Appendix G

Transport of vector fields

Man who says it cannot be done should not interrupt man
doing it.
—Sayings of Vattay Gabor

N THIS APPENDIX W€ show that the multidimensional Lyapunov exponents and
relaxation exponents (dynamo rates) of vector fields caxjpeessed in terms
of leading eigenvalues of appropriate evolution operators

G.1 Evolution operator for Lyapunov exponents

,
J Lyapunov exponents were introduced and computed for l{tbinaal
maps in sect. 17.4.2. For higher-dimensional flows only #webian matrices are
multiplicative, not individual eigenvalues, and the coustion of the evolution
operator for evaluation of the Lyapunov spectra requiregitension of evolution
equations to the flow in the tangent space. We now developethggite theory.

Here we construct a multiplicative evolution operator (Gahose spectral
determinant (G.8) yields the leading Lyapunov exponentaddémensional flow
(and is entire for Axiom A flows).

The key idea is to extend the dynamical system by the tangemesof the
flow, suggested by the standard numerical methods for ei@tuaf Lyapunov
exponents: start aty with an initial infinitesimal tangent space vector in ftike
dimensional tangent spaeg0) € T My, and let the flow transport it along the
trajectoryx(t) = fi{(xo).

The dynamics in the tangent bundbe dx) € T M is governed by the system
of equations of variations (4.2):

X=Vv(x), n=AX7.
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HereA(X) is (4.3), the stability matrix (velocity gradients madrif the flow. We
write the solution as

X() = f'(%), n() = I'(x0) o, (G.1)

with the tangent space vectptransported by the Jacobian matii{xg) = dx(t)/0%o
(4.6).

As explained in sect. 4.1, the growth rate of this vector istiplicative along
the trajectory and can be representedh@s = |n(t)|/|7(0) u(t) whereu(t) is a
“unit” vector in some nornil.||. For asymptotic times and for almost every initial
(%o, n(0)), this factor converges to the leading eigenvalue ofitiearized stability
matrix of the flow.

We implement this multiplicative evaluation of Floquet tipliers by adjoin-
ing the d-dimensional transverse tangent space T My; n(X) - V(x) = 0 to the
(d+1)-dimensional dynamical evolution space M c R%1. In order to deter-
mine the length of the vecterwe introduce a homogeneoudtdrentiable scalar
functiong(n) = |inll. It has the propertg(An) = |A|g(n) for any A. An example
is the projection of a vector to idth component

n
n2

g = [ndl -

d

Any vectorn(0) € T My can now be represented by the prodpet Au, where
uis a “unit” vector in the sense that its norm|jig| = 1, and the factor

Al(Xo, Up) = 9(n(t)) = 9(J3'(X0)Uo) (G.2)

is the multiplicative “stretching” factor.
Unlike the leading eigenvalue of the Jacobian the stretchaitor is multi-

plicative along the trajectory:

A"™(%0, ug) = A" (X(1), u(t)) A" (X0, Uo).
exercise G.1

Theu evolution constrained t&T 4, the space of unit transverse tangent vectors,
is given by rescaling of (G.1):

u =R(xu) = ﬁ\]t(x)u. (G.3)

appendApplic - 20sep2009 ChaosBook.org version14, Dec 31 2012



APPENDIX G. TRANSPORT OF VECTOR FIELDS 832

Egs. (G.1), (G.2) and (G.3) enable us to defimawtiplicativeevolution operator
on the extended spatéx ETgy

6(x’ ~ ft(x)) s(U — RY(x, u))

try/ (/- _
L(X,U;xu) = AGCOPT

(G.4)

whereg is a variable.

To evaluate the expectation value of |ad(x, u)| which is the Lyapunov ex-
ponent we again have to take the proper derivative of tharlgagigenvalue of
(G.4). In order to derive the trace formula for the operat@”) we need to eval-
uate TrL! = fdxduﬂ(u X; U, X). Thefdx integral yields a weighted sum over
prime periodic orbitg and their repetitions:

(Tp)
t
mLo= Z pz|det(1 |v|f)|Ap’“
8(u = R (xp, )
Apr = | d G5
o = [T ©.5)

whereMj, is the prime cyclep transverse stability matrix. As we shall see below,
Ap, is intrinsic to cyclep, and independent of any particular periodic poipt

We note next that if the trajectorff(x) is periodic with periodr, the tangent
space containd periodic solutions

eDx(T +t) =V (xt), i=1,..d,

corresponding to thd unit eigenvectorge®, &2, ... e} of the transverse sta-
bility matrix, with “stretching” factors (G.2) given by itsigenvalues

Mp(eV(¥) = Apie’(x), i=1,..d  (nosummation of)

Thefdu integral in (G.5) picks up contributions from these perwsblutions. In
order to compute the stability of thitlh eigen-direction solution, it is convenient to
expand the variation around the eigenve@®rin the stability matrix eigenbasis
su =Y su,el) . The variation of the map (G.3) at a complete petiedT is then
given by

SR () Msu Mel) (59(6(”)

g(MeD) ~ g(MeM)2 | au
_ Apk (10 ) ag(e(i)))
= Z (e € o OU . (G.6)

o Api

Méu)

appendApplic - 20sep2009 ChaosBook.org version14, Dec 31 2012



APPENDIX G. TRANSPORT OF VECTOR FIELDS 833

Thesu; component does not contribute to this sum sig@® + duel) = 1+ dy
impliesag(e®)/au; = 1. Indeed, infinitesimal variations must satisfy

ag(u) _
ouy =0,

d
gu+su)y=gu) =1 = Zéu,g
=1

so the allowed variations are of form

ou = kg(e e m Ck, o<1,
#l

and in the neighborhood of tlé#) eigenvector thq duintegral can be expressed
as
f du= f n dog.
9 ki

Inserting these variations into tlfedu integral we obtain

fdu 5(e" +su-RT(€M) - 6RT(€D) + .. )
g

= fﬂdq&((l—Ak/Ai)Ck+---)

ki

1
. (G.7)
1_.[ | 1= AL /AT

The corresponding spectral determinant is obtained byreingethat the Laplace
transform of the trace (18.23) is a logarithmic derivativel{s) = —dislog F(9
of the spectral determinant:

esTpr
r|det(1- MY) |

F(8,s) = exp —Z Apr(B)]. (G.8)

p.r

This determinant is the central result of this section. &g correspond to the
eigenvalues of the evolution operator (G.4), and can beuated by the cycle
expansion methods.
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The leading zero of (G.8) is called “pressure” (or free engrg
P(B) = s0(B)- (G.9)

The average Lyapunov exponent is then given by the firstalirasof the pressure
atp = 1:

1=P (). (G.10)

The simplest application of (G.8) is to 2-dimensional hjgodic Hamiltonian
maps. The Floguet multipliers are related Ry = 1/A, = A, and the spectral
determinant is given by

ZM 1
F(B,2 = exp|- A
(8.2 p ;”Awl_wp)z pr(B)
AF 1-B AF -3
Apr(B) Ao L (G.11)

+ .
1-1/A%  1-1/A%

The dynamics (G.3) can be restricted ta anit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobi xna®n this neighbor-
hood the largest eigenvalue of the Jacobi matrix is the orbdfpoint, and the
spectral determinant obtained by keeping only the largast theA,, sum in
(G.7) is also entire.

In case of maps it is practical to introduce the logarithmhef keading zero
and to call it “pressure”

P(B) = log ().

The average of the Lyapunov exponent of the map is then giyénddfirst deriva-
tive of the pressure @t = 1:

A=P(1).

By factorizing the determinant (G.11) into products of Zetactions we can
conclude that the leading zero of the (G.4) can also be reed\feom the leading
zeta function

1/4o<ﬁ,z)=exp[—2 - ] (6.12)

r
o rAp

This zeta function plays a key role in thermodynamic apfilices, see chapter K.
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G.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An plais the mag-
netic field of the Sun which is “frozen” in the fluid motion. Agsvely evolving
vector fieldV is governed by an equation of the form

OV +u-VV -V-Vu=0, (G.13)

whereu(x, t) represents the velocity field of the fluid. The strength ef lector
field can grow or decay during its time evolution. The ampdificn of the vector
field in such a process is called the "dynanfteet.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of the figh an exponent

V(x 1) ~ V(x)et, (G.14)

wherev is called the fast dynamo rate. The goal of this section ishtawsthat
periodic orbit theory can be developed for such a highly tratal system as
well.

We can write the solution of (G.13) formally, as shown by Gaud.etx(t, a)

be the position of the fluid particle that was at the paitt = 0. Then the field
evolves according to

V(x,t) = @& HV(a0) , (G.15)

wherelJ(a, t) = d(x)/d(a) is the Jacobian matrix of the transformation that moves
the fluid into itselfx = x(a, t).

We writex = f'(a), wheref! is the flow that maps the initial positions of the
fluid particles into their positions at tinte Its inversea = f~(x), maps particles
at timet and positiorx back to their initial positions. Then we can write (G.15)

Vi(x, t) = f d®a £j;(x,a)V;(a,0) , (G.16)

with
_ gy 9%
-Litj (x,a) =o(a—f t(X))a—aj . (G.17)

For large times, theftect of £! is dominated by its leading eigenvaluest with
Revo) > Regvj), i = 1,2 3, .... In this way the transfer operator furnishes the fast
dynamo ratey := vp.
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The trace of the transfer operator is the sum over all perioddit contribu-
tions, with each cycle weighted by its intrinsic stability

6(t —1Tp). (G.18)

TrLt= ZT Z |det

We can construct the corresponding spectral determinaunied

tr M,
F(9) = exp|- ZZ |det; e S (G.19)

Note that in this formuli we have omitted a term arising frdm tlacobian trans-
formation along the orbit which would give 4tr M}, in the numerator rather
than just the trace df1},. Since the extra term corresponds to advection along the
orbit, and this does not evolve the magnetic field, we have@hdo ignore it. It

is also interesting to note that the negative powers of tkkehlan occur in the
denominator, since we have! in (G.17).

In order to simplifyF(s), we factor the denominator cycle stability determi-
nants into products of expanding and contracting eigergalBor a 3-dimensional
fluid flow with cycles possessing one expanding eigenvalyéwith [Ap| > 1),
and one contracting eigenvalug (with |1p| < 1) the determinant may be ex-
panded as follows:

L= A=A =1l D7) A A (G.20)

=0 k=0

det(1 - m;7)[ " =

With this decomposition we can rewrite the exponent in (GdO

1 uf W\ )esrT c

S IDIONL

p jk=0r=1

“IH

ZZ

(1plAG ke STp) (L+A]) (G.21)

which has the form of the expansion of a logarithm:

22> |log(1- ePlagiaylak) + log(1- e PlagAG AFH)| . (G.22)
pjk

The spectral determinant is therefore of the form,

F(s) = Fe(9Fc(9) (G.23)
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where

Fe(s) = n
p

=,

O(1 ~t89Ap) . (G.24)

=
I

(o)

Fo=[][](-t"2). (G.25)
P jk=0

with

. Ak
t9 = o 2 (G.26)
A

The two factors present iR(s) correspond to the expanding and contracting ex-
ponents. (Had we not neglected a term in (G.19), there woalld third factor
corresponding to the translation.)

For 2-dimensional Hamiltonian volume preserving systemss 1/A and
(G.24) reduces to

oo k+1 eSTp
Fe(s) = HH( Akl] , tp=|AIDI . (G.27)

With op = Ap/|Ayl, the Hamiltonian zeta function (the = k = 0 part of the
product (G.25)) is given by

1/ Zay(9) = ]—[ (1-ope™) . (G.28)

p

This is a curious formula — the zeta function depends onlyhenreturn times,
not on the eigenvalues of the cycles. Furthermore, theiiglent

AYYA 2
(-A)A-2/A) I1-A)A-1/A)

when substituted into (G.23), leads to a relation betweenvéttor and scalar
advection spectral determinants:

Fayn(S) = F5(9)/Zayn(9) - (G.29)

The spectral determinants in this equation are entire fgetyolic (axiom A)
systems, since both of them correspond to multiplicativeraors.
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In the case of a flow governed by a map, we can adapt the forni@las)
and (G.28) for the dynamo determinants by simply making thesttution

v =T | (G.30)

wheren,, is the integer order of the cycle. Then we find the spectrardahant
Fe(2) given by equation (G.27) but with

Zp
th = — G.31
P = A (G.31)
for the weights, and
1/Zay(@) = Tp (1 - op2™) (G.32)

for the zeta-function

Formapswith finite Markov partition the inverse zeta function (G)32duces
to a polynomial forz since curvature terms in the cycle expansion vanish. For ex-
ample, for maps with complete binary partition, and withfiked point stabilities
of opposite signs, the cycle expansion reduces to

1/Zayn(S) = 1. (G.33)

For suchmapsthe dynamo spectral determinant is simply the square ofdhlars
advection spectral determinant, and therefore all itsszare double. In other
words, for flows governed by such discrete maps, the fastrdgmate equals the
scalar advection rate.

In contrast, for 3-dimensiondlows the dynamo fect is distinct from the
scalar advection. For example, for flows with finite symbalimamical gram-
mars, (G.29) implies that the dynamo zeta function is a rattiovo entire deter-
minants:

1/Zayn(S) = Fayn(9)/F3(9) . (G.34)

This relation implies that foflowsthe zeta function has double poles at the zeros

of the scalar advection spectral determinant, with zerohefdynamo spectral
determinant no longer coinciding with the zeros of the scativection spectral
determinant; Usually the leading zero of the dynamo spleddtarminant is larger exercise G.2
than the scalar advection rate, and the rate of decay of tiymetia field is no

longer governed by the scalar advection.
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EXERCISES

Commentary

Remark G.1 Lyapunov exponents.

Remark G.2 Dynamo zeta.

839

Sect. G.1is based on ref. [G.1].

The dynamo zeta (G.32) has been introduced by Aurell

and Gilbert [G.3] and reviewed in ref. [G.4]. Our expositfotiows ref. [13.22].

Exercises

G.1.

G.2.

Stretching factor.  Prove the multiplicative property
of the stretching factor (G.2). Why should we extend the
phase space with the tangent space?

Dynamo rate. Suppose that the fluid dynamics is
highly dissipative and can be well approximated by the
piecewise linear map

£(x) :{

on an appropriate surface of secti@l{ > 2). Suppose
also that the return time is constantfor x < 0 andTy

x<0,
x>0,

l1+ax if

1-bx if (G.39)
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for x > 0. Show that the dynamo zeta is
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1/40(s) = 1— e /a— 5T/, (G.37)
Calculate the dynamo and the escape rates analytically
if b = a2 andT, = 2T.. Do the calculation for the case
when you reverse the signs of the slopes of the map.
What is the diference?
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