are linearly independent, as it behooves group elements of the symplectic group
S p(2D).

B.4 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the fundamental matrix of the flow, but themonodromymatrix, which
enters the trace formula. This matrix gives the time dependence of a displacement
perpendicular to the flow on the energy manifold. Indeed, we discover some
trivial parts in the fundamental matrixM. An initial displacement in the direction
of the flow x = ω∇H(x) transfers according toδx(t) = xt(t)δt with δt time
independent. The projection of any displacement onδx on ∇H(x) is constant,
i.e., ∇H(x(t))δx(t) = δE. We get the equations of motion for the monodromy
matrix directly choosing a suitable local coordinate system on the orbitx(t) in
form of the (non singular) transformationU(x(t)):

M̃(x(t)) = U−1(x(t)) M(x(t)) U(x(0)) (B.33)

These lead to

˙̃M = L̃ M̃

with L̃ = U−1(LU − U̇) (B.34)

Note that the properties a) – c) are only fulfilled for̃M and L̃ , if U itself is
symplectic.
ChoosingxE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (B.33) at any timet. Setting
U = (xT

t , x
T
E, x

T
1 , . . . , x

T
2d−2) gives

M̃ =





1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...

... m
0 ∗





; L̃ =





0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...

... l
0 ∗





, (B.35)

The matrixm is now the monodromy matrix and the equation of motion are given
by

ṁ = l m. (B.36)
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The vectorsx1, . . . , x2d−2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the matrixU(t) can be written
down explicitly, i.e.,

U(t) = (xt, x1, xE, x2) =





ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2





(B.37)

with xT = (x, y; u, v) and q = |∇H| = |ẋ|. The matrixU is non singular and
symplectic at every phase space pointx (except the equilibrium points ˙x = 0). The
matrix elements forl are given (B.39). One distinguishes 4 classes of eigenvalues
of m.

• stableor elliptic, if Λ = e±iπν andν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ; λ > 0 is called the
Lyapunov exponent of the periodic orbit.

• loxodromic, if Λ = e±u±iΨ with u andΨ real. This is the most general case
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.e.,m is a [2×2] matrix, the eigenvalues are determined
by

λ =
Tr(m) ±

√

Tr(m)2 − 4
2

, (B.38)

i.e., Tr(m) = 2 separates stable and unstable behavior.

The l matrix elements for the local transformation (B.37) are

l̃11 =
1
q

[(h2
x − h2

y − h2
u + h2

v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu− hvv)]

l̃12 =
1

q2
[(h2

x + h2
v)(hyy + huu) + (h2

y + h2
u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]

l̃21 = −(h2
x + h2

y)(huu + hvv) − (h2
u + h2

v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)

l̃22 = −l̃11, (B.39)

with hi , hi j is the derivative of the HamiltonianH with respect to the phase space
coordinates andq = |∇H|2.
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Exercises

B.1. Real representation of complex eigenvalues.
(Verification of exampleB.1.) λk, λk+1 eigenvalues form
a complex conjugate pair,{λk, λk+1} = {µ + iω, µ − iω}.
Show that

(a) corresponding projection operators are complex
conjugates of each other,

P = Pk , P∗ = Pk+1 ,

where we denotePk by P for notational brevity.

(b) P can be written as

P =
1
2

(R + iQ) ,

whereR = Pk +Pk+1 andQ are matrices with real
elements.

(c)
( Pk

Pk+1

)

=
1
2

(1 i
1 −i

) ( R
Q

)

.

(d) · · ·+λkPk+λ
∗
kPk+1+· · · complex eigenvalue pair in

the spectral decomposition (B.17) is now replaced
by a real [2×2] matrix

· · · +
(
µ −ω
ω µ

) ( R
Q

)

+ · · ·

or whatever is the clearest way to write this real
representation.

(P. Cvitanović)
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Appendix C

Implementing evolution

C.1 Koopmania

T  in which time evolution acts on observables may be rephrasedin
the language of functional analysis, by introducing theKoopman operator,
whose action on a state space functiona(x) is to replace it by its downstream

value timet later,a(x) → a(x(t)) evaluated at the trajectory pointx(t):

K ta(x) = a( f t(x)) . (C.1)

Observablea(x) has no explicit time dependence; all the time dependence
comes from its evaluation atx(t) rather than atx = x(0).

Suppose we are starting with an initial density of representative pointsρ(x):
then the average value ofa(x) evolves as

〈a〉(t) = 1
|ρM|

∫

M
dx a( f t(x))ρ(x) =

1
|ρM|

∫

M
dx

[

K ta(x)
]

ρ(x) .

An alternative point of view (analogous to the shift from theHeisenberg to the
Schrödinger picture in quantum mechanics) is to push dynamical effects into the
density. In contrast to the Koopman operator which advancesthe trajectory by
time t, the Perron-Frobenius operator (14.10) depends on the trajectory point time
t in the past, so the Perron-Frobenius operator is the adjointof the Koopman
operator

∫

M
dx

[

K ta(x)
]

ρ(x) =
∫

M
dx a(x)

[

Ltρ(x)
]

. (C.2)

Checking this is an easy change of variables exercise. For finite dimensional
deterministic invertible flows the Koopman operator (C.1) is simply the inverse of
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the Perron-Frobenius operator (14.6), so in what follows we shall not distinguish
the two. However, for infinite dimensional flows contractingforward in time and
for stochastic flows such inverses do not exist, and there youneed to be more
careful.

The family of Koopman’s operators
{K t}

t∈R+ forms a semigroup parameterized
by time

(a) K0 = 1

(b) K tK t′ = K t+t′ t, t′ ≥ 0 (semigroup property) ,

with thegeneratorof the semigroup, the generator of infinitesimal time translations
defined by

A = lim
t→0+

1
t

(

K t − 1
)

.

(If the flow is finite-dimensional and invertible,A is a generator of a group). The
explicit form ofA follows from expanding dynamical evolution up to first order,
as in (2.5):

Aa(x) = lim
t→0+

1
t

(

a( f t(x)) − a(x)
)

= vi(x)∂ia(x) . (C.3)

Of course, that is nothing but the definition of the time derivative, so the equation
of motion fora(x) is

(

d
dt
−A

)

a(x) = 0 . (C.4)

[appendix C.2]

The finite time Koopman operator (C.1) can be formally expressed by exponentiating
the time evolution generatorA as

K t = etA . (C.5)

[exercise C.1]

The generatorA looks very much like the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothingbut a translation by
time× velocity:

[exercise 14.10]

etv ∂
∂x a(x) = a(x+ tv) . (C.6)

As we will not need to implement a computational formula for generaletA in
what follows, we relegate making sense of such operators to appendixC.2. Here

[appendix C.2]
we limit ourselves to a brief remark about the notion of “spectrum” of a linear
operator.
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The Koopman operatorK acts multiplicatively in time, so it is reasonable to
suppose that there exist constantsM > 0, β ≥ 0 such that||K t || ≤ Metβ for all
t ≥ 0. What does that mean? The operator norm is define in the same spirit in
which we defined the matrix norms in sect.J.2: We are assuming that no value
of K tρ(x) grows faster than exponentially for any choice of functionρ(x), so that
the fastest possible growth can be bounded byetβ, a reasonable expectation in the
light of the simplest example studied so far, the exact escape rate (15.20). If that
is so, multiplyingK t by e−tβ we construct a new operatore−tβK t = et(A−β) which
decays exponentially for larget, ||et(A−β) || ≤ M. We say thate−tβK t is an element
of a boundedsemigroup with generatorA − β1. Given this bound, it follows by
the Laplace transform

∫ ∞

0
dt e−stK t =

1
s−A , Re s> β , (C.7)

that theresolventoperator (s− A)−1 is bounded (“resolvent”= able to cause
[section J.2]

separation into constituents)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1
s−A

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤

∫ ∞

0
dt e−stMetβ =

M
s− β .

If one is interested in the spectrum ofK , as we will be, the resolvent operator
is a natural object to study. The main lesson of this brief aside is that for the
continuous time flows the Laplace transform is the tool that brings down the
generator in (14.29) into the resolvent form (14.31) and enables us to study its
spectrum.

C.2 Implementing evolution

(R. Artuso and P. Cvitanović)

We now come back to the semigroup of operatorsK t. We have introduced
the generator of the semigroup (14.27) as

A = d
dt
K t

∣
∣
∣
∣
∣
t=0

.

If we now take the derivative at arbitrary times we get

(

d
dt
K tψ

)

(x) = lim
η→0

ψ( f t+η(x)) − ψ( f t(x))
η

= vi( f t(x))
∂

∂x̃i
ψ(x̃)

∣
∣
∣
∣
∣
x̃= f t(x)

=
(

K tAψ
)

(x)
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which can be formally integrated like an ordinary differential equation yielding
[exercise C.1]

K t = etA . (C.8)

This guarantees that the Laplace transform manipulations in sect.14.5are correct.
Though the formal expression of the semigroup (C.8) is quite simple one has to
take care in implementing its action. If we express the exponential through the
power series

K t =

∞∑

k=0

tk

k!
Ak , (C.9)

we encounter the problem that the infinitesimal generator (14.27) contains non-
commuting pieces, i.e., there arei, j combinations for which the commutator does
not satisfy

[

∂

∂xi
, v j(x)

]

= 0 .

To derive a more useful representation, we follow the strategy used for finite-
dimensional matrix operators in sects.4.2and4.3and use the semigroup property
to write

K t =

t/δτ∏

m=1

Kδτ

as the starting point for a discretized approximation to thecontinuous time dynamics,
with time stepδτ. Omitting terms from the second order onwards in the expansion
of Kδτ yields an error of orderO(δτ2). This might be acceptable if the time step
δτ is sufficiently small. In practice we write the Euler product

K t =

t/δτ∏

m=1

(
1+ δτA(m)

)
+ O(δτ2) (C.10)

where

(A(m)ψ
)

(x) = vi( f mδτ(x))
∂ψ

∂x̃i

∣
∣
∣
∣
∣
x̃= f mδτ(x)

As far as thex dependence is concerned,eδτAi acts as

eδτAi






x1

·
xi

xd






→






x1

·
xi + δτvi(x)

xd






. (C.11)
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[exercise 2.6]

We see that the product form (C.10) of the operator is nothing else but a prescription
for finite time step integration of the equations of motion - in this case the simplest
Euler type integrator which advances the trajectory byδτ×velocity at each time
step.

C.2.1 A symplectic integrator

The procedure we described above is only a starting point formore sophisticated
approximations. As an example on how to get a sharper bound onthe error term
consider the Hamiltonian flowA = B + C, B = pi

∂
∂qi

, C = −∂iV(q) ∂
∂pi

. Clearly
the potential and the kinetic parts do not commute. We make sense of the formal

[exercise C.2]
solution (C.10) by splitting it into infinitesimal steps and keeping terms up to δτ2

in

Kδτ = K̂δτ +
1
24

(δτ)3[B + 2C, [B,C]] + · · · , (C.12)

where

K̂δτ = e
1
2δτBeδτCe

1
2δτB . (C.13)

The approximate infinitesimal Liouville operator̂Kδτ is of the form that now
generates evolution as a sequence of mappings induced by (14.30), a free flight by
1
2δτB, scattering byδτ∂V(q′), followed again by1

2δτB free flight:

e
1
2δτB

{

q
p

}

→
{

q′

p′

}

=

{

q− δτ
2 p

p

}

eδτC
{

q′

p′

}

→
{

q′′

p′′

}

=

{

q′

p′ + δτ∂V(q′)

}

e
1
2δτB

{

q′′

p′′

}

→
{

q′′′

p′′′

}

=

{

q′ − δτ
2 p′′

p′′

}

(C.14)

Collecting the terms we obtain an integration rule for this type of symplectic flow
which is better than the straight Euler integration (C.11) as it is accurate up to
orderδτ2:

qn+1 = qn − δτ pn −
(δτ)2

2
∂V (qn − δτpn/2)

pn+1 = pn + δτ∂V (qn − δτpn/2) (C.15)

The fundamental matrix of one integration step is given by

M =

(

1 −δτ/2
0 1

) (

1 0
δτ∂V(q′) 1

) (

1 −δτ/2
0 1

)

. (C.16)
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Note that the billiard flow (8.11) is an example of such symplectic integrator. In
that case the free flight is interrupted by instantaneous wall reflections, and can be
integrated out.

Commentary

Remark C.1 Koopman operators. The “Heisenberg picture” in dynamical systems
theory has been introduced by Koopman and Von Neumann [1, 2], see also ref. [8].
Inspired by the contemporary advances in quantum mechanics, Koopman [1] observed
in 1931 thatK t is unitary onL2(µ) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operator exp

(

iĤt/~
)

– the kernel ofLt(y, x) introduced
in (14.16) (see also sect.15.2) is the analogue of the Green’s function discussed here in
chapter30. The relation between the spectrum of the Koopman operator and classical
ergodicity was formalized by von Neumann [2]. We shall not use Hilbert spaces here
and the operators that we shall studywill not be unitary. For a discussion of the relation
between the Perron-Frobenius operators and the Koopman operators for finite dimensional
deterministic invertible flows, infinite dimensional contracting flows, and stochastic flows,
see Lasota-Mackey [8] and Gaspard [9].

Remark C.2 Symplectic integration. The reviews [7] and [8] offer a good starting
point for exploring the symplectic integrators literature. For a higher order integrators of
type (C.13), check ref. [13].

Exercises

C.1. Exponential form of semigroup elements. Check
that the Koopman operator and the evolution generator
commute,K tA = AK t, by considering the action of
both operators on an arbitrary state space functiona(x).

C.2. Non-commutativity. Check that the commutators in

(C.12) are not vanishing by showing that

[B,C] = −p

(

V′′
∂

∂p
− V′

∂

∂q

)

.

C.3. Symplectic leapfrog integrator. Implement (C.15)
for 2-dimensional Hamiltonian flows; compare it with
Runge-Kutta integrator by integrating trajectories in
some (chaotic) Hamiltonian flow.
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Appendix D

Symbolic dynamics techniques

T   for unimodal mappings is developed in sect.D.1. The
prime factorization for dynamical itineraries of sect.D.2 illustrates the
sense in which prime cycles are “prime” - the product structure of zeta

functions is a consequence of the unique factorization property of symbol sequences.

D.1 Topological zeta functions for infinite subshifts

(P. Dahlqvist)

The Markov graph methods outlined in chapter10 are well suited for
symbolic dynamics of finite subshift type. A sequence of welldefined rules leads
to the answer, the topological zeta function, which turns out to be a polynomial.
For infinite subshifts one would have to go through an infinitesequence of graph
constructions and it is of course very difficult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the goalcan be reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta function for unimodal
maps with one external parameterfΛ(x) = Λg(x). As usual, symbolic dynamics is
introduced by mapping a time series. . . xi−1xi xi+1 . . . onto a sequence of symbols
. . . si−1si si+1 . . . where

si = 0 xi < xc

si = C xi = xc

si = 1 xi > xc (D.1)

andxc is the critical point of the map (i.e., maximum ofg). In addition to the usual
binary alphabet we have added a symbolC for the critical point. The kneading
sequenceKΛ is the itinerary of the critical point. The crucial observation is that no
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I (C) ζ−1
top(z)/(1− z)

1C
101C
1011101C
H∞(1)

∏∞
n=0(1− z2n

)
10111C
1011111C
101∞ (1− 2z2)/(1+ z)
10111111C
101111C
1011C
101101C
10C (1− z− z2)
10010C
100101C

I (C) ζ−1
top(z)/(1− z)

1001C
100111C
10011C
100110C
100C
100010C
10001C
100011C
1000C
100001C
10000C
100000C
10∞ (1− 2z)/(1− z)

Table D.1: All ordered kneading sequences up to length seven, as well assome longer kneading
sequences. Harmonic extensionH∞(1) is defined below.

periodic orbit can have a topological coordinate (see sect.D.1.1) beyond that of
the kneading sequence. The kneading sequence thus inserts aborder in the list of
periodic orbits (ordered according to maximal topologicalcoordinate), cycles up
to this limit are allowed, all beyond are pruned. All unimodal maps (obeying some
further constraints) with the same kneading sequence thus have the same set of
periodic orbitsand the same topological zeta function. Thetopological coordinate
of the kneading sequence increases with increasingΛ.

The kneading sequence can be of one of three types

1. It maps to the critical point again, aftern iterations. If so, we adopt the
convention to terminate the kneading sequence with aC, and refer to the
kneading sequence as finite.

2. Preperiodic, i.e., it is infinite but with a periodic tail.

3. Aperiodic.

As an archetype unimodal map we will choose thetent map

x 7→ f (x) =

{

Λx x∈ [0, 1/2]
Λ(1− x) x ∈ (1/2, 1] , (D.2)

where the parameterΛ ∈ (1, 2]. The topological entropy ish = logΛ. This
follows from the fact any trajectory of the map is bounded, the escape rate is
strictly zero, and so the dynamical zeta function

1/ζ(z) =
∏

p

(

1− znp

|Λp|

)

=
∏

p

(

1−
( z
Λ

)np
)

= 1/ζtop(z/Λ)

has its leading zero atz= 1.
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The set of periodic points of the tent map is countable. A consequence of
this fact is that the set of parameter values for which the kneading sequence is
periodic or preperiodic are countable and thus of measure zero and consequently
the kneading sequence is aperiodic for almost allΛ. For general unimodal maps
the corresponding statement is that the kneading sequence is aperiodic for almost
all topological entropies.

For a given periodic kneading sequence of periodn, K
Λ
= PC =

s1s2 . . . sn−1C there is a simple expansion for the topological zeta function. Then
the expanded zeta function is a polynomial of degreen

1/ζtop(z) =
∏

p

(1− zn
p) = (1− z)

n−1∑

i=0

aiz
i , ai =

i∏

j=1

(−1)sj (D.3)

anda0 = 1.

Aperiodic and preperiodic kneading sequences are accounted for by simply
replacingn by∞.

Example. Consider as an example the kneading sequenceKΛ = 10C. From
(D.3) we get the topological zeta function 1/ζtop(z) = (1 − z)(1 − z − z2), see
tableD.1. This can also be realized by redefining the alphabet. The only forbidden
subsequence is 100. All allowed periodic orbits, except0, can can be built from
a alphabet with letters 10and 1. We write this alphabet as{10, 1; 0}, yielding the
topological zeta function 1/ζtop(z) = (1 − z)(1 − z− z2). The leading zero is the
inverse golden meanz0 = (

√
5− 1)/2.

Example. As another example we consider the preperiodic kneading sequence
KΛ = 101∞. From (D.3) we get the topological zeta function 1/ζtop(z) = (1−z)(1−
2z2)/(1+ z), see tableD.1. This can again be realized by redefining the alphabet.
There are now an infinite number of forbidden subsequences, namely 1012n0
wheren ≥ 0. These pruning rules are respected by the alphabet{012n+1; 1, 0},
yielding the topological zeta function above. The pole in the zeta functionζ−1

top(z)
is a consequence of the infinite alphabet.

An important consequence of (D.3) is that the sequence{ai} has a periodic tail
if and only if the kneading sequence has one (however, their period may differ
by a factor of two). We know already that the kneading sequence is aperiodic for
almost allΛ.

The analytic structure of the function represented by the infinite series
∑

aizi

with unity as radius of convergence, depends on whether the tail of {ai} is periodic
or not. If the period of the tail isN we can write

1/ζtop(z) = p(z) + q(z)(1 + zN + z2N . . .) = p(z) +
q(z)

1− zN
,

for some polynomialsp(z) andq(z). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. An aperiodic sequence of
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coefficients would formally correspond to infiniteN and it is natural to assume
that the singularities will fill the unit circle. There is indeed a theorem ensuring
that this is the case [61], provided theai ’s can only take on a finite number of
values. The unit circle becomes anatural boundary, already apparent in a finite
polynomial approximations to the topological zeta function, as in figure13.4. A
function with a natural boundary lacks an analytic continuation outside it.

To conclude: The topological zeta function 1/ζtop for unimodal maps has the
unit circle as a natural boundary for almost all topologicalentropies and for the
tent map (D.2), for almost allΛ.

Let us now focus on the relation between the analytic structure of the topolo-
gical zeta function and the number of periodic orbits, or rather (13.6), the number
Nn of fixed points off n(x). The trace formula is (see sect.13.4)

Nn = tr Tn =
1

2πi

∮

γr

dz z−n d
dz

logζ−1
top

whereγr is a (circular) contour encircling the originz= 0 in clockwise direction.
Residue calculus turns this into a sum over zerosz0 and poleszp of ζ−1

top

Nn =
∑

z0:r<|z0|<R

z−n
0 −

∑

zp:r<|zp|<R

z−n
0 +

1
2πi

∮

γR

dz z−n d
dz

logζ−1
top

and a contribution from a large circleγR. For meromorphic topological zeta func-
tions one may letR→ ∞ with vanishing contribution fromγR, andNn will be a
sum of exponentials.

The leading zero is associated with the topological entropy, as discussed in
chapter13.

We have also seen that for preperiodic kneading there will bepoles on the unit
circle.

To appreciate the role of natural boundaries we will consider a (very) special
example. Cascades of period doublings is a central concept for the description of
unimodal maps. This motivates a close study of the function

Ξ(z) =
∞∏

n=0

(1− z2n
) . (D.4)

This function will appear again when we derive (D.3).

The expansion ofΞ(z) begins asΞ(z) = 1− z− z2+ z3− z4+ z5 . . .. The radius
of convergence is obviously unity. The simple rule governing the expansion will
effectively prohibit any periodicity among the coefficients making the unit circle
a natural boundary.
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It is easy to see thatΞ(z) = 0 if z = exp(2πm/2n) for any integerm andn.
(Strictly speaking we mean thatΞ(z) → 0 whenz→ exp(2πm/2n) from inside).
Consequently, zeros are dense on the unit circle. One can also show that singular
points are dense on the unit circle, for instance|Ξ(z)| → ∞whenz→ exp(2πm/3n)
for any integermandn.

As an example, the topological zeta function at the accumulation point of
the first Feigenbaum cascade isζ−1

top(z) = (1 − z)Ξ(z). ThenNn = 2l+1 if n =
2l , otherwiseNn = 0. The growth rate in the number of cycles is anything but
exponential. It is clear thatNn cannot be a sum of exponentials, the contourγR

cannot be pushed away to infinity,R is restricted toR ≤ 1 andNn is entirely
determined by

∫

γR
which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some special cases and we
know that the unit circle is a natural boundary for almost allΛ. But how does
it look out there in the complex plane for some typical parameter values? To
explore that we will imagine a journey from the originz = 0 out towards the unit
circle. While traveling we let the parameterΛ change slowly. The trip will have a
distinct science fiction flavor. The first zero we encounter isthe one connected to
the topological entropy. Obviously it moves smoothly and slowly. When we move
outward to the unit circle we encounter zeros in increasing densities. The closer
to the unit circle they are, the wilder and stranger they move. They move from
and back to the horizon, where they are created and destroyedthrough bizarre
bifurcations. For some special values of the parameter the unit circle suddenly gets
transparent and and we get (infinitely) short glimpses of another world beyond the
horizon.

We end this section by deriving eqs (D.5) and (D.6). The impenetrable prose
is hopefully explained by the accompanying tables.

We know one thing from chapter10, namely for that finite kneading sequence
of lengthn the topological polynomial is of degreen. The graph contains a node
which is connected to itself only via the symbol 0. This implies that a factor
(1− z) may be factored out andζtop(z) = (1− z)

∑n−1
i=0 aizi . The problem is to find

the coefficientsai .

periodic orbits finite kneading sequences
P1 = A∞(P)

PC
P0

P0PC
P0P1

P0P1P0PC
↓ ↓
H∞(P) H∞(P)

Table D.2: Relation between periodic orbits and finite kneading sequences in a harmonic cascade.
The stringP is assumed to contain an odd number of 1’s.

The ordered list of (finite) kneading sequences tableD.1and the ordered list of
periodic orbits (on maximal form) are intimately related. In tableD.2 we indicate
how they are nested during a period doubling cascade. Every finite kneading
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sequencePC is bracketed by two periodic orbits,P1 andP0. We haveP1 < PC <

P0 if P contains an odd number of 1’s, andP0 < PC < P1 otherwise. From
now on we will assume thatP contains an odd number of 1’s. The other case
can be worked out in complete analogy. The first and second harmonic of PC
are displayed in tableD.2. The periodic orbitP1 (and the corresponding infinite
kneading sequence) is sometimes referred to as the antiharmonic extension ofPC
(denotedA∞(P)) and the accumulation point of the cascade is called the harmonic
extension ofPC [14] (denotedH∞(P)).

A central result is the fact that a period doubling cascade ofPC is not interfered
by any other sequence. Another way to express this is that a kneading sequence
PC and its harmonic are adjacent in the list of kneading sequences to any order.

I (C) ζ−1
top(z)/(1− z)

P1 = 100C 1− z− z2 − z3

H∞(P1) = 10001001100. . . 1− z− z2 − z3 − z4 + z5 + z6 + z7 − z8 . . .

P′ = 10001C 1− z− z2 − z3 − z4 + z5

A∞(P2) = 1000110001. . . 1− z− z2 − z3 − z4 + z5 − z6 − z7 − z8 . . .
P2 = 1000C 1− z− z2 − z3 − z4

Table D.3: Example of a step in the iterative construction of the list ofkneading sequencesPC.

TableD.3 illustrates another central result in the combinatorics ofkneading
sequences. We suppose thatP1C and P2C are neighbors in the list of order 5
(meaning that the shortest finite kneading sequenceP′C betweenP1C andP2C is
longer than 5.) The important result is thatP′ (of lengthn′ = 6) has to coincide
with the firstn′ − 1 letters of bothH∞(P1) and A∞(P2). This is exemplified in
the left column of tableD.3. This fact makes it possible to generate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation pointH∞(P1) is

ζ−1
P1

(z)Ξ(zn1) , (D.5)

and just beforeA∞(P2)

ζ−1
P2

(z)/(1− zn2) . (D.6)

A short calculation shows that this is exactly what one wouldobtain by applying
(D.3) to the antiharmonic and harmonic extensions directly, provided that it applies
to ζ−1

P1
(z) andζ−1

P2
(z). This is the key observation.

Recall now the product representation of the zeta functionζ−1 =
∏

p(1 −
znp). We will now make use of the fact that the zeta function associated with
P′C is a polynomial of ordern′. There is no periodic orbit of length shorter than
n′ + 1 betweenH∞(P1) andA∞(P2). It thus follows that the coefficients of this
polynomial coincides with those of (D.5) and (D.6), see TableD.3. We can thus
conclude that our rule can be applied directly toP′C.

This can be used as an induction step in proving that the rule can be applied
to every finite and infinite kneading sequences.
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Remark D.1 How to prove things. The explicit relation between the kneading sequence
and the coefficients of the topological zeta function is not commonly seenin the literature.
The result can proven by combining some theorems of Milnor and Thurston [13]. That
approach is hardly instructive in the present context. Our derivation was inspired by
Metropolis, Stein and Stein classical paper [14]. For further detail, consult [60].

D.1.1 Periodic orbits of unimodal maps

A periodic point(or a cyclepoint) xi belonging to a cycle of periodn is a real
solution of

f n(xi) = f ( f (. . . f (xi) . . .)) = xi , i = 0, 1, 2, . . . , n− 1 (D.7)

Thenth iterate of a unimodal map crosses the diagonal at most 2n times. Similarly,
the backward and the forward Smale horseshoes intersect at most 2n times, and
therefore there will be 2n or fewer periodic points of lengthn. A cycle of length
n corresponds to an infinite repetition of a lengthn symbol string, customarily
indicated by a line over the string:

S = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

If s1s2 . . . sn is the symbol string associated withx0, its cyclic permutation
sksk+1 . . . sns1 . . . sk−1 corresponds to the pointxk−1 in the same cycle. A cyclep
is calledprime if its itinerary S cannot be written as a repetition of a shorter block
S′.

Each cycle yieldsn rational values ofγ. The repeating strings1, s2, . . . sn

contains an odd number “1”s, the string of well ordered symbols w1w2 . . .wn has
to be of the double length before it repeats itself. The valueγ is a geometrical sum
which we can write as the finite sum

γ(s1s2 . . . sn) =
22n

22n − 1

2n∑

t=1

wt/2
t

Using this we can calculate the ˆγ(S) for all short cycles.

Here we give explicit formulas for the topological coordinate of a periodic
point, given its itinerary. For the purpose of what follows it is convenient to
compactify the itineraries by replacing the binary alphabet si = {0, 1} by the
infinite alphabet

{a1, a2, a3, a4, · · · ; 0} = {1, 10, 100, 1000, . . . ; 0} . (D.8)

In this notation the itineraryS = aia jakal · · · and the corresponding topological
coordinate (??) are related byγ(S) = .1i0 j1k0l · · ·. For example:

S = 111011101001000. . . = a1a1a2a1a1a2a3a4 . . .
γ(S) = .101101001110000. . . = .1101120111021304 . . .
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Cycle points whose itineraries start withw1 = w2 = . . . = wi = 0, wi+1 = 1 remain
on the left branch of the tent map fori iterations, and satisfyγ(0 . . . 0S) = γ(S)/2i .

A periodic point(or acyclepoint) xi belonging to a cycle of periodn is a real
solution of

f n(xi) = f ( f (. . . f (xi) . . .)) = xi , i = 0, 1, 2, . . . , n− 1 . (D.9)

The nth iterate of a unimodal map has at most 2n monotone segments, and
therefore there will be 2n or fewer periodic points of lengthn. A periodic orbit
of length n corresponds to an infinite repetition of a lengthn symbol string,
customarily indicated by a line over the string:

S = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

As all itineraries are infinite, we shall adopt convention that a finite string itinerary
S = s1s2s3 . . . sn stands for infinite repetition of a finite block, and routinely
omit the overline. Ifs1s2 . . . sn is the symbol string associated withx0, its cyclic
permutationsksk+1 . . . sns1 . . . sk−1 corresponds to the pointxk−1 in the same cycle.
A periodic orbitp is calledprimeif its itineraryS cannot be written as a repetition
of a shorter blockS′.

Periodic points correspond to rational values ofγ, but we have to distinguish
evenandodd cycles. The even (odd) cycles contain even (odd) number ofai in
the repeating block, with periodic points given by

γ(aia j · · · akaℓ) =






2n

2n−1.1
i0 j · · · 1k even

1
2n+1

(

1+ 2n × .1i0 j · · · 1ℓ) odd
, (D.10)

wheren = i + j + · · · + k + ℓ is the cycle period. The maximal value cycle point
is given by the cyclic permutation ofS with the largestai as the first symbol,
followed by the smallest availablea j as the next symbol, and so on. For example:

γ̂(1) = γ(a1) = .10101. . . = .10 = 2/3
γ̂(10) = γ(a2) = .1202 . . . = .1100 = 4/5
γ̂(100) = γ(a3) = .1303 . . . = .111000 = 8/9
γ̂(101) = γ(a2a1) = .1201 . . . = .110 = 6/7

An example of a cycle where only the third symbol determines the maximal value
cycle point is

γ̂(1101110)= γ(a2a1a2a1a1) = .11011010010010= 100/129.

Maximal values of all cycles up to length 5 are given in table!?
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D.2 Prime factorization for dynamical itineraries

The Möbius function is not only a number-theoretic function, but can be
used to manipulate ordered sets of noncommuting objects such as symbol strings.
Let P = {p1, p2, p3, · · ·} be an ordered set ofprimestrings, and

N = {n} =
{

pk1
1 pk2

2 pk3
3 · · · p

kj

j

}

,

j ∈ N, ki ∈ Z+, be the set of all stringsn obtained by the ordered concatenation of
the “primes”pi . By construction, every stringn has a unique prime factorization.
We say that a string has a divisord if it containsd as a substring, and define the
string divisionn/d asn with the substringd deleted. Now we can do things like
this: definingtn := tk1

p1
tk2
p2
· · · tkj

pj
we can write the inverse dynamical zeta function

(18.2) as

∏

p

(1− tp) =
∑

n

µ(n)tn ,

and, if we care (we do in the case of the Riemann zeta function), the dynamical
zeta function as .

∏

p

1
1− tp

=
∑

n

tn (D.11)

A striking aspect of this formula is its resemblance to the factorization of
natural numbers into primes: the relation of the cycle expansion (D.11) to the
product over prime cycles is analogous to the Riemann zeta (exercise17.10)
represented as a sum over natural numbers vs. its Euler product representation.

We now implement this factorization explicitly by decomposing recursively
binary strings into ordered concatenations of prime strings. There are 2 strings
of length 1, both prime:p1 = 0, p2 = 1. There are 4 strings of length 2:
00, 01, 11, 10. The first three are ordered concatenations of primes: 00 =
p2

1, 01 = p1p2, 11 = p2
2; by ordered concatenations we mean thatp1p2 is

legal, butp2p1 is not. The remaining string is the only prime of length 2,p3 =

10. Proceeding by discarding the strings which are concatenations of shorter
primespk1

1 pk2
2 · · · p

kj

j , with primes lexically ordered, we generate the standard list
of primes, in agreement with table10.1: 0, 1, 10, 101, 100, 1000, 1001, 1011,
10000, 10001, 10010, 10011, 10110, 10111, 100000, 100001, 100010, 100011,
100110, 100111, 101100, 101110, 101111,. . .. This factorization is illustrated in
tableD.4.
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factors string
p1 0
p2 1

p2
1 00

p1p2 01
p2

2 11
p3 10

p3
1 000

p2
1p2 001

p1p2
2 011

p3
2 111

p1p3 010
p2p3 110
p4 100
p5 101

factors string
p4

1 0000
p3

1p2 0001
p2

1p2
2 0011

p1p3
2 0111

p4
2 1111

p2
1p3 0010

p1p2p3 0110
p2

2p3 1110
p2

3 1010
p1p4 0100
p2p4 1100
p1p5 0101
p2p5 1101
p6 1000
p7 1001
p8 1011

factors string
p5

1 00000
p4

1p2 00001
p3

1p2
2 00011

p2
1p3

2 00111
p1p4

2 01111
p5

2 11111
p3

1p3 00010
p2

1p2p3 00110
p1p2

2p3 01110
p3

2p3 11110
p1p2

3 01010
p2p2

3 11010
p2

1p4 00100
p1p2p4 01100
p2

2p4 11100
p3p4 10100

factors string
p2

1p5 00101
p1p2p5 01101
p2

2p5 11101
p3p5 10101
p1p6 01000
p2p6 11000
p1p7 01001
p2p7 11001
p1p8 01011
p2p8 11011
p9 10000
p10 10001
p11 10010
p12 10011
p13 10110
p14 10111

Table D.4: Factorization of all periodic points strings up to length 5 into ordered
concatenationspk1

1 pk2
2 · · · p

kn
n of prime stringsp1 = 0, p2 = 1, p3 = 10, p4 = 100, . . .

, p14 = 10111.

D.2.1 Prime factorization for spectral determinants

Following sect.D.2, the spectral determinant cycle expansions is obtained
by expandingF as a multinomial in prime cycle weightstp

F =
∏

p

∞∑

k=0

Cpktkp =
∞∑

k1k2k3···=0

τ
p

k1
1 p

k2
2 p

k3
3 ···

(D.12)

where the sum goes over all pseudocycles. In the above we havedefined

τ
p

k1
1 p

k2
2 p

k3
3 ···
=

∞∏

i=1

Cpi
ki t

ki
pi
. (D.13)

[exercise 17.10]

A striking aspect of the spectral determinant cycle expansion is its resemblance
to the factorization of natural numbers into primes: as we already noted in sect.D.2,
the relation of the cycle expansion (D.12) to the product formula (17.9) is analogous
to the Riemann zeta represented as a sum over natural numbersvs. its Euler
product representation.

This is somewhat unexpected, as the cycle weights factorizeexactly with
respect tor repetitions of a prime cycle,tpp...p = trp, but only approximately
(shadowing) with respect to subdividing a string into prime substrings, tp1p2 ≈
tp1tp2.

The coefficientsCpk have a simple form only in 1-d, given by the Euler formula
(21.34). In higher dimensionsCpk can be evaluated by expanding (17.9), F(z) =

chapter/appendSymb.tex 23mar98.tex

APPENDIX D. SYMBOLIC DYNAMICS TECHNIQUES 680

∏

p Fp, where

Fp = 1−




∞∑

r=1

trp
rdp,r



 +
1
2





∞∑

r=1

trp
rdp,r





2

− . . . .

Expanding and recollecting terms, and suppressing thepcycle label for the moment,
we obtain

Fp =

∞∑

r=1

Ckt
k, Ck = (−)kck/Dk,

Dk =

k∏

r=1

dr =

d∏

a=1

k∏

r=1

(1− ur
a) (D.14)

where evaluation ofck requires a certain amount of not too luminous algebra:

c0 = 1

c1 = 1

c2 =
1
2

(

d2

d1
− d1

)

=
1
2





d∏

a=1

(1+ ua) −
d∏

a=1

(1− ua)





c3 =
1
3!





d2d3

d2
1

+ 2d1d2 − 3d3





=
1
6





d∏

a=1

(1+ 2ua + 2u2
a + u3

a)

+2
d∏

a=1

(1− ua − u2
a + u3

a) − 3
d∏

a=1

(1− u3
a)





etc.. For example, for a general 2-dimensional map we have

Fp = 1− 1
D1

t +
u1 + u2

D2
t2 −

u1u2(1+ u1)(1+ u2) + u3
1 + u3

2

D3
t3 + . . . . (D.15)

We discuss the convergence of such cycle expansions in sect.I.4.

With τ
p

k1
1 p

k2
2 ···p

kn
n

defined as above, the prime factorization of symbol strings is

unique in the sense thateach symbol string can be written as a unique concatenation
of prime strings,up to a convention on ordering of primes. This factorizationis a
nontrivial example of the utility of generalized Möbius inversion, sect.D.2.

How is the factorization of sect.D.2 used in practice? Suppose we have
computed (or perhaps even measured in an experiment) all prime cycles up to
length n, i.e., we have a list oftp’s and the corresponding fundamental matrix
eigenvaluesΛp,1,Λp,2, . . .Λp,d. A cycle expansion of the Selberg product is obtained
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by generating all strings in order of increasing lengthj allowed by the symbolic
dynamics and constructing the multinomial

F =
∑

n

τn (D.16)

wheren = s1s2 · · · sj, si range over the alphabet, in the present case{0, 1}. Factorizing

every stringn = s1s2 · · · sj = pk1
1 pk2

2 · · · p
kj

j as in tableD.4, and substituting
τ

p
k1
1 p

k2
2 ···

we obtain a multinomial approximation toF. For example,τ001001010101=

τ001001010101 = τ0012τ013, andτ013, τ0012 are known functions of the corresponding
cycle eigenvalues. The zeros ofF can now be easily determined by standard
numerical methods. The fact that as far as the symbolic dynamics is concerned,
the cycle expansion of a Selberg product is simply an averageover all symbolic
strings makes Selberg products rather pretty.

To be more explicit, we illustrate the above by expressing binary strings as
concatenations of prime factors. We start by computingNn, the number of terms
in the expansion (D.12) of the total cycle lengthn. SettingCpktkp = znpk in (D.12),
we obtain

∞∑

n=0

Nnzn =
∏

p

∞∑

k=0

znpk =
1

∏

p(1− znp)
.

So the generating function for the number of terms in the Selberg product is the
topological zeta function. For the complete binary dynamics we haveNn = 2n

contributing terms of lengthn:

ζtop =
1

∏

p(1− znp)
=

1
1− 2z

=

∞∑

n=0

2nzn

Hence the number of distinct terms in the expansion (D.12) is the same as the
number of binary strings, and conversely, the set of binary strings of lengthn
suffices to label all terms of the total cycle lengthn in the expansion (D.12).
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Appendix E

Counting itineraries

E.1 Counting curvatures

O  of the finiteness of topological polynomials is that the contributions
to curvatures at every order are even in number, half with positive and half
with negative sign. For instance, for complete binary labeling (18.7),

c4 = −t0001 − t0011 − t0111 − t0t01t1
+ t0t001 + t0t011 + t001t1 + t011t1 . (E.1)

We see that 23 terms contribute toc4, and exactly half of them appear with a
negative sign - hence if all binary strings are admissible, this term vanishes in the
counting expression.

[exercise E.2]

Such counting rules arise from the identity

∏

p

(

1+ tp

)

=
∏

p

1− tp
2

1− tp
. (E.2)

Substitutingtp = znp and using (13.15) we obtain for unrestricted symbol dynamics
with N letters

∞∏

p

(
1+ znp

)
=

1− Nz2

1− Nz
= 1+ Nz+

∞∑

k=2

zk
(

Nk − Nk−1
)

Thezn coefficient in the above expansion is the number of terms contributing to
cn curvature, so we find that for a complete symbolic dynamics ofN symbols and
n > 1, the number of terms contributing tocn is (N − 1)Nk−1 (of which half carry
a minus sign).

[exercise E.4]
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We find that for complete symbolic dynamics ofN symbols andn > 1, the
number of terms contributing tocn is (N − 1)Nn−1. So, superficially, not much
is gained by going from periodic orbits trace sums which getNn contributions of
n to the curvature expansions withNn(1 − 1/N). However, the point is not the
number of the terms, but the cancelations between them.

Exercises

E.1. Lefschetz zeta function. Elucidate the relation
betveen the topological zeta function and the Lefschetz
zeta function.

E.2. Counting the 3-disk pinball counterterms. Verify
that the number of terms in the 3-disk pinball curvature
expansion (18.35) is given by

∏

p

(

1+ tp

)

=
1− 3z4 − 2z6

1− 3z2 − 2z3
= 1+ 3z2 + 2z3 +

z4(6+ 12z+ 2z2)
1− 3z2 − 2z3

= 1+ 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z9 + . . . .(E.3)

This means that, for example,c6 has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(18.36).

E.3. Cycle expansion denominators∗∗. Prove that the
denominator ofck is indeedDk, as asserted (D.14).

E.4. Counting subsets of cycles. The techniques
developed above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynamical
system with a complete binary tree, a repeller map (10.6)
with two straight branches, which we label 0 and 1.
Every cycle weight for such map factorizes, with a factor
t0 for each 0, and factort1 for each 1 in its symbol
string. The transition matrix traces (13.5) collapse to
tr(Tk) = (t0 + t1)k, and 1/ζ is simply

∏

p

(

1− tp

)

= 1− t0 − t1 (E.4)

Substituting into the identity

∏

p

(

1+ tp

)

=
∏

p

1− tp
2

1− tp

we obtain

∏

p

(

1+ tp

)

=
1− t20 − t21
1− t0 − t1

= 1+ t0 + t1 +
2t0t1

1− t0 − t1

= 1+ t0 + t1 +
∞∑

n=2

n−1∑

k=1

2

(

n− 2
k− 1

)

tk0tn−k
1 .(E.5)

Hence forn ≥ 2 the number of terms in the expansion
?! with k 0’s andn − k 1’s in their symbol sequences
is 2

(
n−2
k−1

)

. This is the degeneracy of distinct cycle
eigenvalues in fig.?!; for systems with non-uniform
hyperbolicity this degeneracy is lifted (see fig. ?!).

In order to count the number of prime cycles in each
such subset we denote withMn,k (n = 1, 2, . . . ; k =
{0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the
number of primen-cycles whose labels containk zeros,
use binomial string counting and Möbius inversion and
obtain

M1,0 = M1,1 = 1

nMn,k =
∑

m
∣
∣
∣ n

k

µ(m)

(

n/m
k/m

)

, n ≥ 2 , k = 1, . . . , n−

where the sum is over allm which divide bothn andk.
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Appendix F

Finding cycles

(C. Chandre)

F.1 Newton-Raphson method

F.1.1 Contraction rate

C  d-  x′ = f (x) with an unstable fixed pointx∗. The
Newton-Raphson algorithm is obtained by iterating the following map

x′ = g(x) = x− (J(x) − 1)−1 ( f (x) − x) .

The linearization ofg nearx∗ leads to

x∗ + ǫ
′ = x∗ + ǫ − (J(x∗) − 1)−1 ( f (x∗) + J(x∗)ǫ − x∗ − ǫ) +O

(

‖ǫ‖2
)

,

whereǫ = x− x∗. Therefore,

x′ − x∗ = O
(

(x− x∗)
2
)

.

After n steps and if the initial guessx0 is close tox∗, the error decreases
super-exponentially

gn(x0) − x∗ = O
(

(x0 − x∗)
2n)

.
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F.1.2 Computation of the inverse

The Newton-Raphson method for findingn-cycles ofd-dimensional mappings
using the multi-shooting method reduces to the following equation





1 −D f (xn)
−D f (x1) 1

· · · 1
−D f (xn−1) 1









δ1
δ2
· · ·
δn





= −





F1
F2
· · ·
Fn





, (F.1)

whereD f (x) is the [d × d] Jacobian matrix of the map evaluated at the pointx,
andδm = x′m − xm andFm = xm − f (xm−1) ared-dimensional vectors. By some
starightforward algebra, the vectorsδm are expressed as functions of the vectors
Fm:

δm = −
m∑

k=1

βk,m−1Fk − β1,m−1
(

1− β1,n
)−1





n∑

k=1

βk,nFk




, (F.2)

for m = 1, . . . , n, whereβk,m = D f (xm)D f (xm−1) · · ·D f (xk) for k < m andβk,m =

1 for k ≥ m. Therefore, findingn-cycles by a Newton-Raphson method with
multiple shooting requires the inversing of a [d×d] matrix 1−D f (xn)D f (xn−1) · · ·D f (x1).

F.2 Hybrid Newton-Raphson/ relaxation method

Consider ad-dimensional mapx′ = f (x) with an unstable fixed pointx∗.
The transformed map is the following one:

x′ = g(x) = x+ γC( f (x) − x),

whereγ > 0 andC is ad × d invertible constant matrix. We notice thatx∗ is also
a fixed point ofg. Consider the stability matrix at the fixed pointx∗

Ag =
dg
dx

∣
∣
∣
∣
∣
x=x∗
= 1+ γC(Af − 1).

The matrixC is constructed such that the eigenvalues ofAg are of modulus less
than one. Assume thatAf is diagonalizable: In the basis of diagonalization, the
matrix writes:

Ãg = 1+ γC̃(Ãf − 1),

where Ãf is diagonal with elementsµi. We restrict the set of matrices̃C to
diagonal matrices with̃Cii = ǫi whereǫi = ±1. ThusÃg is diagonal with eigenvalues
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Figure F.1: Illustration of the optimal Poincaré
surface. The original surfacey = 0 yields a large
distancex − f (x) for the Newton iteration. A much
better choice isy = 0.7. -1.5
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γi = 1+ γǫi (µi − 1). The choice ofγ andǫi is such that|γi | < 1. It is easy to see
that if Re(µi) < 1 one has to chooseǫi = 1, and if Re(µi) > 1, ǫi = −1. If λ is
chosen such that

0 < γ < min
i=1,...,d

2|Re(µi) − 1|
|µi − 1|2 ,

all the eigenvalues ofAg have modulus less that one. The contraction rate at the
fixed point for the mapg is then maxi |1+ γǫi(µi − 1)|. We notice that if Re(µi) =
1, it is not possible to stabilizex∗ by the set of matricesγC.
From the construction ofC, we see that 2d choices of matrices are possible. For
example, for 2-dimensional systems, these matrices are

C ∈
{(

1
0

0
1

)

,

(

−1
0

0
1

)

,

(

1
0

0
−1

)

,

(

−1
0

0
−1

)}

.

For 2-dimensional dissipative maps, the eigenvalues satisfy Re(µ1)Re(µ2) ≤ detD f <
1. The case (Re(µ1) > 1,Re(µ2) > 1) which is stabilized by

(−1
0

0
−1

)

has to be
discarded. The minimal set is reduced to three matrices.

F.2.1 Newton method with optimal surface of section

(F. Christiansen)

In some systems it might be hard to find a good starting guess for a fixed point,
something that could happen if the topology and/or the symbolic dynamics of the
flow is not well understood. By changing the Poincaré section one might get a
better initial guess in the sense thatx and f (x) are closer together. In figureF.1
there is an illustration of this. The figure shows a Poincarésection,y = 0, an
initial guessx, the correspondingf (x) and pieces of the trajectory near these two
points.

If the Newton iteration does not converge for the initial guessx we might have
to work very hard to find a better guess, particularly if this is in a high-dimensional
system (high-dimensional might in this context mean a Hamiltonian system with
3 degrees of freedom.) But clearly we could easily have a muchbetter guess
by simply shifting the Poincaré section toy = 0.7 where the distancex − f (x)
would be much smaller. Naturally, one cannot see by eye the best surface in
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higher dimensional systems. The way to proceed is as follows: We want to have
a minimal distance between our initial guessx and the image of thisf (x). We
therefore integrate the flow looking for a minimum in the distanced(t) = | f t(x)−x|.
d(t) is now a minimum with respect to variations inf t(x), but not necessarily with
respect tox. We therefore integratex either forward or backward in time. Doing
this we minimized with respect tox, but now it is no longer minimal with respect
to f t(x). We therefore repeat the steps, alternating between correcting x and f t(x).
In most cases this process converges quite rapidly. The result is a trajectory for
which the vector (f (x) − x) connecting the two end points is perpendicular to the
flow at both points. We can now choose to define a Poincaré surface of section as
the hyper-plane that goes throughx and is normal to the flow atx. In other words
the surface of section is determined by

(x′ − x) · v(x) = 0. (F.3)

Note that f (x) lies on this surface. This surface of section is optimal in the sense
that a close return on the surface is a local minimum of the distance betweenx
and f t(x). But more importantly, the part of the stability matrix that describes
linearization perpendicular to the flow is exactly the stability of the flow in the
surface of section whenf (x) is close tox. In this method, the Poincaré surface
changes with each iteration of the Newton scheme. Should we later want to put
the fixed point on a specific Poincaré surface it will only be amatter of moving
along the trajectory.
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Appendix G

Transport of vector fields

Man who says it cannot be done should not interrupt man
doing it.

—Sayings of Vattay Gábor

I    we show that the multidimensional Lyapunov exponents and
relaxation exponents (dynamo rates) of vector fields can be expressed in terms
of leading eigenvalues of appropriate evolution operators.

G.1 Evolution operator for Lyapunov exponents

Lyapunov exponents were introduced and computed for 1-d maps in sect.15.3.2.
For higher-dimensional flows only the fundamental matricesare multiplicative,
not individual eigenvalues, and the construction of the evolution operator for
evaluation of the Lyapunov spectra requires the extension of evolution equations
to the flow in the tangent space. We now develop the requisite theory.

Here we construct a multiplicative evolution operator (G.4) whose spectral
determinant (G.8) yields the leading Lyapunov exponent of ad-dimensional flow
(and is entire for Axiom A flows).

The key idea is to extending the dynamical system by the tangent space of the
flow, suggested by the standard numerical methods for evaluation of Lyapunov
exponents: start atx0 with an initial infinitesimal tangent space vectorη(0) ∈
TMx, and let the flow transport it along the trajectoryx(t) = f t(x0).

The dynamics in the (x, η) ∈ U × TUx space is governed by the system of
equations of variations [1]:

ẋ = v(x) , η̇ = Dv(x)η .
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HereDv(x) is the derivative matrix of the flow. We write the solution as

x(t) = f t(x0) , η(t) = Mt(x0) · η0 , (G.1)

with the tangent space vectorη transported by the stability matrixMt(x0) =
∂x(t)/∂x0.

As explained in sect.4.1, the growth rate of this vector is multiplicative along
the trajectory and can be represented asη(t) = |η(t)|/|η(0)|u(t) whereu(t) is a
“unit” vector in some norm||.||. For asymptotic times and for almost every initial
(x0, η(0)), this factor converges to the leading eigenvalue of thelinearized stability
matrix of the flow.

We implement this multiplicative evaluation of stability eigenvalues by adjoining
thed-dimensional transverse tangent spaceη ∈ TMx; η(x)v(x) = 0 to the (d+1)-
dimensional dynamical evolution spacex ∈ M ⊂ Rd+1. In order to determine the
length of the vectorη we introduce a homogeneous differentiable scalar function
g(η) = ||η||. It has the propertyg(Λη) = |Λ|g(η) for anyΛ. An example is the
projection of a vector to itsdth component

g





η1
η2
· · ·
ηd





= |ηd| .

Any vectorη ∈ TUx can now be represented by the productη = Λu, whereu
is a “unit” vector in the sense that its norm is||u|| = 1, and the factor

Λt(x0, u0) = g(η(t)) = g(Mt(x0) · u0) (G.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stretching factor is multiplicative
along the trajectory:

Λt′+t(x0, u0) = Λt′(x(t), u(t))Λt(x0, u0).
[exercise G.1]

Theu evolution constrained toETg,x, the space of unit transverse tangent vectors,
is given by rescaling of (G.1):

u′ = Rt(x, u) =
1

Λt(x, u)
Mt(x) · u . (G.3)

Eqs. (G.1), (G.2) and (G.3) enable us to define amultiplicativeevolution operator
on the extended spaceU × ETg,x

Lt(x′, u′; x, u) = δ
(

x′ − f t(x)
) δ

(

u′ − Rt(x, u)
)

|Λt(x, u)|β−1
, (G.4)
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whereβ is a variable.

To evaluate the expectation value of log|Λt(x, u)|which is the Lyapunov exponent
we again have to take the proper derivative of the leading eigenvalue of (G.4).
In order to derive the trace formula for the operator (G.4) we need to evaluate
TrLt =

∫

dxduLt(u, x; u, x). The
∫

dx integral yields a weighted sum over prime
periodic orbitsp and their repetitionsr:

TrLt =
∑

p

Tp

∞∑

r=1

δ
(

t − rTp

)

| det (1− Mr
p) |∆p,r ,

∆p,r =

∫

g
du

δ
(

u − RTpr(xp, u)
)

|ΛTpr(xp, u)|β−1
, (G.5)

whereMp is the prime cyclep transverse stability matrix. As we shall see below,
∆p,r is intrinsic to cyclep, and independent of any particular cycle pointxp.

We note next that if the trajectoryf t(x) is periodic with periodT, the tangent
space containsd periodic solutions

ei(x(T + t)) = ei(x(t)) , i = 1, ..., d,

corresponding to thed unit eigenvectors{e1, e2, · · · , ed} of the transverse stability
matrix, with “stretching” factors (G.2) given by its eigenvalues

Mp(x) · ei(x) = Λp,i ei(x) , i = 1, ..., d. (no summation oni)

The
∫

du integral in (G.5) picks up contributions from these periodic solutions.
In order to compute the stability of theith eigendirection solution, it is convenient
to expand the variation around the eigenvectorei in the stability matrix eigenbasis
δu =

∑

δuℓ eℓ . The variation of the map (G.3) at a complete periodt = T is then
given by

δRT(ei ) =
M · δu

g(M · ei)
− M · ei

g(M · ei)2

(

∂g(ei)
∂u

· M · δu
)

=
∑

k,i

Λp,k

Λp,i

(

ek − ei
∂g(ei)
∂uk

)

δuk . (G.6)

Theδui component does not contribute to this sum sinceg(ei + duiei) = 1 + dui

implies∂g(ei)/∂ui = 1. Indeed, infinitesimal variationsδu must satisfy

g(u + δu) = g(u) = 1 =⇒
d∑

ℓ=1

δuℓ
∂g(u)
∂uℓ

= 0 ,
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so the allowed variations are of form

δu =
∑

k,i

(

ek − ei
∂g(ei )
∂uk

)

ck , |ck| ≪ 1 ,

and in the neighborhood of theei eigenvector the
∫

du integral can be expressed
as

∫

g
du =

∫
∏

k,i

dck .

Inserting these variations into the
∫

du integral we obtain

∫

g
du δ

(

ei + δu − RT(ei) − δRT(ei) + . . .
)

=

∫
∏

k,i

dck δ((1− Λk/Λi)ck + . . .)

=
∏

k,i

1
|1− Λk/Λi |

,

and the
∫

du trace (G.5) becomes

∆p,r =

d∑

i=1

1

| Λr
p,i |β−1

∏

k,i

1
| 1− Λr

p,k/Λ
r
p,i |

. (G.7)

The corresponding spectral determinant is obtained by observing that the Laplace
transform of the trace (16.23) is a logarithmic derivative TrL(s) = − d

ds logF(s)
of the spectral determinant:

F(β, s) = exp




−

∑

p,r

esTpr

r | det (1− Mr
p) |
∆p,r (β)




. (G.8)

This determinant is the central result of this section. Its zeros correspond to the
eigenvalues of the evolution operator (G.4), and can be evaluated by the cycle
expansion methods.

The leading zero of (G.8) is called “pressure” (or free energy)

P(β) = s0(β). (G.9)

The average Lyapunov exponent is then given by the first derivative of the pressure
atβ = 1:

λ = P′(1). (G.10)
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The simplest application of (G.8) is to 2-dimensional hyperbolic Hamiltonian
maps. The stability eigenvalues are related byΛ1 = 1/Λ2 = Λ, and the spectral
determinant is given by

F(β, z) = exp




−

∑

p,r

zrnp

r | Λr
p |

1
(1− 1/Λr

p)2
∆p,r (β)





∆p,r(β) =
| Λr

p |1−β

1− 1/Λ2r
p
+
| Λr

p |β−3

1− 1/Λ2r
p
. (G.11)

The dynamics (G.3) can be restricted to au unit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobi matrix. On this neighborhood
the largest eigenvalue of the Jacobi matrix is the only fixed point, and the spectral
determinant obtained by keeping only the largest term the∆p,r sum in (G.7) is also
entire.

In case of maps it is practical to introduce the logarithm of the leading zero
and to call it “pressure”

P(β) = logz0(β). (G.12)

The average of the Lyapunov exponent of the map is then given by the first
derivative of the pressure atβ = 1:

λ = P′(1). (G.13)

By factorizing the determinant (G.11) into products of zeta functions we can
conclude that the leading zero of the (G.4) can also be recovered from the leading
zeta function

1/ζ0(β, z) = exp




−

∑

p,r

zrnp

r |Λr
p|β




. (G.14)

This zeta function plays a key role in thermodynamic applications as we will will
see in Chapter22.

G.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An example is the magnetic
field of the Sun which is “frozen” in the fluid motion. A passively evolving vector
field V is governed by an equation of the form

∂tV + u · ∇V − V · ∇u = 0, (G.15)
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whereu(x, t) represents the velocity field of the fluid. The strength of the vector
field can grow or decay during its time evolution. The amplification of the vector
field in such a process is called the ”dynamo effect.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of the field with an exponent

V(x, t) ∼ V(x)eνt, (G.16)

whereν is called the fast dynamo rate. The goal of this section is to show that
periodic orbit theory can be developed for such a highly non-trivial system as
well.

We can write the solution of (G.15) formally, as shown by Cauchy. Letx(t, a)
be the position of the fluid particle that was at the pointa at t = 0. Then the field
evolves according to

V(x, t) = J(a, t)V(a, 0) , (G.17)

whereJ(a, t) = ∂(x)/∂(a) is the fundamental matrix of the transformation that
moves the fluid into itselfx = x(a, t).

We writex = f t(a), where f t is the flow that maps the initial positions of the
fluid particles into their positions at timet. Its inverse,a = f −t(x), maps particles
at timet and positionx back to their initial positions. Then we can write (G.17)

Vi(x, t) =
∑

j

∫

d3aLt
i j (x, a)V j (a, 0) , (G.18)

with

Lt
i j (x, a) = δ(a− f −t(x))

∂xi

∂a j
. (G.19)

For large times, the effect ofLt is dominated by its leading eigenvalue,eν0t with
Re(ν0) > Re(νi), i = 1, 2, 3, .... In this way the transfer operator furnishes the fast
dynamo rate,ν := ν0.

The trace of the transfer operator is the sum over all periodic orbit contributions,
with each cycle weighted by its intrinsic stability

TrLt =
∑

p

Tp

∞∑

r=1

tr Mr
p

∣
∣
∣
∣det

(

1− M−r
p

)∣∣
∣
∣

δ(t − rTp). (G.20)

We can construct the corresponding spectral determinant asusual

F(s) = exp




−

∑

p

∞∑

r=1

1
r

tr Mr
p

∣
∣
∣
∣det

(

1− M−r
p

)∣∣
∣
∣

esrTp




. (G.21)
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Note that in this formuli we have omitted a term arising from the Jacobian transformation
along the orbit which would give 1+ tr Mr

p in the numerator rather than just
the trace ofMr

p. Since the extra term corresponds to advection along the orbit,
and this does not evolve the magnetic field, we have chosen to ignore it. It
is also interesting to note that the negative powers of the Jacobian occur in the
denominator, since we havef −t in (G.19).

In order to simplifyF(s), we factor the denominator cycle stability determinants
into products of expanding and contracting eigenvalues. For a 3-dimensional fluid
flow with cycles possessing one expanding eigenvalueΛp (with |Λp| > 1), and
one contracting eigenvalueλp (with |λp| < 1) the determinant may be expanded
as follows:

∣
∣
∣
∣det

(

1− M−r
p

)∣∣
∣
∣

−1
= |(1− Λ−r

p )(1− λ−r
p )|−1 = |λp|r

∞∑

j=0

∞∑

k=0

Λ
− jr
p λkr

p . (G.22)

With this decomposition we can rewrite the exponent in (G.21) as

∑

p

∞∑

r=1

1
r

(λr
p + Λ

r
p)esrTp

∣
∣
∣
∣det

(

1− M−r
p

)∣∣
∣
∣

=
∑

p

∞∑

j,k=0

∞∑

r=1

1
r

(

|λp|Λ− j
p λ

k
pesTp

)r
(λr

p+Λ
r
p) , (G.23)

which has the form of the expansion of a logarithm:

∑

p

∑

j,k

[

log
(

1− esTp|λp|Λ1− j
p λk

p

)

+ log
(

1− esTp |λp|Λ− j
p λ

1+k
p

)]

. (G.24)

The spectral determinant is therefore of the form,

F(s) = Fe(s)Fc(s) , (G.25)

where

Fe(s) =
∏

p

∞∏

j,k=0

(

1− t( jk)
p Λp

)

, (G.26)

Fc(s) =
∏

p

∞∏

j,k=0

(

1− t( jk)
p λp

)

, (G.27)

with

t( jk)
p = esTp|λp|

λk
p

Λ
j
p

. (G.28)
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The two factors present inF(s) correspond to the expanding and contracting
exponents. (Had we not neglected a term in (G.21), there would be a third factor
corresponding to the translation.)

For 2-d Hamiltonian volume preserving systems,λ = 1/Λ and (G.26) reduces
to

Fe(s) =
∏

p

∞∏

k=0



1−
tp

Λk−1
p





k+1

, tp =
esTp

| Λp |
. (G.29)

With σp = Λp/|Λp|, the Hamiltonian zeta function (thej = k = 0 part of the
product (G.27)) is given by

1/ζdyn(s) =
∏

p

(

1− σpesTp
)

. (G.30)

This is a curious formula — the zeta function depends only on the return times,
not on the eigenvalues of the cycles. Furthermore, the identity,

Λ + 1/Λ
|(1− Λ)(1− 1/Λ)| = σ +

2
|(1− Λ)(1− 1/Λ)| ,

when substituted into (G.25), leads to a relation between the vector and scalar
advection spectral determinants:

Fdyn(s) = F2
0(s)/ζdyn(s) . (G.31)

The spectral determinants in this equation are entire for hyperbolic (axiom A)
systems, since both of them correspond to multiplicative operators.

In the case of a flow governed by a map, we can adapt the formulas(G.29)
and (G.30) for the dynamo determinants by simply making the substitution

znp = esTp , (G.32)

wherenp is the integer order of the cycle. Then we find the spectral determinant
Fe(z) given by equation (G.29) but with

tp =
znp

|Λp|
(G.33)

for the weights, and

1/ζdyn(z) = Πp

(

1− σpznp
)

(G.34)
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for the zeta-function

Formapswith finite Markov partition the inverse zeta function (G.34) reduces
to a polynomial forz since curvature terms in the cycle expansion vanish. For
example, for maps with complete binary partition, and with the fixed point stabilities
of opposite signs, the cycle expansion reduces to

1/ζdyn(s) = 1. (G.35)

For suchmapsthe dynamo spectral determinant is simply the square of the scalar
advection spectral determinant, and therefore all its zeros are double. In other
words, for flows governed by such discrete maps, the fast dynamo rate equals the
scalar advection rate.

In contrast, for 3-dimensionalflows, the dynamo effect is distinct from the
scalar advection. For example, for flows with finite symbolicdynamical grammars,
(G.31) implies that the dynamo zeta function is a ratio of two entire determinants:

1/ζdyn(s) = Fdyn(s)/F
2
0(s) . (G.36)

This relation implies that forflowsthe zeta function has double poles at the zeros
of the scalar advection spectral determinant, with zeros ofthe dynamo spectral
determinant no longer coinciding with the zeros of the scalar advection spectral
determinant; Usually the leading zero of the dynamo spectral determinant is larger

[exercise G.2]
than the scalar advection rate, and the rate of decay of the magnetic field is no
longer governed by the scalar advection.

Commentary

Remark G.1 Dynamo zeta. The dynamo zeta (G.34) has been introduced by Aurell
and Gilbert [2] and reviewed in ref. [3]. Our exposition follows ref. [19].

Exercises

G.1. Stretching factor. Prove the multiplicative property
of the stretching factor (G.2). Why should we extend the
phase space with the tangent space?

G.2. Dynamo rate. Suppose that the fluid dynamics is
highly dissipative and can be well approximated by the

piecewise linear map

f (x) =

{

1+ ax if x < 0,
1− bx if x > 0, (G.37)

on an appropriate surface of section (a, b > 2). Suppose
also that the return time is constantTa for x < 0 andTb
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for x > 0. Show that the dynamo zeta is

1/ζdyn(s) = 1− esTa + esTb. (G.38)

Show also that the escape rate is the leading zero of

1/ζ0(s) = 1− esTa/a− esTb/b. (G.39)

Calculate the dynamo and the escape rates analytically
if b = a2 andTb = 2Ta. Do the calculation for the case
when you reverse the signs of the slopes of the map.
What is the difference?
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Appendix H

Discrete symmetries of dynamics

B -  are recapitulated here: groups, irreducible representations,
invariants. Our notation followsbirdtracks.eu.

The key result is the construction of projection operators from invariant matrices.
The basic idea is simple: a hermitian matrix can be diagonalized. If this matrix
is an invariant matrix, it decomposes the reps of the group into direct sums of
lower-dimensional reps. Most of computations to follow implement the spectral
decomposition

M = λ1P1 + λ2P2 + · · · + λrPr ,

which associates with each distinct rootλi of invariant matrixM a projection
operator (H.17):

Pi =
∏

j,i

M − λ j1
λi − λ j

.

Sects.H.3 andH.4 develop Fourier analysis as an application of the general
theory of invariance groups and their representations.

H.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanović)

We definegroup, representation, symmetry of a dynamical system, andinvariance.

698
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Group axioms. A groupG is a set of elementsg1, g2, g3, . . . for whichcomposition
or group multiplication g2 ◦ g1 (which we often abbreviate asg2g1) of any two
elements satisfies the following conditions:

1. If g1, g2 ∈ G, theng2 ◦ g1 ∈ G.

2. The group multiplication is associative:g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1.

3. The groupG containsidentityelementesuch thatg◦e= e◦g = g for every
elementg ∈ G.

4. For every elementg ∈ G, there exists a uniqueh == g−1 ∈ G such that
h ◦ g = g ◦ h = e.

A finite group is a group with a finite number of elements

G = {e, g2, . . . , g|G|} ,

where|G|, the number of elements, is theorder of the group.

Example H.1 Finite groups: Some finite groups that frequently arise in
applications:

• Cn (also denoted Zn): the cyclic group of order n.

• Dn: the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

• Sn: the symmetric group of all permutations of n symbols, order n!.

Example H.2 Lie groups: Some compact continuous groups that arise in
dynamical systems applications:

• S1 (also denoted T1): circle group of dimension 1.

• Tm = S1 × S1 · · · × S1: m-torus, of dimension m.

• S O(2): rotations in the plane, dimension 1. Isomorphic to S1.

• O(2) = S O(2)× D1: group of rotations and reflections in the plane, of dimension
1.

• U(1): group of phase rotations in the complex plane, of dimension 1. Isomorphic
to S O(2).

• S O(3): rotation group of dimension 3.

• S U(2): unitary group of dimension 3. Isomorphic to S O(3).

• GL(n): general linear group of invertible matrix transformations, dimension n2.

• S O(n): special orthogonal group of dimension n(n− 1)/2.

• O(n) = S O(n) × D1: orthogonal group of dimension n(n− 1)/2.

• S p(n): symplectic group of dimension n(n+ 1)/2.

• S U(n): special unitary group of dimension n2 − 1.
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Example H.3 Cyclic and dihedral groups: The cyclic group Cn ⊂ S O(2) of order n
is generated by one element. For example, this element can be rotation through 2π/n.
The dihedral group Dn ⊂ O(2), n > 2, can be generated by two elements one at least

of which must reverse orientation. For example, take σ corresponding to reflection in
the x-axis. σ2 = e; such operation σ is called an involution. C to rotation through 2π/n,
then Dn = 〈σ,C〉, and the defining relations are σ2 = Cn = e, (Cσ)2 = e.

Groups are defined and classified as abstract objects by theirmultiplication
tables (for finite groups) or Lie algebras (for Lie groups). What concerns us in
applications is theiractionas groups of transformations on a given space, usually a
vector space (see appendixB.1), but sometimes an affine space, or a more general
manifoldM.

Repeated index summation. Throughout this text, the repeated pairs of upper/lower
indices are always summed over

Ga
bxb ≡

n∑

b=1

Ga
bxb , (H.1)

unless explicitly stated otherwise.

General linear transformations. Let GL(n, F) be the group of general linear
transformations,

GL(n, F) =
{
g : F n→ F n |det (g) , 0

}
. (H.2)

UnderGL(n, F) a basis set ofV is mapped into another basis set by multiplication
with a [n×n] matrix g with entries in fieldF (F is eitherR orC),

e′ a = eb(g−1)b
a .

As the vectorx is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

x′a = ga
bxb .

Standard rep. We shall refer to the set of [n×n] matricesg as astandard rep
of GL(n, F), and the space of alln-tuples (x1, x2, . . . , xn)T , xi ∈ F on which these
matrices act as thestandard representation space V.

Under a general linear transformationg ∈ GL(n, F), the row of basis vectors
transforms by right multiplication ase′ = e g−1, and the column ofxa’s transforms
by left multiplication asx′ = gx. Under left multiplication the column (row
transposed) of basis vectorseT transforms ase′T = g†eT , where thedual rep
g† = (g−1)T is the transpose of the inverse ofg. This observation motivates
introduction of adual representation spacēV, the space on whichGL(n, F) acts
via the dual repg†.

appendSymm - 4feb2008.tex



APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 701

Dual space. If V is a vector representation space, then thedual spaceV̄ is the
set of all linear forms onV over the fieldF.

If {e(1), · · · , e(d)} is a (right) basis ofV, thenV̄ is spanned by thedual basis
(left basis){e(1), · · · , e(d)}, the set ofn linear formse( j) such that

e(i) · e( j) = δ
j
i ,

whereδb
a is the Kronecker symbol,δb

a = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will here be distinguished by
upper indices

(y1, y2, . . . , yn) . (H.3)

They transform underGL(n, F) as

y′a = (g†)b
ayb . (H.4)

ForGL(n, F) no complex conjugation is implied by the† notation; that interpretation
applies only to unitary subgroups ofGL(n,C). g can be distinguished fromg† by
meticulously keeping track of the relative ordering of the indices,

gb
a→ ga

b , (g†)b
a→ gb

a . (H.5)

Defining space, dual space. In what followsV will always denote thedefining
n-dimensional complex vector representation space, that isto say the initial, “elementary
multiplet” space within which we commence our deliberations. Along with the
defining vector representation spaceV comes thedual n-dimensional vector representation
spaceV̄. We shall denote the corresponding element ofV̄ by raising the index, as
in (H.3), so the components of defining space vectors, resp. dual vectors, are
distinguished by lower, resp. upper indices:

x = (x1, x2, . . . , xn) , x ∈ V

x̄ = (x1, x2, . . . , xn) , x̄ ∈ V̄ . (H.6)

Defining rep. Let G be a group of transformations acting linearly onV, with the
action of a group elementg ∈ G on a vectorx ∈ V given by an [n×n] matrix g

x′a = ga
bxb a, b = 1, 2, . . . , n . (H.7)

We shall refer toga
b as thedefining repof the groupG. The action ofg ∈ G on a

vectorq̄ ∈ V̄ is given by thedual rep[n×n] matrix g†:

x′a = xb(g†)b
a = ga

bxb . (H.8)

appendSymm - 4feb2008.tex

APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 702

In the applications considered here, the groupG will almost always be assumed
to be a subgroup of theunitary group, in which caseg−1 = g†, and† indicates
hermitian conjugation:

(g†)a
b = (gb

a)∗ = gb
a . (H.9)

Hermitian conjugation is effected by complex conjugation and index transposition:
Complex conjugation interchanges upper and lower indices;transposition reverses

their order. A matrix ishermitianif its elements satisfy

(M †)a
b = Ma

b . (H.10)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, asMb

a = (M †)b
a = Ma

b.

Invariant vectors. The vectorq ∈ V is aninvariant vectorif for any transformation
g ∈ G

q = gq . (H.11)

If a bilinear formM (x̄, y) = xaMa
byb is invariant for allg ∈ G, the matrix

Ma
b = ga

cgb
dMc

d (H.12)

is aninvariant matrix. Multiplying with gb
e and using the unitary condition (H.9),

we find that the invariant matricescommutewith all transformationsg ∈ G:

[g,M ] = 0 . (H.13)

Invariants. We shall refer to an invariant relation betweenp vectors inV and
q vectors inV̄, which can be written as a homogeneous polynomial in terms of
vector components, such as

H(x, y, z̄, r̄, s̄) = hab
cdexbyaserdzc , (H.14)

as aninvariant in Vq ⊗ V̄p (repeated indices, as always, summed over). In this
example, the coefficientshab

cde are components of invariant tensorh ∈ V3 ⊗ V̄2.
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Matrix group on vector space. We will now apply these abstract group definitions
to the set of [d×d]-dimensional non-singular matricesA,B,C, . . . ∈ GL(d) acting
in a d-dimensional vector spaceV ∈ Rd. The product of matricesA andB gives
the matrixC,

Cx = B(Ax) = (BA)x ∈ V, ∀x ∈ V.

The identity of the group is the unit matrix11which leaves all vectors inV unchanged.
Every matrix in the group has a unique inverse.

Matrix representation of a group. Let us now map the abstract groupG homeomorphically
on a group of matricesD(G) acting on the vector spaceV, i.e., in such a way that
the group properties, especially the group multiplication, are preserved:

1. Any g ∈ G is mapped to a matrixD(g) ∈ D(G).

2. The group productg2 ◦ g1 ∈ G is mapped onto the matrix productD(g2 ◦
g1) = D(g2)D(g1).

3. The associativity is preserved:D(g3 ◦ (g2 ◦ g1)) = D(g3)
(
D(g2)D(g1)

)
=

(
D(g3)

(
D(g2)

)
D(g1).

4. The identity elemente ∈ G is mapped onto the unit matrixD(e) = 11 and
the inverse elementg−1 ∈ G is mapped onto the inverse matrixD(g−1) =
[D(g)]−1 ≡ D−1(g).

We call this matrix groupD(G) a linear or matrixrepresentationof the groupG
in therepresentation space V. We emphasize here‘linear’ in order to distinguish
the matrix representations from other representations that do not have to be linear,
in general. Throughout this appendix we only consider linear representations.

If the dimensionality ofV is d, we say the representation is and-dimensional
representation. We will often abbreviate the notation by writing matricesD(g) ∈
D(G) asg, i.e., x′ = gx corresponds to the matrix operationx′i =

∑d
j=1 D(g)i j x j .

Character of a representation. The character ofχα(g) of ad-dimensional representation
D(g) of the group elementg ∈ G is defined as trace

χα(g) = tr D(g) =
d∑

i=1

Dii (g) .

Note thatχ(e) = d, sinceDi j (e) = δi j for 1 ≤ i, j ≤ d.
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Faithful representations, factor group. If the mappingG onD(G) is an isomorphism,
the representation is said to befaithful. In this case the order of the group of
matricesD(G) is equal to the order|G| of the group. In general, however, there
will be several elementsh ∈ G that will be mapped on the unit matrixD(h) = 11.
This property can be used to define a subgroupH ⊂ G of the groupG consisting
of all elementsh ∈ G that are mapped to the unit matrix of a given representation.
Then the representation is a faithful representation of thefactor group G/H.

Equivalent representations, equivalence classes.A representation of a group
is by no means unique. If the basis in thed-dimensional vector spaceV is changed,
the matricesD(g) have to be replaced by their transformationsD′(g), with the new
matricesD′(g) and the old matricesD(g) are related by an equivalence transformation
through a non-singular matrixC

D′(g) = C D(g) C−1 .

The group of matricesD′(g) form a representationD′(G) equivalent to the representation
D(G) of the groupG. The equivalent representations have the same structure,
although the matrices look different. Because of the cylic nature of the trace the
character of equivalent representations is the same

χ(g) =
n∑

i=1

D′ii (g) = tr D′(g) = tr
(

CD(g)C−1
)

.

Regular representation of a finite group. Theregular representation of a group
is a special representation that is defined as follows: Combine the elements of
a finite group into a vector{g1, g2, . . . , g|G|}. Multiplication by any elementgν
permutes{g1, g2, . . . , g|G|} entries. We can represent the elementgν by the permutation
it induces on the components of vector{g1, g2, . . . , g|G|}. Thus fori, j = 1, . . . , |G|,
we define theregular representation

Di j (gν) =

{

δ jl i if gνgi = gli with l i = 1, . . . , |G| ,
0 otherwise.

In the regular representation the diagonal elements of all matrices are zero except
for the identity elementgν = ewith gνgi = gi . So in the regular representation the
character is given by

χ(g) =

{

|G| for g = e,
0 for g , e.

H.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”:
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“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every groupG; rather, it will be our chief task to
investigate for each particular group whether a finite integrity basis exists or not;
the answer, to be sure, will turn out affirmative in the most important cases.”

It is easy to show that any rep of a finite group can be brought tounitary
form, and the same is true of all compact Lie groups. Hence, inwhat follows, we
specialize to unitary and hermitian matrices.

H.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such that

CMC † =





λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...

. . .





. (H.15)

Hereλi , λ j are ther distinct roots of the minimalcharacteristic(or secular)
polynomial

r∏

i=1

(M − λi1) = 0 . (H.16)

In the matrixC(M − λ21)C† the eigenvalues corresponding toλ2 are replaced
by zeroes:





λ1 − λ2
λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2
. . .





,

and so on, so the product over all factors (M − λ21)(M − λ31) . . . , with exception
of the (M − λ11) factor, has nonzero entries only in the subspace associated with
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λ1:

C
∏

j,1

(M − λ j1)C† =
∏

j,1

(λ1 − λ j)





1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .





.

Thus we can associate with each distinct rootλi aprojection operatorPi,

Pi =
∏

j,i

M − λ j1

λi − λ j
, (H.17)

which acts as identity on theith subspace, and zero elsewhere. For example, the
projection operator onto theλ1 subspace is

P1 = C†





1
. . .

1
0

0
. . .

0





C . (H.18)

The diagonalization matrixC is deployed in the above only as a pedagogical
device. The whole point of the projector operator formalismis that weneverneed
to carry such explicit diagonalization; all we need are whatever invariant matrices
M we find convenient, the algebraic relations they satisfy, and orthonormality and
completeness ofPi : The matricesPi areorthogonal

PiP j = δi j P j , (no sum onj) , (H.19)

and satisfy thecompleteness relation

r∑

i=1

Pi = 1 . (H.20)

As tr (CPiC†) = tr Pi, the dimension of theith subspace is given by

di = tr Pi . (H.21)

It follows from the characteristic equation (H.16) and the form of the projection
operator (H.17) thatλi is the eigenvalue ofM on Pi subspace:

MP i = λiPi , (no sum oni) . (H.22)
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Hence, any matrix polynomialf (M ) takes the scalar valuef (λi) on thePi subspace

f (M )Pi = f (λi)Pi . (H.23)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

H.2.2 Irreducible representations

Suppose there exist several linearly independent invariant [d×d] hermitian matrices
M1,M2, . . ., and that we have usedM1 to decompose thed-dimensional vector
spaceV = V1 ⊕ V2 ⊕ · · ·. CanM2,M3, . . . be used to further decomposeVi?
Further decomposition is possible if, and only if, the invariant matrices commute:

[M1,M2] = 0 , (H.24)

or, equivalently, if projection operatorsP j constructed fromM2 commute with
projection operatorsPi constructed fromM1,

PiP j = P jPi . (H.25)

Usually the simplest choices of independent invariant matrices do not commute.
In that case, the projection operatorsPi constructed fromM1 can be used to project
commuting pieces ofM2:

M (i)
2 = PiM2Pi , (no sum oni) .

ThatM (i)
2 commutes withM1 follows from the orthogonality ofPi :

[M (i)
2 ,M1] =

∑

j

λ j[M
(i)
2 ,P j] = 0 . (H.26)

Now the characteristic equation forM (i)
2 (if nontrivial) can be used to decompose

Vi subspace.

An invariant matrixM induces a decomposition only if its diagonalized form
(H.15) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements.A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to the
unit matrix.
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According to (H.13), an invariant matrixM commutes with group transformations
[G,M ] = 0. Projection operators (H.17) constructed fromM are polynomials in
M , so they also commute with allg ∈ G:

[G,Pi] = 0 (H.27)

Hence, a [d×d] matrix rep can be written as a direct sum of [di×di ] matrix reps:

G = 1G1 =
∑

i, j

PiGP j =
∑

i

PiGPi =
∑

i

Gi . (H.28)

In the diagonalized rep (H.18), the matrixg has a block diagonal form:

CgC† =





g1 0 0
0 g2 0

0 0
. . .




, g =

∑

i

CigiCi . (H.29)

The repgi acts only on thedi-dimensional subspaceVi consisting of vectors
Piq, q ∈ V. In this way an invariant [d×d] hermitian matrixM with r distinct
eigenvalues induces a decomposition of ad-dimensional vector spaceV into a
direct sum ofdi-dimensional vector subspacesVi:

V
M→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (H.30)

H.3 Lattice derivatives

Consider a smooth functionφ(x) evaluated on a finited-dimensional lattice

φℓ = φ(x) , x = aℓ = lattice point, ℓ ∈ Zd , (H.31)

wherea is the lattice spacing and there areNd points in all. A vectorφ specifies a
lattice configuration. Assume the lattice is hyper-cubic, and letn̂µ ∈ {n̂1, n̂2, · · · , n̂d}
be the unit lattice cell vectors pointing along thed positive directions,

∣
∣
∣n̂µ

∣
∣
∣ = 1 .

The lattice partial derivativeis then

(∂µφ)ℓ =
φ(x+ an̂µ) − φ(x)

a
=
φℓ+n̂µ − φℓ

a
.

Anything else with the correcta → 0 limit would do, but this is the simplest
choice. We can rewrite the derivative as a linear operator, by introducing the
hopping operator(or “shift,” or “step”) in the directionµ

(

hµ
)

ℓ j
= δℓ+n̂µ , j . (H.32)
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As h will play a central role in what follows, it pays to understand what it does,
so we write it out for the 1-dimensional case in its full [N×N] matrix glory:

h =





0 1
0 1

0 1
. . .

0 1
1 0





. (H.33)

We will assume throughout that the lattice isperiodic in eachn̂µ direction; this is
the easiest boundary condition to work with if we are interested in large lattices
where surface effects are negligible.

Applied on the lattice configurationφ = (φ1, φ2, · · · , φN), the hopping operator
shifts the lattice by one site,hφ = (φ2, φ3, · · · , φN, φ1). Its transpose shifts the
entries the other way, so the transpose is also the inverse

h−1 = hT . (H.34)

The lattice derivative can now be written as a multiplication by a matrix:

∂µφℓ =
1
a

(

hµ − 1
)

ℓ j
φ j .

In the 1-dimensional case the [N×N] matrix representation of the lattice
derivative is:

∂ =
1
a





−1 1
−1 1

−1 1
. . .

1
1 −1





. (H.35)

To belabor the obvious: On a finite lattice ofN points a derivative is simply a
finite [N×N] matrix. Continuum field theory is a world in which the lattice is so
fine that it looks smooth to us. Whenever someone calls something an “operator,”
think “matrix.” For finite-dimensional spaces a linear operator is a matrix; things
get subtler for infinite-dimensional spaces.

H.3.1 Lattice Laplacian

In order to get rid of some of the lattice indices it is convenient to employ vector
notation for the terms bilinear inφ, and keep the rest lumped into “interaction,”

S[φ] = −M2

2
φT · φ − C

2

[(

hµ − 1
)

φ
]T ·

(

hµ − 1
)

φ + SI [φ] . (H.36)
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For example, for the discretized Landau HamiltonianM2/2 = βm2
0/2, C = β/a2,

and the quartic termSI [φ] is local site-by-site,γℓ1ℓ2ℓ3ℓ4 = −4! βuδℓ1ℓ2δℓ2ℓ3δℓ3ℓ4, so
this general quartic coupling is a little bit of an overkill,but by the time we get
to the Fourier-transformed theory, it will make sense as a momentum conserving
vertex (H.62).

In the continuum integration by parts moves∂µ around; on a lattice this amounts
to a matrix transposition

[(

hµ − 1
)

φ
]T ·

[(

hµ − 1
)

φ
]

= φT · (h−1
µ − 1)

(

hµ − 1
)

· φ .

If you are wondering where the “integration by parts” minus sign is, it is there in
discrete case at well. It comes from the identity∂T = −h−1∂. The combination
∆ = h−1∂2

∆ = − 1
a2

d∑

µ=1

(h−1
µ − 1)

(

hµ − 1
)

= − 2
a2

d∑

µ=1

(

1− 1
2

(h−1
µ + hµ)

)

(H.37)

is the lattice Laplacian. We shall show below that this Laplacian has the correct
continuum limit. It is the simplest spatial derivative allowed forx→ −xsymmetric
actions. In the 1-dimensional case the [N×N] matrix representation of the lattice
Laplacian is:

∆ =
1
a2





−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2





. (H.38)

The lattice Laplacian measures the second variation of a field φℓ across three
neighboring sites. You can easily check that it does what thesecond derivative
is supposed to do by applying it to a parabola restricted to the lattice,φℓ = φ(ℓ),
whereφ(ℓ) is defined by the value of the continuum functionφ(x) = x2 at the
lattice pointℓ.

H.3.2 Inverting the Laplacian

Evaluation of perturbative corrections in (26.21) requires that we come to grips
with the “free” or “bare” propagatorM . While the the Laplacian is a simple
difference operator (H.38), its inverse is a messier object. A way to compute is to
start expandingM as a power series in the Laplacian

βM =
1

m′20 1− ∆
=

1

m′20

∞∑

k=0





1

m′20





k

∆k . (H.39)
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As ∆ is a finite matrix, the expansion is convergent for sufficiently largem′20 . To
get a feeling for what is involved in evaluating such series,evaluate∆2 in the
1-dimensional case:

∆2 =
1
a4





6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6





. (H.40)

What∆3, ∆4, · · · contributions look like is now clear; as we include higher and
higher powers of the Laplacian, the propagator matrix fills up; while theinverse
propagator is differential operator connecting only the nearest neighbors, the propagator
is integral operator, connecting every lattice site to any other lattice site.

This matrix can be evaluated as is, on the lattice, and sometime it is evaluated
this way, but in case at hand a wonderful simplification follows from the observation
that the lattice action is translationally invariant. We will show how this works in
sect.H.4.

H.4 Periodic lattices

Our task now is to transformM into a form suitable to evaluation of Feynman
diagrams. The theory we will develop in this section is applicable only totranslationally
invariant saddle point configurations. bifurcation

Consider the effect of aφ→ hφ translation on the action

S[hφ] = −1
2
φT · hT M−1h · φ − βg0

4!

Nd
∑

ℓ=1

(hφ)4
ℓ .

As M−1 is constructed fromh and its inverse,M−1 and h commute, and the
bilinear term ish invariant. In the quartic termh permutes cyclically the terms
in the sum, so the total action is translationally invariant

S[hφ] = S[φ] = −1
2
φT · M−1 · φ − βg0

4!

Nd
∑

ℓ=1

φ4
ℓ . (H.41)

If a function (in this case, the actionS[φ]) defined on a vector space (in this case,
the configurationφ) commutes with a linear operatorh, then the eigenvalues of
h can be used to decompose theφ vector space into invariant subspaces. For a
hyper-cubic lattice the translations in different directions commute,hµhν = hνhµ,
so it is sufficient to understand the spectrum of the 1-dimensional shiftoperator
(H.33). To develop a feeling for how this reduction to invariant subspaces works
in practice, let us continue humbly, by expanding the scope of our deliberations
to a lattice consisting of 2 points.
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H.4.1 A 2-point lattice diagonalized

The action of the shift operatorh (H.33) on a 2-point latticeφ = (φ1, φ2) is to
permute the two lattice sites

h =
(0 1
1 0

)

.

As exchange repeated twice brings us back to the original configuration,h2 = 1,
and the characteristic polynomial ofh is

(h + 1)(h − 1) = 0 ,

with eigenvaluesλ0 = 1, λ1 = −1. Construct now the symmetrization, antisymmetrization
projection operators

P0 =
h − λ11
λ0 − λ1

=
1
2

(1+ h) =
1
2

( 1 1
1 1

)

(H.42)

P1 =
h − 1
−1− 1

=
1
2

(1− h) =
1
2

( 1 −1
−1 1

)

. (H.43)

Noting thatP0 + P1 = 1, we can project the lattice configurationφ onto the two
eigenvectors ofh:

φ = 1φ = P0 · φ + P1 · φ ,
(
φ1

φ2

)

=
(φ1 + φ2)
√

2

1
√

2

( 1
1

)

+
(φ1 − φ2)
√

2

1
√

2

( 1
−1

)

(H.44)

= φ̃0n̂0 + φ̃1n̂1 . (H.45)

As P0P1 = 0, the symmetric and the antisymmetric configurations transform
separately under any linear transformation constructed from h and its powers.

In this way the characteristic equationh2 = 1 enables us to reduce the 2-
dimenional lattice configuration to two 1-dimensional ones, on which the value of
the shift operator (shift matrix)h is a number,λ ∈ {1,−1}, and the eigenvectors are
n̂0 =

1√
2
(1, 1), n̂1 =

1√
2
(1,−1). We have inserted

√
2 factors only for convenience,

in order that the eigenvectors be normalized unit vectors. As we shall now see,
(φ̃0, φ̃1) is the 2-site periodic lattice discrete Fourier transformof the field (φ1, φ2).

H.5 Discrete Fourier transforms

Now let us generalize this reduction to a 1-dimensional periodic lattice withN
sites.
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Each application ofh translates the lattice one step; inN steps the lattice is
back in the original configuration

hN = 1

.
.

.

.
..

.
k

N−1

N−2

0

45
3

2

1h

,

so the eigenvalues ofh are theN distinctN-th roots of unity

hN − 1 =
N−1∏

k=0

(h − ωk1) = 0 , ω = ei 2π
N . (H.46)

As the eigenvalues are all distinct andN in number, the space is decomposed into
N 1-dimensional subspaces. The general theory (expounded inappendixH.2)
associates with thek-th eigenvalue ofh a projection operator that projects a configuration
φ ontok-th eigenvector ofh,

Pk =
∏

j,k

h − λ j1
λk − λ j

. (H.47)

A factor (h − λ j1) kills the j-th eigenvectorϕ j component of an arbitrary vector
in expansionφ = · · · + φ̃ jϕ j + · · ·. The above product kills everything but the
eigendirectionϕk, and the factor

∏

j,k(λk − λ j) ensures thatPk is normalized as a
projection operator. The set of the projection operators iscomplete

∑

k

Pk = 1 (H.48)

and orthonormal

PkP j = δk jPk (no sum onk) . (H.49)

Constructing explicit eigenvectors is usually not a the best way to fritter one’s
youth away, as choice of basis is largely arbitrary, and all of the content of the
theory is in projection operators [1]. However, in case at hand the eigenvectors
are so simple that we can forget the general theory, and construct the solutions of
the eigenvalue condition

hϕk = ωkϕk (H.50)

by hand:

1
√

N





0 1
0 1

0 1
. . .

0 1
1 0









1
ωk

ω2k

ω3k

...

ω(N−1)k





= ωk 1
√

N





1
ωk

ω2k

ω3k

...

ω(N−1)k




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The 1/
√

N factor is chosen in order thatϕk be normalized unit vectors

ϕ†k · ϕk =
1
N

N−1∑

k=0

1 = 1 , (no sum onk)

ϕ†k =
1
√

N

(

1, ω−k, ω−2k, · · · , ω−(N−1)k
)

. (H.51)

The eigenvectors are orthonormal

ϕ†k · ϕ j = δk j , (H.52)

as the explicit evaluation ofϕ†k · ϕ j yields theKronecker delta function for a
periodic lattice

δk j =
1
N

N−1∑

ℓ=0

ei 2π
N (k− j)ℓ

.
.

.

.
..

.

N−2

N−1

0

1

2

3
5 4

k

. (H.53)

The sum is over theN unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unlessk = j (mod N), in which
case each term in the sum equals 1.

The projection operators can be expressed in terms of the eigenvectors (H.50),
(H.51) as

(Pk)ℓℓ′ = (ϕk)ℓ(ϕ
†
k)ℓ′ =

1
N

ei 2π
N (ℓ−ℓ′)k , (no sum onk) . (H.54)

The completeness (H.48) follows from (H.53), and the orthonormality (H.49)
from (H.52).

φ̃k, the projection of theφ configuration on thek-th subspace is given by

(Pk · φ)ℓ = φ̃k (ϕk)ℓ , (no sum onk)

φ̃k = ϕ†k · φ =
1
√

N

N−1∑

ℓ=0

e−i 2π
N kℓφℓ (H.55)

We recognizẽφk as thediscrete Fourier transformof φℓ. Hopefully rediscovering
it this way helps you a little toward understanding why Fourier transforms are full
of eix·p factors (they are eigenvalues of the generator of translations) and when
are they the natural set of basis functions (only if the theory is translationally
invariant).
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H.5.1 Fourier transform of the propagator

Now insert the identity
∑

Pk = 1 wherever profitable:

M = 1M1 =
∑

kk′
PkMPk′ =

∑

kk′
ϕk(ϕ

†
k ·M · ϕk′)ϕ

†
k′ .

The matrix

M̃kk′ = (ϕ†k ·M · ϕk′) (H.56)

is the Fourier space representation ofM . No need to stop here - the terms in
the action (H.41) that couple four (and, in general, 3, 4,· · ·) fields also have the
Fourier space representations

γℓ1ℓ2···ℓn φℓ1φℓ2 · · · φℓn = γ̃k1k2···kn φ̃k1φ̃k2 · · · φ̃kn ,

γ̃k1k2···kn = γℓ1ℓ2···ℓn(ϕk1)ℓ1(ϕk2)ℓ2 · · · (ϕkn)ℓn

=
1

Nn/2

∑

ℓ1···ℓn

γℓ1ℓ2···ℓn e−i 2π
N (k1ℓ1+···+knℓn) . (H.57)

According to (H.52) the matrixUkℓ = (ϕk)ℓ = 1√
N

ei 2π
N kℓ is a unitary matrix, and

the Fourier transform is a linear, unitary transformationUU† =
∑

Pk = 1 with
Jacobian detU = 1. The form of the action (H.41) does not change underφ→ φ̃k

transformation, and from the formal point of view, it does not matter whether we
compute in the Fourier space or in the configuration space that we started out with.
For example, the trace ofM is the trace in either representation

tr M =
∑

ℓ

Mℓℓ =
∑

kk′

∑

ℓ

(PkMPk′)ℓℓ

=
∑

kk′

∑

ℓ

(ϕk)ℓ(ϕ
†
k ·M · ϕk′)(ϕ

†
k′ )ℓ =

∑

kk′
δkk′ M̃kk′ = tr M̃ . (H.58)

From this it follows that trMn = tr M̃n, and from the tr ln= ln tr relation that
det M = det M̃ . In fact, any scalar combination ofφ’s, J’s and couplings, such as
the partition functionZ[J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what’s the pay-back?

H.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equation (H.50) to converth matrices into scalars. If
M commuteswith h, then (ϕ†k · M · ϕk′) = M̃kδkk′ , and the matrixM acts as
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a multiplication by the scalarM̃k on thek-th subspace. For example, for the
1-dimensional version of the lattice Laplacian (H.37) the projection on thek-th
subspace is

(ϕ†k · ∆ · ϕk′) =
2
a2

(

1
2

(ω−k + ωk) − 1

)

(ϕ†k · ϕk′)

=
2
a2

(

cos

(

2π
N

k

)

− 1

)

δkk′ (H.59)

In the k-th subspace the bare propagator (H.59) is simply a number, and, in
contrast to the mess generated by (H.39), there is nothing to invertingM−1:

(ϕ†k · M · ϕk′) = (G̃0)kδkk ′ =
1
β

δkk ′

m′20 −
2c
a2

∑d
µ=1

(

cos
(

2π
N kµ

)

− 1
) , (H.60)

wherek = (k1, k2, · · · , kµ) is a d-dimensional vector in theNd-dimensional dual
lattice.

Going back to the partition function (26.21) and sticking in the factors of
1 into the bilinear part of the interaction, we replace the spatial Jℓ by its Fourier
transformJ̃k, and the spatial propagator (M)ℓℓ′ by the diagonalized Fourier transformed
(G̃0)k

JT · M · J =
∑

k,k′
(JT · ϕk)(ϕ

†
k · M · ϕk′)(ϕ

†
k′ · J) =

∑

k

J̃†k(G̃0)kJ̃k . (H.61)

What’s the price? The interaction termSI [φ] (which in (26.21) was local in the
configuration space) now has a more challengingk dependence in the Fourier
transform version (H.57). For example, the locality of the quartic term leads to
the 4-vertexmomentum conservationin the Fourier space

SI [φ] =
1
4!
γℓ1ℓ2ℓ3ℓ4 φℓ1φℓ2φℓ3φℓ4 = −βu

Nd
∑

ℓ=1

(φℓ)
4 ⇒

= −βu
1

N3d/2

N∑

{k i }
δ0,k1+k2+k3+k4 φ̃k1φ̃k2φ̃k3φ̃k4 . (H.62)

H.6 C4v factorization

If an N-disk arrangement hasCN symmetry, and the disk visitation sequence is
given by disk labels{ǫ1ǫ2ǫ3 . . .}, only the relative incrementsρi = ǫi+1 − ǫi modN
matter. Symmetries under reflections across axes increase the group toCNv and
add relations between symbols:{ǫi} and {N − ǫi} differ only by a reflection. As
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Figure H.1: Symmetries of four disks on a square. A
fundamental domain indicated by the shaded wedge.
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= C2

13

24

a consequence of this reflection increments become decrements until the next
reflection and vice versa. Consider four equal disks placed on the vertices of
a square (figureH.1). The symmetry group consists of the identitye, the two
reflectionsσx, σy acrossx, y axes, the two diagonal reflectionsσ13, σ24, and the
three rotationsC4, C2 andC3

4 by anglesπ/2, π and 3π/2. We start by exploiting
theC4 subgroup symmetry in order to replace the absolute labelsǫi ∈ {1, 2, 3, 4} by
relative incrementsρi ∈ {1, 2, 3}. By reflection across diagonals, an increment by 3
is equivalent to an increment by 1 and a reflection; this new symbol will be called
1. Our convention will be to first perform the increment and then to change the
orientation due to the reflection. As an example, consider the fundamental domain
cycle 112. Taking the disk 1→ disk 2 segment as the starting segment, this symbol
string is mapped into the disk visitation sequence 1+12+13+21 . . . = 123, where the
subscript indicates the increments (or decrements) between neighboring symbols;
the period of the cycle112 is thus 3 in both the fundamental domain and the
full space. Similarly, the cycle112 will be mapped into 1+12−11−23−12+13+21 =
121323 (note that the fundamental domain symbol 1corresponds to a flip in
orientation after the second and fifth symbols); this time the period in the full
space is twice that of the fundamental domain. In particular, the fundamental
domain fixed points correspond to the following 4-disk cycles:

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2

Conversions for all periodic orbits of reduced symbol period less than 5 are listed
in tableH.6.

This symbolic dynamics is closely related to the group-theoretic structure
of the dynamics: the global 4-disk trajectory can be generated by mapping the
fundamental domain trajectories onto the full 4-disk spaceby the accumulated
product of theC4v group elementsg1 = C, g2 = C2, g1 = σdiagC = σaxis,

whereC is a rotation byπ/2. In the112 example worked out above, this yields
g112 = g2g1g1 = C2Cσaxis = σdiag, listed in the last column of tableH.6. Our
convention is to multiply group elements in the reverse order with respect to the
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Table H.1: C4v correspondence between the ternary fundamental domain prime cycles
p̃ and the full 4-disk{1,2,3,4} labeled cyclesp, together with theC4v transformation
that maps the end point of the ˜p cycle into an irreducible segment of thep cycle. For
typographical convenience, the symbol 1of sect.H.6 has been replaced by 0, so that the
ternary alphabet is{0, 1, 2}. The degeneracy of thep cycle ismp = 8np̃/np. Orbit 2 is the
sole boundary orbit, invariant both under a rotation byπ and a reflection across a diagonal.
The two pairs of cycles marked by (a) and (b) are related by time reversal, but cannot be
mapped into each other byC4v transformations.

p̃ p hp̃

0 1 2 σx
1 1 2 3 4 C4
2 1 3 C2, σ13
01 12 14 σ24
02 12 43 σy

12 12 41 34 23 C3
4

001 121 232 343 414 C4
002 121 343 C2
011 121 434 σy
012 121 323 σ13
021 124 324 σ13
022 124 213 σx
112 123 e
122 124 231 342 413 C4

p̃ p hp̃

0001 1212 1414 σ24
0002 1212 4343 σy
0011 1212 3434 C2

0012 1212 4141 34342323C3
4

0021 (a) 1213 4142 34312324 C3
4

0022 1213 e
0102 (a) 1214 2321 34324143 C4
0111 1214 3234 σ13
0112 (b) 1214 2123 σx
0121 (b) 1213 2124 σx
0122 1213 1413 σ24
0211 1243 2134 σx
0212 1243 1423 σ24
0221 1242 1424 σ24
0222 1242 4313 σy
1112 1234 2341 34124123C4
1122 1231 3413 C2

1222 1242 4131 34242313C3
4

Figure H.2: Symmetries of four disks on a rectangle.
A fundamental domain indicated by the shaded wedge.

symbol sequence. We need these group elements for our next step, the dynamical
zeta function factorizations.

TheC4v group has four 1-dimensional representations, either symmetric (A1)
or antisymmetric (A2) under both types of reflections, or symmetric under one and
antisymmetric under the other (B1, B2), and a degenerate pair of 2-dimensional
representationsE. Substituting theC4v characters

C4v A1 A2 B1 B2 E
e 1 1 1 1 2

C2 1 1 1 1 -2
C4,C3

4 1 1 -1 -1 0
σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0
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into (19.15) we obtain:

hp̃ A1 A2 B1 B2 E
e: (1− tp̃)8 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)4

C2: (1− t2p̃)4 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃) (1+ tp̃)4

C4,C3
4: (1− t4p̃)2 = (1− tp̃) (1− tp̃) (1+ tp̃) (1+ tp̃) (1+ t2p̃)2

σaxes: (1− t2p̃)4 = (1− tp̃) (1+ tp̃) (1− tp̃) (1+ tp̃) (1− t2p̃)2

σdiag: (1− t2p̃)4 = (1− tp̃) (1+ tp̃) (1+ tp̃) (1− tp̃) (1− t2p̃)2

The possible irreducible segment group elementshp̃ are listed in the first column;
σaxesdenotes a reflection across either the x-axis or the y-axis, andσdiag denotes
a reflection across a diagonal (see figureH.1). In addition, degenerate pairs of
boundary orbits can run along the symmetry lines in the full space, with the
fundamental domain group theory weightshp = (C2 + σx)/2 (axes) andhp =

(C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1− t2p̃)2 = (1− tp̃)(1− 0tp̃)(1− tp̃)(1− 0tp̃)(1+ tp̃)2

diagonals: (1− t2p̃)2 = (1− tp̃)(1− 0tp̃)(1− 0tp̃)(1− tp̃)(1+ tp̃)2(H.63)

(we have assumed thattp̃ does not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here only the diagonal orbits13,24
occur; they correspond to the2 fixed point in the fundamental domain.

TheA1 subspace inC4v cycle expansion is given by

1/ζA1 = (1− t0)(1− t1)(1− t2)(1− t01)(1− t02)(1− t12)

(1− t001)(1− t002)(1− t011)(1− t012)(1− t021)(1− t022)(1− t112)

(1− t122)(1− t0001)(1− t0002)(1− t0011)(1− t0012)(1− t0021) . . .

= 1− t0 − t1 − t2 − (t01− t0t1) − (t02− t0t2) − (t12 − t1t2)

−(t001− t0t01) − (t002− t0t02) − (t011− t1t01)

−(t022− t2t02) − (t112− t1t12) − (t122− t2t12)

−(t012+ t021+ t0t1t2 − t0t12− t1t02− t2t01) . . . (H.64)

(for typographical convenience, 1is replaced by 0 in the remainder of this section).
For 1-dimensional representations, the characters can be read off the symbol strings:
χA2(hp̃) = (−1)n0, χB1(hp̃) = (−1)n1, χB2(hp̃) = (−1)n0+n1, wheren0 andn1 are the
number of times symbols 0, 1 appear in the ˜p symbol string. ForB2 all tp with an
odd total number of 0’s and 1’s change sign:

1/ζB2 = (1+ t0)(1+ t1)(1− t2)(1− t01)(1+ t02)(1+ t12)

(1+ t001)(1− t002)(1+ t011)(1− t012)(1− t021)(1+ t022)(1− t112)

(1+ t122)(1− t0001)(1+ t0002)(1− t0011)(1+ t0012)(1+ t0021) . . .
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= 1+ t0 + t1 − t2 − (t01− t0t1) + (t02− t0t2) + (t12 − t1t2)

+(t001− t0t01) − (t002− t0t02) + (t011− t1t01)

+(t022− t2t02) − (t112− t1t12) + (t122− t2t12)

−(t012+ t021+ t0t1t2 − t0t12− t1t02− t2t01) . . . (H.65)

The form of the remaining cycle expansions depends crucially on the special role
played by the boundary orbits: by (H.63) the orbitt2 does not contribute toA2 and
B1,

1/ζA2 = (1+ t0)(1− t1)(1+ t01)(1+ t02)(1− t12)

(1− t001)(1− t002)(1+ t011)(1+ t012)(1+ t021)(1+ t022)(1− t112)

(1− t122)(1+ t0001)(1+ t0002)(1− t0011)(1− t0012)(1− t0021) . . .

= 1+ t0 − t1 + (t01 − t0t1) + t02− t12

−(t001− t0t01) − (t002− t0t02) + (t011− t1t01)

+t022− t122− (t112− t1t12) + (t012+ t021− t0t12− t1t02) . . .(H.66)

and

1/ζB1 = (1− t0)(1+ t1)(1+ t01)(1− t02)(1+ t12)

(1+ t001)(1− t002)(1− t011)(1+ t012)(1+ t021)(1− t022)(1− t112)

(1+ t122)(1+ t0001)(1− t0002)(1− t0011)(1+ t0012)(1+ t0021) . . .

= 1− t0 + t1 + (t01 − t0t1) − t02+ t12

+(t001− t0t01) − (t002− t0t02) − (t011− t1t01)

−t022+ t122− (t112− t1t12) + (t012+ t021− t0t12− t1t02) . . .(H.67)

In the above we have assumed thatt2 does not change sign underC4v reflections.
For the mixed-symmetry subspaceE the curvature expansion is given by

1/ζE = 1+ t2 + (−t0
2 + t1

2) + (2t002− t2t0
2 − 2t112+ t2t1

2)

+(2t0011− 2t0022+ 2t2t002− t01
2 − t02

2 + 2t1122− 2t2t112

+t12
2 − t0

2t1
2) + (2t00002− 2t00112+ 2t2t0011− 2t00121− 2t00211

+2t00222− 2t2t0022+ 2t01012+ 2t01021− 2t01102− t2t01
2 + 2t02022

−t2t02
2 + 2t11112− 2t11222+ 2t2t1122− 2t12122+ t2t12

2 − t2t0
2t1

2

+2t002(−t0
2 + t1

2) − 2t112(−t0
2 + t1

2)) (H.68)

A quick test of theζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the topological

polynomial; substitutingtp = znp into the expansion yields

1/ζA1 = 1− 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1+ z ,

in agreement with (13.40).
[exercise 18.9]
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Table H.2: C2v correspondence between the ternary{0, 1, 2} fundamental domain prime
cycles p̃ and the full 4-disk{1,2,3,4} cycles p, together with theC2v transformation
that maps the end point of the ˜p cycle into an irreducible segment of thep cycle. The
degeneracy of thep cycle ismp = 4np̃/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each other byC2v transformations. The full
space orbit listed here is generated from the symmetry reduced code by the rules given in
sect.H.7, starting from disk 1.

p̃ p g
0 1 4 σy
1 1 2 σx
2 1 3 C2
01 14 32 C2
02 14 23 σx
12 12 43 σy
001 141 232 σx
002 141 323 C2
011 143 412 σy
012 143 e
021 142 e
022 142 413 σy
112 121 343 C2
122 124 213 σx

p̃ p g
0001 1414 3232 C2
0002 1414 2323 σx
0011 1412 e
0012 1412 4143 σy
0021 1413 4142 σy
0022 1413 e
0102 1432 4123 σy
0111 1434 3212 C2
0112 1434 2343 σx
0121 1431 2342 σx
0122 1431 3213 C2
0211 1421 2312 σx
0212 1421 3243 C2
0221 1424 3242 C2
0222 1424 2313 σx
1112 1212 4343 σy
1122 1213 e
1222 1242 4313 σy

H.7 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle hasC2v

symmetry (figureH.2b). C2v consists of{e, σx, σy,C2}, i.e., the reflections across
the symmetry axes and a rotation byπ.

This system affords a rather easy visualization of the conversion of a 4-disk
dynamics into a fundamental domain symbolic dynamics. An orbit leaving the
fundamental domain through one of the axis may be folded backby a reflection
on that axis; with these symmetry operationsg0 = σx andg1 = σy we associate
labels 1 and 0, respectively. Orbits going to the diagonallyopposed disk cross the
boundaries of the fundamental domain twice; the product of these two reflections
is justC2 = σxσy, to which we assign the label 2. For example, a ternary string
0 0 1 0 2 0 1. . . is converted into 12143123. . ., and the associated group-theory
weight is given by. . .g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in tableH.7.
Note that already at length three there is a pair of cycles (012= 143 and 021= 142)
related by time reversal, butnot by anyC2v symmetries.

The above is the complete description of the symbolic dynamics for 4 sufficiently
separated equal disks placed at corners of a rectangle. However, if the fundamental
domain requires further partitioning, the ternary description is insufficient. For
example, in the stadium billiard fundamental domain one hasto distinguish between
bounces off the straight and the curved sections of the billiard wall; inthat case
five symbols suffice for constructing the covering symbolic dynamics.

appendSymm - 4feb2008.tex

APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 722

The groupC2v has four 1-dimensional representations, distinguished bytheir
behavior under axis reflections. TheA1 representation is symmetric with respect
to both reflections; theA2 representation is antisymmetric with respect to both.
TheB1 andB2 representations are symmetric under one and antisymmetricunder
the other reflection. The character table is

C2v A1 A2 B1 B2
e 1 1 1 1

C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1

Substituted into the factorized determinant (19.14), the contributions of periodic
orbits split as follows

gp̃ A1 A2 B1 B2

e: (1− tp̃)4 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)
C2: (1− t2p̃)2 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)
σx: (1− t2p̃)2 = (1− tp̃) (1+ tp̃) (1− tp̃) (1+ tp̃)
σy: (1− t2p̃)2 = (1− tp̃) (1+ tp̃) (1+ tp̃) (1− tp̃)

Cycle expansions follow by substituting cycles and their group theory factors from
tableH.7. For A1 all characters are+1, and the corresponding cycle expansion is
given in (H.64). Similarly, the totally antisymmetric subspace factorization A2 is
given by (H.65), theB2 factorization ofC4v. ForB1 all tp with an odd total number
of 0’s and 2’s change sign:

1/ζB1 = (1+ t0)(1− t1)(1+ t2)(1+ t01)(1− t02)(1+ t12)

(1− t001)(1+ t002)(1+ t011)(1− t012)(1− t021)(1+ t022)(1+ t112)

(1− t122)(1+ t0001)(1− t0002)(1− t0011)(1+ t0012)(1+ t0021) . . .

= 1+ t0 − t1 + t2 + (t01− t0t1) − (t02− t0t2) + (t12 − t1t2)

−(t001− t0t01) + (t002− t0t02) + (t011− t1t01)

+(t022− t2t02) + (t112− t1t12) − (t122− t2t12)

−(t012+ t021+ t0t1t2 − t0t12− t1t02− t2t01) . . . (H.69)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1− t0)(1+ t1)(1+ t2)(1+ t01)(1+ t02)(1− t12)

(1+ t001)(1+ t002)(1− t011)(1− t012)(1− t021)(1− t022)(1+ t112)

(1+ t122)(1+ t0001)(1+ t0002)(1− t0011)(1− t0012)(1− t0021) . . .

= 1− t0 + t1 + t2 + (t01− t0t1) + (t02− t0t2) − (t12 − t1t2)

+(t001− t0t01) + (t002− t0t02) − (t011− t1t01)

−(t022− t2t02) + (t112− t1t12) + (t122− t2t12)

−(t012+ t021+ t0t1t2 − t0t12− t1t02− t2t01) . . . (H.70)
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Note that all of the above cycle expansions group long orbitstogether with their
pseudoorbit shadows, so that the shadowing arguments for convergence still apply.

The topological polynomial factorizes as

1
ζA1

= 1− 3z ,
1
ζA2

=
1
ζB1

=
1
ζB2

= 1+ z,

consistent with the 4-disk factorization (13.40).

H.8 Hénon map symmetries

We note here a few simple symmetries of the Hénon map (3.18). For b , 0 the
Hénon map is reversible: the backward iteration of (3.19) is given by

xn−1 = −
1
b

(1− ax2
n − xn+1) . (H.71)

Hence the time reversal amounts tob→ 1/b, a→ a/b2 symmetry in the parameter
plane, together withx → −x/b in the coordinate plane, and there is no need to
explore the (a, b) parameter plane outside the stripb ∈ {−1, 1}. For b = −1 the
map is orientation and area preserving ,

xn−1 = 1− ax2
n − xn+1 , (H.72)

the backward and the forward iteration are the same, and the non–wandering set
is symmetric across thexn+1 = xn diagonal. This is one of the simplest models of
a Poincaré return map for a Hamiltonian flow. For the orientation reversingb = 1
case we have

xn−1 = 1− ax2
n + xn+1 , (H.73)

and the non–wandering set is symmetric across thexn+1 = −xn diagonal.

Commentary

Remark H.1 Literature This material is covered in any introduction to linear algebra [1,
2, 3] or group theory [11, 10]. The exposition given in sects.H.2.1 andH.2.2 is taken
from refs. [6, 7, 1]. Who wrote this down first we do not know, but we like Harter’s
exposition [8, 9, 12] best. Harter’s theory of class algebrasoffers a more elegant and
systematic way of constructing the maximal set of commutinginvariant matricesM i than
the sketch offered in this section.
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Remark H.2 Labeling conventions While there is a variety of labeling conventions [16,
8] for the reducedC4v dynamics, we prefer the one introduced here because of its close
relation to the group-theoretic structure of the dynamics:the global 4-disk trajectory can
be generated by mapping the fundamental domain trajectories onto the full 4-disk space
by the accumulated product of theC4v group elements.

Remark H.3 C2v symmetry C2v is the symmetry of several systems studied in the
literature, such as the stadium billiard [10], and the 2-dimensional anisotropic Kepler
potential [4].

Exercises

H.1. Am I a group? Show that multiplication table

e a b c d f
e e a b c d f
a a e d b f c
b b d e f c a
c c b f e a d
d d f c a e b
f f c a d b e

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appendixH.1.)

From W.G. Harter [12]

H.2. Three coupled pendulums with aC2 symmetry.
Consider 3 pendulums in a row: the 2 outer ones of
the same massm and lengthl, the one midway of same
length but different massM, with the tip coupled to the
tips of the outer ones with springs of stiffnessk. Assume
displacements are small,xi/l ≪ 1.

(a) Show that the acceleration matrixẍ = −a x is




ẍ1
ẍ2
ẍ3




= −





a+ b −a 0
−c 2c+ b −c
0 −a a+ b









x1
x2
x3




,

wherea = k/ml, c = k/Ml andb = g/l.

(b) Check that [a,R] = 0, i.e., that the dynamics is
invariant underC2 = {e,R}, whereR interchanges the
outer pendulums,

R =





0 0 1
0 1 0
1 0 0




.

(c) Construct the corresponding projection operators
P+ and P−, and show that the 3-pendulum system

decomposes into a 1−d subspace, with eigenvalue
(ω(−))2 = a + b, and a 2−d subspace, with acceleration
matrix (trust your own algebra, if it strays from what is
stated here)

a(+) =

[

a+ b −
√

2a
−
√

2c c+ b

]

.

The exercise is simple enough that you can do it without
using the symmetry, so: constructP+,P− first, use them
to reducea to irreps, then proceed with computing
remaining eigenvalues ofa.

(d) Does anything interesting happen ifM = m?

The point of the above exercise is that almost always
the symmetry reduction is only partial: a matrix
representation of dimensiond gets reduced to a set of
subspaces whose dimensionsd(α) satisfy

∑

d(α) = d.
Beyond that, love many, trust few, and paddle your own
canoe.

From W.G. Harter [12]

H.3. Laplacian is a non-local operator.

While the Laplacian is a simple tri-diagonal difference
operator (H.38), its inverse (the “free” propagator of
statistical mechanics and quantum field theory) is a
messier object. A way to compute is to start expanding
propagator as a power series in the Laplacian

1
m21− ∆ =

1
m2

∞∑

n=0

1
m2n
∆n . (H.74)

As ∆ is a finite matrix, the expansion is convergent
for sufficiently largem2. To get a feeling for what is
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involved in evaluating such series, show that∆2 is:

∆2 =
1
a4





6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6





.(H.75)

What ∆3, ∆4, · · · contributions look like is now
clear; as we include higher and higher powers of the
Laplacian, the propagator matrix fills up; while the
inversepropagator is differential operator connecting
only the nearest neighbors, the propagator is integral
operator, connecting every lattice site to any other lattice
site.

This matrix can be evaluated as is, on the lattice,
and sometime it is evaluated this way, but in case
at hand a wonderful simplification follows from the
observation that the lattice action is translationally
invariant, exerciseH.4.

H.4. Lattice Laplacian diagonalized. Insert the identity
∑

P(k) = 1 wherever you profitably can, and use the

eigenvalue equation (H.50) to convert shifth matrices
into scalars. IfM commuteswith h, then (ϕ†k ·M · ϕk′ ) =
M̃(k)δkk′ , and the matrixM acts as a multiplication by
the scalarM̃(k) on thekth subspace. Show that for the 1-
dimensional version of the lattice Laplacian (H.38) the
projection on thekth subspace is

(ϕ†k · ∆ · ϕk′) =
2
a2

(

cos

(

2π
N

k

)

− 1

)

δkk′ . (H.76)

In thekth subspace the propagator is simply a number,
and, in contrast to the mess generated by (H.74), there is
nothing to evaluating:

ϕ†k·
1

m21− ∆ ·ϕk′ =
δkk′

m2 − 2
(ma)2 (cos 2πk/N − 1)

, (H.77)

wherek is a site in theN-dimensional dual lattice, and
a = L/N is the lattice spacing.

H.5. Fix Predrag’s lecture od Feb 5, 2008. Are theC3

frequencies on pp. 4,5 correct? If not, write the correct
expression for the beat frequency.
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Appendix I

Convergence of spectral
determinants

I.1 Curvature expansions: geometric picture

I      with numerical estimates of fractal dimensions, you
will note that the numerical convergence of cycle expansions for systems such
as the 3-disk game of pinball, table18.2.2, is very impressive; only three input

numbers (the two fixed points0,1 and the 2-cycle10) already yield the escape rate
to 4 significant digits! We have omitted an infinity of unstable cycles; so why does
approximating the dynamics by a finite number of cycles work so well?

Looking at the cycle expansions simply as sums of unrelated contributions is
not specially encouraging: the cycle expansion (18.2) is not absolutely convergent
in the sense of Dirichlet series of sect.18.6, so what one makes of it depends on
the way the terms are arranged.

The simplest estimate of the error introduced by approximating smooth flow
by periodic orbits is to think of the approximation as a tessalation of a smooth
curve by piecewise linear tiles, figure1.11.

I.1.1 Tessalation of a smooth flow by cycles

One of the early high accuracy computations ofπwas due to Euler. Euler computed
the circumference of the circee of unit radius by inscribinginto it a regular polygon
with N sides; the error of such computation is proportional to 1−cos(2π/N) ∝ N−2.
In a periodic orbit tessalation of a smooth flow, we cover the phase space byehn

tiles at thenth level of resolution, whereh is the topological entropy, the growth
rate of the number of tiles. Hence we expect the error in approximating a smooth
flow by ehn linear segments to be exponentially small, of orderN−2 ∝ e−2hn.
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I.1.2 Shadowing and convergence of curvature expansions

We have shown in chapter13 that if the symbolic dynamics is defined by a finite
grammar, a finite number of cycles, let us say the firstk terms in the cycle expansion
are necessary to correctly count the pieces of the Cantor setgenerated by the
dynamical system.

They are composed of products of non–intersecting loops on the Markov
graph, see (13.13). We refer to this set of non–intersecting loops as thefundamental
cycles of the strange set. It is only after these terms have been included that the
cycle expansion is expected to converge smoothly, i.e., only for n > k are the
curvaturescn in (9.2??) a measure of the variation of the quality of a linearized
covering of the dynamical Cantor set by the lengthn cycles, and expected to fall
off rapidly with n.

The rate of fall-off of the cycle expansion coefficients can be estimated by
observing that for subshifts of finite type the contributions from longer orbits
in curvature expansions such as (18.7) can always be grouped into shadowing
combinations of pseudo-cycles. For example, a cycle with itineraryab= s1s2 · · · sn

will appear in combination of form

1/ζ = 1− · · · − (tab− tatb) − · · · ,

with ab shadowed by cyclea followed by cycleb, wherea = s1s2 · · · sm, b =
sm+1 · · · sn−1sn, andsk labels the Markov partitionMsk (10.4) that the trajectory
traverses at thekth return. If the two trajectories coincide in the firstm symbols,
at themth return to a Poincaré section they can land anywhere in thephase space
M

∣
∣
∣ f Ta(xa) − f Ta...(xa...)

∣
∣
∣ ≈ 1 ,

where we have assumed that theM is compact, and that the maximal possible
separation acrossM isO(1). Herexa is a point on theacycle of periodTa, andxa...

is a nearby point whose trajectory tracks the cyclea for the firstmPoincaré section
returns completed at the timeTa.... An estimate of the maximal separation of the
initial points of the two neighboring trajectories is achieved by Taylor expanding
aroundxa... = xa + δxa...

f Ta(xa) − f Ta...(xa...) ≈
∂ f Ta(xa)
∂x

· δxa... = Ma · δxa... ,

hence the hyperbolicity of the flow forces the initial pointsof neighboring trajectories
that track each other for at leastm consecutive symbols to lie exponentially close

|δxa...| ∝
1
|Λa|

.
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Similarly, for any observable (15.1) integrated along the two nearby trajectories

ATa...(xa...) ≈ ATa(xa) +
∂ATa

∂x

∣
∣
∣
∣
∣
∣
x=xa

· δxa... ,

so

∣
∣
∣ATa...(xa...) − ATa(xa)

∣
∣
∣ ∝ TaConst

|Λa|
,

As the time of return is itself an integral along the trajectory, return times of nearby
trajectories are exponentially close

|Ta... − Ta| ∝
TaConst
|Λa|

,

and so are the trajectory stabilities

∣
∣
∣ATa...(xa...) − ATa(xa)

∣
∣
∣ ∝ TaConst

|Λa|
,

Substitutingtab one finds

tab− tatb
tab

= 1− e−s(Ta+Tb−Tab)
∣
∣
∣
∣
∣

ΛaΛb

Λab

∣
∣
∣
∣
∣
.

Since with increasingmsegments ofabcome closer toa, the differences in action
and the ratio of the eigenvalues converge exponentially with the eigenvalue of the
orbit a,

Ta + Tb − Tab ≈ Const× Λ− j
a , |ΛaΛb/Λab| ≈ exp(−Const/Λab)

Expanding the exponentials one thus finds that this term in the cycle expansion is
of the order of

tajb − tataj−1b ≈ Const× tajbΛ
− j
a . (I.1)

Even though the number of terms in a cycle expansion grows exponentially, the
shadowing cancellations improve the convergence by an exponential factor compared
to trace formulas, and extend the radius of convergence of the periodic orbit sums.
TableI.1 shows some examples of such compensations between long cycles and
their pseudo-cycle shadows.
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n tab − tatb Tab− (Ta + Tb) log
[
ΛaΛb
Λab

]

ab− a · b
2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 -7.96028600139×106 5.21713101432×103 -9.8×103 001-0·01
4 -1.03326529874×107 5.29858199419×104 -1.3×103 0001-0·001
5 -1.27481522016×109 5.35513574697×105 -1.6×104 00001-0·0001
6 -1.52544704823×1011 5.40999882625×106 -1.8×105 000001-0·00001
2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 5.30414752996×106 -3.67093656690×103 7.7×103 011-01·1
4 -5.40934261680×108 3.14925761316×104 -9.2×104 0111-011·1
5 4.99129508833×1010 -2.67292822795×105 1.0×104 01111-0111·1
6 -4.39246000586×1012 2.27087116266×106 -1.0×105 011111-01111·1

Table I.1: Demonstration of shadowing in curvature combinations of cycle weights of
form tab − tatb, the 3-disk fundamental domain cycles atR : d = 6, table27.2. The ratio
ΛaΛb/Λab is approaching unity exponentially fast.

It is crucial that the curvature expansion is grouped (and truncated) by topologically
related cycles and pseudo-cycles; truncations that ignoretopology, such as inclusion
of all cycles withTp < Tmax, will contain orbits unmatched by shadowed orbits,
and exhibit a mediocre convergence compared with the curvature expansions.

Note that the existence of a pole atz = 1/c implies that the cycle expansions
have a finite radius of convergence, and that analytic continuations will be required
for extraction of the non-leading zeros of 1/ζ. Preferably, one should work with
cycle expansions of Selberg products, as discussed in sect.18.2.2.

I.1.3 No shadowing, poorer convergence

Conversely, if the dynamics is not of a finite subshift type, there is no finite
topological polynomial, there are no “curvature” corrections, and the convergence
of the cycle expansions will be poor.

I.2 On importance of pruning

If the grammar is not finite and there is no finite topological polynomial, there
will be no “curvature” expansions, and the convergence willbe poor. That is
the generic case, and one strategy for dealing with it is to find a good sequence of
approximate but finite grammars; for each approximate grammar cycle expansions
yield exponentially accurate eigenvalues, with successive approximate grammars
converging toward the desired infinite grammar system.

When the dynamical system’s symbolic dynamics does not havea finite grammar,
and we are not able to arrange its cycle expansion into curvature combinations
(18.7), the series is truncated as in sect.18.5, by including all pseudo-cycles such
that |Λp1 · · ·Λpk | ≤ |ΛP|, whereP is the most unstable prime cycle included into
truncation. The truncation error should then be of orderO(ehTPTP/|ΛP|), with h
the topological entropy, andehTP roughly the number of pseudo-cycles of stability
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≈ |ΛP|. In this case the cycle averaging formulas do not converge significantly
better than the approximations such as the trace formula (20.18).

Numerical results (see for example the plots of the accuracyof the cycle
expansion truncations for the Hénon map in ref. [3]) indicate that the truncation
error of most averages tracks closely the fluctuations due tothe irregular growth
in the number of cycles. It is not known whether one can exploit the sum rules
such as the mass flow conservation (20.11) to improve the accuracy of dynamical
averaging.

I.3 Ma-the-matical caveats

“Lo duca e io per quel cammino ascoso intrammo a
ritornar nel chiaro monde; e sanza cura aver d’alcun riposa
salimmo sù, el primo e io secondo, tanto ch’i’ vidi de le
cose belle che porta ‘l ciel, per un perutgio tondo.”

—Dante

The periodic orbit theory is learned in stages. At first glance, it seems
totally impenetrable. After basic exercises are gone through, it seems totally
trivial; all that seems to be at stake are elementary manipulations with traces,
determinants, derivatives. But if start thinking about youwill get a more and more
uncomfortable feeling that from the mathematical point of view, this is a perilous
enterprise indeed. In chapter21we shall explain which parts of this enterprise are
really solid; here you give a fortaste of what objections a mathematician might
rise.

Birkhoff’s 1931 ergodic theorem states that the time average (15.4) exists
almost everywhere, and, if the flow is ergodic, it implies that 〈a(x)〉 = 〈a〉 is a
constant for almost allx. The problem is that the above cycle averaging formulas
implicitly rely on ergodic hypothesis: they are strictly correct only if the dynamical
system is locally hyperbolic and globally mixing. If one takes aβ derivative of
both sides

ρβ(y)ets(β) =

∫

M
dxδ(y− f t(x))eβ·A

t(x)ρβ(x) ,

and integrates overy

∫

M
dy

∂

∂β
ρβ(y)

∣
∣
∣
∣
∣
β=0

+ t
∂s
∂β

∣
∣
∣
∣
∣
β=0

∫

M
dyρ0(y) =

∫

M
dx At(x)ρ0(x) +

∫

M
dx

∂

∂β
ρβ(x)

∣
∣
∣
∣
∣
β=0

,

one obtains in the long time limit

∂s
∂β

∣
∣
∣
∣
∣
β=0
=

∫

M
dyρ0(x) 〈a(x)〉 . (I.2)
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This is the expectation value (15.12) only if the time average (15.4) equals the
space average (15.9), 〈a(x)〉 = 〈a〉, for all x except a subsetx ∈ M of zero
measure; if the phase space is foliated into non-communicating subspacesM =
M1 +M2 of finite measure such thatf t(M1) ∩ M2 = ∅ for all t, this fails. In
other words, we have tacitly assumed metric indecomposability or transitivity.

We have also glossed over the nature of the “phase space”M. For example,
if the dynamical system is open, such as the 3-disk game of pinball, M in the
expectation value integral (15.22) is a Cantor set, the closure of the union of all
periodic orbits. Alternatively,M can be considered continuous, but then the
measureρ0 in (I.2) is highly singular. The beauty of the periodic orbit theory
is that instead of using an arbitrary coordinatization ofM it partitions the phase
space by the intrinsic topology of the dynamical flow and builds the correct measure
from cycle invariants, the stability eigenvalues of periodic orbits.

Were we to restrict the applications of the formalism only tosystems which
have been rigorously proven to be ergodic, we might as well fold up the shop
right now. For example, even for something as simple as the H´enon mapping we
do not know whether the asymptotic time attractor is strangeor periodic. Physics

[exercise 15.1]
applications require a more pragmatic attitude. In the cycle expansions approach
we construct the invariant set of the given dynamical systemas a closure of the
union of periodic orbits, and investigate how robust are theaverages computed
on this set. This turns out to depend very much on the observable being averaged
over; dynamical averages exhibit “phase transitions”, andthe above cycle averaging
formulas apply in the “hyperbolic phase” where the average is dominated by
exponentially many exponentially small contributions, but fail in a phase dominated
by few marginally stable orbits. Here the noise - always present, no matter how
weak - helps us by erasing an infinity of small traps that the deterministic dynamics
might fall into.

Still, in spite of all the caveats, periodic orbit theory is abeautiful theory,
and the cycle averaging formulas are the most elegant and powerful tool available
today for evaluation of dynamical averages for low dimensional chaotic deterministic
systems.

I.4 Estimate of thenth cumulant

An immediate consequence of the exponential spacing of the eigenvalues is that
the convergence of the Selberg product expansion (D.12) as function of the topological
cycle length,F(z) =

∑

n Cnzn, is faster than exponential. Consider ad–dimensional
map for which all fundamental matrix eigenvalues are equal:up = Λp,1 = Λp,2 =

· · · = Λp,d. The stability eigenvalues are generally not isotropic; however, to
obtain qualitative bounds on the spectrum, we replace all stability eigenvalues
with the least expanding one. In this case thep cycle contribution to the product
(17.9) reduces to

Fp(z) =
∞∏

k1···kd=0

(

1− tpuk1+k2+···+kd
p

)
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=

∞∏

k=0

(

1− tpuk
p

)mk
; mk =

(

d − 1+ k
d − 1

)

=
(k+ d − 1)!
k!(d − 1)!

=

∞∏

k=0

mk∑

ℓ=0

(

mk

ℓ

)
(

−uk
ptp

)ℓ
(I.3)

In one dimension the expansion can be given in closed form (21.34), and the
coefficientsCk in (D.12) are given by

τpk = (−1)k
u

k(k−1)
2

p
∏k

j=1(1− u j
p)

tkp . (I.4)

Hence the coefficients in theF(z) =
∑

n Cnzn expansion of the spectral determinant
(18.11) fall off faster than exponentially, as|Cn| ≈ un(n−1)/2. In contrast, the cycle
expansions of dynamical zeta functions fall of “only” exponentially; in numerical
applications, the difference is dramatic.

In higher dimensions the expansions are not quite as compact. The leading
power ofu and its coefficient are easily evaluated by use of binomial expansions
(I.3) of the (1+tuk)mk factors. More precisely, the leadingun terms intk coefficients
are of form

∞∏

k=0

(1+ tuk)mk = . . . + um1+2m2+...+ jm j t1+m1+m2+...+mj + . . .

= . . . +
(

u
md
d+1 t

)(d+m
m )
+ . . . ≈ . . . + u

d√
d!

(d−1)! n
d+1

d
tn + . . .

Hence the coefficients in theF(z) expansion fall off faster than exponentially, as
un1+1/d

. The Selberg products are entire functions in any dimension, provided that
the symbolic dynamics is a finite subshift, and all cycle eigenvalues are sufficiently
bounded away from 1.

The case of particular interest in many applications are the2-d Hamiltonian
mappings; their symplectic structure implies thatup = Λp,1 = 1/Λp,2, and the
Selberg product (17.13) In this case the expansion corresponding to (21.34) is
given by (21.35) and the coefficients fall off asymptotically asCn ≈ un3/2

.
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Appendix J

Infinite dimensional operators

(A. Wirzba)

T , taken from ref. [1], summarizes the definitions and properties
of trace-class and Hilbert-Schmidt matrices, the determinants over infinite
dimensional matrices and regularization schemes for matrices or operators

which are not of trace-class.

J.1 Matrix-valued functions

(P. Cvitanović)

As a preliminary we summarize some of the properties of functions of finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′i j (x) =

d
dx

Ai j (x) . (J.1)

Derivatives of products of matrices are evaluated by the chain rule

d
dx

(AB) =
dA
dx

B + A
dB
dx

. (J.2)

A matrix and its derivative matrix in general do not commute

d
dx

A2 =
dA
dx

A+ A
dA
dx

. (J.3)

The derivative of the inverse of a matrix, follows fromddx(AA−1) = 0:

d
dx

A−1 = − 1
A

dA
dx

1
A
. (J.4)
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A function of a single variable that can be expressed in termsof additions and
multiplications generalizes to a matrix-valued function by replacing the variable
by the matrix.

In particular, the exponential of a constant matrix can be defined either by its
series expansion, or as a limit of an infinite product:

eA =

∞∑

k=0

1
k!

Ak , A0 = 1 (J.5)

= lim
N→∞

(

1+
1
N

A

)N

(J.6)

The first equation follows from the second one by the binomialtheorem, so these
indeed are equivalent definitions. That the terms of orderO(N−2) or smaller do
not matter follows from the bound

(

1+
x− ǫ

N

)N
<

(

1+
x+ δxN

N

)N

<
(

1+
x+ ǫ

N

)N
,

where|δxN| < ǫ. If lim δxN → 0 asN→ ∞, the extra terms do not contribute.

Consider now the determinant

det (eA) = lim
N→∞

(det (1+ A/N))N .

To the leading order in 1/N

det (1+ A/N) = 1+
1
N

tr A+O(N−2) .

hence

deteA = lim
N→∞

(

1+
1
N

tr A+O(N−2)

)N

= etr A (J.7)

Due to non-commutativity of matrices, generalization of a function of several
variables to a function is not as straightforward. Expression involving several
matrices depend on their commutation relations. For example, the commutator
expansion

etABe−tA = B + t[A,B] +
t2

2
[A, [A,B]] +

t3

3!
[A, [A, [A,B]]] + · · · (J.8)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics follows by recursive evaluation of t derivatives

d
dt

(

etABe−tA
)

= etA [A,B]e−tA .
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Manipulations of such ilk yield

e(A+B)/N = eA/NeB/N − 1
2N2

[A,B] +O(N−3) ,

and the Trotter product formula: ifB, C andA = B + C are matrices, then

eA = lim
N→∞

(

eB/NeC/N
)N

(J.9)

J.2 Operator norms

(R. Mainieri and P. Cvitanović)

The limit used in the above definition involves matrices - operators in
vector spaces - rather than numbers, and its convergence canbe checked using
tools familiar from calculus. We briefly review those tools here, as throughout the
text we will have to consider many different operators and how they converge.

Then→ ∞ convergence of partial products

En =
∏

0≤m<n

(

1+
t
m

A
)

can be verified using the Cauchy criterion, which states thatthe sequence{En}
converges if the differences‖Ek−E j‖ → 0 ask, j → ∞. To make sense of this we
need to define a sensible norm‖ · · · ‖. Norm of a matrix is based on the Euclidean
norm for a vector: the idea is to assign to a matrixM a norm that is the largest
possible change it can cause to the length of a unit vector ˆn:

‖M‖ = sup
n̂
‖M n̂‖ , ‖n̂‖ = 1 . (J.10)

We say that‖·‖ is the operator norm induced by the vector norm‖·‖. Constructing
a norm for a finite-dimensional matrix is easy, but hadM been an operator in an
infinite-dimensional space, we would also have to specify the space ˆn belongs to.
In the finite-dimensional case, the sum of the absolute values of the components of
a vector is also a norm; the induced operator norm for a matrixM with components
Mi j in that case can be defined by

‖M‖ = max
i

∑

j

|Mi j | . (J.11)

The operator norm (J.11) and the vector norm (J.10) are only rarely distinguished
by different notation, a bit of notational laziness that we shall uphold.
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Now that we have learned how to make sense out of norms of operators, we
can check that

[exercise J.1]

‖etA‖ ≤ et‖A‖ . (J.12)

[exercise 2.9]

As ‖A‖ is a number, the norm ofetA is finite and therefore well defined. In
particular, the exponential of a matrix is well defined for all values oft, and the
linear differential equation (4.10) has a solution for all times.

J.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref. [9]. Refs. [7, 10, 11, 14] should
be consulted for more details and proofs. The trace class andHilbert-Schmidt
property will be defined here for linear, in general non-hermitian operatorsA ∈
L(H): H → H (whereH is a separable Hilbert space). The transcription to
matrix elements (used in the prior chapters) is simplyai j = 〈φi ,Aφ j〉 where{φn}
is an orthonormal basis ofH and 〈 , 〉 is the inner product inH (see sect.J.5
where the theory ofvon Koch matricesof ref. [12] is discussed). So, the trace
is the generalization of the usual notion of the sum of the diagonal elements of a
matrix; but because infinite sums are involved, not all operators will have a trace:

Definition:

(a) An operatorA is called trace class, A ∈ J1, if and only if, for every
orthonormal basis,{φn}:

∑

n

|〈φn,Aφn〉| < ∞ . (J.13)

The family of all trace class operators is denoted byJ1.

(b) An operatorA is calledHilbert-Schmidt , A ∈ J2, if and only if, for every
orthonormal basis,{φn}:

∑

n

‖Aφn‖2 < ∞ .

The family of all Hilbert-Schmidt operators is denoted byJ2.

Bounded operatorsare dual to trace class operators. They satisfy the the following
condition: |〈ψ, Bφ〉| ≤ C‖ψ‖‖φ‖with C < ∞ andψ, φ ∈ H . If they have eigenvalues,
these are bounded too. The family of bounded operators is denoted byB(H) with
the norm‖B‖ = supφ,0

‖Bφ‖
‖φ‖ for φ ∈ H . Examples for bounded operators are

unitary operators and especially the unit matrix. In fact, every bounded operator
can be written as linear combination of four unitary operators.

A bounded operatorC iscompact, if it is the norm limit of finite rank operators.
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An operatorA is calledpositive, A ≥ 0, if 〈Aφ, φ〉 ≥ 0 ∀φ ∈ H . Notice that
A†A ≥ 0. We define|A| =

√
A†A.

The most important properties of the trace and Hilbert-Schmidt classes are
summarized in (see refs. [7, 9]):

(a) J1 andJ2 are ∗ideals., i.e., they are vector spaces closed under scalar
multiplication, sums, adjoints, and multiplication with bounded operators.

(b) A ∈ J1 if and only if A = BC with B,C ∈ J2.

(c) J1 ⊂ J2 ⊂ Compact operators.

(d) For any operatorA, we haveA ∈ J2 if
∑

n ‖Aφn‖2 < ∞ for a single basis.
For any operatorA ≥ 0 we haveA ∈ J1 if

∑

n |〈φn,Aφn〉| < ∞ for a single
basis.

(e) If A ∈ J1, Tr(A) =
∑〈φn,Aφn〉 is independent of the basis used.

(f) Tr is linear and obeys Tr(A†) = Tr(A); Tr(AB) = Tr(BA) if either A ∈ J1

andB bounded,A bounded andB ∈ J1 or bothA,B ∈ J2.

(g) J2 endowed with the inner product〈A,B〉2 = Tr(A†B) is a Hilbert space.
If ‖A‖2 = [ Tr(A†A) ]

1
2 , then‖A‖2 ≥ ‖A‖ andJ2 is the‖ ‖2-closure of the

finite rank operators.

(h) J1 endowed with the norm‖A‖1 = Tr(
√

A†A) is a Banach space.‖A‖1 ≥
‖A‖2 ≥ ‖A‖ andJ1 is the‖ ‖1-norm closure of thefinite rank operators. The
dual space ofJ1 isB(H), the family of bounded operators with the duality
〈B,A〉 = Tr(BA).

(i) If A,B ∈ J2, then‖AB‖1 ≤ ‖A‖2‖B‖2. If A ∈ J2 andB ∈ B(H), then
‖AB‖2 ≤ ‖A‖2‖B‖. If A ∈ J1 andB ∈ B(H), then‖AB‖1 ≤ ‖A‖1‖B‖.

Note the most important property for proving that an operator is trace class is the
decomposition(b) into two Hilbert-Schmidt ones, as the Hilbert-Schmidt property
can easily be verified in one single orthonormal basis (see(d)). Property(e)
ensures then that the trace is the same in any basis. Properties (a) and (f) show
that trace class operators behave in complete analogy to finite rank operators.
The proof whether a matrix is trace-class (or Hilbert-Schmidt) or not simplifies
enormously for diagonal matrices, as then the second part ofproperty (d) is
directly applicable: just the moduli of the eigenvalues (or– in case of Hilbert-
Schmidt – the squares of the eigenvalues) have to be summed upin order to answer
that question. A good strategy in checking the trace-class character of a general
matrix A is therefore the decomposition of that matrix into two matricesB and
C where one, sayC, should be chosen to be diagonal and either just barely of
Hilbert-Schmidt character leaving enough freedom for its partnerB or of trace-
class character such that one only has to show the boundedness for B.
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J.4 Determinants of trace class operators

This section is mainly based on refs. [8, 10] which should be consulted for more
details and proofs. See also refs. [11, 14].

Pre-definitions (Alternating algebra and Fock spaces):
Given a Hilbert spaceH , ⊗nH is defined as the vector space of multi-linear
functionals onH with φ1 ⊗ · · · ⊗ φn ∈ ⊗nH in caseφ1, . . . , φn ∈ H .

∧n(H)
is defined as the subspace of⊗nH spanned by the wedge-product

φ1 ∧ · · · ∧ φn =
1
√

n!

∑

π∈Pn

ǫ(π)[φπ(1) ⊗ · · · ⊗ φπ(n)]

wherePn is the group of all permutations ofn letters andǫ(π) = ±1 depending
on whetherπ is an even or odd permutation, respectively. The inner product in
∧n(H) is given by

(φ1 ∧ · · · ∧ φn, η1 ∧ · · · ∧ ηn) = det
{

(φi , η j)
}

where det{ai j } =
∑

π∈Pn
ǫ(π)a1π(1) · · · anπ(n).

∧n(A) is defined as functor (a functor
satisfies

∧n(AB) =
∧n(A)

∧n(B)) on
∧n(H) with

∧n
(A) (φ1 ∧ · · · ∧ φn) = Aφ1 ∧ · · · ∧ Aφn .

Whenn = 0,
∧n(H) is defined to beC and

∧n(A) as 1:C→ C.

Properties: If A trace class, i.e.,A ∈ J1, then for anyk,
∧k(A) is trace class, and

for any orthonormal basis{φn} the cumulant

Tr
(∧k

(A)
)

=
∑

i1<···<ik

(

(φi1 ∧ · · · ∧ φik), (Aφi1 ∧ · · · ∧ Aφik)
)

< ∞

is independent of the basis (with the understanding that Tr
∧0(A) ≡ 1).

Definition: Let A ∈ J1, then det (1+ A) is defined as

det(1+ A) =
∞∑

k=0

Tr
(∧k

(A)
)

(J.14)

Properties:

Let A be a linear operator on a separable Hilbert spaceH and {φ j}∞1 an
orthonormal basis.
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(a)
∑∞

k=0 Tr
(∧k(A)

)

converges for eachA ∈ J1.

(b) |det(1 + A)| ≤ ∏∞
j=1

(

1+ µ j(A)
)

whereµ j(A) are thesingular values ofA,

i.e., the eigenvalues of|A| =
√

A†A.

(c) |det(1+ A)| ≤ exp(‖A‖1).

(d) For anyA1, . . . ,An ∈ J1, 〈z1, . . . , zn〉 7→ det
(

1+
∑n

i=1 ziA i

)

is an entire
analytic function.

(e) If A,B ∈ J1, then

det(1+ A)det(1+ B) = det(1+ A + B + AB)

= det((1+ A)(1+ B))

= det((1+ B)(1+ A)) . (J.15)

If A ∈ J1 andU unitary, then

det
(

U−1(1+ A)U
)

= det
(

1+ U−1AU
)

= det(1+ A) .

(f) If A ∈ J1, then (1+ A) is invertible if and only if det(1+ A) , 0.

(g) If λ , 0 is ann-times degenerate eigenvalue ofA ∈ J1, then det(1+ zA) has
a zero of ordern at z= −1/λ.

(h) For anyǫ, there is aCǫ(A), depending onA ∈ J1, so that|det(1 + zA)| ≤
Cǫ(A) exp(ǫ|z|).

(i) For anyA ∈ J1,

det(1+ A) =
N(A)∏

j=1

(

1+ λ j(A)
)

(J.16)

where here and in the following{λ j(A)}N(A)
j=1 are the eigenvalues ofA counted

with algebraic multiplicity .

(j) Lidskii’s theorem:For anyA ∈ J1,

Tr(A) =
N(A)∑

j=1

λ j(A) < ∞ .

(k) If A ∈ J1, then

Tr
(∧k

(A)
)

=

N
(∧k(A)

)

∑

j=1

λ j

(∧k
(A)

)

=
∑

1≤ j1<···< jk≤N(A)

λ j1(A) · · · λ jk(A) < ∞.
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(l) If A ∈ J1, then

det(1+ zA) =
∞∑

k=0

zk
∑

1≤ j1<···< jk≤N(A)

λ j1(A) · · · λ jk(A) < ∞. (J.17)

(m) If A ∈ J1, then for|z| small (i.e.,|z|max|λ j(A)| < 1) the series
∑∞

k=1 zkTr
(

(−A)k
)

/k
converges and

det(1+ zA) = exp




−
∞∑

k=1

zk

k
Tr

(

(−A)k
)





= exp(Tr ln(1+ zA)) . (J.18)

(n) The Plemelj-Smithies formula:Defineαm(A) for A ∈ J1 by

det(1+ zA) =
∞∑

m=0

zmαm(A)
m!

. (J.19)

Thenαm(A) is given by them×mdeterminant:

αm(A) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Tr(A) m− 1 0 · · · 0
Tr(A2) Tr(A) m− 2 · · · 0
Tr(A3) Tr(A2) Tr(A) · · · 0
...

...
...

...
...
1

Tr(Am) Tr(A(m−1)) Tr(A(m−2)) · · · Tr(A)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(J.20)

with the understanding thatα0(A) ≡ 1 andα1(A) ≡ Tr(A). Thus the
cumulantscm(A) ≡ αm(A)/m! satisfy the following recursion relation

cm(A) =
1
m

m∑

k=1

(−1)k+1cm−k(A) Tr(Ak) for m≥ 1

c0(A) ≡ 1 . (J.21)

Note that in the context of quantum mechanics formula (J.19) is the quantum
analog to the curvature expansion of the semiclassical zetafunction with Tr(Am)
corresponding to the sum of all periodic orbits (prime and also repeated ones) of
total topological lengthm, i.e., letcm(s.c.) denote themth curvature term, then the
curvature expansion of the semiclassical zeta function is given by the recursion
relation

cm(s.c.) =
1
m

m∑

k=1

(−1)k+m+1cm−k(s.c.)
∑

p;r>0
with [p]r=k

[p]
tp(k)r

1−
(

1
Λp

)r for m≥ 1

c0(s.c.) ≡ 1 . (J.22)

In fact, in the cumulant expansion (J.19) as well as in the curvature expansion
there are large cancelations involved. Let us order – without lost of generality –
the eigenvalues of the operatorA ∈ J1 as follows:

|λ1| ≥ |λ2| ≥ · · · ≥ |λi−1| ≥ |λi | ≥ |λi+1| ≥ · · ·

appendWirzba - 9dec2002.tex



APPENDIX J. INFINITE DIMENSIONAL OPERATORS 741

(This is always possible because of
∑N(A)

i=1 |λi | < ∞.) Then, in the standard
(Plemelj-Smithies) cumulant evaluation of the determinant, eq. (J.19), we have
enormous cancelations of big numbers, e.g. at thek th cumulant order (k > 3),
all the intrinsically large ‘numbers’λk

1, λk−1
1 λ2, . . ., λk−2

1 λ2λ3, . . . and many more
have to cancel out exactly until only

∑

1≤ j1<···< jk≤N(A) λ j1 · · ·λ jk is finally left over.
Algebraically, the fact that there are these large cancelations is of course of no
importance. However, if the determinant is calculated numerically, the big cancelations
might spoil the result or even the convergence. Now, the curvature expansion of
the semiclassical zeta function, as it is known today,is the semiclassical approximation
to the curvature expansion (unfortunately) in the Plemelj-Smithies form. As the
exact quantum mechanical result is approximated semiclassically, the errors introduced
in the approximation might lead to big effects as they are done with respect to large
quantities which eventually cancel out and not – as it would be of course better
– with respect to the small surviving cumulants. Thus it would be very desirable
to have a semiclassical analog to the reduced cumulant expansion (J.17) or even
to (J.16) directly. It might not be possible to find a direct semiclassical analog for
the individual eigenvaluesλ j . Thus the direct construction of the semiclassical
equivalent to (J.16) is rather unlikely. However, in order to have a semiclassical
“cumulant” summation without large cancelations – see (J.17) – it would be just
sufficient to find the semiclassical analog of each complete cumulant (J.17) and
not of the single eigenvalues. Whether this will eventuallybe possible is still an
open question.

J.5 Von Koch matrices

Implicitly, many of the above properties are based on the theory of von Koch
matrices [11, 12, 13]: An infinite matrix 1 − A = ‖δ jk − a jk‖∞1 , consisting of
complex numbers, is called a matrix with anabsolutely convergent determinant,
if the series

∑ |a j1k1a j2k2 · · · a jn,kn| converges, where the sum extends over all pairs
of systems of indices (j1, j2, · · · , jn) and (k1, k2, · · · , kn) which differ from each
other only by a permutation, andj1 < j2 < · · · jn (n = 1, 2, · · ·). Then the limit

lim
n→∞

det‖δ jk − a jk‖n1 = det(1− A)

exists and is called the determinant of the matrix1 − A. It can be represented in
the form

det(1− A) = 1−
∞∑

j=1

a j j +
1
2!

∞∑

j,k=1

∣
∣
∣
∣
∣

a j j a jk
ak j akk

∣
∣
∣
∣
∣
− 1

3!

∞∑

j,k,m=1

∣
∣
∣
∣
∣
∣
∣
∣

a j j a jk a jm
ak j akk akm
am j amk amm

∣
∣
∣
∣
∣
∣
∣
∣

+ · · · ,

where the series on the r.h.s. will remain convergent even ifthe numbersa jk ( j, k =
1, 2, · · ·) are replaced by their moduli and if all the terms obtained byexpanding
the determinants are taken with the plus sign. The matrix1−A is calledvon Koch
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matrix, if both conditions

∞∑

j=1

|a j j | < ∞ , (J.23)

∞∑

j,k=1

|a jk |2 < ∞ (J.24)

are fulfilled. Then the following holds (see ref. [11, 13]): (1) Every von Koch
matrix has an absolutely convergent determinant. If the elements of a von Koch
matrix are functions of some parameterµ (a jk = a jk(µ), j, k = 1, 2, · · ·) and both
series in the defining condition converge uniformly in the domain of the parameter
µ, then asn → ∞ the determinant det‖δ jk − a jk(µ)‖n1 tends to the determinant
det(1+A(µ)) uniformly with respect toµ, over the domain ofµ. (2) If the matrices
1−A and1−B are von Koch matrices, then their product1−C = (1−A)(1−B)
is a von Koch matrix, and

det(1− C) = det(1− A) det(1− B) .

Note that every trace-class matrixA ∈ J1 is also a von Koch matrix (and that
any matrix satisfying condition (J.24) is Hilbert-Schmidt and vice versa). The
inverse implication, however, is not true: von Koch matrices are not automatically
trace-class. The caveat is that the definition of von Koch matrices is basis-dependent,
whereas the trace-class property is basis-independent. As the traces involve infinite
sums, the basis-independence is not at all trivial. An example for an infinite matrix
which is von Koch, but not trace-class is the following:

A i j =






2/ j for i − j = −1 and j even,
2/i for i − j = +1 and i even,
0 else,

i.e.,

A =





0 1 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 0 0 1/2 0 0 · · ·
0 0 1/2 0 0 0 · · ·
0 0 0 0 0 1/3

. . .

0 0 0 0 1/3 0
. . .

...
...

...
...

. . .
. . .

. . .





. (J.25)

Obviously, condition (J.23) is fulfilled by definition. Second, the condition (J.24)
is satisfied as

∑∞
n=1 2/n2 < ∞. However, the sum over the moduli of the eigenvalues

is just twice the harmonic series
∑∞

n=1 1/n which does not converge. The matrix
(J.25) violates the trace-class definition (J.13), as in its eigenbasis the sum over the
moduli of its diagonal elements is infinite. Thus theabsoluteconvergence is traded
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for aconditionalconvergence, since the sum over the eigenvalues themselvescan
be arranged to still be zero, if the eigenvalues with the samemodulus are summed
first. Absolute convergence is of course essential, if sums have to be rearranged
or exchanged. Thus, the trace-class property is indispensable for any controlled
unitary transformation of an infinite determinant, as then there will be necessarily
a change of basis and in general also a re-ordering of the corresponding traces.
Therefore the claim thata Hilbert-Schmidt operator with a vanishing trace is
automatically trace-classis false. In general, such an operator has to be regularized
in addition (see next chapter).

J.6 Regularization

Many interesting operators are not of trace class (althoughthey might be in some
Jp with p > 1 - an operatorA is inJp iff Tr|A|p < ∞ in any orthonormal basis).
In order to compute determinants of such operators, an extension of the cumulant
expansion is needed which in fact corresponds to a regularization procedure [8,
10]:
E.g. letA ∈ Jp with p ≤ n. Define

Rn(zA) = (1+ zA) exp





n−1∑

k=1

(−z)k

k
Ak




− 1

as the regulated version of the operatorzA. Then the regulated operatorRn(zA) is
trace class, i.e.,Rn(zA) ∈ J1. Define now detn(1 + zA) = det(1 + Rn(zA)). Then
the regulated determinant

detn(1+ zA) =
N(zA)∏

j=1





(

1+ zλ j(A)
)

exp





n−1∑

k=1

(

−zλ j(A)
)k

k








< ∞. (J.26)

exists and is finite. The corresponding Plemelj-Smithies formula now reads [10]:

detn(1+ zA) =
∞∑

m=0

zmα
(n)
m (A)
m!

. (J.27)

with α(n)
m (A) given by them×mdeterminant:

α
(n)
m (A) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

σ
(n)
1 m− 1 0 · · · 0

σ
(n)
2 σ

(n)
1 m− 2 · · · 0

σ
(n)
3 σ

(n)
2 σ

(n)
1 · · · 0

...
...

...
...

...
1

σ
(n)
m σ

(n)
m−1 σ

(n)
m−2 · · · σ

(n)
1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(J.28)
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where

σ
(n)
k =

{

Tr(Ak) k ≥ n
0 k ≤ n− 1

As Simon [10] says simply, the beauty of (J.28) is that we get detn(1 + A) from
the standard Plemelj-Smithies formula (J.19) by simply setting Tr(A), Tr(A2), . . .,
Tr(An−1) to zero.

See also ref. [15] where{λ j} are the eigenvalues of an elliptic (pseudo)-differential
operatorH of ordermon a compact or bounded manifold of dimensiond, 0 < λ0 ≤
λ1 ≤ · · · andλk ↑ +∞. and the Fredholm determinant

∆(λ) =
∞∏

k=0

(

1− λ

λk

)

is regulated in the caseµ ≡ d/m> 1 as Weierstrass product

∆(λ) =
∞∏

k=0





(

1− λ

λk

)

exp





λ

λk
+
λ2

2λ2
k

+ · · · + λ[µ]

[µ]λ[µ]
k








(J.29)

where [µ] denotes the integer part ofµ. This is, see ref. [15], the unique entire
function of orderµ having zeros at{λk} and subject to the normalization conditions

ln∆(0) =
d
dλ

ln∆(0) = · · · = d[µ]

dλ[µ]
ln∆(0) = 0 .

Clearly (J.29) is the same as (J.26); one just has to identifyz= −λ, A = 1/H and
n− 1 = [µ]. An example is the regularization of the spectral determinant

∆(E) = det [(E − H)] (J.30)

which – as it stands – would only make sense for a finite dimensional basis (or
finite dimensional matrices). In ref. [16] the regulated spectral determinant for the
example of the hyperbola billiard in two dimensions (thusd = 2, m= 2 and hence
µ = 1) is given as

∆(E) = det [(E − H)Ω(E,H)]

where

Ω(E,H) = −H−1eEH−1
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such that the spectral determinant in the eigenbasis ofH (with eigenvaluesEn , 0)
reads

∆(E) =
∏

n

(

1− E
En

)

eE/En < ∞ .

Note thatH−1 is for this example of Hilbert-Schmidt character.

Exercises

J.1. Norm of exponential of an operator. Verify
inequality (J.12):

‖etA‖ ≤ et‖A‖ .
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Appendix K

Statistical mechanics recycled

(R. Mainieri)

A   with long-range interactions can be converted into a chaotic
dynamical system that is differentiable and low-dimensional. The thermodynamic
limit quantities of the spin system are then equivalent to long time averages

of the dynamical system. In this way the spin system averagescan be recast as the
cycle expansions. If the resulting dynamical system is analytic, the convergence to
the thermodynamic limit is faster than with the standard transfer matrix techniques.

K.1 The thermodynamic limit

There are two motivations to recycle statistical mechanics: one gets better control
over the thermodynamic limit and one gets detailed information on how one is
converging to it. From this information, most other quantities of physical interst
can be computed.

In statistical mechanics one computes the averages of observables. These are
functions that return a number for every state of the system;they are an abstraction
of the process of measuring the pressure or temperature of a gas. The average of
an observable is computed in the thermodynamic limit — the limit of system with
an arbitrarily large number of particles. The thermodynamic limit is an essential
step in the computation of averages, as it is only then that one observes the bulk
properties of matter.

Without the thermodynamic limit many of the thermodynamic properties of
matter could not be derived within the framework of statistical mechanics. There
would be no extensive quantities, no equivalence of ensembles, and no phase
transitions. From experiments it is known that certain quantities are extensive, that
is, they are proportional to the size of the system. This is not true for an interacting
set of particles. If two systems interacting via pairwise potentials are brought close
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together, work will be required to join them, and the final total energy will not be
the sum of the energies of each of the parts. To avoid the conflict between the
experiments and the theory of Hamiltonian systems, one needs systems with an
infinite number of particles. In the canonical ensemble the probability of a state is
given by the Boltzman factor which does not impose the conservation of energy; in
the microcanonical ensemble energy is conserved but the Boltzmann factor is no
longer exact. The equality between the ensembles only appears in the limit of the
number of particles going to infinity at constant density. The phase transitions are
interpreted as points of non-analyticity of the free energyin the thermodynamic
limit. For a finite system the partition function cannot havea zero as a function of
the inverse temperatureβ, as it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in thestudy of field
theories. A field theory can be first defined on a lattice and then the lattice spacing
is taken to zero as the correlation length is kept fixed. This continuum limit
corresponds to the thermodynamic limit. In lattice spacingunits the correlation
length is going to infinity, and the interacting field theory can be thought of as a
statistical mechanics model at a phase transition.

For general systems the convergence towards the thermodynamic limit is slow.
If the thermodynamic limit exists for an interaction, the convergence of the free
energy per unit volumef is as an inverse power in the linear dimension of the
system.

f (β)→ 1
n

(K.1)

wheren is proportional toV1/d, with V the volume of thed-dimensional system.
Much better results can be obtained if the system can be described by a transfer
matrix. A transfer matrix is concocted so that the trace of its nth power is exactly
the partition function of the system with one of the dimensions proportional to
n. When the system is described by a transfer matrix then the convergence is
exponential,

f (β)→ e−αn (K.2)

and may only be faster than that if all long-range correlations of the system are
zero — that is, when there are no interactions. The coefficientα depends only on
the inverse correlation length of the system.

One of the difficulties in using the transfer matrix techniques is that theyseem
at first limited to systems with finite range interactions. Phase transitions can
happen only when the interaction is long range. One can try toapproximate the
long range interaction with a series of finite range interactions that have an ever
increasing range. The problem with this approach is that in aformally defined
transfer matrix, not all the eigenvalues of the matrix correspond to eigenvalues of
the system (in the sense that the rate of decay of correlations is not the ratio of
eigenvalues).
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Knowledge of the correlations used in conjunction with finite size scaling
to obtain accurate estimates of the parameters of systems with phase transitions.
(Accurate critical exponents are obtained by series expansions or transfer matrices,
and infrequently by renormalization group arguments or Monte Carlo.) In a phase
transition the coefficient α of the exponential convergence goes to zero and the
convergence to the thermodynamic limit is power-law.

The computation of the partition function is an example of a functional integral.
For most interactions these integrals are ill-defined and require some form of
normalization. In the spin models case the functional integral is very simple,
as “space” has only two points and only “time” being infinite has to be dealt with.
The same problem occurs in the computation of the trace of transfer matrices
of systems with infinite range interactions. If one tries to compute the partition
functionZn

Zn = tr Tn

whenT is an infinite matrix, the result may be infinite for anyn. This is not to
say thatZn is infinite, but that the relation between the trace of an operator and the
partition function breaks down. We could try regularizing the expression, but as
we shall see below, that is not necessary, as there is a betterphysical solution to
this problem.

What will described here solves both of these problems in a limited context:
it regularizes the transfer operator in a physically meaningful way, and as a a
consequence, it allows for the faster than exponential convergence to the thermodynamic
limit and complete determination of the spectrum. The stepsto achieve this are:

• Redefine the transfer operator so that there are no limits involved except for
the thermodynamic limit.

• Note that the divergences of this operator come from the factthat it acts on
a very large space. All that is needed is the smallest subspace containing
the eigenvector corresponding to the largest eigenvalue (the Gibbs state).

• Rewrite all observables as depending on a local effective field. The eigenvector
is like that, and the operator restricted to this space is trace-class.

• Compute the spectrum of the transfer operator and observe the magic.

K.2 Ising models

The Ising model is a simple model to study the cooperative effects of many small
interacting magnetic dipoles. The dipoles are placed on a lattice and their interaction
is greatly simplified. There can also be a field that includes the effects of an
external magnetic field and the average effect of the dipoles among themselves.
We will define a general class of Ising models (also called spin systems) where the
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dipoles can be in one of many possible states and the interactions extend beyond
the nearest neighboring sites of the lattice. But before we extend the Ising model,
we will examine the simplest model in that class.

K.2.1 Ising model

One of the simplest models in statistical mechanics is the Ising model. One
imagines that one has a 1-dimensional lattice with small magnets at each site that
can point either up or down.

.

Each little magnet interacts only with its neighbors. If they both point in the same
direction, then they contribute an energy−J to the total energy of the system; and
if they point in opposite directions, then they contribute+J. The signs are chsen
so that they prefer to be aligned. Let us suppose that we haven small magnets
arranged in a line: A line is drawn between two sites to indicate that there is an
interaction between the small magnets that are located on that site

. (K.3)

(This figure can be thought of as a graph, with sites being vertices and interacting
magnets indicated by edges.) To each of the sites we associate a variable, that we
call a spin, that can be in either of two states: up (↑) or down (↓). This represents
the two states of the small magnet on that site, and in generalwe will use the
notationΣ0 to represent the set of possible values of a spin at any site; all sites
assume the same set of values. A configuration consists of assigning a value to
the spin at each site; a typical configuration is

↓
 ↑
↑
 ↑
 ↓
 ↑
 ↑
 ↓
↓


. (K.4)

The set of all configurations for a lattice withn sites is calledΩn
0 and is formed

by the Cartesian productΩ0 × Ω0 · · · × Ω0, the product repeatedn times. Each
configurationσ ∈ Ωn is a string ofn spins

σ = {σ0, σ1, . . . σn} , (K.5)

In the example configuration (K.4) there are two pairs of spins that have the
same orientation and six that have the opposite orientation. Therefore the total
energyH of the configuration isJ × 6− J × 2 = 4J. In general we can associate
an energyH to every configuration

H(σ) =
∑

i

Jδ(σi , σi+1) , (K.6)
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where

δ(σ1, σ2) =

{

+1 if σ1 = σ2
−1 if σ1 , σ2

. (K.7)

One of the problems that was avoided when computing the energy was what to do
at the boundaries of the 1-dimensional chain. Notice that aswritten, (K.6) requires
the interaction of spinn with spin n + 1. In the absence of phase transitions the
boundaries do not matter much to the thermodynamic limit andwe will connect
the first site to the last, implementing periodic boundary conditions.

Thermodynamic quantities are computed from the partition function Z(n) as
the sizen of the system becomes very large. For example, the free energy per site
f at inverse temperatureβ is given by

− β f (β) = lim
n→∞

1
n

ln Z(n) . (K.8)

The partition functionZ(n) is computed by a sum that runs over all the possible
configurations on the 1-dimensional chain. Each configuration contributes with
its Gibbs factor exp(−βH(σ)) and the partition functionZ(n) is

Z(n)(β) =
∑

σ∈Ωn
0

e−βH(σ) . (K.9)

The partition function can be computed using transfer matrices. This is a
method that generalizes to other models. At first, it is a little mysterious that
matrices show up in the study of a sum. To see where they come from, we can
try and build a configuration on the lattice site by site. The first thing to do is to
expand out the sum for the energy of the configuration

Z(n)(β) =
∑

σ∈Ωn

eβJδ(σ1,σ2)eβJδ(σ2,σ3) · · · eβJδ(σn,σ1) . (K.10)

Let us use the configuration in (K.4). The first site isσ1 =↑. As the second site is
↑, we know that the first term in (K.10) is a termeβJ. The third spin is↓, so the
second term in (K.10) is e−βJ. If the third spin had been↑, then the term would
have beeneβJ but it would not depend on the value of the first spinσ1. This means
that the configuration can be built site by site and that to compute the Gibbs factor
for the configuration just requires knowing the last spin added. We can then think
of the configuration as being a weighted random walk where each step of the walk
contributes according to the last spin added. The random walk take place on the
Markov graph

↓
 ↑
eβJ


e−βJ


e−βJ


eβJ


.
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Choose one of the two sites as a starting point. Walk along anyallowed edge
making your choices randomly and keep track of the accumulated weight as you
perform then steps. To implement the periodic boundary conditions make sure
that you return to the starting node of the Markov graph. If the walk is carried out
in all possible 2n ways then the sum of all the weights is the partition function. To
perform the sum we consider the matrix

T(β) =

[

eβJ e−βJ

e−βJ eβJ

]

. (K.11)

As in chapter10 the sum of all closed walks is given by the trace of powers of the
matrix. These powers can easily be re-expressed in terms of the two eigenvalues
λ1 andλ2 of the transfer matrix:

Z(n)(β) = tr Tn(β) = λ1(β)n + λ2(β)n . (K.12)

K.2.2 Averages of observables

Averages of observables can be re-expressed in terms of the eigenvectors of the
transfer matrix. Alternatively, one can introduce a modified transfer matrix and
compute the averages through derivatives. Sounds familiar?

K.2.3 General spin models

The more general version of the Ising model — the spin models —will be defined
on a regular lattice,ZD. At each lattice site there will be a spin variable that can
assumes a finite number of states identified by the setΩ0.

The transfer operatorT was introduced by Kramers and Wannier [12] to study
the Ising model on a strip and concocted so that the trace of its nth power is the
partition functionZn of system when one of its dimensions isn. The method
can be generalized to deal with any finite-range interaction. If the range of the
interaction isL, thenT is a matrix of size 2L×2L. The longer the range, the larger
the matrix.

K.3 Fisher droplet model

In a series of articles [20], Fisher introduced the droplet model. It is a model for
a system containing two phases: gas and liquid. At high temperatures, the typical
state of the system consists of droplets of all sizes floatingin the gas phase. As the
temperature is lowered, the droplets coalesce, forming larger droplets, until at the
transition temperature, all droplets form one large one. This is a first order phase
transition.
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Although Fisher formulated the model in 3-dimensions, the analytic solution
of the model shows that it is equivalent to a 1-dimensional lattice gas model with
long range interactions. Here we will show how the model can be solved for an
arbitrary interaction, as the solution only depends on the asymptotic behavior of
the interaction.

The interest of the model for the study of cycle expansions isits relation to
intermittency. By having an interaction that behaves asymptotically as the scaling
function for intermittency, one expects that the analytic structure (poles and cuts)
will be same.

Fisher used the droplet model to study a first order phase transition [20].
Gallavotti [21] used it to show that the zeta functions cannot in general be extended
to a meromorphic functions of the entire complex plane. The droplet model has
also been used in dynamical systems to explain features of mode locking, see
Artuso [22]. In computing the zeta function for the droplet model we will discover
that at low temperatures the cycle expansion has a limited radius of convergence,
but it is possible to factorize the expansion into the product of two functions, each
of them with a better understood radius of convergence.

K.3.1 Solution

The droplet model is a 1-dimensional lattice gas where each site can have two
states: empty or occupied. We will represent the empty stateby 0 and the occupied
state by 1. The configurations of the model in this notation are then strings of
zeros and ones. Each configuration can be viewed as groups of contiguous ones
separated by one or more zeros. The contiguous ones represent the droplets in the
model. The droplets do not interact with each other, but the individual particles
within each droplet do.

To determine the thermodynamics of the system we must assignan energy
to every configuration. At very high temperatures we would expect a gaseous
phase where there are many small droplets, and as we decreasethe temperature
the droplets would be expected to coalesce into larger ones until at some point
there is a phase transition and the configuration is dominated by one large drop.
To construct a solvable model and yet one with a phase transition we need long
range interaction among all the particles of a droplet. One choice is to assign a
fixed energyθn for the interactions of the particles of a cluster of sizen. In a
given droplet one has to consider all the possible clusters formed by contiguous
particles. Consider for example the configuration 0111010.It has two droplets,
one of size three and another of size one. The droplet of size one has only one
cluster of size one and therefore contributes to the energy of the configuration with
θ1. The cluster of size three has one cluster of size three, two clusters of size two,
and three clusters of size one; each cluster contributing aθn term to the energy.
The total energy of the configuration is then

H(0111010)= 4θ1 + 2θ2 + 1θ3 . (K.13)
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If there where more zeros around the droplets in the above configuration the
energy would still be the same. The interaction of one site with the others is
assumed to be finite, even in the ground state consisting of a single droplet, so
there is a restriction on the sum of the cluster energies given by

a =
∑

n>0

θn < ∞ . (K.14)

The configuration with all zeros does not contribute to the energy.

Once we specify the functionθn we can computed the energy of any configuration,
and from that determine the thermodynamics. Here we will evaluate the cycle
expansion for the model by first computing the generating function

G(z, β) =
∑

n>0

zn Zn(β)
n

(K.15)

and then considering its exponential, the cycle expansion.Each partition function
Zn must be evaluated with periodic boundary conditions. So if we were computing
Z3 we must consider all eight binary sequences of three bits, and when computing
the energy of a configuration, say 011, we should determine the energy per three
sites of the long chain

. . .011011011011. . .

In this case the energy would beθ2 + 2θ1. If instead of 011 we had considered
one of its rotated shifts, 110 or 101, the energy of the configuration would have
been the same. To compute the partition function we only needto consider one
of the configurations and multiply by the length of the configuration to obtain the
contribution of all its rotated shifts. The factor 1/n in the generating function
cancels this multiplicative factor. This reduction will not hold if the configuration
has a symmetry, as for example 0101 which has only two rotatedshift configurations.
To compensate this we replace the 1/n factor by a symmetry factor 1/s(b) for
each configurationb. The evaluation ofG is now reduced to summing over all
configurations that are not rotated shift equivalent, and wecall these the basic
configurations and the set of all of themB. We now need to evaluate

G(z, β) =
∑

b∈B

z|b|

s(b)
e−βH(b) . (K.16)

The notation| · | represents the cardinality of the set.

Any basic configuration can be built by considering the set ofdroplets that
form it. The smallest building block has size two, as we must also put a zero next
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to the one so that when two different blocks get put next to each other they do not
coalesce. The first few building blocks are

size droplets

2 01
3 001 011
4 0001 0011 0111

(K.17)

Each droplet of sizen contributes with energy

Wn =
∑

1≤k≤n

(n− k+ 1)θk . (K.18)

So if we consider the sum

∑

n≥1

1
n

(

z2e−βH(01) + z3(e−βH(001)+ e−βH(011)) +

+ z4(e−βH(0001)+ e−βH(0011)+ e−βH(0111)) + · · ·
)n

(K.19)

then the power inn will generate all the configurations that are made from many
droplets, while thez will keep track of the size of the configuration. The factor
1/n is there to avoid the over-counting, as we only want the basicconfigurations
and not its rotated shifts. The 1/n factor also gives the correct symmetry factor in
the case the configuration has a symmetry. The sum can be simplified by noticing
that it is a logarithmic series

− ln
(

1− (z2e−βW1 + z3(e−βW1 + e−βW2) + · · ·
)

, (K.20)

where theH(b) factors have been evaluated in terms of the droplet energies Wn.
A proof of the equality of (K.19) and (K.20) can be given , but we there was not
enough space on the margin to write it down. The series that issubtracted from
one can be written as a product of two series and the logarithmwritten as

− ln
(

1− (z1 + z2 + z3 + · · ·)(ze−βW1 + z2e−βW2 + · · ·)
)

(K.21)

The product of the two series can be directly interpreted as the generating function
for sequences of droplets. The first series adds one or more zeros to a configuration
and the second series add a droplet.

There is a whole class of configurations that is not included in the above sum:
the configurations formed from a single droplet and the vacuum configuration.
The vacuum is the easiest, as it has zero energy it only contributes az. The sum
of all the null configurations of all sizes is

∑

n>0

zn

n
. (K.22)

statmech - 1dec2001.tex

APPENDIX K. STATISTICAL MECHANICS RECYCLED 756

The factor 1/n is here because the originalG had them and the null configurations
have no rotated shifts. The single droplet configurations also do not have rotated
shifts so their sum is

∑

n>0

zne−βH(

n
︷   ︸︸   ︷

11. . . 11)

n
. (K.23)

Because there are no zeros in the above configuration clusters of all size exist and
the energy of the configuration isn

∑

θk which we denote byna.

From the three sums (K.21), (K.22), and (K.23) we can evaluate the generating
functionG to be

G(z, β) = − ln(1− z) − ln(1− ze−βa) − ln(1− z
1− z

∑

n≥1

zne−βWn) . (K.24)

The cycle expansionζ−1(z, β) is given by the exponential of the generating
functione−G and we obtain

ζ−1(z, β) = (1− ze−βa)(1− z(1+
∑

n≥1

zne−βWn)) (K.25)

To pursue this model further we need to have some assumptionsabout the
interaction strengthsθn. We will assume that the interaction strength decreases
with the inverse square of the size of the cluster, that is,θn = −1/n2. With this we
can estimate that the energy of a droplet of sizen is asymptotically

Wn ∼ −n+ ln n+ O(
1
n

) . (K.26)

If the power chosen for the polynomially decaying interaction had been other than
inverse square we would still have the droplet term proportional ton, but there
would be no logarithmic term, and theO term would be of a different power.
The term proportional ton survives even if the interactions falls off exponentially,
and in this case the correction is exponentially small in theasymptotic formula.
To simplify the calculations we are going to assume that the droplet energies are
exactly

Wn = −n+ ln n (K.27)

in a system of units where the dimensional constants are one.To evaluate the
cycle expansion (K.25) we need to evaluate the constanta, the sum of all theθn.
One can write a recursion for theθn

θn =Wn −
∑

1≤k<n

(n− k+ 1)θk (K.28)
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and with an initial choice forθ1 evaluate all the others. It can be verified that
independent of the choice ofθ1 the constanta is equal to the number that multiplies
then term in (K.27). In the units used

a = −1 . (K.29)

For the choice of droplet energy (K.27) the sum in the cycle expansion can be
expressed in terms of a special function: the Lerch transcendentalφL. It is defined
by

φL(z, s, c) =
∑

n≥0

zn

(n+ c)s , (K.30)

excluding from the sum any term that has a zero denominator. The Lerch function
converges for|z| < 1. The series can be analytically continued to the complex
plane and it will have a branch point atz = 1 with a cut chosen along the
positive real axis. In terms of Lerch transcendental function we can write the
cycle expansion (K.25) using (K.27) as

ζ−1(z, β) =
(

1− zeβ
) (

1− z(1+ φL(zeβ, β, 1))
)

(K.31)

This serves as an example of a zeta function that cannot be extended to a meromorphic
function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the smallest root of
(K.31). The root can come from any of the two factors. For large value ofβ (low
temperatures) the smallest root is determined from the (1−zeβ) factor, which gave
the contribution of a single large drop. For smallβ (large temperatures) the root is
determined by the zero of the other factor, and it corresponds to the contribution
from the gas phase of the droplet model. The transition occurs when the smallest
root of each of the factors become numerically equal. This determines the critical
temperatureβc through the equation

1− e−βc(1+ ζR(βc)) = 0 (K.32)

which can be solved numerically. One finds thatβc = 1.40495. The phase
transition occurs because the roots from two different factors get swapped in their
roles as the smallest root. This in general leads to a first order phase transition.
For largeβ the Lerch transcendental is being evaluated at the branch point, and
therefore the cycle expansion cannot be an analytic function at low temperatures.
For large temperatures the smallest root is within the radius of convergence of
the series for the Lerch transcendental, and the cycle expansion has a domain of
analyticity containing the smallest root.

As we approach the phase transition point as a function ofβ the smallest
root and the branch point get closer together until at exactly the phase transition
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they collide. This is a sufficient condition for the existence of a first order phase
transitions. In the literature of zeta functions [19] there have been speculations on
how to characterize a phase transition within the formalism. The solution of the
Fisher droplet model suggests that for first order phase transitions the factorized
cycle expansion will have its smallest root within the radius of convergence of one
of the series except at the phase transition when the root collides with a singularity.
This does not seem to be the case for second order phase transitions.

The analyticity of the cycle expansion can be restored if we consider separate
cycle expansions for each of the phases of the system. If we separate the two terms
of ζ−1 in (K.31), each of them is an analytic function and contains the smallest root
within the radius of convergence of the series for the relevant β values.

K.4 Scaling functions

There is a relation between general spin models and dynamical system. If one
thinks of the boxes of the Markov partition of a hyperbolic system as the states
of a spin system, then computing averages in the dynamical system is carrying
out a sum over all possible states. One can even construct thenatural measure of
the dynamical system from a translational invariant “interaction function” call the
scaling function.

There are many routes that lead to an explanation of what a scaling function
is and how to compute it. The shortest is by breaking away fromthe historical
development and considering first the presentation function of a fractal. The
presentation function is a simple chaotic dynamical system(hyperbolic, unlike
the circle map) that generates the fractal and is closely related to the definition
of fractals of Hutchinson [23] and the iterated dynamical systems introduced by
Barnsley and collaborators [12]. From the presentation function one can derive
the scaling function, but we will not do it in the most elegantfashion, rather we
will develop the formalism in a form that is directly applicable to the experimental
data.

In the upper part of figureK.1 we have the successive steps of the construction
similar to the middle third Cantor set. The construction is done in levels, each
level being formed by a collection of segments. From one level to the next, each
“parent” segment produces smaller “children” segments by removing the middle
section. As the construction proceeds, the segments betterapproximate the Cantor
set. In the figure not all the segments are the same size, some are larger and some
are smaller, as is the case with multifractals. In the middlethird Cantor set, the
ratio between a segment and the one it was generated from is exactly 1/3, but in
the case shown in the figure the ratios differ from 1/3. If we went through the last
level of the construction and made a plot of the segment number and its ratio to
its parent segment we would have a scaling function, as indicated in the figure.
A function giving the ratios in the construction of a fractalis the basic idea for a
scaling function. Much of the formalism that we will introduce is to be able to
give precise names to every segments and to arrange the “lineage” of segments
so that the children segments have the correct parent. If we do not take these
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Figure K.1: Construction of the steps of the scaling
function from a Cantor set. From one level to the
next in the construction of the Cantor set the covers
are shrunk, each parent segment into two children
segments. The shrinkage of the last level of the
construction is plotted and by removing the gaps one
has an approximation to the scaling function of the
Cantor set.
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Figure K.2: A Cantor set presentation function. The
Cantor set is the set of all points that under iteration do
not leave the interval [0,1]. This set can be found by
backwards iterating the gap between the two branches
of the map. The dotted lines can be used to find these
backward images. At each step of the construction one
is left with a set of segments that form a cover of the
Cantor set.
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precautions, the scaling function would be a “wild function,” varying rapidly and
not approximated easily by simple functions.

To describe the formalism we will use a variation on the quadratic map that
appears in the theory of period doubling. This is because thecombinatorial manipulations
are much simpler for this map than they are for the circle map.The scaling
function will be described for a one dimensional mapF as shown in figureK.2.
Drawn is the map

F(x) = 5x(1− x) (K.33)

restricted to the unit interval. We will see that this map is also a presentation
function.

It has two branches separated by a gap: one over the left portion of the unit
interval and one over the right. If we choose a pointx at random in the unit
interval and iterate it under the action of the mapF, (K.33), it will hop between the
branches and eventually get mapped to minus infinity. An orbit point is guaranteed
to go to minus infinity if it lands in the gap. The hopping of thepoint defines the
orbit of the initial pointx: x 7→ x1 7→ x2 7→ · · ·. For each orbit of the mapF we
can associate a symbolic code. The code for this map is formedfrom 0s and 1s
and is found from the orbit by associating a 0 ifxt < 1/2 and a 1 ifxt > 1/2, with
t = 0, 1, 2, . . ..

Most initial points will end up in the gap region between the two branches.
We then say that the orbit point has escaped the unit interval. The points that do
not escape form a Cantor setC (or Cantor dust) and remain trapped in the unit
interval for all iterations. In the process of describing all the points that do not
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escape, the mapF can be used as a presentation of the Cantor setC, and has been
called a presentation function by Feigenbaum [13].

How does the mapF “present” the Cantor set? The presentation is done in
steps. First, we determine the points that do not escape the unit interval in one
iteration of the map. These are the points that are not part ofthe gap. These points
determine two segments, which are an approximation to the Cantor set. In the
next step we determine the points that do not escape in two iterations. These are
the points that get mapped into the gap in one iteration, as inthe next iteration
they will escape; these points form the two segments∆(1)

0 and∆(1)
1 at level 1 in

figure K.2. The processes can be continued for any number of iterations. If we
observe carefully what is being done, we discover that at each step the pre-images
of the gap (backward iterates) are being removed from the unit interval. As the
map has two branches, every point in the gap has two pre-images, and therefore
the whole gap has two pre-images in the form of two smaller gaps. To generate all
the gaps in the Cantor set one just has to iterate the gap backwards. Each iteration
of the gap defines a set of segments, with thenth iterate defining the segments
∆

(n)
k at leveln. For this map there will be 2n segments at leveln, with the first few

drawn in figureK.2. As n → ∞ the segments that remain for at leastn iterates
converge to the Cantor setC.

The segments at one level form a cover for the Cantor set and itis from a cover
that all the invariant information about the set is extracted (the cover generated
from the backward iterates of the gap form a Markov partitionfor the map as a
dynamical system). The segments{∆(n)

k } at leveln are a refinement of the cover
formed by segments at leveln − 1. From successive covers we can compute the
trajectory scaling function, the spectrum of scalingsf (α), and the generalized
dimensions.

To define the scaling function we must give labels (names) to the segments.
The labels are chosen so that the definition of the scaling function allows for
simple approximations. As each segment is generated from aninverse image
of the unit interval, we will consider the inverse of the presentation functionF.
BecauseF does not have a unique inverse, we have to consider restrictions ofF.
Its restriction to the first half of the segment, from 0 to 1/2, has a unique inverse,
which we will call F−1

0 , and its restriction to the second half, from 1/2 to 1, also
has a unique inverse, which we will callF−1

1 . For example, the segment labeled
∆(2)(0, 1) in figureK.2 is formed from the inverse image of the unit interval by
mapping∆(0), the unit interval, withF−1

1 and thenF−1
0 , so that the segment

∆(2)(0, 1) = F−1
0

(

F−1
1

(

∆(0)
))

. (K.34)

The mapping of the unit interval into a smaller interval is what determines its
label. The sequence of the labels of the inverse maps is the label of the segment:

∆(n)(ǫ1, ǫ2, . . . , ǫn) = F−1
ǫ1
◦ F−1

ǫ2
◦ · · · F−1

ǫn

(

∆(0)
)

.

The scaling function is formed from a set of ratios of segments length. We use
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| · | around a segment∆(n)(ǫ) to denote its size (length), and define

σ(n)(ǫ1, ǫ2, . . . , ǫn) =
|∆(n)(ǫ1, ǫ2, . . . , ǫn)|
|∆(n−1)(ǫ2, . . . , ǫn)| .

We can then arrange the ratiosσ(n)(ǫ1, ǫ2, . . . , ǫn) next to each other as piecewise
constant segments in increasing order of their binary labelǫ1, ǫ2, . . . , ǫn so that the
collection of steps scan the unit interval. Asn → ∞ this collection of steps will
converge to the scaling function.

K.5 Geometrization

TheL operator is a generalization of the transfer matrix. It getsmore by considering
less of the matrix: instead of considering the whole matrix it is possible to consider
just one of the rows of the matrix. TheL operator also makes explicit the vector
space in which it acts: that of the observable functions. Observables are functions
that to each configuration of the system associate a number: the energy, the
average magnetization, the correlation between two sites.It is in the average
of observables that one is interested in. Like the transfer matrix, theL operator
considers only semi-infinite systems, that is, only the partof the interaction between
spins to the right is taken into account. This may sound un-symmetric, but it
is a simple way to count each interaction only once, even in cases where the
interaction includes three or more spin couplings. To definetheL operator one
needs the interaction energy between one spin and all the rest to its right, which is
given by the functionφ. TheL operators defined as

Lg(σ) =
∑

σ0∈Ω0

g(σ0σ)e−βφ(σ0σ) .

To each possible value inΩ0 that the spinσ0 can assume, an average of the
observableg is computed weighed by the Boltzmann factore−βφ. The formal
relations that stem from this definition are its relation to the free energy when
applied to the observableι that returns one for any configuration:

−β f (β) = lim
n→∞

1
n

ln ‖Lnι‖

and the thermodynamic average of an observable

〈g〉 = lim
n→∞
‖Lng‖
‖Lnι‖ .

Both relations hold for almost all configurations. These relations are part of
theorem of Ruelle that enlarges the domain of the Perron-Frobenius theorem and
sharpens its results. The theorem shows that just as the transfer matrix, the largest
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eigenvalue of theL operator is related to the free-energy of the spin system. Italso
hows that there is a formula for the eigenvector related to the largest eigenvalue.
This eigenvector|ρ〉 (or the corresponding one for the adjointL∗ ofL) is the Gibbs
state of the system. From it all averages of interest in statistical mechanics can be
computed from the formula

〈g〉 = 〈ρ|g|ρ〉 .

The Gibbs state can be expressed in an explicit form in terms of the interactions,
but it is of little computational value as it involves the Gibbs state for a related spin
system. Even then it does have an enormous theoretical value. Later we will see
how the formula can be used to manipulate the space of observables into a more
convenient space.

The geometrization of a spin system converts the shift dynamics (necessary
to define the Ruelle operator) into a smooth dynamics. This isequivalent to the
mathematical problem in ergodic theory of finding a smooth embedding for a
given Bernoulli map.

The basic idea for the dynamics is to establish the a set of maps Fσk such that

Fσk(0) = 0

and

Fσ1 ◦ Fσ2 ◦ · · · ◦ Fσn(0) = φ(+, σ1, σ2, . . . , σn,−,−, . . .) .

This is a formal relation that expresses how the interactionis to be converted into
a dynamical systems. In most examplesFσk is a collection of maps from a subset
of RD to itself.

If the interaction is complicated, then the dimension of theset of maps may
be infinite. If the resulting dynamical system is infinite have we gained anything
from the transformation? The gain in this case is not in termsof added speed of
convergence to the thermodynamic limit, but in the fact thatthe Ruelle operator
is of trace-class and all eigenvalues are related to the spinsystem and not artifacts
of the computation.

The construction of the higher dimensional system is done byborrowing the
state space reconstruction technique from dynamical systems. State space reconstruction
can be done in several ways: by using delay coordinates, by using derivatives of
the position, or by considering the value of several independent observables of
the system. All these may be used in the construction of the equivalent dynamics.
Just as in the study of dynamical systems, the exact method does not matter for
the determination of the thermodynamics (f (α) spectra, generalized dimension),
also in the construction of the equivalent dynamics the exact choice of observable
does not matter.
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We will only consider configurations for the half line. This is because for
translational invariant interactions the thermodynamic limit on half line is the
same as in the whole line. One can prove this by considering the difference in
a thermodynamic average in the line and in the semiline and compare the two as
the size of the system goes to infinity.

When the interactions are long range in principle one has to specify the boundary
conditions to be able to compute the interaction energy of a configuration in
a finite box. If there are no phase transitions for the interaction, then which
boundary conditions are chosen is irrelevant in the thermodynamic limit. When
computing quantities with the transfer matrix, the long range interaction is truncated
at some finite range and the truncated interaction is then useto evaluate the transfer
matrix. With the Ruelle operator the interaction is never truncated, and the boundary
must be specified.

The interactionφ(σ) is any function that returns a number on a configuration.
In general it is formed from pairwise spin interactions

φ(σ) =
∑

n>0

δσ0,σn J(n)

with different choices ofJ(n) leading to different models. IfJ(n) = 1 only if n = 1
and ) otherwise, then one has the nearest neighbor Ising model. If J(n) = n−2, then
one has the inverse square model relevant in the study of the Kondo problem.

Let us say that each site of the lattice can assume two values+,− and the set
of all possible configurations of the semiline is the setΩ. Then an observableg
is a function from the set of configurationsΩ to the reals. Each configuration is
indexed by the integers from 0 up, and it is useful to think of the configuration as
a string of spins. One can append a spinη0 to its beginning,η ∨ σ, in which case
η is at site 0,ω0 at site 1, and so on.

The Ruelle operatorL is defined as

Lg(η) =
∑

ω0∈Ω0

g(ω0 ∨ η)e−βφ(ω0∨η) .

This is a positive and bounded operator over the space of bounded observables.
There is a generalization of the Perron-Frobenius theorem by Ruelle that establishes
that the largest eigenvalue ofL is isolated from the rest of the spectrum and gives
the thermodynamics of the spin system just as the largest eigenvalue of the transfer
matrix does. Ruelle also gave a formula for the eigenvector related to the largest
eigenvalue.

The difficulty with it is that the relation between the partition function and the
trace of itsnth power, trLn = Zn no longer holds. The reason is that the trace of
the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observables{x1(σ), . . . , x1(σ)}. The idea
is to choose the observables in such a way that from their values on a particular
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configurationσ the configuration can be reconstructed. We also introduce the
interaction observableshσ0.

To geometrize spin systems, the interactions are assumed tobe translationally
invariant. The spinsσk will only assume a finite number of values. For simplicity,
we will take the interactionφ among the spins to depend only on pairwise interactions,

φ(σ) = φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑

n>0

δσ0,σn J1(n) , (K.35)

and limitσk to be in{+,−}. For the 1-dimensional Ising model,J0 is the external
magnetic field andJ1(n) = 1 if n = 1 and 0 otherwise. For an exponentially
decaying interactionJ1(n) = e−αn. Two- and 3-dimensional models can be considered
in this framework. For example, a strip of spins ofL × ∞ with helical boundary
conditions is modeled by the potentialJ1(n) = δn,1 + δn,L.

The transfer operatorT was introduced by Kramers and Wannier [12] to study
the Ising model on a strip and concocted so that the trace of its nth power is the
partition functionZn of system when one of its dimensions isn. The method can be
generalized to deal with any finite-range interaction. If the range of the interaction
is L, thenT is a matrix of size 2L×2L. The longer the range, the larger the matrix.
When the range of the interaction is infinite one has to define theT operator by
its action on an observableg. Just as the observables in quantum mechanics,g
is a function that associates a number to every state (configuration of spins). The
energy density and the average magnetization are examples of observables. From
this equivalent definition one can recover the usual transfer matrix by making all
quantities finite range. For a semi-infinite configurationσ = {σ0, σ1, . . .}:

Tg(σ) = g(+ ∨ σ)e−βφ(+∨σ) + g(− ∨ σ)e−βφ(−∨σ) . (K.36)

By + ∨ σ we mean the configuration obtained by prepending+ to the beginning
of σ resulting in the configuration{+, σ0, σ1, . . .}. When the range becomes
infinite, trT n is infinite and there is no longer a connection between the trace
and the partition function for a system of sizen (this is a case where matrices give
the wrong intuition). Ruelle [13] generalized the Perron-Frobenius theorem and
showed that even in the case of infinite range interactions the largest eigenvalue of
theT operator is related to the free-energy of the spin system andthe corresponding
eigenvector is related to the Gibbs state. By applyingT to the constant observable
u, which returns 1 for any configuration, the free energy per site f is computed as

− β f (β) = lim
n→∞

1
n

ln ‖T nu‖ . (K.37)

To construct a smooth dynamical system that reproduces the properties of
T , one uses the phase space reconstruction technique of Packard et al. [6] and
Takens [7], and introduces a vector of state observablesx(σ) = {x1(σ), . . . , xD(σ)}.
To avoid complicated notation we will limit the discussion to the examplex(σ) =
{x+(σ), x−(σ)}, with x+(σ) = φ(+ ∨ σ) andx−(σ) = φ(− ∨ σ); the more general
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case is similar and used in a later example. The observables are restricted to those
g for which, for all configurationsσ, there exist an analytic functionG such that
G(x1(σ), . . . , xD(σ)) = g(σ). This at first seems a severe restriction as it may
exclude the eigenvector corresponding to the Gibbs state. It can be checked that
this is not the case by using the formula given by Ruelle [14] for this eigenvector.
A simple example where this formalism can be carried out is for the interaction
φ(σ) with pairwise exponentially decaying potentialJ1(n) = an (with |a| < 1). In
this caseφ(σ) =

∑

n>0 δσ0,σna
n and the state observables arex+(σ) =

∑

n>0 δ+,σna
n

and x−(σ) =
∑

n>0 δ−,σna
n. In this case the observablex+ gives the energy of+

spin at the origin, andx− the energy of a− spin.

Using the observablesx+ andx−, the transfer operator can be re-expressed as

TG (x(σ)) =
∑

η∈{+,−}
G (x+ (η ∨ σ) , x− (η ∨ σ)) e−βxη(σ) . (K.38)

In this equation the only reference to the configurationσ is when computing the
new observable valuesx+(η ∨ σ) andx−(η ∨ σ). The iteration of the function that
gives these values in terms ofx+(σ) andx−(σ) is the dynamical system that will
reproduce the properties of the spin system. For the simple exponentially decaying
potential this is given by two maps,F+ andF−. The mapF+ takes{x+(σ), x+(σ)}
into {x+(+∨σ), x−(+∨σ)} which is{a(1+ x+), ax−} and the mapF− takes{x+, x−}
into {ax+, a(1 + x−)}. In a more general case we have mapsFη that takex(σ) to
x(η ∨ σ).

We can now define a new operatorL

LG (x)
def
= TG(x(σ)) =

∑

η∈{+,−}
G

(

Fη(x)
)

e−βxη , (K.39)

where all dependencies onσ have disappeared — if we know the value of the state
observablesx, the action ofL onG can be computed.

A dynamical system is formed out of the mapsFη. They are chosen so
that one of the state variables is the interaction energy. One can consider the
two mapsF+ and F− as the inverse branches of a hyperbolic mapf , that is,
f −1(x) = {F+(x), F−(x)}. Studying the thermodynamics of the interactionφ is
equivalent to studying the long term behavior of the orbits of the mapf , achieving
the transformation of the spin system into a dynamical system.

Unlike the original transfer operator, theL operator — acting in the space
of observables that depend only on the state variables — is oftrace-class (its
trace is finite). The finite trace gives us a chance to relate the trace ofLn to the
partition function of a system of sizen. We can do better. As most properties of
interest (thermodynamics, fall-off of correlations) are determined directly from its
spectrum, we can study instead the zeros of the Fredholm determinant det (1−zL)
by the technique of cycle expansions developed for dynamical systems [2]. A
cycle expansion consists of finding a power series expansionfor the determinant
by writing det (1− zL) = exp(tr ln(1− zL)). The logarithm is expanded into a
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power series and one is left with terms of the form trLn to evaluate. For evaluating
the trace, theL operator is equivalent to

LG(x) =
∫

RD
dyδ(y − f (x))e−βyG(y) (K.40)

from which the trace can be computed:

trLn =
∑

x= f (◦n)(x)

e−βH(x)

|det
(
1− ∂x f (◦n)(x)

) | (K.41)

with the sum running over all the fixed points off (◦n) (all spin configurations of a
given length). Heref (◦n) is f composed with itselfn times, andH(x) is the energy
of the configuration associated with the pointx. In practice the mapf is never
constructed and the energies are obtained directly from thespin configurations.

To compute the value of trLn we must compute the value of∂x f (◦n); this
involves a functional derivative. To any degree of accuracya numberx in the
range of possible interaction energies can be represented by a finite string of spins
ǫ, such asx = φ(+, ǫ0, ǫ1, . . . ,−, −, . . .). By choosing the sequenceǫ to have a
large sequence of spins−, the numberx can be made as small as needed, so in
particular we can represent a small variation byφ(η). As x+(ǫ) = φ(+ ∨ ǫ), from
the definition of a derivative we have:

∂x f (x) = lim
m→∞

φ(ǫ ∨ η(m)) − φ(ǫ)

φ(η(m))
, (K.42)

whereη(m) is a sequence of spin strings that makeφ(η(m)) smaller and smaller. By
substituting the definition ofφ in terms of its pairwise interactionJ(n) = nsanγ

and taking the limit for the sequencesη(m) = {+,−,−, . . . , ηm+1, ηm+2, . . .} one
computes that the limit isa if γ = 1, 1 if γ < 1, and 0 ifγ > 1. It does not
depend on the positive value ofs. Whenγ < 1 the resulting dynamical system is
not hyperbolic and the construction for the operatorL fails, so one cannot apply
it to potentials such as (1/2)

√
n. One may solve this problem by investigating the

behavior of the formal dynamical system asγ→ 0.

The manipulations have up to now assumed that the mapf is smooth. If
the dimensionD of the embedding space is too small,f may not be smooth.
Determining under which conditions the embedding is smoothis a complicated
question [15]. But in the case of spin systems with pairwise interactionsit is
possible to give a simple rule. If the interaction is of the form

φ(σ) =
∑

n≥1

δσ0,σn

∑

k

pk(n)anγ
k (K.43)

where pk are polynomials and|ak| < 1, then the state observables to use are
xs,k(σ) =

∑
δ+,σnn

san
k. For eachk one usesx0,k, x1,k, . . . up to the largest power
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Figure K.3: The spin adding mapF+ for the potential
J(n) =

∑

n2aαn. The action of the map takes the
value of the interaction energy between+ and the semi-
infinite configuration{σ1, σ2, σ3, . . .} and returns the
interaction energy between+ and the configuration
{+, σ1, σ2, σ3, . . .}.
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Figure K.4: Number of digits for the Fredholm
method (•) and the transfer function method (×).
The size refers to the largest cycle considered in the
Fredholm expansions, and the truncation length in the
case of the transfer matrix.

ⓕ ⓕ

ⓕ

ⓕ
ⓕ

ⓕ

ⓕ
ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

ⓕ

b

b b
b
b
b
b
b
b
b
b
b
b
b
b
b

0 5 10 15 20
-10

-8

-6

-4

-2

0

size

di
gi

ts

in the polynomialpk. An example is the interaction withJ1(n) = n2(3/10)n. It
leads to a 3-dimensional system with variablesx0,0, x1,0, and x2,0. The action
of the mapF+ for this interaction is illustrated figureK.3. Plotted are the pairs
{φ(+∨σ), φ(+∨+∨σ)}. This can be seen as the strange attractor of a chaotic system
for which the variablesx0,0, x1,0, andx2,0 provide a good (analytic) embedding.

The added smoothness and trace-class of theL operator translates into faster
convergence towards the thermodynamic limit. As the reconstructed dynamics is
analytic, the convergence towards the thermodynamic limitis faster than exponential [17,
16]. We will illustrate this with the polynomial-exponentialinteractions (K.43)
with γ = 1, as the convergence is certainly faster than exponential if γ > 1,
and the case ofan has been studied in terms of another Fredholm determinant by
Gutzwiller [17]. The convergence is illustrated in figureK.4 for the interaction
n2(3/10)n. Plotted in the graph, to illustrate the transfer matrix convergence, are
the number of decimal digits that remain unchanged as the range of the interaction
is increased. Also in the graph are the number of decimal digits that remain
unchanged as the largest power of trLn considered. The plot is effectively a
logarithmic plot and straight lines indicate exponentially fast convergence. The
curvature indicates that the convergence is faster than exponential. By fitting, one
can verify that the free energy is converging to its limitingvalue as exp(−n(4/3)).
Cvitanović [17] has estimated that the Fredholm determinant of a map on aD
dimensional space should converge as exp(−n(1+1/D)), which is confirmed by these
numerical simulations.
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Résum é

The geometrization of spin systems strengthens the connection between statistical
mechanics and dynamical systems. It also further establishes the value of the
Fredholm determinant of theL operator as a practical computational tool with
applications to chaotic dynamics, spin systems, and semiclassical mechanics. The
example above emphasizes the high accuracy that can be obtained: by computing
the shortest 14 periodic orbits of period 5 or less it is possible to obtain three digit
accuracy for the free energy. For the same accuracy with a transfer matrix one
has to consider a 256× 256 matrix. This make the method of cycle expansions
practical for analytic calculations.

Commentary

Remark K.1 Presentation functions. The best place to read about Feigenbaum’s
work is in his review article published inLos Alamos Science(reproduced in various
reprint collections and conference proceedings, such as ref. [5]). Feigenbaum’sJournal
of Statistical Physicsarticle [13] is the easiest place to learn about presentation functions.

Remark K.2 Interactions are smooth In most computational schemes for thermodynamic
quantities the translation invariance and the smoothness of the basic interaction are never
used. In Monte Carlo schemes, aside from the periodic boundary conditions, the interaction
can be arbitrary. In principle for each configuration it could be possible to have a different
energy. Schemes such as the Sweneson-Wang cluster flipping algorithm use the fact that
interaction is local and are able to obtain dramatic speed-ups in the equilibration time for
the dynamical Monte Carlo simulation. In the geometrization program for spin systems,
the interactions are assumed translation invariant and smooth. The smoothness means
that any interaction can be decomposed into a series of termsthat depend only on the spin
arrangement and the distance between spins:

φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑

δ(σ0, σn)J1(n) +
∑

δ(σ0, σn1, σn2)J2(n1, n2) + · · ·

where theJk are symmetric functions of their arguments and theδ are arbitrary discrete
functions. This includes external constant fields (J0), but it excludes site dependent fields
such as a random external magnetic field.

Exercises

K.1. Not all Banach spaces are also Hilbert. If we are
given a norm‖·‖ of a Banach spaceB, it may be possible

to find an inner product〈· , · 〉 (so thatB is also a Hilbert

exerStatmech - 16aug99.tex
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spaceH) such that for all vectorsf ∈ B, we have

‖ f ‖ = 〈 f , f 〉1/2 .

This is the norm induced by the scalar product. If we
cannot find the inner product how do we know that
we just are not being clever enough? By checking the
parallelogram law for the norm. A Banach space can be
made into a Hilbert space if and only if the norm satisfies
the parallelogram law. The parallelogram law says that
for any two vectorsf andg the equality

‖ f + g‖2 + ‖ f − g‖2 = 2‖ f ‖2 + 2‖g‖2 ,

must hold.

Consider the space of bounded observables with the
norm given by‖a‖ = supσ∈ΩN |a(σ)|. Show that there
is no scalar product that will induce this norm.

K.2. Automaton for a droplet. Find the Markov
graph and the weights on the edges so that the energies
of configurations for the droplet model are correctly
generated. For any string starting in zero and ending
in zero your diagram should yield a configuration the
weighteH(σ), with H computed along the lines of (K.13)
and (K.18).

Hint: the Markov graph is infinite.

K.3. Spectral determinant for an interactions Compute
the spectral determinant for 1-dimensional Ising model
with the interaction

φ(σ) =
∑

k>0

akδ(σ0, σk) .

Takea as a number smaller than 1/2.

(a) What is the dynamical system this generates? That
is, findF+ andF− as used in (K.39).

(b) Show that

d
dx

F{+ or−} =

[

a 0
0 a

]

K.4. Ising model on a thin strip Compute the transfer
matrix for the Ising model defined on the graph

Assume that whenever there is a bond connecting two
sites, there is a contributionJδ(σi , σ j) to the energy.

K.5. Infinite symbolic dynamics Let σ be a function that
returns zero or one for every infinite binary string:σ :
{0, 1}N → {0, 1}. Its value is represented byσ(ǫ1, ǫ2, . . .)
where theǫi are either 0 or 1. We will now define an
operatorT that acts on observables on the space of
binary strings. A functiona is an observable if it has
bounded variation, that is, if

‖a‖ = sup
{ǫi }
|a(ǫ1, ǫ2, . . .)| < ∞ .

For these functions

Ta(ǫ1, ǫ2, . . .) = a(0, ǫ1, ǫ2, . . .)σ(0, ǫ1, ǫ2, . . .) + a(1, ǫ1,

The functionσ is assumed such that any ofT ’s “matrix
representations” in (a) have the Markov property (the
matrix, if read as an adjacency graph, corresponds to
a graph where one can go from any node to any other
node).

(a) (easy) Consider a finite versionTn of the operator
T :

Tna(ǫ1, ǫ2, . . . , ǫn) =

a(0, ǫ1, ǫ2, . . . , ǫn−1)σ(0, ǫ1, ǫ2, . . . , ǫn−1) +

a(1, ǫ1, ǫ2, . . . , ǫn−1)σ(1, ǫ1, ǫ2, . . . , ǫn−1) .

Show thatTn is a 2n × 2n matrix. Show that its
trace is bounded by a number independent ofn.

(b) (medium) With the operator norm induced by the
function norm, show thatT is a bounded operator.

(c) (hard) Show thatT is not trace-class. (Hint: check
if T is compact).

Classes of operators are nested; trace-class≤ compact≤
bounded.
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Appendix L

Noise/quantum corrections

(G. Vattay)

T G   is only a good approximation to the quantum
mechanics when~ is small. Can we improve the trace formula by adding
quantum corrections to the semiclassical terms? A similar question can

be posed when the classical deterministic dynamics is disturbed by some way
Gaussian white noise with strengthD. The deterministic dynamics then can be
considered as the weak noise limitD → 0. The effect of the noise can be taken
into account by adding noise corrections to the classical trace formula. A formal
analogy exists between the noise and the quantum problem. This analogy allows
us to treat the noise and quantum corrections together.

L.1 Periodic orbits as integrable systems

From now on, we use the language of quantum mechanics, since it is more convenient
to visualize the results there. Where it is necessary we willdiscuss the difference
between noise and quantum cases.

First, we would like to introduce periodic orbits from an unusual point of
view, which can convince you, that chaotic and integrable systems are in fact
not as different from each other, than we might think. If we start orbitsin the
neighborhood of a periodic orbit and look at the picture on the Poincaré section
we can see a regular picture. For stable periodic orbits the points form small
ellipses around the center and for unstable orbits they formhyperbolas (See Fig.
L.1).

The motion close to a periodic orbits is regular in both cases. This is due to
the fact, that we can linearize the Hamiltonian close to an orbit, and linear systems

Figure L.1: Poincaré section close to a stable and an unstable periodicorbit
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are always integrable. The linearized Hamilton’s equations close to the periodic
orbit (qp(t) + q, pp(t) + p) look like

q̇ = +∂2
pqH(qp(t), pp(t))q+ ∂2

ppH(qp(t), pp(t))p, (L.1)

ṗ = −∂2
qqH(qp(t), pp(t))q− ∂2

qpH(qp(t), pp(t))p, (L.2)

where the new coordinatesq andp are relative to a periodic orbit. This linearized
equation can be regarded as ad dimensional oscillator with time periodic frequencies.
These equations are representing the equation of motion in aredundant way since
more than one combination ofq, p and t determines the same point of the phase
space. This can be cured by an extra restriction on the variables, a constraint the
variables should fulfill. This constraint can be derived from the time independence
or stationarity of the full Hamiltonian

∂tH(qp(t) + q, pp(t) + p) = 0. (L.3)

Using the linearized form of this constraint we can eliminate one of the linearized
equations. It is very useful, although technically difficult, to do one more transformation
and to introduce a coordinate, which is parallel with the Hamiltonian flow (x‖)
and others which are orthogonal. In the orthogonal directions we again get linear
equations. These equations withx‖ dependent rescaling can be transformed into
normal coordinates, so that we get tiny oscillators in the new coordinates with
constant frequencies. This result has first been derived by Poincaré for equilibrium
points and later it was extended for periodic orbits by V.I. Arnol’d and co-workers.
In the new coordinates, the Hamiltonian reads as

H0(x‖, p‖, xn, pn) =
1
2

p2
‖ + U(x‖) +

d−1∑

n=1

1
2

(p2
n ± ω2

nx2
n), (L.4)

which is the general form of the Hamiltonian in the neighborhood of a periodic
orbit. The± sign denotes, that for stable modes the oscillator potential is positive
while for an unstable mode it is negative. For the unstable modes,ω is the
Lyapunov exponent of the orbit

ωn = lnΛp,n/Tp, (L.5)

whereΛp,n is the expanding eigenvalue of the Jacobi matrix. For the stable
directions the eigenvalues of the Jacobi matrix are connected withω as

Λp,n = e−iωnTp. (L.6)

The Hamiltonian close to the periodic orbit is integrable and can be quantized by
the Bohr-Sommerfeld rules. The result of the Bohr-Sommerfeld quantization for
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the oscillators gives the energy spectra

En = ~ωn

(

jn +
1
2

)

for stable modes, (L.7)

En = −i~ωn

(

jn +
1
2

)

for unstable modes,

where jn = 0, 1, .... It is convenient to introduce the indexsn = 1 for stable and
sn = −i for unstable directions. The parallel mode can be quantizedimplicitly
trough the classical action function of the mode:

1
2π

∮

p‖dx‖ =
1
2π

S‖(Em) = ~
(

m+
mpπ

2

)

, (L.8)

wheremp is the topological index of the motion in the parallel direction. This
latter condition can be rewritten by a very useful trick intothe equivalent form

(1− eiS‖(Em)/~−impπ/2) = 0. (L.9)

The eigen-energies of a semiclassically quantized periodic orbit are all the possible
energies

E = Em +

d−1∑

n=1

En. (L.10)

This relation allows us to change in (L.9) Em with the full energy minus the
oscillator energiesEm = E−∑

n En. All the possible eigenenergies of the periodic
orbit then are the zeroes of the expression

∆p(E) =
∏

j1,..., jd−1

(1− eiS‖(E−
∑

n ~snωn( jn+1/2))/~−impπ/2). (L.11)

If we Taylor expand the action aroundE to first order

S‖(E + ǫ) ≈ S‖(E) + T(E)ǫ, (L.12)

whereT(E) is the period of the orbit, and use the relations ofω and the eigenvalues
of the Jacobi matrix, we get the expression of the Selberg product

∆p(E) =
∏

j1,..., jd−1




1− eiSp(E)/~−impπ/2

∏

nΛ
(1/2+ jn)
p,n




. (L.13)

If we use the right convention for the square root we get exactly thed dimensional
expression of the Selberg product formula we derived from the Gutzwiller trace
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formula in ? . Just here we derived it in a different way! The function∆p(E) is
the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to construct a function
which is zero, whenever the energy coincides with the BS quantized energy of one
of the periodic orbits, we have to take the product of these determinants:

∆(E) =
∏

p

∆p(E). (L.14)

The miracle of the semiclassical zeta function is, that if wetake infinitely many
periodic orbits, the infinite product will have zeroes not atthese energies, but close
to the eigen=energies of the whole system !

So we learned, that both stable and unstable orbits are integrable systems and
can be individually quantized semiclassically by the old Bohr-Sommerfeld rules.
So we almost completed the program of Sommerfeld to quantizegeneral systems
with the method of Bohr.Let us have a remark here. In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximation (L.12). Sommerfeld
would never do this ! At that point we loose some important precision compared
to the BS rules and we get somewhat worse results than a semiclassical formula
is able to do. We will come back to this point later when we discuss the quantum
corrections.To complete the program of full scale Bohr-Sommerfeld quantization
of chaotic systems we have to go beyond the linear approximation around the
periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel andnormal coordinates
can be written as the ‘harmonic’ plus ‘anaharmonic’ perturbation

H(x‖, p‖, xn, pn) = H0(x‖, p‖, xn, pn) + HA(x‖, xn, pn), (L.15)

where the anaharmonic part can be written as a sum of homogeneous polynomials
of xn andpn with x‖ dependent coefficients:

HA(x‖, xn, pn) =
∑

k=3

Hk(x‖, xn, pn) (L.16)

Hk(x‖, xn, pn) =
∑

∑

ln+mn=k

Hk
ln,mn

(x‖)x
ln
n pmn

n (L.17)

This classical Hamiltonian is hopeless from Sommerfeld’s point of view, since it
is non integrable. However, Birkhoff in 19273 introduced the concept of normal
form, which helps us out from this problem by giving successive integrable approximation
to a non-integrable problem. Let’s learn a bit more about it!

3It is really a pity, that in 1926 Schrödinger introduced thewave mechanics and blocked the
development of Sommerfeld’s concept.
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L.2 The Birkhoff normal form

Birkhoff studied the canonical perturbation theory close to an equilibrium point of
a Hamiltonian. Equilibrium point is where the potential hasa minimum∇U = 0
and small perturbations lead to oscillatory motion. We can linearize the problem
and by introducing normal coordinatesxn and conjugate momentumspn the quadratic
part of the Hamiltonian will be a set of oscillators

H0(xn, pn) =
d∑

n=1

1
2

(p2
n + ω

2
nx2

n). (L.18)

The full Hamiltonian can be rewritten with the new coordinates

H(xn, pn) = H0(xn, pn) + HA(xn, pn), (L.19)

whereHA is the anaharmonic part of the potential in the new coordinates. The
anaharmonic part can be written as a series of homogeneous polynomials

HA(xn, pn) =
∞∑

j=3

H j(xn, pn), (L.20)

H j(xn, pn) =
∑

|l|+|m|= j

h j
lmxl pm, (L.21)

whereh j
lm are real constants and we used the multi-indicesl := (l1, ..., ld) with

definitions

|l| =
∑

ln, x
l := xl1

1 xl2
2 ...x

ld
d .

Birkhoff showed, that that by successive canonical transformationsone can introduce
new momentums and coordinates such, that in the new coordinates the anaharmonic
part of the Hamiltonian up to any givenn polynomial will depend only on the
variable combination

τn =
1
2

(p2
n + ω

2
nx2

n), (L.22)

wherexn and pn are the new coordinates and momentums, butωn is the original
frequency. This is called the Birkhoff normal form of degreeN:

H(xn, pn) =
N∑

j=2

H j(τ1, ..., τd), (L.23)
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whereH j are homogeneous degreej polynomials ofτ-s. This is an integrable
Hamiltonian, the non-integrability is pushed into the remainder, which consists of
polynomials of degree higher thanN. We run into trouble only when the oscillator
frequencies are commensurate e.g. it is possible to find a setof integersmn such
that the linear combination

d∑

n=1

ωnmn,

vanishes. This extra problem has been solved by Gustavson in1966 and we call
the the object Birkhoff-Gustavson normal form. The procedure of the successive
canonical transformations can be computerized and can be carried out up to high
orders (∼ 20).

Of course, we pay a price for forcing the system to be integrable up to degree
N. For a non-integrable system the high order terms behave quite wildly and the
series is not convergent. Therefore we have to use this tool carefully. Now, we
learned how to approximate a non-integrable system with a sequence of integrable
systems and we can go back and carry out the BS quantization.

L.3 Bohr-Sommerfeld quantization of periodic orbits

There is some difference between equilibrium points and periodic orbits. The
Hamiltonian (L.4) is not a sum of oscillators. One can transform the parallel
part, describing circulation along the orbit, into an oscillator Hamiltonian, but this
would make the problem extremely difficult. Therefore, we carry out the canonical
transformations dictated by the Birkhoff procedure only in the orthogonal directions.
The x‖ coordinate plays the role of a parameter. After the transformation up to
orderN the Hamiltonian (L.17) is

H(x‖, p‖, τ1, ...τd−1) = H0(x‖, p‖, τ1, ..., τd−1)+
N∑

j=2

U j(x‖, τ1, ..., τd−1), (L.24)

whereU j is a jth order homogeneous polynomial ofτ-s withx‖ dependent coefficients.
The orthogonal part can be BS quantized by quantizing the individual oscillators,
replacingτ-s as we did in (L.8). This leads to a one dimensional effective potential
indexed byj1, ..., jd−1

H(x‖, p‖, j1, ..., jd−1) =
1
2

p2
‖ + U(x‖) +

d−1∑

n=1

~snωn( jn + 1/2)+ (L.25)

+

N∑

k=2

Uk(x‖, ~s1ω1( j1 + 1/2), ~s2ω2( j2 + 1/2), ..., ~sd−1ωd−1( jd−1 + 1/2)),
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where jn can be any non-negative integer. The term with indexk is proportional
with ~k due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given set ofj-s

Sp(E, j1, ..., jd−1) =
∮

p‖dx‖ = (L.26)

=

∮

dx‖

√√√

E −
d−1∑

n=1

~snωn( jn + 1/2)− U(x‖, j1, ..., jd−1) = 2π~(m+mp/2),

whereU contains all thex‖ dependent terms of the Hamiltonian. The spectral
determinant becomes

∆p(E) =
∏

j1,..., jd−1

(1− eiSp(E, j1,..., jd−1)/~−mpπ/2). (L.27)

This expression completes the Sommerfeld method and tells us how to quantize
chaotic or general Hamiltonian systems. Unfortunately, quantum mechanics postponed
this nice formula until our book.

This formula has been derived with the help of the semiclassical Bohr-Sommerfeld
quantization rule and the classical normal form theory. Indeed, if we expandSp

in the exponent in the powers of~

Sp =

N∑

k=0

~
kSk,

we get more than just a constant and a linear term. This formula already gives
us corrections to the semiclassical zeta function in all powers of~. There is a
very attracting feature of this semiclassical expansion.~ in Sp shows up only
in the combination~snωn( jn + 1/2). A term proportional with~k can only be a
homogeneous expression of the oscillator energiessnωn( jn + 1/2). For example
in two dimensions there is only one possibility of the functional form of the order
k term

Sk = ck(E) · ωk
n( j + 1/2)k,

whereck(E) is the only function to be determined.

The corrections derived sofar aredoublysemiclassical, since they give semiclassical
corrections to the semiclassical approximation. What can quantum mechanics
add to this ? As we have stressed in the previous section, the exact quantum
mechanics is not invariant under canonical transformations. In other context, this
phenomenon is called the operator ordering problem. Since the operators ˆx and
p̂ do not commute, we run into problems, when we would like to write down
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operators for classical quantities likex2p2. On the classical level the four possible
orderingsxpxp, ppxx, pxpxand xxppare equivalent, but they are different in
the quantum case. The expression for the energy (L.26) is not exact. We have to
go back to the level of the Schrödinger equation if we would like to get the exact
expression.

L.4 Quantum calculation of ~ corrections

The Gutzwiller trace formula has originally been derived from the saddle point
approximation of the Feynman path integral form of the propagator. The exact
trace is a path-sum for all closed paths of the system

TrG(x, x′, t) =
∫

dxG(x, x, t) =
∫

DxeiS(x,t)/~, (L.28)

where
∫

Dx denotes the discretization and summation for all paths of time length
t in the limit of the infinite refinement andS(x, t) is the classical action calculated
along the path. The trace in the saddle point calculation is asum for classical
periodic orbits and zero length orbits, since these are the extrema of the action
δS(x, t) = 0 for closed paths:

TrG(x, x′, t) = g0(t) +
∑

p∈PO

∫

DξpeiS(ξp+xp(t),t)/~, (L.29)

whereg0(t) is the zero length orbit contribution. We introduced the new coordinate
ξp with respect to the periodic orbitxp(t), x = ξp + xp(t). Now, each path sum
∫

Dξp is computed in the vicinity of periodic orbits. Since the saddle points
are taken in the configuration space, only spatially distinct periodic orbits, the
so called prime periodic orbits, appear in the summation. Sofar nothing new has
been invented. If we continue the standard textbook calculation scheme, we have
to Taylor expand the action inξp and keep the quadratic term in the exponent
while treating the higher order terms as corrections. Then we can compute the
path integrals with the help of Gaussian integrals. The key point here is that we
don’t compute the path sum directly. We use the correspondence between path
integrals and partial differential equations. This idea comes from Maslov [5] and
a good summary is in ref. [6]. We search for that Schrödinger equation, which
leads to the path sum

∫

DξpeiS(ξp+xp(t),t)/~, (L.30)

where the action around the periodic orbit is in a multi dimensional Taylor expanded
form:

S(x, t) =
∞∑

n

sn(t)(x− xp(t))n/n!. (L.31)
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The symboln = (n1, n2, ..., nd) denotes the multi index ind dimensions,n! =
∏d

i=1 ni ! the multi factorial and (x − xp(t))n =
∏d

i=1(xi − xp,i(t))ni , respectively.
The expansion coefficients of the action can be determined from the Hamilton-
Jacobi equation

∂tS +
1
2

(∇S)2 + U = 0, (L.32)

in which the potential is expanded in a multidimensional Taylor series around the
orbit

U(x) =
∑

n

un(t)(x− xp(t))n/n!. (L.33)

The Schrödinger equation

i~∂tψ = Ĥψ = −~
2

2
∆ψ + Uψ, (L.34)

with this potential also can be expanded around the periodicorbit. Using the WKB
ansatz

ψ = ϕeiS/~, (L.35)

we can construct a Schrödinger equation corresponding to agiven order of the
Taylor expansion of the classical action. The Schrödingerequation induces the
Hamilton-Jacobi equation (L.32) for the phase and the transport equation of Maslov
and Fjedoriuk [7] for the amplitude:

∂tϕ + ∇ϕ∇S +
1
2
ϕ∆S − i~

2
∆ϕ = 0. (L.36)

This is the partial differential equation, solved in the neighborhood of a periodic
orbit with the expanded action (L.31), which belongs to the local path-sum (L.30).

If we know the Green’s functionGp(ξ, ξ′, t) corresponding to the local equation
(L.36), then the local path sum can be converted back into a trace:

∫

Dξpei/~
∑

n Sn(xp(t),t)ξn
p/n! = TrGp(ξ, ξ′, t). (L.37)

The saddle point expansion of the trace in terms of local traces then becomes

TrG(x, x′, t) = TrGW(x, x′, t) +
∑

p

TrGp(ξ, ξ′, t), (L.38)
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whereGW(x, x′, t) denotes formally the Green’s function expanded around zero
length (non moving) periodic orbits, known as the Weyl term [8]. Each Green’s
function can be Fourier-Laplace transformed independently and by definition we
get in the energy domain:

TrG(x, x′,E) = g0(E) +
∑

p

TrGp(ξ, ξ′,E). (L.39)

Notice, that we do not need here to take further saddle pointsin time, since we
are dealing with exact time and energy domain Green’s functions. indexGreen’s
function!energy dependent

The spectral determinant is a function which has zeroes at the eigen-energies
En of the Hamilton operator̂H. Formally it is

∆(E) = det (E − Ĥ) =
∏

n

(E − En).

The logarithmic derivative of the spectral determinant is the trace of the energy
domain Green’s function:

TrG(x, x′,E) =
∑

n

1
E − En

=
d

dE
log∆(E). (L.40)

We can define the spectral determinant∆p(E) also for the local operators and we
can write

TrGp(ξ, ξ′,E) =
d

dE
log∆p(E). (L.41)

Using (L.39) we can express the full spectral determinant as a product for the
sub-determinants

∆(E) = eW(E)
∏

p

∆p(E),

whereW(E) =
∫ E

g0(E′)dE′ is the term coming from the Weyl expansion.

The construction of the local spectral determinants can be done easily. We
have to consider the stationary eigenvalue problem of the local Schrödinger problem
and keep in mind, that we are in a coordinate system moving together with the
periodic orbit. If the classical energy of the periodic orbit coincides with an eigen-
energyE of the local Schrödinger equation around the periodic orbit, then the
corresponding stationary eigenfunction fulfills

ψp(ξ, t + Tp) =
∫

dξ′Gp(ξ, ξ′, t + Tp)ψp(ξ′, t) = e−iETp/~ψp(ξ, t), (L.42)
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whereTp is the period of the prime orbitp. If the classical energy of the periodic
orbit is not an eigen=energy of the local Schrödinger equation, the non-stationary
eigenfunctions fulfill

ψl
p(ξ, t + Tp) =

∫

dξ′Gp(ξ, ξ′, t + Tp)ψp(ξ′, t) = e−iETp/~λl
p(E)ψl

p(t), (L.43)

wherel = (l1, l2, ...) is a multi-index of the possible quantum numbers of the local
Schrödinger equation. If the eigenvaluesλl

p(E) are known the local functional
determinant can be written as

∆p(E) =
∏

l

(1− λl
p(E)), (L.44)

since∆p(E) is zero at the eigen=energies of the local Schrödinger problem. We
can insert the ansatz (L.35) and reformulate (L.43) as

e
i
~
S(t+Tp)ϕl

p(t + Tp) = e−iETp/~λl
p(E)e

i
~
S(t)ϕl

p(t). (L.45)

The phase change is given by the action integral for one period S(t + Tp)−S(t) =
∫ Tp

0 L(t)dt. Using this and the identity for the actionSp(E) of the periodic orbit

Sp(E) =
∮

pdq=
∫ Tp

0
L(t)dt + ETp, (L.46)

we get

e
i
~
Sp(E)ϕl

p(t + Tp) = λl
p(E)ϕl

p(t). (L.47)

Introducing the eigen-equation for the amplitude

ϕl
p(t + Tp) = Rl,p(E)ϕl

p(t), (L.48)

the local spectral determinant can be expressed as a productfor the quantum
numbers of the local problem:

∆p(E) =
∏

l

(1− Rl,p(E)e
i
~
Sp(E)). (L.49)

Since~ is a small parameter we can develop a perturbation series forthe
amplitudesϕl

p(t) =
∑∞

m=0

(
i~
2

)m
ϕ

l(m)
p (t) which can be inserted into the equation

(L.36) and we get an iterative scheme starting with the semiclassical solutionϕl(0):

∂tϕ
l(0) + ∇ϕl(0)∇S +

1
2
ϕl(0)∆S = 0, (L.50)

∂tϕ
l(m+1) + ∇ϕl(m+1)∇S +

1
2
ϕl(m+1)∆S = ∆ϕl(m).
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The eigenvalue can also be expanded in powers ofi~/2:

Rl,p(E) = exp






∞∑

m=0

(

i~
2

)m

C(m)
l,p





(L.51)

= exp(C(0)
l,p) {1 +

i~
2

C(1)
l,p +

(

i~
2

)2 (

1
2

(C(1)
l,p)2 +C(2)

l,p

)

+ ... . (L.52)

The eigenvalue equation (L.48) in ~ expanded form reads as

ϕ
l(0)
p (t + Tp) = exp(C(0)

l,p)ϕl(0)
p (t),

ϕ
l(1)
p (t + Tp) = exp(C(0)

l,p)[ϕl(1)
p (t) +C(1)

l,pϕ
l(0)
p (t)],

ϕ
l(2)
p (t + Tp) = exp(C(0)

l,p)[ϕl(2)
p (t) +C(1)

l,pϕ
l(1)
p (t) + (C(2)

l,p +
1
2

(C(1)
l,p)2)ϕl(0)

p (t)],(L.53)

and so on. These equations are the conditions selecting the eigenvectors and
eigenvalues and they hold for allt.

It is very convenient to expand the functionsϕl(m)
p (x, t) in Taylor series around

the periodic orbit and to solve the equations (L.51) in this basis [10], since only
a couple of coefficients should be computed to derive the first corrections. This
technical part we are going to publish elsewhere [9]. One can derive in general
the zero order termC(0)

l = iπνp +
∑d−1

i=1

(

l i +
1
2

)

up,i , whereup,i = logΛp,i are
the logarithms of the eigenvalues of the monodromy matrixMp and νp is the
topological index of the periodic orbit. The first correction is given by the integral

C(1)
l,p =

∫ Tp

0
dt
∆ϕ

l(0)
p (t)

ϕ
l(0)
p (t)

.

When the theory is applied for billiard systems, the wave function should
fulfill the Dirichlet boundary condition on hard walls, e.g.it should vanish on the
wall. The wave function determined from (L.36) behaves discontinuously when
the trajectoryxp(t) hits the wall. For the simplicity we consider a two dimensional
billiard system here. The wave function on the wall before the bounce (t−0 ) is
given by

ψin(x, y(x), t) = ϕ(x, y(x), t−0)eiS(x,y(x),t−0)/~, (L.54)

wherey(x) = Y2x2/2! + Y3x3/3! + Y4x4/4! + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave functionon the wall after the
bounce (t+0) is

ψout(x, y(x), t) = ϕ(x, y(x), t+0)eiS(x,y(x),t+0)/~. (L.55)
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The sum of these wave functions should vanish on the hard wall. This implies that
the incoming and the outgoing amplitudes and the phases are related as

S(x, y(x), t−0) = S(x, y(x), t+0), (L.56)

and

ϕ(x, y(x), t−0) = −ϕ(x, y(x), t+0). (L.57)

The minus sign can be interpreted as the topological phase coming from the hard
wall.

Now we can reexpress the spectral determinant with the localeigenvalues:

∆(E) = eW(E)
∏

p

∏

l

(1− Rl,p(E)e
i
~
Sp(E)). (L.58)

This expression is the quantum generalization of the semiclassical Selberg-product
formula [11]. A similar decomposition has been found for quantum Baker maps
in ref. [12]. The functions

ζ−1
l (E) =

∏

p

(1− Rl,p(E)e
i
~
Sp(E)) (L.59)

are the generalizations of the Ruelle type [23] zeta functions. The trace formula
can be recovered from (L.40):

TrG(E) = g0(E)+
1
i~

∑

p,l

(Tp(E)− i~
d logRl,p(E)

dE
)

Rl,p(E)e
i
~
Sp(E)

1− Rl,p(E)e
i
~
Sp(E)

.(L.60)

We can rewrite the denominator as a sum of a geometric series and we get

TrG(E) = g0(E) +
1
i~

∑

p,r,l

(Tp(E) − i~
d logRl,p(E)

dE
)(Rl,p(E))re

i
~
rSp(E). (L.61)

The new indexr can be interpreted as the repetition number of the prime orbit
p. This expression is the generalization of the semiclassical trace formula for
the exact quantum mechanics. We would like to stress here, that the perturbation
calculus introduced above is just one way to compute the eigenvalues of the local
Schrödinger problems. Non-perturbative methods can be used to calculate the
local eigenvalues for stable, unstable and marginal orbits. Therefore, our trace
formula is not limited to integrable or hyperbolic systems,it can describe the
most general case of systems with mixed phase space.
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Figure L.2: A typical bounce on a billiard wall. The wall can be characterized by the local
expansiony(x) = Y2x2/2! + Y3x3/3! + Y4x4/4! + ....

The semiclassical trace formula can be recovered by dropping the sub-leading

term−i~d logRl,p(E)/dE and using the semiclassical eigenvalueR(0)
l,p(E) = eCl(0)

p =

e−iνpπe−
∑

i (li+1/2)up,i . Summation for the indexesl i yields the celebrated semiclassical
amplitude

∑

l

(R(0)
l,p(E))r =

e−ir νpπ

| det (1− Mr
p) |1/2 . (L.62)

To have an impression about the improvement caused by the quantum corrections
we have developed a numerical code [13] which calculates the first correctionC(1)

p,l
for general two dimensional billiard systems . The first correction depends only on
some basic data of the periodic orbit such as the lengths of the free flights between
bounces, the angles of incidence and the first three Taylor expansion coefficients
Y2,Y3,Y4 of the wall in the point of incidence. To check that our new local
method gives the same result as the direct calculation of theFeynman integral, we
computed the first~ correctionC(1)

p,0 for the periodic orbits of the 3-disk scattering
system [14] where the quantum corrections have been We have found agreement
up to the fifth decimal digit, while our method generates these numbers with any
desired precision. Unfortunately, thel , 0 coefficients cannot be compared to
ref. [15], since thel dependence was not realized there due to the lack of general
formulas (L.58) and (L.59). However, thel dependence can be checked on the 2
disk scattering system [16]. On the standard example [14, 15, 16, 18], when the
distance of the centers (R) is 6 times the disk radius (a), we got

C(1)
l =

1
√

2E
(−0.625l3 − 0.3125l2 + 1.4375l + 0.625).

For l = 0 and 1 this has been confirmed by A. Wirzba [17], who was able to
computeC(1)

0 from his exact quantum calculation. Our method makes it possible
to utilize the symmetry reduction of Cvitanović and Eckhardt and to repeat the
fundamental domain cycle expansion calculation of ref. [18] with the first quantum
correction. We computed the correction to the leading 226 prime periodic orbits
with 10 or less bounces in the fundamental domain. Table I. shows the numerical
values of the exact quantum calculation [16], the semiclassical cycle expansion [10]
and our corrected calculation. One can see, that the error ofthe corrected calculation
vs. the error of the semiclassical calculation decreases with the wave-number.
Besides the improved results, a fast convergence up to six decimal digits can be
observed, which is just three decimal digits in the full domain calculation [15].
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Table L.1: Real part of the resonances (Rek) of the 3-disk scattering system at disk separation 6:1.
Semiclassical and first corrected cycle expansion versus exact quantum calculation and the error of
the semiclassicalδSC divided by the error of the first correctionδCorr . The magnitude of the error in
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Figure S.1: Geometry of the 3-disk pinball.
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Figure S.2: (a) The phase space of the 3-disk pinball. (b) The part of phase space which remains
on the table for one more iterate. (c) The images of the disks in one iteration.

escape, then hit disk “2” , and then escape again, when increasing the arc length
parameter in the manner indicated in figure S.1 (a). Thus–if the disks are sufficiently
well separated–there are two strips of initial conditions which do not escape. By
symmetry this yields figure S.1 (b) where the numbers indicate onto which disk these
initial trajectories are going to end up on. By time reversal Figure S.1 (c) shows the
strips labeled by disk where the pinball came from.

Combining figure S.1 (b) and (c) we obtain three sections, which are the same
except for the labeling of the disks. One of such section is shown in figure S.3.

The billiard map enjoys a certain monotonicity, as depicted in figure S.4, which
easily verified by inspecting figure S.1. It says that any curve connecting the two

soluIntro - 2sep2007.tex
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φsin

s

Figure S.3: The intersection of one iterate images and preimages.

φsin φsin

s s

Map

Figure S.4: Monotonicity of the billiard map.

boundaries of one of the strips gets mapped to a curve within the image of that strip
running all the way across from top to bottom.

This, in particular, means that the intersections of the image of the previous disk
and the initial conditions to land onto the next disk, see figure S.3, will map onto (thin)
strips running across from to to bottom, as shown in figure S.5.

φsin φsin

s s

Map

Figure S.5: Images in the second iterate. This is, of course, schematically, because we dropped the
labels of the disks; in fact, the two intersection regions get mapped onto two different disks.

Finally, since the images of the intersection regions run all the way across in
the vertical direction, we can iterate the argument. Every time the number of strips
doubles, and we find regions of states which can go to either of the two neighboring
disks at every step. Hence any symbol sequence with no repeat of consecutive
symbols can be realized.
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ẋ)
is

an
O

D
E

.
(b

)
ẋ
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rü
ge

l-B
en

ne
tt’

s
pr

og
ra

m
s,

av
ai

la
bl

e
at
C
h
a
o
s
B
o
o
k
.
o
r
g
/
e
x
t
r
a
s
.

so
lu

F
lo

w
s

-
2a

pr
20

05
.t

ex

http://ChaosBook.org/extras


A
P

P
E

N
D

IX
S

.
S

O
LU

T
IO

N
S

79
7

C
ha

pt
er

3.
D

is
cr

et
e

tim
e

dy
na

m
ic

s

(N
o

so
lu

tio
ns

av
ai

la
bl

e.
)

so
lu

M
ap

s
-

12
ju

n2
00

3.
te

x

A
P

P
E

N
D

IX
S

.
S

O
LU

T
IO

N
S

79
8

C
ha

pt
er

4.
Lo

ca
ls

ta
bi

lit
y

S
ol

ut
io

n
4.

1
-

Tr
ac

e-
lo

g
of

a
m

at
rix

.
1)

C
on

si
de

r
M
=

ex
p

A
.

d
et

M
=

d
et

lim n→
∞

(

1
+

1 n
A

)
n

=
lim n→
∞

(1
+

1 n
tr

A
+
..
.)

n
=

ex
p(

tr
(l

n
M

))

2)
A

re
ph

ra
si

ng
of

th
e

so
lu

tio
n

1)
:

ev
al

ua
te

d d
td

et
(

etl
n

M
)

by
de

fin
iti

on
of

de
riv

at
iv

e
in

te
rm

s
of

in
fin

ite
si

m
al

s.
(K

as
pe

r
Ju

el
E

rik
se

n)

3)
H

er
e

is
an

ex
am

pl
e

of
w

ro
ng

/in
co

m
pl

et
e

an
sw

er
,h

id
in

g
be

hi
nd

fa
nc

ie
rn

ot
at

io
n:

T
hi

s
id

en
tit

y
m

ak
es

se
ns

e
fo

r
a

m
at

rix
M
∈
C

n×
n
,

if
|∏

n i=
1
λ

i|
<
∞

an
d
{|λ

i|
>

0,
∀i
},

w
he

re
{λ

i}
is

a
se

to
fe

ig
en

va
lu

es
of

M
.

U
nd

er
th

es
e

co
nd

iti
on

s
th

er
e

ex
is

ta
no

ns
in

gu
la

r
O

:
M
=

O
D

O
−1

,
D
=

d
ia

g[
{λ

i,
i
=

1,
..
.,

n}
].

If
f(

M
)

is
a

m
at

rix
va

lu
ed

fu
nc

tio
n

de
fin

ed
in

te
rm

s
of

po
w

er
se

rie
s

th
en

f(
M

)
=

O
f(

D
)O
−1

,
an

d
f(

D
)
=

d
ia

g[
{f

(λ
i)
}].

U
si

ng
th

es
e

pr
op

er
tie

s
an

d
cy

cl
ic

pr
op

er
ty

of
th

e
tr

ac
e

w
e

ob
ta

in

ex
p(

tr
(l

n
M

))
=

ex
p      

∑

i

ln
λ

i      
=

∏

i

λ
i
=

d
et

(M
)

W
ha

t’s
w

ro
ng

ab
ou

ti
t?

If
a

m
at

rix
w

ith
de

ge
ne

ra
te

ei
ge

nv
al

ue
s,
λ

i
=
λ

j
is

of
Jo

rd
an

ty
pe

,i
tc

an
no

tb
e

di
ag

on
al

iz
ed

,s
o

a
bi

tm
or

e
of

di
sc

us
si

on
is

ne
ed

ed
to

sh
ow

th
at

th
e

id
en

tit
y

is
sa

tis
fie

d
by

up
pe

r-
tr

ia
ng

ul
ar

m
at

ric
es

.

4)
F

irs
tc

he
ck

th
at

th
is

is
tr

ue
fo

r
an

y
H

er
m

iti
an

m
at

rix
M

.
T

he
n

w
rit

e
an

ar
bi

tr
ar

y
co

m
pl

ex
m

at
rix

as
su

m
M
=

A
+

zB
,

A
,

B
H

er
m

iti
an

,T
ay

lo
r

ex
pa

nd
in

z
an

d
pr

ov
e

by
an

al
yt

ic
co

nt
in

ua
tio

n
th

at
th

e
id

en
tit

y
ap

pl
ie

s
to

ar
bi

tr
ar

y
M

.
(D

av
id

M
er

m
in

)

5)
ch

ec
k

ap
pe

nd
ix

J.
1

S
ol

ut
io

n
4.

2
-S

ta
bi

lit
y,

di
ag

on
al

ca
se

.
T

he
re

la
tio

n
(4

.1
7)

ca
n

be
ve

rifi
ed

by
no

tin
g

th
at

th
e

de
fin

in
g

pr
od

uc
t(

4.
13

)
ca

n
be

re
w

rit
te

n
as

etA
=

(

U
U
−1
+

tU
A

D
U
−1

m

)
(

U
U
−1
+

tU
A

D
U
−1

m

)

··
·

=
U

(

I
+

tA
D

m

)

U
−1

U
(

I
+

tA
D

m

)

U
−1
··
·=

U
etA

D
U
−1
.

(S
.7

)

S
ol

ut
io

n
4.

3
-

S
ta

te
sp

ac
e

vo
lu

m
e

co
nt

ra
ct

io
n

in
R

ös
sl

er
flo

w
.

E
ve

n
if

it
w

er
e

w
or

th
yo

ur
w

hi
le

to
kn

ow
its

nu
m

er
ic

al
va

lu
e,

th
e

co
nt

ra
ct

io
n

ra
te

ca
nn

ot
be

lin
ke

d
to

a
co

m
pu

ta
bl

e
fr

ac
ta

l
di

m
en

si
on

.
T

he
re

la
tio

n
go

es
th

ro
ug

h
ex

pa
nd

in
g

ei
ge

nv
al

ue
s,

se
ct

.
5.

4.
A

s
th

e
co

nt
ra

ct
io

n
is

of
or

de
r

of
1

0−
15

,
th

er
e

is
no

nu
m

er
ic

al
al

go
rit

hm
th

at
w

ou
ld

gi
ve

yo
u

an
y

fr
ac

ta
ld

im
en

si
on

ot
he

r
th

an
D

H
=

1
fo

r
th

is
at

tr
ac

to
r.

S
ol

ut
io

n
4.

4
-

To
po

lo
gy

of
th

e
R

ös
sl

er
flo

w
.

1.
T

he
ch

ar
ac

te
ris

tic
de

te
rm

in
an

to
ft

he
st

ab
ili

ty
m

at
rix

th
at

yi
el

ds
th

e
eq

ui
lib

riu
m

po
in

ts
ta

bi
lit

y
(4

.3
0)

yi
el

ds
∣ ∣ ∣ ∣ ∣ ∣ ∣

−λ
−1

−1
1

a
−
λ

0
z±

0
x±
−

c
−
λ

∣ ∣ ∣ ∣ ∣ ∣ ∣

=
0

so
lu

S
ta

bi
lit

y
-

2a
pr

20
05

.t
ex



A
P

P
E

N
D

IX
S

.
S

O
LU

T
IO

N
S

79
9

λ
3
+
λ

2
(−

a
−

x±
+

c)
+
λ
(a

(x
±
−

c)
+

1
+

x±
/a

)+
c
−

2x
±
=

0
.

E
qu

at
io

n
( 4

.5
8)

fo
llo

w
s

af
te

rn
ot

in
g

th
at

x±
−

c
=

c(
p±
−

1
)=
−c

p∓
an

d
2x
±
−

c
=

c(
2

p±
−

1
)=
±c
√

D
,s

ee
( 2

.8
).

2.
A

pp
ro

xi
m

at
e

so
lu

tio
ns

of
( 4

.5
8)

ar
e

ob
ta

in
ed

by
ex

pa
nd

in
g

p±
an

d
√

D
an

d
su

bs
tit

ut
in

g
in

to
th

is
eq

ua
tio

n.
N

am
el

y,
√

D
=

1
−

2ǫ
2
−

2ǫ
4
−

4ǫ
6
−
..
.

p−
=
ǫ2
+
ǫ4
+

2ǫ
6
+
..
.

p+
=

1
−
ǫ2
−
ǫ4
−

2ǫ
6
+
..
.

In
ca

se
of

th
e

eq
ui

lib
riu

m
“−

”,
cl

os
e

to
th

e
or

ig
in

ex
pa

ns
io

n
of

(4
.5

8)
re

su
lts

in

(λ
2
+

1
)(
λ
+

c)
=
−ǫ
λ
(1
−

c2
−

cλ
)+

ǫ2
c(
λ

2
+

2
)+

o(
ǫ2

)

T
he

te
rm

on
th

e
le

ft-
ha

nd
si

de
su

gg
es

ts
th

e
ex

pa
ns

io
n

fo
r

ei
ge

nv
al

ue
s

as

λ
1
=
−c
+
ǫa

1
+
..
.
,

λ
2
+

iθ
2
=
ǫb

1
+

i+
..
.

.

af
te

rs
om

e
al

ge
br

a
on

e
fin

ds
th

e
fir

st
or

de
rc

or
re

ct
io

n
co

ef
fic

ie
nt

s
a 1
=

c/
(c

2
+

1
)

an
d

b 1
=

(c
3
+

i)
/(

2
(c

2
+

1
))

.
N

um
er

ic
al

va
lu

es
ar

e
λ

1
≈
−5
.6

9
4,
λ

2
+

iθ
2
≈

0.
0

9
7

0+
i1
.0

0
0

5 .

In
ca

se
of

p+
,

th
e

le
ad

in
g

or
de

r
te

rm
in

( 4
.5

8)
is

1/
ǫ.

S
et

x
=
λ
/ǫ

,
th

en
ex

pa
ns

io
n

of
( 4

.5
8)

re
su

lts
in

x
=

c
−
ǫ
x
−
ǫ2

(2
c
−

x)
−
ǫ3

(x
3
−

cx
2
)−

ǫ4
(2

c
−

x(
1
+

c2
)
+

cx
2
)+

o(
ǫ4

)

S
ol

ve
fo

r
re

al
ei

ge
nv

al
ue

fir
st

.
S

et
x
=

c
+
ǫa

1
+
ǫ2

a 2
+
ǫ3

a 3
+
ǫ4

a 4
+
..
..

T
he

su
bt

le
po

in
th

er
e

is
th

at
le

ad
in

g
or

de
r

co
rr

ec
tio

n
te

rm
of

th
e

re
al

ei
ge

nv
al

ue
is

ǫa
1
,b

ut
to

de
te

rm
in

e
le

ad
in

g
or

de
r

of
th

e
re

al
pa

rt
of

co
m

pl
ex

ei
ge

nv
al

ue
,o

ne
ne

ed
s

al
lt

er
m

s
a 1

th
ro

ug
h

a 4
.

C
ol

le
ct

in
g

po
w

er
s

of
ǫ

re
su

lts
in

ǫ
:

a 1
+

c
=

0
a 1
=
−c

ǫ2
:

c
+

a 1
+

a 2
=

0
a 2
=

0
ǫ3

:
a 1
−

a 2
−

a 3
=

0
a 3
=
−c

ǫ4
:

c
+

c2
a 1
−

a 2
+

a 3
+

a 4
=

0
a 4
=

c3
.

he
nc

e

µ
(1

)
=
ǫ
x
=

a
−

a2
/c
+

o(
ǫ3

)
≈

0.
1

9
2

9
8

2.

To
ca

lc
ul

at
e

th
e

co
m

pl
ex

ei
ge

nv
al

ue
,

on
e

ca
n

m
ak

e
us

e
of

id
en

tit
ie

s
d

et
A
=

∏

λ
=

2x
+
−

c,
an

d
tr

A
=

∑

λ
=

a
+

x+
−

c.
N

am
el

y,

λ
2
=

1 2
( a
−

c
p−
−
λ

1
)
=
−

a5

2c
2
+

o(
ǫ5

)
≈
−0
.4

9
×

1
0−

6
,

θ 2
=

√

2x
+
−c

λ
1
−
λ

2 2
=

√

a+
c

a
( 1
+

o(
ǫ)

)
≈

5.
4

3
1
.

(R
.P

aš
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+
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−
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e

m
ul

tip
lie

r
Λ

r(
1,

t)
=

e−
2t

,
an

d
w

ith
th

e
ra

di
al

pa
rt

of
th

e
eq

ui
lib

riu
m

in
st

ab
ili

ty
Λ

r(
r 0
,t

)
=

et
fo

r
r 0
≪

1.
(P

.
C

vi
ta

no
vi

ć)
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=
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       
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−
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+
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e

te
xt

.

S
ol

ut
io

n
10

.2
-

G
en

er
at

in
g

pr
im

e
cy

cl
es

.
(N

o
so

lu
tio

n
av

ai
la

bl
e.

)

S
ol

ut
io

n
10

.3
-

A
co

nt
ra

ct
in

g
ba

ke
r’s

m
ap

.
(N

o
so

lu
tio

n
av

ai
la

bl
e.

)

S
ol

ut
io

n
10

.4
-

U
ni

m
od

al
m

ap
sy

m
bo

lic
dy

na
m

ic
s.

H
in

t:
w

rit
e

do
w

n
an

ar
bi

tr
ar

y
bi

na
ry

nu
m

be
r

su
ch

as
γ
=
.1

1
0

1
0

0
1

1
0

1
0

0
0..
.
an

d
ge

ne
ra

te
th

e
fu

tu
re

iti
ne

ra
ry

S
+

by
ch

ec
ki

ng
w

he
th

er
fn

(γ
)

is
gr

ea
te

r
or

le
ss

th
an

1/
2.

T
he

n
ve

rif
y

th
at

(?
?)

re
co

ve
rs

γ
. S
ol

ut
io

n
10

.5
-

U
ni

m
od

al
m

ap
kn

ea
di

ng
va

lu
e.

(N
o

so
lu

tio
n

av
ai

la
bl

e.
)

S
ol

ut
io

n
10

.6
-

“G
ol

de
n

m
ea

n”
pr

un
ed

m
ap

.
(a

)
C

on
si

de
r

th
e

3-
cy

cl
e

dr
aw

n
in

th
e

fig
ur

e.
D

en
ot

e
th

e
le

ng
th

s
of

th
e

tw
o

ho
riz

on
ta

l
in

te
rv

al
s

by
a

an
d

b.
W

e
ha

ve

a b
=

b
a
+

b
,

so
th

e
sl

op
e

is
gi

ve
n

by
th

e
go

ld
en

m
ea

n,
Λ
=

b a
=

1+
√ 5

2
,

an
d

th
e

pi
ec

ew
is

e
lin

ea
r

m
ap

is
gi

ve
n

by

f(
x)
=

{

Λ
x
,

x
∈

[0
,1
/2

]
Λ

(1
−

x)
,

x
∈

[1
/2
,1

]

(b
)

E
va

lu
at

e

f

(

1 2

)

=
1
+
√ 5

4
,

f

     

1
+
√ 5

4

     
=
−1
+
√ 5

4
,

f

     

−1
+
√ 5

4

     
=

1 2
.

O
nc

e
a

po
in

te
nt

er
s

th
e

re
gi

on
co

ve
re

d
by

th
e

in
te

rv
al
M

of
le

ng
th

a
+

b,
br

ac
ke

te
d

by
th

e
3-

cy
cl

e,
it

w
ill

be
tr

ap
pe

d
th

er
e

fo
re

ve
r.

O
ut

si
de
M

,
al

lp
oi

nt
s

on
un

it
in

te
rv

al
w

ill
be

m
ap

pe
d

to
(0
,1
/2

],
ex

ce
pt

fo
r

0.
T

he
po

in
ts

in
th

e
in

te
rv

al
(0
,
−1
+
√ 5

4
)

ap
pr

oa
ch
M

m
on

ot
on

ic
al

ly
.

(c
)

It
w

ill
be

in
(1 2
,

1+
√ 5

4
).

(d
)

Fr
om

(b
),

w
e

kn
ow

th
at

ex
ce

pt
fo

r
th

e
or

ig
in

0,
al

lp
er

io
di

c
or

bi
ts

sh
ou

ld
be

in
M

.
B

y
(c

),
w

e
ca

nn
ot

ha
ve

th
e

su
bs

tr
in

g
0

0
in

a
pe

rio
di

c
or

bi
t

(e
xc

ep
t

fo
r

th
e

fix
ed

po
in

ta
t 0

).
H

en
ce

0
0

is
th

e
on

ly
pr

un
in

g
bl

oc
k,

an
d

th
e

sy
m

bo
lic

dy
na

m
ic

s
is

a
fin

ite
su

bs
hi

ft,
w

ith
al

ph
ab

et
{0
,1
}a

nd
on

ly
on

e
gr

am
m

ar
ru

le
:

a
co

ns
ec

ut
iv

e
re

pe
at

of
sy

m
bo

l 0
is

in
ad

m
is

si
bl

e.

(e
)

Ye
s.

0
is

a
pe

rio
di

c
or

bi
t

w
ith

th
e

sy
m

bo
ls

eq
ue

nc
e

0.
It

is
a

re
pe

lle
r

an
d

no
po

in
ti

n
its

ne
ig

hb
or

ho
od

w
ill

re
tu

rn
.

S
o

it
pl

ay
s

no
ro

le
in

th
e

as
ym

pt
ot

ic
dy

na
m

ic
s.

(Y
ue

he
ng

La
n)

S
ol

ut
io

n
10

.7
-

B
in

ar
y

3-
st

ep
tr

an
si

tio
n

m
at

rix
.

(N
o

so
lu

tio
n

av
ai

la
bl

e.
)

S
ol

ut
io

n
??

-
H

ea
vy

pr
un

in
g.

(N
o

so
lu

tio
n

av
ai

la
bl

e.
)

so
lu

K
ne

ad
-

15
se

p2
00

7.
te

x



A
P

P
E

N
D

IX
S

.
S

O
LU

T
IO

N
S

80
7

C
ha

pt
er

11
.

Q
ua

lit
at

iv
e

dy
na

m
ic

s,
fo

r
cy

cl
is

ts

(N
o

so
lu

tio
ns

av
ai

la
bl

e.
)

so
lu

S
m

al
e

-
12

ju
n2

00
3.

te
x

A
P

P
E

N
D

IX
S

.
S

O
LU

T
IO

N
S

80
8

C
ha

pt
er

12
.

F
ix

ed
po

in
ts

,a
nd

ho
w

to
ge

tt
he

m

S
ol

ut
io

n
12

.3
-

S
ta

bi
lit

y
of

bi
lli

ar
d

cy
cl

es
.

T
he

2-
cy

cl
e

0
st

ab
ili

ty
( 9

.3
)

is
th

e
so

lu
tio

n
to

bo
th

pr
ob

le
m

s
(p

ro
vi

de
d

yo
u

ev
al

ua
te

co
rr

ec
tly

th
e

hy
pe

rb
ol

a
cu

rv
at

ur
e

on
th

e
di

ag
on

al
).

S
ol

ut
io

n
12

.4
-N

um
er

ic
al

cy
cl

e
ro

ut
in

es
.

A
nu

m
be

ro
fs

am
pl

e
Fo

rt
ra

n
pr

og
ra

m
s

fo
r

fin
di

ng
pe

rio
di

c
or

bi
ts

is
av

ai
la

bl
e

on
th

e
ho

m
ep

ag
e

fo
rt

hi
s

m
an

us
cr

ip
t,
w
w
w
.
n
b
i
.
d
k
/
C
h
a
o
s
B
o
o
k
/

.

S
ol

ut
io

n
12

.1
0

-
In

ve
rs

e
ite

ra
tio

n
m

et
ho

d
fo

r
a

H
am

ilt
on

ia
n

re
pe

lle
r.

Fo
r

th
e

co
m

pl
et

e
re

pe
lle

r
ca

se
(a

ll
bi

na
ry

se
qu

en
ce

s
ar

e
re

al
iz

ed
),

th
e

cy
cl

es
ca

n
be

ev
al

ua
te

d
va

ria
tio

na
lly

,
as

fo
llo

w
s.

A
cc

or
di

ng
to

( 3
.1

8)
,

th
e

co
or

di
na

te
s

of
a

pe
rio

di
c

or
bi

to
fl

en
gt

h
n

p
sa

tis
fy

th
e

eq
ua

tio
n

x p
,i+

1
+

x p
,i−

1
=

1
−

a
x2 p,

i
,

i
=

1,
..
.,

n
p
,

(S
.1

6
)

w
ith

th
e

pe
rio

di
c

bo
un

da
ry

co
nd

iti
on

x p
,0
=

x p
,n

p
.

In
th

e
co

m
pl

et
e

re
pe

lle
rc

as
e,

th
e

H
én

on
m

ap
is

a
re

al
iz

at
io

n
of

th
e

S
m

al
e

ho
rs

es
ho

e,
an

d
th

e
sy

m
bo

lic
dy

na
m

ic
s

ha
s

a
ve

ry
si

m
pl

e
de

sc
rip

tio
n

in
te

rm
s

of
th

e
bi

na
ry

al
ph

ab
et
ǫ
∈
{0
,1
},
ǫ p
,i
=

(1
+

S
p,

i)
/2

,
w

he
re

S
p,

i
ar

e
th

e
si

gn
s

of
th

e
co

rr
es

po
nd

in
g

cy
cl

e
po

in
tc

oo
rd

in
at

es
,

S
p,

i
=

x p
,i
/|x

p,
i|.

W
e

st
ar

t
w

ith
a

pr
ea

ss
ig

ne
d

si
gn

se
qu

en
ce

S
p,

1
,S

p,
2,
..
.,

S
p,

n
p
,a

nd
a

go
od

in
iti

al
gu

es
s

fo
rt

he
co

or
di

na
te

s
x′ p,

i.
U

si
ng

th
e

in
ve

rs
e

of
th

e
eq

ua
tio

n
(1

2.
19

)

x′
′ p,
i
=

S
p,

i

√

1
−

x′ p,
i+

1
−

x′ p,
i−

1

a
,

i
=

1,
..
.,

n
p

(S
.1

7
)

w
e

co
nv

er
ge

ite
ra

tiv
el

y,
at

ex
po

ne
nt

ia
lr

at
e,

to
th

e
de

si
re

d
cy

cl
e

po
in

ts
x p
,i
.

G
iv

en
th

e
cy

cl
e

po
in

ts
,

th
e

cy
cl

e
st

ab
ili

tie
s

an
d

pe
rio

ds
ar

e
ea

si
ly

co
m

pu
te

d
us

in
g

( 4
.5

2)
.

T
he

iti
ne

ra
rie

s
an

d
th

e
st

ab
ili

tie
s

of
th

e
sh

or
t

pe
rio

di
c

or
bi

ts
fo

r
th

e
H

én
on

re
pe

lle
r

(S
.1

6)
fo

r
a
=

6
ar

e
lis

te
d

in
ta

bl
e

??
;i

n
ac

tu
al

ca
lc

ul
at

io
ns

al
lp

rim
e

cy
cl

es
up

to
to

po
lo

gi
ca

l
le

ng
th

n
=

2
0

ha
ve

be
en

co
m

pu
te

d.
(G

.V
at

ta
y)

so
lu

C
yc

le
s

-
27

de
c2

00
4.

te
x



A
P

P
E

N
D

IX
S

.
S

O
LU

T
IO

N
S

80
9

C
ha

pt
er

13
.

C
ou

nt
in

g

S
ol

ut
io

n
13

.1
-

A
tr

an
si

tio
n

m
at

rix
fo

r
3-

di
sk

pi
nb

al
l.

a)
A

s
th

e
di

sk
is

co
nv

ex
,t

he
tr

an
si

tio
n

to
its

el
fi

s
fo

rb
id

de
n.

T
he

re
fo

re
,t

he
M

ar
ko

v
di

ag
ra

m
is

1
2

3

,

w
ith

th
e

co
rr

es
po

nd
in

g
tr

an
si

tio
n

m
at

rix

T
=

       

0
1

1
1

0
1

1
1

0

       
.

N
ot

e
th

at
T

2
=
T
+

2.
S

up
po

se
th

at
T

n
=

a n
T
+

b n
,t

he
n

T
n+

1
=

a n
T

2
+

b n
T
=

(a
n
+

b n
)T
+

2a
n
.

S
o

a n
+

1
=

a n
+

b n
,

b n
+

1
=

2a
n

w
ith

a 1
=

1
,

b 1
=

0.

b)
Fr

om
a)

w
e

ha
ve

a n
+

1
=

a n
+

2a
n−

1.
S

up
po

se
th

at
a n
∝
λ

n
.

T
he

n
λ

2
=
λ
+

2.
S

ol
vi

ng
th

is
eq

ua
tio

n
an

d
us

in
g

th
e

in
iti

al
co

nd
iti

on
fo

r
n
=

1,
w

e
ob

ta
in

th
e

ge
ne

ra
lf

or
m

ul
a

a n
=

1 3
(2

n
−

(−
1

)n
),

b n
=

2 3
(2

n−
1
+

(−
1

)n
).

c)
T

ha
s

ei
ge

nv
al

ue
2

an
d
−1

(d
eg

en
er

ac
y

2)
.

S
o

th
e

to
po

lo
gi

ca
le

nt
ro

py
is

ln
2,

th
e

sa
m

e
as

in
th

e
ca

se
of

th
e

bi
na

ry
sy

m
bo

lic
dy

na
m

ic
s.

(Y
ue

he
ng

La
n)

S
ol

ut
io

n
13

.2
-S

um
of

A
ij

is
lik

e
a

tr
ac

e.
S

up
po

se
th

at
A
φ

k
=
λ

kφ
k,

w
he

re
λ

k
,φ

k
ar

e
ei

ge
nv

al
ue

s
an

d
ei

ge
nv

ec
to

rs
,r

es
pe

ct
iv

el
y.

E
xp

re
ss

in
g

th
e

ve
ct

or
v
=

(1
,1
,·
··
,1

)t
in

te
rm

s
of

th
e

ei
ge

nv
ec

to
rs
φ

k,
i.e

.,
v
=
Σ

k
d k
φ

k,
w

e
ha

ve

Γ
n
=
Σ

ij
[A

n
] i

j
=

vt A
n
v
=
Σ

k
vt A

n
d k
φ

k
=
Σ

kd
kλ

n k
(v

t φ
k)

=
Σ

kc
kλ

n k
,

w
he

re
c k
=

(v
t φ

k)
d k

ar
e

co
ns

ta
nt

s.

a)
A

s
tr

A
n
=
Σ

kλ
n k
,i

ti
s

ea
sy

to
se

e
th

at
bo

th
tr

A
n

an
d
Γ

n
ar

e
do

m
in

at
ed

by
th

e
la

rg
es

t
ei

ge
nv

al
ue

λ
0
.

T
ha

ti
s

ln
|tr

A
n
|

ln
|Γ

n
|
=

n
ln
|λ

0
|+

ln
|Σ

k(
λ

k
λ

0
)n
|

n
ln
|λ

0
|+

ln
|Σ

kd
k(
λ

k
λ

0
)n
|→

1
as

n
→
∞
.

so
lu

C
ou

nt
-

8o
ct

20
03

.t
ex

A
P

P
E

N
D

IX
S

.
S

O
LU

T
IO

N
S

81
0

b)
T

he
no

nl
ea

di
ng

ei
ge

nv
al

ue
s

do
no

tn
ee

d
to

be
di

st
in

ct
,a

s
th

e
ra

tio
in

a)
is

co
nt

ro
lle

d
by

th
e

la
rg

es
te

ig
en

va
lu

es
on

ly
.

(Y
ue

he
ng

La
n)

S
ol

ut
io

n
13

.4
-T

ra
ns

iti
on

m
at

rix
an

d
cy

cl
e

co
un

tin
g.

a)
A

cc
or

di
ng

to
th

e
de

fin
iti

on
of
T

ij
,t

he
tr

an
si

tio
n

m
at

rix
is

T
=

(

a
c

b
0

)

.

b)
A

ll
w

al
ks

of
le

ng
th

th
re

e
0

0
0

0,
0

0
0

1,
0

0
1

0,
01

00
,0

10
1,

1
00

0,
10

01
,1

01
0(

fo
ur

sy
m

bo
ls

!)
w

ith
w

ei
gh

ts
a

a
a,

a
a

c,
a

cb
,c

b
a,

cb
c,

b
a
a,

ba
c,

b
cb
.L

et
’s

ca
lc

ul
at

e
T

3
,

T
3
=

(

a3
+

2a
b

c
a2 c
+

b
c2

a2
b
+

b2
c

a
b

c

)

.

T
he

re
ar

e
al

to
ge

th
er

8
te

rm
s,

co
rr

es
po

nd
in

g
ex

ac
tly

to
th

e
te

rm
s

in
al

lt
he

w
al

ks
.

c)
Le

t’s
lo

ok
at

th
e

fo
llo

w
in

g
eq

ua
lit

y

T
n ij
=
Σ

k 1
,k

2
,··
·,k

n−
1
T

ik
1
T

k 1
k 2
··
·T

k n
−1

j
.

E
ve

ry
te

rm
in

th
e

su
m

is
a

po
ss

ib
le

pa
th

fr
om

i
to

j,
th

ou
gh

th
e

w
ei

gh
tc

ou
ld

be
ze

ro
.

T
he

su
m

m
at

io
n

is
ov

er
al

lp
os

si
bl

e
in

te
rm

ed
ia

te
po

in
ts

( n
−

1
of

th
em

).
S

o,
T

n ij
gi

ve
s

th
e

to
ta

lw
ei

gh
t(

pr
ob

ab
ili

ty
or

nu
m

be
r)

of
al

lt
he

w
al

ks
fr

om
it

o
ji

n
n

st
ep

s.

d)
W

e
ta

ke
a
=

b
=

c
=

1
to

ju
st

co
un

tt
he

nu
m

be
r

of
po

ss
ib

le
w

al
ks

in
n

st
ep

s.
T

hi
s

is
th

e
cr

ud
es

t
de

sc
rip

tio
n

of
th

e
dy

na
m

ic
s.

Ta
ki

ng
a,

b,
c

as
tr

an
si

tio
n

pr
ob

ab
ili

tie
s

w
ou

ld
gi

ve
a

m
or

e
de

ta
ile

d
de

sc
rip

tio
n.

T
he

ei
ge

nv
lu

es
of
T

is
(1
±
√ 5

)/
2,

so
w

e
ge

t
N

(n
)
∝

(1+
√ 5

2
)n

.

e)
T

he
to

po
lo

gi
ca

le
nt

ro
py

is
th

en
ln

1+
√ 5

2
.

(Y
ue

he
ng

La
n)

S
ol

ut
io

n
13

.6
-“

G
ol

de
n

m
ea

n”
pr

un
ed

m
ap

.
It

is
ea

sy
to

w
rit

e
th

e
tr

an
si

tio
n

m
at

rix
T

T
=

(

0
1

1
1

)

.

T
he

ei
ge

nv
al

ue
s

ar
e

(1
±
√ 5)

/2
.

T
he

nu
m

be
ro

fp
er

io
di

c
or

bi
ts

of
le

ng
th

n
is

th
e

tr
ac

e

T
n
=

(1
+
√ 5)

n
+

(1
−
√ 5)

n

2n
.

(Y
ue

he
ng

La
n)

S
ol

ut
io

n
13

.5
-3

-d
is

k
pr

im
e

cy
cl

e
co

un
tin

g.
T

he
fo

rm
ul

a
fo

ra
rb

itr
ar

y
le

ng
th

cy
cl

es
is

de
riv

ed
in

se
ct

. 1
3.

4.

S
ol

ut
io

n
13

.4
3

-
A

lp
ha

be
t
{0

,1
},

pr
un

e
1

0
0

0
,

0
0

1
0

0
,

0
1

1
0

0
.

so
lu

C
ou

nt
-

8o
ct

20
03

.t
ex



A
P

P
E

N
D

IX
S

.
S

O
LU

T
IO

N
S

81
1

st
ep

1.
1

0
0

0
pr

un
es

al
lc

yc
le

s
w

ith
a

0
0

0
su

bs
eq

ue
nc

e
w

ith
th

e
ex

ce
pt

io
n

of
th

e
fix

ed
po

in
t0

;h
en

ce
w

e
fa

ct
or

ou
t(

1
−

t 0
)

ex
pl

ic
itl

y,
an

d
pr

un
e

0
0

0
fr

om
th

e
re

st
.

P
hy

si
ca

lly
th

is
m

ea
ns

th
at

x 0
is

an
is

ol
at

ed
fix

ed
po

in
t-

no
cy

cl
e

st
ay

s
in

its
vi

ci
ni

ty
fo

r
m

or
e

th
an

2
ite

ra
tio

ns
.

In
th

e
no

ta
tio

n
of

ex
er

ci
se

13
.1

7,
th

e
al

ph
ab

et
is
{1

,
2,

3;
0}

,
an

d
th

e
re

m
ai

ni
ng

pr
un

in
g

ru
le

s
ha

ve
to

be
re

w
rit

te
n

in
te

rm
s

of
sy

m
bo

ls
2=

10
,3

=1
00

:

st
ep

2.
al

ph
ab

et
{1

,
2,

3;
0}

,
pr

un
e

3
3

,
2

1
3

,
3

1
3

.
P

hy
si

ca
lly

,
th

e
3-

cy
cl

e
3
=

1
0

0
is

pr
un

ed
an

d
no

lo
ng

cy
cl

es
st

ay
cl

os
e

en
ou

gh
to

it
fo

r
a

si
ng

le
1

0
0

re
pe

at
.

A
s

in
ex

er
ci

se
13

.7
,p

ro
hi

bi
tio

n
of

3
3

is
im

pl
em

en
te

d
by

dr
op

pi
ng

th
e

sy
m

bo
l“

3”
an

d
ex

te
nd

in
g

th
e

al
ph

ab
et

by
th

e
al

lo
w

ed
bl

oc
ks

13
,2

3:

st
ep

3.
al

ph
ab

et
{1

,
2,

1
3,

2
3;

0}
,

pr
un

e
2

1
3

,
2

3
1

3
,

1
3

1
3

,
w

he
re

1
3
=

1
3,

2
3
=

2
3

ar
e

no
w

us
ed

as
si

ng
le

le
tte

rs
.

P
ru

ni
ng

of
th

e
re

pe
tit

io
ns

1
3

1
3

(t
he

4-
cy

cl
e

1
3
=

1
1

0
0

is
pr

un
ed

)
yi

el
ds

th
e

R
es

ul
t:

al
ph

ab
et
{1

,2
,2

3,
1

1
3;

0}
,u

nr
es

tr
ic

te
d

4-
ar

y
dy

na
m

ic
s.

T
he

ot
he

rr
em

ai
ni

ng
po

ss
ib

le
bl

oc
ks

2
1

3
,

2
31

3
ar

e
fo

rb
id

de
n

by
th

e
ru

le
s

of
st

ep
3.

T
he

to
po

lo
gi

ca
lz

et
a

fu
nc

tio
n

is
gi

ve
n

by

1/
ζ
=

(1
−

t 0
)(

1
−

t 1
−

t 2
−

t 2
3
−

t 1
13

)
(S

.1
8

)

fo
r

un
re

st
ric

te
d

4-
le

tte
r

al
ph

ab
et
{1

,2
,2

3,
1

1
3}.

S
ol

ut
io

n
13

.1
0

-
W

he
nc

e
M

öb
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öb
iu

s
fu

nc
tio

n,
w

ith
w

ho
se

he
lp

th
e

in
ve

rs
e

of
( 1

3.
37

)c
an

be
w

rit
te

n
as

th
e

M
öb
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APPENDIX S. SOLUTIONS 823

Figure S.12: Plot of the escape rate versusa for
the logistic mapxn+1 = axn(1− xn) calculated from
the first five periodic orbits.
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γ

Solution 18.2 - Escape rate for a 1- d repeller We can compute an approximate
functional dependence of the escape rate on the parameter a using the stabilities of
the first five prime orbits computed above, see (S.22). The spectral determinant (for
a > 4) is

F = 1− 2z
a− 1

− 8z2

(a− 3)(a− 1)2(a+ 1)

+

(

2(32− 18a+ 17a2 − 16a3 + 14a4 − 6a5 + a6)
(a− 3)(a− 1)3(1+ a)(a2 − 5a+ 7)(a2 + a+ 1)

(S.24)

− 2a(a− 2)
√

(a2 − 2a− 7)
(a2 − 5a+ 7)(a2 − 2a− 7)(a2 + a+ 1)

)

z3

The leading zero is plotted in figure S.12; it always remains real while the other two
roots which are large and negative for a > 5.13. . . become imaginary below this critical
value. The accuracy of this truncation is clearly worst for a → 4, the value at which
the hyperbolicity is lost and the escape rate goes to zero.

(Adam Prügel-Bennet)

Solution 18.3 - Escape rate for the Ulam map. The answer is worked out in
Nonlinearity 3, 325; 3, 361 (1990).

Solution 18.11 - Escape rate for the R össler system. No solution available as
yet.

soluRecyc - 15nov2007.tex

APPENDIX S. SOLUTIONS 824

Chapter 19. Discrete symmetries factorize spectral deter-
minants

Solution 19.2 - Sawtooth map desymmetrization. No solution available as yet.

Solution 19.3 - 3-disk desymmetrization.

b) The shortest cycle with no symmetries is 121213.

c) The shortest fundamental domain cycle cycle whose time reversal is not obtained
by a discrete symmetry is 010011. It corresponds to 121313212323in the full
space.

Ben Web

Solution 19.4 - C2 factorizations: the Lorenz and Ising systems. No solution
available as yet.

Solution 19.5 - Ising model. No solution available as yet.

Solution 19.6 - One orbit contribution. No solution available as yet.

Solution ?? - Characters. No solution available as yet.

soluSymm - 13jul2000.tex
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The only terms that survive are those for which j = i − 1 (that is the top diagonal in
the figure) thus

(1− u)P2 = u−1
∞∑

i=1

u2i

and

(1− u)(1− u2)P2 = u−1
(

u2 + u4 + · · · − (u4 + u6 + · · ·)
)

= u

Thus

P2 =
u

(1− u)(1− u2)

In general

(1− u)Pn =
∑

in>in−1>···i1≥0

uin+in−1+···+i1 −
∑

in>in−1>···i1≥0

uin+in−1+···+(i1+1)

(S.26)

= u−1
∑

in>in−1>···i2≥1

uin+in−1+···+2i2 (S.27)

since only the term i1 = i2 − 1 survives. Repeating this trick

(1− u)(1− u2)Pn = u−1−2
∑

in>in−1>···i3≥2

uin+in−1+···+3i3

and

n∏

i=1

(1− ui) Pn = u−(1+2+···+n)un(n−1) = un(n−1)/2

Thus

Pn =
un(n−1)/2

∏n
i=1(1− ui)

.

(Adam Prügel-Bennet)

Solution 21.3 - Euler formula, 2nd method. The coefficients Qk in (21.4) are given
explicitly by the Euler formula

Qk =
1

1− Λ−1

Λ−1

1− Λ−2
· · · Λ

−k+1

1− Λ−k
. (S.28)

soluConverg - 12jun2003.tex
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Such a formula is easily proved by considering the finite order product

W j(z, γ) =
j∏

l=0

(1+ zγl) =
j+1∑

l=0

Γlz
l

Since we have that

(1+ zγ j+1)W j(z, γ) = (1+ z)W j(γz, γ) ,

we get the following identity for the coefficients

Γm+ Γm−1γ
j+1 = Γmγ

m + Γm−1γ
m−1 m= 1, . . . .

Starting with Γ0 = 1, we recursively get

Γ1 =
1− γ j+1

1− γ Γ2 =
(1− γ j+1)(γ − γ j+1)

(1− γ)(1− γ2)
. . . .

the Euler formula (21.5) follows once we take the j → ∞ limit for |γ| < 1.

(Robert Artuso)

Solution 21.3 - Euler formula, 3rd method. First define

f (t, u) :=
∞∏

k=0

(1+ tuk) . (S.29)

Note that

f (t, u) = (1+ t) f (tu, u) , (S.30)

by factoring out the first term in the product. Now make the ansatz

f (t, u) =
∞∑

n=0

tngn(u) , (S.31)

plug it into (S.30), compare the coefficients of tn and get

gn(u) = ungn(u) + un−1gn−1(u) . (S.32)

Of course g0(u) = 1. Therefore by solving the recursion (S.32) and by noting that
∑n−1

k=1 k = n(n−1)
2 one finally arrives at

gn(u) =
u

n(n−1)
2

∏n
k=1(1− uk)

. (S.33)

soluConverg - 12jun2003.tex
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APPENDIX S. SOLUTIONS 831

Chapter 23. Intermittency

(No solutions available.)

soluInter - 13jul2000.tex

APPENDIX S. SOLUTIONS 832

Chapter ??. Continuous symmetries

Solution ?? - To be constructed: Rotate coordinates x’= gx:

L(x′, y′) = δ(gy− f (gx)). = |detg|−1 δ(y− f (x)). = L(x, y) = |detg| L(gx, gy). .

For a compact semisimple Lie group |detg| = 1, hence (??).

soluRpo - 19sep2007.tex
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te
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.

To
se

e
th

at
( 3

0.
19

)
sa
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fie

s
pr

op
er
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s

of
th

e
de

lta
fu

nc
tio

n,

δ(
E
−

E
n
)
=
−

lim ε
→

0

1 π
Im

1
E
−

E
n
+

iε
,

st
ar

tb
y

ex
pr

es
si

ng
ex

pl
ic

itl
y

th
e
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ag

in
ar

y
pa

rt
:

−I
m

1
E
−

E
n
+

iε
=
−I

m
E
−

E
n
−

iε
(E
−

E
n
+

iε
)(

E
−

E
n
−

iε
)

=
ε

(E
−

E
n
)2
+
ε

2
.
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a
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w
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ǫ,
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E
=

E
n
.
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ha
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m
al
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r

th
e

de
lta
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1 π
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d
E

ε

(E
−

E
n
)2
+
ε

2
=

1 π

ε ε
ar
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an

E
−

E
n

ε

∣ ∣ ∣ ∣ ∣∞ −∞

=
1 π

(π
/2
−

(−
π
/2

))
=

1
,

so

1 π

∫
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d
E

ǫ

(E
−

E
n
)2
+
ǫ2
=

1
,
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∞

lim
it

th
e

su
pp

or
to

ft
he

Lo
re

nt
zi

an
is

co
nc

en
tr

at
ed

at
E
=
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n
.
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n
E
=

E
n
,

lim ε
→

0

1 π

(

ε

(E
−

E
n
)2
+
ε

2

)

=
lim ε
→

0

1 π

1 ε
=
∞
,

an
d

w
he

n
E
,

E
n
,

lim ε
→

0

1 π

ε

(E
−

E
n
)2
+
ε

2
=

0
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vi
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ng
th
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a

fu
nc
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n
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δ(
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)δ
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−

E
n
)d
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=
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ra
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Solution 30.2 - Green’s function. The Laplace transform of the (time-dependent)
quantum propagator

K(q, q′, t) =
∑

n

φn(q)e−iEnt/~φ∗n(q′)

is the (energy-dependent) Green’s function

G(q, q′,E + iε) =
1
i~

∫ ∞

0
dt e

i
~
Et− ε

~
t
∑

n

φn(q)e−iEnt/~φ∗n(q′)

=
1
i~

∑

n

φn(q)φ∗n(q
′)

∫ ∞

0
dt e

i
~
(E−En+iε)t

= −
∑

n

φn(q)φ∗n(q
′)

1
E − En + iε

e−
ε
~
tei(E−En)t/~

∣
∣
∣
∣
∣

t=∞

t=0
.

When ε is positive, e−
ε
~
∞ = 0, so

G(q, q′,E + iε) =
∑

n

φn(q)φ∗n(q
′)

E − En + iε
.

(Bo Li)

soluQmech - 25jan2004.tex
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Chapter 31. WKB quantization

Solution 31.1 - Fresnel integral. Start by re-expressing the integral over the infinite
half-line:

1
√

2π

∫ ∞

−∞
dx e−

x2

2ia =
2
√

2π

∫ ∞

0
dx e−

x2

2ia , a ∈ R , a , 0 .

When a > 0, the contour

yy

xx

π / 44
RR→∞

RR

C’

vanishes, as it contains no pole:

∮

C
dz e−z2/2ia =

∫ ∞

0
dx e−

x2

2ia +

∫

C′
+

∫ 0

∞
ei π4 e−

x2

2a dx= 0

∫

C′
=

∫ π
4

0
eiR2ei2φ/2aReiφidφ = 0 . (S.41)

So

2
√

2π

∫ ∞

0
dx e−

x2

2ia =
2
√

2π

∫ ∞

0
dx ei π4 e−

x2

2a = ei π4
√

a =
√

ia

In the a < 0 case take the contour

yy

xxπ / 44

RR→∞

RR

C’

∮

C
dz e−z2/2ia =

∫ ∞

0
dx e−

x2

2ia +

∫

C′
+

∫ 0

∞
e−i π4 e

x2

2a dx

=

∫ ∞

0
dx e−

x2

2ia − e−i π4

∫ ∞

0
dx e

x2

2a = 0 .

Again

2
√

2π

∫ ∞

0
dx e−

x2

2ia = e−i π4
√

|a| ,

and, as one should have perhaps intuited by analyticity arguments, for either sign of a
we have the same Gaussian integral formula

1
√

2π

∫ ∞

−∞
dx e−

x2

2ia = |a|1/2ei π4
a
|a| =
√

ia .

The vanishing of the C′ contour segment (S.41) can be proven as follows: Substitute
z= Reiφ into the integral

IR =

∫ π
4

0
eiR2ei2φ/2aReiφidφ =

∫ π
4

0
eiR2(cos 2φ+i sin 2φ)/2aReiφidφ .

soluWKB - 25jan2004.tex
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π 4
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R
2
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/2
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=

R 2

∫
π 2

0
e−

R
2

si
n
θ/

2a
dθ
.
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/2
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2 π
θ
≤
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θ
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ob
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bo
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d

|I R
|≤

R 2

∫
π 2

0
e−

R
2
θ/
π
a
dθ
=

R 2
1
−

e−
R

2
/2

a

R
2
/a
π

,

so

lim R
→
∞
|I R
|=

0
.
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de
fin
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R
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′ ,
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=

∫
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0
L

(q̇
(t
′ )
,q
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′ )
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′ )
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e
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of
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an
ge

eq
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of
m

ot
io

n
is

su
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im
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si
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le
:

W
e

ha
ve L

(q̇
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′ )
,q
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′ )
=

m 2

D
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1

[q̇
i(
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)]

2
,

q̇ i
(t

)
=
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n

st
=

q′ i
−

q i
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.
(S
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2

)

T
he

an
sw

er
:
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′ ,

q,
t)
=

m 2

D
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−

q i
]2
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.
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ω
=
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e
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=

m 2

(
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+
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−

yẋ
))
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eq
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+
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=
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+
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z)
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+

∫
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t 0

[

x(
−ẍ
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ω
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−ÿ
−
ω

ẋ)
]
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t)

,

ho
w

ev
er

te
rm

s
in
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de

th
e

in
te

gr
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va
ni

sh
by

eq
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of
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n.
D
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e
w

(t
)
=

x(
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+
ιy

(t
) ,
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pl
ex

w
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ẅ
(t

)
+
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ẇ
(t

)
=

0
,
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n
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hi
ch

is

w
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≡
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)
=
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+

ẇ
(1
−

e−
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t )
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.
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=
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−
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=
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−
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+
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−
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−
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=
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−
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+
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is

en
ou

gh
to

sh
ow

th
at

it
ha

s
th

e
fo

llo
w

in
g

pr
op

er
tie

s:

1.
∫
∞ −∞
δ σ

(x
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x
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1

2.
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0

∫
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δ σ
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∫
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APPENDIX S. SOLUTIONS 851

Limits of integration may depend on particular situation. If limits are infinite, then

∫

e−s2/~dds=

(∫ ∞

−∞
e−s2/~ds

)

= (π~)d/2

We substitute this into I and get the answer. (R. Paškauskas)

Solution 33.2 - Jacobi gymnastics. We express the Jacobi matrix elements in
det (1− J) with the derivative matrices of S

det (1− J) = det

(

I + S−1
q′qSq′q′ S−1

q′q

−Sqq′ + SqqS−1
q′qSq′q′ I + SqqS−1

q′q

)

.

We can multiply the second column with Sq′q′ from the and substract from the first
column, leaving the determinant unchanged

det (1− J) = det

(

I S−1
q′q

−Sqq′ − Sq′q′ I + SqqS−1
q′q

)

.

Then, we multiply the second column with Sq′q from the right and compensate this by
dividing the determinant with detSq′q

det (1− J) = det

(

I I
−Sqq′ − Sq′q′ Sq′q + Sqq

)

/detSq′q.

Finally we subtract the first column from the second one

det (1− J j)) = det

(

I 0
Sqq′ + Sq′q′ Sqq′ + Sq′q′ + Sq′q + Sqq

)

/detSq′q.

The last determinant can now be evaluated and yields the desired result (33.2)

det (1− J j) = det (Sqq′ + Sq′q′ + Sq′q + Sqq)/detSq′q.

soluTraceScl - 11jun2003.tex

APPENDIX S. SOLUTIONS 852

Chapter 34. Quantum scattering

Solution 34.2 - The one-disk scattering wave function.

ψ(~r ) =
1
2

∞∑

m=−∞



H
(2)
m (kr) − H(2)

m (ka)

H(1)
m (ka)

H(1)
m (kr)



 eim(Φr−Φk) . (S.50)

(For r < a, ψ(~r) = 0 of course.)

(Andreas Wirzba)

soluScatter - 4sep98.tex



APPENDIX S. SOLUTIONS 853

Chapter 36. Helium atom

(No solutions available.)

soluHelium - 12jun2003.tex

APPENDIX S. SOLUTIONS 854

Chapter 37. Diffraction distraction

(No solutions available.)

soluWhelan - 12jun2003.tex



APPENDIX S. SOLUTIONS 855

Chapter B. Linear stability

Solution B.1 - Real representation of complex eigenvalues.

1
2

( 1 1
−i i

) (
λ 0
0 λ∗

) ( 1 i
1 −i

)

=

(
µ −ω
ω µ

)

.

(P. Cvitanović)

soluAppStab - 1feb2008.tex

APPENDIX S. SOLUTIONS 856

Chapter C. Implementing evolution

(No solutions available.)

soluAppMeasure - 12jun2003.tex



APPENDIX S. SOLUTIONS 857

Chapter D. Symbolic dynamics techniques

(No solutions available.)

soluAppSymb - 12jun2003.tex

APPENDIX S. SOLUTIONS 858

Chapter E. Counting itineraries

Solution E.1 - Lefschetz zeta function. Starting with dynamical zeta function
ref. [13] develops the Atiyah-Bott-Lefschetz fixed point formula and relates is to Weyl
characters. Might be worth learning.

soluAppCount - 22jan2005.tex
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Chapter J. Infinite dimensional operators

Solution J.1 - Norm of exponential of an operator. No solution available.

soluAppWirzba - 2sep2008.tex

APPENDIX S. SOLUTIONS 862

Chapter K. Statistical mechanics recycled

(No solutions available.)

soluStatmech - 12jun2003.tex



Appendix T

Projects

Y    to work through the essential steps in a project that combines
the techniques learned in the course with some application of interest to
you for other reasons. It is OK to share computer programs andsuch, but

otherwise each project should be distinct, not a group project. The essential steps
are:

• Dynamics

1. construct a symbolic dynamics

2. count prime cycles

3. prune inadmissible itineraries, construct Markov graphs if appropriate

4. implement a numerical simulator for your problem

5. compute a set of the shortest periodic orbits

6. compute cycle stabilities

• Averaging, numerical

1. estimate by numerical simulation some observable quantity, like the
escape rate,

2. or check the flow conservation, compute something like theLyapunov
exponent

• Averaging, periodic orbits

1. implement the appropriate cycle expansions

2. check flow conservation as function of cycle length truncation, if the
system is closed

3. implement desymmetrization, factorization of zeta functions, if dynamics
possesses a discrete symmetry

4. compute a quantity like the escape rate as a leading zero ofa spectral
determinant or a dynamical zeta function.

863
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5. or evaluate a sequence of truncated cycle expansions for averages,
such as the Lyapunov exponent or/and diffusion coefficients

6. compute a physically intersting quantity, such as the conductance

7. compute some number of the classical and/or quantum eigenvalues, if
appropriate

projects - 24mar98.tex
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T.1 Deterministic diffusion, zig-zag map

To illustrate the main idea of chapter24, tracking of a globally diffusing orbit
by the associated confined orbit restricted to the fundamental cell, we consider a
class of simple 1-d dynamical systems, chains of piecewise linear maps, where all
transport coefficients can be evaluated analytically. The translational symmetry
(24.10) relates the unbounded dynamics on the real line to the dynamics restricted
to a “fundamental cell” - in the present example the unit interval curled up into a
circle. An example of such map is the sawtooth map

f̂ (x) =






Λx x∈ [0, 1/4+ 1/4Λ]
−Λx+ (Λ + 1)/2 x ∈ [1/4+ 1/4Λ, 3/4− 1/4Λ]
Λx+ (1− Λ) x ∈ [3/4− 1/4Λ, 1]

. (T.1)

The corresponding circle mapf (x) is obtained by modulo the integer part. The
elementary cell mapf (x) is sketched in figureT.1. The map has the symmetry
property

f̂ (x̂) = − f̂ (−x̂) , (T.2)

so that the dynamics has no drift, and all odd derivatives of the generating function
(24.3) with respect toβ evaluated atβ = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (T.3)

The diffusion constant formula for 1-d maps is

D =
1
2

〈

n̂2
〉

ζ

〈n〉ζ
(T.4)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣
∣
∣
∣
∣
z=1
= −

∑′
(−1)k

np1 + · · · + npk

|Λp1 · · ·Λpk |
, (T.5)

the mean cycle displacement squared by

〈

n̂2
〉

ζ
=

∂2

∂β2

1
ζ(β, 1)

∣
∣
∣
∣
∣
∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
, (T.6)

and the sum is over all distinct non-repeating combinationsof prime cycles. Most
of results expected in this projects require no more than pencil and paper computations.

Implementing the symmetry factorization (24.35) is convenient, but not essential
for this project, so if you find sect.19.1.1too long a read, skip the symmetrization.

Problems/projDDiff1.tex 7aug2002.tex
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Figure T.1: (a)-(f) The sawtooth map (T.1) for the
6 values of parametera for which the folding point
of the map aligns with the endpoint of one of the 7
intervals and yields a finite Markov partition (from
ref. [1]). The corresponding Markov graphs are
given in figureT.2.

T.1.1 The full shift

Take the map (T.1) and extend it to the real line. As in example of figure24.3,
denote bya the critical value of the map (the maximum height in the unit cell)

a = f̂ (
1
4
+

1
4Λ

) =
Λ + 1

4
. (T.7)

Describe the symbolic dynamics that you obtain whena is an integer, and derive
the formula for the diffusion constant:

D =
(Λ2 − 1)(Λ − 3)

96Λ
for Λ = 4a− 1, a ∈ Z . (T.8)

If you are going strong, derive also the fromula for the half-integera = (2k+1)/2,
Λ = 4a+ 1 case and email it to DasBuch@nbi.dk. You will need to partitionM2

into the left and right half,M2 =M8 ∪M9, as in the derivation of (24.21).
[exercise 24.1]

Problems/projDDiff1.tex 7aug2002.tex
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Figure T.2: (a) The sawtooth map (T.1) partition
tree for figureT.1 (a); while intervalsM1,M2,M3

map onto the whole unit interval,f (M1) =
f (M2) = f (M3) = M, intervalsM4,M5 map
ontoM1 only, f (M4) = f (M5) = M1, and
similarly for intervalsM6,M7. An initial point
starting out in the intervalM1, M2 or M3 can
land anywhere on the unit interval, so the subtrees
originating from the corresponding nodes on the
partition three are similar to the whole tree and
can be identified (as, for example, in figure10.13),
yielding (b) the Markov graph for the Markov
partition of figureT.1 (a). (c) the Markov graph
in the compact notation of (24.26). (a)

1
2 6

31

54 7
3

1 3

(b) 1

4
5 6

3

7

1

2

3

(c)

6
7

4
5

2 31

1 3

T.1.2 Subshifts of finite type

We now work out an example when the partition is Markov, although the slope is
not an integer number. The key step is that of having a partition where intervals
are mappedonto unions of intervals. Consider for example the case in which
Λ = 4a− 1, where 1≤ a ≤ 2. A first partition is constructed from seven intervals,
which we label{M1,M4,M5,M2,M6,M7,M3}, with the alphabet ordered as
the intervals are laid out along the unit interval. In general the critical valuea will
not correspond to an interval border, but now we choosea such that the critical
point is mapped onto the right border ofM1, as in figureT.1(a). The critical value
of f () is f (Λ+1

4Λ ) = a− 1 = (Λ − 3)/4. Equating this with the right border ofM1,
x = 1/Λ, we obtain a quadratic equation with the expanding solutionΛ = 4. We
have thatf (M4) = f (M5) =M1, so the transition matrix (10.2) is given by

φ′ = Tφ =





1 1 1 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 1 1 1









φ1

φ4

φ5

φ2

φ6

φ7

φ3





(T.9)

and the dynamics is unrestricted in the alphabet

{1, 41, 51, 2, 63, 73, 3, } .

One could diagonalize (T.9) on the computer, but, as we saw in sect.10.4, the
Markov graph figureT.2 (b) corresponding to figureT.1 (a) offers more insight
into the dynamics. The dynamical zeta function

1/ζ = 1− (t1 + t2 + t3) − 2(t14+ t37)

1/ζ = 1− 3
z
Λ
− 4 coshβ

z2

Λ2
. (T.10)

follows from the loop expansion (13.13) of sect.13.3.

Problems/projDDiff1.tex 7aug2002.tex
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figureT.1 Λ D

3 0
(a) 4 1

10
(b)

√
5+ 2 1

2
√

5

(c) 1
2(
√

17+ 5) 2√
17

(c’) 5 2
5

(d) 1
2(
√

33+ 5) 1
8 +

5
88

√
33

(e) 2
√

2+ 3 1
2
√

2

(f) 1
2(
√

33+ 7) 1
4 +

1
4
√

33
7 2

7

Table T.1: The diffusion constant as function of the slopeΛ for the a = 1, 2 values of
(T.8) and the 6 Markov partitions of figureT.1

The material flow conservation sect.20.3and the symmetry factorization (24.35)
yield

0 =
1

ζ(0, 1)
=

(

1+
1
Λ

) (

1− 4
Λ

)

which indeed is satisfied by the given value ofΛ. Conversely, we can use the
desired Markov partition topology to write down the corresponding dynamical
zeta function, and use the 1/ζ(0, 1) = 0 condition to fixΛ. For more complicated
transition matrices the factorization (24.35) is very helpful in reducing the order
of the polynomial condition that fixesΛ.

The diffusion constant follows from (24.36) and (T.4)

〈n〉ζ = −
(

1+
1
Λ

) (

− 4
Λ

)

,
〈

n̂2
〉

ζ
=

4

Λ2

D =
1
2

1
Λ + 1

=
1
10

Think up other non-integer values of the parameter for whichthe symbolic dynamics
is given in terms of Markov partitions: in particular consider the cases illustrated
in figure T.1 and determine for what value of the parametera each of them is
realized. Work out the Markov graph, symmetrization factorization and the diffusion
constant, and check the material flow conservation for each case. Derive the
diffusion constants listed in tableT.1. It is not clear why the final answers tend to
be so simple. Numerically, the case of figureT.1 (c) appears to yield the maximal
diffusion constant. Does it? Is there an argument that it should be so?

The seven cases considered here (see tableT.1, figureT.1 and (T.8)) are the 7
simplest complete Markov partitions, the criterion being that the critical points
map onto partition boundary points. This is, for example, what happens for
unimodal tent map; if the critical point is preperiodic to anunstable cycle, the

Problems/projDDiff1.tex 7aug2002.tex
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grammar is complete. The simplest example is the case in which the tent map
critical point is preperiodic to a unimodal map 3-cycle, in which case the grammar
is of golden mean type, with00 substring prohibited (see figure10.13). In
case at hand, the “critical” point is the junction of branches 4 and 5 (symmetry
automatically takes care of the other critical point, at thejunction of branches 6
and 7), and for the cases considered the critical point maps into the endpoint of
each of the seven branches.

One can fill out parametera axis arbitrarily densely with such points - each of
the 7 primary intervals can be subdivided into 7 intervals obtained by 2-nd iterate
of the map, and for the critical point mapping into any of those in 2 steps the
grammar (and the corresponding cycle expansion) is finite, and so on.

T.1.3 Diffusion coefficient, numerically

(optional:)
Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈

x̂2
n

〉

. (T.11)

Study the convergence by comparing your numerical results to the exact answers
derived above. Is it better to use few initial ˆx and average for long times, or to
use many initial ˆx for shorter times? Or should one fit the distribution of ˆx2 with
a Gaussian and get theD this way? Try to plot dependence ofD onΛ; perhaps
blow up a small region to show that the dependance ofD on the parameterΛ is
fractal. Compare with figure24.5and figures in refs. [1, 2, 8, 9].

T.1.4 D is a nonuniform function of the parameters

(optional:)
The dependence ofD on the map parameterΛ is rather unexpected - even though
for largerΛ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow. An interpretation of this lack of
monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map (T.1) for
a random “generic” value of the parameterΛ, for exampleΛ = 6. The idea is to
bracket this value ofΛ by the nearby ones, for which higher and higher iterates
of the critical valuea = (Λ + 1)/4 fall onto the partition boundaries, compute the
exact diffusion constant for each such approximate Markov partition,and study
their convergence toward the value ofD for Λ = 6. Judging how difficult such
problem is already for a tent map (see sect.13.6 and appendixD.1), this is too
ambitious for a week-long exam.
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T.2 Deterministic diffusion, sawtooth map

To illustrate the main idea of chapter24, tracking of a globally diffusing orbit
by the associated confined orbit restricted to the fundamental cell, we consider in
more detail the class of simple 1-d dynamical systems, chains of piecewise linear
maps (24.9). The translational symmetry (24.10) relates the unbounded dynamics
on the real line to the dynamics restricted to a “fundamentalcell” - in the present
example the unit interval curled up into a circle. The corresponding circle map
f (x) is obtained by modulo the integer part. The elementary cellmap f (x) is
sketched in figure24.3. The map has the symmetry property

f̂ (x̂) = − f̂ (−x̂) , (T.12)

so that the dynamics has no drift, and all odd derivatives of the generating function
(24.3) with respect toβ evaluated atβ = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (T.13)

The diffusion constant formula for 1-d maps is

D =
1
2

〈

n̂2
〉

ζ

〈n〉ζ
(T.14)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣
∣
∣
∣
∣
z=1
= −

∑′
(−1)k

np1 + · · · + npk

|Λp1 · · ·Λpk |
, (T.15)

the mean cycle displacement squared by

〈

n̂2
〉

ζ
=

∂2

∂β2

1
ζ(β, 1)

∣
∣
∣
∣
∣
∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
, (T.16)

and the sum is over all distinct non-repeating combinationsof prime cycles. Most
of results expected in this projects require no more than pencil and paper computations.

T.2.1 The full shift

Reproduce the formulas of sect.24.2.1for the diffusion constantD for Λ both
even and odd integer.
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figure24.4 Λ D

4 1
4

(a) 2+
√

6 1− 3
4

√
6

(b) 2
√

2+ 2 15+2
√

2
16+4

√
2

(c) 5 1
(d) 3+

√
5 5

2
Λ−1
3Λ−4

(e) 3+
√

7 5Λ−4
3Λ−2

6 5
6

Table T.2: The diffusion constant as function of the slopeΛ for theΛ = 4, 6 values of
(24.20) and the 5 Markov partitions like the one indicated in figure24.4.

T.2.2 Subshifts of finite type

We now work out examples when the partition is Markov, although the slope is
not an integer number. The key step is that of having a partition where intervals
are mappedontounions of intervals.

Start by reproducing the formula (24.28) of sect.24.2.3for the diffusion constant
D for the Markov partition, the case where the critical point is mapped onto the
right border ofI1+ .

Think up other non-integer values of the parameterΛ for which the symbolic
dynamics is given in terms of Markov partitions: in particular consider the remaining
four cases for which the critical point is mapped onto a border of a partition in
one iteration. Work out the Markov graph symmetrization factorization and the
diffusion constant, and check the material flow conservation foreach case. Fill in
the diffusion constants missing in tableT.2. It is not clear why the final answers
tend to be so simple. What value ofΛ appears to yield the maximal diffusion
constant?

The 7 cases considered here (see tableT.2 and figure24.4) are the 7 simplest
complete Markov partitions in the 4≤ Λ ≤ 6 interval, the criterion being that the
critical points map onto partition boundary points. In caseat hand, the “critical”
point is the highest point of the left branch of the map (symmetry automatically
takes care of the other critical point, the lowest point of the left branch), and for
the cases considered the critical point maps into the endpoint of each of the seven
branches.

One can fill out parametera axis arbitrarily densely with such points - each of
the 6 primary intervals can be subdivided into 6 intervals obtained by 2-nd iterate
of the map, and for the critical point mapping into any of those in 2 steps the
grammar (and the corresponding cycle expansion) is finite, and so on.

T.2.3 Diffusion coefficient, numerically

(optional:)
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Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈

x̂2
n

〉

. (T.17)

Study the convergence by comparing your numerical results to the exact answers
derived above. Is it better to use few initial ˆx and average for long times, or to
use many initial ˆx for shorter times? Or should one fit the distribution of ˆx2 with
a Gaussian and get theD this way? Try to plot dependence ofD onΛ; perhaps
blow up a small region to show that the dependance ofD on the parameterΛ is
fractal. Compare with figure24.5and figures in refs. [1, 2, 8, 9].

T.2.4 D is a nonuniform function of the parameters

(optional:)
The dependence ofD on the map parameterΛ is rather unexpected - even though
for largerΛ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow. Figure24.5 taken from ref. [8]
illustrates the fractal dependence of diffusion constant on the map parameter. An
interpretation of this lack of monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map (24.9) for
a random “generic” value of the parameterΛ, for exampleΛ = 4.5. The idea is
to bracket this value ofΛ by the nearby ones, for which higher and higher iterates
of the critical valuea = Λ/2 fall onto the partition boundaries, compute the exact
diffusion constant for each such approximate Markov partition,and study their
convergence toward the value ofD for Λ = 4.5. Judging how difficult such
problem is already for a tent map (see sect.13.6 and appendixD.1), this is too
ambitious for a week-long exam.
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