Chapter 13

Fixed points, and how to get them

Cycles. Is there anything they can’t do?
— Mason Porter, channeling Homer Simpson

numerical task in this subject; we must search for the smisti, T),

I I AVING ST UP the dynamical context, we now turn to the key and unavoidable
x € RY, T e R satisfying theperiodic orbit condition

f*T(x) = f'(, T>0 (13.1)

for a given flow or map.

In chapters 18 and 19 we will establish that spectra of eiiuiperators can
be extracted from periodic orbit sums:

Z (spectral eigenvalues¥ Z (periodic orbits).

Hence, periodic orbits are the necessary ingredient fduatian of the spectra
of evolution operators. We need to know what periodic orbis exist, and the
symbolic dynamics developed so far is an invaluable toohtolthis end.

Sadly, searching for periodic orbits will never become agutar as a week
on Cote d’Azur, or publishing yet another log-log plotRthys. Rev. LettersThis
chapter is intended as a hands-on guide to extracting peraohits, and should
be skipped on first reading - you can return to it whenever gedrfor finding
actual cycles arises. A serious cyclist will want to alsareabout the variationalchapter 29
methods to find cycles, chapter 29. They are particularlyulisehen little is
known about the topology of a flow, such as in high-dimendigeaiodic orbit
searches.

W fast track:
chapter 14, p. 290
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CHAPTER 13. FIXED POINTS, AND HOW TO GET THEM 269

A primecycle p of periodT,, is a single traversal of the periodic orbit, so our
task will be to find a periodic point € M, and the shortest tim&, for which
(13.1) has a solution. A periodic point of a flof crossing a Poincaré section
n times is a fixed point oP", the nth iterate ofP, the return map (3.1); hence,
we shall refer to all cycles as “fixed points” in this chapty. cyclic invariance, section 5.2
Floquet multipliers and the period of the cycle are indepaaf the choice of
the initial point, so it will sufice to solve (13.1) at a single periodic point.

If the cycle is an attracting limit cycle with a sizable basihattraction, it
can be found by integrating the flow for afSdiently long time. If the cycle is
unstable, simple integration forward in time will not rebéaand the methods
to be described here need to be deployed. In essence, angdrfethfinding
a cycle is based on devising a new dynamical system whiclepsss the same
cycle, but for which this cycle is attractive. Beyond thagre is a great freedom
in constructing such systems, and man¥edent methods are used in practice.

Due to the exponential divergence of nearby trajectoriehaotic dynamical
systems, fixed point searches based on direct solutiong @ik#éd-point condition
(13.1) as an initial value problem can be numerically vergtable. Methods thatchapter 29
start with initial guesses for a number of points along theleysuch as the mul-
tipoint shooting method described here in sect. 13.3, aaddhniational methods
of chapter 29, are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a goodmsieieding of the
topology of the flow: a preliminary step to any serious pdadautbit calculation is
preparing a list of all distinct admissible prime periodyogol sequences, such as
the list given in table 15.1. The relations between the tealmymbol sequences
and the spatial layout of the topologically distinct regiaf the state space dis-
cussed in chapters 11 and 12 should enable us to guess thierianiea series of
periodic points along a cycle. Armed with such an informeésguwe proceed
to improve it by methods such as Newton-Raphson iteratianskow how this
works by applying Newton method to 1- adalimensional maps. But first, where
are the cycles?

13.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

— T.D. Lee

The simplest and conceptually easiest setting for guesgiage the cycles are is
the case of planar billiards. The Maupertuis principle askeaction here dictates
that the physical trajectories extremize the length of gor@pmate orbit that
visits a desired sequence of boundary bounces.

Example 13.1 Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 12.5. . Label the three disks by 1, 2 and 3, and associate to ugign 12.5
section 1.4
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CHAPTER 13. FIXED POINTS, AND HOW TO GET THEM 270

trajectory an itinerary, a sequence of labels indicating the order in which the disks are
visited, as in figure 3.8. Given the itinerary, you can construct a guess trajectory by
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake
the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions s.
The computational problem is to find the extremum values of cycle length L(s) where
s=(St,...,S), a task that we postpone to sect. 29.3. As an example, the shortyarise 29.2
ods and stabilities of 3-disk cycles computed this way are listed table 29.3, and esnise 13.13
examples are plotted in figure 3.8. It's a no brainer, and millions of such cycles have
been computed.

If we were only so lucky. Real life finds us staring at someaghike Yang-
Mills or Navier-Stokes equations, utterly clueless. Wioad®?

One, there is always mindless computation. In practice dgétrbe satisfied
with any rampaging robot that finds “the most important” egcl The ergodic
explorations of recurrences sometimes perform admiralgl, \and we discuss
this next.

13.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanovit)

The equilibria and periodic orbits (with the exception afks and stable limit remark 13.1
cycles) are never seen in simulations and experiments bedhay are unstable.
Nevertheless, one does observe close passes to the letdilerejuilibria and

periodic orbits, as in figure 13.1. Ergodic exploration hygdime trajectories (or
long-lived transients, in case of strange repellers) caiover state space regions

of low velocity, or finite time recurrences. In addition, bucajectories preferen-section 16.1
tially sample the natural measure of the ‘turbulent’ flond &y initiating searches

within the state space concentrations of natural measasele search toward the
dynamically important invariant solutions.

The search consists of following a long trajectory in stat@ce, and looking
for close returns of the trajectory to itself, see figure 18Vhenever the trajectory
almost closes in a loop (within a given tolerance), anotlémtlose to this near
miss of a cycle can be taken as an initial condition. Supphteteby a Newton
routine described below, a sequence of improved initialdid@ns may indeed
rapidly lead to closing a cycle. The method preferentialiyl$i the least unstable
orbits, while missing the more unstable ones that congibittie to the cycle
expansions.

This blind search is seriously flawed: in contrast to theskdixample 13.1,
it is not systematic, it gives no insight into organizatidnttee ergodic sets, and
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x(0)

Figure 13.1:An ergodic trajectory can shadow an un-
stable periodic orbip for a finite time. X( )

can easily miss very important cycles. Foundations to aemyatic exploration
of ergodic state space are laid in chapters 11 and 12, but bitech work to
implement.

13.1.2 Cycles found by thinking

Thinking is extra price.
—Dicho Colombiano

A systematic charting out of state space starts out by a buetfuilibrium points.
If the equations of motion are a finite set of ODESs, settingviecity field v(x)
in (2.6) to zero reduces search for equilibria to a searclzdoos of a set of al-
gebraic equations. We should be able, in principle, to emateend determine
all real and complex zeros in such cases, e.g. the Lorenzpea®? and the
Rossler example 2.3. If the equations of motion and the @agnconditions are
invariant under some symmetry, some equilibria can be éted by symmetry
considerations: if a function is e.g. antisymmetric, it trmvmnish at origin, e.g.
the LorenzEQy = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, createagesspace grid,
about 50x, acrossM in each dimension, and compute the velocity fisle: v(xk)
at each grid point; a few milliow, values are easily stored. Plgt for which
IVkl? < €, € << |Vmax? but sufficiently large that a few thousang are plotted.
If the velocity field varies smoothly across the state sptueregiongw/® < e
isolate the (candidate) equilibria. Start a Newton iterativith the smallesv|?
point within each region. Barring exceptionally fast védas inv(x) this should
yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of #qua, but steady
states of PDEs such as the Navier-Stokes flow are themsealitg®rs of ODESs
or PDEs, and much harder to determine.

Equilibria—by definition—do not move, so they cannot be Btdent.” What
makes them dynamically important are their stabistable manifolds. A chaotic
trajectory can be thought of as a sequence of near visimbbequilibria. Typi-
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Figure 13.2: (a) They — Pi(y, 2) return map for / \
thex = 0,y > 0 Poincaré section of the Rossler ' \
flow figure 2.6. (b) Thel-cycle found by taking ' \
the fixed pointyk,n = Yk together with the fixed : ’
point of thez — zreturn map (not shown) asan(a) = = ‘w ' (b)
initial guess (0y©, Z?) for the Newton-Raphson 7
search. (c) The third iteratgi,s = P3(yi. Z), ' ) =
of the Poincaré return map (3.1) together with the
corresponding plot fom.s = P3(yk. z), is used .
to pick initial guesses for the Newton-Raphson ‘ s
searches for the two 3-cycles: (d) the1 cycle, ’ 5 o
and (e) théd11 cycle. (G. Simon) S TS SRR A O ‘
(© T ()

cally such neighborhoods have many stable, contractiregiiims and a handful

of unstable directions. Our strategy will be to generalieelilliard Poincaré sec-
tion mapsPs, s, of example 3.9 to maps from a section of the unstable manifold
of equilibrium s, to the section of unstable manifold of equilibriwsg 1, and thus
reduce the continuous time flow to a sequence of maps. TheésedR® section
maps do double duty, providing us both with an exact reptatien of dynamics

in terms of maps, and with a covering symbolic dynamics.

We showed in the Lorenz flow example 11.4 how to reduce ther@asional
Lorenz flow to a 1-dimensional return map. In the Rossler #xample 2.3 we
sketched the attractor by running a long chaotic trajectangd noting that the
attractor is very thin, but that otherwise the return maps we plotted were dis-
quieting — figure 3.3 did not appear to be a 1-to-1 map. In tix¢ eeample we
show how to use such information to locate cycles approxatn the remain-
der of this chapter and in chapter 29 we shall learn how toguah guesses into
highly accurate cycles.

Example 13.2 Rdéssler attractor. We run a long simulation of the Réssler flow
ft, plot a Poincaré section, as in figure 3.2, and extract the corresponding Poincaré
return map P, as in figure 3.3.  Luck is with us, since figure 13.2 (a) return map
y — Pi(Y, 2) is quite reminiscent of a parabola, we take the unimodal map symbolic
dynamics, sect. 11.3, as our guess for the covering dynamics. Strictly speaking, the
attractor is “fractal,” but for all practical purposes the return map is 1-dimensional; your
printer will need a resolution better than 10* dots per inch to even begin resolving its
structure.

Periodic points of a prime cycle p of cycle length n, for the x = 0, y > 0 Poincaré
section of the Rossler flow figure 2.6 are fixed points (y, 2) = P"(y, 2) of the nth Poincaré
return map.

Using the fixed point yx+1 = Yk in figure 13.2 (a) together with the simultaneous
fixed point of the z — P1(y, 2) return map (not shown) as a starting guess (0, y©, 29)
for the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find
the cycle figure 13.2 (b) with the Poincaré section point (0, Yyp, z,), period Ty, expand-
ing, marginal, contracting Floquet multipliers (Ape, Apm, Apc), and the corresponding
Lyapunov exponents (Ape, Apm, Apc): exercise 13.10
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T-cycle: (X.Y.2) (0,6.091768321.2997319)
T, = 588108845586
(Are, Aim A1e) = (—2.403953531+ 10714 -1.29x 10714
(Ares A1m A1c) = (0149141556101 —5.44). (13.2)

The Newton-Raphson method that we used is described in sect. 13.4.

As an example of a search for longer cycles, we use Yi.3 = Pf(yk, %), the third
iterate of the Poincaré return map (3.1) plotted in figure 13.2(c), together with a cor-
responding plot for z.,.3 = 3(yk, z), to pick starting guesses for the Newton-Raphson
searches for the two 3-cycles plotted in figure 13.2(d), (e). For a listing of the short
cycles of the Rossler flow, consult exercise 13.10.

The numerical evidence suggests (though a proof is lacking) that all cycles
that comprise the strange attractor of the Rossler flow are hyperbolic, each with an
expanding eigenvalue |Ael > 1, a contracting eigenvalue |A¢| < 1, and a marginal
eigenvalue |Ay| = 1 corresponding to displacements along the direction of the flow.

For the Réssler flow the contracting eigenvalues turn out to be insanely con-
tracting, a factor of €32 per one par-course of the attractor, so their numerical deter-
mination is quite difficult. Fortunately, they are irrelevant; for all practical purposes
the strange attractor of the Rdssler flow is 1-dimensional, a very good realization of a
horseshoe template. (G. Simon and P. Cvitanovic)

13.2 One-dimensional maps

So far we have given some qualitative hints for how to set out periodic orbit
hunt. In what follows, we teach you how to nail down periodibits numerically.

(F. Christiansen)

13.2.1 Inverse iteration

Let us first consider a very simple method to find the unstaptdes of a 1-
dimensional map such as the logistic map. Unstable cyclgésiahensional maps

are attracting cycles of the inverse map. The inverse magptisingle-valued, so

at each backward iteration we have a choice of branch to nikehoosing the

branch according to the symbolic dynamics of the cycle wergieg to find, we

will automatically converge to the desired cycle. The rdteamvergence is given

by the stability of the cycle, i.e., the convergence is exqmially fast. Figure 13.3

shows such a path to tiid-cycle of the logistic map. exercise 13.13

The method of inverse iteration is fine for finding cycles fed inaps and
some 2-dimensional systems such as the repeller of exer8i48. It is not par-
ticularly fast, however, especially if the inverse map i kimown analytically. It
also completely fails for higher dimensional systems wheechave both stable
and unstable directions. Inverse iteration will exchargese, but we will still be
left with both stable and unstable directions. The bestesikais to directly attack
the problem of finding solutions df" (x) = x.
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Figure 13.3: The inverse time path to th&l-cycle of 04 8
the logistic mapf (x) = 4x(1 — x) from an initial guess
of x = 0.2. At each inverse iteration we chose the 0 %2, \
(respectively 1) branch. o 4 . . .
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Figure 13.4: Convergence of Newton methoa)(
vs. inverse iteration«). The error aften itera- fel T
tions searching for th@1-cycle of the logistic map
f(xX) = 4x(1 — x) with an initial starting guess of
x1 = 0.2,% = 0.8. They-axis is log, of the error.
The diference between the exponential convergence of

the inverse iteration method and the super-exponential B 1
convergence of Newton method is dramatic. 3

-+
b,
ey
b,
]
215 ,
20 ,

I T TR T R N B
0 2 4 6 8 10 12 14 16 18 20

13.2.2 Newton method

Newton method for determining a zerd of a functionF(x) of one variable is
based on a linearization around a starting gugss

F(X) ~ F(x0) + F'(X0)(X — Xo)- (13.3)

An approximate solutiorx; of F(x) = 0 is

X1 = Xo — F(X0)/F’(Xo). (13.4)

The approximate solution can then be used as a new startexs gu an iterative
process. A fixed point of a map is a solution toF(x) = x— f(x) = 0. We
determinex by iterating

9(Xm-1) = Xm-1 = F(Xm-1)/F'(Xm-1)
(Xm-1 = f(Xm-1)) - (13.5)

Xm

1
T T T T (k)

Provided that the fixed point is not marginally stablgx) # 1 at the fixed point

X, a fixed point off is a super-stable fixed point of the Newton-Raphson map
g (X) = 0, and with a sficiently good initial guess, the Newton-Raphson iteration
will converge super-exponentially fast.

To illustrate the #iciency of Newton method we compare it to the inverse
iteration method in figure 13.4. Newton method wins handsrdathhe number
of significant digits of the accuracy of theestimate typically doubles with each
iteration.
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F(X)

Figure 13.5: Newton method: bad initial guesé” )
leads to the Newton estimai#*? far away from the ——F—()—é—mi—)——:—»:fl"
desired zero ofF(x). Sequence--, XM, x(MD) ... /i
starting with a good guess converges super- \ M \
exponentially tox*. The method diverges if it iterates Y

xmf G

.
X®+D) X° L X xm xo)

into the basin of attraction of a local minimuxf.

In order to avoid jumping too far from the desirad (see figure 13.5), one
often initiates the search by tlleamped Newton methpd

F(x(™
( )AT O<AT<1,

Ax(m) - X(I'TH—l) — X(m) [ ,
F7(x(m)

takes smallAr steps at the beginning, reinstating to the il = 1 jumps only
when stificiently close to the desirexi.

13.3 Multipoint shooting method

(F. Christiansen)

Periodic orbits of lengtm are fixed points off" so in principle we could
use the simple Newton method described above to find them. eigthis is
not an optimal strategy. The functioff’ oscillates wildly, with as many as2
or more closely spaced fixed points, and finding a specifieogaripoint, such
as one with a given symbolic sequence, requirgsrsgood starting guess. For
binary symbolic dynamics we must expect to improve the amyuof our initial
guesses by at least a factor df @ find orbits of lengthn. Furthermore, the
Jacobian off" will be ill-conditioned because eigenvalues go like. But if the
map is broken up, the eigenvalues aré\. A better alternative is thenultipoint
or multiple shooting methodWhile it might very hard to give a precise initial
guess for a long periodic orbit, if our guesses are informed good state space
partition, a rough guess for each point along the desirgélctiay might stiice,
as for the individual short trajectory segments the errarsemno time to explode
exponentially. And, indeed, in chapter 11 we have devel@pgdalitative theory
of how these cycle points are laid out topologically.

A cycle of lengthn is a zero of ther-dimensional vector functioF:

X1 X1 — f(Xn)
F = F| @ || % f(x1)
Xn Xp = F(%a-1)

The relationship between the temporal symbol sequenceshanspatial layout
of the topologically distinct regions of state space disedsin chapter 11 enable

cycles - 22jun2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 13. FIXED POINTS, AND HOW TO GET THEM 276

us to guess the location of a series of periodic points alooycke. Armed with
such informed initial guesses, we can initiate a NewtonHRap iteration. The
iteration in Newton’s method now takes the form

d
m F()(X - X) = —F(x), (13.6)

where L F(X) is an  x n] matrix:

1 — (%)
-f'(a) 1
d_dxF(X) - 1 L . (13.7)

_f’(xn—l) 1

This matrix can easily be inverted numerically by first eliating the elements
below the diagonal. This creates non-zero elements inttheolumn. We elimi-
nate these and are done.

Example 13.3 Newton inversion for a 3-cycle. Let us illustrate how this works step
by step for a 3-cycle. The initial setup for a Newton step is:

1 0 —f/(x3) AXq F1
[ —f’(X]_) 1 0 ][ AXz]Z—{ Fz ],
0 —f/(%2) 1 AX3 Fs

where Ax; = X/ — X is the correction to our initial guess X, and F; = x; — f(xi_1) is the
error at ith periodic point. Eliminate the sub-diagonal elements by adding f’(x,) times
the first row to the second row, then adding f’(x;) times the second row to the third

row:
10 —f/(X3) AXy
[ 01 —f(x)f(x) ][ Ao ]=
0 0 1- f/(Xg)f/(Xl)f/(Xg) AX3
F

1
— [ Fz + f'(X]_)F]_ ] .
Fs+ f/(x2)F2 + f'(x2) f'(x1)F1

The next step is to invert the last element in the diagonal, i.e., divide the third row by
1- f/(x) f'(x1) f’(X3). If this element is zero at the periodic orbit this step cannot work.
As f/(x2) f'(x1) f’(X3) represents the stability of the cycle (when the Newton iteration
has converged), this is not a good method to find marginally stable cycles. We now

have
10 —f'(Xg) AXq F1
0 1 —f(x)f'(xs) || Ao [=— Fo+ f'(x))F1
O O 1 A)@ F3+f/(Xg)F2+f/(X2)f/(X1)F1

1-F7(x2) P (xa) f"(xa)

Finally we add f’(x3) times the third row to the first row and f’(x;) f’(x3) times the third
row to the second row. The left hand side matrix is now the unit matrix, and the right
hand side is an explicit formula for the corrections to our initial guess. With this, we
have gone through one Newton iteration.
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When one sets up Newton iteration on a computer, it is notssacg to write
the left hand side as a matrix. All one needs is a vector coinigithe f’(x;)’'s and
a vector containing the'th column, i.e., the cumulative product of tHé(x)'s
and a vector containing the right hand side. After iteratima vector containing
the right hand side is the correction to the initial guess. exercise 13.1

13.3.1 d-dimensional maps

O3

Armed with clever initial guesses from a system’s symboloamics, we can
easily extend the Newton-Raphson iteration method-thmensional maps. In
this casef’(x) is a [d x d] matrix, and%F(x) is an |nd x nd] matrix. In each
of the steps above, we are then manipulatimgws of the left-hand-side matrix.
(Remember that matrices do not commute - always multiplynftbe left.) In
inverting thenth element of the diagonal we are invertingdax d] matrix (1 —
[T /(%)) which can be done as long as none of the eigenvalugp B1x) equals
1, i.e., if the cycle has no marginally stable eigen-diatti

Example 13.4 Newton method for time delay maps. Some d-dimensional maps
(such as the Hénon map (3.17)) can be written as 1-dimensional time delay maps of
the form

f(x) = f(X-1,%2,...,%q). (13.8)

In this case, %F(x) is an [n x n] matrix as in the case of usual 1-dimensional maps but
with non-zero matrix elements on d off-diagonals.

13.4 Flows

(R. PaSkauskas and P. Cvitanovic)

For a continuous time flow the periodic orbit the Floquet ipli#r (5.16) along

the flow direction always equals unity; the separation of amy points along

a cycle remains unchanged after a completion of the cyclereMait Floquet section 5.2.1
multipliers arise if the flow satisfies conservation lawstsas the symplectic in-

variance for Hamiltonian flows, or the dynamics is equivatriander a continuous
symmetry transformation. section 10.3

Let us apply the Newton method of (13.4) to search for peciadbits with
unit Floquet multipliers, starting with the case of@ntinuous time flowAssume
that the periodic orbit condition (13.1) holds fos Ax andT + At, with the initial
guessex andT close to the desired solution, i.e., wjtkx|, At small. The Newton
setup (13.4)

0 = x+Ax— fT(x+Ax)
X— fT(X) + (L - I(X) - Ax— v(fT(x))At (13.9)

Q
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sufers from two shortcomings. First, we now need to solve nog éml the pe-
riodic point x, but for the periodl as well. Second, the marginal, unit Floquet
multiplier (5.16) along the flow direction (arising from ttime-translation invari-
ance of a periodic orbit) renders the factor{(1) in (13.5) non-invertible: ifx

is close to the solutionfT(x) ~ x, thenJ(X) - V(X) = V(fT(X)) = v(X). If Axis
parallel to the velocity vector, the derivative termHJ0) - AX ~ 0, and it becomes
harder to invert (X J) as the iterations approach the solution.

As a periodic orbipis a 1-dimensional set of points invariant under dynamics,
Newton guess is not improved by pickirdg such that the new point lies on the
orbit of the initial one, so we need to constrain the varmatiox to directions
transverse to the flow, by requiring, for example, that

v(X) - Ax=0. (13.10)

Combining this constraint with the variational conditidkB(9) we obtain a New-
ton setup for flows, best displayed in the matrix form:

1-J(X) v(X AX x— f(X)
203

This illustrates the general strategy for determiningqmid orbits in presence of
continuous symmetries - for each symmetry, pick a point erotibit by imposing
a constraint, and compute the value of the correspondingncmus parameter
(here the period) by iterating the enlarged set of Newton equations. Coimsitigy
the variations to transverse ones thus fixes both of Newtsimstcomings: it
breaks the time-translation invariance, and the pefiadn be read f® once the
fixed point has been found (hence we omit the superscript ifor the remainder
of this discussion).

More generally, the Poincaré surface of section technifusect. 3.1 turns
the periodic orbit search into a fixed point search on a shyiteéfined surface of
section, with a neighboring point variatidxx with respect to a reference point
constrained tstayon the surface manifold (3.2),

U(x+Ax) = U(X) =0. (13.12)

The price to pay are constraints imposed by the section: derdio stayon the
surface, arbitrary variationx is not allowed.

Example 13.5 A hyperplane Poincar é section. Let us for the sake of simplicity
assume that the Poincaré surface of section is a (hyper)-plane, i.e., it is given by the
linear condition (3.6)

(X=X)-N =0, (13.13)
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where i is a vector normal to the Poincaré section and Xg is any point in the Poincaré
section. The Newton setup is then (derived as (13.11))

( 1%J \/(60 )( X’A—tx )z( —FO(X) ) (13.14)

The last row in this equation ensures that x will be in the surface of section, and the
addition of v(X)At, a small vector along the direction of the flow, ensures that such an x
can be found, at least if X is sufficiently close to a fixed point of f.

To illustrate that the addition of the extra constraint resolves the problem of
(1 - J) non-invertability, we consider the particularly simple example of a 3-d flow with
the (x,y, 0)-plane as the Poincaré section, a = (0,0,1). Let all trajectories cross the
Poincaré section perpendicularly, so thatv = (0, 0, v,), which means that the marginally
stable direction is also perpendicular to the Poincaré section. Furthermore, let the
unstable direction be parallel to the x-axis and the stable direction be parallel to the
y-axis. The Newton setup is now

1_Au O 0 O (5)( _FX
0 1-As 0 0]ls | | -F
0 o owvl|l e l|T|-F (13.15)
0 o 1 ollesr 0

If one considers only the upper-left [3 x 3] matrix (which we started out with, prior to
adding the constraint (13.13)) then this matrix is not invertible and the equation does
not have a unique solution. However, the full [4x4] matrix is invertible, as det() =
—v.det(1- M,), where M, is the [2x 2] monodromy matrix for a surface of section
transverse to the orbit (see sect. 5.3). (F. Christiansen)

13.4.1 Cost function

It pays to think in terms of aost(or error) function| (AX) = (Xx+Ax—f (x+AXx))?/2.
Periodic orbit condition (13.1) corresponds both to a zdri&x), and of its first
Ax variation. Expand (AX) to the second order iax, | ~ A~x2/2 + (x= f(X) -
Ax + (x — f(X))2/2, whereAx = (1 — J(X))Ax. To find an extremum, we set the
derivative with respect tax to zero. As the termx— f(x))2/2 is a constant under
AX variation, let us define an unconstrainesbst function

lo(AX) = :—2LA~x- AX+ (x— f(X)) - AX, (13.16)

Setting the derivative of this function

NoAX) _ s x— F(x) = (1= I(X) - Ax + x— £(¥) (13.17)
0AX

to zero recovers the Newton setup (13.4)

Next, we need to enforce the constraint that curbs the drescin whichAx
can point. Lagrange multipliers come to help.
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A local surface of sectioman be constructed whef{x) is “near” the initial
point x. A natural choice is a hyperplane perpendicular to the vgloectorv(x).
The reference pointg in (13.13) isx itself, and the surface of section condition
isU(x+ AX) = v(X) - Ax = 0. Introduce a Lagrange multiplier, and assemble a
cost function with the constraint:

l1(AX, ) = :—2LA~x- AX+ [x = F(X)] - AX + AV(X) - AX. (13.18)

Now we diferentiatel1(Ax, 1) with respect to each argument and set the deriva-
tives to zero. We recover the Newton setup (13.11), with thgrange multiplier

A = At interpreted as the time increment needed to plgeg onto the section,
f(X) - f(X) + v(f(X))At.

A global surface of sectiois a fixed surfacé) (x+ AxX) — U (Xg) ~ dU(X)AX +
U (X) — U(xg) that hopefully transects all or a significant portion ofueent parts
of the flow. It is not as ‘natural’ as the local section (13,1t hard to avoid in
practice, and one is interested not only in the fixed poimtfitdbut in the global
reach of its unstable manifold as well. The simplest ch@@eliyperplane (13.13)example 13.5
The cost function and the variational equations are then

[o(AX, At) = %Ax[l = J(X)]AX + (x = f(X)) Ax

+ At (OU(X)AX+ U(X) — U(x)) , (13.19)
1-J(X) oU(x) AX x—1(X)
U 0 )( At ): ‘( UX) - U(x) ) (13.20)

Furthercontinuous symmetriasan be handled in the same fashion. Suppose,
for example, that we are searching for periodic orbits of anitanian flow.
There, periodic orbits not only have the time-translatigmmetry, but energy-
translation symmetry as well. What is energy-translatipmmmetry? If there ex-
ists a periodic orbit ax with energyH(x) = E, and periodr, itis very likely that it
belongs to a family of orbitsxt eAX(E), T +eAt(E)) continuous under variation of
E. As with the time-translation symmetry, this implies a Udibquet multiplier:
indeed, we know from sect. 7.4 that symplectic eigenvaloesecin pairs, So unit
multiplier in the time direction implies a unit multiplieniits dual, the energy
direction, A, Ag,---) = (1, 1,---). But extending the number of constraints is no
longer a problem: add more Lagrange multipliers. Consigerfallowing system

[3(AX, A1, 42) = AX[1 - I(X)]AX/2 + (x— f(X)) AX
+ A1 (U(X+ AX) —U(X)) + 22 (H(x+ AX) — Eg) (13.21)

1-J(X) oU(X) IH(X) [ Ax x— f(X)
oU(X) 0 0 J[ A1 ] = —[ U(x) — U(xo) J (13.22)
AH(X) 0 0 A2 H(X) — Eo
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This is the Newton iteration setup for how to search for agaci orbit of a Hamil-
tonian flow with a global surface of sectidf(x) = U(xg) and fixed energyy.
Note that these instructions do not put every iteration oartaseU (x) = U(Xp)
and energyH(xX) = Eg, unless the surface is a plakx) = a- (X — Xg), but
instead assure that the iterations (provided they conyevijeapproach super-
exponentially to the surfaces.

For periodic orbits multi-point shooting generalizes ia #ame way as (13.7),
but with n additional equations — one for each point on a PoincaréosecThe
Newton setup looks like this:

1 —Jn AX -F
1 1
- 1 V1 AXo -F>
. 1 Vi ]
~dha 1 AXy | 7| —Fn
a Aty 0
a Aty 0

Solving this equation resembles the corresponding taskntgrs. However, we
will need to invert a [@ + 1)n x (d + 1)n] matrix rather than ad x d] matrix.

Résum é

There is no general computational algorithm that is guarsthto find all solutions
(up to a given periodmax) to the periodic orbit condition

" T(x) = f'(9, T>0

for a general flow or mapping. Due to the exponential divecgest nearby trajec-
tories in chaotic dynamical systems, direct solution ofgegodic orbit condition
can be numerically very unstable.

A prerequisite for a systematic and complete cycle searalgmod (but hard
to come by) understanding of the topology of the flow. Usualie starts by -
possibly analytic - determination of the equilibria of theal Their locations, sta-
bilities, stability eigenvectors and invariant manifoloer skeletal information
about the topology of the flow. The next step is numerical {onge evolution
of “typical” trajectories of the dynamical system underestigation. Such nu-
merical experiments build up the “natural measure” andakewich regions are
most frequently visited. Periodic orbit searches can treemitialized by taking section 16.4.1
nearly recurring orbit segments and deforming them int@edioorbits. With a
suficiently good initial guess, the Newton-Raphson formula

(2 905

cycles - 22jun2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 13. FIXED POINTS, AND HOW TO GET THEM 282

yields improved estimat& = x+6x, T’ = T +4T. Iteration then yields the period
T and the location of a periodic poiny, in the Poincaré sectiorxg — xo) - a =0,
wherea is a vector normal to the Poincaré sectiorxat

The problem one faces with high-dimensional flows is thair ttepology is
hard to visualize, and that even with a decent starting gia@sspoint on a peri-
odic orbit, methods like the Newton-Raphson method ardyliteefail. Methods chapter 29
that start with initial guesses for a number of points aldmg dycle, such as the
multipoint shooting method of sect. 13.3, are more robustlagation (or vari-
ational) methods take this strategy to its logical extreams start by a guess of
not a few points along a periodic orbit, but a guess of theremribit. Just as
these methods are intimately related to variational ppiesi and path integrals,
we postpone their introduction until chapter 29.

Commentary

Remark 13.1 Close recurrence searches.  For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial ggses for periodic orbits from
close recurrences of a long ergodic trajectory seems likebaous idea. Nevertheless,
ref. [13.1] is frequently cited. Such methods have beenayeul by many, among them
G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. iDelvack [25.2, 20.14,

20.15, 13.11, 13.12] (see also sect. 20.6). Sometimes anel@armine most of the
admissible itineraries and their weights without workiog hard, but method comes with
no guarantee.

Remark 13.2 Piecewise linear maps. The Lozi map (3.19) is linear, and hundred of
thousands of cycles can easily be computed 2]2hatrix multiplication and inversion.

Remark 13.3 Cycles, searches, and symmetries. A few comments about the role
of symmetries in actual extraction of cycles. In theadisk billiard example, a fundamen-
tal domain is a sliver of thél-disk configuration space delineated by a pair of adjoining
symmetry axes. The flow may further be reduced to a return magpmPoincaré surface
of section. While in principle any Poincaré surface of secttill do, a natural choice in
the present context are crossings of symmetry axes, segéx@ii. In actual numerical
integrations only the last crossing of a symmetry line néede determined. The cycle is
run in global coordinates and the group elements associatedhe crossings of symme-
try lines are recorded; integration is terminated when i aloses in the fundamental
domain. Periodic orbits with non-trivial symmetry subgpsiare particularly easy to find
since their points lie on crossings of symmetry lines, seargple 7.7.

Remark 13.4 Newton gone wild.  Skowronek and Gora [13.24ffer an interesting
discussion of Newton iterations gone wild while searchiogrbots of polynomials as
simple as® + 1= 0.
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Remark 13.5 Symmetries of the symbol square. For a discussion of symmetry lines
see refs. [7.5, 7.6, 13.6, 7.7, 7.8]. It is an open questiea (smark 21.2) as to how time
reversal symmetry can be exploited for reduction of cycleamsions of chapter 20. For
example, the fundamental domain symbolic dynamics for ¢tfle symmetric systems
is discussed in some detail in sect. 21.5, but how does ormleeitom time-reversal

symmetric symbol sequences to desymmetriz@dsfiate space symbols?
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Exercises

13.1. Cycles of the Ulam map. Test your cycle-searching 13.7. Fundamental domain fixed points.

13.2.

13.3.

13.4.

13.5.

13.6.

exerCycles - 13jun2008

routines by computing a bunch of short cycles and their
stabilities for the Ulam mapf (x) = 4x(1 - X).

Cycles stabilities for the Ulam map (exact). In ex-
ercise 13.1 you should have observed that the numerical
results for the cycle Floquet multipliers (4.46) are ex-
ceptionally simple: the Floquet multiplier of thg = 0
fixed point is 4, while the eigenvalue of any other
cycle is+2". Prove this. (Hint: the Ulam map can be
conjugated to the tent map (11.4). This problem is per-
haps too hard, but give it a try - the answer is in many
introductory books on nonlinear dynamics.)

Stability of billiard cycles.
few simple cycles:

Compute the stabilities of

13.8.

(@) A simple scattering billiard is the two-disk bil-
liard. It consists of a disk of radius one centered
at the origin and another disk of unit radius lo-
cated at distancé + 2. Find all periodic orbits
for this system and compute their stabilities. (You
might have done this already in exercise 1.2; at
least now you will be able to see where you went
wrong when you knew nothing about cycles and
their extraction.)

(b) Find all periodic orbits and their stabilities for a
billiard ball bouncing between the diagonea: x

and one of the hyperbola branches —1/x.

13.9.

13.10.

Cycle stability.  Add to the pinball simulator of ex-
ercise 8.1 a routine that evaluates the expanding eigen-
value for a given cycle.

Pinball cycles. Determine the stability and length of
all fundamental domain prime cycles of the binary sym-
bol string lengths up to Sof longen for R : a = 6 3-disk
pinball.

Newton-Raphson method. Implement the Newton-
Raphson method in 2-dimensional and apply it to the
determination of pinball cycles.

Use the for-
mula (8.11) for billiard Jacobian matrix to compute the
periodsT, and the expanding eigenvalugs of the fun-
damental domai@ (the 2-cycle of the complete 3-disk
space) and. (the 3-cycle of the complete 3-disk space)
fixed points:

‘ Tp Ap
0:| R-2 R-1+RVI-2/R  (1323)
1- 2R 2R
1: | R- V3 —7§+1—ﬁw/1—\/§/R

We have set the disk radiusao= 1.
Fundamental domain 2-cycle.  Verify that for the

10-cycle the cycle length and the trace of the Jacobian
matrix are given by

2{R2— V3R+1-2,

Lo =
trdio = Apo+1/A1o (13.24)
2
= 2lyoe2s s bt
2 V3R/2-1

The 10-cycle is drawn in figure 12.12. The unstable
eigenvalue\ o follows from (7.30).

A test of your pinball simulator: 10-cycle. Test
your exercise 8.3 pinball simulator stability evaluation
by checking numerically the exact analytié-cycle sta-
bility formula (13.24).

Rossler flow cycles. (continuation of exer-
cise 4.4) Determine all cycles for the Rossler flow
(2.17), as well as their stabilities, up to

() 3 Poincaré section returns

(b) (optional) 5 Poincaré section returns (Hint: imple-
ment (13.14), the multipoint shooting methods for
flows; you can cross-check your shortest cycles
against the ones listed in the table.)

Table: The Rossler flow (2.17): The itinerary p, a peri-
odic point % = (0, yp, zp) and the expanding eigenvalue
A for all cycles up to topological length 7.

(J. Mathiesen, G. Simon, A. Basu)
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13.11.

13.12.

13.13.

13.14.
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W%m&ms

2 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923
011 2.932877 5.670806 5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4162799 3.303903 -23.19958
01111 3.278914 4.890452  36.88633
6 001011 2122094 7.886173 -6.857665
010111 4.059211 3.462266 61.64909
011111  3.361494 4.718206 -92.08255
7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284

Cycle stability, helium. Add to the helium integrator
of exercise 2.10 a routine that evaluates the expanding
eigenvalue for a given cycle.

Colinear helium cycles. Determine the stability
and length of all fundamental domain prime cycles up
to symbol sequence length 5 or longer for collinear he-
lium of figure 7.2.

Uniqueness of unstable cycles'. Prove that there
exists only one 3-disk prime cycle for a given finite ad-
missible prime cycle symbol string. Hints: look at the

Poincaré maps; can you show that there is expongp4s

tial contraction to a unique periodic point with a given
itinerary? Exercise 29.1 might be helpful in thi$aat.

Inverse iteration method for a Heénon repeller.

Table: All periodic orbits up to 6 bounces for the Hamil-
tonian Heénon mapping (13.25) with-a 6. Listed are
the cycle itinerary, its expanding eigenvaltg, and its
“center of mass” The “center of mass” is listed be-
cause it turns out that it is often a simple rational or a
quadratic irrational.

p Ap 2. Xpi
0 0.715168&10" -0.607625
1 -0.29528%10'  0.274292
10 -0.98989810"  0.333333
100 -0.13190%10° -0.206011
110 0.55897Q10* 0.539345
1000 -0.10443R10" -0.816497
1100 0.57799810*  0.000000
1110 -0.10368810° 0.816497
10000 -0.76065810" -1.426032
11000 0.44455210" -0.606654
10100 0.77020210° 0.151375
11100 -0.71068810° 0.248463
11010 -0.58949910° 0.870695
11110 0.39099410° 1.095485
100000 -0.54574610° -2.034134
110000 0.32222110° -1.215250
101000 0.51376210* -0.450662
111000 -0.47846410* -0.366025
110100 -0.63940010* 0.333333
101100 -0.63940010* 0.333333
111100 0.39019410* 0.548583
111010 0.10949410* 1.151463
111110 -0.10433810* 1.366025

. Ulam map periodic points.

13.17. “Center of mass” puzzle™.

285

Consider the HEnon map (3.17) for the area-preserving
(“Hamiltonian”) parameter valub = —-1. The coordi-
nates of a periodic orbit of length, satisfy the equation

Xpis1+ Xpic1 = 1—axs;, i=1..np, (13.25)
with the periodic boundary conditioxyo = Xppn,. Ver-
ify that the itineraries and the stabilities of the short pe-
riodic orbits for the Hénon repeller (13.25)at 6 are

as listed above.

Hint: you can use any cycle-searching routine you wish,

but for the complete repeller case (all binary sequences
are realized), the cycles can be evaluated simply by in-
verse iteration, using the inverse of (13.25)

’ 4
1- Xp,i+1 - Xp,i—l

X’p’,i = Sp,i a
Here S,; are the signs of the corresponding periodic
point coordinatesSp; = Xpi/|Xpil- (G. Vattay)

(continued from exer-
cise 11.8)

(a) compute the five periodic points of cycl®011
for the Ulam map (11.55(x) = 4x(1 - X). using
your Newton or other routine.

(b) compute the five periodic points of cyd®000

(c) plotthe above two cycles on the graph of the Ulam
map, verify that their topological ordering is as in
the ‘canonical’ full tent map exercise 11.8.

(d) (optional) This works only for the Ulam map:
compute periodic points by conjugating the full
tent map periodic points of exercise 11.8 using ex-
ercise 6.4.

13.16. Newton setups for flows.

(&) We have formulated three Newton setups for
flows: the ‘local’ setup (13.11), the ‘hyperplane’
setup (13.14), and the ‘global’ setup (13.20). De-
rive (13.20) and verify that if the surface of sec-
tion is a hyperplane, it reduces to (13.14). (Hint:
it is not inconceivable that (13.14) is wrong as it
stands.)

(b) (optional) Derive (13.22), the Newton setup for
Hamiltonian flows.

Why is the “center of
mass,” tabulated in exercise 13.14, often a rational num-
ber?
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