Chapter 23

Why doesit work?

Bloch: “Space is the field of linear operators.”
Heisenberg: “Nonsense, space is blue and birds fly
through it.”

—Felix Bloch, Heisenberg and the early days of
guantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanovic)

sometimes very well. The question is: Why? And it still is.€Tineuris-
tic manipulations of chapters 18 and 6 were naive and reskésswe are
facing infinite-dimensional vector spaces and singulagrdl kernels.

As WE SHALL Seg, the trace formulas and spectral determinants work well,

We now outline the key ingredients of proofs that put thedrand determi-
nant formulas on solid footing. This requires taking a ctdsek at the evolution
operators from a mathematical point of view, since up to nosvhave talked
about eigenvalues without any reference to what kind of atfan space the cor-
responding eigenfunctions belong to. We shall restrictamnsiderations to the
spectral properties of the Perron-Frobenius operator &gganas proofs for more
general evolution operators follow along the same linesatMre refer to as a “the
set of eigenvalues” acquires meaning only within a pregispecified functional
setting: this sets the stage for a discussion of the anjyficoperties of spectral
determinants. In example 23.1 we compute explicitly themsgectrum for the
three analytically tractable piecewise linear exampleselct. 23.3 we review the
basic facts of the classical Fredholm theory of integralagions. The program
is sketched in sect. 23.4, motivated by an explicit studyigérspectrum of the
Bernoulli shift map, and in sect. 23.5 generalized to pieseweal-analytic hy-
perbolic maps acting on appropriate densities. We show @nyesimple example
that the spectrum is quite sensitive to the regularity prisgee of the functions
considered.

For expanding and hyperbolic finite-subshift maps anatytiteads to a very
strong result; not only do the determinants have bettelyici#y properties than
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the trace formulas, but the spectral determinants aressinmlt as entire functions
in the complexs plane. remark 23.1

The goal of this chapter is not to provide an exhaustive vewithe rigorous the-
ory of the Perron-Frobenius operators and their specttariénants, but rather
to give you a feeling for how our heuristic considerations t& put on a firm
basis. The mathematics underpinning the theory is both dvadcprofound.

If you are primarily interested in applications of the peiorbit theory, you
should skip this chapter on the first reading.

fast track:
W chapter 13, p. 268
23.1 Linear maps. exact spectra

We start gently; in example 23.1 we work out tleacteigenvalues and eigen-
functions of the Perron-Frobenius operator for the sint@gample of unstable,
expanding dynamics, a linear 1-dimensional map with on¢abies fixed point.

Ref. [23.6] shows that this can be carried ovedidimensions. Not only that,
but in example 23.5 we compute the exact spectrum for thelsghexample of a
dynamical system with ainfinity of unstable periodic orbits, the Bernoulli shift.

Example 23.1 The simplest eigenspectrum - a single fixed point: In order to get
some feeling for the determinants defined so formally in sect. 19.2, let us work out a
trivial example: a repeller with only one expanding linear branch

f(x) = AX, Al >1,

and only one fixed point Xq = 0. The action of the Perron-Frobenius operator (16.10) is

£60) = f dxaly - AX) 6(x) = ﬁaﬁ(y//\). (23.1)

From this one immediately gets that the monomials y* are eigenfunctions:

1
IAIAK

Ly = ¥, k=012... (23.2)

What are these eigenfunctions? Think of eigenfunctionsefSchrodinger
equation:k labels thekth eigenfunctiorxX in the same spirit in which the number
of nodes labels thith quantum-mechanical eigenfunction. A quantum-mecladnic
amplitude with more nodes has more variability, hence adrigdnetic energy.
Analogously, for a Perron-Frobenius operator, a higheigenvalue LIA|AK is
getting exponentially smaller because densities thatwenme rapidly decay more
rapidly under the expanding action of the map.
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Example 23.2 The trace formula for a single fixed point: The eigenvalues A™%t

fall off exponentially with k, so the trace of L is a convergent sum

1 < 1 1
rL=— > A%= = ,
Al Z; A=A IfOy -1

in agreement with (18.7). A similar result follows for powers of L, yielding the single-

fixed point version of the trace formula for maps (18.10):

& e & 7 1
= S —
; 1-ze ; oA © TARK (233)

The left hand side of (23.3) is a meromorphic function, wita teading zero
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f(x)

Figure 23.1: The Bernoulli shift map.

atz=|A|. So what?

Example 23.3 Meromorphic functions and exponential convergence: As an
illustration of how exponential convergence of a truncated series is related to analytic
properties of functions, consider, as the simplest possible example of a meromorphic
function, the ratio

X
Example 23.4 The spectral determinant for a single fixed point: The spectral
determinant (19.3) follows from the trace formulas of example 23.2:
= z S z
det(1- = 1-——|= -)"Qn, t=-—, 23.4
a-20= [ [(1- og) = 2eren. = m (234

k=0 n=0
where the cummulants Q, are given explicitly by the Euler formula

1 AL AN+
Qn =

exercise 23.3

(23.5)

Z—a
h@ =75

with a, b real and positive and a < b. Within the spectral radius |2 < b the function h

can be represented by the power series

)

h@Z) = Z o,

k=0

where og = a/b, and the higher order coefficients are given by oj = (a— b)/bi*t,

Consider now the truncation of order N of the power series

N a za-b)1-2V/bN)
@ = ) o = b wa T

k=0

Let 2y be the solution of the truncated series hy(zy) = 0. To estimate the distance
between a and 2y it is sufficient to calculate hy(a). It is of order (a/b)N*2, so finite order

estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading pblke leading
eigenvalue off) from a finite truncation of a trace formula converges expene
tially, and (2) the non-leading eigenvalues fflie outside of the radius of con-
vergence of the trace formula and cannot be computed by nwasgch cycle
expansion. However, as we shall now see, the whole spectrueachable at no
extra dfort, by computing it from a determinant rather than a trace.
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The main lesson to glean from this simple example is that tihenculantsQ,
decay asymptoticallfasterthan exponentially, a& "("-1/2, For example, if we
approximate series such as (23.4) by the first 10 terms, theiarthe estimate of
the leading zero is 1/A%

So far all is well for a rather boring example, a dynamicateyswith a single
repelling fixed point. What about chaos? Systems where thebaoof unstable
cycles increases exponentially with their length? We nowm to the simplest
example of a dynamical system with an infinity of unstablequiic orbits.

Example 23.5 Eigenfunction of Bernoulli shift map. (continued from example 11.7) The

Bernoulli shift map figure 23.1

fo(x) = 2x. lo=[0,1/2
f<X>={fi§§§:z§71, iil?:h/z,ﬁ

(23.6)

models the 50-50% probability of a coin toss. The associated Perron-Frobenius oper-

ator (16.9) assembles p(y) from its two preimages

w0~ b)) b3

(23.7)

For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials B,(X). These polynomials are

generated by the Taylor expansion of the generating function

tex S t 1
6(xt) = 5 = g B®)g. Bo®)=1. B9 =x-5....
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The Perron-Frobenius operator (23.7) acts on the generating function G as

LG(x 1) =

1(teV?  tell2e¥? t e? S (t/2)
2le-1" e ) T 26717 kZ; BT

hence each By(x) is an eigenfunction of £ with eigenvalue 1/2X.

The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift, and for each of the 2" branches
the above calculations carry over, yielding the same trace (2" — 1)™* for every cycle on
length n. Without further ado we substitute everything back and obtain the determinant,

PR z
det(1-z£) = exp[— >z ﬂ] =[1(e- ?) , (23.8)
n=1 k=0
verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, ...,

12", ...

The Bernoulli map spectrum looks reminiscent of the singledfipoint spec-
trum (23.2), with the dterence that the leading eigenvalue here is 1, rather than
1/|Al. The diference is significant: the single fixed-point map is a repeléh
escape rate (1.7) given by theleading eigenvalug = In|A|, while there is no
escape in the case of the Bernoulli map. As already notedsicugsion of the
relation (19.23), for bounded systems the local expansitei(here IfA| = IN2) section 19.4
is balanced by the entropy (here In2, the log of the numbeneifhmagesFs),
yielding zero escape rate.

So far we have demonstrated that our periodic orbit formatascorrect for
two piecewise linear maps in 1 dimension, one with a singledfigoint, and one
with a full binary shift chaotic dynamics. For a single fixeaint, eigenfunctions
are monomials irx. For the chaotic example, they are orthogonal polynomials o
the unit interval. What about higher dimensions? We cheakfaumulas on a
2-dimensional hyperbolic map next.

Example 23.6 The simplest of 2-dimensional maps - a single hyperbolic fixed
point: We start by considering a very simple linear hyperbolic map with a single
hyperbolic fixed point,

f(X) = (fi(Xa, X2), f2a(X1, X2)) = (AsXa, AuX2), O <|Ag <1, |[Ay>1.

The Perron-Frobenius operator (16.10) acts on the 2-dimensional density functions as

Lo(x1, X2) = ﬁp(xl//\& X2/ Au) (23.9)

What are good eigenfunctions? Cribbing the 1-dimensional eigenfunctions for the sta-
ble, contracting x; direction from example 23.1 is not a good idea, as under the iter-
ation of L the high terms in a Taylor expansion of p(x1, X2) in the X, variable would
get multiplied by exponentially exploding eigenvalues 1/A§. This makes sense, as in
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the contracting directions hyperbolic dynamics crunches up initial densities, instead of
smoothing them. So we guess instead that the eigenfunctions are of form

Pk (X, %) = X2 /X ki k=012, (23.10)

a mixture of the Laurent series in the contraction x, direction, and the Taylor series in
the expanding direction, the x, variable. The action of Perron-Frobenius operator on
this set of basis functions

o Al;l
Lok, (X1, X2) = Ad e Prako (X1, X2) » o =As/IA
ul Ay

is smoothing, with the higher ki, ko eigenvectors decaying exponentially faster, by
A'§1 /AL",ZJ'1 factor in the eigenvalue. One verifies by an explicit calculation (undoing
the geometric series expansions to lead to (19.9)) that the trace of L indeed equals
1/|det@ - M)| = 1/|(1 - Ay)(1— Ag)|, from which it follows that all our trace and spectral
determinant formulas apply. The argument applies to any hyperbolic map linearized

around the fixed point of form f(Xy...., Xa) = (A1X1, A2X, . . ., AdXd).

So far we have checked the trace and spectral determinantifas derived
heuristically in chapters 18 and 19, but only for the case-dfimiensional and
2-dimensional linear maps. But for infinite-dimensionattee spaces this game
is fraught with dangers, and we have already been misleaddng\pise linear
examples into spectral confusions: contrast the spectexahple 16.1 and ex-
ample 17.5 with the spectrum computed in example 18.2.

We show next that the above results do carry over to a sizdds of piece-
wise analytic expanding maps.

23.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes Vi&gstiee way to look at
operators is through their matrix representations. Eimiubperators are moving
density functions defined over some state space, and as énajjeve can imple-
ment this only numerically, the temptation is to discretiie state space as in
sect. 16.3. The problem with such state space discretizapproaches that they
sometimes yield plainly wrong spectra (compare examplg Wwith the result of
example 18.2), so we have to think through carefully what that wereally
measure.

An expanding mapf (x) takes an initial smooth density,(x), defined on a
subinterval, stretches it out and overlays it over a langerval, resulting in a new,
smoother density,,1(X). Repetition of this process smoothes the initial density,
so it is natural to represent densitiggx) by their Taylor series. Expanding

) = ). ¢‘nk>(0>§, W= ) 40,02
k=0 i

7
— 14!
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§,0 = [ a0y 1], o x=170).
and substitute the two Taylor series into (16.6):

Prar(y) = (Len) (¥) = j;w dxa(y - F(x)) ¢n(¥) .

The matrix elements follow by evaluating the integral

(23.11)

o XK
L= —,fdxli(y, X
ayt k! =0

we obtain a matrix representation of the evolution operator
K y
X ’
fdxz(y,x)ﬁ = ;%Lk«, kK =012...

which maps the® component of the density of trajectorigg(x) into theyX com-
ponent of the densityy.1(y) one time step later, withi = f(x).

We already have some practice with evaluating derivai{eg)) = ;i,é(y) from

sect. 16.2. This yields a representation of the evoluticerator centered on the
fixed point, evaluated recursively in terms of derivativéthe mapf:

Lk

f dxsO(x — f(x))§ (23.12)

" Ix=1(x)

_ o Ll(d 1\
T \dx (%)) K

x=f(x)

The matrix elements vanish f@r < k, soL is a lower triangular matrix. The
diagonal and the successivé-diagonal matrix elements are easily evaluated it-
eratively by computer algebra

Lo = 1 L _ (k+2)f”
kk = IAAK k+lk = KIAIARZ

For chaotic systems the map is expanding,> 1. Hence the diagonal terms drop

off exponentially, asﬂ,Alk*l, the terms below the diagonal falif@ven faster, and

truncatingL to a finite matrix introduces only exponentially small estor

The trace formula (23.3) takes now a matrix form

zL R

tr T2~ tr T (23.13)
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Figure 23.2: A nonlinear one-branch repeller with a
single fixed pointvg.

In order to illustrate how this works, we work out a few exaespl

In example 23.7 we show that these results carry over to aalytmnsingle-
branch 1-dimensional repeller. Further examples motitiaesteps that lead to
a proof that spectral determinants for general analytiéniedsional expanding
maps, and - in sect. 23.5, for 1-dimensional hyperbolic riraygp- are also entire
functions.

Example 23.7 Perron-Frobenius operator in a matrix representation: As in ex-
ample 23.1, we start with a map with a single fixed point, but this time with a nonlin-
ear piecewise analytic map f with a nonlinear inverse F = =1, sign of the derivative
o =o(F’) = F’/IF’|, and the Perron-Frobenius operator acting on densities analytic in
an open domain enclosing the fixed point X = W,

Lo(y) = fdxé(y— f(x)¢(X) = o F'(y) ¢(F () -
Assume that F is a contraction of the unit disk in the complex plane, i.e.,

IF@l<0<1 and |F'(9l<C<oo for |Z4<1, (23.14)
and expand ¢ in a polynomial basis with the Cauchy integral formula

dw ow)  _ rdw gw)

as(z):n;wn: 5 ae = P o

Combining this with (23.22), we see that in this basis Perron-Frobenius operator L is
represented by the matrix

L£o(W) = > W'Lanbn, L= g"—v‘i' w (23.15)
mn

Taking the trace and summing we get:

¢ fdw o Fm)
UL=Dtm= Pon woFw

n=0

This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w*).

Hence exercise 23.6

cFw) 1

YL TTEw) T w1
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This super-exponential decay of cummula@s ensures that for a repeller
consisting of a single repelling point the spectral deteamt (23.4) isentire in
the complexz plane.

In retrospect, the matrix representation method for sgltire density evolu-
tion problems is eminently sensible — after all, that is theywne solves a close
relative to classical density evolution equations, ther&dinger equationWhen
available, matrix representations fd@renable us to compute many more orders
of cumulant expansions of spectral determinants and mamg eigenvalues of
evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas sucfil8s25) imply that
the dynamical zeta function is a meromorphic function. Treefical import of
this observation is that it guarantees that finite ordermeggs of zeroes of dyn-
amical zeta functions and spectral determinants convergenentially, or - in
cases such as (23.4) - super-exponentially to the exactsaand so the cycle
expansions to be discussed in chapter 20 represem aerturbativeapproach to
chaotic dynamics.

Before turning to specifics we summarize a few facts abowsidal theory
of integral equations, something you might prefer to skipficst reading. The
purpose of this exercise is to understand that the Fredhodory, a theory that
works so well for the Hilbert spaces of quantum mechanics e necessarily
work for deterministic dynamics - the ergodic theory is mbeinder.

fast track:
W sect. 23.4, p. 464
23.3 Classical Fredholm theory

He who would valiant be 'gainst all disaster
Let him in constancy follow the Master.
—John BunyanPilgrim’s Progress

X
‘ The Perron-Frobenius operator

2609 = [ dystx= 1))
has the same appearance as a classical Fredholm integrataspe

Kp(x) = fM dyK(x y)e(y). (23.16)

and one is tempted to resort to classical Fredholm theoryderato establish
analyticity properties of spectral determinants. Thishpat enlightenment is
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blocked by the singular nature of the kernel, which is a itistion, whereas the
standard theory of integral equations usually conceredf itsith regular kernels
K(x,y) € L2(M?). Here we briefly recall some steps of Fredholm theory, lsefor
working out the example of example 23.5.

The general form of Fredholm integral equations of the sédamd is
o9 = [ ayKee) + €9 (23.17)

where#(x) is a given function iL.2(M) and the kerneK(x, y) € L2(M?) (Hilbert-
Schmidt condition). The natural object to study is then thedr integral operator
(23.16), acting on the Hilbert spat&(M): the fundamental property that follows
from the L%(Q) nature of the kernel is that such an operatocaspact that is
close to a finite rank operator.A compact operator has theepty that for every
6 > 0 only afinite number of linearly independent eigenvectors exist comedp
ing to eigenvalues whose absolute value exceed® we immediately realize
(figure 23.5) that much work is needed to bring Perron-Frilseaperators into
this picture.

We rewrite (23.17) in the form
Te =§&, T=1-%K. (23.18)

The Fredholm alternative is now applied to this situatiofoilews: the equation
T¢ = & has a unique solution for evegye L?(M) or there exists a non-zero
solution of7 ¢ = 0, with an eigenvector ok corresponding to the eigenvalue 1.
The theory remains the same if insteadofve consider the operat@r, = 1-1K
with A # 0. AsK is a compact operator there is at most a denumerable sdoof
which the second part of the Fredholm alternative holdsrtefpam this set the
inverse operator (1.17°)~! exists and is bounded (in the operator sense). When
is suficiently small we may look for a perturbative expression fatsan inverse,
as a geometric series

(1-29)7Y = 142K+ PKP 4 = 1+ AW, (23.19)
whereK™ is a compact integral operator with kernel

K(xy) = fM L dn o dz K% 2) Ky,

andW is also compact, as it is given by the convergent sum of cohquearators.
The problem with (23.19) is that the series has a finite radfusonvergence,
while apart from a denumerable set.8$ the inverse operator is well defined.
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A fundamental result in the theory of integral equationssists in rewriting the
resolving kernefW as a ratio of twanalytic functions ofd

D(X.Y; 2)

Wy = =50

If we introduce the notation

() ‘ KR KO
Vi T e yn) e K Yi)

we may write the explicit expressions

= A" Z...7
D) = 1+ (—1)”—f dzl...dzﬂ((
nZ:; n! Mn ... 7

0 m
= exp[—z /l—tr‘Km] (23.20)
m=1 m
N X o (-A)" X z ... Zn
DXy, ) = 7<(y)+n§1 o an dzl...dzﬂ((y 2 ... 7

The quantityD(1) is known as the Fredholm determinant (see (19.24)):it is an
entire analytic function oft, andD(2) = O if and only if 1/1 is an eigenvalue of
XK.

Worth emphasizing again: the Fredholm theory is based ondhgactness
of the integral operator, i.e., on the functional propsr{isummability) of its ker-
nel. As the Perron-Frobenius operator is not compact, tiseaebit of wishful
thinking involved here.

234 Analyticity of spectral determinants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

—Terry Pratchett

Spaces of functions integrable!, or square-integrablé? on interval [Q1]
are mapped into themselves by the Perron-Frobenius opeaaitthin both cases
the constant functiogy = 1 is an eigenfunction with eigenvalue 1. If we focus
our attention ori.! we also have a family df* eigenfunctions,

duly) = g exp(ariky)% (23.21)
=
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with complex eigenvalue 2, parameterized by complexwith Re § > 0. By
varying 6 one realizes that such eigenvalues fill out the entire usk.diSuch
essential spectrunthe casek = 0 of figure 23.5, hides all fine details of the
spectrum.

What's going on? Spacds andL? contain arbitrarily ugly functions, allow-
ing any singularity as long as it is (square) integrable - e is no way that
expanding dynamics can smooth a kinky function with a ndfedéntiable singu-
larity, let’s say a discontinuous step, and that is why tlyeespectrum is dense
rather than discrete. Mathematicians love to wallow in kimisl of muck, but there
is no way to prepare a nowherdidrentiable! initial density in a laboratory. The
only thing we can prepare and measure are piecewise smeatkafralytic) den-
sity functions.

For a bounded linear operatof on a Banach spac®, the spectral radius
is the smallest positive numbpgpec Such that the spectrum is inside the disk of
radius pspeo While the essential spectral radius is the smallest pesitumber
pessSuch that outside the disk of radipgssthe spectrum consists only of isolated

eigenvalues of finite multiplicity (see figure 23.5). exercise 23.5

We may shrink the essential spectrum by letting the Perrobdnius oper-
ator act on a space of smoother functions, exactly as in teebcanch repeller
case of sect. 23.1. We thus consider a smaller sgat€, the space ok times
differentiable functions whodéth derivatives are Holder continuous with an ex-
ponent O< « < 1: the expansion property guarantees that such a space fgcthap
into itself by the Perron-Frobenius operator. In the stripRe 6 < k+ @ mostg,
will cease to be eigenfunctions in the spat¢®; the functiong,, survives only for
integer valued = n. In this way we arrive at a finite set &folatedeigenvalues
1,271, ..., 27k and an essential spectral radjtsgs= 2-+),

We follow a simpler path and restrict the function space duether, namely
to a space of analytic functions, i.e., functions for whibk Taylor expansion is
convergent at each point of the interval I0. With this choice things turn out easy
and elegant. To be more specific, ¢eve a holomorphic and bounded function on
the diskD = B(0, R) of radiusR > 0 centered at the origin. Our Perron-Frobenius
operator preserves the space of such functions providedR)12 < R so all we
need is to choos® > 1. If Fg, s € {0, 1}, denotes thes inverse branch of the
Bernoulli shift (23.6), the corresponding action of ther®efFrobenius operator
is given by Lsh(y) = o F5(y) ho Fs(y), using the Cauchy integral formula along
thedD boundary contour:

dw h(w)F(y)

L) = 9D 211 w— Fs(y) -

(23.22)

For reasons that will be made clear later we have introducggnar = +1 of the
given real branchF’(y)| = o F’(y). For both branches of the Bernoulli shift 1,
but in general one is not allowed to take absolute valuesiasctuld destroy
analyticity. In the above formula one may also replace thealo D by any
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domaincontaining [01] such that the inverse branches maps the closuikiofo

the interior ofD. Why? simply because the kernel remains non-singular under
this condition, i.e.w — F(y) # 0 whenevemw € gD andy € Cl D. The problem

is now reduced to the standard theory for Fredholm detemtsnaect. 23.3. The
integral kernel is no longer singular, traces and determiinare well-defined, and
we can evaluate the trace 6 by means of the Cauchy contour integral formula:

dw oF’'(w)
tr = - . =7

Lr 2ni W — F(w)

Elementary complex analysis shows that sifcenaps the closure d into its

own interior,F has a unique (real-valued) fixed pokitwith a multiplier strictly

smaller than one in absolute value. Residue calculus trergfelds exercise 23.6

TF/(X) 1

TLE S TR T e -1

justifying our previousad hoccalculations of traces using Dirac delta functions.

Example 23.8 Perron-Frobenius operator in a matrix representation: As in ex-
ample 23.1, we start with a map with a single fixed point, but this time with a nonlin-
ear piecewise analytic map f with a nonlinear inverse F = =1, sign of the derivative
o=0(F)=F/F|

Lo(2) = fdxé(Z— f(X))¢(X) = o F'(2 6(F(2).
Assume that F is a contraction of the unit disk, i.e.,
IF(@9l<0<1 and |[F'(9l<C<co for |7<1, (23.23)

and expand ¢ in a polynomial basis by means of the Cauchy formula

dw gw)  _ [dw ¢w)

¢(Z):Z:‘)f¢n: 7 w_z’ ¢n = 2wl
=

Combining this with (23.22), we see that in this basis L is represented by the matrix

L£o(W) = > W'Lanbn, L= g"—v‘i' Wﬂ (23.24)
mn

Taking the trace and summing we get:

tfl::ZLnn: dWL(W)

= 2ni w—F(w)
This integral has but one simple pole at the unique fixed point w* = F(wW*) = f(w*).
Hence
F(w* 1
= 2w .
1-F(w)  [f(w)-1]
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We worked out a very specific example, yet our conclusionsheagener-
alized, provided a number of restrictive requirements ae¢ loy the dynamical
system under investigation: exercise 23.6

1) the evolution operator iswltiplicativealong the flow,

2) the symbolic dynamics isfaite subshift

3) all cycle eigenvalues arkyperbolic (exponentially bounded in
magnitude away from 1),

4) the map (or the flow) iseal analytig i.e., it has a piecewise ana-
lytic continuation to a complex extension of the state space

These assumptions are romantic expectations not satisfiétebdynamical
systems that we actually desire to understand. Still, theyat devoid of physical
interest; for example, nice repellers like our 3-disk garhgioball do satisfy the
above requirements.

Properties 1 and 2 enable us to represent the evolution topexs a finite
matrix in an appropriate basis; properties 3 and 4 enabl® lmtnd the size
of the matrix elements and control the eigenvalues. To sex wdn go wrong,
consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by tblofving
weighted evolution operator

Ly, %) = INFs(y - 1'(9)

whereA!(x) is an eigenvalue of the Jacobian matrix transverse to the 8emi-
classical quantum mechanics suggest operators of this fatmg = 1/2.The
problem with such operators arises from the fact that whersidering the Ja-
cobian matricesly, = JaJp for two successive trajectory segmeatandb, the
corresponding eigenvalues are in genaatimultiplicative, Aap # AaAp (Unless
a, b are iterates of the same prime cy@eso JaJp = J[,“‘”"). Consequently, this
evolution operator is not multiplicative along the traf@gt The theorems require
that the evolution be represented as a matrix in an appteppialynomial basis,
and thus cannot be applied to non-multiplicative kerneés, kernels that do not
satisfy the semi-group proper§!’ £t = £+,

Property 2 is violated by the 1-dimensional tent map (see€ig3.3 (a))
f()=a(l - 11-2x), 1/2<a<1.

All cycle eigenvalues are hyperbolic, but in general théical point x; = 1/2

is not a pre-periodic point, so there is no finite Markov pini and the sym-
bolic dynamics does not have a finite grammar (see sect. @2definitions). In
practice, this means that while the leading eigenvalug ofight be computable,
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Figure 23.3: (a) A (hyperbolic) tent map without
a finite Markov partition. (b) A Markov map with
a marginal fixed point.
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the rest of the spectrum is very hard to control; as the paemds varied, the
non-leading zeros of the spectral determinant move wilbiyud

Property 3 is violated by the map (see figure 23.3 (b))

_ [ x+2¢® | xelg=10,3]
f()()_{Z—ZX . xely=[31]

Here the interval [01] has a Markov partition into two subintervdlsandl,, and

f is monotone on each. However, the fixed poinkat 0 has marginal stability
Ao = 1, and violates condition 3. This type of map is called “imétent” and
necessitates much extra work. The problem is that the dysimithe neighbor-
hood of a marginal fixed point is very slow, with correlatiafecaying as power
laws rather than exponentially. We will discuss such flowshapter 24.

Property 4 is required as the heuristic approach of cha@éaces two major
hurdles:

1. The trace (18.8) is not well defined because the integrakkés singular.

2. The existence and properties of eigenvalues are by nosézer.

Actually, property 4 is quite restrictive, but we need itlre toresent approach,
so that the Banach space of analytic functions in a disk sgoved by the Perron-
Frobenius operator.

In attempting to generalize the results, we encounter akpeoblems. First,
in higher dimensions life is not as simple. Multi-dimensbresidue calculus is
at our disposal but in general requires that we find poly-dos@irect product
of domains in each coordinate) and this need not be the casmn®&, and per-
haps somewhat surprisingly, the ‘counting of periodic wrtpresents a dicult
problem. For example, instead of the Bernoulli shift coesithe doubling map
(11.8) of the circlex — 2x mod 1,x € R/Z. Compared to the shift on the interval
[0, 1] the only diference is that the endpoints 0 and 1 are now glued together. Be
cause these endpoints are fixed points of the map, the nurhbgeles of length
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n decreases by 1. The determinant becomes:

2" 2n-1
det(1- =exp|— ———|=1-z 23.25
(1-2L) p(nznzn_l) (23.25)
The valuez = 1 still comes from the constant eigenfunction, but the Beliho
polynomials no longer contribute to the spectrum (as theyat periodic). Proofs
of these facts, however, ardiitiult if one sticks to the space of analytic functions.

Third, our Cauchy formulaa priori work only when considering purely ex-
panding maps. When stable and unstable directions cosggitave to resort to
stranger function spaces, as shown in the next section.

235 Hyperbolic maps

| can give you a definion of a Banach space, but | do not
know what that means.
—TFederico Bonnettdanach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the followmggox: If f is an
area-preserving hyperbolic and real-analytic map of, ¥angple, a 2-dimensional
torus then the Perron-Frobenius operator is unitary ongheesofL? functions,
and its spectrum is confined to the unit circle. On the othedhavhen we
compute determinants we find eigenvalues scattered arosigtkithe unit disk.
Thinking back to the Bernoulli shift example 23.5 one woulekIto imagine
these eigenvalues as popping up from tRespectrum by shrinking the function
space. Shrinking the space, however, can only make therspestaller so this
is obviously not what happens. Instead one needs to inteodumixed’ function
space where in the unstable direction one resorts to andiyictions, as before,
but in the stable direction one instead considers a ‘dualespd distributions on
analytic functions. Such a space is neither included in noiudesL? and we
have thus resolved the paradox. However, it still remainset@een how traces
and determinants are calculated.

The linear hyperbolic fixed point example 23.6 is somewhateading, as we
have made explicit use of a map that acts independently #hengfable and unsta-
ble directions. For a more general hyperbolic map, there iway to implement
such direct product structure, and the whole argument &glést. Her comes an
idea; use the analyticity of the map to rewrite the PerrasbEnius operator acting
as follows (wherer denotes the sign of the derivative in the unstable diretion

B o h(wg, wy) dwy dw,
Lh(z,2) = 95 95 @ = (W) (fo(WeWa) —22) 211 271" (23.26)
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Figure 23.4: For an analytic hyperbolic map, specify-

ing the contracting coordinate, at the initial rectangle

and the expanding coordinatgat the image rectangle
defines a unique trajectory between the two rectanglé€,,~
In particular,w, andz, (not shown) are uniquely spec-
ified. Fw

Here the functionp should belong to a space of functions analytic respectively
outsidea disk andinsidea disk in the first and the second coordinates; with the
additional property that the function decays to zero as tisé ¢éoordinate tends
to infinity. The contour integrals are along the boundariethese disks. It is

an exercise in multi-dimensional residue calculus to yetift for the above lin-
ear example this expression reduces to (23.9). Such opeifaton the building
blocks in the calculation of traces and determinants. Ongpoave the following:

Theorem: The spectral determinant f@&dimensional hyperbolic analytic maps
is entire. remark 23.8

The proof, apart from the Markov property that is the sameoashie purely
expanding case, relies heavily on the analyticity of the mnathe explicit con-
struction of the function space. The idea is to view the hypkeity as a cross
product of a contracting map in forward time and anotherremting map in back-
ward time. In this case the Markov property introduced atimeto be elaborated
a bit. Instead of dividing the state space into intervalg divides it into rectan-
gles. The rectangles should be viewed as a direct producterfvals (say hori-
zontal and vertical), such that the forward map is contnacitn, for example, the
horizontal direction, while the inverse map is contractimghe vertical direction.
For Axiom A systems (see remark 23.8) one may choose codeda@s close
to the stabl@instable manifolds of the map. With the state space divideal i
N rectangleg M1, Mo, ..., Mn}, Mi = Iih x I/ one needs a complex extension
Dih x Dy, with which the hyperbolicity condition (which simultanesly guaran-
tees the Markov property) can be formulated as follows:

Analytic hyperbolic propertyEither f(M;) N Int(M;) = 0, or for each pair
Wh € CI(Dih), Z, € CI(D‘j’) there exist unique analytic functions wf,, z,; w, =
Wy(Wh, 2) € Int(D}), z, = Zn(Wh, %) € Int(D?), such thatf(wh, wy) = (zn, 2).
Furthermore, ifw, € 1" andz, € 1Y, thenwy € 1Y andz, e Ijh (see figure 23.4).

In plain English, this means for the iterated map that onéaogs the coor-
dinatesz,, z, at timen by the contracting paiz,, wy, wherew, is the contracting
coordinate at time + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (23.26) acts on functiamedydic outside
Dih in the horizontal direction (and tending to zero at infinignd insideD} in
the vertical direction. The contour integrals are pregisébng the boundaries of
these domains.
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A map f satisfying the above condition is calleshalytic hyperbolicand the
theorem states that the associated spectral determinamtiris, and that the trace
formula (18.8) is correct.

Examples of analytic hyperbolic maps are provided by snralydic pertur-
bations of the cat map, the 3-disk repeller, and the 2-dilneakbaker's map.

23.6 Physics of eigenvalues and eigenfunctions

X
J By now we appreciate that any honest attempt to look at thetisperop-
erties of the Perron-Frobenius operator involves hard ematttics, but the reward
is of this dfort is that we are able to control the analyticity propertiedynamical
zeta functions and spectral determinants, and thus stiaséatie claim that these
objects provide a powerful and well-founded theory.

Often (see chapter 17) physically important part of the spatis just the
leading eigenvalue, which gives us the escape rate fromedleepor, for a gen-
eral evolution operator, formulas for expectation valueshservables and their
higher moments. Also the eigenfunction associated to thdirig eigenvalue has
a physical interpretation (see chapter 16): it is the dgmdithe natural measures,
with singular measures ruled out by the proper choice ofuihetfon space. This
conclusion is in accord with the generalized Perron-Fralsetheorem for evolu-
tion operators. In a finite dimensional setting, the staterise remark 23.7

e Perron-Frobenius theorem: Let L;; be a non-negative matrix, such that
some finiten exists for which any initial state has reached any otheestat
(L")ij > 0 Vi, j: then

1. The maximal modulus eigenvalue is non-degenerate, aedl,posi-
tive,

2. The corresponding eigenvector (defined up to a constast)nbn-
negative coordinates.

We may ask what physical information is contained in eigkm& beyond the
leading one: suppose that we have a probability conseryiags (so that the
dominant eigenvalue is 1), for which the essential spec#mius satisfies G<
pess< 6 < 1 on some Banach spagke Denote byP the projection corresponding
to the part of the spectrum inside a disk of radiusVe denote byly, A5..., Au
the eigenvalues outside of this disk, ordered by the siz&eif absolute value,
with 21 = 1. Then we have the following decomposition

M
Lo = Z*“’“ Ligie + PLy (23.27)

i=1
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whenL; are (finite) matrices in Jordan canomical forbg & 0 is a [1x 1] matrix,
as/p is simple, due to the Perron-Frobenius theorem), whefgeesa row vector
whose elements form a basis on the eigenspace correspotediigandy;” is
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Thus, —log A, gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be treated
exactly, as for analytic functions we can employ the Euler-MacLaurin summation for-

a column vector of elements @& (the dual space of linear functionals ov8)y mula

spanning the eigenspace 6f corresponding toy. For iterates of the Perron- 1 = D) - 1))

Frobenius operator, (23.27) becomes (2 = f dwn(w) + Z *Bm(z). (23.32)
o ]

m=1

n W N,y n As we are considering functions with zero average, we have from (23.29) and the fact
Ly = 2 LYiligip + PLlg. (23.28) that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

i=1

20 (27MN (M (1) — M
Gt = 37 EVE7D) =1 70)

m!

1
If we now consider, for example, correlation between ihiti@volvedn steps and j; dzn(2Bn(2) .

final &, m=1

The decomposition (23.32) is also useful in realizing that the linear functionals y; are
singular objects: if we write it as

@L) = fM dy£w) (L) () = fM dw(eo fWew).  (23.29)

. w2 =) Ba@urll,
it follows that &

L we see that these functionals are of the form
L) = Banlt,9) + Y AV (€ ¢) + 0", (23.30) .
i=2 vile] = f dw'¥;(w)e(w) ,
0
where where
" Myt S i
wi( (. 9) = fM dyEWiLivie. Yiw) = % (69 Dw-1) - 6 P(w)) , (23.33)

wheni > 1 and Wo(W) = 1. This representation is only meaningful when the function &

The eigenvalues beyond the leading one provide two piecagamation: is analytic in neighborhoods of w, w — 1.

they rule the convergence of expressions containing higrepoof the evolution

operator to leading order (th& contribution). Moreover ifw1(&,¢) = 0 then exercise 23.7
(23.29) defines a correlation function: as each term in (B3/8nishes exponen-

tially in the n — oo limit, the eigenvaluesly, ..., 1y determine the exponential

decay of correlations for our dynamical system. The prefaeb depend on the

choice of functions, whereas the exponential decay ratesr(dy logarithms of

;) do not: the correlation spectrum is thusiversalproperty of the dynamics

(once we fix the overall functional space on which the PeFaybenius operator

23.7 Troubles ahead

The above discussion confirms that for a series of examplexasing gener-
ality formal manipulations with traces and determinantsjastified: the Perron-

acts). Frobenius operator has isolated eigenvalues, the trageifas are explicitly ver-
ified, and the spectral determinant is an entire function sehzeroes yield the
Example 23.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift ex- eigenvalues. Real life is harder, as we may appreciate dghrdle following
ample (23.6) on the space of analytic functions on a disk: apart from the origin we have considerations:

only simple eigenvalues x = 27%, k = 0,1,.... The eigenvalue 1o = 1 corresponds to
probability conservation: the corresponding eigenfunction By(X) = 1 indicates that the
natural measure has a constant density over the unit interval. If we now take any ana-
Iytic function n(x) with zero average (with respect to the Lebesgue measure), it follows
that wi(n,n) = 0, and from (23.30) the asymptotic decay of the correlation function is
(unless also wi(n,n) = 0)

e Our discussion tacitly assumed something that is phygieallirely reason-
able: our evolution operator is acting on the space of aicdlytctions, i.e.,
we are allowed to represent the initial dengify) by its Taylor expansions
in the neighborhoods of periodic points. This is howevefffam being the exercise 23.1

C,() ~ explnlog2). (23.31) only possible choice: mathematicians often work with thecfion space
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essential spectrum

Figure 23.5: Spectrum of the Perron-Frobenius oper . /

ator acting on the space @**® Holder-continuous spectral radius jsofated eigénvalue
functions: onlyk isolated eigenvalues remain betwee
the spectral radius, and the essential spectral rad
which bounds the “essential,” continuous spectrum.

ck+e j.e., the space df times diferentiable functions whoseth deriva-
tives are Holder continuous with an exponent @ < 1: then everyy” with
Ren > kis an eigenfunction of the Perron-Frobenius operator antave

1

Ly'= IAJAT

v, necC.

This spectrum dfers markedly from the analytic case: only a small number
of isolated eigenvalues remain, enclosed between therapemtius and a
smaller disk of radius AA[<*1, see figure 23.5. In literature the radius of
this disk is called thessential spectral radius

In sect. 23.4 we discussed this point further, with the aic ¢dss trivial
1-dimensional example. The physical point of view is compatary to
the standard setting of ergodic theory, where many chaaotipegties of a
dynamical system are encoded by the presencecohéinuousspectrum,
used to prove asymptotic decay of correlations in the spad& equare-

integrable functions. exercise 23.2

A deceptively innocent assumption is hidden beneath muahwias dis-
cussed so far: that (23.1) maps a given function space isgdf.itTheex-

panding property of the map guarantees that: f{f) is smooth in a do-
main D then f(x/A) is smooth on darger domain, providedA| > 1. For

higher-dimensional hyperbolic flows this is not the casel, as we saw in
sect. 23.5, extensions of the results obtained for expgntiidimensional
maps are highly nontrivial.

Itis not at all clear that the above analysis of a simple argeth, one fixed
point repeller can be extended to dynamical systems withtdCaets of
periodic points: we showed this in sect. 23.4.
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measure sits on a fractal set and is singular everywhere.pdim of this book
is that you neveneed to construct the natural measure, cycle expansiohdavil
that job.

A theory of evaluation of dynamical averages by means ofetfacmulas
and spectral determinants requires a deep understandithgiofanalyticity and
convergence. We worked here through a series of examples:

1. exact spectrum (but for a single fixed point of a linear map)
2. exact spectrum for a locally analytic map, matrix repnéston

3. rigorous proof of existence of discrete spectrum forRetisional hyper-
bolic maps

In the case of especially well-behaved “Axiofti systems, where both the
symbolic dynamics and hyperbolicity are under control,sitpbssible to treat
traces and determinants in a rigorous fashion, and straagtseabout the ana-
lyticity properties of dynamical zeta functions and spalotieterminants outlined
above follow.

Most systems of interest aret of the “axiom A’ category; they are neither
purely hyperbolic nor (as we have seen in chapters 11 and 2they have
finite grammar. The importance of symbolic dynamics is galyegrossly under
appreciated; the crucial ingredient for nice analyticitggerties of zeta functions
is the existence of a finite grammar (coupled with uniformérplicity).

The dynamical systems which areally interesting - for example, smooth
bounded Hamiltonian potentials - are presumably nevey ftilaotic, and the
central question remains: How do we attack this problem iystesnatic and
controllable fashion?

Résumé

Examples of analytic eigenfunctions for 1-dimensional smape seductive, and
make the problem of evaluating ergodic averages appear jeasyntegrate over
the desired observable weighted by the natural measuhg? o, generic natural
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Theorem: Conjecture 3 with technical hypothesis is true
in a lot of cases.

— M. Shub

Commentary

Remark 23.1 Surveys of rigorous theory. We recommend the references listed in re-
mark 1.1 for an introduction to the mathematical literatmethis subject. For a physicist,
Driebe’s monograph [1.19] might be the most accessibl@dhiction into mathematics
discussed briefly in this chapter. There are a number ofwevid the mathematical ap-
proach to dynamical zeta functions and spectral deterrtsnaith pointers to the original
references, such as refs. [23.1, 23.2]. An alternativeagsr to spectral properties of the
Perron-Frobenius operator is given in ref. [23.3].

Ergodic theory, as presented by Sinai [23.14] and othemgpt® one to describe the
densities on which the evolution operator acts in terms thfeeiintegrable or square-
integrable functions. For our purposes, as we have alrezgly, ¢his space is not suitable.
An introduction to ergodic theory is given by Sinai, Korrdfelnd Fomin [23.15]; more
advanced old-fashioned presentations are Walters [2&ri®Denker, Grillenberger and
Sigmund [23.16]; and a more formal one is given by Peters8ri[Z.

Remark 23.2 Fredholm theory. Our brief summary of Fredholm theory is based
on the exposition of ref. [23.4]. A technical introductiohtbe theory from an operator
point of view is given in ref. [23.5]. The theory is presenteca more general form in
ref. [23.6].

Remark 23.3 Bernoulli shift. For a more in-depth discussion, consult chapter 3
of ref. [1.19]. The extension of Fredholm theory to the cas8ernoulli shift onCk+

(in which the Perron-Frobenius operatomist compact — technically it is onlguasi-
compact That is, the essential spectral radius is strictly smalian the spectral radius)
has been given by Ruelle [23.7]: a concise and readablevstateof the results is con-
tained in ref. [23.8]. We see from (23.31) that for the Befiahift the exponential
decay rate of correlations coincides with the Lyapunov egmb: while such an identity
holds for a number of systems, it is by no means a generalyesul there exist explicit
counterexamples.

Remark 23.4 Hyperbolic dynamics. When dealing with hyperbolic systems one
might try to reduce to the expanding case by projecting theadyics along the unstable
directions. As mentioned in the text this can be quite inedltechnically, as such unstable
foliations are not characterized by strong smoothnessepties. For such an approach,
see ref. [23.3].

Remark 23.5 Spectral determinants for smooth flows. The theorem on page 469 also
applies to hyperbolic analytic mapsdrdimensions and smooth hyperbolic analytic flows
in (d + 1) dimensions, provided that the flow can be reduced to awiseenalytic map
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by a suspension on a Poincaré section, complemented byadytiariceiling” function
(3.5) that accounts for a variation in the section returreSmFor example, if we take
as the ceiling functiom(x) = 57®, whereT(x) is the next Poincaré section time for a
trajectory staring ak, we reproduce the flow spectral determinant (19.13). Pragds
beyond the scope of this chapter.

Remark 23.6 Explicit diagonalization.  For 1-dimensional repellers a diagonalization
of an explicit truncatedl ,,, matrix evaluated in a judiciously chosen basis may yieldynan
more eigenvalues than a cycle expansion (see refs. [2331D1]2. The reasons why one
persists in using periodic orbit theory are partially aesthand partially pragmatic. The
explicit calculation oL, demands an explicit choice of a basis and is thus non-inviaria
in contrast to cycle expansions which utilize only the imgmatinformation of the flow. In
addition, we usually do not know how to constrlif, for a realistic high-dimensional
flow, such as the hyperbolic 3-disk game of pinball flow of séc8, whereas periodic
orbit theory is true in higher dimensions and straightfaxhta apply.

Remark 23.7 Perron-Frobenius theorem. A proof of the Perron-Frobenius theo-
rem may be found in ref. [23.12]. For positive transfer opans this theorem has been
generalized by Ruelle [23.13].

Remark 23.8 Axiom A systems. The proofs in sect. 23.5 follow the thesis
work of H.H. Rugh [23.9, 23.18, 23.19]. For a mathematicaiaduction to the subject,
consult the excellent review by V. Baladi [23.1]. It wouldkéaus too far afield to give
and explain the definition of Axiom A systems (see refs. [LR228]). Axiom A implies,
however, the existence of a Markov partition of the statesfieom which the properties
2 and 3 assumed on page 458 follow.

Remark 23.9 Left eigenfunctions.  We shall never use an explicit form of left eigen-
functions, corresponding to highly singular kernels liR8.33). Many details have been
elaborated in a number of papers, such as ref. [23.20], withrimg physical interpreta-
tion.

Remark 23.10 Ulam'sidea. The approximation of Perron-Frobenius operator defined
by (16.14) has been shown to reproduce the spectrum for dkgamaps, once finer
and finer Markov partitions are used [23.21]. The subtle fpofrchoosing a state space
partitioning for a “generic case” is discussed in ref. [23.2
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Exercises

23.1

23.2.

23.3.

23.4

. What space does £ act on?
complete basis on the space of analytic functions on a

Show that (23.2) is a

disk (and thus that we found tlmpleteset of eigen-
values).

What space does £ act on? What can be said about
the spectrum of (23.1) ob'[0, 1]? Compare the result
with figure 23.5.

Euler formula. Derive the Euler formula (23.5),

lul < 1:
= t t2u
1+t = 14—t —
Ly ) *TutTooa-w 23S
tud
= .
(1-u@-w¥)a-w)
=) kk-1)
S 236
H 1-u--1-u
. 2dimensional product expansion**.  We conjecture 23.7.

that the expansion corresponding to exercise 23.3 is in
the 2-dimensional case given by

l_[(l + Ukt
k=0

References

ji Fi(u) «
L (L-u2(1-w?)2--- (1 - uy?
1 2u )
fTowtawa-er
u(1+4u+u?) B
@-vPa-wra-wy

=1

F(u) is a polynomial inu, and the cogéicients fall df
asymptotically a€, ~ u™”. Verify; if you have a proof

to all orders, e-mail it to the authors. (See also solu-
tion 23.3).

Bernoulli shift on L spaces. Check that the family
(23.21) belongs td.}([0,1]). What can be said about
the essential spectral radius b#([0, 1])? A useful ref-
erence is [23.24].

Cauchy integrals. Rework all complex analysis steps
used in the Bernoulli shift example on analytic functions
on a disk.

Escaperate. Consider the escape rate from a strange
repeller: find a choice of trial functions and¢ such
that (23.29) gives the fraction on particles surviving afte
n iterations, if their initial density distribution igo(x).
Discuss the behavior of such an expression in the long
time limit.
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