Chapter 13

Fixed points, and how to get them

Cycles. Is there anything they can't do?
— Mason Porter, channeling Homer Simpson

numerical task in this subject; we must search for the smistik, T),

I I AVING seT UP the dynamical context, we now turn to the key and unavoidable
x e RY, T e R satisfying theperiodic orbit condition

5T (%) = (%), T>0 (13.1)

for a given flow or map.

In chapters 18 and 19 we will establish that spectra of elmiudperators can
be extracted from periodic orbit sums:

Z (spectral eigenvaluesy Z (periodic orbits).

Hence, periodic orbits are the necessary ingredient fduatian of the spectra
of evolution operators. We need to know what periodic orbits exist, and the
symbolic dynamics developed so far is an invaluable tooktovthis end.

Sadly, searching for periodic orbits will never become agutar as a week
on Cote d'Azur, or publishing yet another log-log plotRiys. Rev. Lettershis
chapter is intended as a hands-on guide to extracting perobits, and should
be skipped on first reading - you can return to it whenever tredrfor finding
actual cycles arises. A serious cyclist will want to alsareabout the variationalchapter 29
methods to find cycles, chapter 29. They are particularlyulisehen little is
known about the topology of a flow, such as in high-dimendigeaiodic orbit
searches.

fast track:
W chapter 14, p. 290
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A primecycle p of period T, is a single traversal of the periodic orbit, so our
task will be to find a periodic point € Mp and the shortest tim&, for which
(13.1) has a solution. A periodic point of a flof crossing a Poincaré section
n times is a fixed point oP", the nth iterate ofP, the return map (3.1); hence,
we shall refer to all cycles as “fixed points” in this chapt8y. cyclic invariance, section 5.2
Floquet multipliers and the period of the cycle are independf the choice of
the initial point, so it will siffice to solve (13.1) at a single periodic point.

If the cycle is an attracting limit cycle with a sizable basihattraction, it
can be found by integrating the flow for afBaiently long time. If the cycle is
unstable, simple integration forward in time will not rel@aand the methods
to be described here need to be deployed. In essence, anpdrfethfinding
a cycle is based on devising a new dynamical system whiclepses the same
cycle, but for which this cycle is attractive. Beyond thagere is a great freedom
in constructing such systems, and manyetent methods are used in practice.

Due to the exponential divergence of nearby trajectoriehaotic dynamical
systems, fixed point searches based on direct solutiong dikéd-point condition
(13.1) as an initial value problem can be numerically vergtable. Methods thatchapter 29
start with initial guesses for a number of points along theesysuch as the mul-
tipoint shooting method described here in sect. 13.3, aadidniational methods
of chapter 29, are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a good rstafeding of the
topology of the flow: a preliminary step to any serious padautbit calculation is
preparing a list of all distinct admissible prime periodjerdbol sequences, such as
the list given in table 15.1. The relations between the tewmigymbol sequences
and the spatial layout of the topologically distinct regiaf the state space dis-
cussed in chapters 11 and 12 should enable us to guess thierloaia series of
periodic points along a cycle. Armed with such an informeésgpuwe proceed
to improve it by methods such as Newton-Raphson iteratianskow how this
works by applying Newton method to 1- addlimensional maps. But first, where
are the cycles?

13.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

—T.D. Lee

The simplest and conceptually easiest setting for guesgirgge the cycles are is
the case of planar billiards. The Maupertuis principle akeaction here dictates
that the physical trajectories extremize the length of gor@pmate orbit that
visits a desired sequence of boundary bounces.

Example 13.1 Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 12.5. . Label the three disks by 1, 2 and 3, and associate to sxion 12.5
section 1.4
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trajectory an itinerary, a sequence of labels indicating the order in which the disks are
visited, as in figure 3.8. Given the itinerary, you can construct a guess trajectory by
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake
the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions s.
The computational problem is to find the extremum values of cycle length L(s) where
S=(St,..., Sn), a task that we postpone to sect. 29.3. As an example, the shortpauise 29.2

ods and stabilities of 3-disk cycles computed this way are listed table 29.3, and edmése 13.13

examples are plotted in figure 3.8. It's a no brainer, and millions of such cycles have
been computed.

If we were only so lucky. Real life finds us staring at someghike Yang-
Mills or Navier-Stokes equations, utterly clueless. Wioadd®?

One, there is always mindless computation. In practice cigbtrbe satisfied
with any rampaging robot that finds “the most important” egcl The ergodic
explorations of recurrences sometimes perform admiralaly, \and we discuss
this next.

13.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanovic)

The equilibria and periodic orbits (with the exception ofks and stable limit remark 13.1
cycles) are never seen in simulations and experiments bechay are unstable.
Nevertheless, one does observe close passes to the letilereyuilibria and

periodic orbits, as in figure 13.1. Ergodic exploration hydeime trajectories (or
long-lived transients, in case of strange repellers) caower state space regions

of low velocity, or finite time recurrences. In addition, Bucajectories preferen-section 16.1
tially sample the natural measure of the ‘turbulent’ flond &y initiating searches

within the state space concentrations of natural measasdle search toward the
dynamically important invariant solutions.

The search consists of following a long trajectory in stgtece, and looking
for close returns of the trajectory to itself, see figure 18Vhenever the trajectory
almost closes in a loop (within a given tolerance), anotlémtpclose to this near
miss of a cycle can be taken as an initial condition. Suppieeteby a Newton
routine described below, a sequence of improved initiad¢é@ns may indeed
rapidly lead to closing a cycle. The method preferentialiyl$i the least unstable
orbits, while missing the more unstable ones that congillittle to the cycle
expansions.

This blind search is seriously flawed: in contrast to theskdixample 13.1,
it is not systematic, it gives no insight into organizatidrtlte ergodic sets, and
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x(0)

Figure 13.1: An ergodic trajectory can shadow an un-
stable periodic orbip for a finite time. X(t)

can easily miss very important cycles. Foundations to sesyatic exploration
of ergodic state space are laid in chapters 11 and 12, but biteo& work to
implement.

13.1.2 Cycles found by thinking

Thinking is extra price.
—Dicho Colombiano

A systematic charting out of state space starts out by a lbuegiuilibrium points.
If the equations of motion are a finite set of ODESs, settingviilecity field v(x)
in (2.6) to zero reduces search for equilibria to a searclzdoos of a set of al-
gebraic equations. We should be able, in principle, to emateeand determine
all real and complex zeros in such cases, e.g. the Lorenzmgad? and the
Rossler example 2.3. If the equations of motion and the thaynconditions are
invariant under some symmetry, some equilibria can be chitted by symmetry
considerations: if a function is e.g. antisymmetric, it fnvenish at origin, e.g.
the LorenzEQy = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, createagesspace grid,
about 50x acrossM in each dimension, and compute the velocity figle= v(xy)
at each grid point; a few milliowy values are easily stored. Plgt for which
V2 < €, € << |vmax? but suficiently large that a few thousang are plotted.
If the velocity field varies smoothly across the state sp#ueregiongwl? < e
isolate the (candidate) equilibria. Start a Newton iterativith the smallesjv|?
point within each region. Barring exceptionally fast véidas inv(x) this should
yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of &éqna, but steady
states of PDEs such as the Navier-Stokes flow are themseligoas of ODEs
or PDESs, and much harder to determine.

Equilibria—by definition—do not move, so they cannot be Kitient.” What

makes them dynamically important are their stabistable manifolds. A chaotic
trajectory can be thought of as a sequence of near visitbequilibria. Typi-
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Figure 13.2: (a) They — P;(y,2) return map for /
thex = 0,y > 0 Poincaré section of the Rossler )
flow figure 2.6. (b) Thel-cycle found by taking

the fixed pointyk.n = Yk together with the fixed

point of thez — zreturn map (not shown) as an(@) =~ ‘.. - (b)
initial guess (0y®, Z?) for the Newton-Raphson %
search. (c) The third iteratej,s = P3(yk. ). ’ ! =
of the Poincaré return map (3.1) together with the :
corresponding plot foz.s = P(vi. z), is used T |
to pick initial guesses for the Newton-Raphson —* .
searches for the two 3-cycles: (d) tB81 cycle, ! 8 “
and (e) théd11 cycle. (G. Simon) R TR R O

@ T @

cally such neighborhoods have many stable, contractiregtitins and a handful

of unstable directions. Our strategy will be to generalieehilliard Poincaré sec-
tion mapsPs,,, s, of example 3.9 to maps from a section of the unstable manifold
of equilibrium s, to the section of unstable manifold of equilibriusy 1, and thus
reduce the continuous time flow to a sequence of maps. TheseaP® section
maps do double duty, providing us both with an exact reptasen of dynamics

in terms of maps, and with a covering symbolic dynamics.

We showed in the Lorenz flow example 11.4 how to reduce therasional
Lorenz flow to a 1-dimensional return map. In the Rossler #xample 2.3 we
sketched the attractor by running a long chaotic trajectang noting that the
attractor is very thin, but that otherwise the return maps we plotted were dis-
quieting — figure 3.3 did not appear to be a 1-to-1 map. In the @eample we
show how to use such information to locate cycles approxipatn the remain-
der of this chapter and in chapter 29 we shall learn how toguaoh guesses into
highly accurate cycles.

Example 13.2 Rdssler attractor. We run a long simulation of the Réssler flow
ft, plot a Poincaré section, as in figure 3.2, and extract the corresponding Poincaré
return map P, as in figure 3.3.  Luck is with us, since figure 13.2 (a) return map
y — Pi(y,2) is quite reminiscent of a parabola, we take the unimodal map symbolic
dynamics, sect. 11.3, as our guess for the covering dynamics. Strictly speaking, the
attractor is “fractal,” but for all practical purposes the return map is 1-dimensional; your
printer will need a resolution better than 10'* dots per inch to even begin resolving its
structure.

Periodic points of a prime cycle p of cycle length n,, for the x = 0, y > 0 Poincaré
section of the Réssler flow figure 2.6 are fixed points (y, z) = P"(y, 2) of the nth Poincaré
return map.

Using the fixed point yi+1 = Yk in figure 13.2 (a) together with the simultaneous
fixed point of the z — P1(y, Z) return map (not shown) as a starting guess (0, y, Z%)
for the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find
the cycle figure 13.2(b) with the Poincaré section point (0,Yp, z,), period Tp, expand-
ing, marginal, contracting Floquet multipliers (Ape, Apm. Apc), and the corresponding
Lyapunov exponents (pe, Apm. Apc): exercise 13.10
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T-cycle: (xy,2 = (0,6.091768321.2997319)
T, = 5.88108845586
(Are AtmA1e) = (-2.403953531+ 10714 -1.29x 10714
(Ares A1m A1) = (0.1491415561014 —5.44). (13.2)

The Newton-Raphson method that we used is described in sect. 13.4.

As an example of a search for longer cycles, we use Y.z = Pi(yk, Z), the third
iterate of the Poincaré return map (3.1) plotted in figure 13.2(c), together with a cor-
responding plot for zq,3 = f3(yk. ), to pick starting guesses for the Newton-Raphson
searches for the two 3-cycles plotted in figure 13.2 (d), (e). For a listing of the short
cycles of the Réssler flow, consult exercise 13.10.

The numerical evidence suggests (though a proof is lacking) that all cycles
that comprise the strange attractor of the Réssler flow are hyperbolic, each with an
expanding eigenvalue |A¢l > 1, a contracting eigenvalue |Ac| < 1, and a marginal
eigenvalue |Am| = 1 corresponding to displacements along the direction of the flow.

For the Rdssler flow the contracting eigenvalues turn out to be insanely con-
tracting, a factor of €32 per one par-course of the attractor, so their numerical deter-
mination is quite difficult. Fortunately, they are irrelevant; for all practical purposes
the strange attractor of the Réssler flow is 1-dimensional, a very good realization of a
horseshoe template. (G. Simon and P. Cvitanovic)

13.2 One-dimensional maps

So far we have given some qualitative hints for how to set o periodic orbit
hunt. In what follows, we teach you how to nail down periodibits numerically.

(F. Christiansen)

13.2.1 Inverse iteration

Let us first consider a very simple method to find the unstaptdes of a 1-

dimensional map such as the logistic map. Unstable cyclgésiahensional maps
are attracting cycles of the inverse map. The inverse magtisingle-valued, so
at each backward iteration we have a choice of branch to nikehoosing the
branch according to the symbolic dynamics of the cycle wergineg to find, we

will automatically converge to the desired cycle. The rdteamvergence is given
by the stability of the cycle, i.e., the convergence is exqmially fast. Figure 13.3

shows such a path to ti@d -cycle of the logistic map. exercise 13.13

The method of inverse iteration is fine for finding cycles fed inaps and
some 2-dimensional systems such as the repeller of exdr8i8. It is not par-
ticularly fast, however, especially if the inverse map i$ krmown analytically. It
also completely fails for higher dimensional systems whveeehave both stable
and unstable directions. Inverse iteration will exchargse, but we will still be
left with both stable and unstable directions. The bestegisais to directly attack
the problem of finding solutions df' (x) = x.
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Figure 13.3: The inverse time path to tH@L-cycle of 0.4 1
the logistic mapf (x) = 4x(1 — x) from an initial guess
of x = 0.2. At each inverse iteration we chose the 0 %2 [ X
(respectively 1) branch. o L L L
0 02 04 06 08 1
Figure 13.4: Convergence of Newton method)(
vs. inverse iteration). The error aftem itera- ° i
tions searching for th@1-cycle of the logistic map 12 [ M“MM i
L eb]

f(x) = 4x(1 — x) with an initial starting guess of
x = 0.2,% = 0.8. They-axis is log, of the error.
The diference between the exponential convergence of

the inverse iteration method and the super-exponential 5dl )
convergence of Newton method is dramatic. 0

.15 4
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13.2.2 Newton method

Newton method for determining a zexd of a functionF(x) of one variable is
based on a linearization around a starting gugss

F(X) ~ F(x0) + F'(X0)(X = X)- (13.3)
An approximate solutiorx; of F(x) = 0 is
X1 = Xo — F(x0)/F'(Xo). (13.4)

The approximate solution can then be used as a new starte®s gu an iterative
process. A fixed point of a map is a solution toF(x) = x - f(x) = 0. We
determinex by iterating

g(*m-1) = Xm-1 — F(Xm-1)/F’(Xm-1)
(Xm-1 = f(Xm-1)) - (13.5)

Xm

1
AL T 7

Provided that the fixed point is not marginally stabl&(x) # 1 at the fixed point

X, a fixed point off is a super-stable fixed point of the Newton-Raphson map
g'(x) = 0, and with a sfficiently good initial guess, the Newton-Raphson iteration
will converge super-exponentially fast.

To illustrate the #&iciency of Newton method we compare it to the inverse
iteration method in figure 13.4. Newton method wins handsrdotiie number
of significant digits of the accuracy of theestimate typically doubles with each
iteration.
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F(x)

Figure 13.5: Newton method: bad initial guesé” N
leads to the Newton estimaiD far away from the IR )4
desired zero of (x). Sequence--, x™, x(™D) ...,
starting with a good guess converges super-\ /\/'

exponentially tox*. The method diverges if it iterates e

i
into the basin of attraction of a local minimuxf. X"“V x X X0 xo)

In order to avoid jumping too far from the desired (see figure 13.5), one
often initiates the search by tilkamped Newton methpd

F(x(M)

A = ) gy _ _ FCT)
F/(x™)

AT, O0<AT<1,

takes smallAt steps at the beginning, reinstating to the fil = 1 jumps only
when stfficiently close to the desirext.

13.3 Multipoint shooting method

(F. Christiansen)

Periodic orbits of lengtm are fixed points off" so in principle we could
use the simple Newton method described above to find them. el#mwthis is
not an optimal strategy. The functioff' oscillates wildly, with as many as’2
or more closely spaced fixed points, and finding a specifiogeripoint, such
as one with a given symbolic sequence, requirgsrg good starting guess. For
binary symbolic dynamics we must expect to improve the aaguof our initial
guesses by at least a factor df @ find orbits of lengthn. Furthermore, the
Jacobian off" will be ill-conditioned because eigenvalues go like. But if the
map is broken up, the eigenvalues aré\. A better alternative is theultipoint
or multiple shooting methodWhile it might very hard to give a precise initial
guess for a long periodic orbit, if our guesses are informed bood state space
partition, a rough guess for each point along the desirgelctary might siffice,
as for the individual short trajectory segments the errargemo time to explode
exponentially. And, indeed, in chapter 11 we have devel@pgdalitative theory
of how these cycle points are laid out topologically.

A cycle of lengthn is a zero of thex-dimensional vector functioR:

X1 X1 = (%)
Fx = F| 2 |=| %~ f(x1)
Xn Xn = f(%n-1)

The relationship between the temporal symbol sequenceshanspatial layout
of the topologically distinct regions of state space disedsin chapter 11 enable
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us to guess the location of a series of periodic points alooyrke. Armed with
such informed initial guesses, we can initiate a NewtonkRap iteration. The
iteration in Newton’s method now takes the form

d , B
&F(X)(x -Xx) =-F(X), (13.6)

where L F(x) is an b x n] matrix:

1 =" (%)
-f'(x) 1
L1 . (@37
1
(1) 1

LF(x) =

This matrix can easily be inverted numerically by first ehiating the elements
below the diagonal. This creates non-zero elements inttheolumn. We elimi-
nate these and are done.

Example 13.3 Newton inversion for a 3-cycle. Let us illustrate how this works step
by step for a 3-cycle. The initial setup for a Newton step is:

1 0 —f/(X3) AXy F
[ —f/(Xl) 1 0 J[ AXo ] = 7[ Fs ],
0 —f/(Xz) 1 AX3 F3

where Ax; = X — X is the correction to our initial guess x;, and Fi = % — f(X_1) is the
error at ith periodic point. Eliminate the sub-diagonal elements by adding f’(x;) times
the first row to the second row, then adding f’(xp) times the second row to the third

row:
10 —f"(x3) Axy
[ 01 —(x0) (%a) J[ A% J:
0 0 1-f(e)f (x)f(x) J\ Axs
F

1
—[ F2+f'(X1)F1 ) .
Fa+ f/(x)F2 + /(%) ' (x)F1

The next step is to invert the last element in the diagonal, i.e., divide the third row by
1- f/(x2) f'(x1) f'(xa). If this element is zero at the periodic orbit this step cannot work.
As f/(x2) f'(x1) f’(x3) represents the stability of the cycle (when the Newton iteration
has converged), this is not a good method to find marginally stable cycles. We now
have

10 —f'(x3) AXy F1

(&3 -reioo || a6 )| i,
3+ T (X)Fa+1T"(X) T"(X1)F1

00 1 A% ST e

Finally we add f’(xs) times the third row to the first row and f’(x1) f’(x3) times the third
row to the second row. The left hand side matrix is now the unit matrix, and the right
hand side is an explicit formula for the corrections to our initial guess. With this, we
have gone through one Newton iteration.
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When one sets up Newton iteration on a computer, it is notgsacg to write
the left hand side as a matrix. All one needs is a vector coimgithe f”(x;)'s and
a vector containing the'th column, i.e., the cumulative product of tHé(x)’s
and a vector containing the right hand side. After iteratloa vector containing
the right hand side is the correction to the initial guess. exercise 13.1

13.3.1 d-dimensional maps

¢

Armed with clever initial guesses from a system’s symboloammics, we can
easily extend the Newton-Raphson iteration method-tbmensional maps. In
this casef’(x) is a [d x d] matrix, and %F(x) is an |nd x nd] matrix. In each
of the steps above, we are then manipulatimgws of the left-hand-side matrix.
(Remember that matrices do not commute - always multiplynftbe left.) In
inverting thenth element of the diagonal we are invertingdaq d] matrix (1 —
T /(%)) which can be done as long as none of the eigenvalugp O{x) equals
1, i.e., if the cycle has no marginally stable eigen-diatdi

Example 13.4 Newton method for time delay maps. Some d-dimensional maps
(such as the Hénon map (3.17)) can be written as 1-dimensional time delay maps of
the form

f(x) = (X1, X2, . Xiza)- (13.8)

In this case, diXF(x) is an [n x n] matrix as in the case of usual 1-dimensional maps but
with non-zero matrix elements on d off-diagonals.

13.4 Flows

(R. Paskauskas and P. Cvitanovic)

For a continuous time flow the periodic orbit the Floquet iipli#r (5.16) along

the flow direction always equals unity; the separation of amy points along

a cycle remains unchanged after a completion of the cyclereMait Floquet section 5.2.1
multipliers arise if the flow satisfies conservation lawstsas the symplectic in-

variance for Hamiltonian flows, or the dynamics is equivatriznder a continuous
symmetry transformation. section 10.3

Let us apply the Newton method of (13.4) to search for peciadbits with
unit Floquet multipliers, starting with the case of@ntinuous time flowAssume
that the periodic orbit condition (13.1) holds fo# Ax andT + At, with the initial
guessesx andT close to the desired solution, i.e., wjttx|, At small. The Newton
setup (13.4)

o
Il

X+ AX— FT (X + AX)
x—fT(%) + (1 - J(x) - Ax— v(fT(x))At (13.9)

Q
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sufers from two shortcomings. First, we now need to solve nog ol the pe-
riodic point x, but for the periodl as well. Second, the marginal, unit Floquet
multiplier (5.16) along the flow direction (arising from ttime-translation invari-
ance of a periodic orbit) renders the factor{1) in (13.5) non-invertible: ifx

is close to the solutionfT(x) ~ x, thenJ(x) - V(x) = V(fT(X)) ~ v(X). If Axis
parallel to the velocity vector, the derivative term+J) - Ax ~ 0, and it becomes
harder to invert (X J) as the iterations approach the solution.

As a periodic orbipis a 1-dimensional set of points invariant under dynamics,
Newton guess is not improved by pickiig such that the new point lies on the
orbit of the initial one, so we need to constrain the variatiox to directions
transverse to the flow, by requiring, for example, that

V() - AX = 0. (13.10)

Combining this constraint with the variational conditidr8(9) we obtain a New-
ton setup for flows, best displayed in the matrix form:

( 1\—/(;]()(x) v((;<) )( %): _( x—Of(X) ) (13.11)

This illustrates the general strategy for determiningquéid orbits in presence of
continuous symmetries - for each symmetry, pick a point erotibit by imposing
a constraint, and compute the value of the correspondingintmus parameter
(here the period) by iterating the enlarged set of Newton equations. Coimsig
the variations to transverse ones thus fixes both of Newtsimstcomings: it
breaks the time-translation invariance, and the pefian be read 6 once the
fixed point has been found (hence we omit the superscript ifor the remainder
of this discussion).

More generally, the Poincaré surface of section technifusect. 3.1 turns
the periodic orbit search into a fixed point search on a shyitééfined surface of
section, with a neighboring point variatidrx with respect to a reference poixt
constrained tatayon the surface manifold (3.2),

Ux+Ax)=U(x) =0. (13.12)

The price to pay are constraints imposed by the section: derdo stayon the
surface, arbitrary variationx is not allowed.

Example 13.5 A hyperplane Poincar é section. Let us for the sake of simplicity
assume that the Poincaré surface of section is a (hyper)-plane, i.e., it is given by the
linear condition (3.6)

(X=X0)-h=0, (13.13)
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where i is a vector normal to the Poincaré section and Xo is any point in the Poincaré
section. The Newton setup is then (derived as (13.11))

( 14 v(Ox) )( X X )=( —Fo(x) ) (13.14)

The last row in this equation ensures that X will be in the surface of section, and the
addition of v(X)At, a small vector along the direction of the flow, ensures that such an x
can be found, at least if x is sufficiently close to a fixed point of f.

To illustrate that the addition of the extra constraint resolves the problem of
(1 - J) non-invertability, we consider the particularly simple example of a 3-d flow with
the (x, Yy, 0)-plane as the Poincaré section, a = (0,0,1). Let all trajectories cross the
Poincaré section perpendicularly, so thatv = (0, 0, v;), which means that the marginally
stable direction is also perpendicular to the Poincaré section. Furthermore, let the
unstable direction be parallel to the x-axis and the stable direction be parallel to the
y-axis. The Newton setup is now

1-Au 0 0 01/ o “Fy
0 1-A:0 0| & | |-F
0 o ovil el -F (13.15)
0 o 1 0o)ler 0

If one considers only the upper-left [3 x 3] matrix (which we started out with, prior to
adding the constraint (13.13)) then this matrix is not invertible and the equation does
not have a unique solution. However, the full [4x4] matrix is invertible, as det() =
—v,det(1- M,), where M, is the [2x 2] monodromy matrix for a surface of section
transverse to the orbit (see sect. 5.3). (F. Christiansen)

13.4.1 Cost function

It pays to think in terms of aost(or error) functionl (Ax) = (x+Ax—f (x+AX))?/2.
Periodic orbit condition (13.1) corresponds both to a zér{4x), and of its first
Ax variation. Expand (Ax) to the second order inx, [ ~ A~x2/2 + (x= f(X) -
AX + (x — f(x)2/2, whereAx = (1 — J(X))Ax. To find an extremum, we set the
derivative with respect tax to zero. As the termx~ f(x))2/2 is a constant under
AX variation, let us define an unconstrainsmbt function

lo(AX) = %A~X~A~X+ (x— f(x) - AX, (13.16)

Setting the derivative of this function

NoAN) _ gyt x— f(X) = (1= I(X) - Ax+ x— f(X) (13.17)
AAX
to zero recovers the Newton setup (13.4)

Next, we need to enforce the constraint that curbs the d@recin whichAx
can point. Lagrange multipliers come to help.
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A local surface of sectiogan be constructed whefi(x) is “near” the initial
point x. A natural choice is a hyperplane perpendicular to the Vigleectorv(x).
The reference pointy in (13.13) isx itself, and the surface of section condition
isU(x+ Ax) = v(X) - Ax = 0. Introduce a Lagrange multiplier, and assemble a
cost function with the constraint:

12(AX, 2) = %&x CAX+ [X = F(X)] - AX+ AV(X) - AX. (13.18)

Now we diferentiatel 1 (AX, 1) with respect to each argument and set the deriva-
tives to zero. We recover the Newton setup (13.11), with thgrange multiplier

A = At interpreted as the time increment needed to pl&eg onto the section,
f(x) = f(X) + v(f(X)At.

A global surface of sectiois a fixed surfac&) (x+ AX) — U(xo) ~ dU(X)AX+
U(X) — U(xo) that hopefully transects all or a significant portion ofueent parts
of the flow. Itis not as ‘natural’ as the local section (13,1@)t hard to avoid in
practice, and one is interested not only in the fixed poifitbut in the global
reach of its unstable manifold as well. The simplest cha@ehyperplane (13.13)example 13.5
The cost function and the variational equations are then

lIo2(AX, At) = %Ax[l = J)]AX+ (x = (X)) Ax

+ At(OU(X)AX+ U(X) — U(X0)) , (13.19)
1-300 aU(x) \[ A ()
( 6U(x;( 0X )( Ai( ) = ‘( u();()_U?XO) ) (13.20)

Furthercontinuous symmetriesan be handled in the same fashion. Suppose,
for example, that we are searching for periodic orbits of anHtanian flow.
There, periodic orbits not only have the time-translatigmmietry, but energy-
translation symmetry as well. What is energy-translatipmraetry? If there ex-
ists a periodic orbit ax with energyH(x) = E, and periodr, itis very likely that it
belongs to a family of orbitsx+ eAX(E), T +€eAt(E)) continuous under variation of
E. As with the time-translation symmetry, this implies a Uglibquet multiplier:
indeed, we know from sect. 7.4 that symplectic eigenvaloesecin pairs, so unit
multiplier in the time direction implies a unit multiplieniits dual, the energy
direction, (A, Ag,---) = (1, 1,---). But extending the number of constraints is no
longer a problem: add more Lagrange multipliers. Considerfollowing system

13(A% A1, 22) = AX[1 - I(X)]AX/2 + (x— f(X)) Ax
+ A (U(Xx+ Ax) — U(X0)) + 22 (H(x + AX) — Eg) (13.21)

1-J(X) oU(X) OH(X)\( Ax x— f(X)
AU(x) 0 0 A |=-] UK -U(x) (13.22)
AH(X) 0 0 A2 H(®) - Eo
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This is the Newton iteration setup for how to search for aqgakiciorbit of a Hamil-
tonian flow with a global surface of sectidf(x) = U(Xo) and fixed energyEo.
Note that these instructions do not put every iteration oarfaseU (x) = U(Xg)
and energyH(x) = Eo, unless the surface is a plabgx) = a- (X — ), but
instead assure that the iterations (provided they conyemgeapproach super-
exponentially to the surfaces.

For periodic orbits multi-point shooting generalizes ia #ame way as (13.7),
but with n additional equations — one for each point on a Poincaréasecthe
Newton setup looks like this:

1 =Jn Ax -F
1 1
-h 1 V1 AXo -F>
... 1 v ) )
“J1 1 ax | =1 -Fn
a Aty 0
a Aty 0

Solving this equation resembles the corresponding tasknfps. However, we
will need to invert a [( + 1)n x (d + 1)n] matrix rather than ad x d] matrix.

Résum é

There is no general computational algorithm that is guaeshto find all solutions
(up to a given period'may) to the periodic orbit condition

¥ T = f'(x), T>0

for a general flow or mapping. Due to the exponential divecgesf nearby trajec-
tories in chaotic dynamical systems, direct solution offfegodic orbit condition
can be numerically very unstable.

A prerequisite for a systematic and complete cycle searatgisod (but hard
to come by) understanding of the topology of the flow. Usualhg starts by -
possibly analytic - determination of the equilibria of thewl Their locations, sta-
bilities, stability eigenvectors and invariant manifoloi$er skeletal information
about the topology of the flow. The next step is numerical fomg evolution
of “typical” trajectories of the dynamical system underestigation. Such nu-
merical experiments build up the “natural measure” andakewich regions are

most frequently visited. Periodic orbit searches can themitialized by taking section 16.4.1

nearly recurring orbit segments and deforming them intsedioorbits. With a
suficiently good initial guess, the Newton-Raphson formula

ERTEEES
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yields improved estimate = x+6x, T’ = T +6T. Iteration then yields the period
T and the location of a periodic poi}, in the Poincaré sectiornxg — xo) - a =0,
wherea is a vector normal to the Poincaré sectiorxat

The problem one faces with high-dimensional flows is thair ttegpology is
hard to visualize, and that even with a decent starting gieesspoint on a peri-
odic orbit, methods like the Newton-Raphson method aréylitefail. Methods chapter 29
that start with initial guesses for a number of points aldmg ¢ycle, such as the
multipoint shooting method of sect. 13.3, are more robustlagation (or vari-
ational) methods take this strategy to its logical extreams] start by a guess of
not a few points along a periodic orbit, but a guess of theremtibit. Just as
these methods are intimately related to variational ppiesi and path integrals,
we postpone their introduction until chapter 29.

Commentary

Remark 13.1 Close recurrence searches.  For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial @gses for periodic orbits from
close recurrences of a long ergodic trajectory seems likebaious idea. Nevertheless,
ref. [13.1] is frequently cited. Such methods have beenayeml by many, among them
G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. iBelvack [25.2, 20.14,

20.15, 13.11, 13.12] (see also sect. 20.6). Sometimes anelet@rmine most of the
admissible itineraries and their weights without working hard, but method comes with
no guarantee.

Remark 13.2 Piecewise linear maps. The Lozi map (3.19) is linear, and hundred of
thousands of cycles can easily be computed B2]2natrix multiplication and inversion.

Remark 13.3 Cycles, searches, and symmetries. A few comments about the role
of symmetries in actual extraction of cycles. In tiedisk billiard example, a fundamen-
tal domain is a sliver of th&l-disk configuration space delineated by a pair of adjoining
symmetry axes. The flow may further be reduced to a return mapRoincaré surface
of section. While in principle any Poincaré surface of mecwill do, a natural choice in
the present context are crossings of symmetry axes, seepéx@ri. In actual numerical
integrations only the last crossing of a symmetry line needie determined. The cycle is
run in global coordinates and the group elements assoaidtiedhe crossings of symme-
try lines are recorded,; integration is terminated when tfét aloses in the fundamental
domain. Periodic orbits with non-trivial symmetry subgpsiare particularly easy to find
since their points lie on crossings of symmetry lines, searle 7.7.

Remark 13.4 Newton gone wild. ~ Skowronek and Gora [13.24ffer an interesting
discussion of Newton iterations gone wild while searchiogrbots of polynomials as
simple as® + 1 = 0.
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Remark 13.5 Symmetries of the symbol square. For a discussion of symmetry lines
see refs. [7.5, 7.6, 13.6, 7.7, 7.8]. It is an open questiea (smark 21.2) as to how time
reversal symmetry can be exploited for reduction of cycleamsions of chapter 20. For
example, the fundamental domain symbolic dynamics forcegfle symmetric systems
is discussed in some detail in sect. 21.5, but how does orwleeitom time-reversal

symmetric symbol sequences to desymmetriz@dstate space symbols?
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Exercises

13.1. Cycles of the Ulam map. Test your cycle-searching 13.7. Fundamental domain fixed points.
routines by computing a bunch of short cycles and their

13.2.

13.3.

13.4.

13.5.

13.6.

exerCycles - 13jun2008

stabilities for the Ulam mapf (x) = 4x(1 - X) .

Cycles stabilities for the Ulam map (exact). In ex-

ercise 13.1 you should have observed that the numerical

results for the cycle Floquet multipliers (4.46) are ex-
ceptionally simple: the Floquet multiplier of thg = 0
fixed point is 4, while the eigenvalue of any other
cycle is+2". Prove this. (Hint: the Ulam map can be
conjugated to the tent map (11.4). This problem is per-
haps too hard, but give it a try - the answer is in many
introductory books on nonlinear dynamics.)

Stability of billiard cycles.
few simple cycles:

Compute the stabilities of

13.8.

(a) A simple scattering billiard is the two-disk bil-
liard. It consists of a disk of radius one centered
at the origin and another disk of unit radius lo-
cated at distancé + 2. Find all periodic orbits
for this system and compute their stabilities. (You
might have done this already in exercise 1.2; at
least now you will be able to see where you went
wrong when you knew nothing about cycles and
their extraction.)

(b

=

Find all periodic orbits and their stabilities for a
billiard ball bouncing between the diagonet x
and one of the hyperbola branches —1/x.

13.10.

Cycle stability.  Add to the pinball simulator of ex-

ercise 8.1 a routine that evaluates the expanding eigen-

value for a given cycle.

Pinball cycles. Determine the stability and length of
all fundamental domain prime cycles of the binary sym-
bol string lengths up to Sof longer) for R : a = 6 3-disk
pinball.

Newton-Raphson method. Implement the Newton-
Raphson method in 2-dimensional and apply it to the
determination of pinball cycles.

. A test of your pinball simulator: 10-cycle.

Use the for-
mula (8.11) for billiard Jacobian matrix to compute the
periodsT, and the expanding eigenvalugs of the fun-
damental domail (the 2-cycle of the complete 3-disk
space) and (the 3-cycle of the complete 3-disk space)
fixed points:

| T Ap
0:| R-2 R-1+RVI-2/R (1323
7 2R 2R
1. | R- V3 —7§+1—%,/1— V3/R

We have set the disk radiusao= 1.
Fundamental domain 2-cycle.  Verify that for the

10-cycle the cycle length and the trace of the Jacobian
matrix are given by

2yR2- VBR+1-2,

Lo =
trdio = Awo+1/Aw0 (13.24)
2
- 22+ 1 Lio(L1o+2)
2 \3r/2-1

The 10-cycle is drawn in figure 12.12. The unstable
eigenvalue\ o follows from (7.30).

Test
your exercise 8.3 pinball simulator stability evaluation
by checking numerically the exact analy1i@-cycle sta-
bility formula (13.24).

Rossler flow cycles. (continuation of exer-
cise 4.4) Determine all cycles for the Rossler flow
(2.17), as well as their stabilities, up to

(a) 3 Poincaré section returns

(b) (optional) 5 Poincaré section returns (Hint: imple-
ment (13.14), the multipoint shooting methods for
flows; you can cross-check your shortest cycles
against the ones listed in the table.)

Table: The Rossler flow (2.17): The itinerary p, a peri-
odic point % = (0,Yp, z,) and the expanding eigenvalue
A for all cycles up to topological length 7.

(J. Mathiesen, G. Simon, A. Basu)
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n p Y Ae 3
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923
011 2.932877 5.670806  5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4.162799 3.303903 -23.19958
01111 3.278914 4.890452  36.88633
6 001011 2.122094 7.886173 -6.857665
010111  4.059211 3.462266 61.64909
011111  3.361494 4.718206 -92.08255
7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284
13.11. Cycle stability, helium.  Add to the helium integrator

13.12.

13.13.

13.14.

exerCycles - 13jun2008

of exercise 2.10 a routine that evaluates the expanding
eigenvalue for a given cycle.

Colinear helium cycles. Determine the stability
and length of all fundamental domain prime cycles up
to symbol sequence length 5 or longer for collinear he-
lium of figure 7.2.

Uniqueness of unstable cycles'. Prove that there
exists only one 3-disk prime cycle for a given finite ad-
missible prime cycle symbol string. Hints: look at the

Poincaré maps; can you show that there is exponggn4s,

tial contraction to a unique periodic point with a given
itinerary? Exercise 29.1 might be helpful in thigcet.
Inverse iteration method for a Hénon repeller.

Table: All periodic orbits up to 6 bounces for the Hamil-
tonian Henon mapping (13.25) witha 6. Listed are
the cycle itinerary, its expanding eigenvaldg, and its
“center of mass” The “center of mass” is listed be-
cause it turns out that it is often a simple rational or a
quadratic irrational.

P Ap 2. Xpi
0 0.71516&10° -0.607625
1 -0.29528%10"  0.274292
10 -0.98989810!  0.333333
100 -0.13190%10° -0.206011
110 0.558970107 0.539345
1000 -0.10443010* -0.816497
1100 0.57799810*  0.000000
1110 -0.10368810°  0.816497
10000 -0.76065810° -1.426032
11000  0.44455210° -0.606654
10100  0.77020210° 0.151375
11100 -0.71068810° 0.248463
11010 -0.58949910° 0.870695
11110  0.39099410° 1.095485
100000 -0.54574610° -2.034134
110000 0.32222210° -1.215250
101000 0.51376210" -0.450662
111000 -0.47846210° -0.366025
110100 -0.63940010° 0.333333
101100 -0.63940010* 0.333333
111100 0.39019410* 0.548583
111010  0.10949210* 1.151463
111110 -0.10433810* 1.366025

13.17. “Center of mass” puzzle™.
mass,” tabulated in exercise 13.14, often a rational
ber?
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Consider the Henon map (3.17) for the area-prese
(“Hamiltonian”) parameter valub = —1. The coord
nates of a periodic orbit of lengtiy, satisfy the equati

Xpi+1 + Xpj-1=1— axﬁ, , =1, Np, (13.25

with the periodic boundary conditioxyo = Xpn,. Ver
ify that the itineraries and the stabilities of the shor
riodic orbits for the Heénon repeller (13.25)at 6 ar
as listed above.

Hint: you can use any cycle-searching routine you\
but for the complete repeller case (all binary sequ
are realized), the cycles can be evaluated simply |
verse iteration, using the inverse of (13.25)

1-x..,—-X..
, pi+1 pi-1 .
>(p_i =Spi —a i=1..np.

Here S;,; are the signs of the corresponding peri
point coordinatesSp; = Xp;i/|Xp;il- (G. Vattay

Ulam map periodic points.
cise 11.8)

(continued from exe

(a) compute the five periodic points of cycl®01
for the Ulam map (11.55(X) = 4x(1 — x) . usin
your Newton or other routine.

(b) compute the five periodic points of cyd®000

(c) plotthe above two cycles on the graph of the L
map, verify that their topological ordering is a
the ‘canonical’ full tent map exercise 11.8.

(d) (optional) This works only for the Ulam m
compute periodic points by conjugating the
tent map periodic points of exercise 11.8 usin
ercise 6.4.

13.16. Newton setups for flows.

(a) We have formulated three Newton setups
flows: the ‘local’ setup (13.11), the ‘hyperpla
setup (13.14), and the ‘global’ setup (13.20).
rive (13.20) and verify that if the surface of <
tion is a hyperplane, it reduces to (13.14). (t
it is not inconceivable that (13.14) is wrong ¢
stands.)

(b) (optional) Derive (13.22), the Newton setup
Hamiltonian flows.

Why is the “center
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