Appendix D

Symbolic dynamics techniques

prime factorization for dynamical itineraries of sect. DliRstrates the
sense in which prime cycles are “prime” - the product stmectf zeta func-
tions is a consequence of the unique factorization progersymbol sequences.

THE KNEADING THEORY for unimodal mappings is developed in sect. D.1. The

D.1 Topological zeta functions for infinite subshifts
(P. Dahlgvist)

)

J The transition graph methods outlined in chapter 11 areswéid for
symbolic dynamics of finite subshift type. A sequence of welfined rules leads
to the answer, the topological zeta function, which turnistowe a polynomial.
For infinite subshifts one would have to go through an infisg#équence of graph
constructions and it is of course venfiiult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the gaalbe reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta fuoot for unimodal
maps with one external paramet®i(x) = Ag(x). As usual, symbolic dynamics is
introduced by mapping a time series x_1XX+1 . . . onto a sequence of symbols
...S_1SS:1... where

§=0 X <X
= Xi =X
s=1 X>X (D.1)

andx is the critical point of the map (i.e., maximumg)t In addition to the usual
binary alphabet we have added a sym@dior the critical point. The kneading
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1(©) 4op@/(1-2) 1C) on@/(1-2
1C 1001C

101C 10011T

101110C 10011C

H>(1) [12o(1-7") 10011@

1011C 100C

101111T 10001@

101 (1-22)/(1+2) || 1000LC

1011111C 10001T

10111TC 1000C

1011C 10000C

10110C 10000

10C 1-z-2) 10000@

10016 10° 1-22/(1-2)
10010T

Table D.1: All ordered kneading sequences up to length seven, as wstiras longer kneading
sequences. Harmonic extensidfi(1) is defined below.

sequence, is the itinerary of the critical point (11.13). The crucidservation
is that no periodic orbit can have a topological coordinage(sect. D.1.1) beyond
that of the kneading sequence. The kneading sequence terssia border in
the list of periodic orbits (ordered according to maximaidimgical coordinate),
cycles up to this limit are allowed, all beyond are pruned! wiimodal maps
(obeying some further constraints) with the same kneadiggence thus have the
same set of periodic orbitsand the same topological zetditum The topological
coordinate of the kneading sequence increases with inogeAs

The kneading sequence can be of one of three types
1. It maps to the critical point again, aftariterations. If so, we adopt the

convention to terminate the kneading sequence wi@) and refer to the
kneading sequence as finite.

2. Preperiodic, i.e., it is infinite but with a periodic tail.

3. Aperiodic.
As an archetype unimodal map we will choose tixe map

AX x€[0,1/2]

x> f(¥) :{ Ad-% xe(L21] ° ®2)

where the parametex € (1,2]. The topological entropy i& = logA. This
follows from the fact any trajectory of the map is boundeds #scape rate is
strictly zero, and so the dynamical zeta function

1760 = [1(1=25) = [1(2-(£)") - vepten)
p 3
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has its leading zero at= 1.

The set of periodic points of the tent map is countable. A eqaence of this
fact is that the set of parameter values for which the knepsiguence (11.13) is
periodic or preperiodic are countable and thus of measucea® consequently
the kneading sequence is aperiodic for almost all A. For general unimodal maps
the corresponding statement is that the kneading sequepeiiodic for almost
all topological entropies.

For a given periodic kneading sequence of peripl, = PC =
1% .. 5-1C there is a simple expansion for the topological zeta functithen
the expanded zeta function is a polynomial of degree

n-1 i
Yaop@ = | [@-=(-2 ) a2, a=[]C1® (0:3)
p i=0 j=1

andag = 1.

Aperiodic and preperiodic kneading sequences are acabdioteby simply
replacingn by co.

Example. Consider as an example the kneading sequénce 10C. From
(D.3) we get the topological zeta functionZp(?d = (1-2(1-z- 7), see
table D.1. This can also be realized by redefining the alpghdle only forbidden
subsequence is 100. All allowed periodic orbits, exd@ptan can be built from
a alphabet with letters 18nd 1 We write this alphabet &40, 1; 0}, yielding the
topological zeta function /£iop(2) = (1-2)(1-z- 7). The leading zero is the
inverse golden meam = (V5 - 1)/2.

Example. As another example we consider the preperiodic kneading se
quenceK, = 101*. From (D.3) we get the topological zeta functioftip(2) =
(1-2(1-22)/(1 + 2, see table D.1. This can again be realized by redefin-
ing the alphabet. There are now an infinite number of forbidsigbsequences,
namely 10%"0 wheren > 0. These pruning rules are respected by the alphabet
{012+1:7,0}, yielding the topological zeta function above. The polehia reta
function gt;}j(z) is a consequence of the infinite alphabet.

An important consequence of (D.3) is that the sequéag¢das a periodic tail
if and only if the kneading sequence has one (however, theziogh may difer
by a factor of two). We know already that the kneading secgiémaperiodic for
almost allA.

The analytic structure of the function represented by tfiaite series}’ &z
with unity as radius of convergence, depends on whetheathefta;} is periodic
or not. If the period of the tail if we can write

Z
Viion(@ = @) + 91+ 2"+ 2 ) = p@) + 2
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for some polynomialg(z) andq(z). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. Arriapée sequence of
codficients would formally correspond to infinifé and it is natural to assume
that the singularities will fill the unit circle. There is ieedd a theorem ensuring
that this is the case [12.57], provided & can only take on a finite number of
values. The unit circle becomesatural boundary, already apparent in a finite
polynomial approximations to the topological zeta functias in figure 15.2. A
function with a natural boundary lacks an analytic conttimraoutside it.

To conclude: The topological zeta functiofiib, for unimodal maps has the
unit circle as a natural boundary for almost all topologieatropies and for the
tent map (D.2), for almost alt.

Let us now focus on the relation between the analytic streadfithe topolo-

gical zeta function and the number of periodic orbits, dnea(15.8), the number
N, of fixed points off"(x). The trace formula is (see sect. 15.4)

1 9 ot
Ny =trT" = o 95{ dzz nd_z 109 4igp

wherey; is a (circular) contour encircling the origin= 0 in clockwise direction.
Residue calculus turns this into a sum over zexand poles, of gt;,})

1 d
— ~Nn _ ~n _, _— ~n - -1
Np = . E Z A E 7"+ iSE dzz dzlog(:top
29:r <|20|<R Zpir<|zpl<R TR

and a contribution from a large circlg:. For meromorphic topological zeta func-
tions one may leR — co with vanishing contribution fromyg, andN, will be a
sum of exponentials.

The leading zero is associated with the topological entrapydiscussed in
chapter 15.

We have also seen that for preperiodic kneading there wldbes on the unit
circle.

To appreciate the role of natural boundaries we will considérery) special

example. Cascades of period doublings is a central conoefité description of
unimodal maps. This motivates a close study of the function

22 = ]_[(17 Z) . (D.4)
n=0

This function will appear again when we derive (D.3).

The expansion 0&(z) begins a€(2) = 1-z- 2+ 22 -2 +2.... The radius
of convergence is obviously unity. The simple rule govegrtime expansion will
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effectively prohibit any periodicity among the déeients making the unit circle
a natural boundary.

It is easy to see th&(z) = 0 if z = exp(2rm/2") for any integerm andn.
(Strictly speaking we mean tha(z) — 0 whenz — exp(2rm/2") from inside).
Consequently, zeros are dense on the unit circle. One carsladsv that singular
points are dense on the unit circle, for instaf&@)| — oo whenz — exp(2rm/3")
for any integem andn.

As an example, the topological zeta function at the accutioulgpoint of
the first Feigenbaum cascadeljgh(2) = (1 - 22(2. ThenN, = 2*1if n =
2, otherwiseN, = 0. The growth rate in the number of cycles is anything but
exponential. It is clear thatl, cannot be a sum of exponentials, the contgwr
cannot be pushed away to infiniti is restricted toR < 1 andN, is entirely
determined b)fyR which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some speages and we
know that the unit circle is a natural boundary for almostAall But how does
it look out there in the complex plane for some typical par@mealues? To
explore that we will imagine a journey from the origir= 0 out towards the unit
circle. While traveling we let the paramet&rchange slowly. The trip will have a
distinct science fiction flavor. The first zero we encountehésone connected to
the topological entropy. Obviously it moves smoothly armhdy. When we move
outward to the unit circle we encounter zeros in increasiegsidies. The closer
to the unit circle they are, the wilder and stranger they molMeey move from
and back to the horizon, where they are created and destthyedgh bizarre
bifurcations. For some special values of the parametentheiocle suddenly gets
transparent and and we get (infinitely) short glimpses ofteeravorld beyond the
horizon.

We end this section by deriving egs (D.5) and (D.6). The inepratle prose
is hopefully explained by the accompanying tables.

We know one thing from chapter 11, namely for that finite kriegdequence
of lengthn the topological polynomial is of degree The graph contains a node
which is connected to itself only via the symbol 0. This ireglithat a factor
(1 - 2) may be factored out anbp(?) = (1 - 2 53 &Z. The problem is to find
the codficientsa;.

The ordered list of (finite) kneading sequences table D.klzdrdered list of
periodic orbits (on maximal form) are intimately related.thble D.2 we indicate
how they are nested during a period doubling cascade. Ewsitg fineading
sequencéC is bracketed by two periodic orbit®1 andP0. We haveP1 < PC <
PO if P contains an odd number of 1's, aRd < PC < P1 otherwise. From
now on we will assume tha® contains an odd number of 1's. The other case
can be worked out in complete analogy. The first and seconudrac of PC
are displayed in table D.2. The periodic orBit (and the corresponding infinite
kneading sequence) is sometimes referred to as the antharextension oPC
(denotedA™(P)) and the accumulation point of the cascade is called thadraic
extension ofPC [11.8] (denotedH*(P)).
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periodic orbits| finite kneading sequences
P1=A"(P)
PC
PO
POPC
POP1
POP1POPC
l l
H*(P) H*(P)

Table D.2: Relation between periodic orbits and finite kneading segem a harmonic cascade.
The stringP is assumed to contain an odd number of 1's.

A central result is the fact that a period doubling cascad®®@fis not in-
terfered by any other sequence. Another way to expressshisat a kneading
sequencdC and its harmonic are adjacent in the list of kneading seqstx
any order.

1(C) 4iop@/(1-2)
P, = 100C 1-z-2Z-7

H®(P;) = 10001001100.. |1-z-Z-Z-Z2+2+8+7-2...
P = 1000C 1-z2-Z-2-Z+7

A®(P,) = 1000110001.. |1-z-Z-Z-Z+2-B-7-F...
P, = 1000C 1-z-2-72-72

Table D.3: Example of a step in the iterative construction of the liskiéading sequencéxC.

Table D.3 illustrates another central result in the comtoines of kneading
sequences. We suppose tfaC and P,C are neighbors in the list of order 5
(meaning that the shortest finite kneading sequétiCebetweenP;C andP,C is
longer than 5.) The important result is tHit (of lengthn’ = 6) has to coincide
with the firstn’ — 1 letters of bothH*(P1) and A*(P,). This is exemplified in
the left column of table D.3. This fact makes it possible toeyate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation pditft (P1) is

GrI@EEY) | (©5)
and just beforéd™(P5)
DI -27) . (0.6)

A short calculation shows that this is exactly what one wanlithin by apply-
ing (D.3) to the antiharmonic and harmonic extensions tireprovided that it
applies ta/p1(2) andZp1(2). This is the key observation.

Recall now the product representation of the zeta function = e -
Z%). We will now make use of the fact that the zeta function aiséed with
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P’C is a polynomial of order’. There is no periodic orbit of length shorter than
n + 1 betweerH®(P1) and A®(P,). It thus follows that the cd#cients of this
polynomial coincides with those of (D.5) and (D.6), see &bI3. We can thus
conclude that our rule can be applied directhPte.

This can be used as an induction step in proving that the ariebe applied
to every finite and infinite kneading sequences.

Remark D.1 How to prove things. The explicit relation between the kneading se-
quence and the cficients of the topological zeta function is not commonly sieetie
literature. The result can proven by combining some thesrefiMilnor and Thurston
[11.14]. That approach is hardly instructive in the presamttext. Our derivation was
inspired by Metropolis, Stein and Stein classical paper.glLFor further detail, consult
[15.14].

D.1.1 Periodic orbits of unimodal maps

A periodic point (cycle point) x, belonging to a cycle of period s a real solution
of

(%) = F(F(.. F(%)...)) =%, k=012...,n-1. (D.7)

Thenth iterate of a unimodal map has at mo%tm2onotone segments, and there-
fore there will be 2 or fewer periodic points of length. Similarly, the backward
and the forward Smale horseshoes intersect at nfostn2s, and therefore there
will be 2" or fewer periodic points of length. A periodic orbit of lengtm cor-
responds to an infinite repetition of a length= n, symbol string, customarily
indicated by a line over the string:

Sp= (5198 5" =S%S%--- ;-

As all itineraries are infinite, we shall adopt conventioatth finite string itinerary
Sp = 81983 .. S Stands for infinite repetition of a finite block, and routynemit

the overline.xo, its cyclic permutation

SSkr1--- 5oL - - S corresponds to the poin_; in the same cycle. A cyclp

is calledprimeif its itinerary S cannot be written as a repetition of a shorter block
S

Each cyclep is a set ofn, rational-valued full tent map periodic poings It
follows from (11.9) that if the repeating strirggs; . . . s, contains an odd number
“1"s, the string of well ordered symbols;ws, ... w2, has to be of the double
length before it repeats itself. The cycle-pojnis a geometrical sum which we
can rewrite as the fraction

n

22 2n
YET% S = gy ), W2 (08)
t=1
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Using this we can calculate th€S) for all short cycles. For orbits up to length 5
this is done in table 11.1.

Here we give explicit formulas for the topological coordmaf a periodic
point, given its itinerary. For the purpose of what followssiconvenient to com-
pactify the itineraries by replacing the binary alphaget {0, 1} by the infinite
alphabet

{a1,a,a3,a4.---; 0} = {1,10,100100Q. . . ; 0} . (D.9)

In this notation the itinerar = aajakd - - - and the corresponding topological
coordinate (11.9) are related p{S) = .10/1%0' - - .. For example:

S = 11101110100100Q. = aaqapaiaiaragas...
¥(S) = .101101001110000. = .1%0%*1%0'1'0%1%0%...
Cycle points whose itineraries start with = w, = ... =w; = 0, wy1 = 1 remain

on the left branch of the tent map fiterations, and satisfy(0. .. 0S) = y(S)/2".

Periodic points correspond to rational valuespbut we have to distinguish
even andodd cycles. The even (odd) cycles contain even (odd) nhumbey iof
the repeating block, with periodic points given by

( | 521101 ... 1¢ even (D.10)
iaj - = o , .
VAR ARG E A (14 20 x 210010 odd

wheren =i+ j+---+k+ (is the cycle period. The maximal value periodic point
is given by the cyclic permutation & with the largests; as the first symbol,
followed by the smallest availablg as the next symbol, and so on. For example:

1) = y(@) = .1010L.. = .10 = 2/3
710) = y(@) = .1202... = 1100 = 4/5
#(100) = y(as) = .1%0°... = 111000 = 8/9
7(101) = y(apa) = .120'... = 110 = 6/7

An example of a cycle where only the third symbol determihesmaximal value
periodic point is

(1101110)= y(aayazazay) = .11011010010016 100/129.

Maximal values of all cycles up to length 5 are given in table!
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D.2 Prime factorization for dynamical itineraries

y
J The Mdbius function is not only a number-theoretic funitibut can be
used to manipulate ordered sets of noncommuting objectsagisymbol strings.
LetP = {py, p2. ps. - - -} be an ordered set pfime strings, and

N=(n = {pilpgzp';’mp?} ,

j €N,k € Z,, be the set of all strings obtained by the ordered concatenation of
the “primes” p;. By construction, every string has a unique prime factorization.
We say that a string has a divisgiif it containsd as a substring, and define the
string divisionn/d asn with the substringd deleted. Now we can do things like
this: definingt, := t‘,‘)llt',‘f2 t',‘,‘J we can write the inverse dynamical zeta function
(20.2) as

[Ta-to = umt,
p n

and, if we care (we do in the case of the Riemann zeta functibe)dynamical
zeta function as .

1
U " Zn:tn (D.11)

A striking aspect of this formula is its resemblance to tredezation of nat-
ural numbers into primes: the relation of the cycle expanéin11) to the product
over prime cycles is analogous to the Riemann zeta (exet8id®) represented
as a sum over natural numbers vs. its Euler product repegant

We now implement this factorization explicitly by decompagsrecursively
binary strings into ordered concatenations of prime s#ifithere are 2 strings of
length 1, both prime:p; = 0, p, = 1. There are 4 strings of length 2: 00, 01,
11, 10. The first three are ordered concatenations of prioes: pi, 01= pip2,
11 = pg; by ordered concatenations we mean tpgt, is legal, butpyp; is not.
The remaining string is the only prime of length g3 = 10. Proceeding by
discarding the strings which are concatenations of shorieres p‘f p§2 plj(j,
with primes lexically ordered, we generate the standatdfiprimes, in agree-
ment with table 15.1: 0, 1, 10, 101, 100, 1000, 1001, 1011,0040A0001,
10010, 10011, 10110, 10111, 100000, 100001, 100010, 10000110, 100111,
101100, 101110, 101111,.. This factorization is illustrated in table D.4.
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factors| string |[ factors | string || factors | sting |— o rer—crme

5
Pr op; 0000|| Py 00000 -2 ~T"50101
1
p2 1 p%pg 0001 P})SE 888(1)1 p1p2ps | 01101
pip; | 0011 PyPe pips | 11101

gipz 8(1) pip; | 0111 PiPy 00111\ e | 10101
1

p 11111 PPy | 01111} b ps | 01000
P 11| pZp, | 0010 P2 11111 pps | 11000
Ps 10 || pypops | 0110 P;ps | 00010 | pyp; | 01001

P2ps 1110|| pip2ps | 00110 pop7 | 11001
p3 000 pg 1010 || pip2ps | 01110|| pips | 01011
op, | 001 pips | 0100 p3ps | 11110{ P2ps | 11011
p1p3 011|| pps | 1100|| pip2 | 010101 Pe 10000
P 111 || pips | 0101| popZ | 11010 Po | 10001
Pips | 010 | pops | 1101| p2p, | 00100| P12 10010
P2p3 110 Ps 1000 P1P2Pa 01100 P12 10011
Pa 100 P7 1001 p2p4 11100 P13 10110
Ps 101 || ps 1011 pip, | 10100| Pia 10111

Table D.4: Factorization of all periodic points strings up to lengthnfoi ordered con-
catenationsp'ilpgzm p& of prime stringspy = 0, p2 = 1, ps = 10, ps = 100, ...,
pra = 10111,

D.2.1 Prime factorization for spectral determinants

§
J Following sect. D.2, the spectral determinant cycle exjosussis obtained
by expanding= as a multinomial in prime cycle weights

— k _
F= ]:[ ; Cuth = Z Ty daga. (D.12)

kikokg++=0

where the sum goes over all pseudo-cycles. In the above veededined

—T

I
kN

Cputhy . (D.13)

Tk ko k3 =
Pyt P2 Pg

exercise 19.10

A striking aspect of the spectral determinant cycle expanss its resem-
blance to the factorization of natural numbers into prinsswe already noted in
sect. D.2, the relation of the cycle expansion (D.12) to tleelpct formula (19.9)
is analogous to the Riemann zeta represented as a sum ouveal matmbers vs.
its Euler product representation.

This is somewhat unexpected, as the cycle weights factexaetly with re-

spect tor repetitions of a prime cyclép,_ , = tf,, but only approximatelyshad-
owing) with respect to subdividing a string into prime substrings,, ~ tp, tp,.
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The codficientsC have a simple form only in 1-dimensional given by the
Euler formula (23.5). In higher dimensioi@y can be evaluated by expanding
(19.9),F(2 = [1, Fp, where

S AP
Fp=1- + = -
P [; rdp,,] 2 [; rdp,r]

Expanding and recollecting terms, and suppressingtbgcle label for the mo-
ment, we obtain

Z Ct*,  Cx = (-) c/Dx,

d k
Dk = ﬂ :]_[ﬂl ) (D.14)

r=1 a=1

Fp

where evaluation of requires a certain amount of not too luminous algebra:

G =1

¢ =1
1

¢ = E(—-dl) [H(l+ua)—l—[(l ua)]
1 (dod

C3 = 3—(%4-2(11(12—3(‘3)
1

= [l_[(1+2ua+2u +U)

d
+2 ﬂ(l— Ua — U2+ 1) — 3]_1(1 - ug)]
a=1 a=1

etc.. For example, for a general 2-dimensional map we have

1. W+Up, Ula(l+Uu)(d+Up)+ U+,
Fp=l-—t+ 2 - t
Dq D, D3

..(D.15)

We discuss the convergence of such cycle expansions inl gect.

With 7 ot .. defined as above, the prime factorization of symbol striegs i

unique in the sense thedch symbol string can be written as a unique concatena-
tion of prime strings, up to a convention on ordering of primes. This factorization
is a nontrivial example of the utility of generalized Mobiunversion, sect. D.2.

How is the factorization of sect. D.2 used in practice? Ssppee have com-
puted (or perhaps even measured in an experiment) all pyiescup to length
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n, i.e., we have a list ofy’s and the corresponding Jacobian matrix eigenvalues
Ap1, Ap2, ... Apd. Acycle expansion of the Selberg product is obtained by gene
ating all strings in order of increasing lengjlallowed by the symbolic dynamics
and constructing the multinomial

F= Z . (D.16)

n

wheren = ;- - - sj, § range over the alphabet, in the present d@s#}. Fac-
torizing every stringn = $1%---§j = p'fpgzmp'j<j as in table D.4, and sub-
stituting 7 .. we obtain a multinomial approximation . For example,
7001001010101= 7001001010101 = Tgps2T 13+ andT013, Tooz are known functions of

the corresponding cyae_e_lgenvalues The zerdsadn now be easily determined
by standard numerical methods. The fact that as far as thbdioynamics is
concerned, the cycle expansion of a Selberg product is gienpaverage over all

symbolic strings makes Selberg products rather pretty.

To be more explicit, we illustrate the above by expressinmlyi strings as
concatenations of prime factors. We start by compubihgthe number of terms
in the expansion (D.12) of the total cycle lengthSettingC ytk = 2" in (D.12),
we obtain

1
me:]‘[;ﬂk:m.

So the generating function for the number of terms in the Sgliproduct is the
topological zeta function. For the complete binary dynamie haveN, = 2"
contributing terms of length:

— 1 — 1 — N n
Gon= Tt~ 12~ 207

n=0

Hence the number of distinct terms in the expansion (D.12héssame as the
number of binary strings, and conversely, the set of bin&iings of lengthn
sufices to label all terms of the total cycle lengtlin the expansion (D.12).
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