Appendix G

Transport of vector fields

Man who says it cannot be done should not interrupt man
doing it.
—Sayings of Vattay Gabor

relaxation exponents (dynamo rates) of vector fields caxpessed in terms

I N THIS APPENDIX We show that the multidimensional Lyapunov exponents and
of leading eigenvalues of appropriate evolution operators

G.1 Evolution operator for Lyapunov exponents

y
J Lyapunov exponents were introduced and computed for 1fbioaal
maps in sect. 17.4.2. For higher-dimensional flows only dwebian matrices are
multiplicative, not individual eigenvalues, and the coustion of the evolution
operator for evaluation of the Lyapunov spectra requiregitension of evolution
equations to the flow in the tangent space. We now developethesite theory.

Here we construct a multiplicative evolution operator (Gnvhose spectral
determinant (G.8) yields the leading Lyapunov exponentaémensional flow
(and is entire for Axiom A flows).

The key idea is to extend the dynamical system by the tangetesof the
flow, suggested by the standard numerical methods for evatuaf Lyapunov
exponents: start aty with an initial infinitesimal tangent space vector in tihe
dimensional tangent spacg0) € T My, and let the flow transport it along the
trajectoryx(t) = f!(xo).

The dynamics in the tangent bundbe {x) € T M is governed by the system
of equations of variations (4.2):

Xx=v(x), 7=AMN7.

830
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HereA(x) is (4.3), the stability matrix (velocity gradients majrixf the flow. We
write the solution as

Xt = f'(%). n(t) = I'(x0)no. (G.1)

with the tangent space vectptransported by the Jacobian matdiXxo) = dx(t)/dXo
(4.6).

As explained in sect. 4.1, the growth rate of this vector idtiplicative along
the trajectory and can be representedy@} = [n(t)|/|n(0) u(t) whereu(t) is a
“unit” vector in some nornjl.|. For asymptotic times and for almost every initial
(%0, 17(0)), this factor converges to the leading eigenvalue ofitiearized stability
matrix of the flow.

We implement this multiplicative evaluation of Floquet nipliers by adjoin-
ing thed-dimensional transverse tangent space T My; n(x) - (X) = 0 to the
(d+1)-dimensional dynamical evolution space M c R4+, In order to deter-
mine the length of the vecterwe introduce a homogeneoudfdrentiable scalar
functiong(n) = |Inll. It has the propertg(An) = |A|g(n) for any A. An example
is the projection of a vector to itith component

m
g 772 = [nal .

d

Any vectorn(0) € T My can now be represented by the prodypet Au, where
uis a “unit” vector in the sense that its norm|ig| = 1, and the factor

Al(%0, Uo) = g(n(t)) = 9(3'(¥o)uo) (G2

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stregcFactor is multi-
plicative along the trajectory:

A (%0, Uo) = A" (X(1), u(t)) A' (X0, Uo)-
exercise G.1
Theu evolution constrained t&BT g, the space of unit transverse tangent vectors,

is given by rescaling of (G.1):

U =R((xU) = @J‘(x)u. (G.3)
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Egs. (G.1), (G.2) and (G.3) enable us to defimatatiplicative evolution operator
on the extended spatéx ET gy

S(U = RY(x, u))

Li(X, U xu) = 5(X' - fl(x)) [AY(x, u)p-1

(G4

whereg is a variable.

To evaluate the expectation value of |8d(x, u)] which is the Lyapunov ex-
ponent we again have to take the proper derivative of tharigagigenvalue of
(G.4). In order to derive the trace formula for the opera@®#) we need to eval-
uate TrL! = [dxdull(u,x;u, x). The [dxintegral yields a weighted sum over
prime periodic orbitg and their repetitions:

er

t
L= Z ”Zldet(l MEy P
(u — R (xp, u))
Ay = ~__ e .
w = [T ©9

whereMj, is the prime cyclep transverse stability matrix. As we shall see below,

Ap, isintrinsic to cyclep, and independent of any particular periodic poipt

We note next that if the trajectorf/(x) is periodic with periodr, the tangent
space containd periodic solutions

eDx(T +1) = (xt)), i=1...d,

corresponding to thd unit eigenvectorgeld, &2, ... e} of the transverse sta-
bility matrix, with “stretching” factors (G.2) given by itsigenvalues

Mp(0eV(x) = Apie’(x), i=1,..,d  (nosummation o)

Thefduintegral in (G.5) picks up contributions from these perwosblutions. In
order to compute the stability of thith eigen-direction solution, it is convenient to
expand the variation around the eigenveadrin the stability matrix eigenbasis
su =Y 6u, &9 . The variation of the map (G.3) at a complete petiedT is then
given by

oRT(eD) = Mou___Me (6g(e(i))|v|(5u)

g(Me)  g(MeD)2 | au
3 B, o
k |
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Thesu; component does not contribute to this sum sig@ + due) = 1+dy
impliesag(e®)/du; = 1. Indeed, infinitesimal variations must satisfy

ag(u)
aup

d
gu+éuy=guy=1 = Zau[ =0,
=1

so the allowed variations are of form

Su= Z(e(k) - e(,)ég(e‘ ))ck, ol < 1,

ki

and in the neighborhood of tief) eigenvector thg duintegral can be expressed

fdu_f]_[dq(

Inserting these variations into tlfedu integral we obtain

f du  6(e” +ou-RT(€M) - 6R"(eM) +...)
g

= [ []das@-Adagacs.)

ki

and thefdutrace (G.5) becomes

Apr Zl[\r |ﬁ1ﬂ|l Ark/AI’ I (G7)

ki

The corresponding spectral determinant is obtained byreiosgthat the Laplace
transform of the trace (18.23) is a logarithmic derivativeL{s) = —dislog F(s)
of the spectral determinant:

Tor
FE.9=exp|- Y — L8], ©8)
p:

| det (1~ Mp) |

This determinant is the central result of this section. &g correspond to the
eigenvalues of the evolution operator (G.4), and can beuated by the cycle
expansion methods.
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The leading zero of (G.8) is called “pressure” (or free eperg
P(B) = s0(B)- (G.9)

The average Lyapunov exponent is then given by the firstakire/of the pressure
atg = 1:

1=P(1). (G.10)

The simplest application of (G.8) is to 2-dimensional hygodic Hamiltonian
maps. The Floguet multipliers are related dy = 1/A, = A, and the spectral
determinant is given by

F(ﬂ z) = exp_zﬂéA (ﬂ)
T AT A (1= 1/Ap2 ™
AL 1-B A" -3
Apr(B) = [ i (G.11)

—+ .
1-1/A%  1-1/A%

The dynamics (G.3) can be restricted ta anit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobi xaa®n this neighbor-
hood the largest eigenvalue of the Jacobi matrix is the owrdfpoint, and the
spectral determinant obtained by keeping only the largast theA,, sum in
(G.7) is also entire.

In case of maps it is practical to introduce the logarithmhef keading zero
and to call it “pressure”

P(B) = log o(8).

The average of the Lyapunov exponent of the map is then giyéinefirst deriva-
tive of the pressure gt = 1:

1=P().

By factorizing the determinant (G.11) into products of Zetiactions we can
conclude that the leading zero of the (G.4) can also be reedvieom the leading
zeta function

Np

1/0(8.2) = exp[— »z

. (G.12)
CF TIADKE

This zeta function plays a key role in thermodynamic apfitices, see chapter K.
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G.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An plais the mag-
netic field of the Sun which is “frozen” in the fluid motion. Agsively evolving
vector fieldV is governed by an equation of the form

OV +u-VV -V .Vu=0, (G.13)

whereu(x, t) represents the velocity field of the fluid. The strength ef vlector
field can grow or decay during its time evolution. The ampdificn of the vector
field in such a process is called the "dynanfteet.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of tie fieh an exponent

V(x.1) ~ V(xet, (G.14)

whereyv is called the fast dynamo rate. The goal of this section ishtawsthat
periodic orbit theory can be developed for such a highly timial system as
well.

We can write the solution of (G.13) formally, as shown by Gaud_etx(t, a)

be the position of the fluid particle that was at the paimttt = 0. Then the field
evolves according to

V(xt) = J@ )V o) . (G.15)

whereJ(a, t) = d(x)/d(a) is the Jacobian matrix of the transformation that moves
the fluid into itselfx = x(a, t).

We writex = f!(a), wheref! is the flow that maps the initial positions of the

fluid particles into their positions at tinte Its inversea = f~'(x), maps particles
at timet and positiornx back to their initial positions. Then we can write (G.15)

Vi(x,t)=z f d*a £jj(x,a)Vj@0) , (G.16)
i

with

£(x,8) = 6(a- f*(x))j—:’j . (G.17)

For large times, theffect of £! is dominated by its leading eigenvalies' with
Revo) > Rey), i = 1,2,3,.... In this way the transfer operator furnishes the fast
dynamo ratey := vo.
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The trace of the transfer operator is the sum over all pariodbit contribu-
tions, with each cycle weighted by its intrinsic stability

Tr Lt = ZTpZ 'd t )|6(t—er) (G.18)

We can construct the corresponding spectral determinaungues

01 tr My,
F( ) _ _ = SITp ) (G.19)
v=eP Zp: ; r 'det(l— M‘;’)’e

Note that in this formuli we have omitted a term arising frdm tlacobian trans-
formation along the orbit which would give 4 tr Mg, in the numerator rather
than just the trace d¥l},. Since the extra term corresponds to advection along the
orbit, and this does not evolve the magnetic field, we haveehdo ignore it. It

is also interesting to note that the negative powers of tieehlan occur in the
denominator, since we have! in (G.17).

In order to simplifyF(s), we factor the denominator cycle stability determi-
nants into products of expanding and contracting eigeegalBor a 3-dimensional
fluid flow with cycles possessing one expanding eigenvalgéwith |Ay| > 1),
and one contracting eigenvalug (with |1p| < 1) the determinant may be ex-
panded as follows:

|det(1 _ Mgr)i_l =|1- A;)r)(l _ Agr)l—l — Mpl" 2 ZA Jrﬂkr (G.20)

With this decomposition we can rewrite the exponent in (Gakd

l(/lr+Ar)eser 0 o 1 y .
= E E § = (1pl A AESTP) (A+AL) (G221
|det1 M'| apIPY \ plAp Ape )( +Ap) )

ZZ

which has the form of the expansion of a logarithm:

Z Z [log(1 - e laplay 1 AS) + log (1 - TPl A AEY)| . (G.22)
CHT

The spectral determinant is therefore of the form,

F(9) = Fe(9Fc(9) (G.23)
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where
Fo(s) = l_[ ]_[ (1-t9A) . (G.24)
P jk=0
Feo =[] ]](@-t). (G.25)
p k=0
with
i« K
0 = esT,,MplA_r; ‘ (G.26)

p

The two factors present iR(s) correspond to the expanding and contracting ex-
ponents. (Had we not neglected a term in (G.19), there woeld third factor
corresponding to the translation.)

For 2-dimensional Hamiltonian volume preserving systems; 1/A and
(G.24) reduces to

oo k+1 T
Fe(9) = l_[ ]_l[ Ak 1] ’ tp = ‘ Ap | (G.27)

With op = Ap/IApl, the Hamiltonian zeta function (the= k = 0 part of the
product (G.25)) is given by

Yéap® = [ [ (1= o) - (G.28)

p

This is a curious formula — the zeta function depends onlyhenréeturn times,
not on the eigenvalues of the cycles. Furthermore, theitglent

A+1/A . 2
I(1-A)A-1/A) (A-A)A-1/A)

when substituted into (G.23), leads to a relation betweenvittor and scalar
advection spectral determinants:

Fayn(9) = F5(9)/dayn(9) - (G.29)

The spectral determinants in this equation are entire fpetyolic (axiom A)
systems, since both of them correspond to multiplicativeraiors.
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In the case of a flow governed by a map, we can adapt the forni@las)
and (G.28) for the dynamo determinants by simply making thstitution

Zv=eT | (G.30)

wheren, is the integer order of the cycle. Then we find the spectradrd@hant
Fe(2) given by equation (G.27) but with

Z
tp= — G.31
p |Apl ( )
for the weights, and
1/Zayn(2) = Hp(l - O'piqp) (G.32)

for the zeta-function

Formapswith finite Markov partition the inverse zeta function (G)32duces
to a polynomial forz since curvature terms in the cycle expansion vanish. For ex-
ample, for maps with complete binary partition, and withfilked point stabilities
of opposite signs, the cycle expansion reduces to

1ayn(9) = 1. (G.33)

For suchmapsthe dynamo spectral determinant is simply the square ofdhlars
advection spectral determinant, and therefore all itsszare double. In other
words, for flows governed by such discrete maps, the fastrdgrrate equals the
scalar advection rate.

In contrast, for 3-dimensiondlows the dynamo fect is distinct from the
scalar advection. For example, for flows with finite symbalimamical gram-
mars, (G.29) implies that the dynamo zeta function is a mftiovo entire deter-
minants:

1/Zayn(9) = Fayn(9/F&(S). (G.34)

This relation implies that foflowsthe zeta function has double poles at the zeros
of the scalar advection spectral determinant, with zerokhefdynamo spectral
determinant no longer coinciding with the zeros of the scativection spectral

determinant; Usually the leading zero of the dynamo spled#tarminant is larger exercise G.2

than the scalar advection rate, and the rate of decay of thymetia field is no
longer governed by the scalar advection.
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Commentary
Remark G.1 Lyapunov exponents. Sect. G.1 is based on ref. [G.1].

Remark G.2 Dynamo zeta. The dynamo zeta (G.32) has been introduced by Aurell
and Gilbert [G.3] and reviewed in ref. [G.4]. Our expositfoflows ref. [13.22].

Exercises
G.1. Stretching factor.  Prove the multiplicative property for x > 0. Show that the dynamo zeta is
of the stretching factor (G.2). Why should we extend the . N
phase space with the tangent space? 1/Zayn(s) = 1 - €= + €. (G.36
G.2. Dynamo rate. ~ Suppose that the fluid dynamics is Show also that the escape rate is the leading zero
highly dissipative and can be well approximated by the
piecewise linear map 1/40(s) = 1 - €52 /a— €5 /b. (G.37
f(x) = { %t gi :; i; 8 (G.35) Calculate the dynamo and the escape rates analy
! if b= a2 andTp = 2T, Do the calculation for the cz
on an appropriate surface of secti@lf > 2). Suppose when you reverse the signs of the slopes of the
also that the return time is constantfor x < 0 andTy, What is the diference?
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