Chapter 32

WK B quantization

HE WAVE FUNCTION for a particle of energf moving in a constant potentis
I is

W = AeiPd (32.1)

with a constant amplitudd, and constant wavelength= 2r/k, k = p/h,
andp = + v2m(E - V) is the momentum. Here we generalize this solution
to the case where the potential varies slowly over many eagghs. This

semiclassical (or WKB) approximate solution of the Sclimgdr equation fails at
classical turning points, configuration space points witeggarticle momentum
vanishes. In such neighborhoods, where the semiclasgigabximation fails,

one needs to solve locally the exact quantum problem, inrdocdeompute con-
nection coéicients which patch up semiclassical segments into an ajppabe

global wave function.

Two lessons follow. First, semiclassical methods can bgpewerful - classi-
cal mechanics computations yield surprisingly accurdienases of quantal spec-
tra, without solving the Schrodinger equation. Secondiiskassical quantization
does depend on a purely wave-mechanical phenomena, theentlagldition of
phases accrued by all fixed energy phase space trajectoaesdnnect pairs of
coordinate points, and the topological phase loss at euening point, a topolog-
ical property of the classical flow that plays no role in clealsmechanics.

32.1 WKB ansatz
Consider a time-independent Schrodinger equation in tladgmension:

hz 1 _
~om¥ (@) + V()¢ () = Ey(a), (32.2)
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V(x)

Figure 32.1: A 1l-dimensional potential, location of
the two turning points at fixed enerdy

with potential V(g) growing suficiently fast asq — oo so that the classical
particle motion is confined for ang. Define the local momentump(qg) and the
local wavenumbek(q) by

p(a) = = v2m(E - V(d)), p(a) = 7k(q) . (32.3)
The variable wavenumber form of the Schrodinger equation
Y+ Ky =0 (32.4)

sugests that the wave function be written/as Aeiﬁs, A andS real functions of
g. Substitution yields two equations, one for the real aneiofbr the imaginary
part:

(S')? = p2+h2A— (32.5)
A
7 I N _ l d VA
S"A+25'A" = Adq(SA)_O. (32.6)

The Wentzel-Kramers-BrillouifWKB) or semiclassicabpproximation consists
of dropping thei? term in (32.5). Recalling that = 7k, this amounts to assuming
thatk? > AT”, which in turn implies that the phase of the wave functiorhianging
much faster than its overall amplitude. So the WKB approxiomecan interpreted
either as a short wavelengtiigh frequency approximation to a wave-mechanical
problem, or as the semiclassicalx 1 approximation to quantum mechanics.

Settingsi = 0 and integrating (32.5) we obtain the phase increment ofvee wa
function initially atq, at energye

q
S48 = [ dd'pa). (327)

This integral over a particle trajectory of constant engogled theaction, will
play a key role in all that follows. The integration of (32i§)even easier

= o C=Ip@)Eu(d), (32.8)

A(Q) = T
Ip(Q)I2
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CHAPTER 32. WKB QUANTIZATION 627

where the integration consta@tis fixed by the value of the wave function at the
initial point g'. The WKB (or semiclassicdlansatzwave function is given by

wmeﬁE):_leésmma' (32.9)
Ip(a)!2

In what follows we shall suppress dependence on the inibalt@nd energy in
such formulas,dq, ', E) — (q).

The WKB ansatz generalizes the free motion wave functionl{3avith the
probability density|A(g)[? for finding a particle atj now inversely proportional
to the velocity at that point, and the phabe p replaced by: [ dq p(a), the in-
tegrated action along the trajectory. This is fine, excepngtturning pointgo,
figure 32.1, where all energy is potential, and

p(@—0 as g-— qo, (32.10)

so that the assumption thiet > £ fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslogs the job.
In the g coordinate, the turning points are defined by the zero ldregiergy con-
dition (see figure 32.1), and the motion appears singulas iSmot so in the full
phase space: the trajectory in a smooth confining 1-dimeakiootential is al-
ways a smooth loop (see figure 32.2), with the “special” réléne turning points
dL. Or Seen to be an artifact of a particular choice of thep] coordinate frame.
Maslov proceeds from the initial pointf( p’) to a point §a, pa) preceding the
turning point in they(q) representation, then switch to the momentum represen-
tation

S Fiap
o = = f dqeH9Py(q). (32.11)

continue from @a, pa) to (gs, ps), switch back to the coordinate representation,

_ 1 Lap 7
0o = = f dpei(p). (32.12)

and so on.

The only rub is that one usually cannot evaluate these wemsfexactly. But,
as the WKB wave function (32.9) is approximate anyway, ffisas to estimate
these transforms to the leading orderiaccuracy. This is accomplished by the
method of stationary phase.
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Figure 32.2: A 1-dof phase space trajectory of a par-
ticle moving in a bound potential.

32.2 Method of stationary phase

All “semiclassical” approximations are based on saddlatfp@yaluations of inte-
grals of the type

| = f dx AX) €500 | X, () € R, (32.13)

wheresis a real parameter, an(X) is a real-valued function. In our applications
s = 1/4 will always be assumed large.

For larges, the phase oscillates rapidly and “averages to zero” evesysy
except at thextremal pointsd’(xp) = 0. The method of approximating an integral
by its values at extremal points is called thethod of stationary phas€onsider
first the case of a 1-dimensional integral, and exp@gy + 6X) aroundxg to
second order idXx,

| = f dx A(X) @S(@00)+ 307 (o) +..) (32.14)

Assume (for time being) thab” (xp) # 0, with either sign, sgr”’] = @ /|®”| =
+1. If in the neighborhood ok the amplitudeA(x) varies slowly over many
oscillations of the exponential function, we may retain kbading term in the
Taylor expansion of the amplitude, and approximate thegialeup to quadratic
terms in the phase by

| ~ Axp) €520 f dx eis?” () (x-x0)* (32.15)

x2
The one integral that we know how to integrate is the Gaus’nstagralfdx €% =

V2rb For for pure imaginanp = ia one gets instead tHeresnel integral formula
exercise 32.1

f dxe % = = |at2d i@ (32.16)
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we obtain

Rl 32.17
el 3240

|~ AGQ) |

wherez+ corresponds to the positiireegative sign 060" (o).

32.3 WKB guantization

We can now evaluate the Fourier transforms (32.11), (32d.#)e same order in
h as the WKB wave function using the stationary phase method,

eiﬁ (S(a)-ap)

Usp)
V2rh f Ip(Q)I2

S
C ei(S@)-ap qu S (@)a q)z (32.18)
Vrh - |p(ar)?

whereq* is given implicitly by the stationary phase condition
0=S(a)-p=pd)-p

and the sign ofS”(g") = p’(q") determines the phase of the Fresnel integral
(32.16)

Todp) = —C_eh(S@)-a < fsans (@) (32.19)
Ip(ar) P (o)1

As we continue fromda, pa) to (gs, ps), Nothing problematic occursp(q*) is
finite, and so is the acceleratigri(q*). Otherwise, the trajectory would take in-
finitely long to get across. We recognize the exponent as digehdre transform

S(p) = S(a(p) - d(p)p
which can be used to expresses everything in terms b tregiable,

o d . dpdap)
0 =0, Goa=1= go—gor = AP @), (32.20)

As the classical trajectory crossags the weight in (32.19),

%pZ(qL) - 2p(a)P (L) = ~2mV(Q). (32.21)
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Wi
b7

Figure 32.3: Sp(E), the action of a periodic orbjp at
energyE, equals the area in the phase space traced «
by the 1-dof trajectory.

is finite, andS”(q*) = p’(q*) < 0 for any point in the lower left quadrant, includ-
ing (da, pa). Hence, the phase loss in (32.19)H§. To go back from thep to
the g representation, just turn figure 32.2 quarter-turn artlohise. Everything
is the same if you replaceay,(p) — (—p,q); so, without much ado we get the
semiclassical wave function at the poigg(pg),

er S(p)+ap)-4 _ c . .
Ysd) = ————— Us{(p’) = — %% (32.22)
()12 Ip(a)I?

The extralp’(g*)*? weight in (32.19) is cancelled by the (p*)|*/? term, by the
Legendre relation (32.20).

The message is that going through a smooth potential tupoing the WKB
wave function phase slips by7. This is equally true for the right and the left
turning points, as can be seen by rotating figure 32.2 by,180d flipping co-
ordinates ¢, p) — (—g,—p). While a turning point is not an invariant concept
(for a suficiently short trajectory segment, it can be undone by‘tdf), for a
complete periodd, p) = (¢, p’) the total phase slip is alway2 - /2, as a loop
always hasn = 2 turning points.

TheWKB quantization conditiofollows by demanding that the wave function
computed after a complete period be single-valued. Witimtmmalization (32.8),
we obtain

1
p(a)|?

G G $ P@dam) ¢y

Y(d) = ¥(q) =

The prefactor is 1 by the periodic orbit conditign= ¢, so the phase must be a
multiple of 2r,

. 96 p(a)dq = 2x(n+ 7). (32.23)

wheremis the number of turning points along the trajectory - fosthidof prob-
lem,m= 2.

The action integral in (32.23) is the area (see figure 32.8)osed by the
classical phase space loop of figure 32.2, and the quantizetindition says that
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eigen-energies correspond to loops whose action is areintegltiple of the unit
guantum of action, Planck’s constant The extra topological phase, which, al-
though it had been discovered many times in centuries pasdttdwait for its
most recent quantum chaotic (re)birth until the 1970’s. ditests derivation in a
noninvariant coordinate frame, the final result involvely@anonically invariant
classical quantities, the periodic orbit acti®nand the topological indem.

32.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only das&®se quantum
mechanics we fully understand: the harmonic oscillator

E= %n(p%(ran)z) -

The loop in figure 32.2 is now a circle in thexpq, p) plane, the action is its area
S = 2rE/w, and the spectrum in the WKB approximation

En = hw(n + 1/2) (32.24)

turns out to be thexactharmonic oscillator spectrum. The stationary phase condi-
tion (32.18) keep¥(q) accurate to ordeg?, which in this case is the whole answer
(but we were simply lucky, really). For many 1-dof problerhe ¥WWKB spectrum
turns out to be very accurate all the way down to the grounig.st@urprisingly
accurate, if one interprets dropping th&term in (32.5) as a short wavelength
approximation.

32.4 Beyond the quadratic saddle point

We showed, with a bit of Fresn®aslov voodoo, that in a smoothly varying po-
tential the phase of the WKB wave function slips by/& for each turning point.
Thisz/2 came from avi in the Fresnel integral (32.16), one such factor for every
time we switched representation from the configuration sgadhe momentum
space, or back. Good, but what does this mean?

The stationary phase approximation (32.14) fails when@/x) = 0, or, in
our the WKB ansatz (32.18), whenever the momentifa) = S”(q) vanishes.
In that case we have to go beyond the quadratic approximéi5s) to the first
nonvanishing term in the Taylor expansion of the expondnb’[(xg) # 0, then

. 0 R (x-x0)3
| ~ A(x0)gSP00 f dx @50 (=5 (32.25)
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Figure 32.4: Airy function Ai(g). 06

Airy functions can be represented by integrals of the form
] 1 +00 '(x _yf)
Ai(x) = > dyé™=73), (32.26)

With a bit of FresngMaslov voodoo we have shown that at each turning point
a WKB wave function loses a bit of phase. Derivations of the B\Miantization
condition given in standard quantum mechanics textbodksoreexpanding the
potential close to the turning point

V(a) = V(do) + (- do)V'(do) + -+ -,

solving the Airy equation (withv’(qp) — z after appropriate rescalings),

Y’ =2y, (32.27)

and matching the oscillatory and the exponentially de@ayforbidden” region
wave function pieces by means of tt¥kB connection formulas That requires
staring at Airy functions (see (32.4)) and learning aboeirtasymptotics - a chal-
lenge that we will have to eventually overcome, in order tmnporate diraction
phenomena into semiclassical quantization.

The physical origin of the topological phase is illustrabsdthe shape of the
Airy function, figure 32.4. For a potential with a finite sloy@gq) the wave func-
tion penetrates into the forbidden region, and accommedatat more of a sta-
tionary wavelength then what one would expect from the @daksajectory alone.
For infinite walls (i.e., billiards) a diierent argument applies: the wave function
must vanish at the wall, and the phase slip due to a spectilectien is—r, rather
than—m/2.

Résum é

The WKB ansatz wave function for 1-degree of freedom probldails at the
turning points of the classical trajectory. While in theepresentation the WKB
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ansatz at a turning point is singular, along ghdirection the classical trajectory in
the same neighborhood is smooth, as for any smooth boundtjadtde classical
motion is topologically a circle around the origin in the ) space. The simplest
way to deal with such singularities is as follows; follow ttiassical trajectory in
g-space until the WKB approximation fails close to the tughpoint; then insert
f dpp){p| and follow the classical trajectory in th@space until you encounter
the nextp-space turning point; go back to tliespace representation, an so on.
Each matching involves a Fresnel integral, yielding aneextf/4 phase shift, for
a total ofe™ phase shift for a full period of a semiclassical particle ingvin a
soft potential. The condition that the wave-function beyrvalued then leads to
the 1-dimensional WKB quantization, and its lucky coudi® Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around thiaing pointa, V(q) =
V(@+(g-a)V’'(a)+- - -, and solve the quantum mechanical constant linear potentia
V(q) = gF problem exactly, in terms of an Airy function. An approxiraatave
function is then patched together from an Airy function attearning point, and
the WKB ansatz wave-function segments in-between via theBV¢Bnnection
formulas. The single-valuedness condition again yielésltldimensional WKB
quantization. This a bit more work than tracking the cleadi@jectory in the full
phase space, but it gives us a better feeling for shapes afuueaeigenfunctions,
and exemplifies the general strategy for dealing with othegusarities, such as
wedges, bifurcation points, creeping and tunneling: ptigether the WKB seg-
ments by means of exact QM solutions to local approximatiorssngular points.

Commentary

Remark 32.1 Airy function. The stationary phase approximation is all that is needed

for the semiclassical approximation, with the proviso than (33.36) has no zero eigen-

values. The zero eigenvalue case would require going beyan@aussian saddle-point
approximation, which typically leads to approximationgtod integrals in terms of Airy

functions [32.9]. exercise 32.4

Remark 32.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization condi-
tion was the key result of the old quantum theory, in whicheleetron trajectories were
purely classical. They were lucky - the symmetries of thel&eproblem work out in
such a way that the total topological index= 4 amount &ectively to numbering the
energy levels starting with = 1. They were unlucky - because the hydroger- 4
masked the topological index, they could never get the heipectrum right - the semi-
classical calculation had to wait for until 1980, when Lelopand Percival [A.5] added
the topological indices.
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Exercises
J from extremal points where the first non-zero termin a
32.1. WKB ansatz. _Try to show that no other Taylor expansion of the phase is of third or higher order.
ansatz other than (33.1) gives a meaningful definition of gy ch situations occur, for example, at bifurcation points
the momentum in thé — O limit. or in diffraction dfects, (such as waves near sharp cor-
32.2. Fresnel integral. Derive the Fresnel integral ners, waves creeping around obstacles, etc.). In suck
- calculations, one meets Airy functions integrals of the
1 f dx % = Via = a2 form
\/Z I 1 —+00
32.3. Sterling formulafor nl. ~ Compute an approximate Ai(X) = Zf dyé(xy‘é). (32.28)

value ofn! for largen using the stationary phase approx-

imati int:n! = [~ dtthet . o . .
imation. Hint:n! fO dit'e™. Calculate the Airy functionAi(x) using the stationary

) phase approximation. What happens when considering
32.4. Airy function for large arguments. J Impor- the limit x — 0. Estimate for which value ok the
tant contributions as stationary phase points may arise  stationary phase approximation breaks down.
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