Chapter 14

Walkabout: Transition graphs

| think I'll go on a walkabout
find out what it’s all about [...] take a ride to the other side
—Red Hot Chili Peppers, ‘Walkabout’

N cHAPTERS 11 aND 12 we learned that invariant manifolds partition the state
I space in invariant way, and how to name distinct orbits. Wee lesstablished
and related théemporallyand spatially ordered topological dynamics for a
class of ‘stretch & fold’ dynamical systems, and discussechipg of inadmissi-
ble trajectories.

Here we shall use these results to generate the totalitynoifsaible itineraries.
This task will be particularly easy for repellers with comiel Smale horseshoes
and for subshifts of finite type, for which the admissibledtiaries are generated
by finite transition matrices, and the topological dynanuas be visualized by
means of finite transition graphs. We shall then turn topokdglynamics into a
linear multiplicative operation on the state space partgiby means of transition
matrices, the simplest examples of ‘evolution operatdrsey will enable us —in
chapter 15 — t@ountthe distinct orbits.

14.1 Matrix representations of topological dynamics

R

encoded in therixm]-dimensional transition matrix whose elements take \&lue

The allowed transitions between the regions of a partiio, Mo, - - -, M} are

(14.1)

T = 1 if the transitionM; — M, is possible
Y7 | 0 otherwise

The transition matrix is an explicit linear representatmitopological dynam-
ics. If the partition is a dynamically invariant partitiororestructed from sta-
ble/lunstable manifolds, it encodes the topological dynamicarasvariant law
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Figure 14.1: Points from the regiomM,; reach re-
gions { Mo, Mi11, My}, and no other regions, in one
time step. Labeling exemplifies the ‘shift map’ of ex-
ample 11.7 and (11.20).

of motion, with the allowed transitions at any instant inelegent of the trajectory
history, requiring no memory.

Several related matrices as well will be needed in what \iedlo Often it is
convenient to distinguish between two or more paths coimgethe same two
regions; that is encoded by thdjacencymatrix with non-negative integer entries,

A = { k if atransitionM; — M is possible irk ways (14.2)

0 otherwise

More generally, we shall encounter fm] matrices which assign filerent real or
complex weights to dierent transitions,

Lo = {LijeRorC it Mj — M is allowed
ij =

0 otherwise (14.3)

As in statistical physics, we shall refer to thesdraasfermatrices.

M; is accessiblefrom M; in k steps if (_k)ij # 0. A matrix L is called
reducibleif there exists one or more index patisj} such that (_k)ij = 0 for all
k, otherwise the matrix isreducible This means that a trajectory starting in any
partition region eventually reaches all of the partitiogioas, i.e., the partition
is dynamically transitive or indecomposable, as assumég@.). The notion of
topologicaltransitivity is crucial in ergodic theory: a mapping is transitive if it
has a dense orbit. If that is not the case, state space desemimbo disconnected
pieces, each of which can be analyzed separately by a sejpaeaucible matrix.
Region M, is said to beransientif no trajectory returns to it. RegioM; is said
to beabsorbingif no trajectory leaves itLj; # 0, Lj; = O for alli # j. Hence it
sufices to restrict our considerations to irreducible matrices

If L has strictly positive entried,;; > 0, the matrix is callegbositive if Lij >
0, the matrix is calledhon-negative Matrix L is said to beeventually positiver
Perron-Frobeniusf LX is positive for some powet (as a consequence, the matrix
is transitive as well). A non-negative matrix whose colurnosserve probability,
>.i Lij = 1, is calledMarkoy, probability or stochastiomatrix.
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Figure 14.2: Topological dynamics: shrink each state
space partition region figure 14.1 tanade and indi-
cate the possibility of reaching a region byliaected
link. The links stand for transition matrix elements
T10,21 = T12L21 = T1221 =1; remainingTij,zl =0.

Example 14.1 Markov chain. The Google PageRank of a webpage is computed by
a Markov chain, with a rather large Markov matrix M.

A subshift (11.22) of finite type is #opological dynamical systerk, o),
where the shiftr acts on the space of all admissible itinerarigg (

Y ={(S)kez : Tsu,s =1 forallk}, s €labc---,z. (14.4)

The task of generating the totality of admissible itinezaris particularly easy for
subshifts of finite type, for which the admissible itineesrare generated by finite
transition matrices, and the topological dynamics can baalized by means of
finite transition graphs.

14.2 Transition graphs. wander from nodeto node

Let us abstract from a state space partition such as figute its4topological
essence: indicate a partition regidmt, by anode and indicate the possibility of
reaching the regiomy, Lpa # O by adirected link as in figure 14.2. Do this for
all nodes. The result isteansition graph

A transition graph(or digraph, or simply‘graph’) consists of a set afodes
(or vertices or state3, one for each letter in the alphabét = {a,b,c,---,Z},
connected by a set of directéidks (edgesarcs arrows). A directed link starts
out from nodej and terminates at nodewhenever the matrix element (14.3)
takes value.jj # 0. A link connects two nodes, or originates and terminates on
the same node (a ‘self-loop’). For example, if a partitiodudes regions labeled
{--+, M1o1, M11o, - - -}, the transition matrix element connecting the two is drawn
aslip1110 = (o), wheread g = * :j@. Here a dotted link indicates that the
shift o-(Xp11..) = X11... involves symbol 0, and a full one a shiffx;10..) = Xi0..
that involves 1. Aj — --- — k walk (path itinerary) traverses a connected set
of directed links, starting at nodeand ending at nodk. A loop (periodic orbit,
cycle is a walk that ends at the starting node (which can be any atmw the
loop), for example

to11 = Liiqor1loir101l101110 = (14.5)

Markov - 2feb2009 ChaosBook.org version14, Dec 31 2012



CHAPTER 14. WALKABOUT: TRANSITION GRAPHS 293

Our convention for ordering indices is that the succesdispssin a visitation se-
quencej — i — k are generated by matrix multiplication from the lefi; =

2. T«iTij. Two graphs arésomorphicif one can be obtained from the other by
relabeling links and nodes. As we are interested in rectutemsitive, indecom-
posable) dynamics, we restrict our attentiorirteducible or strongly connected
graphs, i.e., graphs for which there is a path from any nodayoother node. (In
a connectedgraph one may reach nogdrom nodek, but not nodek from node

i)
A transition graph compactly describes the ways in whichstiage space re-
gions map into each other, accounts for finite memdfgats in dynamics, and

generates the totality of admissible trajectories as thefsall possible walks
along its links.

Construction of a good transition graph is, like combinagrunexplainable.
The only way to learn is by some diagrammatic gymnastics, s@ark our way
through a sequence of exercises in lieu of plethora €fibg definitions.

Example 14.2 Full binary shitt. Consider a full shift on two-state partition A =
{0, 1}, with no pruning restrictions. The transition matrix and the corresponding transi-
tion graph are

11y
T ‘(1 1)“

(14.6)

Dotted links correspond to shifts originating in region O, and the full ones to shifts origi-
nating in 1. The admissible itineraries are generated as walks on this transition graph.
(continued in example 14.8)

Example 14.3 Complete N-ary dynamics: If all transition matrix entries equal
unity (one can reach any region from any other region in one step),
11 ... 1
11 ... 1
Te=|. . . .1 (24.7)
11 ... 1

the symbolic dynamics is called complete, or a full shift. The corresponding transition
graph is obvious, but a bit tedious to draw for arbitrary N.

Example 14.4 Pruning rules for a 3-disk alphabet: As the disks are convex, there
can be no two consecutive reflections off the same disk, hence the covering symbolic
dynamics consists of all sequences which include no symbol repetitions 11, 22, 33.
This is a finite set of finite length pruning rules, hence, the dynamics is a subshift of
finite type (see (11.23) for definition), with the transition matrix / graph given by

011
T = {1 0 1] = . (14.8)
110
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The complete unrestricted symbolic dynamics is too simpleetilluminating,
S0 we turn next to the simplest example of pruned symboli@nyos, the finite
subshift obtained by prohibition of repeats of one of the lsgls, let us sayll.
This situation arises, for example, in studies of the cinsigps, where this kind of

symbolic dynamics describes “golden mean” rotations. exercise 15.6
exercise 15.8

Example 14.5 ‘Golden mean’ pruning. Consider a subshift on two-state partition
A = {0,1}, with the simplest grammar G possible, a single pruned block b = 11
(consecutive repeat of symbol 1 is inadmissible): the state My maps both onto Mg and
M, but the state M1 maps only onto My. The transition matrix and the corresponding
transition graph are

SR

Sy

Admissible itineraries correspond to walks on this finite transition graph. (continued in
example 14.9)

In the completeN-ary symbolic dynamics case (see example 14.3) the choice
of the next symbol requires no memory of the previous onesveier, any further
refinement of the state space partition requires finite mgmor

Example 14.6 Finite memory transition graphs. For the binary labeled repeller with
complete binary symbolic dynamics, we might chose to partition the state space into
four regions { Moo, Mo1, Mio, M11}, a 1-step refinement of the initial partition { Mo, Ma}.
Such partitions are drawn in figure 12.3, as well as figure 1.9. Topologically f acts
as a left shift (12.11), and its action on the rectangle [.01] is to move the decimal
point to the right, to [0.1], forget the past, [.1], and land in either of the two rectangles
{[.10],[.11]}. Filling in the matrix elements for the other three initial states we obtain the
1-step memory transition matrix/graph acting on the 4-regions partition exercise 11.7

Toooo O Topo O
Toroo O  Torwo O
0 Twoz 0 Tionn
0 Tuyor O Tun

T = (14.10)

(continued in example 15.7)

By the same token, favl-step memory the only nonvanishing matrix elements
are of the formTss, sy...5s..sv » SM+1 € {0, 1}. This is a sparse matrix, as the
only non vanishing entries in thee = 5%;... Sy column of Ty, are in the rows
b=ygs...sy0andb = s;...sv1. If we increase the number of rememberesgkrcise 15.1
steps, the transition matrix grows large quickly, as thary dynamics withM-
step memory requires ahl['*1 x NM+1] matrix. Since the matrix is very sparse,
it pays to find a compact representation TorSuch a representation iferded by
transition graphs, which are not only compact, but also gs/an intuitive picture
of the topological dynamics.
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Figure 14.3: Transition graph (graph whose links cor-
respond to the nonzero elements of a transition matrix
Tps) describes which regiorscan be reached fromthe
regionain one time step. The 7 nodes correspond tﬁ p
the 7 regions of the partition (14.11). The links repre-\“"’/ \
sent non-vanishing transition matrix elements, such as
Tio1110 = ()—<—@0). Dotted links correspond to a shift
by symbol 0, and the full ones by symbol 1.

Figure 14.4: The self-similarity of the complete bi-
nary symbolic dynamics represented by a binary tree:
trees originating in node8, C, --- (actually - any
node) are the same as the tree orlglnatlng in nade
Level m = 4 partition is labeled by 16 binary strings, y
coded by dotted (0) and full (1) links read down the}
tree, starting fronA. See also figure 11.14. K

o,

I

0000%-....
1000
010

Example 14.7 A 7-state transition graph. Consider a state space partitioned into 7
regions

{ Moo, Mo11, Mo1o, M110, M111, Mio1, Mioo} - (14.11)

Let the evolution in time map the regions into each other by acting on the labels as
shift (12.11): Mo11 — {Maio, M111}, Moo — { Moo, Mo11, Moo} - - - , with nonvanish-
ing Li10011, Lo1100, .., €tc.. This is compactly summarized by the transition graph of
figure 14.3. (continued as example 15.6)

14.3 Transition graphs:. stroll from link to link

exercise 15.1

What do finite graphs have to do with infinitely long trajeas? To understand
the main idea, let us construct a graph that enumerates sdiipe itineraries for
the case of complete binary symbolic dynamics. In this ¢aogbn the nodes
will be unlabeled, links labeled, signifyingfiirent kinds of transitions.

Example 14.8 Complete binary topological dynamics. Mark a dot “’ on a piece of
paper. Draw two short lines out of the dot, end each with a dot. The full line will signify
that the first symbol in an itinerary is ‘1, and the dotted line will signifying ‘0. Repeat
the procedure for each of the two new dots, and then for the four dots, and so on. The
result is the binary tree of figure 14.4. Starting at the top node, the tree enumerates
exhaustively all distinct finite itineraries of lengthsn=1,2,3,---

{0,1} {00,01, 10,11}
{000,001,010011 100 101,111,110} --- .

The n = 4 nodes in figure 14.4 correspond to the 16 distinct binary strings of length

4, and so on. By habit we have drawn the tree as the alternating binary tree of fig-
ure 11.14, but that has no significance as far as enumeration of itineraries is concerned
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’

Y r

- a binary tree with labels in the natural order, as increasing binary ‘decimals’ would
serve just as well.

Figure 14.5: The self-similarity of the 00 pruned bi-

nary tree: trees originating from nodésandE are the
same as the entire tree.

1010
001 O
L1ob

104}

The trouble with an infinite tree is that it does not fit on a piece of paper. On
the other hand, we are not doing much - at each node we are turning either left or
right. Hence all nodes are equivalent. In other words, the tree is self-similar; the trees
originating in nodes B and C are themselves copies of the entire tree. The result of
identifying B = A, C = A is a single node, 2-link transition graph with adjacency matrix

(14.2)
A= (2) = v ‘. (14.12)

An itinerary generated by the binary tree figure 14.4, no matter how long, corresponds
to a walk on this graph.

This is the most compact encoding of the complete binary s§imbdynamics.
Any number of more complicated transition graphs such agthede (14.6) and

the 4-node (14.10) graphs generate all itineraries as arallmight be sometimes

preferable. exercise 15.6

exercise 15.5
We turn next to the simplest example of pruned symbolic dyognthe finite

subshift obtained by prohibition of repeats of one of the lsgt®, let us say00..

Example 14.9 ‘Golden mean’ pruning.  (a link-to-link version of example 14.5) Now
the admissible itineraries are enumerated by the pruned binary tree of figure 14.5.
Identification of nodes A = C = E leads to the finite 2-node, 3-links transition graph

(14.13)

As 0 is always followed by 1, the walks on this graph generate only the admissible

itineraries. This is the same graph as the 2-node graph (14.9). (continued in exam-
ple 15.4)
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Figure 14.6: Conversion of the pruning front of
figure 12.11 (b) into a finite transition graph. (a)
Starting with the initial node “”, delineate all
pruning blocks on the binary tree. A solid line
stands for “1” and a dashed line for “0”. The ends {c}
of forbidden strings are marked witk. Label
all internal nodes by reading the bits connectinc Pt
“”, the base of the tree, to the node. (b) Indi- |’ 1
cate all admissible starting blocks by arrows. (c e | - | - q \f""fﬂ
Recursively drop the leading bits in the admissi: ff" "‘); i A
ble blocks; if the truncated string corresponds tc _‘*—.‘1"‘“*‘3 PR ;" . : 4{ [
an internal node in (a), connect them. (d) Deletc ,# . ,}’* — ;’ S OD_O_'.,x{ H
the transient, non-circulating nodes; all admissi * L St '-\ Y A ocu o
ble sequences are generated as walks on this fin 3, / S ~ “l‘ e
transition graph. (e) Identify all distinct loops and g _....___ -~ T T T o o

construct the determinant (15.20).

14.3.1 Converting pruning blocksinto transition graphs

Suppose now that, by hook or crook, you have been so lucky§dior pruning
rules that you now know the grammar (11.23) in terms of a fiséteof pruning

blocksG = {bs, by, - - - by}, of lengths< m. Our task is to generate all admissible

itineraries. What to do?

We have already seen the main ingredients of a general tgori(1) tran-
sition graph encodes self-similarities of the tree of afiataries, and (2) if we
have a pruning block of lengtm, we need to descendlevels before we can start
identifying the self-similar sub-trees.

Finitegrammar transition graph algorithm.

1. Starting with the root of the tree, delineate all brandihes$ correspond to
all pruning blocks; implement the pruning by removing tre lzode in each
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pruning block (markedx’ in figure 14.6 (a)).

2. Label all nodes internal to pruning blocks by the itingraonnecting the
root point to the internal node, figure 14.6 (b). Why? So faihaee pruned
forbidden branches by lookingy, steps into future for a given pruning
block, let's sayb = 10110. However, the blocks with a right combina-
tion of past and future [0110], [10110], [10110] and [10110] are also
pruned. In other words, any node whose near past coincidbghe begin-
ning of a pruning block is potentially dangerous - a brancther down the
tree might get pruned.

3. Add to each internal node all remaining branches allowethé alphabet,
and label them, figure 14.6 (c). Why? Each one of them is thanhim
point of an infinite tree, a tree that should be similar to hapbne origi-
nating closer to the root of the whole tree.

4. Pick one of the free external nodes closest to the root efetfitire tree,
forget the most distant symbol in its past. Does the trumkiiieerary cor-
respond to an internal node? If yes, identify the two nodés.ot, forget
the next symbol in the past, repeat. If no such truncatedgoagsponds to
any internal node, identify with the root of the tree.

This is a little bit abstract, so let’s say the free exterradenin question is
[101Q]. Three time steps back the past is [J1T hat is not dangerous, as
no pruning block in this example starts with 0. Now forget tihied step in
the past: [1] is dangerous, as that is the start of the pruning blocki[1@).
Hence the free external node [10[L8hould be identified with the internal
node [10].

5. Repeat until all free nodes have been tied back into tleeriat nodes.

6. Clean up: check whether every node can be reached from ethear node.
Remove the transient nodes, i.e., the nodes to which dysamicer returns.

7. The result is a transition graph. There is no guaranteethiis is the
smartest, most compact transition graph possible for givaning (if you
have a better algorithm, teach us), but walks around it degee all ad-
missible itineraries, and nothing else.

Example 14.10 Heavy pruning.

We complete this training by examples by implementing the pruning of fig-
ure 12.11(b). The pruning blocks are

[100.10], [10.1],[010.01], [011.01], [11.1], [101.10]. (14.14)

Blocks 01101 10110contain the forbidden block 101, so they are redundant as pruning
rules. Draw the pruning tree as a section of a binary tree with 0 and 1 branches and
label each internal node by the sequence of 0’s and 1’s connecting it to the root of the
tree (figure 14.6 (a). These nodes are the potentially dangerous nodes - beginnings of
blocks that might end up pruned. Add the side branches to those nodes (figure 14.6 (b).
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As we continue down such branches we have to check whether the pruning imposes
constraints on the sequences so generated: we do this by knocking off the leading bits
and checking whether the shortened strings coincide with any of the internal pruning
tree nodes: 00 — 0; 110— 10;011— 11,0101 — 101 (pruned); 1000— 00 — 00 — O;
10011— 0011— 011— 11;01000— O.

The trees originating in identified nodes are identical, so the tree is “self-similar.
Now connect the side branches to the corresponding nodes, figure 14.6 (d). Nodes “.”
and 1 are transient nodes; no sequence returns to them, and as you are interested here
only in infinitely recurrent sequences, delete them. The result is the finite transition

graph of figure 14.6 (d); the admissible bi-infinite symbol sequences are generated as

”

all possible walks on this graph.

Résum é

The set of all admissible itineraries is encoded multipiedy by transition ma-
trices, diagrammatically by transition graphs. Pruninigsuor inadmissible se-
gquences are implemented by constructing correspondingiti@n matrices arfdr
transition graphs.

Commentary

Remark 14.1 Transition graphs. We enjoyed studying Lind and Marcus [14.1]
introduction to symbolic dynamics and transition graphsité transition graphs or finite

automata are discussed in refs. [14.2, 14.3, 14.4]. Theyneb the category of regular
languages. Transition graphs for unimodal maps are disdussefs. [14.8, 14.9, 14.10].

(see also remark 11.1)

Remark 14.2 Inflating transition graphs. In the above examples the symbolic dy-
namics has been encoded by labeling links in the transitiaply Alternatively one can
encode the dynamics by labeling the nodes, as in exampleWHhede the 4 nodes refer
to 4 Markov partition region$Moo, Mo1, M1o, M11}, and the 8 links to the 8 non-zero
entries in the 2-step memory transition matrix (14.10).

Remark 14.3 The unbearable growth of transition graphs. A construction of finite
Markov partitions is described in refs. [14.11, 14.12], &dlas in the innumerably many
other references.

If two regions in a Markov partition are not disjoint but sea boundary, the bound-
ary trajectories require special treatment in order tochewercounting, see sect. 21.3.1.
If the image of a trial partition region cuts across only at pdiranother trial region and
thus violates the Markov partition condition (11.2), a het refinement of the partition is
needed to distinguish distinct trajectories.
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The finite transition graph construction sketched aboveisiacessarily the minimal
one; for example, the transition graph of figure 14.6 doeggeaerate only the “funda-
mental” cycles (see chapter 20), but shadowed cycles assueh agooo11in (15.20). For
methods of reduction to a minimal graph, consult refs. [142848, 14.9]. Furthermore,
when one implements the time reversed dynamics by the sagoeitaim, one usually
gets a graph of a very fierent topology even though both graphs generate the same ad-
missible sequences, and have the same determinant. Thighatydescribed here makes
some sense for 1-dimensional dynamics, but is unnatur&@-hmensional maps whose
dynamics it treats as 1-dimensional. In practice, genetinipg grows longer and longer,
and more plentiful pruning rules. For generic flows the refieats might never stop,
and almost always we might have to deal with infinite Markowtiians, such as those
that will be discussed in sect. 15.5. Not only do the traositraphs get more and more
unwieldy, they have the unpleasant property that every tumadd a new rule, the graph
has to be constructed from scratch, and it might look veftedént form the previous
one, even though it leads to a minute modification of the tgichl entropy. The most
determined gort to construct such graphs may be the one of ref. [12.18, tBis seems
to be the best technology available, unless the reades aigitb something superior.
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Exercises

141

14.2.

. Timereversibility.**

Hamiltonian flows are time re-
versible. Does that mean that their transition graphs are
symmetric in all node — node links, their transition
matrices are adjacency matrices, symmetric and diago-
nalizable, and that they have only real eigenvalues?

Alphabet {0,1}, prune _100Q, _0010Q, _0110Q.
This example is motivated by the pruning front descrip-
tion of the symbolic dynamics for the Hénon-type map-
sremark 12.3.

step 1. _100Q prunes all cycles with a00Q. subse-
quence with the exception of the fixed paiythence we
factor out (1- to) explicitly, and prune 00Q. from the
rest. This means thag, is an isolated fixed point - no
cycle stays in its vicinity for more than 2 iterations. In
the notation of sect. 14.3.1, the alphabetlis2, 3; 0},
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and the remaining pruning rules have to be rewritten in
terms of symbols 210, 3=100:
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long cycles stay close enough to it for a singl®Q
repeat. Prohibition 0f33_ is implemented by drop-
ping the symbol “3” and extending the alphabet by the
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13 = 1100 is pruned) yields the

result: alphabet{1, 2, 23 113 0}, unrestricted 4-ary
dynamics. The other remaining possible blocR$3,
_2313_are forbidden by the rules of step 3.
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