
Chapter 13

Fixed points, and how to get them

Cycles. Is there anything they can’t do?
— Mason Porter, channeling Homer Simpson

Having set up the dynamical context, we now turn to the key and unavoidable
numerical task in this subject; we must search for the solutions (x,T),
x ∈ Rd, T ∈ R satisfying theperiodic orbit condition

f t+T(x) = f t(x) , T > 0 (13.1)

for a given flow or map.

In chapters 18 and 19 we will establish that spectra of evolution operators can
be extracted from periodic orbit sums:

∑

(spectral eigenvalues)=
∑

(periodic orbits).

Hence, periodic orbits are the necessary ingredient for evaluation of the spectra
of evolution operators. We need to know what periodic orbitscan exist, and the
symbolic dynamics developed so far is an invaluable tool toward this end.

Sadly, searching for periodic orbits will never become as popular as a week
on Côte d’Azur, or publishing yet another log-log plot inPhys. Rev. Letters. This
chapter is intended as a hands-on guide to extracting periodic orbits, and should
be skipped on first reading - you can return to it whenever the need for finding
actual cycles arises. A serious cyclist will want to also learn about the variationalchapter 29

methods to find cycles, chapter 29. They are particularly useful when little is
known about the topology of a flow, such as in high-dimensional periodic orbit
searches.

fast track:

chapter 14, p. 290
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CHAPTER 13. FIXED POINTS, AND HOW TO GET THEM 269

A primecycle p of periodTp is a single traversal of the periodic orbit, so our
task will be to find a periodic pointx ∈ Mp and the shortest timeTp for which
(13.1) has a solution. A periodic point of a flowf t crossing a Poincaré section
n times is a fixed point ofPn, the nth iterate ofP, the return map (3.1); hence,
we shall refer to all cycles as “fixed points” in this chapter.By cyclic invariance, section 5.2

Floquet multipliers and the period of the cycle are independent of the choice of
the initial point, so it will suffice to solve (13.1) at a single periodic point.

If the cycle is an attracting limit cycle with a sizable basinof attraction, it
can be found by integrating the flow for a sufficiently long time. If the cycle is
unstable, simple integration forward in time will not reveal it, and the methods
to be described here need to be deployed. In essence, any method for finding
a cycle is based on devising a new dynamical system which possesses the same
cycle, but for which this cycle is attractive. Beyond that, there is a great freedom
in constructing such systems, and many different methods are used in practice.

Due to the exponential divergence of nearby trajectories inchaotic dynamical
systems, fixed point searches based on direct solutions of the fixed-point condition
(13.1) as an initial value problem can be numerically very unstable. Methods thatchapter 29

start with initial guesses for a number of points along the cycle, such as the mul-
tipoint shooting method described here in sect. 13.3, and the variational methods
of chapter 29, are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a good understanding of the
topology of the flow: a preliminary step to any serious periodic orbit calculation is
preparing a list of all distinct admissible prime periodic symbol sequences, such as
the list given in table 15.1. The relations between the temporal symbol sequences
and the spatial layout of the topologically distinct regions of the state space dis-
cussed in chapters 11 and 12 should enable us to guess the location of a series of
periodic points along a cycle. Armed with such an informed guess we proceed
to improve it by methods such as Newton-Raphson iteration; we show how this
works by applying Newton method to 1- andd-dimensional maps. But first, where
are the cycles?

13.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

— T.D. Lee

The simplest and conceptually easiest setting for guessingwhere the cycles are is
the case of planar billiards. The Maupertuis principle of least action here dictates
that the physical trajectories extremize the length of an approximate orbit that
visits a desired sequence of boundary bounces.

Example 13.1 Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 12.5. . Label the three disks by 1, 2 and 3, and associate to everysection 12.5

section 1.4
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CHAPTER 13. FIXED POINTS, AND HOW TO GET THEM 270

trajectory an itinerary, a sequence of labels indicating the order in which the disks are
visited, as in figure 3.8. Given the itinerary, you can construct a guess trajectory by
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake
the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions si .
The computational problem is to find the extremum values of cycle length L(s) where
s= (s1, . . . , sn) , a task that we postpone to sect. 29.3. As an example, the short peri-exercise 29.2

exercise 13.13ods and stabilities of 3-disk cycles computed this way are listed table 29.3, and some
examples are plotted in figure 3.8. It’s a no brainer, and millions of such cycles have
been computed.

If we were only so lucky. Real life finds us staring at something like Yang-
Mills or Navier-Stokes equations, utterly clueless. What to do?

One, there is always mindless computation. In practice one might be satisfied
with any rampaging robot that finds “the most important” cycles. The ergodic
explorations of recurrences sometimes perform admirably well, and we discuss
this next.

13.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanović)

The equilibria and periodic orbits (with the exception of sinks and stable limit remark 13.1

cycles) are never seen in simulations and experiments because they are unstable.
Nevertheless, one does observe close passes to the least unstable equilibria and
periodic orbits, as in figure 13.1. Ergodic exploration by long-time trajectories (or
long-lived transients, in case of strange repellers) can uncover state space regions
of low velocity, or finite time recurrences. In addition, such trajectories preferen-section 16.1

tially sample the natural measure of the ‘turbulent’ flow, and by initiating searches
within the state space concentrations of natural measure bias the search toward the
dynamically important invariant solutions.

The search consists of following a long trajectory in state space, and looking
for close returns of the trajectory to itself, see figure 13.1. Whenever the trajectory
almost closes in a loop (within a given tolerance), another point close to this near
miss of a cycle can be taken as an initial condition. Supplemented by a Newton
routine described below, a sequence of improved initial conditions may indeed
rapidly lead to closing a cycle. The method preferentially finds the least unstable
orbits, while missing the more unstable ones that contribute little to the cycle
expansions.

This blind search is seriously flawed: in contrast to the 3-disk example 13.1,
it is not systematic, it gives no insight into organization of the ergodic sets, and
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Figure 13.1: An ergodic trajectory can shadow an un-
stable periodic orbitp for a finite time.

p

x(t)

x(0)

can easily miss very important cycles. Foundations to a systematic exploration
of ergodic state space are laid in chapters 11 and 12, but are abit of work to
implement.

13.1.2 Cycles found by thinking

Thinking is extra price.

—Dicho Colombiano

A systematic charting out of state space starts out by a hunt for equilibrium points.
If the equations of motion are a finite set of ODEs, setting thevelocity fieldv(x)
in (2.6) to zero reduces search for equilibria to a search forzeros of a set of al-
gebraic equations. We should be able, in principle, to enumerate and determine
all real and complex zeros in such cases, e.g. the Lorenz example 2.2 and the
Rössler example 2.3. If the equations of motion and the boundary conditions are
invariant under some symmetry, some equilibria can be determined by symmetry
considerations: if a function is e.g. antisymmetric, it must vanish at origin, e.g.
the LorenzEQ0 = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, create a state space grid,
about 50xk acrossM in each dimension, and compute the velocity fieldvk = v(xk)
at each grid point; a few millionvk values are easily stored. Plotxk for which
|vk|2 < ǫ, ǫ << |vmax|2 but sufficiently large that a few thousandxk are plotted.
If the velocity field varies smoothly across the state space,the regions|vk|2 < ǫ
isolate the (candidate) equilibria. Start a Newton iteration with the smallest|vk|2
point within each region. Barring exceptionally fast variations inv(x) this should
yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of equations, but steady
states of PDEs such as the Navier-Stokes flow are themselves solutions of ODEs
or PDEs, and much harder to determine.

Equilibria–by definition–do not move, so they cannot be “turbulent.” What
makes them dynamically important are their stable/unstable manifolds. A chaotic
trajectory can be thought of as a sequence of near visitations of equilibria. Typi-
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Figure 13.2: (a) They → P1(y, z) return map for
the x = 0, y > 0 Poincaré section of the Rössler
flow figure 2.6. (b) The1-cycle found by taking
the fixed pointyk+n = yk together with the fixed
point of thez → z return map (not shown) as an
initial guess (0, y(0), z(0)) for the Newton-Raphson
search. (c) The third iterate,yk+3 = P3

1(yk, zk),
of the Poincaré return map (3.1) together with the
corresponding plot forzk+3 = P3

2(yk, zk), is used
to pick initial guesses for the Newton-Raphson
searches for the two 3-cycles: (d) the001 cycle,
and (e) the011 cycle. (G. Simon)
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cally such neighborhoods have many stable, contracting directions and a handful
of unstable directions. Our strategy will be to generalize the billiard Poincaré sec-
tion mapsPsn+1←sn of example 3.9 to maps from a section of the unstable manifold
of equilibrium sn to the section of unstable manifold of equilibriumsn+1, and thus
reduce the continuous time flow to a sequence of maps. These Poincaré section
maps do double duty, providing us both with an exact representation of dynamics
in terms of maps, and with a covering symbolic dynamics.

We showed in the Lorenz flow example 11.4 how to reduce the 3-dimensional
Lorenz flow to a 1-dimensional return map. In the Rössler flowexample 2.3 we
sketched the attractor by running a long chaotic trajectory, and noting that the
attractor is very thin, but that otherwise the return maps that we plotted were dis-
quieting – figure 3.3 did not appear to be a 1-to-1 map. In the next example we
show how to use such information to locate cycles approximately. In the remain-
der of this chapter and in chapter 29 we shall learn how to turnsuch guesses into
highly accurate cycles.

Example 13.2 Rössler attractor. We run a long simulation of the Rössler flow
f t, plot a Poincaré section, as in figure 3.2, and extract the corresponding Poincaré
return map P, as in figure 3.3. Luck is with us, since figure 13.2 (a) return map
y → P1(y, z) is quite reminiscent of a parabola, we take the unimodal map symbolic
dynamics, sect. 11.3, as our guess for the covering dynamics. Strictly speaking, the
attractor is “fractal,” but for all practical purposes the return map is 1-dimensional; your
printer will need a resolution better than 1014 dots per inch to even begin resolving its
structure.

Periodic points of a prime cycle p of cycle length np for the x = 0, y > 0 Poincaré
section of the Rössler flow figure 2.6 are fixed points (y, z) = Pn(y, z) of the nth Poincaré
return map.

Using the fixed point yk+1 = yk in figure 13.2 (a) together with the simultaneous
fixed point of the z→ P1(y, z) return map (not shown) as a starting guess (0, y(0), z(0))
for the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find
the cycle figure 13.2 (b) with the Poincaré section point (0, yp, zp), period Tp, expand-
ing, marginal, contracting Floquet multipliers (Λp,e,Λp,m,Λp,c), and the corresponding
Lyapunov exponents (λp,e, λp,m, λp,c): exercise 13.10
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1-cycle: (x, y, z) = (0, 6.09176832,1.2997319)

T1 = 5.88108845586

(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353, 1+ 10−14,−1.29× 10−14)

(λ1,e, λ1,m, λ1,c) = (0.149141556, 10−14,−5.44). (13.2)

The Newton-Raphson method that we used is described in sect. 13.4.

As an example of a search for longer cycles, we use yk+3 = P3
1(yk, zk), the third

iterate of the Poincaré return map (3.1) plotted in figure 13.2 (c), together with a cor-
responding plot for zk+3 = f 3(yk, zk), to pick starting guesses for the Newton-Raphson
searches for the two 3-cycles plotted in figure 13.2 (d), (e). For a listing of the short
cycles of the Rössler flow, consult exercise 13.10.

The numerical evidence suggests (though a proof is lacking) that all cycles
that comprise the strange attractor of the Rössler flow are hyperbolic, each with an
expanding eigenvalue |Λe| > 1, a contracting eigenvalue |Λc| < 1, and a marginal
eigenvalue |Λm| = 1 corresponding to displacements along the direction of the flow.

For the Rössler flow the contracting eigenvalues turn out to be insanely con-
tracting, a factor of e−32 per one par-course of the attractor, so their numerical deter-
mination is quite difficult. Fortunately, they are irrelevant; for all practical purposes
the strange attractor of the Rössler flow is 1-dimensional, a very good realization of a
horseshoe template. (G. Simon and P. Cvitanović)

13.2 One-dimensional maps

So far we have given some qualitative hints for how to set out on a periodic orbit
hunt. In what follows, we teach you how to nail down periodic orbits numerically.

(F. Christiansen)

13.2.1 Inverse iteration

Let us first consider a very simple method to find the unstable cycles of a 1-
dimensional map such as the logistic map. Unstable cycles of1-dimensional maps
are attracting cycles of the inverse map. The inverse map is not single-valued, so
at each backward iteration we have a choice of branch to make.By choosing the
branch according to the symbolic dynamics of the cycle we aretrying to find, we
will automatically converge to the desired cycle. The rate of convergence is given
by the stability of the cycle, i.e., the convergence is exponentially fast. Figure 13.3
shows such a path to the01-cycle of the logistic map. exercise 13.13

The method of inverse iteration is fine for finding cycles for 1-d maps and
some 2-dimensional systems such as the repeller of exercise13.13. It is not par-
ticularly fast, however, especially if the inverse map is not known analytically. It
also completely fails for higher dimensional systems wherewe have both stable
and unstable directions. Inverse iteration will exchange these, but we will still be
left with both stable and unstable directions. The best strategy is to directly attack
the problem of finding solutions off T(x) = x.

cycles - 22jun2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 13. FIXED POINTS, AND HOW TO GET THEM 274

Figure 13.3: The inverse time path to the01-cycle of
the logistic mapf (x) = 4x(1− x) from an initial guess
of x = 0.2. At each inverse iteration we chose the 0
(respectively 1) branch.
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Figure 13.4: Convergence of Newton method (♦)
vs. inverse iteration (+). The error aftern itera-
tions searching for the01-cycle of the logistic map
f (x) = 4x(1 − x) with an initial starting guess of
x1 = 0.2, x2 = 0.8. They-axis is log10 of the error.
The difference between the exponential convergence of
the inverse iteration method and the super-exponential
convergence of Newton method is dramatic.
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13.2.2 Newton method

Newton method for determining a zerox∗ of a functionF(x) of one variable is
based on a linearization around a starting guessx0:

F(x) ≈ F(x0) + F′(x0)(x− x0). (13.3)

An approximate solutionx1 of F(x) = 0 is

x1 = x0 − F(x0)/F′(x0). (13.4)

The approximate solution can then be used as a new starting guess in an iterative
process. A fixed point of a mapf is a solution toF(x) = x − f (x) = 0. We
determinex by iterating

xm = g(xm−1) = xm−1 − F(xm−1)/F′(xm−1)

= xm−1 −
1

1− f ′(xm−1)
(xm−1 − f (xm−1)) . (13.5)

Provided that the fixed point is not marginally stable,f ′(x) , 1 at the fixed point
x, a fixed point off is a super-stable fixed point of the Newton-Raphson mapg,
g′(x) = 0, and with a sufficiently good initial guess, the Newton-Raphson iteration
will converge super-exponentially fast.

To illustrate the efficiency of Newton method we compare it to the inverse
iteration method in figure 13.4. Newton method wins hands down: the number
of significant digits of the accuracy of thex estimate typically doubles with each
iteration.
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Figure 13.5: Newton method: bad initial guessx(b)

leads to the Newton estimatex(b+1) far away from the
desired zero ofF(x). Sequence· · · , x(m), x(m+1), · · ·,
starting with a good guess converges super-
exponentially tox∗. The method diverges if it iterates
into the basin of attraction of a local minimumxc. x(b)
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In order to avoid jumping too far from the desiredx∗ (see figure 13.5), one
often initiates the search by thedamped Newton method,

∆x(m) = x(m+1) − x(m) = − F(x(m))

F′(x(m))
∆τ , 0 < ∆τ ≤ 1 ,

takes small∆τ steps at the beginning, reinstating to the full∆τ = 1 jumps only
when sufficiently close to the desiredx∗.

13.3 Multipoint shooting method

(F. Christiansen)

Periodic orbits of lengthn are fixed points off n so in principle we could
use the simple Newton method described above to find them. However, this is
not an optimal strategy. The functionf n oscillates wildly, with as many as 2n

or more closely spaced fixed points, and finding a specific periodic point, such
as one with a given symbolic sequence, requires averygood starting guess. For
binary symbolic dynamics we must expect to improve the accuracy of our initial
guesses by at least a factor of 2n to find orbits of lengthn. Furthermore, the
Jacobian off n will be ill-conditioned because eigenvalues go likeΛn. But if the
map is broken up, the eigenvalues are≈ Λ. A better alternative is themultipoint
or multiple shooting method. While it might very hard to give a precise initial
guess for a long periodic orbit, if our guesses are informed by a good state space
partition, a rough guess for each point along the desired trajectory might suffice,
as for the individual short trajectory segments the errors have no time to explode
exponentially. And, indeed, in chapter 11 we have developeda qualitative theory
of how these cycle points are laid out topologically.

A cycle of lengthn is a zero of then-dimensional vector functionF:

F(x) = F



























x1
x2
·
xn



























=



























x1 − f (xn)
x2 − f (x1)
· · ·

xn − f (xn−1)



























.

The relationship between the temporal symbol sequences andthe spatial layout
of the topologically distinct regions of state space discussed in chapter 11 enable
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us to guess the location of a series of periodic points along acycle. Armed with
such informed initial guesses, we can initiate a Newton-Raphson iteration. The
iteration in Newton’s method now takes the form

d
dx

F(x)(x′ − x) = −F(x), (13.6)

where d
dxF(x) is an [n× n] matrix:

d
dxF(x) =





































1 − f ′(xn)
− f ′(x1) 1

· · · 1
· · · 1

− f ′(xn−1) 1





































. (13.7)

This matrix can easily be inverted numerically by first eliminating the elements
below the diagonal. This creates non-zero elements in thenth column. We elimi-
nate these and are done.

Example 13.3 Newton inversion for a 3-cycle. Let us illustrate how this works step
by step for a 3-cycle. The initial setup for a Newton step is:




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,

where ∆xi = x′i − xi is the correction to our initial guess xi , and Fi = xi − f (xi−1) is the
error at ith periodic point. Eliminate the sub-diagonal elements by adding f ′(x1) times
the first row to the second row, then adding f ′(x2) times the second row to the third
row:
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The next step is to invert the last element in the diagonal, i.e., divide the third row by
1− f ′(x2) f ′(x1) f ′(x3). If this element is zero at the periodic orbit this step cannot work.
As f ′(x2) f ′(x1) f ′(x3) represents the stability of the cycle (when the Newton iteration
has converged), this is not a good method to find marginally stable cycles. We now
have
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Finally we add f ′(x3) times the third row to the first row and f ′(x1) f ′(x3) times the third
row to the second row. The left hand side matrix is now the unit matrix, and the right
hand side is an explicit formula for the corrections to our initial guess. With this, we
have gone through one Newton iteration.
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When one sets up Newton iteration on a computer, it is not necessary to write
the left hand side as a matrix. All one needs is a vector containing the f ′(xi)’s and
a vector containing then’th column, i.e., the cumulative product of thef ′(xi)’s
and a vector containing the right hand side. After iterationthe vector containing
the right hand side is the correction to the initial guess. exercise 13.1

13.3.1 d-dimensional maps

Armed with clever initial guesses from a system’s symbolic dynamics, we can
easily extend the Newton-Raphson iteration method tod-dimensional maps. In
this casef ′(xi) is a [d × d] matrix, and d

dxF(x) is an [nd × nd] matrix. In each
of the steps above, we are then manipulatingd rows of the left-hand-side matrix.
(Remember that matrices do not commute - always multiply from the left.) In
inverting thenth element of the diagonal we are inverting a [d × d] matrix (1−
∏

f ′(xi)) which can be done as long as none of the eigenvalues of
∏

f ′(xi) equals
1, i.e., if the cycle has no marginally stable eigen-directions.

Example 13.4 Newton method for time delay maps. Some d-dimensional maps
(such as the Hénon map (3.17)) can be written as 1-dimensional time delay maps of
the form

f (xi) = f (xi−1, xi−2, . . . , xi−d). (13.8)

In this case, d
dxF(x) is an [n× n] matrix as in the case of usual 1-dimensional maps but

with non-zero matrix elements on d off-diagonals.

13.4 Flows

(R. Paškauskas and P. Cvitanović)

For a continuous time flow the periodic orbit the Floquet multiplier (5.16) along
the flow direction always equals unity; the separation of anytwo points along
a cycle remains unchanged after a completion of the cycle. More unit Floquet section 5.2.1

multipliers arise if the flow satisfies conservation laws, such as the symplectic in-
variance for Hamiltonian flows, or the dynamics is equivariant under a continuous
symmetry transformation. section 10.3

Let us apply the Newton method of (13.4) to search for periodic orbits with
unit Floquet multipliers, starting with the case of acontinuous time flow. Assume
that the periodic orbit condition (13.1) holds forx+∆x andT+∆t, with the initial
guessesx andT close to the desired solution, i.e., with|∆x|, ∆t small. The Newton
setup (13.4)

0 = x+ ∆x− f T+∆t(x+ ∆x)

≈ x− f T(x) + (1− J(x)) · ∆x− v( f T(x))∆t (13.9)
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suffers from two shortcomings. First, we now need to solve not only for the pe-
riodic point x, but for the periodT as well. Second, the marginal, unit Floquet
multiplier (5.16) along the flow direction (arising from thetime-translation invari-
ance of a periodic orbit) renders the factor (1− J) in (13.5) non-invertible: ifx
is close to the solution,f T(x) ≈ x, thenJ(x) · v(x) = v( f T(x)) ≈ v(x). If ∆x is
parallel to the velocity vector, the derivative term (1− J) · ∆x ≈ 0, and it becomes
harder to invert (1− J) as the iterations approach the solution.

As a periodic orbitp is a 1-dimensional set of points invariant under dynamics,
Newton guess is not improved by picking∆x such that the new point lies on the
orbit of the initial one, so we need to constrain the variation ∆x to directions
transverse to the flow, by requiring, for example, that

v(x) · ∆x = 0 . (13.10)

Combining this constraint with the variational condition (13.9) we obtain a New-
ton setup for flows, best displayed in the matrix form:

(

1− J(x) v(x)
v(x) 0

) (

∆x
∆t

)

= −
(

x− f (x)
0

)

(13.11)

This illustrates the general strategy for determining periodic orbits in presence of
continuous symmetries - for each symmetry, pick a point on the orbit by imposing
a constraint, and compute the value of the corresponding continuous parameter
(here the periodT) by iterating the enlarged set of Newton equations. Constraining
the variations to transverse ones thus fixes both of Newton’sshortcomings: it
breaks the time-translation invariance, and the periodT can be read off once the
fixed point has been found (hence we omit the superscript inf T for the remainder
of this discussion).

More generally, the Poincaré surface of section techniqueof sect. 3.1 turns
the periodic orbit search into a fixed point search on a suitably defined surface of
section, with a neighboring point variation∆x with respect to a reference pointx
constrained tostayon the surface manifold (3.2),

U(x+ ∆x) = U(x) = 0 . (13.12)

The price to pay are constraints imposed by the section: in order tostayon the
surface, arbitrary variation∆x is not allowed.

Example 13.5 A hyperplane Poincar é section. Let us for the sake of simplicity
assume that the Poincaré surface of section is a (hyper)-plane, i.e., it is given by the
linear condition (3.6)

(x− x0) · n̂ = 0, (13.13)
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where n̂ is a vector normal to the Poincaré section and x0 is any point in the Poincaré
section. The Newton setup is then (derived as (13.11))

(

1− J v(x)
n̂ 0

) (

x′ − x
∆t

)

=

(

−F(x)
0

)

. (13.14)

The last row in this equation ensures that x will be in the surface of section, and the
addition of v(x)∆t, a small vector along the direction of the flow, ensures that such an x
can be found, at least if x is sufficiently close to a fixed point of f .

To illustrate that the addition of the extra constraint resolves the problem of
(1− J) non-invertability, we consider the particularly simple example of a 3-d flow with
the (x, y, 0)-plane as the Poincaré section, a = (0, 0, 1). Let all trajectories cross the
Poincaré section perpendicularly, so that v = (0, 0, vz), which means that the marginally
stable direction is also perpendicular to the Poincaré section. Furthermore, let the
unstable direction be parallel to the x-axis and the stable direction be parallel to the
y-axis. The Newton setup is now

























1− Λu 0 0 0
0 1− Λs 0 0
0 0 0 vz
0 0 1 0

















































δx
δy
δz
δτ

























=

























−Fx
−Fy
−Fz
0

























. (13.15)

If one considers only the upper-left [3 × 3] matrix (which we started out with, prior to
adding the constraint (13.13)) then this matrix is not invertible and the equation does
not have a unique solution. However, the full [4×4] matrix is invertible, as det (·) =
−vzdet (1− M⊥), where M⊥ is the [2×2] monodromy matrix for a surface of section
transverse to the orbit (see sect. 5.3). (F. Christiansen)

13.4.1 Cost function

It pays to think in terms of acost(or error) functionI (∆x) = (x+∆x− f (x+∆x))2/2.
Periodic orbit condition (13.1) corresponds both to a zero of I (∆x), and of its first
∆x variation. ExpandI (∆x) to the second order in∆x, Ĩ ≈ ∆̃x

2
/2 + (x − f (x)) ·

∆̃x + (x − f (x))2/2, where∆̃x = (1 − J(x))∆x. To find an extremum, we set the
derivative with respect tõ∆x to zero. As the term (x− f (x))2/2 is a constant under
∆x variation, let us define an unconstrainedcost function

I0(∆̃x) =
1
2
∆̃x · ∆̃x+ (x− f (x)) · ∆̃x , (13.16)

Setting the derivative of this function

∂I0(∆̃x)

∂∆̃x
= ∆̃x+ x− f (x) = (1− J(x)) · ∆x+ x− f (x) (13.17)

to zero recovers the Newton setup (13.4)

Next, we need to enforce the constraint that curbs the directions in which∆x
can point. Lagrange multipliers come to help.
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A local surface of sectioncan be constructed whenf (x) is “near” the initial
point x. A natural choice is a hyperplane perpendicular to the velocity vectorv(x).
The reference pointx0 in (13.13) isx itself, and the surface of section condition
is U(x+ ∆x) = v(x) · ∆x = 0. Introduce a Lagrange multiplierλ, and assemble a
cost function with the constraint:

I1(∆̃x, λ) =
1
2
∆̃x · ∆̃x+ [x− f (x)] · ∆̃x+ λv(x) · ∆̃x . (13.18)

Now we differentiateI1(∆x, λ) with respect to each argument and set the deriva-
tives to zero. We recover the Newton setup (13.11), with the Lagrange multiplier
λ = ∆t interpreted as the time increment needed to placef (x) onto the section,
f (x) → f (x) + v( f (x))∆t.

A global surface of sectionis a fixed surfaceU(x+∆x)−U(x0) ≈ ∂U(x)∆x+
U(x) −U(x0) that hopefully transects all or a significant portion of recurrent parts
of the flow. It is not as ‘natural’ as the local section (13.10), but hard to avoid in
practice, and one is interested not only in the fixed point itself, but in the global
reach of its unstable manifold as well. The simplest choice is a hyperplane (13.13).example 13.5

The cost function and the variational equations are then

I2(∆x,∆t) =
1
2
∆x[1 − J(x)]∆x+ (x− f (x))∆x

+ ∆t (∂U(x)∆x+ U(x) − U(x0)) , (13.19)

(

1− J(x) ∂U(x)
∂U(x) 0

) (

∆x
∆t

)

= −
(

x− f (x)
U(x) − U(x0)

)

(13.20)

Furthercontinuous symmetriescan be handled in the same fashion. Suppose,
for example, that we are searching for periodic orbits of a Hamiltonian flow.
There, periodic orbits not only have the time-translation symmetry, but energy-
translation symmetry as well. What is energy-translation symmetry? If there ex-
ists a periodic orbit atx with energyH(x) = E, and periodT, it is very likely that it
belongs to a family of orbits (x+ǫ∆x(E),T+ǫ∆t(E)) continuous under variation of
E. As with the time-translation symmetry, this implies a unitFloquet multiplier:
indeed, we know from sect. 7.4 that symplectic eigenvalues come in pairs, so unit
multiplier in the time direction implies a unit multiplier in its dual, the energy
direction, (Λt,ΛE, · · ·) = (1, 1, · · ·). But extending the number of constraints is no
longer a problem: add more Lagrange multipliers. Consider the following system

I3(∆x, λ1, λ2) = ∆x[1 − J(x)]∆x/2 + (x− f (x))∆x

+ λ1 (U(x+ ∆x) − U(x0)) + λ2 (H(x+ ∆x) − E0) (13.21)



















1− J(x) ∂U(x) ∂H(x)
∂U(x) 0 0
∂H(x) 0 0





































∆x
λ1
λ2



















= −



















x− f (x)
U(x) − U(x0)

H(x) − E0



















(13.22)
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This is the Newton iteration setup for how to search for a periodic orbit of a Hamil-
tonian flow with a global surface of sectionU(x) = U(x0) and fixed energyE0.
Note that these instructions do not put every iteration on a surfaceU(x) = U(x0)
and energyH(x) = E0, unless the surface is a planeU(x) = a · (x − x0), but
instead assure that the iterations (provided they converge) will approach super-
exponentially to the surfaces.

For periodic orbits multi-point shooting generalizes in the same way as (13.7),
but with n additional equations – one for each point on a Poincaré section. The
Newton setup looks like this:



































































1 −Jn
−J1 1

· · · 1
· · · 1

−Jn−1 1

v1
. . .

vn

a
. . .

a

0
. . .

0





































































































































∆x1
∆x2
·
·
∆xn
∆t1
·
∆tn



































































=



































































−F1
−F2
·
·
−Fn

0
.

0



































































.

Solving this equation resembles the corresponding task formaps. However, we
will need to invert a [(d + 1)n× (d + 1)n] matrix rather than a [d × d] matrix.

Résum é

There is no general computational algorithm that is guaranteed to find all solutions
(up to a given periodTmax) to the periodic orbit condition

f t+T(x) = f t(x) , T > 0

for a general flow or mapping. Due to the exponential divergence of nearby trajec-
tories in chaotic dynamical systems, direct solution of theperiodic orbit condition
can be numerically very unstable.

A prerequisite for a systematic and complete cycle search isa good (but hard
to come by) understanding of the topology of the flow. Usuallyone starts by -
possibly analytic - determination of the equilibria of the flow. Their locations, sta-
bilities, stability eigenvectors and invariant manifoldsoffer skeletal information
about the topology of the flow. The next step is numerical long-time evolution
of “typical” trajectories of the dynamical system under investigation. Such nu-
merical experiments build up the “natural measure” and reveal which regions are
most frequently visited. Periodic orbit searches can then be initialized by taking section 16.4.1

nearly recurring orbit segments and deforming them into closed orbits. With a
sufficiently good initial guess, the Newton-Raphson formula

(

1− J v(x)
a 0

) (

δx
δT

)

=

(

f (x) − x
0

)
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yields improved estimatex′ = x+δx,T′ = T+δT. Iteration then yields the period
T and the location of a periodic pointxp in the Poincaré section (xp − x0) · a = 0,
wherea is a vector normal to the Poincaré section atx0.

The problem one faces with high-dimensional flows is that their topology is
hard to visualize, and that even with a decent starting guessfor a point on a peri-
odic orbit, methods like the Newton-Raphson method are likely to fail. Methods chapter 29

that start with initial guesses for a number of points along the cycle, such as the
multipoint shooting method of sect. 13.3, are more robust. Relaxation (or vari-
ational) methods take this strategy to its logical extreme,and start by a guess of
not a few points along a periodic orbit, but a guess of the entire orbit. Just as
these methods are intimately related to variational principles and path integrals,
we postpone their introduction until chapter 29.

Commentary

Remark 13.1 Close recurrence searches. For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial guesses for periodic orbits from
close recurrences of a long ergodic trajectory seems like anobvious idea. Nevertheless,
ref. [13.1] is frequently cited. Such methods have been deployed by many, among them
G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. Davidchack [25.2, 20.14,
20.15, 13.11, 13.12] (see also sect. 20.6). Sometimes one can determine most of the
admissible itineraries and their weights without working too hard, but method comes with
no guarantee.

Remark 13.2 Piecewise linear maps. The Lozi map (3.19) is linear, and hundred of
thousands of cycles can easily be computed by [2×2] matrix multiplication and inversion.

Remark 13.3 Cycles, searches, and symmetries. A few comments about the role
of symmetries in actual extraction of cycles. In theN-disk billiard example, a fundamen-
tal domain is a sliver of theN-disk configuration space delineated by a pair of adjoining
symmetry axes. The flow may further be reduced to a return map on a Poincaré surface
of section. While in principle any Poincaré surface of section will do, a natural choice in
the present context are crossings of symmetry axes, see example 7.7. In actual numerical
integrations only the last crossing of a symmetry line needsto be determined. The cycle is
run in global coordinates and the group elements associatedwith the crossings of symme-
try lines are recorded; integration is terminated when the orbit closes in the fundamental
domain. Periodic orbits with non-trivial symmetry subgroups are particularly easy to find
since their points lie on crossings of symmetry lines, see example 7.7.

Remark 13.4 Newton gone wild. Skowronek and Gora [13.24] offer an interesting
discussion of Newton iterations gone wild while searching for roots of polynomials as
simple asx2 + 1 = 0.
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Remark 13.5 Symmetries of the symbol square. For a discussion of symmetry lines
see refs. [7.5, 7.6, 13.6, 7.7, 7.8]. It is an open question (see remark 21.2) as to how time
reversal symmetry can be exploited for reduction of cycle expansions of chapter 20. For
example, the fundamental domain symbolic dynamics for reflection symmetric systems
is discussed in some detail in sect. 21.5, but how does one recode from time-reversal
symmetric symbol sequences to desymmetrized 1/2 state space symbols?
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Exercises

13.1. Cycles of the Ulam map. Test your cycle-searching
routines by computing a bunch of short cycles and their
stabilities for the Ulam mapf (x) = 4x(1− x) .

13.2. Cycles stabilities for the Ulam map (exact). In ex-
ercise 13.1 you should have observed that the numerical
results for the cycle Floquet multipliers (4.46) are ex-
ceptionally simple: the Floquet multiplier of thex0 = 0
fixed point is 4, while the eigenvalue of any othern-
cycle is±2n. Prove this. (Hint: the Ulam map can be
conjugated to the tent map (11.4). This problem is per-
haps too hard, but give it a try - the answer is in many
introductory books on nonlinear dynamics.)

13.3. Stability of billiard cycles. Compute the stabilities of
few simple cycles:

(a) A simple scattering billiard is the two-disk bil-
liard. It consists of a disk of radius one centered
at the origin and another disk of unit radius lo-
cated at distanceL + 2. Find all periodic orbits
for this system and compute their stabilities. (You
might have done this already in exercise 1.2; at
least now you will be able to see where you went
wrong when you knew nothing about cycles and
their extraction.)

(b) Find all periodic orbits and their stabilities for a
billiard ball bouncing between the diagonaly = x
and one of the hyperbola branchesy = −1/x.

13.4. Cycle stability. Add to the pinball simulator of ex-
ercise 8.1 a routine that evaluates the expanding eigen-
value for a given cycle.

13.5. Pinball cycles. Determine the stability and length of
all fundamental domain prime cycles of the binary sym-
bol string lengths up to 5 (or longer) for R : a = 6 3-disk
pinball.

13.6. Newton-Raphson method. Implement the Newton-
Raphson method in 2-dimensional and apply it to the
determination of pinball cycles.

13.7. Fundamental domain fixed points. Use the for-
mula (8.11) for billiard Jacobian matrix to compute the
periodsTp and the expanding eigenvaluesΛp of the fun-
damental domain0 (the 2-cycle of the complete 3-disk
space) and1 (the 3-cycle of the complete 3-disk space)
fixed points:

Tp Λp

0: R− 2 R− 1+ R
√

1− 2/R

1: R−
√

3 − 2R√
3
+ 1− 2R√

3

√

1−
√

3/R

(13.23)

We have set the disk radius toa = 1.

13.8. Fundamental domain 2-cycle. Verify that for the
10-cycle the cycle length and the trace of the Jacobian
matrix are given by

L10 = 2

√

R2 −
√

3R+ 1− 2,

tr J10 = Λ10 + 1/Λ10 (13.24)

= 2L10 + 2+
1
2

L10(L10+ 2)2
√

3R/2− 1
.

The 10-cycle is drawn in figure 12.12. The unstable
eigenvalueΛ10 follows from (7.30).

13.9. A test of your pinball simulator: 10-cycle. Test
your exercise 8.3 pinball simulator stability evaluation
by checking numerically the exact analytic10-cycle sta-
bility formula (13.24).

13.10. Rössler flow cycles. (continuation of exer-
cise 4.4) Determine all cycles for the Rössler flow
(2.17), as well as their stabilities, up to

(a) 3 Poincaré section returns

(b) (optional) 5 Poincaré section returns (Hint: imple-
ment (13.14), the multipoint shooting methods for
flows; you can cross-check your shortest cycles
against the ones listed in the table.)

Table: The Rössler flow (2.17): The itinerary p, a peri-
odic point xp = (0, yp, zp) and the expanding eigenvalue
Λp for all cycles up to topological length 7.
(J. Mathiesen, G. Simon, A. Basu)
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np p yp zp Λe
1 1 6.091768 1.299732 -2.403953
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923

011 2.932877 5.670806 5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4.162799 3.303903 -23.19958

01111 3.278914 4.890452 36.88633
6 001011 2.122094 7.886173 -6.857665

010111 4.059211 3.462266 61.64909
011111 3.361494 4.718206 -92.08255

7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284

13.11. Cycle stability, helium. Add to the helium integrator
of exercise 2.10 a routine that evaluates the expanding
eigenvalue for a given cycle.

13.12. Colinear helium cycles. Determine the stability
and length of all fundamental domain prime cycles up
to symbol sequence length 5 or longer for collinear he-
lium of figure 7.2.

13.13. Uniqueness of unstable cycles∗∗∗. Prove that there
exists only one 3-disk prime cycle for a given finite ad-
missible prime cycle symbol string. Hints: look at the
Poincaré maps; can you show that there is exponen-
tial contraction to a unique periodic point with a given
itinerary? Exercise 29.1 might be helpful in this effort.

13.14. Inverse iteration method for a Hénon repeller.
Table: All periodic orbits up to 6 bounces for the Hamil-
tonian Hénon mapping (13.25) with a= 6. Listed are
the cycle itinerary, its expanding eigenvalueΛp, and its
“center of mass.” The “center of mass” is listed be-
cause it turns out that it is often a simple rational or a
quadratic irrational.

p Λp
∑

xp,i

0 0.715168×101 -0.607625
1 -0.295285×101 0.274292
10 -0.989898×101 0.333333
100 -0.131907×103 -0.206011
110 0.558970×102 0.539345
1000 -0.104430×104 -0.816497
1100 0.577998×104 0.000000
1110 -0.103688×103 0.816497
10000 -0.760653×104 -1.426032
11000 0.444552×104 -0.606654
10100 0.770202×103 0.151375
11100 -0.710688×103 0.248463
11010 -0.589499×103 0.870695
11110 0.390994×103 1.095485
100000 -0.545745×105 -2.034134
110000 0.322221×105 -1.215250
101000 0.513762×104 -0.450662
111000 -0.478461×104 -0.366025
110100 -0.639400×104 0.333333
101100 -0.639400×104 0.333333
111100 0.390194×104 0.548583
111010 0.109491×104 1.151463
111110 -0.104338×104 1.366025

Consider the Hénon map (3.17) for the area-preserving
(“Hamiltonian”) parameter valueb = −1. The coordi-
nates of a periodic orbit of lengthnp satisfy the equation

xp,i+1 + xp,i−1 = 1− ax2
p,i , i = 1, ..., np , (13.25)

with the periodic boundary conditionxp,0 = xp,np. Ver-
ify that the itineraries and the stabilities of the short pe-
riodic orbits for the Hénon repeller (13.25) ata = 6 are
as listed above.

Hint : you can use any cycle-searching routine you wish,
but for the complete repeller case (all binary sequences
are realized), the cycles can be evaluated simply by in-
verse iteration, using the inverse of (13.25)

x′′p,i = Sp,i

√

1− x′p,i+1 − x′p,i−1

a
, i = 1, ..., np .

Here Sp,i are the signs of the corresponding periodic
point coordinates,Sp,i = xp,i/|xp,i |. (G. Vattay)

13.15. Ulam map periodic points. (continued from exer-
cise 11.8)

(a) compute the five periodic points of cycle10011
for the Ulam map (11.5)f (x) = 4x(1− x) . using
your Newton or other routine.

(b) compute the five periodic points of cycle10000

(c) plot the above two cycles on the graph of the Ulam
map, verify that their topological ordering is as in
the ‘canonical’ full tent map exercise 11.8.

(d) (optional) This works only for the Ulam map:
compute periodic points by conjugating the full
tent map periodic points of exercise 11.8 using ex-
ercise 6.4.

13.16. Newton setups for flows.

(a) We have formulated three Newton setups for
flows: the ‘local’ setup (13.11), the ‘hyperplane’
setup (13.14), and the ‘global’ setup (13.20). De-
rive (13.20) and verify that if the surface of sec-
tion is a hyperplane, it reduces to (13.14). (Hint:
it is not inconceivable that (13.14) is wrong as it
stands.)

(b) (optional) Derive (13.22), the Newton setup for
Hamiltonian flows.

13.17. “Center of mass” puzzle∗∗. Why is the “center of
mass,” tabulated in exercise 13.14, often a rational num-
ber?
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