Chapter 26

Turbulence?

I am an old man now, and when | die and go to Heaven
there are two matters on which | hope enlightenment. One
is quantum electro-dynamics and the other is turbulence of
fluids. About the former, | am rather optimistic.

—Sir Horace Lamb

HERE IS ONLY ONE honorable cause that would justify sweating through so mucp
formalism - this is but the sharpening of a pencil in ordet thamay attack @%
the Navier-Stokes equation,

p(‘;—‘:+u.vU):—Vp+vvzu+f, (26.1)

and solve the problem of turbulence.

Flows described by partial fierential equations [PDESs] are said to be ‘in-
finite dimensional’ because if one writes them down as a seirdihary dif-
ferential equations [ODEs], one needs infinitely many ofithe represent the
dynamics of one partial fferential equation.  Even though the state space is
infinite-dimensional, the long-time dynamics of many syseof physical inter-
est is finite-dimensional, contained within mertial manifold

Being realistic, we are not so foolhardy to immediately gleiintothe prob-
lem — there are too many dimensions and indices. Insteadtartessall, in one
spatial dimension) — u, u-Vu — udy, assume constapt forget about the pres-
surep, and so on. This line of reasoning, as well as many other Bgsahsible
threads of thought, such as the amplitude equations obtaiaeweakly nonlin-
ear stability analysis of steady flows, leads to a small sdteafuently studied
nonlinear PDEs, like the one that we turn to now.
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26.1 Fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
—W. Shakespear&omeo and JullietAct I, Scene |

The Kuramoto-Sivashinsky [KS] system describes the flaroet filutter of
gas burning on your kitchen stove, figure 26.1 (a), and mahgrgtroblems of
greater import, is one of the simplest nonlinear systemisetiaibit ‘turbulence’
(in this context often referred to more modestly as ‘spatigiorally chaotic be-
havior’). The time evolution of the ‘flame front velocity’ = u(x, t) on a periodic
domainu(x,t) = u(x + L, t) is given by

Ut + 3(U)x + Uex + Voo =0, x€[0,L]. (26.2)

In this equatiort is the time andk is the spatial coordinate. The subscrip@ndt
denote partial derivatives with respectt@andt: u; = du/dd, uxxxx Stands for the
4th spatial derivative ofi = u(x, t) at positionx and timet. In what follows we
use interchangeably the “dimensionless system dizesr the periodic domain
sizeL = 2xL, as the system parameter. We take note, as in the NavieesStok
equation (26.1), of the “inertial” termayu, the “anti-difusive” terma2u (with a
“wrong” sign), “(hyper-)viscosity”, etc..

The term (?)x makes this anonlinear system This is one of the simplest
conceivable nonlinear PDE, playing the role in the theorgmitially extended
systems a bit like the role that thé nonlinearity plays in the dynamics of iterated
mappings. The time evolution of a typical solution of the &mioto-Sivashinsky section 3.3
system is illustrated by figure 26.1 (b). remark 26.1

Spatial periodicityu(x,t) = u(x + L,t) makes it convenient to work in the
Fourier space,

+00 .
uxt) = ) aet (26.3)
k=—oo
with the 1-dimensional PDE (26.2) replaced by an infiniteafeDDEs for the
complex Fourier ca@cientsay(t):

= W@ = (W - (D)) ac- i 2 @, (26.4)

Sinceu(x t) is real,ax = a’, , and we can replace the sum in (26.4) by a sum over
k> 0.

Due to the hyperviscous dampingxxx long time solutions of Kuramoto-
Sivashinsky equation are smoo#p,drop df fast withk, and truncations of (26.4)
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Figure 26.1: (a) Kuramoto-Sivashinsky dynam- vt t), with v an arbitrary constant velocity, is also a solution. Withtngs of

ics visualized as the Bunsen burner flame flutter, L . . .
with u = u(x 1) the “velocity of the flame front” at generality, in our calculations we shall work in the mearozeslocity frame

positionx and timet. (b) A typical “turbulent” so-
lution of the Kuramoto-Sivashinsky equation, sys-

tem sizeL = 8886. The color (gray scale) in- fdxu: 0.
dicates the value afl at a given position and in-

stant in time. Thex coordinate is scaled with the
most unstable wavelengtlr2/2, which is approx-

imately also the mean wavelength of the turbulen uix9 \
flow. The dynamics is typical of a large system
in this case approximately 10 mean wavelength

wide. (from ref. [26.14])

(26.5)

In terms of the system sidg the only length scale available, the dimensions
of terms in (26.2) areq] = L, [f] = L% [u] = L%, [v] = L2. Scaling out the
“viscosity” v

1 1
X—>xv2, t-oty, u-uw 2,

brings the Kuramoto-Sivashinsky equation (26.2) to a niomedsional form

@
Ut = (UP)x — U — U xe [0, Lyi%] =[0,2x0]. (26.6)
to N terms, 16< N < 128, yield highly accurate solutions for system sizes con-
sidered here. Robustness of the Fourier representatiors afsa function of the In this way we trade in the “viscosity’ and the system sizefor a single dimen-
number of modes kept in truncations of (26.4) is, howeveuldis issue. Adding sionless system size parameter
an extra mode to a truncation of the system introduces a gelirbation. How-
ever, this can (and often will) throw the dynamics into fietient asymptotic state. .
A chaotic attractor foN = 15 can collapse into an attractive period-3 cycle for L=L/(@2r) (26.7)
N = 16, and so on. If we compute, for example, the Lyapunov expoi, N)
for a strange attractor of the system (26.4), there is nooress expecti(L, N) which plays the role of a “Reynolds number” for the Kuram@&ivashinsky sys-
to smoothly converge to a limit valugL, o) asN — oo, because of the lack of tem.
structural stability both as a function of truncatibiy and the system size. The
topology is more robust foc windows of transient turbulence, where the system In the literature sometimésis used as the system parameter, wifixed to
can be structurally stable, and it makes sense to compufibyga exponents, es- 1, and at other timesis varied withL fixed to either 1 or 2. Physically, varying
cape rates, etc., for the repeller, i.e., the closure of ¢hefsall unstable periodic L is the right thing to do if one is interested in takibdarge, and studying ‘spatio-
orbits. temporal chaos.” To minimize confusion, in what follows v state results of
) ) ) all calculations in units of dimensionless system sizeNote that the time units
Spatial representations of PDEs (such as tdesi@apshots of velocity and also have to be rescaled; for exampleT fis a period of a periodic solution of
vorticity fields in Navier-Stokes)feer little insight into detailed dynamics of low- (26.2) with a givenv andL = 2r, then the corresponding solution of the non-
Reflows. Much more illuminating are the state space repreenta dimensionalized (26.6) has period
The objects explored in this paper: equilibria and shortogér orbits, are
robust both under mode truncations and small system pagainehanges. Tp=Tp/v. (26.8)
26.1.1 Scaling and symmetries 26.1.2 Fourier space representation
The Kuramoto-Sivashinsky equation (26.2) is space tréioskly invariant, time Spatial periodic boundary conditiargx, t) = u(x + 2rL, t) makes it convenient to
translationally invariant, and invariant under reflectiors —x, u — —u. work in the Fourier space,

Comparingu; and (%) terms we note that has dimensions o] /[t], henceu .
is the “velocity,” rather than the “height” of the flame fromhdeed, the Kuramoto- u(xt) = Z bk(t)eikx/E (26.9)
Sivashinsky equation is Galilean invariant:uif, t) is a solution, therv + u(x — ' '

k=—00
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with (26.6) replaced by an infinite tower of ODEs for the Feuodficients:
) . . . +00
b = (k/D)? (1 - (k/D)?) by + i(k/D) Z Dbk - (26.10)
m=—co

This is the infinite set of ordinary flerential equations promised in this chapter’s
introduction.

Sinceu(x,t) is real,bx = b”, , so we can replace the sum oveiin (26.4) by
a sum ovem > 0. Asbhy = 0, by is a conserved quantity, in our calculations fixed
to by = 0 by the vanishing meaguy condition (26.5) for the front velocity.

Example 26.1 Kuramoto-Sivashinsky antisymmetric subspace: The Fourier co-
efficients by are in general complex numbers. We can isolate the antisymmetric sub-
space u(x,t) = —u(—x,t) by considering the case of by pure imaginary, by = iax, where
ax = —a are real, with the evolution equations

&= (/DY (1= (WD) ac= (/D) D amdim. (26.11)

By picking this subspace we eliminate the continuous translational symmetry from our
considerations; that is not an option for an experimentalist, but will do for our purposes.
In the antisymmetric subspace the translational invariance of the full system reduces
to the invariance under discrete translation by half a spatial period L. In the Fourier
representation (26.11) this corresponds to invariance under

m — Azm, Bm+1 —> —ami1- (26.12)

The antisymmetric condition amounts to imposing u(0, t) = 0 boundary condition.

26.2 Infinite-dimensional flows: Numerics

The computer is not a mere mathematical excrescence,
useful for technological ends. Rather, | believe that it
is a meta-development that might very well change what
mathematics is considered to be.

— P. J. Davis [26.1]

The trivial solutionu(x, t) = 0 is an equilibrium point of (26.2), but that is basically
all we know as far as useful analytical solutions are corexrifo develop some
intuition about the dynamics we turn to numerical simulasio

How are solutions such as figure 26.1 (b) computed? The sdéeature of

such partial dierential equations is a theorem saying that for state spawce c
tracting flows, the asymptotic dynamics is describable ffipite set of “inertial

PDEs - 7jun2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 26. TURBULENCE? 536

Figure 26.2: Spatiotemporally periodic solution
Uo(X, 1), with periodT, = 30.0118 . The antisymmetric
subspacey(x,t) = —u(-x,t), so we plotx € [0, L/2].
System sizd. = 2.89109,N = 16 Fourier modes trun-
cation. (From ref. [26.5])

manifold” ordinary diferential equations. How you solve the equation (26.2) nu-
merically is up to you. Here are some options:

Discrete mesh:You can divide thecinterval into a sfficiently fine discrete grid of
N points, replace space derivatives in (26.2) by approxirdegerete derivatives,
and integrate a finite set of first orderfférential equations for the discretized
spatial components;(t) = u(jL/N,t), by any integration routine you trust.

Fourier modes: You can integrate numerically the Fourier modes (26.4)3-tru
cating the ladder of equations to a finite number of mddese., setay = 0 for

k > N. In the applied mathematics literature more sophisticatgtnts of such exercise 2.6

truncations are calle@alerkin truncationsor Galerkin projections You need to
worry about “stifness” of the equations and the stability of your integraker
the parameter values explored in this chapter, truncatidris range 16 to 64
yields suficient accuracy.

Pseudo-spectral methods:You can mix the two methods, exploiting the speed
of Fast Fourier Transforms.

Example 26.2 Kuramoto-Sivashinsky simulation, antisymmetric subspac e: To
get started, we setv = 0.02991Q L = 2x in the Kuramoto-Sivashinsky equation (26.2),
or, equivalently, v = 1, L = 36.33052in the non-dimensionalized (26.6). Consider
the antisymmetric subspace (26.11), so the non-dimensionalized system size is L=
L/4r = 2.89109 Truncate (26.11) to 0 < k < 16, and integrate an arbitrary initial
condition. Let the transient behavior settle down.

Why this L? For this system size L the dynamics appears to be chaotic, as
far as can be determined numericall. Why N = 16? In practice one repeats the
same calculation at different truncation cutoffs N, and makes sure that the inclusion of
additional modes has no effect within the desired accuracy. For this system size N = 16
suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space using (26.3),
as in figure 26.1 (b) and figure 26.2. Such patterns give us a qualitative picture of the
flow, but no detailed dynamical information; for that, tracking the evolution in a high-
dimensional state space, such as the space of Fourier modes, is much more informa-
tive.
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-1.38

Figure 26.3: Projections of a typical 16-
dimensional trajectory onto filerent 3-
dimensional subspaces, coordinateg4a)a,, as},
(b) {ay, @, a4} System sizd. = 2.89109,N = 16

Figure 26.4: The attractor of the Kuramoto-Sivashin-
sky system (26.4), plotted as thg component of the

a = 0 Poincaré section return map. Here 10,00 1
Poincareé section returns of a typical trajectory are plc  -1.46

ugln+1)
&

Fourier modes truncation. (From ref. [26.5].)

26.3 Visualization

The ultimate goal, however, must be a rational theory of
statistical hydrodynamics where [] properties of turbu-
lent flow can be mathematically deduced from the funda-
mental equations of hydromechanics.

—E. Hopf

The problem with high-dimensional representations, siglrancations of
the infinite tower of equations (26.4), is that the dynamscdifficult to visualize.

The best we can do without much programming is to examinertjectory’s section 26.3

projections onto any three axasaj, a, as in figure 26.3.

The question is: how is one to look at such a flow? It is not dleatrrestricting
the dynamics to a Poincaré section necessarily helpsr-alffe section reduces
a (d + 1)-dimensional flow to a-dimensional map, and how much is gained by
replacing a continuous flow in 16 dimensions by a set of paini$ dimensions?
The next example illustrates the utility of visualizatiohdynamics by means of
Poincaré sections.

Example 26.3 Kuramoto-Sivashinsky Poincar é return maps: Consider the
Kuramoto-Sivashinsky equation in the N Fourier modes representation. We pick (arbi-
trarily) the hyperplane a; = 0 as the Poincaré section, and integrate (26.4) with a; = 0,
and an arbitrary initial point (ay,...,an). When the flow crosses the a; = 0 hyper-
plane in the same direction as initially, the initial point is mapped into (&, ...ay) =
P(az, ...,an). This defines P, the Poincaré return map (3.1) of the (N — 1)-dimensional
a1 = 0 hyperplane into itself.

Figure 26.4 is a typical result. We have picked - again arbitrarily - a subspace
such as ag(n + 1) vs. ag(n) in order to visualize the dynamics. While the topology of the
attractor is still obscure, one thing is clear: even though the flow state space is infinite
dimensional, the attractor is finite and thin, barely thicker than a line.

The above example illustrates why a Poincaré section givesre informa-
tive snapshot of the flow than the full flow portrait. While nadistructure is
discernible in the full state space flow portraits of the Koodo-Sivashinsky dy-
namics, figure 26.3, the Poincaré return map figure 26.4atevhe fractal struc-
ture in the asymptotic attractor.
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ted. Also indicated are the periodic points 0, 1, 01 ar
10. System sizé = 2.89109,N = 16 Fourier modes 1

truncation. (From ref. [26.5].) B T T

ag(n)

In order to find a better representation of the dynamics, we tuon to its
topological invariants.

26.4 Equilibria of equilibria

(Y. Lan and P. Cvitanovic)

The set of equilibria and their stablenstable manifolds form the coarsest topo-
logical framework for organizing state space orbits.

The equilibrium conditioni = 0 for the Kuramoto-Sivashinsky equation PDE
(26.6) is the ODE

(Uz)x = Uxx — Uxxxx = 0

which can be analyzed as a dynamical system in its own rigitegtating once
we get

U2 = Uy — Ugex = C, (26.13)

wherecis an integration constant whose value strongly influerteesature of the
solutions. Written as a 3-dimensional dynamical systerh gfiiatial coordinate
playing the role of “time,” this is a volume preserving flow

U =V, Vi =W, wy=ul-v-c, (26.14)

with the “time” reversal symmetry,
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From (26.14) we see that
(U+w)y=1?-c.

If ¢ < 0, u+ wincreases without bound with— co, and every solution escapes
to infinity. If ¢ = 0, the origin (00, 0) is the only bounded solution.

Forc > 0 there is muchke-dependent interesting dynamics, with complicated
fractal sets of bounded solutions. The sets of the solutadrthe equilibrium
condition (26.14) are themselves in turn organized by theliega of the equi-
librium condition, and the connections between them. dor0 the equilibrium
points of (26.14) are, = (4/c,0,0) andc_ = (-+/C,0,0). Linearization of the
flow aroundc, yields Floquet multipliers [2, —1 + i6] with

1
A= —sinhg, 0 = coshy,
73 ¢ he

andg fixed by sinh @ = 3V3c. Hencec, has a 1-dimensional unstable manifold
and a 2-dimensional stable manifold along which solutigrgabin. By thex —
—Xx“time reversal” symmetry, the invariant manifoldsafhave reversed stability
properties.

The non—-wandering set fo this dynamical system is quitehyprand surpris-
ingly hard to analyze. However, we do not need to explore tthetdl set of the
Kuramoto-Sivashinsky equilibria for infinite size systeerdy for a fixed system
size L with periodic boundary condition, the only surviving edjuila are those
with periodicity L. They satisfy the equilibrium condition for (26.4)

(k/D)? (1= (/D)%) b+ i(k/D) i Brbm = 0. (26.15)

m=—co

Periods of spatially periodic equilibria are multiplesLofEvery timef crosses an
integer valuel = n, n-cell states are generated through pitchfork bifurcations
the full state space they form an invariant circle due to thedlational invariance
of (26.6). In the antisymmetric subspace considered Heeg,dorresponds to two
points, half-period translates of each other of the form

u(x,t) = —zz brnSin(kny) ,
k

whereby, € R.

For any fixed period. the number of spatially periodic solutions is finite up to
a spatial translation. This observation can be heurigficabtivated as follows.
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1 1
Figure 26.5: The non—-wandering set under study
appears to consist of three patches: the left part S0 =0
(Su), the center part§c) and the right part&g),
each centered around an unstable equilibrium: (a) -1 -1
centralC; equilibrium, (b) sideR, equilibrium on
the interval [QL]. T 10 20 30 40 K 10 20 30
(@ x (b) x

Finite dimensionality of the inertial manifold bounds theesof Fourier compo-
nents of all solutions. On a finite-dimensional compact ricdehi an analytic
function can only have a finite number of zeros. So, the duidlj i.e., the zeros
of a smooth velocity field on the inertial manifold, are fihjtenany.

For a stficiently smallL the number of equilibria is small, mostly concen-
trated on the low wave number end of the Fourier spectrumsdkelutions may
be obtained by solving the truncated versions of (26.15).

Example 26.4 Some Kuramoto-Sivashinsky equilibria:

26.5 Why does a flame front flutter?

| understood every word. section 18.2
—Fritz Haake

We start by considering the case whegeis an equilibrium point (2.8). Ex-
panding around the equilibrium poiag, and using the fact that the matix =
A(ag) in (4.2) is constant, we can apply the simple formula (4.25p to the
Jacobian matrix of an equilibrium point of a PDE,

J(ag) = M A=A(ag).

Example 26.5 Stability matrix, antisymmetric subspace: The Kuramoto-Siva-
shinsky flat flame front u(x,t) = 0 is an equilibrium point of (26.2). The stability matrix
(4.3) follows from (26.4)

Ale) = 2

o = (K £ - (k/D)*okj - 2/ Dy - (26.16)
]

For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, and — as in (4.16)
— so is the Jacobian matrix Ji 1(0) = 6 G R
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10

Figure 26.6: Lyapunov exponents;, versusk for the
least unstable spatio-temporally periodic otbif the
Kuramoto-Sivashinsky system, compared with the Flo- -2
quet exponents of the(x,t) = O stationary solution, <
A = kK2 —vk*. The eigenvaluety, for k > 8 falls be-
low the numerical accuracy of integration and are not
meaningful. The cycld was computed using meth-

ods of chapter 13. System size= 2.89109,N = 16 -50
Fourier modes truncation. (From ref. [26.5])
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ForL < 1, u(xt) = O is the globally attractive stable equilibrium. As the
system sizd. is increased, the “flame front” becomes increasingly uristahd
turbulent, the dynamics goes through a rich sequence afchaifions on which we
shall not dwell here.

The long wavelength perturbations of the flat-front equilim are linearly
unstable, while all short wavelength perturbations arengfly contractive. The
high k eigenvalues, corresponding to rapid variations of the flaorg, decay so
fast that the corresponding eigen-directions are phygioatlevant. To illustrate
the rapid contraction in the non-leading eigen-directiaesplot in figure 26.6 the
eigenvalues of the equilibrium in the unstable regime, étaitively small system
size, and compare them with the Floquet multipliers of tlasti@instable cycle
for the same system size. The equilibrium solution is verstaisle, in 5 eigen-
directions, the least unstable cycle only in one. Note tbhakf> 7 the rate of
contraction is so strong that higher eigen-directions arearically meaningless
for either solution; even though the flow is infinite-dimersl, the attracting set
must be rather thin.

While in general forl_ suficiently large one expects many coexisting attrac-
tors in the state space,in numerical studies most randdralinonditions settle
converge to the same chaotic attractor.

From (26.4) we see that the origix, t) = 0 has Fourier modes as the linear
stability eigenvectors. Whelk| € (0, L), the corresponding Fourier modes are
unstable. The most unstable modes fas: £/ V2 and defines the scale of ba-
sic building blocks of the spatiotemporal dynamics of thedfooto-Sivashinsky
equation in large system size limit.

Consider now the case of initi@ suficiently small that the bilineaamayx-m
terms in (26.4) can be neglected. Then we have a set of deblipéar equations
for a, whose solutions are exponentials, at most a finite numbevtiahk? > vk*
is growing with time, and infinitely many withk* > k? decaying in time. The
growth of the unstable long wavelengths (I¢i) excites the short wavelengths
through theamax_m nonlinear term in (26.4). The excitations thus transfeassl
dissipated by the strongly damped short wavelengths, anbaotic equilibrium”
can emerge. The very short wavelengiss 1/ /v remain small for all times,
but the intermediate wavelengths of ordidr~ 1/+/v play an important role in
maintaining the dynamical equilibrium. As the damping paeter decreases,
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the solutions increasingly take on shock front characterlpaepresented by the
Fourier basis, and many higher harmonics may need to be keptrications of
(26.4).

Hence, while one may truncate the high modes in the expaif@&#d), care
has to be exercised to ensure that no modes essential torthmitys are chopped
away.

In other words, even though our starting point (26.2) is &inite-dimensional
dynamical system, the asymptotic dynamics unfolds on aefiiinensional at-
tracting manifold, and so we are back on the familiar teryitof sect. 2.2: the
theory of a finite number of ODEs applies to this infinite-dimsienal PDE as
well.

We can now start to understand the remark on page 42 that ffoiténdi-
mensional systems time reversibility is not an option: etioh forward in time
strongly damps the higher Fourier modes. There is no turbamk: if we re-
verse the time, the infinity of high modes that contract glprfiorward in time
now explodes, instantly rendering evolution backwardrmetimeaningless. As so
much you are told about dynamics, this claim is also wrong subtle way: if
the initial u(x, 0) is in the non—wandering set (2.2), the trajectory is well defined
both forward and backward in time. For practical purpodas,dubtlety is not of
much use, as any time-reversed numerical trajectory in gefimbde truncation
will explode very quickly, unless special precautions atest.

When is an equilibrium important? There are two kinds of roles equilibria
play:

“Hole” in the natural measure The more unstable eigen-directions it has (for
example, thai = 0 solution), the more unlikely it is that an orbit will recur its
neighborhood.

Unstable manifold of a “least unstable” equilibriumAsymptotic dynamics
spends a large fraction of time in neighborhoods of a fewlixjiai with only a
few unstable eigen-directions.

26.6 Intrinsic parametrization

Both in the Rossler flow of example 3.3, and in the Kuramat@shinsky system
of example 26.3 we have learned that the attractor is very thit otherwise the
return maps that we found were disquieting — neither figusen®r figure 26.4
appeared to be one-to-one maps. This apparent loss ofibilgris an artifact of
projection of higher-dimensional return maps onto lowierehsional subspaces.
As the choice of lower-dimensional subspace is arbitréug,resulting snapshots
of return maps look rather arbitrary, too. Other projediiomight look even less
suggestive.
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0.7
0.6~ o1
0.5
P(s) 0.4

Figure 26.7. The Poincaré return map of the |
Kuramoto-Sivashinsky system (26.4) figure 26.4, from

the unstable manifold of thefixed point to the (neigh- ~ °F 10
borhood of) the ugstablgmanifold. Also indicated are o
the periodic point® and01. odo

s

Such observations beg a question: Does there exist a “hatatansically
optimal coordinate system in which we should plot of a remap?

As we shall now argue (see also sect. 13.1), the answer isTyesintrinsic
coordinates are given by the stghlestable manifolds, and a return map should
be plotted as a map from the unstable manifold back onto tieeidiate neigh-
borhood of the unstable manifold.

Examination of numerical plots such as figure 26.3 suggbkatsatmore thought-
ful approach would be to find a coordinate transformatioa h(x) to a “center
manifold,” such that in the new, curvilinear coordinategéascale dynamics takes
place in §1,y») coordinates, with exponentially small dynamicsy#y, - - -. But
- thinking is extra price - we do not know how to actually acgidish this.

Both in the example of the Rossler flow and of the Kuramot@&hinsky
system we sketched the attractors by running a long chaajectory, and noted
that the attractors are very thin, but otherwise the retuapsithat we plotted were
disquieting — neither figure 3.3 nor figure 26.4 appeared tb-twel maps. In this
section we show how to use such information to approximdtelgte cycles.

26.7 Energy budget
The space average of a functiar= a(x, t) on the interval,
1 L
(@ == f dxaxt), (26.17)
L Jo
is in general time dependent. Its mean value is given by the siverage

l t l t L
a= fim —fd-r @ = lim —ffdrdxdx,r). (26.18)
00 1 g 00 1L Jy Jo

The mean valu@, a = a(u) evaluated on an equilibrium or relative equilibrium
u(x,t) = ug(x—ct) is

g = (@)q - (26.19)
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Evaluation of the infinite time average (26.18) on a functwbm periodT, peri-
odic orbit or relative periodic orbitip(x,t) requires only a single traversal of the
periodic solution,

1 (T
ap==—| dr(@. (26.20)
Tp 0

Equation (26.2) can be written as
U = —Vy, V(X 1) = 3U% + Uy + Ugxx. (26.21)

u is related to the “flame-front heighti(x, t) by u = hy, SOE can be interpreted
as the mean energy density (26.22). So, even though KS isreoptemological
small-amplitude equation, the time-dependent quantity

1t 1w
E_Efode(x,t)_Ej;dx? (26.22)

has a physical interpretation as the average “energy” teasithe flame front.
This analogy to the corresponding definition of the meantlinenergy density
for the Navier-Stokes will be useful in what follows.

The energy (26.22) is also the quadratic norm in the Foupacs,
E=) B  Ex=jla’ (26.23)

Take time derivative of the energy density (26.22), subigti{26.2) and inte-
grate by parts. Total derivatives vanish by the spatialgoicity on theL domain:

. u2
E = (utu>:—<(3+uux+uuxxx) u>

2
<+Ux UE + (Uy)? + Uy Uxxx> . (26.24)

For an equilibriumE is constant:

. UZ
E= <(3 + Uy + uxxx)ux> =E(uy) =0.

The first term in (26.24) vanishes by integration by patis?)x) = 3(uyu?) = 0,
and integrating the third term by parts yet again we get tiaenergy variation

E = ((W?) ~ {(ue0?) (26.25)
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Figure 26.8: Power input((u)?) vs. dissipation
(ux)?) for L = 22 equilibria and relative equilibria,
for several periodic orbits and relative periodic orbits,

and for a typical ‘turbulent’ state. Note théty,)?

of the (Tp,dy) = (328,10.96) relative periodic or-
bitwhich appears well embedded within the turbulent
state, is close to the turbulent expectat{ag)2.

Figure 26.9: EQ, (red), EQ, (green), EQ; (blue),
connections fromEQ; to A(L/4)EQ; (green), from
A(L/4)EQ, to EQ; (yellow-green) and fronEQ; to |
A(L/4)EQ; (blue), along with a generic long-time .
“turbulent” evolution (grey) foiL = 22. Three dier-
ent projections of thel, {(u)?). (()2)) - ((W)?)
representation are shown.

balances the KS equation (26.2) power pumped in by the @fitistbnuyy against
energy dissipated by the hypervicosityx.

In figure 26.8 we plot the power inp@(ux)2> VS, dissipatior((uxx)2> for all
L = 22 equilibria and relative equilibria determined so favesal periodic orbits
and relative periodic orbits, and for a typical “turbulemt/olution. ~ The time
averaged energy densiycomputed on a typical orbit goes to a constant, so the
expectation values (26.26) of drive and dissipation eydzlance each out:

- t . —_— —
E = lim % f drE = (Ug)2 - (Ug)2 = 0. (26.26)
T o

In particular, the equilibria and relative equilibria sit the diagonal in figure 26.8,
and so do time averages computed on periodic orbits andveefagriodic orbits:

E L
p—T—pfOT(T)

N 1 Tp .
(G T fo dr (1)) = (Ued?p.- (26.27)

In the Fourier basis (26.23) the conservation of energy enaae takes form
+00 N - o
0= (D= (WDHE.  ED) =laD)?. (26.28)
k=1

The largek convergence of this series is insensitive to the systemlsiEg have
to decrease much faster thap(/L)*.  Deviation of Ex from this bound for
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small k determines the active modes. This may be useful to boundutnber
of equilibria, with the upper bound given by zeros of a smaimiber of long
wavelength modes.

Résum é

Turbulence is the graveyard of theories
— Hans W. Liepmann

We have learned that an instanton is an analytic solutioreofyYMills equa-
tions of motion, but shouldn’t a strongly nonlinear fielddhgdynamics be dom-
inated by turbulent solutions? How are we to think aboutesystwhere every
spatiotemporal solution is unstable?

Here we think of turbulence in spatially extended systentsrims of recurrent
spatiotemporal patterns. Pictorially, dynamics drivesveryspatially extended
system through a repertoire of unstable patterns; as wehveaterbulent system
evolve, every so often we catch a glimpse of a familiar patter

RIS

) )
< = otherswirls =

For any finite spatial resolution, the system follows apprately for a finite
time a pattern belonging to a finite alphabet of admissibléepas, and the long
term dynamics can be thought of as a walk through the spacacbf gatterns.
Recasting this image into mathematics is the subject obidirk.

The problem one faces with high-dimensional flows is thair ttegoology is
hard to visualize, and that even with a decent starting gieesspoint on a peri-
odic orbit, methods like the Newton-Raphson method arédylitefail. Methods chapter 29
that start with initial guesses for a number of points aldmg ¢ycle, such as the
multipoint shooting method of sect. 13.3, are more robuste Telaxation (or
variational) methods take this strategy to its logical exte, and start by a guess
of not a few points along a periodic orbit, but a guess of théreeorbit. As
these methods are intimately related to variational ppiesi and path integrals,
we postpone their introduction to chapter 29.

At present the theory is in practice applicable only to systevith a low
intrinsic dimension- the minimum number of coordinates necessary to capture its
essential dynamics. If the system is very turbulent (a detsmn of its long time
dynamics requires a space of very high intrinsic dimensieapre out of luck.
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Commentary

Remark 26.1 Model PDE systems. The theorem on finite dimensionality of in-
ertial manifolds of state space contracting PDE flows is gnoin ref. [26.2]. The
Kuramoto-Sivashinsky equation was introduced in refs.3286.4]. Holmes, Lumley
and Berkooz [26.6] fier a delightful discussion of why this system deserves saslg
staging ground for studying turbulence in full-fledged Nen&tokes equation. How good
a description of a flame front this equation is not a concene;haffice it to say that
such model amplitude equations for interfacial instabsitarise in a variety of contexts
- see e.g. ref. [26.7] - and this one is perhaps the simpledigdily interesting spatially
extended nonlinear system.

For equilibria theL-independent bound o is given by Michelson [26.8]. The best
current bound[26.9, 26.10] on the long-time limit®fas a function of the system size
scales af o« L3/2,

The work described in this chapter was initiated by Putkze&d1996 term project
(seeChaosBook.org/extras), and continued by Christiansen Cvitanovi¢, Davidchack,
Gibson, Halcrow, Lan, and Siminos [26.5, 26.11, 26.12, @920.15, 26.14, 26.15,
26.13].

Exercises

26.1. Galilean invariance of the Kuramoto-Sivashinsky equation for finite dimensional systems do not have smooth be-
havior in infinite dimensional vector spaces. Consider,
as an example, a concentratigdiffusing onR accord-

ing to the dffusion equation

(a) Verify that the Kuramoto-Sivashinsky equation is
Galilean invariant: ifu(x,t) is a solution, then
V+ u(x + 2vt t), with v an arbitrary constant ve-
locity, i s also a solution.

(b) Verify that mean

<u>:%dexu

is conserved by the flow.

(c) Arguethatthe choice (26.5) of the vanishing mean
velocity, (u) = 0 leads to no loss of generality in
calculations that follow.

_1 2
ap =5V

(a) Interpretthe partial dlierential equation as an infi-
nite dimensional dynamical system. That is, write
itasx = F(x) and find the velocity field.

(b) Show by examining the norm

oI = L dx¢()

that the vector fieldr is not continuous.
(c) Trythe norm

llpll = SLJIPPW(X)I-

N

(d) & [thinking is extra cost] Inspection of
various “turbulent” solutions of Kuramoto-Siva-
shinsky equation reveals subregions of “traveling
waves” with locally nonzerdu). Is there a way
to use Galilean invariance locally, even though we
eliminated it by thgu) = 0 condition?

Is F continuous?
(d) Argue that the semi-flow nature of the problem is
not the cause of our fliculties.
26.2. Infinite dimensional dynamical systems are not (e) Do you see away of generalizing these results?
smooth.  Many of the operations we consider natural
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