Chapter 17

Averaging

Why think when you can compute?
—Maciej Zworski

chaotic dynamics. A time average of an observable is cordputénte-

grating its value along a trajectory. The integral alongettory can be
split into a sum of over integrals evaluated on trajectognsents; if exponenti-
ated, this yields anultiplicative weight for successive trajectory segments. This
elementary observation will enable us to recast the forenfalaaverages in a mul-
tiplicative form that motivates the introduction of evebrt operators and further
formal developments to come. The main result is thatdgmamicalaverage mea-
surable in a chaotic system can be extracted from the spectran appropriately
constructed evolution operator. In order to keep our toeseclto the ground, in
sect. 17.4 we try out the formalism on the first quantitatiisgdosis whether a
system is chaotic, the Lyapunov exponent.

WE piscuss FIRsT the necessity of studying the averages of observables in

17.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible,rasfmitely specified ini-
tial condition, no matter how precise, will fill out the emtiaccessible state space
after a finite Lyapunov time (1.1). Hence for chaotic dynamioe cannot follow
individual trajectories for a long time; what is attaingbiewever, is a description
of the geometry of the set of possible outcomes, and the &vaiuof long-time
averages. Examples of such averages are transpdticoers for chaotic dynam-
ical flows, such as escape rates, mean drifts affidsion rates; power spectra; and
a host of mathematical constructs such as generalized diorex; entropies, and
Lyapunov exponents. Here we outline how such averages ahesg¢ed within the
evolution operator framework. The key idea is to replacesttpectation values of
observables by the expectation values of generating fumas. This associates
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an evolution operator with a given observable, and rel&@sxpectation value of
the observable to the leading eigenvalue of the evoluti@raipr.

17.1.1 Time averages

Let a = a(x) be anyobservable a function that associates to each point in state
space a number, a vector, or a tensor. The observable repoesproperty of
the dynamical system. The observable is a device, such asradmeter or laser
Doppler velocitometer. The device itself does not changaduhe measurement.
The velocity fielda;(x) = vi(x) is an example of a vector observable; the length
of this vector, or perhaps a temperature measured in anisxg@rat instantr

are examples of scalar observables. We definéntiegrated observable'4s the
time integral of the observabbeevaluated along the trajectory of the initial point
X0,

t
Ao = [dralxel. X0 = o). (a7.1)
0

If the dynamics are given by an iterated mapping and the tendiscrete, the
integrated observable aftaiiterations is given by

n-1
A0 = Y a0, %= T¥00) (17.2)

k=0

(we suppress vectorial indices for the time being).

Example 17.1 Integrated observables. (a) If the observable is the velocity, a;j(x) =
Vi(x), its time integral A/(Xo) is the trajectory Al(Xo) = Xi(t).

(b) For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase-space point xo = [q(0), p(0)] is:

t
A = [ dreo)-p), a7.3)
Thetime averageof the observable along an orbit is defined by
— 1
a(xo) = lim ;A(Xo). (17.4)

If a does not behave too wildly as a function of time — for examipla(x) is the
Chicago temperature, bounded betwe®@*F and+13C°F for all imes —A'(xo)

is expected to grow no faster thgrand the limit (17.4) exists. For an example of
a time average - the Lyapunov exponent - see sect. 17.4.
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The time average is a property of the orbit, independenteifititial point on
that orbit: if we start at a later state space pdihxo) we get a couple of extra
finite contributions that vanish in the— oo limit:

t+T

a[fT(x)] Jim % dra[ " (x0)]
—eo Ut

t+T

alw) H 1 T T T
= &)~ m 3 [ deatteol - [ dralt o))

a(x) .

Example 17.2 Lyapunov exponent. Given a 1-dimensional map, consider observ-

able A(x) = In|f'(x)| and integrated observable
n-1
[1f o0
k=0

The Lyapunov exponent is the average rate of the expansion

. n-1 X ofn
A0 = >l (11 = n =[5 00)
k=0

1 n-1
A(x0) = lim = > Inif ()l
(=]
See sect. 17.4.1 for further details.

The integrated observabié(xo) and the time averagxo) take a particularly

simple form when evaluated on a periodic orbit. Define exercise 4.6
T
apTp = PdralfT(x)] fora flow
Ap = pip 0 g s e My, (17.5
P { apn, = Yalfi(x)] foramap X €& Mp. (179)

wherep is a prime cycleT, is its period, ana, is its discrete time period in the
case of iterated map dynamics. The quanfitys a loop integral of the observable
along a single traversal of a prime cygleso it is an intrinsic property of the cycle,
independent of the starting poirg € M. (If the observable is not a scalar but
a vector or matrix we might have to be more careful in definingngerage which
is independent of the starting point on the cycle). If thgetreory retraces itself
r times, we just obtairA, repeated times. Evaluation of the asymptotic time
average (17.4) therefore requires only a single travefdghleccycle:

ap = Ap/Tp. (17.6)

However,a(Xp) is in general a wild function oko; for a hyperbolic system it
takes the same valu@) for almost all initial xo, but a dfferent value (17.6) on
any periodic orbit, i.e., on a dense set of points (figure ()L
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Figure 17.1: (a) A typical chaotic trajectory ex-
plores the state space with the long time visitation
frequency building up the natural measyxgXx).

(b) time average evaluated along an atypical tra-
jectory such as a periodic orbit fails to explore the
entire accessible state space. (A. Johansen)

() M (b)

Example 17.3 Deterministic diffusion. The phase space of an open system such as
the Sinai gas (an infinite 2-dimensional periodic array of scattering disks, see sect. 25.1)
is dense with initial points that correspond to periodic runaway trajectories. The mean
distance squared traversed by any such trajectory grows as x(t)? ~ t2, and its contri-
bution to the diffusion rate D o x(t)2/t, (17.4) evaluated with a(x) = x(t)?, diverges.
Seemingly there is a paradox; even though intuition says the typical motion should be
diffusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by also averaging over
the initial x and worrying about the measure of the ‘pathological’ trajectories. (contin-
ued in example 17.4)
section 25.1

17.1.2 Spatial averages

Thespace averagef a quantitya evaluated over all state space trajectoxigbat
timet s given by thed-dimensional integral over all initial pointg at timet = 0:

1 gt
@O = o[ doadbl. X = o)

M = f dx = volume of M. 7.7
M
The spaceM is assumed to have finite volume - open systems like the 3gdisie
of pinball are discussed in sect. 17.3.
What is it wereally do in experiments? We cannot measure the time average
(17.4), as there is no way to prepare a single initial cooditvith infinite preci-
sion. The best we can do is prepare an initial dengiy, perhaps concentrated on

some small (but always finite) neighborhood. Then we canddrathe uniform
space average (17.7) and consider instead the weightedl spatrage

1
@0 = (5 fM dopO0)alx®]. M, = fM dxp() . (17.8)

For ergodic mixing systemanysmooth initial density will tend to the asymptotic
natural measure in the— oo limit p(x,t) — po(x). This allows us to take any
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smooth initialp(x) and define thexpectation valuéa) of an observabla as the
asymptotic time and space average over the state space

1 1t
(ay = medxa[x] = I|m Mf dxo on dra[x(t)] . (17.9)

We use the samg- -) notation as for the space average (17.7) and distinguish the
two by the presence of the time variable in the argument: efghantity(a(t)
being averaged depends on time, then it is a space averégsitife infinite time
limit, it is the expectation valuéa).

The expectation value is a space average of time averagidseveryx € M
used as a starting point of a time average. The advantagefging over space
is that it smears the starting points which were problenfatiche time average
(such as periodic points). While easy to define, the expgeotatlue(a) turns out
not to be particularly tractable in practice.

Here comes a simple idea that is the basis of all that follBsch averages
are more conveniently studied by investigating instea¢apthe space averages
of form

Ay 1 e
(¢ )_lledeé‘ ) (17.10)

In the present conteytis an auxiliary variable of no physical significance whose
role is to enable us to recover the desired space averagdfesedtiation,

(s)= 752"

b0

In most applicationg is a scalar, but if the observable islalimensional vector
a(x) € RY, theng e RY; if the observable is ad[x d] tensor,3 is also a rank-2
tensor, and so on. Here we will mostly limit the consideradito scalag.

If the time average limia(xp) (17.4) exists for ‘almost all’ initialxg's and
the system is ergodic and mixing (in the sense of sect. 1.3vl§ expect the
time average along almost all trajectories to tend to theeseatued, and the
integrated observabla' to tend tota. The space average (17.10) is an integral

over exponentials and hence also grows exponentially wit.tSo ag — oo we
would expect the space average of gxph'(x)) to grow exponentially with time

(¢#%) - (conste™)
and its rate of growth to be given by the limit
1 A
s(g) = lim <1 (7). (17.11)
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Now we understand one reason for why it is smarter to comfaxe(s - A'))
rather thana): the expectation value of the observable (17.9) and the mtsoé
the integrated observable (17.1) can be computed by eiradusie derivatives of

s(B)

%‘fﬁ—o - tlimo % <At> =@,
Pol i DA - (a) () (17.12)
B0 tooo t

lim = <(AI - t@)?)

exercise 17.2

and so forth. We have explicitly written out the formulas &oscalar observable;
the vector case is worked out in exercise 17.2 (we could haed full derivative
ds/dB in (17.12), but for vector observable we do need partiaMdériesds/dg;).

If we can compute the functios(s), we have the desired expectation value without
having to estimate any infinite time limits from finite timetda

Suppose we could evalua$) and its derivatives. What are such formulas
good for? A typical application arises in the problem of deii@ing transport
codficients from underlying deterministic dynamics.

Example 17.4 Deterministic diffusion. (continued from example 17.3) Con-
sider a point particle scattering elastically off a d-dimensional array of scatterers. If
the scatterers are sufficiently large to block any infinite length free flights, the particle
will diffuse chaotically, and the transport coefficient of interest is the diffusion constant
(x(t)2 ~ 4Dt. In contrast to D estimated numerically from trajectories x(t) for finite
but large t, the above formulas yield the asymptotic D without any extrapolations to the
t — oo limit. For example, for & = v; and zero mean drift (v;) = 0, in d dimensions the
diffusion constant is given by the curvature of S(8) at3 = 0, section 25.1

, (17.13)

— I|m 2_dt x(t) =% Z ‘7ﬁ2

so if we can evaluate derivatives of S(8), we can compute transport coefficients that
characterize deterministic diffusion. As we shall see in chapter 25, periodic orbit theory
yields an exact and explicit closed form expression for D.

We turn to the problem of evaluatir(@ﬁ"\‘> in sect. 17.2, but first we review
some elementary facts of statistics that will be usefuflate

fast track:
W sect. 17.2, p. 355

average - 270ct2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 17. AVERAGING 355

rgbl0.G:0() =

Figure 17.2: Space averaging pieces together the
time average computed along the— oo orbit
of figure 17.1 by a space average over infinitel
many short trajectory segments starting at all ini-
tial points at once.

17.2 Evolution operators

For it, the mystic evolution;
Not the right only justified
—what we call evil also justified.
—Walt Whitman,
Leaves of Grass: Song of the Universal

The above simple shift of focus, from studyika) to studying(exp(s - A)) is
the key to everything that follows. Make the dependence erfldw explicit by
rewriting this quantity as

(%) = ﬁ fM dx fM dys(y - £1(x)) A%, (17.14)

Heres(y — f'(x)) is the Dirac delta function: for a deterministic flow an ialti
point x maps into a unique pointat timet. Formally, all we have done above is
to insert the identity

:L:fMdy(S(y—f‘(x)), (17.15)

into (17.10) to make explicit the fact that we are averaginty @ver the trajec-
tories that remain inM for all times. However, having made this substitution
we have replaced the study of individual trajectorfé&) by studying the evolu-
tion of the density ofhe totalityof initial conditions. Instead of trying to extract a
temporal average from an arbitrarily long trajectory whesiplores the state space
ergodically, we can now probe the entire state space witt &uwod controllable)
finite time pieces of trajectories originating from everyon M.

As a matter of fact (and that is why we went to the trouble ofrdefj the gen-
erator (16.27) of infinitesimal transformations of dersjiinfinitesimally short
time evolution induced by the generat@t of (16.27) siffices to determine the
spectrum and eigenvalues &F.

We shall refer to the kernel of the operation (17.14) asetiwution operator

Li(y.x) = oy () 40, (17.16)
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The simplest example is the= 0 case, i.e., the Perron-Frobenius operator intro-
duced in sect. 16.2. Another example - designed to delieekyapunov exponent

- will be the evolution operator (17.41) discussed belowe @htion of the evolu-
tion operator on a functioa is given by

[£'s] ) = fde(S(y— £1(x)) 4 Mg(x). (17.17)

The evolution operator is fierent for diferent observables, as its definition
depends on the choice of the integrated observabie the exponential. Its job is
to deliver the expectation value af but before showing that it accomplishes that,
we need to verify the semigroup property of evolution opesat

By its definition, the integral over the observallés additive along the tra-
jectory

X(t1+t2) /> X(t1+t2)
x(O)M//> = X(0)~—s7 ) + X

t t+to
t1+to T T
A (x0) fodra[f ] +fh dral 7 (x)]
AL (x0) v A1 ).

exercise 16.3

As Al(x) is additive along the trajectory, the evolution operatengrates a semi-
group section 16.5

L(y.x) = f dz.L2(y. 2Lz 9. (17.18)
M
as is easily checked by substitution
[£2£4a](y) = f dxo(y - f2()eA*M | L1a] () = [£2*2a] ().
M

This semigroup property is the main reason why (17.14) ifepable to (17.9) as
a starting point for evaluation of dynamical averages: gasts averaging in form
of operators multiplicative along the flow.

In terms of the evolution operator, the space average ofghergting function
(17.14) is given by

(&%) = 37 ] ¢ | dvem) 00009,

where ¢(x) is the constant functiog(x) = 1. If the linear operator! can be
thought of as a matrix, high powers of a matrix are dominateiisifastest grow-
ing matrix elements, and the limit (17.11)

s(g) = lim % (L) . (17.19)
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yields the leading eigenvalug(B), and, through it, all desired expectation values
(17.12).

In what follows we shall learn how to extract not only the lieadeigenvalue
of £, but much of the dominant part of its spectrum. Clearly, veerant interested
into the eigenvalues of! for any particular finite time, but their behavior as
t — co. That is achievedia a Laplace transform, see sect. 17.2.3.

17.2.1 Spectrum of an evolution operator

An exposition of a subject is of necessity sequential andaamaot explain ev- Cﬁ%}

erything at once. As we shall actually never use eigenfanstof evolution oper-
ators, we postpone their discussion to sect. 23.6. For tine lbieing we ask the
reader to accept uncritically the following sketch:

Schematically, a linear operator has a spectrum of eigeesa), and eigen-
functionsg, (X)

[£'0a] () = €¥00(¥),  @=012... (17.20)

ordered so that Rg, > Res,.1. For continuous time flow eigenvalues cannot
depend on time, they are eigenvalues of the time-evolut@reator (16.26) we
always write the eigenvalues of an evolution operator inoeeptiated fornmes
rather than as multipliers,, We find it convenient to write them this way both for
the continuous time.! and the discrete time& = £* cases, and we shall assume
that spectrum of is discrete.

Ltis alinear operator acting on a density of initial conditigiix), x € M, so
thet — oo limit will be dominated bysy = s(8), the leading eigenvalue oft,

[£oa] 00 = [ axaly- 1100) €4%ps09 = 0y, @721)

wherepgs(X) is the corresponding eigenfunction. e 0 the evolution operator
(17.16) is the Perron-Frobenius operator (16.10), wi(x) the natural measure.

From now on we have to be careful to distinguish the two kinti§near
operators. In chapter 5 we have characterized the evoluafidhe local linear
neighborhood of a state space trajectory by eigenvaluesietvalues of the
linearized flow Jacobian matrices. Evolution operatorcidesd in this chapter
areglobal, and they act on densities of orbits, not on individual tajges. As
we shall see, ne of the wonders of chaotic dynamics is thatribee unstable
individual trajectories, the nicer are the corresponditupa density functions.
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17.2.2 Evolution for infinitesimal times

For infinitesimal timest, the evolution operator (17.7) acts as

p(y. 6t)

f dx €40 s(y — £4(x) p(x. 0)

]ﬁxédWWW—x—&w@nxxm

p(y,0) = dtv- Zp(y, 0)
1+t

>

(1+dtpa(y)

(the denominator arises from thelinearization of the jacobian) giving the conti-
nuity equation (16.25) a source term

dp

a
i a—Xi(ViP) =pap. (17.22)

The evolution generator (16.27) eigenfunctions now satisf

(s(B) = A) p(x.B) = Ba(X) p(x.B) - (17.23)

Differentiating with respect 8

SO+ ) 5 o)+ 5 (00 708

= 200 p( ) + B 7 ()
In the vanishing auxiliary parameter linfit— 0, we haves(0) = 0, p(X, 0) = po(X)
SO0 + 5[4 750 0) = a0 9.
0% aB
By integrating, the second term vanishes by Gauss’ theorem
S0~ [ dxepol) = (@

verifying equation (17.8): spatial average of the obsdevabis given by the
derivative of the leading eigenvalisg0).

fast track:
W sect. 18, p. 371
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17.2.3 Resolvent of”

Here we limit ourselves to a brief remark about the notiorhef‘spectrum’ of a
linear operator.

The Perron-Frobenius operat6racts multiplicatively in time, so it is reason-
able to suppose that there exist constavits 0, s > 0 such thal|£!]| < Me™ for
allt > 0. What does that mean? The operator norm is defined in the s@iritén
which one defines matrix norms: We are assuming that no valu#ugx) grows
faster than exponentially for any choice of functiofx), so that the fastest pos-
sible growth can be bounded lg§®, a reasonable expectation in the light of the
simplest example studied so far, the escape rate (1.3). atligtso, multiplying
L' by e we construct a new operater® £t = e*-%) which decays exponen-
tially for larget, [|€¢7%)|| < M. We say thae™® £! is an element of &ounded
semigroup with generatafl — spl. Given this bound, it follows by the Laplace
transform

o 1
fo dtestot = A Res> s, (17.24)

that theresolventoperator § — A)~* is bounded

‘1
S_

If one is interested in the spectrum 6f as we will be, the resolvent operator is a
natural object to study; it has no time dependence, and usitbed. It is called
‘resolvent’ because it separates the spectrurf iofto individual constituents, one
for each spectral 'line’. From (17.19), it is clear that teading eigenvaluey(B)
corresponds to the pole in (17.25); as we shall see in chaptethe rest of the
spectrum is similarly resolved into further poles of the laap transform.

< f dtestmeo = M (17.25)
0

The main lesson of this brief aside is that for continuousetifiows, the
Laplace transform is the tool that brings down the generiat¢i6.29) into the
resolvent form (17.24) and enables us to study its spectrum.

17.3 Averaging in open systems

y
J If M is a compact region or set of regions to which the dynamicsris ¢
fined for all times, (17.9) is a sensible definition of the etpgion value. How-
ever, if the trajectories can exMl without ever returning,

f dysly— f0e) =0  fort>teq. %€ M.
M

average - 270ct2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 17. AVERAGING 360

109 0.5 4 -

Figure 17.3: A piecewise-linear repeller (16.11): All
trajectories that land in the gap between thand f;

branches escap@{ = 4, A, = —2). w

we might be in trouble. In particular, repelleris a dynamical system for which
the trajectoryf!(xo) eventually leaves the regioh, unless the initial poinkg is
on the repeller, so the identity

f dyés(y - fi(xo)) =1, t>0, iff Xop € non—-wandering set (17.26)
M

might apply only to a fractal subset of initial points of zdrebesgue measure
(non-wandering set is defined in sect. 2.1.1). Clearly, fmmosystems we need
to modify the definition of the expectation value to restiidb the dynamics on
the non—-wandering set, the set of trajectories which arérehfor all times.

Denote byM a state space region that encloses all interesting initialt®,
say the 3-disk Poincaré section constructed from the diskdlaries and all pos-
sible incidence angles, and denote| 3y the volume ofM. The volume of state
space containing all trajectories, which start out wittiia state space regiowl
and recur within that region at tinteis given by

IM()| = fM dxdya(y—f‘(x)) ~ M. (17.27)

As we have already seen in sect. 1.4.3, this volume is expeotelecrease ex-
ponentially, with the escape raje The integral ovei takes care of all possible
initial points; the integral ovey checks whether their trajectories are still within

M by the timet. For example, any trajectory that fallstf¢he pinball table in section 22.1

figure 1.1 is gone for good.

If we expand an initial distributiom(x) in (17.20), the eigenfunction basis
p(X) = X, a.9a(X), we can also understand the rate of convergence of finite-time
estimates to the asymptotic escape rate. For an open systdradtion of trapped

trajectories decays as section 17.3

fM dx[ L] (%) 1 d%ea(X)
Tl = 5(1 IM TN
O  fudxo - e AT

@

= e¥((const.)+ O(e*N)) . (17.28)
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The constant depends on the initial dengify) and the geometry of state space
cutoff region M, but the escape rate = —5 is an intrinsic property of the re-
pelling set. We see, at least heuristically, that the leggigenvalue of£! domi-
natesl,(t) and yields the escape rate, a measurable property of a igipetier.

The non—wandering set can be veryfidult to describe; but for any finite
time we can construct a normalized measure from the fimite-tiovering volume
(17.27), by redefining the space average (17.10) as

AN _ 1 a1 A+
(¢ )_fde—‘M(t)leB Iledeé? ", (17.29)

in order to compensate for the exponential decrease of tirbeuof surviving
trajectories in an open system with the exponentially gngwiactore’'. What
does this mean? Once we have compuytede can replenish the density lost to
escaping trajectories, by pumpinget of new trajectories in such a way that the
overall measure is correctly normalized at all timgs,= 1.

Example 17.5 Escape rate for a piecewise-linear repeller: (continuation of exam-
ple 16.1) What is gained by reformulating the dynamics in terms of ‘operators’? We
start by considering a simple example in which the operator is a [2x2] matrix. Assume
the expanding 1-dimensional map f(x) of figure 17.3, a piecewise-linear 2—branch re-
peller (16.11). Assume a piecewise constant density (16.12). There is no need to
define p(X) in the gap between My and M, as any point that lands in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with fo and f; modelling its two
strips of survivors.

As can be easily checked using (16.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2x2] ‘transfer’ matrix (16.13) exercise 16.1

exercise 16.5
11
(po) - Lp :( V}lu‘ ‘All‘ )(po) ’
P1 Ad A /\P1

stretching both po and p1 over the whole unit interval A, and decreasing the density at
every iteration. In this example the density is constant after one iteration, so £ has only
one non-zero eigenvalue e® = 1/|Ao| + 1/|A1| < 1, with constant density eigenvector
po = p1. The quantities 1/|Aol, 1/|A1| are, respectively, the sizes of the |Mol, IMa|
intervals, so the exact escape rate (1.3) — the log of the fraction of survivors at each
iteration for this linear repeller — is given by the sole eigenvalue of L:

Y =—%=—In(1/|Acl + 1/|A4l) . (17.30)

Voila! Here is the rationale for introducing operators — in one time step we have solved
the problem of evaluating escape rates at infinite time. (continued in example 23.5)
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3%

Figure 17.4: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range.

17.4 Lyapunov exponents

(J. Mathiesen and P. Cvitanovic)

Let us apply the newly acquired tools to the fundamentalrbatics in this sub-
ject: Is a given system ‘chaotic'? And if so, how chaotic?Ilfmints in a neigh- example 2.3
borhood of a trajectory converge toward the same trajectiogyattractor is a fixed
point or a limit cycle. However, if the attractor is strangay two trajectories  section 1.3.1

x(t) = fi(xg) and x(t)+6x(t) = f'(xp + 6%0) (17.31)

that start out very close to each other separate exporlgntigh time, and in
a finite time their separation attains the size of the acblesstate space. This
sensitivity to initial conditiongan be quantified as

I5x(t)| ~ e|5%0| (17.32)

where 1, the mean rate of separation of trajectories of the systeroalled the
Lyapunov exponent

17.4.1 Lyapunov exponent as a time average

We can start out with a smalk and try to estimate from (17.32), but now that we
have quantified the notion of linear stability in chapter d dafined the dynamical
time averages in sect. 17.1.1, we can do better. The probiémmveasuring the
growth rate of the distance between two points is that as ¢éhepseparate, the
measurement is less and less a local measurement. In thedftegperimental

time series this might be the only option, but if we have eiguatof motion, a

better way is to measure the growth rate of vectors trans\vera given orbit.

The mean growth rate of the distanige(t)|/|6X%o| between neighboring tra-
jectories (17.32) is given by tHeyapunov exponentvhich for long (but not too
long) timet can be estimated as

A=~

1
7 N IeX(D)1/16%ol (17.33)
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Figure 17.5: The symmetric matrid = (J)" J' maps
a swarm of initial points in an infinitesimal spherical
neighborhood ok, into a cigar-shaped neighborhood
finite timet later, with semiaxes determined by the ono"‘ X
cal stretchingshrinking |A4|, but local individual tra-
jectory rotations by the complex phaseXfgnored.

(For notational brevity we shall often suppress the depecelef quantities such
asl = A(Xp), 6X(t) = 6X(Xo, t) on the initial pointxp). One can take (17.33) as is,
take a small initial separatiafx, track distance between two nearby trajectories
until [6X(ty)| gets significantly bigger, then recordly = In(|oX(t1)I/|6%ol), rescale
6X(t1) by factor|6xol/|6X(t1)l, and continue add infinitum, as in figure 17.4, with
the leading Lyapunov exponent given by

1
A= lim Zmi . (17.34)

However, we can do better. Given the equations of motioripfaritesimalsx we
know theéx;(t)/6x;(0) ratio exactly, as this is by definition the Jacobian matri
(4.38)

i OO _ X _
5x(0)-06x;(0) ~ 9xj(0)

Ji(x0),

so the leading Lyapunov exponent can be computed from tearlepproximation
(4.23)

B T R ) T
A(Xo) _tILrT;?InW = [an;iln(n (3T 3) . (17.35)

In this formula the scale of the initial separation drops, autly its orientation
given by the initial orientation unit vectar = 6xo/|6X%o| matters. The eigenval-
ues ofJ are either real or come in complex conjugate pairs.JAs in general
not symmetric and not diagonalizable, it is more convententvork with the
symmetric and diagonalizable matft = (J‘)TJ‘, with real positive eigenval-
ues{|A1> > ... > |Ag%}), and a complete orthonormal set of eigenvectors of
{us, ..., ug). Expanding the initial orientation = Y (A - uj)u; in theMu; = |Ai]u;
eigenbasis, we have

d
ATMA = Z(ﬁ U)2IAIR = (- up)?e¥t (14 O(e 20 ra))) | (17.36)
i=1
where InA;(Xo, t)| = tu;, with real parts of characteristic exponents (4.18) ordiere

by u1 > p2 > ps---. For long times the largest Lyapunov exponent dominates
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Figure 17.6: A numerical estimate of the leading Lya-
punov exponent for the Rossler flow (2.17) from the_

dominant expanding eigenvalue formula (17.35). The
leading Lyapunov exponent ~ 0.09 is positive, so

numerics supports the hypothesis that the Rossler at
tractor is chaotic. The big unexplained jump illustrates®
perils of Lyapunov exponents numerics.  (J. Math-
iesen) g

exponentially (17.35), provided the orientatipof'the initial separation was not
chosen perpendicular to the dominant expanding eigewiitireu;. The Lya-
punov exponent is the time average

lim % {In1A- ugl + In A1 (x0, t)] + O(e~21=))

1
= Jim ZInjACo. 0, (17.37)

Alxo)

where A1(xo, t) is the leading eigenvalue af(xp). By choosing the initial dis-
placement such that i5 normal to the firsti¢1) eigen-directions we can define
not only the leading, but all Lyapunov exponents as well:

Ai(x0) = I'L”;% InAi(o. 01, P=12---.d. (17.38)

The leading Lyapunov exponent now follows from the Jacobiatrix by numer-
ical integration of (4.9). The equations can be integraizligtely for a finite
time, hence the infinite time limit of (17.35) can be only estted from plots of
% In(ATMA) as function of time, such as figure 17.6 for the Rossler f7).

As the local expansion and contraction rates vary along the the temporal
dependence exhibits small and large humps. The sudderofalllaw level is
caused by a close passage to a folding point of the attractoliustration of why
numerical evaluation of the Lyapunov exponents, and prptiie very existence
of a strange attractor is afficult problem. The approximately monotone part
of the curve can be used (at your own peril) to estimate theirgaLyapunov
exponent by a straight line fit.

As we can already see, we are courtin@idilties if we try to calculate the
Lyapunov exponent by using the definition (17.37) direcHyrst of all, the state
space is dense with atypical trajectories; for exampleg ihappens to lie on a
periodic orbitp, 2 would be simply INA|/Tp, a local property of cycle, not a
global property of the dynamical system. Furthermore, éven happens to be a
‘generic’ state space point, it is still not obvious thatAiixo, t)|/t should be con-
verging to anything in particular. In a Hamiltonian systeiithveoexisting elliptic
islands and chaotic regions, a chaotic trajectory getsicagin the neighborhood
of an elliptic island every so often and can stay there foitrantily long time; as
there the orbit is nearly stable, during such episoda (R, t)|/t can dip arbitrar-
ily close to 0. For state space volume non-preserving flows the trajectany
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traverse locally contracting regions, andAifxo, t)|/t can occasionally go nega-
tive; even worse, one never knows whether the asymptotiacatr is periodic or

‘chaotic’, so any finite estimate afmight be dead wrong. exercise 17.1

17.4.2 Evolution operator evaluation of Lyapunov exponerg

A solution to these problems was proposed in sect. 17.2 acegime averaging
along a single orbit by action of a multiplicative evolutioperator on the entire
state space, and extract average of the Lyapunov expoenits leading eigen-
value. from finite length cycles. If the chaotic motion filleetwhole state space,
we are indeed computing the asymptotic Lyapunov exponétitelchaotic mo-
tion is transient, leading eventually to some long attvactiycle, our Lyapunov
exponent, computed on a non—wandering set, will charaetehie chaotic tran-
sient; this is actually what any experiment would measusesven a very small
amount of external noise fices to destabilize a long stable cycle with a minute
immediate basin of attraction. The main idea - what is thepLy@v ‘observable’
- can be illustrated by the dynamics of a 1-dimensional map.

Example 17.6 Lyapunov exponent, discrete time 1-dimensional dynamics. Due

to the chain rule (4.47) for the derivative of an iterated map, the stability of a 1-dimensional

mapping is multiplicative along the flow, so the integral (17.1) of the observable a(x) =
In|f’(X)|, the local trajectory divergence rate, evaluated along the trajectory of Xo, is
additive:

n-1
A'(x0) = In |17 (x0)| = " In[£(x) - (17.39)
k=0

For a 1-dimensional iterative mapping, the Lyapunov exponent is then the expectation
value (17.9) given by a spatial integral (17.8) weighted by the natural measure

/1:(In|f’(x)|):fMprO(x)InH’(x)\. (17.40)

The associated (discrete time) evolution operator (17.16) is

Ly %) = 6(y— f(x) M (17.41)

Here we have restricted our considerations tbrvaps, as for higher-dimensional
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from (17.12), the derivative of the leading eigenvatyés) of the evolution oper-

ator (17.41). example 20.2

The only question is: How? (By chapter 20 you will know.)

Résum é

The expectation valug) of an observabl@(x) integrated A'(x) = fot dra(x(r)),
and time averaged'/t, over the trajectork — x(t) is given by the derivative

aJs
(@ = a—ﬁ o

of the leading eigenvalugS¥) of the evolution operatart.

By computing the leading eigenfunction of the Perron-Fribe operator
(16.10), one obtains the expectation value (16.20) of asgtablea(x). Thus
we can construct a specific, hand-tailored evolution opetéfor each and every

observable. The good news is that, by the time we arrive giteh20, the scaf- chapter 20

folding will be removed, botl's and their eigenfunctions will be gone, and only
the explicit and exact periodic orbit formulas for expeictatvalues of observables
will remain.

The next question is: How do we evaluate the eigenvalue§?fin exam-
ple 17.5, we saw a piecewise-linear example where thesatopgreduce to fi-
nite matriced., but for generic smooth flows, they are infinite-dimensidimedar
operators, and finding smart ways of computing their eigegrequires some
thought. In chapter 11 we undertook the first step, and regl#wead hocparti-
tioning (16.14) by the intrinsic, topologically invariapartitioning. In chapter 15
we applied this information to our first application of theokition operator for-
malism, evaluation of the topological entropy, and the ghorate of the number
of topologically distinct orbits. In chapters 18 and 19,stsmall victory will
be refashioned into a systematic method for computing eajees of evolution
operators in terms of periodic orbits.

Commentary

flows only the Jacobian matrices are multiplicative, notitigvidual eigenvalues.
Construction of the evolution operator for evaluation & ttyapunov spectra for
ad-dimensional flow requires more cleverness than warrarttéusastage in the

Remark 17.1 ‘Pressure’. The quantity(exp( - A")) is called a ‘partition function’
narrative: an extension of the evolution equations to a flothé tangent space.

by Ruelle [19.1]. Mathematicians decorate it with consididy more Greek and Gothic
letters than is done in this treatise. Ruelle [17.1] and Boy&.2] had given name
‘pressure’P(a) to s(B8) (wherea is the observable introduced in sect. 17.1.1), defined by
the ‘large system’ limit (17.11). As we shall also apply thedry to computating the
A= (n (X)) = 0;3(,6‘) - 5(0) (17.42) physical ga_ls pressure ex_ertec_i on the walls of a contf’:linebbyl_acing partit_:le , we refer
B I5=0 to s(B) as simply the leading eigenvalue of the evolution operatooduced in sect. 16.5.

All that remains is to determine the value of the Lyapunovosent
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The ‘convexity’ properties such &@3(a) < P(la]) will be pretty obvious consequences
of the definition (17.11). In the case thétis the Perron-Frobenius operator (16.10), the
eigenvalue$sy(B), s1(B), - - -} are called th&uelle-Pollicott resonancg$7.3, 17.4, 17.5],
with the leading ones(B) = s9(B) being the one of main physical interest. In order to aid
the reader in digesting the mathematics literature, we siyetb point out the notational
correspondences whenever appropriate. The rigorous fisrmi replete with lims, sups,
infs, Q-sets which are not really essential to understanding otttbery, and are avoided
in this book.

Remark 17.2 Microcanonical ensemble.  In statistical mechanics the space average
(17.7) performed over the Hamiltonian system constantggngurface invariant measure

p(x)dx = dqdps(H(q, p) — E) of volumew(E) = fqud ps(H(a, p) - E)

(a(t)) = fM dadps(H(, p) - E)a(g, p. Y (17.43)

1
w(E)
is called themicrocanonical ensemble average

Remark 17.3 Lyapunov exponents. The Multiplicative Ergodic Theorem of Os-
eledec [17.6] states that the limits (17.35-17.38) existalmost all pointsx, and all
tangent vectors.” There are at modd distinct values oft as we letn"range over the
tangent space. These are the Lyapunov exponents [1,7x8].

We are doubtful of the utility of Lyapunov exponents as meahpredicting any
observables of physical significance, but that is the mingurosition - in the literature
one encounters many provocative speculations, espetidhg context of foundations of
statistical mechanics (‘hydrodynamic’ modes) and theterise of a Lyapunov spectrum
in the thermodynamic limit of spatiotemporal chaotic syste

There are volumes of literature on numerical computatidgh@f.yapunov exponents,
see for example refs. [17.14, 17.15, 17.17]. For early nicakmethods to compute
Lyapunov vectors, see refs. [17.16, 17.17]. The drawbathkeoGram-Schmidt method is
that the vectors so constructed are orthogonal by fiat, velsehe stablgunstable eigen-
vectors of the Jacobian matrix are in general not orthogoHehce the Gram-Schmidt
vectors are not covariant, i.e., the linearized dynamiesdwmt transport them into the
eigenvectors of the Jacobian matrix computed further dowas). For computation of
covariant Lyapunov vectors, see refs. [17.18, 17.20].

Remark 17.4 State space discretization. Ref. [17.21] discusses numerical dis-
cretizatons of state space, and construction of Perrohefias operators as stochastic
matrices, or directed weighted graphs, as coarse-graine@isof the global dynamics,
with transport rates between state space partitions cadpuging this matrix of tran-
sition probabilities; a rigorous discussion of some of therfer features is included in
ref. [17.22].

average - 270ct2012 ChaosBook.org version14, Dec 31 2012

EXERCISES

368

Exercises

17.1. How unstable is the Henon attractor?

(€Y

(b)
(©

d

=

()

Evaluate numerically the Lyapunov expongbty
iterating some 100,000 times or so the HEnon map

[x’ ]_[ 1-ax+y
v | =1 bx

fora=14,b=0.3.

Would you describe the result as a 'strange attrac-
tor'? Why?

How robust is the Lyapunov exponent for the
Hénon attractor? Evaluate numerically the Lya-
punov exponent by iterating the Hénon map for
a =1.39945219b = 0.3. How much do you now
trust your result for part (a) of this exercise?
Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the ’strange’ attractor
vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to
estimate the length of typical transient before the

dynamics settles into this long-time attractor. 17 3.

Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a 'strange attrac-

tor'? Do you still have confidence in claims such
as the one made for the part (b) of this exercise?" "~

17.2. Expectation value of a vector observable.

Check and extend the expectation value formulas
(17.12) by evaluating the derivatives s(f3) up to 4-th
order for the space averagexp(s - A')) with a a vector

quantity:
@)

ds 1

B_ﬂi‘ﬁio = Jm;(@ = (a), (17.44)
(b)

s 1

iy, -~ T (AR - (A

refsAver - 1sep2007

= lim (A -t - ta))

7.4.

Note that the formalism is smart: it automatic
yields thevariance from the mean, rather th
simply the 2nd momer(ia2>.

(c) compute the third derivative a{g).

d

= <

compute the fourth derivative assuming tha
mean in (17.44) vanishe&;) = 0. The 4-th ord:
moment formula

(<o)
K(t) = 5 -3 (17.45
()
that you have derived is known ksrtosis it mea
sures a deviation from what the 4-th order mor
would be were the distribution a pure Gaus
(see (25.22) for a concrete example). If the
servable is a vector, the kurto$igt) is given by

I [ <2((a) () -
(Zi (AA)Y

Pinball escape rate from numerical simulatiori.
Estimate the escape rate fer: a = 6 3-disk pinba
by shooting 100,000 randomly initiated pinballs intc
3-disk system and plotting the logarithm of the nur
of trapped orbits as function of time. For comparist
numerical simulation of ref. [8.3] yieldg = .410....

Rossler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapuno
ponentl of the Rossler attractor (2.17).

(b) Plotyour own version of figure 17.6. Do not wc
if it looks different, as long as you understand
your plot looks the way it does. (Remember
nonuniform contractiofexpansion of figure 4.3

(c

-~

Give your best estimate af. The literature give
surprisingly inaccurate estimates - see wh
you can do better.

C

=

Estimate the contracting Lyapunov expongg
Even though it is much smaller thalg, a glanc
at the stability matrix (4.4) suggests that you
probably get it by integrating the infinitesimal
ume along a long-time trajectory, as in (4.42)
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