Chapter 10

Relativity for cyclists

Physicists like symmetry more than Nature
— Rich Kerswell

main’ is of no use here. If the symmetry is continuous, theadlyical
system should be reduced to a lower-dimensional, desyrizeétsystem, with
‘ignorable’ coordinates eliminated (but not forgotten).

We shall describe here two ways of reducing a continuous stmym In the
‘method of slices’ or ‘moving frames’ of sect. 10.4 we sli¢e tstate space in
such a way that an entire class of symmetry-equivalent pasntepresented by a
single point. In the Hilbert polynomial basis approach afts#0.5 we replace the
equivariant dynamics by the dynamics rewritten in termswaéiiant coordinates.
In either approach we retain the option of computing in thgioal coordinates,
and then, when done, projecting the solution onto the symynretiuced state
space.

Instead of writing yet another tome on group theory, in wiedlbivs we con-

tinue to serve group theoretic nuggets on need-to-knowsptsbugh a series of
pedestrian examples (but take a slightly higher, cycliatlim the text proper).

10.1 Continuous symmetries

R

HAT IF THE LAWS OF MOTION retain their form for a family of coordinate fra-
mes related bgontinuoussymmetries? The notion of ‘fundamental do-
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Figure 10.1: Atypical {x, X,, Z} trajectory of the com-
plex Lorenz flow, with a short trajectory of figure 10.4
whose initial point is close to the relative equilibriun
TW,; superimposed. See also figure 10.7. (R. Wilczal

equations (2.12),

X

—oX+ oy, y = (o-2x—-ay
(xy" + X'y)/2 - bz, (10.1)

where x,y are complex variables, z is real, while the parameters o, b are real and
p = p1+ipy, a= 1-ie are complex. Recast in real variables, this is a set of five coupled
ODEs

X1 = —0Xi+oyr

Xo = —0Xo+OYs

Vi = (p1-2Xi—p2Xe—Y1— €y

V2 = paXa+(o1-2)Xe+e%—Y2

z = —bz+xy1 + Xy2. (10.2)

In all numerical examples that follow, the parameters will be set to p1 = 28, p, =0, b =
8/3, o = 10, e = 1/10, unless explicitly stated otherwise. As we shall show in exam-
ple 10.7, this is a dynamical system with a continuous SQ2) (but no discrete) symmetry.

Figure 10.1 offers a visualization of its typical long-time dynamics. What is
wrong with this picture? It is a mess. As we shall show here, the attractor is built up by
a nice ‘stretch & fold” action, but that is totally hidden from the view by the continuous
symmetry induced drifts. In the rest of this chapter we shall investigate various ways
of ‘quotienting’ this SQ2) symmetry, and reducing the dynamics to a 4-dimensional
reduced state space. We shall not rest until we attain the simplicity of figure 10.12, and
the bliss of the 1-dimensional return map of figure 10.14.

We shall refer to the component of the dynamics along theirmomtis sym-

First of all, why worry about continuous symmetries? Heransexample of exercise 10.1
the dfect a continuous symmetry has on dynamics (for physics bagkd, see exercise 10.8
remark 10.2).

Example 10.1 Complex Lorenz flow: Consider a complex generalization of Lorenz

180

metry directions as a ‘drift.” In a presence of a continuoyssietry an orbit
explores the manifold swept by combined action of the dyearand the sym-
metry induced drifts. Further problems arise when we tryetednine whether
an orbit shadows another orbit (see the figure 13.1 for a lskeft@ close pass
to a periodic orbit), or develop symbolic dynamics (pastitithe state space, as
in chapter 11): here a 1-dimensional trajectory is replamed (N + 1)-dimens-
ional ‘sausage,” a dimension for each continuous symmenpging the total
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number of parameters specifying the continuous transfttomaand ‘1’ for the

time parametet). How are we to measure distances between such objects? In

this chapter we shall learn here how to develop more illutimgavisualizations

of such flow than figure 10.1, ‘quotient’ symmetries, arftbocomputationally

straightforward methods of reducing the dynamics to lodierensional, reduced
state spaces. The methods should also be applicable talm@nsional flows,

such as translationally invariant fluid flows bounded by pipe planes (see ex-
ample 10.4).

But first, a lightning review of the theory of Lie groups. Th@gp-theoretical
concepts of sect. 9.1 apply to compact continuous groupsetisamd will not be
repeated here. All the group theory that we shall need isintiple contained in
the Peter-Weyl theoreprand its corollaries: A compact Lie gro@is completely
reducible, its representations are fully reducible, evagnpact Lie group is a
closed subgroup of a unitary grouk{n) for somen, and every continuous, unitary,
irreducible representation of a compact Lie group is finiteehsional.

Example 10.2 Special orthogonal group  SO(2) (or SY) is a group of length-
preserving rotations in a plane. ‘Special’ refers to requirement that detg = 1, in con-
tradistinction to the orthogonal group O(n) which allows for length-preserving inversions
through the origin, with detg = —1. A group element can be parameterized by angle ¢,
with the group multiplication law g(¢)9(¢) = 9(¢’ + ¢), and its action on smooth periodic
functions u(¢ + 2r) = u(¢) generated by

d

N o 'T -
gi¢) =€, T—d¢.

(10.3)
Expand the exponential, apply it to a differentiable function u(¢), and you will recognize
a Taylor series. So g(¢’) shifts the coordinate by ¢, g(¢’) u(¢) = u(¢’ + ¢) .

Example 10.3 Translation group: Differential operator T in (10.3) is reminiscent
of the generator of spatial translations. The ‘constant velocity field’ v(x) = v = ¢ -
T’ acts on X; by replacing it by the velocity vector c;. It is easy to verify by Taylor
expanding a function u(x) that the time evolution is nothing but a coordinate translation
by (time x velocity):

e™Ty(x) = e CHu(x) = u(x—7c). (10.4)

As X is a point in the Euclidean RY space, the group is not compact. In general, a
sequence of time steps in time evolution always forms an abelian Lie group, albeit
never as trivial as this free ballistic motion.

If the group actions consist of N rotations which commute, for example act on
an N-dimensional cell with periodic boundary conditions, the group is an abelian group
that acts on a torus TN.

Example 10.4 Continuous symmetries of the plane Couette flow. (continued
from example 9.7) The plane Couette flow is a Navier-Stokes flow bounded by two
countermoving planes, in a cell periodic in streamwise and spanwise directions. Every
solution of Navier-Stokes equations belongs, by the SQ2) x SQ2) symmetry, to a 2-
torus T2 of equivalent solutions. Furthermore these tori are interrelated by a discrete D,
group of spanwise and streamwise flips of the flow cell. (continued in example 10.10)
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Figure 10.2: (a) The group orbitM,q of state / :
space poink(0), and the group orbiM,, reached | I !

by the trajectoryx(t) time t later. As any point on ‘:/ TQB]O,Q[O/I/{X(O

the manifold M, is physically equivalent to any
other, the state space is foliated into the unipn of
group orbits. (b) Symmetry reductiom — M
replaces each full state space group oMitby a /
single pointx'e M. rgh]0,0,0M—__
@ (b)
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Let G be a group, angM — M a group action on the state spaté The
[dxd] matricesg acting on vectors in thd-dimensional state spacef form a
linear representation of the gro@® If the action of every elemergtof a groupG
commutes with the flow

) =v@9.  gf'(x) =179y, (10.5)

G is a symmetry of the dynamics, and, as in (9.7), the dynansicsid to be
invariant undeG, or G-equivariant

In order to explore the implications of equivariance for siodutions of dyn-
amical equations, we start by examining the way a compadtaiep acts on state
spaceM. For anyx € M, thegroup orbit My of x is the set of all group actions
(see page 162 and figure 10.2)

Mx=1{gxlgeG}. (10.6)

As we saw in example 10.3, the time evolution itself is a nomgact 1-
parameter Lie group. Thus the time evolution and the contisusymmetries
can be considered on the same Lie group footing. For a gisa space point
x a symmetry group oN continuous transformations together with the evolution
in time sweeps out, in general, a smookh()-dimensional manifold of equiv-
alent solutions (if the solution has a nontrivial symmeting manifold may have
a dimension less thaN + 1). For solutionsp for which the group orbit ok, is
periodic in timeT ), the group orbit sweeps outampacinvariant manifoldMp.
The simplest example is thé = 0, no symmetry case, where the invariant mani-
fold M, is the 1-torus traced out by a periodic trajectgryif M is a smoottC*™
manifold, andG is compact and acts smoothly @, the reduced state space can
be realized as a ‘stratified manifold,” meaning that eaclugrarbit (a ‘stratum’)
is represented by a point in the reduced state space, sed@ect Generalizing
the description of a non—-wandering set of sect. 2.1.1, wetsatyfor flows with
continuous symmetries the non—wanderingetf dynamics (2.2) is the closure
of the set of compact invariant manifoldd,. Without symmetries, we visualize
the non—wandering set as a set of points; in presence of maons symmetry,
each such ‘point’ is a group orbit.
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CHAPTER 10. RELATIVITY FOR CYCLISTS 184
10.1.1 Lie groups for pedestrians

[...] which is an expression of consecration of ‘angular
momentum.’

— Mason A. Porter’s student

Definition: A Lie group is a topological grouis such that (i)G has the struc-
ture of a smooth dierential manifold, and (ii) the composition m&x G — G :
(g,h) - gh ™ is smooth, i.e.C* differentiable.

Do not be mystified by this definition. Mathematicians alswehto make
a living. Historically, the theory of compact Lie groups three will deploy here
emerged as a generalization of the theory of SO(2) rotatiansFourier analysis.
By a ‘smooth diferential manifold’ one means objects like the circle of @sghat
parameterize continuous rotations in a plane, example @0tBe manifold swept
by the three Euler angles that parameterize SO(3) rotations

An element of a compact Lie group continuously connectedéatity can be
written as

o) =T, ¢T=) gaTa a=12-N, (10.7)

whereg - T is aLie algebraelement, an@, are the parameters of the transforma-
tion. Repeated indices are summed throughout this chaptdrthe dot product
refers to a sum over Lie algebra generators. The Euclidiadyat of two vectors

x.y will be indicated byx-transpose timeg, i.e., X'y = Zf’ Xyi. Unitary trans-
formations expf - T) are generated by sequences of infinitesimal steps of form

906p) ~1+6¢-T, opeRN, |o¢| <1, (10.8)

whereT,, the generatorsof infinitesimal transformations, are a set of linearly
independentdx d] anti-hermitian matrices,T)" = —Ta, acting linearly on the
d-dimensional state spacel. In order to streamline the exposition, we postpone
discussion of combining continuous coordinate transfeiona with the discrete

ones to sect. 10.2.1. . exercise 10.2

For continuous groups the Lie algebra, i.e., the seNajeneratorsT, of
infinitesimal transformations, takes the role that|ieggroup elements play in the

theory of discrete groups. The flow field at the state spaaat panduced by the
action of the group is given by the setMftangent fields

ta(¥)i = (Ta)ijXj, (10.9)
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which span th@angent space Any representation of a compact Lie groGpis
fully reducible, and invariant tensors constructed by @mitons ofT ; are useful
for identifying irreducible representations. The simpkasch invariant is

TT.T= Z ci) 1), (10.10)
@

whereC(Za) is the quadratic Casimir for irreducible representatidrelada, and
1) is the identity on ther-irreducible subspace, 0 elsewhere. The dot product of
two tangent fields is thus a sum weighted by Casimirs,

07 1) = )" C¥x 6. (10.11)

Example 10.5 SO(2) irreducible representations: (continued from example 10.2) Ex-
pand a smooth periodic function u(¢ + 2r) = u(¢) as a Fourier series

u(¢) = ap + Z (amcosmg + by sinmg) . (10.12)
m=1
The matrix representation of the SQ2) action (10.3) on the mth Fourier coefficient pair
(am, bm) is
, cosmg’  sinmg’
9" = ( oy coamy ) : (10.13)

with the Lie group generator

m _ 0 m
T _ ( om ) (10.14)
The SQ2) group tangent (10.9) to state space point u(¢) on the mth invariant subspace
is
@ =m( o). (10.15)
—am

The L2 norm of t(u) is weighted by the SQ(2) quadratic Casimir (10.10), C(Z"') =n?,

o U Tutzr—) = e (). (1016)

and converges only for sufficiently smooth u(¢). What does that mean? We saw in
(10.4) that T generates translations, and by (10.14) the velocity of the mth Fourier
mode is m times higher than for the m = 1 component. If |u™| does not fall off faster
the 1/m, the action of SO2) is overwhelmed by the high Fourier modes.

continuous - 15june2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 10. RELATIVITY FOR CYCLISTS 186

Example 10.6 SO(2) rotations for complex Lorenz equations: Substituting the
Lie algebra generator

0 1 0 00
-1 0 0 00

T={0 0 0 10 (10.17)
0 0-100
0 00 00O

acting on a 5-dimensional space (10.2) into (10.7) yields a finite angle SQ(2) rotation:

cosg  sing 0 0O o0
—sing cosp 0 0 0
d(¢) = 0 0 cosp sing O (10.18)
0 0 -—sing cosyp O
0 0 0 0o 1

From (10.13) we see that the action of SO(2) on the complex Lorenz equations state
space decomposes into m = 0 G-invariant subspace (z-axis) and m = 1 subspace with
multiplicity 2.

The generator T is indeed anti-hermitian, T* = —T, and the group is compact,
its elements parametrized by ¢ mod 2r. Locally, at x € M, the infinitesimal action of the
group is given by the group tangent field t(X) = TX = (X2, —X1, Y2, —Y1, 0). In other words,
the flow induced by the group action is normal to the radial direction in the (X1, X2) and
(y1, ¥2) planes, while the z-axis is left invariant.

fast track:
W sect. 10.2, p. 189
10.1.2 Lie groups for cyclists

Henriette Roux: “Why do you devote to Lie groups onlyppendix A.2.3
a page, while only a book-length monograph can do it

justice?” A: “ChaosBook tries its utmost to minimize

the Gruppenpest jargon damage, which is a total tfirno

to our intended audience of working plumbers and elec-

tricians. The sfferings of our master plumber Fabian

Waleffe while reading chapter 9 - World in a mirror are

chicken feed in comparison to the continuous symmetry

reduction nightmare that we embark upon here.”

All the group theory that we shall need is in principle conéal in thePeter-Weyl Cﬁ&)
theorem and its corollaries: A compact Lie grodpis completely reducible, its
representations are fully reducible, every compact Lieigris a closed subgroup

of a unitary groupU(n) for somen, and every continuous, unitary, irreducible
representation of a compact Lie group is finite dimensional.

Here comes all of the theory of Lie groups in one quick serviau will live

even if you do not digest this section, or, to spell it out;pstiis section unless
you already know the theory of Lie algebras.
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The [dxd] matricesg acting on vectors in the state spas¢ form a linear
representation of the group. Tensors transform as

W% =gg g (10.19)

A multilinear functionh(q,T,. .., s) is an invariant function if (and only if) for any
transformationg € G and for any set of vectorg 1, S, .. . it is unchanged by the
coordinate transformation

wC ~a,.b

Pr-- s (10.20)

h(@a.gr....99 =h@.T.....s) = hab..

Examples of such invariant functions are the lengj#)? = 5! x'x; and the volume
V(% Y,2) = €k xy;z. Substitute the infinitesimal form of group action (10.8pin
(10.19), keep the linear terms. In the index-notation l@mgh the Lie algebra
generator acts on each index separately,

(Ta)ihy, o+ (Ta)::lh”,.k‘“ —(Ta)ihy K +...=0. (10.21)

Hence the tensdnij___ -k is invariant ifTah = 0, i.e., theN generatord , ‘annihi-
late’ it.

As one does not want the symmetry rules to change at everytheegenera-
torsTa,a=1,2,..., N, are themselves invariant tensors:

(Ta)| = 979 Gaa (Ta) ), (10.22)

wheregap = [e“¢'c]ab is the adjoint Nx N] matrix representation af € G. The
[dxd] matricesT 5 are in general non-commuting, and from (10.21) it followatth
they closeN-elementLie algebra

[T39 Tb] =TaTp—TpTa= _CabcTc 5 a, b, c=12.,N,
where the fully antisymmetric adjoint representation higem generators
[Cc] ab = Cabc = —Cbac = —Cacb

are thestructure constantef the Lie algebra.

As we will not use non-abelian Lie groups in this chapter, watahe deriva-
tion of the Jacobi relation betwe€hy's, and you can safely ignore all this talk of
tensors and Lie algebra commutators as far as the pedespjdications at hand
are concerned.
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10.1.3 Equivariance under infinitesimal transformations

A flow X = v(x) is G-equivariant (10.5), if symmetry transformations commute

with time evolutions exercise 10.4
exercise 10.5

v(X) =gv(gX), forallge G. (10.23)

For an infinitesimal transformation (10.8) tBeequivariance condition becomes
dv
V(X) = (1—¢-T)v(x+¢-Tx)+---:v(x)—¢-Tv(x)+&¢<Tx+--- .

Thev(x) cancel, and, are arbitrary. Denote thgroup flow tangent fiel@t x by
ta(X)i = (Ta)ijXj. Thus the infinitesimal, Lie algeb@-equivariance condition is

ta(V) - A(¥) ta(x) = 0, (10.24)

where A = dv/dx is the stability matrix (4.3). If case you find such learned
remarks helpful: the left-hand side of (10.24) is Lthe derivativeof the dynamical
flow field v along the direction of the infinitesimal group-rotation uced flow
ta(X) = TaX,

(10.25)

exercise 10.6
exercise 10.7
exercise 10.12

L= (Ta - %(Tax))v(y)

y=x

The equivariance condition (10.24) states that the two fl@ne induced by the
dynamical vector field/, and the other by the group tangent fieldommute if
their Lie derivatives (or the ‘Lie brackets ' or ‘Poisson tkats’) vanish.

Example 10.7 Equivariance of complex Lorenz flow: That complex Lorenz flow
(10.2) is equivariant under SQ2) rotations (10.18) can be checked by substituting the
Lie algebra generator (10.17) and the stability matrix (4.3) for complex Lorenz flow

(10.2),
- 0 o 0 0
0 -0 0 o 0
A=| p1—-2 —p2 -1 -e -x1 |, (1026)
p2 p1-z € -1 -x
Y1 Y2 X1 X -b

into the equivariance condition (10.24). Considering that t(v) depends on the full set of
equations (10.2), and A(X) is only its linearization, this is not an entirely trivial statement.
For the parameter values (10.2) the flow is strongly volume contracting (4.42),

5
avi = ) Ai(x 1) = —b-2(r+1)=-24-2/3, (10.27)
i=1

at a coordinate-, p- and e-independent constant rate.

Checking equivariance as a Lie algebra condition (10.2éager than checking
it for global, finite angle rotations (10.23).
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10.2 Symmetries of solutions

Let v(x) be the dynamical flow, andi” the trajectory or ‘timer forward map’ of
an initial pointxo,

d T
d_i( =Vv(x), X(7) = f7(X0) = %o + j(; dr’ v(x(7")). (10.28)

As discussed in sect. 9.2, solutior@) of an equivariant system can satisfy all
of the system’s symmetries, a subgroup of them, or have nongtry at all. For

a given solutionx(z), the subgroup that contains all symmetries thatxfithat
satisfy gx = x) is called the isotropy (or stabilizer) subgroup xf A generic
ergodic trajectory(r) has no symmetry beyond the identity, so its isotropy group
is {e}, but recurrent solutions often do. At the other extreme islibgium, whose
isotropy group is the full symmetry group.

The simplest solutions are tleguilibria or steadysolutions (2.8).

Definition: Equilibrium  xgq = Mgq is a fixed, time-invariant solution,

0,

V(XEQ)
X(XeQ?) = Xeq+ fo de' V(X(®') = ¥eo. (10.29)

An equilibriumwith full symmetry,

0 XeQ = XEQ forallge G,

lies, by definition, in FiXG) subspace subspace, for example xhaxis in fig-

ure 10.3 (a). The multiplicity of such solution is one. An gipuium xgq with
symmetryGgq smaller than the full grougs belongs to a group orb{s/Geq.  exercise 10.13
If G is finite there areéG|/|Gggl equilibria in the group orbit, and & is contin- exercise 10.14
uous then the group orbit ofis a continuous family of equilibria of dimension

dimG - dimGgq. For example, if the angular velocityin figure 10.3 (b) equals

zero, the group orbit consists of a circle of (dynamicallgtis) equivalent equi-

libria.

Definition: Relative equilibrium  solutionxrw(z) € Mtw: the dynamical flow
field points along the group tangent field, with constant tdag velocity c, and

the trajectory stays on the group orbit, see figure 10.3 (a): exercise 10.17
exercise 10.19
exercise 10.20

v(x) = c-t(x), X € Mrw exercise 10.21
—rc ise 10.22
x@) = g(-70)x(0) = e7°TX(0). 10.30) exeroise
( ) g( ) ( ) ( ) ( ) exercise 10.26
exercise 10.27
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Figure 10.3: (a) Arelative equilibrium orbitstarts out
at some poink(0), with the dynamical flow fiele(x) =
¢ - t(x) pointing along the group tangent space. For the X3
SO(2) symmetry depicted here, the flow traces out the
group orbit ofx(0) in timeT = 2x/c. (b) Anequilib-
rium lives either in the fixed Fi¥G) subspacex; axis
in this sketch), or on a group orbit as the one depictg
here, but with zero angular velocity In that case the
circle (in generalN-torus) depicts a continuous family
of fixed equilibria, related only by the group action.

v=cgt

Figure 10.4: {X4, X, z} plot of the complex Lorenz
flow with initial point close toT W;. In figure 10.1 this
relative equilibrium is superimposed over the stranc
attractor. (R. Wilczak)

A traveling wave remark 10.3

X(1) = g(-cr) Xrw = Xrw—c7, ceR? (10.31)

is a special type of arelative equilibrium of equivariantletion equations, where
the action is given by translation (10.4j(y) x(0) = x(0) + y. A rotating waveis

another special case of relative equilibrium, with thearcis given by angular
rotation. By equivariance, all points on the group orbit egeivalent, the mag-

nitude of the velocityc is same everywhere along the orbit, so a ‘traveling wave’

moves at a constant speed. ForMin- 1 trajectory traces out a line within the

group orhit. As thec, components are generically not in rational ratios, the tra-

jectory explores th&l-dimensional group orbit (10.6) quasi-periodically. lhet
words, the group orbigi(r) x(0) coincides with the dynamical orbi(r) € Mrw
and is thus flow invariant.

Example 10.8 A relative equilibrium: For complex Lorenz equations and our
canonical parameter values of (10.2) a computation yields the relative equilibrium T W

with a representative group orbit point

(X1, X2, ¥1, 0, 21w = (8.484920.07713568.48562 0, 26.9999), (10.32)

and angular velocity crwa = 1/11. This corresponds to period Trwi = 2rx/C ~ 69, so
a simulation has to be run up to time of order of at least 70 for the strange attractor in

figure 10.1 to start filling in.

Figure 10.4 shows the complex Lorenz flow with the initial point (10.32) on the
relative equilibrium T\, It starts out by drifting in a circle around the z-axis, but as the

numerical errors accumulate, the trajectory spirals out.
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Figure 10.5: A periodic orbit starts out at(0) with the
dynamicalv and group tangeritflows pointing in dif-
ferent directions, and returns after tifigto the initial X
point x(0) = x(Tp). The group orbit of the temporal
orbit of x(0) sweeps out a (@N)-dimensional torus, a
continuous family of equivalent periodic orbits, two of,
which are sketched here. For SO(2) this is topolog
cally a 2-torus.

Calculation of the relative equilibrium stability reveals that it is spiral-out un-
stable, with the very short period Tspiras = 0.6163 This is the typical time scale for
fast oscillations visible in figure 10.1, with some 100 turns for one circumambulation
of the TW4 orbit. In that time an initial deviation from Xrwa is multiplied by the factor
Aradial ® 500. It would be sweet if we could eliminate the drift time scale ~ 70 and focus
just on the fast time scale of ~ 0.6. That we will attain by reformulating the dynamics in

a reduced state space.

Definition: Periodic orbit. Let x be a periodic point on the periodic orlptof
periodT,

T =x,  xeMp

By equivarianceg x is another periodic point, with the orbits &fandgx either
identical or disjoint.

If gxlands on the same orbig is an element of periodic orbit's symmetry
group Gp. If the symmetry group is the full grou@, we are back to (10.30),
i.e., the periodic orbit is the group orbit traced out by atige equilibrium. The
other option is that the isotropy group is discrete, thet@®gmentx, gx} is pre-
periodic (or eventually periodick(0) = gpX(Tp), whereT is a fraction of the
full period, T, = T/m, and thus

x(0)
x(0)

9pX(Tp), XeMp, 9 €Gp
gpx(mTp) = X(T) = X(0). (10.33)

If the periodic solutions are disjoint, as in figure 10.5,itmeultiplicity (if G
is finite, see sect. 9.1), or the dimension of the manifoldEwader the group
action (ifG is continuous) can be determined by applicationg efG. They form
a family of conjugate solutions (9.19),

Mgp=gMpgt. (10.34)
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Figure 10.6: A relative periodic orbit starts out af0)
with the dynamical and group tangeritflows point-
ing in different directions, and returns to the group or-
bit of x(0) after timeT, atx(T) = gpx(0), a rotation of
the initial point byg,. For flows with continuous sym- B
metry a generic relative periodic orbit (not pre-periodic;,»"'
to a periodic orbit) fills out ergodically what is topo-
logically a torus, as in figure 10.5; if you are able to.
draw such a thing, kindly send us the figure. As il-
lustrated by figure 10.8 (a) this might be a project for
Lucas Films. rgb

Definition: Relative periodic orbit pis an orbit M, in state spacévl which
exactly recurs

Xp(0) = Gpxp(Tp) , Xp(7) € Mp, (10.35)

at a fixedrelative period T,, but shifted by a fixed group actiagp which brings
the endpoinix,(Tp) back into the initial poinix,(0), see figure 10.6. The group
actiongp parameterg = (¢1, ¢2, - - - ¢n) are referred to as “phases,” or “shifts.”
In contrast to the pre-periodic (10.33), the phase herereagonal, and the tra-
jectory sweeps out ergodically the group orbit without estesing into a periodic
orbit. For dynamical systems with only continuous (no disey symmetries, the
parameterst, ¢1, - - -, ¢} are real numbers, ratiog'¢; are almost never rational,
likelihood of finding a periodic orbit for such system is zeamd such relative
periodic orbits are almost never eventually periodic.

Relative periodic orbits are to periodic solutions whaatigk equilibria (trav-
eling waves) are to equilibria (steady solutions). Equiiitsatisfy f7(x) - x = 0
and relative equilibria satisfy*(x) — g(r) x = 0 for anyz. In a co-moving frame,
i.e., frame moving along the group orbit with velocitfx) = c - t(x), the relative
equilibrium appears as an equilibrium. Similarly, a relatperiodic orbit is peri-
odic in its mean velocitg, = ¢,/ T, co-moving frame (see figure 10.8), but in the
stationary frame its trajectory is quasiperiodic. A co-ingvframe is helpful in
visualizing a single ‘relative’ orbit, but useless for viegy collections of orbits,
as each one drifts with its own angular velocity. Visualimatof all relative peri-
odic orbits as periodic orbits we attain only by global synmyeeductions, to be
undertaken in sect. 10.4.

Example 10.9 Complex Lorenz flow with relative periodic orbit:

rgb]0,0,(Tp)
".(gp

Figure 10.7 is

a group portrait of the complex Lorenz equations state space dynamics, with several

important players posing against a generic orbit in the background.

The unstable manifold of relative equilibrium TW is characterized by a 2-
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Figure 10.7: (Figure 10.1 continued) A group portrait \\
of the complex Lorenz equations state space dynami \\
Plotted are relative equilibriur W (red), its unsta- S
ble manifold (brown), equilibriuniEQy, one trajectory
from the group orbit of its unstable manifold (green), :
repetitions of relative periodic orb@l (magenta) and
a generic orbit (blue). (E. Siminos)

Figure 10.8:

A relative periodic orbit of

Kuramoto-Sivashinsky flow projected on (a) the
stationary state space coordinate framevs, vs}, V3
traced for four periodsT,; (b) the co-moving
{V1,%,V3} coordinate frame, moving with the
mean angular velocitg, = ¢,/T,. (from

ref. [10.1])

continuous - 15june2012

dimensional complex eigenvector pair, so its group orbit is a 3-dimensional. Only one
representative trajectory on it is plotted in the figure. The unstable manifold of equi-
librium EQy has one expanding eigenvalue, but its group orbit is a cone originating at
EQu. Only one representative trajectory on this cone is shown in the figure. It lands
close to TW, and then spirals out along its unstable manifold. 3 repetitions of a short
relative periodic orbit 01 are drawn. The trajectory fills out ergodically a 2-dimensional

ChaosBook.org version14, Dec 31 2012

(a) (b)

orbit Mo1. The assignment of its symbolic dynamics label will be possible only after the

symmetry reduction, see figure 10.14 and figure 11.9.

10.2.1 Discrete and continuous symmetries together

We expect to see relative periodic orbits because a trajethat starts on and
returns to a given torus of a symmetry equivalent solutisngiiikely to intersect
it at the initial point, unless forced to do so by a discretensyetry. This we
will make explicit in sect. 10.4, where relative periodidits will be viewed as
periodic orbits of the reduced dynamics.

If, in addition to a continuous symmetry, one has a discrgtensetry which is
not its subgroup, one does expect equilibria and perioditorHowever, a relati-
ve periodic orbit can be pre-periodic if it is equivariantlena discrete symmetry,
asin (10.33): g™ = 1 is of finite ordem, then the corresponding orbit is periodic
with periodmT,. If g is not of a finite order, a relative periodic orbit is periodic
only after a shift bygp, as in (10.35). Morally, as it will be shown in chapter 21,
such orbit is the true ‘prime’ orbit, i.e., the shortest segirthat under action of
G tiles the entire invariant submanifolt,.

Definition: Relative orbit Mgy in state spaceM is the time evolvedyroup
orbit My of a state space poim the set of all points that can be reached frem
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by all symmetry group actions and evolution of each in time.
Myp ={gxt:teR,ge G} . (10.36)

In presence of symmetry, an equilibrium is the set of all Eopa related by
symmetries, an relative periodic orbit is the hyper-swefaaced by a trajectory in
time T and all group actions, etc..

Example 10.10 Relative orbits in the plane Couette flow. (continued from
example 10.4) Translational symmetry allows for relative equilibria (traveling waves),
characterized by a fixed profile Eulerian velocity urw(X) moving with constant velocity
c, ie.

u(x, 7) = urw(x - c1). (10.37)

As the plane Couette flow is bounded by two counter-moving planes, it is easy to see
where the relative equilibrium (traveling wave) solutions come from. A relative equi-
librium solution hugs close to one of the walls and drifts with it with constant velocity,
slower than the wall, while maintaining its shape. A relative periodic solution is a solu-
tion that recurs at time T, with exactly the same disposition of the Eulerian velocity fields
over the entire cell, but shifted by a 2-dimensional (streamwise,spanwise) translation
gp. By discrete symmetries these solutions come in counter-traveling pairs uqg(X — Ct),
—Ug(—x + cr): for example, for each one drifting along with the upper wall, there is a
counter-moving one drifting along with the lower wall. Discrete symmetries also imply
existence of strictly stationary solutions, or ‘standing waves.” For example, a solution
with velocity fields antisymmetric under reflection through the midplane has equal flow
velocities in opposite directions, and is thus an equilibrium stationary in time.

10.3  Stability

chapter 21
RN
A spatial derivative of the equivariance condition (10.8lgs the matrix equiv-
ariance condition satisfied by the stability matrix (staltele both for the finite

group actions, and for the infinitesimal, Lie algebra getoesy: exercise 10.28
exercise 10.29

GANG L= AGY),  [TaAl = 3—’:ta(x). (10.38)

For a flow within the fixed FiXG) subspacet(x) vanishes, and the symmetry
imposes strong conditions on the perturbations out of thé@)i subspace. As
in this subspace stability matrik commutes with the Lie algebra generatdrs
the spectrum of its eigenvalues and eigenvectors is decsedpiato irreducible
representations of the symmetry group. This we have alrebdgrved for the
EQ of the Lorenz flow in example 9.14.

A infinitesimal symmetry group transformation maps theiahiand the end
point of a finite trajectory into a nearby, slightly rotategu@/alent points, so we
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expect the perturbations along to group orbit to be margimigh unit eigenvalues.
The argument is akin to (4.7), the proof of marginality oftpdvations along a pe-
riodic orbit. Consider two nearby initial points separalgdanN-dimensional in-
finitesimal group transformation (10.8)xp = g(6¢p)Xo — Xo = ¢ T Xg = 6 - 1(Xp).
By the commutativity of the group with the flog(s¢) f*(xo) = f7(9(6¢)X0). Ex-
panding both sides, keeping the leading ternmifinand using the definition of the
Jacobian matrix (4.6), we observe tl#&fxo) transports thé-dimensional group
tangent space a0) to the rotated tangent spacexét) at timer:

ta(r) = I'(x0)ta(0).  ta(r) = TaX(7). (10.39)

For a relative periodic orbigyx(Tp) = x(0), at any point along cycle the group
tangent vectot,(7) is an eigenvector of the Jacobian matrix with an eigenvafue
unit magnitude,

Jpta(X¥) = ta(x), Jp(x) = gpd™(X), Xe M. (10.40)

For a relative equilibrium flow and group tangent vectorscimle,v = ¢ - t(X).
Dotting by the velocityc (i.e., summing ovecaty) the equivariance condition
(10.24),ta(v) — A(X) ta(x) = 0, we get

(c-T-Av=0. (10.41)

In other words, in the co-rotating frame the eigenvaluesesmonding to group
tangent are marginal, and the velooitis the corresponding right eigenvector.

Two successive points along the cycle separatedxpy= d¢ - t(7) have the
same separation after a completed peda(ll,) = gpdxo, hence eigenvalue of
magnitude 1. In presence of &hdimensional Lie symmetry group eigenval-
ues equal unity.

10.4 Reduced state space

Maybe when I'm done with grad school I'll be able to fig-
ureitall out...
— Rebecca Wilczak, undergraduate

Given Lie groupG acting smoothly on £ manifold M, we can think of
each group orbit as an equivalence cl&gnmetry reductiois the identification
of a unique point on a group orbit as the representative afgtsvalence class.
We call the set of all such group orbit representativesréuriced state space
M/G. In the literature this space is often rediscovered, and tf@as many names
- itis alternatively called ‘desymmetrized state spacgmmetry-reduced space,
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VO, o e -
x(t)
Figure 10.10: Slice M is a hyperplane (10.43) pass-
ing through the slice-fixing point’,”and normal to the
group tangent’ at X. It intersects all group orbits (in-
dicated by dotted lines here) in an open neighborhood 22>

of X'. The full state space trajectorfr) and the re-

duced state space trajectoxfr) belong to the same
Figure 10.9: A point xon the full state space trajectory \ ?;:i’;'g Czrg)né‘;fxi(r?e?jni: ?{g ig;“vmem up to a group ro-
X(t) is equivalent up to a group rotatigyt) to the point 90 e

X on the curvex(t) if the two points belong to the same
group orbitMy, see (10.6).

Definition: Slice. LetG act regularly on @-dimensional manifold\, i.e., with
all group orbitsN-dimensional. Aslicethrough pointx”is a [d—N)-dimensional

‘orbit space’ (because every group orbit in the originalcgpis mapped to a sin- submanifold M such that all group orbits in an open neighborhood of theeslic
gle point in the orbit space), or ‘quotient space’ (becatsesymmetry has been defining pointX” intersectM transversally and only once (see figure 10.10).
‘divided out’), obtained by mapping equivariant dynamigsrivariant dynamics
(image’) by methods such as ‘moving frames, ‘cross setjo'slices,’ ‘freez- remark 10.1 The simplestslice conditiondefines a linear slice as @< N)-dimensional
ing, ‘Hilbert bases, ‘quotienting,’ ‘lowering of the dege,’ ‘lowering the order, hyperplaneM normal to theN group rotation tangentg at pointx:
or ‘desymmetrization.’
o onTy ’ o o’

Symmetry reduction replaces a dynamical systar {) with a symmetry by F-X)6=0.  G=tE)=TaX. (10.43)
a ‘desymmetrized’ systenM, f), a system where each group orbit is replaced
by a point, and the action of the group is trivigk = Xfor all X € M, g € G. In other words, ‘slice’ is a Poincaré section (3.6) for graarbits. Each ‘big
The reduced state spagé is sometimes called the ‘quotient spagd)/G because circle’ —group orbit tangent ttf— intersects the hyperplane exactly twice, with
the symmetry has been ‘divided out.” For a discrete symm#ig/reduced state the two solutions separated iy As for a Poincaré section (3.4), we add an
spaceM/G is given by the fundamental domain of sect. 9.4. In presefice o orientation condition, and select the intersection with¢lockwise rotation angle
continuous symmetry, the reduction Ad/G amounts to a change of coordinates into the slice.

where the ‘ignorable angle$ys, - - -, ¢n} that parameteriz&l group translations
can be separated out.
Definition: Moving frame. Assume that for a givex € M and a given slice

We start our discussion of symmetry reduction by considettie finite-rotations M there exists a unique group element= g(x) that rotatesx into the slice,
method of moving frameand its diferential formulation, thenethod of slices gx=Re M. The map that associates to a state space pairitie group action
9(x) is called amoving frame exercise 6.1
exercise 10.30
10.4.1 Go with the flow: method of moving frames As (%)Tt, = 0 by the antisymmetry of ,, the slice condition (10.43) fixes

for a givenx by

The idea: We can, at least locally, map each point along alyiso x(7) to the
unique representative(r) of the associated group orbit equivalence class, by a 0= ;Jt; = ng(¢)Tt;, (10.44)
suitable rotation

whereg' denotes the transpose gf The method of moving frames can be
X(7) = 9(7) X(z) . (10.42) interpreted as a change of variables

Equivariance implies the two points are equivalent. In thethod of slices’ the (1) = g*l(T) x(7), (10.45)
reduced state space representakiva & group orbit equivalence class is picked
by slicing across the group orbits by a fixed hypersurface si&k by describing

how the method works for a finite segment of the full state spegiectory. that is passing to a frame of reference in which condition44pis identically

satisfied, see example 10.11. Therefore the name ‘movimgeffaMethod of
moving frames should not be confused with the co-moving &snsuch as the
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one illustrated in figure 10.8. Each relative periodic oHais its own co-moving
frame. In the method of moving frames (or the method of s)iae® fixes a
stationary slice, and rotates all solutions back into tfeesl

The method of moving frames is a post-processing methoptctaaies are
computed in the full state space, then rotated into the glifgenever desired, with
the slice condition easily implemented. The slice grouéat’ is a given vec-
tor, andg(¢) x is another vector, linear irnand a function of group parametefs
Rotation parametens are determined numerically, by a Newton method, through
the slice condition (10.44).

Figure 10.11 illustrates the method of moving frames for @¢23 slice nor-
mal to thex, axis. Looks innocent, except there is nothing to preverajadtory
from going through Xy, X2) = (0, 0), and whap is one to use then? We can always
chose a finite time step that hops over this singularity, bdhé continuous time
formulation we will not be so lucky.

How does one pick a slice point? A generic pointx” not in an invariant
subspace (on the complex Lorenz equatiarasxis, for example) should fice
to fix a slice. The rules of thumb are much like the ones for ipigkPoincaré
sections, sect. 3.1.2. The intuitive idea is perhaps besialized in the context
of fluid flows. Suppose the flow exhibits an unstable coheremttre that —
approximately— recurs often atftérent spatial dispositions. One can fit a ‘tem-
plate’ to one recurrence of such structure, and describer odturrences as its
translations. A well chosen slice point belongs to such dyinally important
equivalence class (i.e., group orbit). A slice is locallgrn®rphic toM/G, in an
open neighborhood of " As is the case for the dynamical Poincaré sections, in
general a single slice does notisce to reduceM — M/G globally.

The Euclidian product of two vectossy s indicated in (10.43) by-transpose
timesy, i.e.,x"y = Zid Xyi. More general bilinear norm, y) can be used, as long
as they aré&-invariant, i.e., constant on each irreducible subspacesample is
the quadratic Casimir (10.11).

Example 10.11 An SO(2) moving frame: (continued from example 10.2) The
SQ2) action
(X4, %2) = (X1 €OSH + X2 Sinf, —X1 SING + X, cOSH) (10.46)

is regular on R?\{0}. Thus we can define a slice as a ‘hyperplane’ (here a mere line),
through X' = (0, 1), with group tangentt’ = (1,0), and ensure uniqueness by clockwise
rotation into positive x, axis. Hence the reduced state space is the half-line x; = 0, X, =
X > 0. The slice condition then simplifies to X, = 0 and yields the explicit formula for
the moving frame parameter

0(x1, X2) = tan(x1/xa) , (10.47)

i.e., the angle which rotates the point (X1, X2) back to the slice, taking care that tar?t
distinguishes (x1, X2) plane quadrants correctly. Substituting (10.47) back to (10.46)

continuous - 15june2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 10. RELATIVITY FOR CYCLISTS 199

Figure 10.11: Method of moving frames for a flow
SO(2)-equivariant under (10.18) with slice through
X = (0,1,0,0,0), group tangent’ = (1,0,0,0,0).
The clockwise orientation condition restricts the slice
to half-hyperplane;”= 0, %, > 0. A trajectory started
on the slice ak(0), evolves to a state space point with
a non-zerox (t;). Compute the polar angtg of x(t;)
in the (x1, x2) plane. Rotatex(t;) clockwise by¢; to
K(t1) = 9(—¢1) X(t1), so that the equivalent point on the

Xt
)

circle lies on the slicexi{t;) = 0. Thus after every  x(t,) e

e ) - 0,y y(t2)
finite time step followed by a rotation the trajectory = _
restarts from theq{t,) = O reduced state space. y(t) y(0) XFY 2

X1

and using cos(tan' a) = (1 + a?)~V/2, sin(tarr! a) = a(1 + a?)~Y/2 confirms %, = 0. It also
yields an explicit expression for the transformation to variables on the slice,

o= R+ R (10.48)

This was to be expected as SQ(2) preserves lengths, X2 + X3 = £ + %5. If dynamics is
in plane and SQ(2) equivariant, the solutions can only be circles of radius (X2 + x3)*/2,
so this is the “rectification” of the harmonic oscillator by a change to polar coordinates,
example 6.1. Still, it illustrates the sense in which the method of moving frames yields
group invariants. (E. Siminos)

The slice condition (10.43) fixds directions; the remaining vectof&y. . . . Xg)
span the slice hyperplane. They ate N fundamental invariantsin the sense
that any other invariant can be expressed in terms of thechtheay are function-
ally independent. Thus they serve to distinguish orbithéreighborhood of the
slice-fixing pointX, i.e., two points lie on the same group orbit if and only if all
the fundamental invariants agree.

10.4.2 Dynamics within a slice

I made a wrong mistake.
—Yogi Berra

As an alternative to the post-processing approach of theefdieg sections, we
can proceed as follows: Split up the integration into a segeeof finite time
steps, each followed by a rotation of the final point (and thbe coordinate
frame with it; the ‘moving frame’) such that the next segn'semtitial point is in

the slicefixed by a point<, see figure 10.11. It is tempting to see what happens
if the steps are taken infinitesimal. As we shall see, we dadetv restricted to
the slice, but at a price.

Using decomposition (10.42) one can always write the futesspace tra-
jectory asx(r) = g(r) X(r), where the §— N)-dimensional reduced state space
trajectoryX{7) is to be fixed by some condition, ag(r) is then the corresponding
curve on theN-dimensional group manifold of the group action that ratateto
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x at timer. The time derivative is ther = v(gX) = gX+ gV, with the reduced state
space velocity field given by = d&/dt. Rewriting this as/= g~'v(gR) — g~*g X
and using the equivariance condition (10.23) leads to

U=v-glgx.

The Lie group element (10.7) and its time derivative desctite group tangent
flow

d .
1o 19 T
glg=g dted) ¢-T.

This is the group tangent velocity 'g % = ¢ - t(X) evaluated at the point, i.e.,
with g = 1. The flowv = dX/dt in the d—N) directions transverse to the group
flow is now obtained by subtracting the flow along the groumésmt direction,

UR) = V(R) - $(R) - 1), (10.49)

for any factorization (10.42) of the flow of form(r) = g(r) X(r). To integrate
these equations we first have to fix a particular flow factéioraby imposing
conditions onx(r), and then integrate phasg&) on a given reduced state space

trajectoryX(7). exercise 10.31
exercise 10.32

Here we demand that the reduced state space is confined tegplane slice.
Substituting (10.49) into the time derivative of the fixeidelcondition (10.44),

YR = V() Tt — da-t(R)TH, =0,

yields the equation for the group phases fipfor the slice fixed byx”, together
with the reduced state spagé flow ¥(X):

AR = R - ¢(R)-t(R), Ke M (10.50)
Lo VR
$a(R) = @ (10.51)

Each group orbitMy = {g x|g € G} is an equivalence class; method of slices
represents the class by its single slice intersection poiBy constructionv™t’ =

0, and the motion stays in thé<{N)-dimensional slice. We have thus replaced the
original dynamical systeroM, f} by a reduced systemM, ).

In the pattern recognition and ‘template fitting’ settind®.61) is called the
‘reconstruction equation.’ Integrated together, the cedustate space trajectorgxercise 10.33
(10.50) andy(7) = exp{¢(r) - T}, the integrated phase (10.51), reconstruct the fexgrcise 10.35
state space trajector(r) = g(r) X(r) from the reduced state space trajectr(y),”
so no information about the flow is lost in the process of syinymeduction.
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Figure 10.12: A slice fixed by taking as a tem-
plate a point on the complex Lorenz equations
relative equilibrium group orbitx "= Xrw:. ()
The strange attractor of figure 10.1 in the reduced
state space of (10.50)x1, X, z} projection. (b)
{X2, Y2, Z} projection. The reduced state space com-
plex Lorenz flow strange attractor of figure 10.1
now exhibits a discontinuity due to the vanishing
denominator in (10.52).

@

Example 10.12 A slice for complex Lorenz flow. (continuation of example 10.6) Here
we can use the fact that

RV =XT TR = XX + XX+ YiYj + Y2Ys

is the dot-product restricted to the m = 1 4-dimensional representation of SQ2). A
generic X' can be brought to form X = (0, 1,y,.Y,,2) by a rotation and rescaling. Then
TR =(1.0,y5,-y;.0), and

v(X) -t Vi + VaY) — Vay;
= - — . 10.52
Y-t X+ Y1y, + Y2y, ( )

A long time trajectory of (10.50) with X on the relative equilibrium TW, group orbit
is shown in figure 10.12. As initial condition we chose the initial point (10.32) on the
unstable manifold of T, rotated back to the slice by angle ¢ as prescribed by (10.44).
We show the part of the trajectory fort € [70,100] The relative equilibrium T W, now an
equilibrium of the reduced state space dynamics, organizes the flow into a Rossler type
attractor (see figure 2.6). The denominator in (10.51) vanishes and the phase velocity
(})(f() diverges whenever the direction of group action on the reduced state space point
is perpendicular to the direction of group action on the slice point X'. While the reduced
state space flow appears continuous in the {Xy, X2, z} projection, figure 10.12 (a), this
singularity manifests itself as a discontinuity in the {Xo, Yo, Z} projection, figure 10.12 (b).
The reduced state space complex Lorenz flow strange attractor of figure 10.1 now
exhibits a discontinuity whenever the trajectory crosses this 3-dimensional subspace.

Slice flow equations (10.50) and (10.51) are pretty, butethigra trouble in
the paradise. The slice flow encounters singularities isetshof state space, with
phase velocitys divergent whenever the denominator in (10.52) changes sign
{X2, Y2, Z} projection of figure 10.12 (b). Hence a single slice does mgjeineral
sufice to coverM/G globally.

10.5 Method of images: Hilbert bases

(E. Siminos and P. Cvitanovic)

Erudite reader might wonder: why all this slicing and dicimden the problem
of symmetry reduction had been solved by Hilbert and Weyklpea century
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Figure 10.13: Invariant ‘image’ of complex Lorenz
flow, figure 10.1, projected onto the invariant polyno-
mials basis (10.53). Note the unstable manifold cont g
nection from the equilibriunEQ, at the origin to the
strange attractor controlled by the rotation around relaf
tive equilibriumEQ (the reduced state space image off
TW;); as in the Lorenz flow figure 3.4, natural measure
close toEQ, is vanishingly small but non-zero.
Uz

ago? Indeed, the most common approach to symmetry redustibp means
of a Hilbert invariant polynomial bases (9.27), motivatatlitively by existence
of such nonlinear invariants as the rotationally-invariemgthr? = X3 + X3 +

cee xf, or, in Hamiltonian dynamics, the energy function. One ésaéh the
equivariant state space coordinatgs xo, - - -, X4} for a non-unique set ah > d
polynomials{us, Uy, - - -, Uy} invariant under the action of the symmetry group.
These polynomials are linearly independent, but functlprdependent through
m-—d + N relations callecsyzygies

Example 10.13 An SO(2) Hilbert basis. (continued from example 9.18) The
Hilbert basis

u o= X+, U = Y3+Y3,

Uz = XiY2 — Xoy1, Ug = X1Y1 + X2y2,

U = z. (10.53)

is invariant under the SQ(2) action on a 5-dimensional state space (10.18). That im-
plies, in particular, that the image of the full state space relative equilibrium T W, group
orbit of figure 10.4 is the stationary equilibrium point EQy, see figure 10.13. The poly-
nomials are linearly independent, but related through one syzygy,

Uil — U3 — U3 = 0, (10.54)

yielding a 4-dimensional M/SQ2) reduced state space, a symmetry-invariant repre-
sentation of the 5-dimensional SQ2) equivariant dynamics.  (continued in exam-
ple 10.14)

The dynamical equations follow from the chain rule

au

U = i 10.55
Ui 6Xj Xj, ( )

upon substitution{xs, o, - - -, X4} — {u, U2, - -, Un}. One can either rewrite the
dynamics in this basis or plot the ‘image’ of solutions comeplin the original,

equivariant basis in terms of these invariant polynomials. exercise 10.15
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Example 10.14 Complex Lorenz equations in a Hilbert basis. (continuation of
example 10.13) Substitution of (10.2) and (10.53) into (10.55) yields complex Lorenz
equations in terms of invariant polynomials:

U = 20(u-u),

Uy = -2(U2—p2uz— (o1 —Us)Us),

U3 = —(c+1luzs+pur+euw, (10.56)
Uy = —(c+Dus+ (p1-Us)li+oUp—€els,

U5 = U4*bU§,.

As far as visualization goes, we need neither construct nor integrate the invariant dy-
namics (10.56). It suffices to integrate the original, unreduced flow of Figure 10.1, but
plot the solution in the image space, i.e., U; invariant, Hilbert polynomial coordinates,
as in figure 10.13. (continued in example 10.15)

Reducing dimensionality of a dynamical system by elimmatof variables
through inclusion of syzygies such as (10.54) introducegiarities. Such elimi-
nation of variables, however, is not needed for visualimapurposes; syzygies
merely guarantee that the dynamics takes place on a sulmithimfthe projec-
tion on thefus, Uy, - - -, Uy} coordinates. However, when orexonstructshe dy-
namics in the original spac#1 from its imageM/G, the transformations have
singularities at the fixed-point subspaces of the isotrafpgsoups inM.

Example 10.15 Hilbert basis singularities. (continuation of example 10.14) When
one takes syzygies into account in rewriting a dynamical system, singularities are intro-
duced. For instance, if we solve (10.54) for u and substitute into (10.56), the reduced
set of equations,

U = 20(u—Uu)

U3 = —(c+1)uz+pur+ey

Uy = —(c +1)us+ (p1-Us)ur+o (U3 +U3)/ui—eus

U5 = W- b Us, (1057)
is singular as u; — 0. (E. Siminos)

Nevertheless we can now easily identify a suitable Pomesaction, guided
by the Lorenz flow examples of chapter 9, as one that conthmg-axis and
the image of the relative equilibriurf\W, here defined by the conditiom =
us. As in example 11.4, we construct the first return map usingoasdinate
the Euclidean arclength along the intersection of the bhstaanifold of TW
with the Poincaré surface of section, see figure 10.14. Theigoals set into
the introduction to this chapter are attained: we have reditice messy strange
attractor of figure 10.1 to a 1-dimensional return map. A$ bel explained in
example 11.4 for the Lorenz attractor, we now have the syimldghamics and
can compute as many relative periodic orbits of the complesefz flow as we
wish, missing none.
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Figure 10.14: Return map to the Poincaré sectionz 30C
u; = uy for complex Lorenz equations projected o
invariant polynomials (10.53). The return map coor-
dinate is the Euclidean arclength distance fromn,
measured along the Poincaré section of its spiral-out
unstable manifold, as for the Lorenz flow return map 0
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What limits the utility of Hilbert basis methods are not swihgularities, but
rather the fact that the algebra needed to determine a IHibsis becomes com-
putationally prohibitive as the dimension of the systemfdahe group increases.
Moreover, even if such basis were available, rewriting ttpga¢ions in an invari-
ant polynomial basis seems impractical, so in practiceétilbasis computations
appear not feasible beyond state space dimension of omle¥\tkeen our goal is
to quotient continuous symmetries of high-dimensional #osuch as the Navier-
Stokes flows, we need a workable framework. The method of mgoframes of
sect. 10.4 is one such minimalist alternative.

Résum é

The messagelf a dynamical systems has a symmetry, use it! Here we have
described how, andftered two approaches to continuous symmetry reduction.
In the method of slicesne fixes a ‘slice’ X~ X)'t" = 0, a hyperplane normal

to the group tangertf that cuts across group orbits in the neighborhood of the
slice-fixing pointX'. Each class of symmetry-equivalent points is represenyed b
a single point, with the symmetry-reduced dynamics in thtkiced state space
M/G given by (10.50):

U=v-¢-t,  ga= (/T
In practice one runs the dynamics in the full state space pastiprocesses the
trajectory by the method of moving frames. In tHébert polynomial basisap-

proach one transforms the equivariant state space cotediirdo invariant ones,
by a nonlinear coordinate transformation

{X1, X2, -+, X} = {U,Up,---,Um}  +  {Syzygie},

and studies the invariant ‘image’ of dynamics (10.55) ré&emi in terms of invari-
ant coordinates.

Continuous symmetry reduction is considerably more iredlthan the dis-
crete symmetry reduction to a fundamental domain of chapt&lices are only
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local sections of group orbits, and Hilbert polynomials aoa-unique and diii-
cult to compute for high-dimensional flows. However, therao need to actually
recast the dynamics in the new coordinates: either apprcacioe used as a vi-
sualization tool, with all computations carried out in thegmal coordinates, and
then, when done, projecting the solutions onto the symnretiyced state space
by post-processing the data. The trick is to construct a gaicf symmetry
invariant Poincaré sections (see sect. 3.1), and thatviayal a dark art, with or
without a symmetry.

We conclude with a few general observations: Higher din@raidynamics
requires study of compact invariant sets of higher dimen#tian 0-dimensional
equilibria and 1-dimensional periodic orbits studied sofiasect. 2.1.1 we made
an attempt to classify ‘all possible motions:’ (1) equiiéyr(2) periodic orbits, (3)
everything else. Now one can discern in the fog of dynamiosteiine of a more
serious classification - long time dynamics takes place erctbsure of a set of
all invariant compact sets preserved by the dynamics, asktare: (1) O-dimens-
ional equilibriaMeq, (2) 1-dimensional periodic orbitt,, (3) global symmetry
inducedN-dimensional relative equilibriadr, (4) (N+1)-dimensional relative
periodic orbitsM, (5) terra incognita. We have some inklings of the ‘terrampc
nita:’ for example, in symplectic symmetry settings one $itkdAM-tori, and in
general dynamical settings we encourpartially hyperbolic invariant M-torj
isolated tori that are consequences of dynamics, not of eagkymmetry. They
are harder to compute than anything we have attempted sasféiney cannot be
represented by a single relative periodic orbit, but regjainumerical computa-
tion of full M-dimensional compact invariant sets and their infiniteefigional
linearized Jacobian matrices, marginalNhdimensions, and hyperbolic in the
rest. We expect partially hyperbolic invariant tori to playportant role in high-
dimensional dynamics. In this chapter we have focused osithplest example
of such compact invariant sets, where invariant tori arebaisbconsequence of
a global continuous symmetry of the dynamics. The directlpco structure of a
global symmetry that commutes with the flow enables us tocedoe dynamics
to a desymmetrizedd-1—-N)-dimensional reduced state spak&G.

Relative equilibria and relative periodic orbits are thdirhark of systems
with continuous symmetry. Amusingly, in this extensionpéfiodic orbit’ theory
from unstable 1-dimensional closed periodic orbits to aipist (N+1)-dimension-
al compact manifoldg\1,, invariant under continuous symmetries, there are either
no or proportionally few periodic orbits. In presence of atiauous symmetry,
likelihood of finding a periodic orbit izera Relative periodic orbits are almost
never eventually periodic, i.e., they almost never lie oriquic trajectories in
the full state space, so looking for periodic orbits in sysewith continuous
symmetries is a fool’s errand.

However, dynamical systems are often equivariant undernabowation of
continuous symmetries and discrete coordinate transtansaof chapter 9, for
example the orthogonal group ( In presence of discrete symmetries relative
periodic orbits within discrete symmetry-invariant subsgs are eventually peri-
odic. Atypical as they are (no generic chaotic orbit can eveer these discrete
invariant subspaces) they will be important for periodibibtheory, as there the
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shortest orbits dominate, and they tend to be the most syransetutions. chapter 21

Commentary

Remark 10.1 A brief history of relativity, or, ‘Desymmetrization and its discontents’
(after Civilization and its discontents; continued fronmagk 9.1):  The literature on
symmetries in dynamical systems is immense, most of itidebty unintelligible. Would

it kill them to say ‘symmetry of orbip’ instead of carrying on about ‘isotropies, quotients,
factors, normalizers, centralizers and stabilizers?:9100.10, 10.8, 9.15] Group action
being ‘free, faithful, proper, regular?” Symmetry-reddctate space being ‘orbitfold?’
For the dynamical systems applications at hand we need aslg the Lie group facts, on
the level of any standard group theory textbook [10.2]. WenfbRoger Penrose [10.3]
introduction to the subject both enjoyable and understaledaChapter 2. of ref. [10.4]
offers a pedagogical introduction to Lie groups of transfoiomst and Nakahara [10.5]
to Lie derivatives and brackets. The presentation giver f&ein part based on Siminos
thesis [10.6] and ref. [10.7]. The reader is referred to thographs of Golubitsky and
Stewart [10.8], Hoyle [10.9], Olver [10.11], Bredon [10}1&nd Krupa [10.13] for more
depth and rigor than would be wise to wade into here.

Relative equilibria and relative periodic solutions arted by symmetry reduction
to equilibria and periodic solutions of the reduced dynamiithey appear in many physi-
cal applications, such as celestial mechanics, molecyfeamics, motion of rigid bodies,
nonlinear waves, spiralling patterns, and fluid mechaiaelative equilibrium is a solu-
tion which travels along an orbit of the symmetry group atstant speed; an introduction
to them is given, for example, in Marsde?j.[According to Cushman, Bates [10.14] and
Yoder [10.15], C. Huygens [10.16] understood the relatiyeiléoria of a spherical pen-
dulum many years before publishing them in 1673. A reduabbtie translation sym-
metry was obtained by Jacobi (for a modern, symplectic impletation, see Laskat
al. [10.17]). In 1892 German sociologist Vierkandt [10.18] wled that on a symmetry-
reduced space (the constrained velocity phase space mitubection of the group of
Euclidean motions of the plane) all orbits of the rollinglkdssy'stem are periodic [10.19].
According to Chenciner [10.20], the first attempt to find §ti®e) periodic solutions of
the N-body problem was the 1896 short note by Poincaré [10.2lhe context of the
3-body problem. Poincaré named such solutions ‘relatiRelative equilibria of theN-
body problem (known in this context as the Lagrange poitdsionary in the co-rotating
frame) are circular motions in the inertial frame, and ie@periodic orbits correspond
to quasiperiodic motions in the inertial frame. For relagperiodic orbits in celestial me-
chanics see also ref. [10.22]. A striking application ohtife periodic orbits has been
the discovery of “choreographies” in tiebody problems [10.23, 10.24, 10.25].

The modern story on equivariance and dynamical systemts giarhaps with S.
Smale [10.26] and M. Field [10.27], and on bifurcations iegence of symmetries with
Ruelle [10.28]. Ruelle proves that the stability matiecobian matrix evaluated at an
equilibriunyfixed pointx € Mg decomposes into linear irreducible representatior, of
and that stabjenstable manifold continuations of its eigenvectors iittieeir symmetry
properties, and shows that an equilibrium can bifurcatertaationally invariant periodic
orbit (i.e., relative equilibrium).

Gilmore and Lettelier monograph [10.29fers a very clear, detailed and user friendly
discussion of symmetry reduction by means of Hilbert poiyiad bases (do not look for
‘Hilbert’ in the index, though). Vladimirov, Toronov and Ewov [10.30] use an invari-
ant polynomial basis dlierent from (10.53) to study bounding manifolds of the symme-
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try reduced complex Lorenz flow and its homoclinic bifuroas. There is no general
strategy how to construct a Hilbert basis; clever low-disienal examples have been
constructed case-by-case. The example 10.13, with onewbsizygy, is also mislead-
ing - syzygies proliferate rapidly with increase in dimemsility. The determination of a
Hilbert basis appears computationally prohibitive fotetspace dimensions larger than
ten [10.31, 10.32], and rewriting the equations of motiansvariant polynomial bases
appears impractical for high-dimensional flows. Thus, b9 the problem of rewrit-
ing equivariant flows as invariant ones was solved by Hilaed Weyl, but at the cost
of introducing largely arbitrary extra dimensions, wittetreduced flows on manifolds
of lowered dimensions, constrained by sets of syzygiesta@dound this unsatisfactory,
and in 1935 he introduced [10.33] the notion ahaving framea map from a manifold to
a Lie group, which seeks no invariant polynomial basis, batdad rewrites the reduced
M/G flow in terms ofd — N fundamental invariantdefined by a generalization of the
Poincaré section, a slice that cuts across all group drb&sme open neighborhood. Fels
and Olver view the method as an alternative to the Grobrezdmethods for computing
Hilbert polynomials, to compute functionally independé&mdamental invariant bases
for general group actions (with no explicit connection tadgnics, diferential equations
or symmetry reduction). ‘Fundamental’ here means that taeybe used to generate all
other invariants. Olver’s monograph [10.11] is pedagdgisat does not describe the
original Cartan’s method. Fels and Olver papers [10.3483]Gre lengthy and technical.
They refer to Cartan’s method as method of ‘moving framed'éew it as a special and
less rigorous case of their ‘moving coframe’ method. The@anoving coframes’ arises
through the use of Maurer-Cartan form which is a coframe erLik groupG, i.e., they
form a pointwise basis for the cotangent space. In refsg[11D.7] the invariant bases
generated by the moving frame method are used as a basisjéztprdull state space
trajectory to the slice (i.e., th&1/G reduced state space).

The basic idea of the ‘method of slices’ is intuitive and freqtly reinvented, often
under a dfferent name; for example, it is stated without attributiontesproblem 1. of
Sect. 6.2 of Arnol'dOrdinary Differential Equationg10.36]. The factorization (10.42)
is stated on p. 31 of Anosov and Arnol'd [10.37], who note hwiit further elaboration,
that in the vicinity of a point which is not fixed by the groupeocan reduce the order of
a system of dferential equations by the dimension of the group. Ref. [@lor&fers to
symmetry reduction as ‘lowering the order.” For the defaritof ‘slice’ see, for example,
Chossat and Lauterbach [10.32]. Briefly, a submanifblg containingx” is called a
slice throughx if it is invariant under isotrop\Gs(m,) = My. If X is a fixed point
of G, than slice is invariant under the whole group. The slicetbm is explained, for
example, in Encyclopaedia of Mathematics. Slices tend widgmissed in contexts much
more dificult than our application - symplectic groups, sections bsemce of global
charts, non-compact Lie groups. We follow refs. [10.39kferring to a local group-orbit
section as a ‘slice.’ Refs. [10.12, 10.40] and others refgj@bal group-orbit sections as
‘cross-sections,’” a term that we would rather avoid, asréaly has a dierent and well
established meaning in physics. Duistermaat and Kolk flj0réfer to ‘slices,’ but the
usage goes back at least to Guillemin and Sternberg [10040984, Palais [10.42] in
1961 and Mastow [10.43] in 1957. Bredon [10.12] discusseah bomss-sections and
slices. Guillemin and Sternberg [10.40] define the ‘crasstion,” but emphasize that
finding it is very rare: “existence of a global section is ayvstringent condition on a
group action. The notion of ‘slice’ is weaker but has a muabalder range of existence.”

Several important fluid dynamics flows exhibit continuoussyetries which are
either SO(2) or products of SO(2) groups, each of which acdiffierent coordinates
of the state space. The Kuramoto-Sivashinsky equation8,[2%.4], plane Couette
flow [H.31, 26.15, 10.55, B.1], and pipe flow [10.56, 10.57]r&lve continuous symme-
tries of this form. In the 1982 paper Rand [10.58] explain& Ippesence of continuous
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symmetries gives rise to rotating and modulated rotatinggperiodic) waves in fluid

dynamics. Haller and Mezi¢ [10.59] reduce symmetries oéehdimensional volume-
preserving flows and reinvent method of moving frames, uttdename ‘orbit projection

map.” There is extensive literature on reduction of symigemanifolds with symme-

try; Marsden and Weinstein 1974 article [10.60] is an imaottearly reference. Then
there are studies of the reduced phase spaces for vorticesgnan a sphere such as
ref. [10.61], and many, many others.

Reaction-difusion systems are often equivariant with respect to themcti a finite
dimensional (not necessarily compact) Lie group. SpiralerM@rmation in such non-
linear excitable media was first observed in 1970 by Zaikid Zhabotinsky [10.44].
Winfree [10.45, 10.46] noted that spiral tips execute meaind motions. Barkley and
collaborators [10.47, 10.48] showed that the noncompadidaan symmetry of this class
of systems precludes nonlinear entrainment of translatiand rotational drifts and that
the interaction of the Hopf and the Euclidean eigenmodeisleaobserved quasiperiodic
and meandering behaviors. Fiedler, in the influential 12896 at the Newton Institute,
and Fiedler, Sandstede, ViilTuraev and Scheel [10.49, 10.50, 10.51, 10.52] treat Eu-
clidean symmetry bifurcations in the context of spiral wéwenation. The central idea
is to utilize the semidirect product structure of the Euedid groufE(2) to transform the
flow into a ‘skew product’ form, with a part orthogonal to thesgp orbit, and the other
part within it, as in (10.50). They refer to a linear slid¢ near relative equilibrium as a
Palais slice with Palais coordinates. As the choice of the slice is eabjt these coordi-
nates are not unique. According to these authors, the skesiupt flow was first written
down by Mielke [10.53], in the context of buckling in the dlagy theory. However, this
decomposition is no doubt much older. For example, it wad bgeKrupa [10.13, 10.32]
in his local slice study of bifurcations of relative equilén. Biktashev, Holden, and Niko-
laev [10.54] cite Anosov and Arnol'd [10.37] for the ‘welkkwn’ factorization (10.42)
and write down the slice flow equations (10.50).

Neither Fiedleet al.[10.49] nor Biktashewet al.[10.54] implemented their methods
numerically. That was done by Rowley and Marsden for the Kuat@-Sivashinsky [10.39]
and the Burgers [10.62] equations, and Beyn and Thimm@e681 10.64] for a number
of reaction-difusion systems, described by parabolic partifiledential equations on un-
bounded domains. We recommend the Barkley paper [10.4&] @ear explanation of
how the Euclidean symmetry leads to spirals, and the BeyTaidmler paper [10.63]
for inspirational concrete examples of how ‘freezjfglicing’ simplifies the dynamics
of rotational, traveling and spiraling relative equilidoriBeyn and Thummler write the
solution as a composition of the action of a time dependemumelemeng(t) with a
‘frozen,’ in-slice solutionu(t) (10.42). In their nomenclature, making a relative equilib
rium stationary by going to a co-moving frame is ‘freezinigéttraveling wave, and the
imposition of the phase condition (i.e., slice conditio.d3)) is the ‘freezing ansatz.’
They find it more convenient to make use of the equivarianagnding the state space
rather than reducing it, by adding an additional parameteraphase condition. The
‘freezing ansatz’ [10.63] is identical to the Rowley and Bi#n [10.62] and our slicing,
except that ‘freezing’ is formulated as an additional coaist, just as when we compute
periodic orbits of ODEs we add Poincaré section as an adfditiconstraint, i.e., increase
the dimensionality of the problem by 1 for every continuopmmetry (see sect. 13.4). section 13.4

Derivation of sect. 10.4.2 follows most closely Rowley andrstien [10.62] who,
in the pattern recognition setting refer to the slice pogadtemplate, and call (10.51)
the ‘reconstruction equation?] 10.65]. They also describe the ‘method of connections’
(called ‘orthogonality of time and group orbit at successivnes’ in ref. [10.63]), for
which the reconstruction equation (10.51) denominatg&}$ -t(X) and thus nonvanishing
as long as the action of the group is regular. This avoidsgheaus slice singularities, but
it is not clear what the ‘method of connections’ buys us othse. It does not reduce the
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dimensionality of the state space, and it accrues ‘geomglises’ which prevent relati-
ve periodic orbits from closing into periodic orbits. Gedrnitephase in laser equations,
including complex Lorenz equations, has been studied if16f66, 10.67, 10.69, 10.70,
10.71]. Another theorist's temptation is to hope that a itnritus symmetry would lead us
to a conserved quantity. However, Noether theorem reqthegquations of motion be
cast in Lagrangian form and that the Lagrangian exhibitmtianal symmetries [10.72,

10.73]. Such variational symmetries are hard to find forigés/e systems.

Sect. 10.1.2 title ‘Lie groups for cyclists’ is bit of a joke more ways than one.
First, ‘cyclist, ‘pedestrian’ throughout ChaosBook.aegfer jokingly both to the title of
Lipkin’s Lie groups for pedestriangl0.74] and to our preoccupations with actual cy-
cling. Lipkin’s ‘pedestrian’ is fluent in Quantum Field Thgpbut wobbly on Dynkin
diagrams. More to the point, it is impossible to dispose efgioups in a page of text. As
a counterdote to the 1-page summary of sect. 10.1.2, cansideing Gilmore’s mono-
graph [10.75] which fiers a quirky, personal and enjoyable distillation of a iifegt of
pondering Lie groups. As seems to be the case with any tektbod.ie groups, it will
not help you with the problem at hand, but it is the only plaoe gan learn both what
Galois actually did when he invented the theory of finite gioin 1830, and what, in-
spired by Galois, Lie actually did in his 1874 study of symnest of ODEs. Gilmore
also explains many things that we pass over in silence hech,& matrix groups, group
manifolds, and compact groups.

One would think that with all this literature the case is shuotl closed, but not so.
Applied mathematicians are inordinately fond of bifuroa, and almost all of the pre-
vious work focuses on equilibria, relative equilibria, ahdir bifurcations, and for these
problems a single slice works well. Only when one tries tacdbe the totality of chaotic
orbits does the non-global nature of slices become a semigisance.

(E. Siminos and P. Cvitanovit)

Remark 10.2 Complex Lorenz equations (10.1) were introduced by Gibbon and
McGuinness [10.76, 10.77] as a low-dimensional model obbaric instability in the at-
mosphere. They are a generalization of Lorenz equatioh2)2Ning and Haken [10.78]
have shown that equations isomorphic to complex Lorenztemssalso appear as a trun-
cation of Maxwell-Bloch equations describing a single madktuned, ring laser. They
sete + p, = 0 so that SO(2)-orbits of detuned equilibria exist [10.7Zgghlache and
Mandel [?] also use equations isomorphic to complex Lorenz equatidthse+ 0, = 0 in
their studies of detuned ring lasers. This choice is ‘deggrgin the sense that it leads to
non-generic bifurcations. As existence of relative equii in systems with SO(2) sym-
metry is the generic situation, we follow Bakasov and Abralj20.79] who sep, = 0
ande # 0 in order to describe detuned lasers. Here, however, weadiigterested in the
physical applications of these equations; rather, we stiveiyn as a simple example of a
dynamical system with continuous (but no discrete) symiegtwith a view of testing
methods of reducing the dynamics to a lower-dimensionalced state space. Complex
Lorenz flow examples and exercises in this chapter are bas&d $iminos thesis [10.6]
and R. Wilczak project report [10.80].

Remark 10.3 Velocity vs. Speed  Velocityis a vector, the rate at which the object
changes its positionSpeedor the magnitude of the velocity, is a scalar quantity which
describes how fast an object moves. We denote the rate ofjehafngroup phases, or
the phase velocitpy the vectorc = (¢1,---,én) = (C1.---,Cn), @ component for each
of the N continuous symmetry parameters. These are convertedteosgace velocity
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components along the group tangents by

V(X) = c(t) - t(x) . (10.58)

For rotational waves these are called “angular velocities.

Remark 10.4 Killing fields.  The symmetry tangent vector fields discussed here are a
special case of Killing vector fields of Riemannian geomatry special relativity. If this
poetry warms the cockles of your heart, hang on. From wikgétiis wikipedia might
also be useful): A Killing vector field is a set of infinitesihggenerators of isometries on

a Riemannian manifold that preserve the metric. Flows geedrby Killing fields are
continuous isometries of the manifold. The flow generatggvnsetry, in the sense that
moving each point on an object the same distance in the direof the Killing vector

field will not distort distances on the object. A vector fiedds a Killing field if the Lie
derivative with respect tX of the metricg vanishes:

£Lxg=0. (10.59)

Killing vector fields can also be defined on any (possibly netrin) manifold M if we
take any Lie groui®s acting on it instead of the group of isometries. In this beyagnse,
a Killing vector field is the pushforward of a left invariargator field onG by the group
action. The space of the Killing vector fields is isomorploitte Lie algebra of G.

If the equations of motion can be cast in Lagrangian formhhe Lagrangian ex-
hibiting variational symmetries [10.72, 10.73], Noetheedrem associates a conserved
quantity with each Killing vector.

(E. Siminos and P. Cvitanovit)

Exercises

10.1. Visualizations of the 5-dimensional complex Lorenz _ ( cosf  sind ) ) (10.60)
flow: Plot complex Lorenz flow projected on any —-sing cost
three of the fivexa, X2, Y1, Y2, Z} axes. Experiment with
different visualizations. 10.3. Invariance under fractional rotations. ~ Argue that

if the isotropy group of the velocity field(x) is the dis-
crete subgroup of SO(2) rotations about an axis (let's
say the zaxis’),

CY™y(x) = (CY™x) = (),

10.2. SO(2) rotationsin a plane: ~ Show by exponentiation
(10.7) that the SO(2) Lie algebra elemé@ngenerates

rotationg in a plane, (cymm e,

the only non-zero components of Fourier-transformed

o 10\, (0 1
ge) = e’= COS"( 0 1 )+sm9( 0 ) equations of motion arajy, for j = 1,2, ---. Argue that
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10.5.

10.6.

10.7.

10.8.
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the Fourier representation is then the quotient map ©6.9. U(1) equivariance of 2-mode system for finite angle

the dynamicsM/Cp,. (Hint: this sounds much fancier
than what is - think first of how it applies to the Lorenz
system and the 3-disk pinball.)

U(1) equivariance of complex Lorenz equations for
finite angles:  Show that the vector field in complex
Lorenz equations (10.1) is equivariant under (10.7), the
unitary group U(1) acting o> = C2 x R by

gO)(xy,2 = (€%, €%,2), 6€[0,21).(10.61)

(E. Siminos)

SO(2) equivariance of complex Lorenz equations for
finite angles:  Show that complex Lorenz equations
(10.2) are equivariant under rotation for finite angles.

Stability matrix of complex Lorenz flow: ~ Compute
the stability matrix (10.26) for complex Lorenz equa-
tions (10.2).

SO(2) equivariance of complex Lorenz equations for
infinitesimal angles. Show that complex Lorenz
equations are equivariant under infinitesimal SO(2) ro-
tations.

10.11.

A 2-mode SQ2)-equivariantflow:  Complex Lorenz
equations (10.1) of Gibbon and McGuinness [10.76]

have a degenerate 4-dimensional subspace, with SO(2)

acting only in its lowest non-trivial representation. Here
is a possible model, still 5-dimensional, but with SO(2)
acting in the two lowest representations. Such models

arise as truncations of Fourier-basis representations of

PDEs on periodic domains. In the complex form, the

simplest such modification of complex Lorenz equatiolng 1

may be the “2-mode” system :

= —oX+oXYy
(0 —2)%% - ay

1 2\ 2,
—bz+5(xy*+x y).

N
1]

(10.62)

wherex,y, p, aare complex and, b, o are real. Rewrit-1¢ 3.

ten in terms of real variables= x; +ixz, y=Yy1+1iYy2
this is a 5-dimensional first order ODE system

X1 = —0X+ o (X1 — XoY2)

X = =X+ 0(X1Y2 — XoY1)

Vio= -yitey+ (o1 -0 - %) - 202%1%

Vo = —Yo—ey+ 208 — X8) + (p1 - 2)(2x1%z)
7 = —bz+ (- Xy + 2xaxy2.  (10.63)

Verify (10.63) by substitutinge = X3 +i X2, y = Y1 +iya,
p =p1+ip2, a=1+ieintothe complex 2-mode equa-
tions (10.62).

10.10.

10.14.

Show that 2-mode system (10.62) is equivariant t
rotation for finite angles.

SO(2) equivariance of the 2-mode system for il
finitesimal angles. Verify that the 2-mode syst
(10.63) is equivariant under infinitesimal SO(2) r
tions (10.18) by showing that the stability matrix (:
for the system is given b =

oy —1) ¥z
Y2 —o(y1+1)
201X1 = 202X = 2X1Z  2XpZ — 2p2X1 — 201%
2010 + 202X1 — 2X0Z  2p1X1 — 202X — 2X1Z
2X1y1 + 2X2Y2 2X1Y2 — 2X2Y1

and substituting the Lie algebra generator

0O 1 0 0O
-1 0 0 0O
T= 0 0 0 2 O (10.65
0 0 -200
0O 0 0 0O

and the stability matrix (10.64) into the equivaric
condition (10.24).

Visualizations of the 5-dimensional 2-mode syste
Plot 2-mode system projected on any three of the
{X1, X2, Y1, Y2, 2} axes. For complex Lorenz flow i
merical examples we have set the parameteys; te
28, p, = 0,b = 8/3, 0 = 10, e = 1/10, but here yc
will have to play with them until you find someth
that looks interestingly chaotic. Experiment withfer
ent visualizations. It's a big mess - have no clue
parameters to take, what the trajectory will do.

2. Discover the equivariance of a given flov
1]

& Suppose you were given complex Lorenz e
tions, but nobody told you they are SO(2) equivar
More generally, you might encounter a flow withou
alizing that it has a continuous symmetry - how w
you discover it?

Equilibria of complex Lorenz equations:  Find al
equilibria of complex Lorenz equations. Hint: Equ
ria come either in the fixed FigG) subspace, or or
group orbit.

More equilibria of complex Lorenz equations
Y

* In exercise 10.13 we found only one e
librium of complex Lorenz equations. The Ning

Haken [10.78] version of complex Lorenz equatiot
truncation of Maxwell-Bloch equations describing a
gle mode ring laser) sets+ p, = 0 so that a detun
equilibrium exists. Test your routines on 2 cases
e=0,p2 = 0. As discussed by Siminos [10.6], rec
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10.15.

10.16.

10.17.

10.18.

exerContinuous - 10mar2012

of parameters, p in (10.1) implies existence of a dis-
crete G symmetry. (b)e+ p> = 0, e # 0. You might
want to compare results with those of Ning and Haken.

Complex Lorenz equations in a Hilbert basis. (con-
tinuation of example 10.13) Derive complex Lorenz
equations (10.56) in terms of invariant polynomials
(10.56), plot the strange attractor in projections you find
illuminating (one example is figure 10.13).

Hilbert basis singularities. When one takes syzygies
into account in rewriting a dynamical system, singulari-
ties are introduced. For instance, eliminateusing the
syzygy, and show that you get the reduced set of equa-
tions,

U1 = 20’(U4—U1)

U3 = —(c+1luz+prur+ey
U =

Us = u—bus,

singular asi, — 0. (E. Siminos)

Complex Lorenz equations in polar coordinates.
Rewrite complex Lorenz equations from Cartesian to
polar coordinates, usingd, Xz, y1, Y2, 2) =

(r1€0Sb1, 1SN0, 12 COSH2, 12 SiNb,,2), (10.67)

wherer; > 0,r, > 0. Show that in polar coordinates the
equations take form

f —o (1 — rp cost)

0 —o2sing

f2 |=| —r2+ri((p1—2cosd—pzsinb) |,
[ e+%((p1—z) Siné + pa oK)

z —bz+rir, cosd

where angles always appear in the combinatios
61— 6, We know from classical mechanics that for trans-
lationally or rotationally invariant flows the relative dis
tance is invariant (that is why one speaks of ‘relative’
equilibria), hence we introduce a varialsle= 6; — 0,.
Show that this new variable allows us to rewrite the com-
plex Lorenz equations as 4 coupled polar coordinates
equations:

gl —0 (ry — rp cosé)

P2 |_ —I2+ (p1 — 2)ry cosd 10.20.
0 |7 —e—(c +(pr-22)sing (10.68)

z —bz+ rirp cosd

where we have sgt = 0. (hints: review (6.4), exam-
ple 6.1, exercise 6.1, and (10.55))

2-mode system in polar coordinates. Show that the
2-mode system (10.63) rewritten in polar coordinates

212

(10.67) is given by

f1 = —oT1+0T1r2c0sp)
t2 = —ra+ri((o1—2)cosp) - p2sin@))
2
. . r
61 = —orasin@), 6 =-e+ r—l((pl—z)sin(9)+}
2
r2
- 1
z = -bz+ 2*cosf),
r2

wherge = 20, — 65.
6 = 26, — 6, we have

Rewriting the angular part as

0= e—g((pl—z) sin()+pz2 cos@))—2r,o sin() .(10.70

D. Borrero

10.19. Visualizations of the complex Lorenz flow in polar

coordinates:

—(o + 1)U+ (1~ Us) Uy + o (U3 + U3)/u1 — e UPlot a long-time solution of (10.68) and show that the
(10.6@)0lar representation introduces singularities into what

initially was a smooth flow:

We shall encounter the same problem in implementing
thex; = O slice, .6 is very small until the trajectory ap-
proaches eithem — 0 orr, — 0, whereMathematica
continues through the singularity by a rapid change of
by x. The fixed FiXG) subspacerg, r2,6,2) = (0,0,6, 2)
separates the two folds of the attractor.

Plot complex Lorenz flow projected on any three of the
{r1,r2, 6,2} coordinates. Experiment withftiérent visu-
alizations. The flow is singular ag — 0, with angled;
going through a rapid change there: is that a problem?
Does it make sense to insist on> 0,r, > 0, or should
one let them have either sign in order that@hmjectory

be continuous?

Computing the relative equilibrium TWy:  The two
rotation angle®; andd, change in time, but at the rela-
tive equilibria the diference between them is constant,
6 = 0. Find the relative equilibria of the complex Lorenz
equations by finding the equilibria of the system in polar
coordinates (10.68). Show that

(a) The relative equilibrium (hereafter
to [10.6] asT W) is given by

referred
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10.21.

10.22.

10.23.

10.24.

10.25.

10.26.

10.27.

10.28.
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(r1,r2,6.2 =

(Vb(o1—d), vbd (o1 - d).

cos*(1/Vd), py - d) . (10.72)

whered = 1+ €/(o + 1), 10.30.
(b) The angular velocity of relative equilibriumW,
is
0 = oe/(o +1), (10.72)
with the periodTrw, = 27(c + 1)/ce.
Relative equilibrium TW in polar coordinates: Plot
the equilibriumT W, in polar coordinates. 10.31.
Relative equilibrium TW; in Cartesian coordinates:
Show that for (10.2) parameter values,
XTwy = (X1, X2, Y1, Y2, 2) (10.73)

(8.48490.0771358.4856 0, 26.999),

is a point on thé W, orbit. Plot the relative equilibrium
TW; in Cartesian coordinates. State the velocity of rela-

tive equilibrium, compare with the imaginary part of thg) 35

complex stability eigenvalue, and explain the two time
scales visible in the ‘horn’, as well as the expansion rate
per turn of the spiral.

The relative equilibria of the 2-mode system: Find 10 33.

the relative equilibria of the 2-mode system by finding
the equilibria of the system in polar coordinates (10.68).

Plotting the relative equilibria of the 2-mode system 10.34.

in polar coordinates:  Plot the relative equilibria of
the 2-mode system in polar coordinates.

Plotting the relative equilibria of the 2-mode system

in Cartesian coordinates: Plot the relative equilibria10.35.

of the 2-mode system in Cartesian coordinates.

Eigenvalues and eigenvectors of W stability ma-

trix: Compute the eigenvalues and eigenvectors of
the stability matrix (10.26) evaluated @\4 and using

the (10.2) parameter values, in (a) Cartesian coordinates,
(b) polar coordinates.

The eigen-system o W stability matrix in polar co-

ordinates: Plot the eigenvectors df at TW, in polar
coordinates, as well as the complex Lorenz flow at val-
ues very neaf W,.

Eigenvalues and eigenvectors oEQ, stability ma-
trix:  Find the eigenvalues and the eigenvectors of the
stability matrixA (10.26) atEQy = (0, 0,0, 0, 0) deter-

mined in exercise 10.13. ChaosBook convention isli®.37.

order eigenvalues from most positive (unstable) to the
most negative. Follow that. Replace complex eigenvec-
tors by the real, imaginary parts, so you can plot them in
(real) state space.

10.36.

213

10.29. The eigen-system of the stability matrix atE Qy:  Plo

the eigenvectors of at EQy and the complex Lore
flow at values very close tBQy.

SO(2) or harmonic oscillator slice: Construct
moving frame slice for action of SO(2) d?

(X, y) = (xcosd — ysing, xsing +ycosH)

by, for instance, the positiweaxis: x = 0, y > 0. Write
out explicitly the group transformations that bring
point back to the slice. What invariant is preserve
this construction? (E. Simin

State space reduction by a slice, ODE formulatio
Replace integration of the complex Lorenz equatiol
a sequence of finite time steps, each followed by
tation such that the next segment initial point is ir
slicexX; = 0, X; > 0. Reconsider this as a sequenc
infinitesimal time steps, each followed by an infinit
mal rotation such that the next segment initial point
the slicex, = 0, x; > 0. Derive the corresponding
reduced state space ODE for the complex Lorenz f

Accumulated phase shift: Derive the H equatio
(10.51) for the accumulated phase shifissociated wi
the 4-dimensional reduced state space ODE of
cise 10.31.

The moving frame flow stays in the reduced sta
space: Show that the flow (10.50) stays in d+1)
dimensional slice.

Relative equilibrium TW; by the method of slice:
Determine numerically the complex Lorenz equa
equilibrium TW; by the method of slices, templaie
of your choice.

State space reduction by a relative equilibriumT W,
template: Replace integration of the complex Lor
equations by a sequence of short time steps, eac
lowed by a rotation such that the next segment i
pointis in the relative equilibriurit W4 slice

(X=%rw) -trwy =0, trwy = Trwy ,(10.74

where for anyx, X = g(6) - x is the rotation that lies
the slice. Check figure 10.12 by long-time integratic
(10.50).

Stability of a relative equilibrium in the reduced state
space: Find an expression for the stability matri;
the system at a relative equilibrium when a linear
is used to reduce the symmetry of the flow.

Stability of a relative periodic orbit in the reducec
state space: Find an expression for the Jacol
matrix (monodromy matrix) of a relative periodic o
when alinear slice is used to reduce the dynamics
flow.
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