
Chapter 19

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don’t exactly know what they are!”

—Lewis Carroll,Through the Looking Glass

The problem with the trace formulas (18.10), (18.23) and (18.28) is thatthey
diverge atz = e−s0, respectivelys = s0, i.e., precisely where one would
like to use them. While this does not prevent numerical estimation of

some “thermodynamic” averages for iterated mappings, in the case of the Gutz-
willer trace formula this leads to a perplexing observationthat crude estimates
of the radius of convergence seem to put the entire physical spectrum out of
reach. We shall now cure this problem by thinking, at no extracomputational
cost; while traces and determinants are formally equivalent, determinants are the
tool of choice when it comes to computing spectra. Determinants tend to havechapter 23

larger analyticity domains because if trL/(1− zL) = − d
dz ln det (1− zL) diverges

at a particular value ofz, then det (1− zL) might have an isolated zero there, and
a zero of a function is easier to determine numerically than its poles.

19.1 Spectral determinants for maps

The eigenvalueszk of a linear operator are given by the zeros of the determinant

det (1− zL) =
∏

k

(1− z/zk) . (19.1)

For finite matrices this is the characteristic determinant;for operators this is the
Hadamard representation of thespectral determinant(sparing the reader from
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CHAPTER 19. SPECTRAL DETERMINANTS 385

pondering possible regularization factors). Consider first the case of maps, for
which the evolution operator advances the densities by integer steps in time. In
this case we can use the formal matrix identity exercise 4.1

ln det (1− M) = tr ln(1− M) = −
∞
∑

n=1

1
n

tr Mn , (19.2)

to relate the spectral determinant of an evolution operatorfor a map to its traces
(18.8), and hence to periodic orbits:

det (1− zL) = exp
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. (19.3)

Going the other way, the trace formula (18.10) can be recovered from the
spectral determinant by taking a derivative

tr
zL

1− zL
= −z

d
dz

ln det (1− zL) . (19.4)

fast track:

sect. 19.2, p. 386

Example 19.1 Spectral determinants of transfer operators:

For a piecewise-linear map (16.11) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (18.11)
into (19.3):

det (1− zL) =
∞

∏

k=0
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
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

, (19.5)

where ts = z/|Λs|. The eigenvalues are necessarily the same as in (18.12), which we
already determined from the trace formula (18.10).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (19.5) is an entire function. It is this property that generalizes to piecewise smooth
flows with finite Markov partitions, and singles out spectral determinants rather than
the trace formulas or dynamical zeta functions as the tool of choice for evaluation of
spectra.
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CHAPTER 19. SPECTRAL DETERMINANTS 386

19.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for dif-
feomorphisms seems quite remote for flows. However we
will mention a wild idea in this direction. [· · ·] definel(γ)
to be the minimal period ofγ [· · ·] then define formally
(another zeta function!)Z(s) to be the infinite product

Z(s) =
∏

γ∈Γ

∞
∏

k=0

(

1−
[

expl(γ)
]−s−k

)

.

—Stephen Smale,Differentiable Dynamical Systems

We write the formula for the spectral determinant for flows byanalogy to
(19.3)

det (s−A) = exp
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, (19.6)

and then check that the trace formula (18.23) is the logarithmic derivative of the
spectral determinant

tr
1

s−A
=

d
ds

ln det (s−A) . (19.7)

With zset toz= e−s as in (18.24), the spectral determinant (19.6) has the same
form for both maps and flows. We refer to (19.6) asspectral determinant, as the
spectrum of the operatorA is given by the zeros of

det (s−A) = 0 . (19.8)

We now note that ther sum in (19.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the spectral determinant into an
infinite product over periodic orbits as follows:

Let Mp be thep-cycle [d×d] transverse Jacobian matrix, with eigenvalues
Λp,1, Λp,2, . . ., Λp,d. Expanding the expanding eigenvalue factors 1/(1− 1/Λp,e)
and the contracting eigenvalue factors 1/(1− Λp,c) in (18.4) as geometric series,
substituting back into (19.6), and resumming the logarithms, we find that the spec-
tral determinant is formally given by the infinite product
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∞
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∏
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(19.9)

tp = tp(z, s, β) =
1
|Λp|

eβ·Ap−sTpznp . (19.10)
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CHAPTER 19. SPECTRAL DETERMINANTS 387

In such formulastp is a weight associated with thep cycle (lettert refers to the
“local trace” evaluated along thep cycle trajectory), and the indexp runs through
all distinct prime cycles. Why the factorznp? It is associated with the trace for-
mula (18.10) for maps, whereas the factore−sTp is specific to the continuous time
trace formuls (18.23); according to (18.24) we should use either one or the other.
But we have learned in sect. 3.1 that flows can be represented either by their
continuous-time trajectories, or by their topological time Poincaré section return
maps. In cases when we have good control over the topology of the flow, it is
often convenient to insert theznp factor into cycle weights, as a formal parame-
ter which keeps track of the topological cycle lengths. These factors will assist chapter 20

us in expanding zeta functions and determinants, eventually we shall setz = 1.
The subscriptse, c indicate that there areeexpanding eigenvalues, andc contract-
ing eigenvalues. The observable whose average we wish to compute contributes
through theAt(x) term in thep cycle multiplicative weighteβ·Ap. By its definition
(17.1), the weight for maps is a product along the periodic points

eAp =

np−1
∏

j=0

ea( f j (xp)) ,

and the weight for flows is an exponential of the integral (17.5) along the cycle

eAp = exp

(∫ Tp

0
a(x(τ))dτ

)

.

This formula is correct for scalar weighting functions; more general matrix valued
weights require a time-ordering prescription as in the Jacobian matrix of sect. 4.1.

Example 19.2 Expanding 1-dimensional map: For expanding 1-dimensional
mappings the spectral determinant (19.9) takes the form

det (1− zL) =
∏

p

∞
∏

k=0

(

1− tp/Λ
k
p

)

, tp =
eβAp

|Λp|
znp . (19.11)

Example 19.3 Two-degree of freedom Hamiltonian flows: For a 2-degree of free-
dom Hamiltonian flows the energy conservation eliminates on phase-space variable,
and restriction to a Poincaré section eliminates the marginal longitudinal eigenvalue
Λ = 1, so a periodic orbit of 2-degree of freedom hyperbolic Hamiltonian flow has one
expanding transverse eigenvalueΛ, |Λ| > 1, and one contracting transverse eigenvalue
1/Λ. The weight in (18.4) is expanded as follows:

1
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∣

∣

∣
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p
. (19.12)
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CHAPTER 19. SPECTRAL DETERMINANTS 388

The spectral determinant exponent can be resummed,
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,

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over prime cycles

det (s−A) =
∏

p

∞
∏

k=0

(

1− tp/Λ
k
p

)k+1
. (19.13)

exercise 23.4

Now we are finally poised to deal with the problem posed at the beginning of
chapter 18; how do we actually evaluate the averages introduced in sect. 17.1? The
eigenvalues of the dynamical averaging evolution operatorare given by the values
of s for which the spectral determinant (19.6) of the evolution operator (17.16)
vanishes. If we can compute the leading eigenvalues0(β) and its derivatives, we
are done. Unfortunately, the infinite product formula (19.9) is no more than a
shorthand notation for the periodic orbit weights contributing to the spectral det-
erminant; more work will be needed to bring such formulas into a tractable form.
This shall be accomplished in chapter 20, but here it is natural to introduce still
another variant of a determinant, the dynamical zeta function.

19.3 Dynamical zeta functions

It follows from sect. 18.1.1 that if one is interested only inthe leading eigenvalue
of Lt, the size of thep cycle neighborhood can be approximated by 1/|Λp|

r , the
dominant term in therTp = t → ∞ limit, whereΛp =

∏

eΛp,e is the product of
the expanding eigenvalues of the Jacobian matrixMp. With this replacement the
spectral determinant (19.6) is replaced by thedynamical zeta function
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(19.14)

that we have already derived heuristically in sect. 1.5.2. Resumming the loga-
rithms using

∑

r trp/r = − ln(1− tp) we obtain theEuler product representationof
the dynamical zeta function:

1/ζ =
∏

p

(

1− tp

)

. (19.15)

In order to simplify the notation, we usually omit the explicit dependence of 1/ζ,
tp onz, s, β whenever the dependence is clear from the context.
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CHAPTER 19. SPECTRAL DETERMINANTS 389

The approximate trace formula (18.28) plays the same rolevis-à-vis the dyn-
amical zeta function (19.7)

Γ(s) =
d
ds

ln ζ−1 =
∑

p

Tptp

1− tp
, (19.16)

as the exact trace formula (18.23) playsvis-à-vis the spectral determinant (19.6).
The heuristically derived dynamical zeta function of sect.1.5.2 now re-emerges
as the 1/ζ0···0(z) part of theexactspectral determinant; other factors in the infinite
product (19.9) affect the non-leading eigenvalues ofL.

In summary, the dynamical zeta function (19.15) associatedwith the flow f t(x)
is defined as the product over all prime cyclesp. The quantities,Tp, np and
Λp, denote the period, topological length and product of the expanding Floquet
multipliers of prime cyclep, Ap is the integrated observablea(x) evaluated on a
single traversal of cyclep (see (17.5)),s is a variable dual to the timet, z is dual
to the discrete “topological” timen, andtp(z, s, β) denotes the local trace over the
cycle p. We have included the factorznp in the definition of the cycle weight in
order to keep track of the number of times a cycle traverses the surface of section.
The dynamical zeta function is useful because the term

1/ζ(s) = 0 (19.17)

when s= s0, Here s0 is the leading eigenvalue ofLt = etA, which is often all
that is necessary for application of this equation. The above argument completes
our derivation of the trace and determinant formulas for classical chaotic flows.
In chapters that follow we shall make these formulas tangible by working out a
series of simple examples.

The remainder of this chapter offers examples of zeta functions.

fast track:

chapter 20, p. 400

19.3.1 A contour integral formulation

The following observation is sometimes useful, in particular for zeta func-
tions with richer analytic structure than just zeros and poles, as in the case of
intermittency (chapter 24):Γn, the trace sum (18.26), can be expressed in terms
of the dynamical zeta function (19.15)

1/ζ(z) =
∏

p

(

1−
znp

|Λp|

)

. (19.18)
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CHAPTER 19. SPECTRAL DETERMINANTS 390

Figure 19.1: The survival probabilityΓn can be split
into contributions from poles (x) and zeros (o) between
the small and the large circle and a contribution from
the large circle.
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-

γ
R
-

γ z = 1
zα

r
Re z

as a contour integral

Γn =
1

2πi

∮

γ−r

z−n
(

d
dz

logζ−1(z)

)

dz , (19.19)

exercise 19.7

where a small contourγ−r encircles the origin in negative (clockwise) direction.
If the contour is small enough, i.e., it lies inside the unit circle |z| = 1, we may
write the logarithmic derivative ofζ−1(z) as a convergent sum over all periodic
orbits. Integrals and sums can be interchanged, the integrals can be solved term
by term, and the trace formula (18.26) is recovered. For hyperbolic maps, cycle chapter 20

expansions or other techniques provide an analytical continuation of the dynam-
ical zeta function beyond the leading zero; we may thereforedeform the original
contour into a larger circle with radiusR which encircles both poles and zeros of
ζ−1(z), as depicted in figure 19.1. Residue calculus turns this into a sum over the
zeroszα and poleszβ of the dynamical zeta function, that is

Γn =

zeros
∑

|zα |<R

1
zn
α

−

poles
∑

|zβ |<R

1
zn
β

+
1

2πi

∮

γ−R

dz z−n d
dz

logζ−1, (19.20)

where the last term gives a contribution from a large circleγ−R. It would be a
miracle if you still remember this, but in sect. 1.4.3 we interpretedΓn as fraction
of survivors aftern bounces, and defined the escape rateγ as the rate of the find
exponential decay ofΓn. We now see that this exponential decay is dominated by
the leading zero or pole ofζ−1(z).

19.3.2 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of the topo-
logical zeta function (15.27) to a function that assigns different weights to different chapter 15

cycles:

ζ(z) = exp
∞
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exercise 18.2

Here we sum over all periodic pointsxi of periodn, andg(x) is any (matrix val-
ued) weighting function, where the weight evaluated multiplicatively along the
trajectory ofxi.

By the chain rule (4.46) the stability of anyn-cycle of a 1-dimensional map
is given byΛp =

∏n
j=1 f ′(xi), so the 1-dimensional map cycle stability is the

simplest example of a multiplicative cycle weightg(xi) = 1/| f ′(xi)|, and indeed -
via the Perron-Frobenius evolution operator (16.9) - the historical motivation for
Ruelle’s more abstract construction.

In particular, for a piecewise-linear map with a finite Markov partition such as
the map of example 16.1, the dynamical zeta function is givenby a finite polyno-
mial, a straightforward generalization of the topologicaltransition matrix deter-
minant (14.1). As explained in sect. 15.3, for a finite [N×N] dimensional matrix
the determinant is given by

∏

p

(1− tp) =
N

∑

n=1

zncn ,

wherecn is given by the sum over all non-self-intersecting closed paths of length
n together with products of all non-intersecting closed paths of total lengthn.

Example 19.4 A piecewise linear repeller: Due to piecewise linearity, the stability
of any n-cycle of the piecewise linear repeller (16.11) factorizes as Λs1s2...sn = Λ

m
0Λ

n−m
1 ,

where m is the total number of times the letter sj = 0 appears in the p symbol sequence,
so the traces in the sum (18.28) take the particularly simple form

tr Tn = Γn =

(

1
|Λ0|
+

1
|Λ1|

)n

.

The dynamical zeta function (19.14) evaluated by resumming the traces, exercise 19.3

1/ζ(z) = 1− z/|Λ0| − z/|Λ1| , (19.21)

is indeed the determinant det (1− zT) of the transfer operator (16.13), which is almost
as simple as the topological zeta function (15.34).

chapter 15

More generally, piecewise-linear approximations to dynamical systems yield
polynomial or rational polynomial cycle expansions, provided that the symbolic
dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so dreaded by quantum
chaologians is a bogus anxiety; we are dealing with exponentially many cycles of
increasing length and instability, but all that really matters in this example are the
stabilities of the two fixed points. Clearly the informationcarried by the infinity
of longer cycles is highly redundant; we shall learn in chapter 20 how to exploit
this redundancy systematically.
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19.4 False zeros

Compare (19.21) with the Euler product (19.15). For simplicity consider two
equal scales,|Λ0| = |Λ1| = eλ. Our task is to determine the leading zeroz = eγ

of the Euler product. It is a novice error to assume that the infinite Euler product
(19.15) vanishes whenever one of its factors vanishes. If that were true, each factor
(1− znp/|Λp|) would yield

0 = 1− enp(γ−λp), (19.22)

so the escape rateγ would equal the Floquet exponent of a repulsive cycle, one
eigenvalueγ = γp for each prime cyclep. This is false! The exponentially
growing number of cycles with growing period conspires to shift the zeros of the
infinite product. The correct formula follows from (19.21)

0 = 1− eγ−λ+h , h = ln 2. (19.23)

This particular formula for the escape rate is a special caseof a general relation
between escape rates, Lyapunov exponents and entropies that is not yet included
into this book. Physically this means that the escape induced by the repulsion
by each unstable fixed point is diminished by the rate of backscatter from other
repelling regions, i.e., the entropyh; the positive entropy of orbits shifts the “false
zeros”z= eλp of the Euler product (19.15) to the true zeroz= eλ−h.

19.5 Spectral determinantsvs. dynamical zeta functions

In sect. 19.3 we derived the dynamical zeta function as an approximation to the
spectral determinant. Here we relate dynamical zeta functions to spectral deter-
minantsexactly, by showing that a dynamical zeta function can be expressed as a
ratio of products of spectral determinants.

The elementary identity ford-dimensional matrices

1 =
1

det (1− M)

d
∑

k=0

(−1)ktr
(

∧kM
)

, (19.24)

inserted into the exponential representation (19.14) of the dynamical zeta func-
tion, relates the dynamical zeta function toweightedspectral determinants.

Example 19.5 Dynamical zeta function in terms of determinants, 1-dimensional
maps: For 1-dimensional maps the identity

1 =
1

(1− 1/Λ)
−

1
Λ

1
(1− 1/Λ)
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Figure 19.2: A game of pinball consisting of two disks
of equal size in a plane, with its only periodic orbit (A.
Wirzba).

R

a
L a

1 2

substituted into (19.14) yields an expression for the dynamical zeta function for 1-
dimensional maps as a ratio of two spectral determinants

1/ζ =
det (1− zL)

det (1− zL(1))
(19.25)

where the cycle weight in L(1) is given by replacement tp → tp/Λp. As we shall see
in chapter 23, this establishes that for nice hyperbolic flows 1/ζ is meromorphic, with
poles given by the zeros of det (1−zL(1)). The dynamical zeta function and the spectral
determinant have the same zeros, although in exceptional circumstances some zeros
of det (1− zL(1)) might be cancelled by coincident zeros of det (1− zL(1)). Hence even
though we have derived the dynamical zeta function in sect. 19.3 as an “approximation”
to the spectral determinant, the two contain the same spectral information.

Example 19.6 Dynamical zeta function in terms of determinants, 2-dimensional
Hamiltonian maps: For 2-dimensional Hamiltonian flows the above identity yields

1
|Λ|
=

1
|Λ|(1− 1/Λ)2

(1− 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1− zL) det (1− zL(2))

det (1− zL(1))
. (19.26)

This establishes that for nice 2-dimensional hyperbolic flows the dynamical zeta func-
tion is meromorphic.

Example 19.7 Dynamical zeta functions for 2-dimensional Hamiltonian flows: The
relation (19.26) is not particularly useful for our purposes. Instead we insert the identity

1 =
1

(1− 1/Λ)2
−

2
Λ

1
(1− 1/Λ)2

+
1
Λ2

1
(1− 1/Λ)2

into the exponential representation (19.14) of 1/ζk, and obtain

1/ζk =
det (1− zL(k))det (1− zL(k+2))

det (1− zL(k+1))2
. (19.27)

Even though we have no guarantee that det (1− zL(k)) are entire, we do know that the
upper bound on the leading zeros of det (1−zL(k+1)) lies strictly below the leading zeros
of det (1− zL(k)), and therefore we expect that for 2-dimensional Hamiltonian flows the
dynamical zeta function 1/ζk generically has a double leading pole coinciding with the
leading zero of the det (1− zL(k+1)) spectral determinant. This might fail if the poles and
leading eigenvalues come in wrong order, but we have not encountered such situations
in our numerical investigations. This result can also be stated as follows: the theorem
establishes that the spectral determinant (19.13) is entire, and also implies that the
poles in 1/ζk must have the right multiplicities to cancel in the det (1− zL) =

∏

1/ζk+1
k

product.
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Figure 19.3: The classical resonancesα = {k,n}
(19.28) for a 2-disk game of pinball.
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19.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral determinant
(19.13) tell us? Consider one of the simplest conceivable hyperbolic flows: the
game of pinball of figure 19.2 consisting of two disks of equalsize in a plane.
There is only one periodic orbit, with the periodT and expanding eigenvalue
Λ given by elementary considerations (see exercise 13.7), and the resonances
det (sα −A) = 0,α = {k, n} plotted in figure 19.3:

sα = −(k + 1)λ + n
2πi
T
, n ∈ Z , k ∈ Z+ , multiplicity k+ 1, (19.28)

can be read off the spectral determinant (19.13) for a single unstable cycle:

det (s−A) =
∞
∏

k=0

(

1− e−sT/|Λ|Λk
)k+1

. (19.29)

In the aboveλ = ln |Λ|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvaluesα gives the decay rate ofαth eigenstate, and the
imaginary part gives the “node number” of the eigenstate. The negative real part
of sα indicates that the resonance is unstable, and the decay ratein this simple
case (zero entropy) equals the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negative Resα are not a problem, but
as there are eigenvalues arbitrarily far in the imaginary direction, this might seem
like all too many eigenvalues. However, they are necessary -we can check this by
explicit computation of the right hand side of (18.23), the trace formula for flows:

∞
∑

α=0

esαt =

∞
∑

k=0

∞
∑

n=−∞

(k+ 1)e−(k+1)λt+i2πnt/T

=

∞
∑

k=0

(k + 1)

(

1

|Λ|Λk

)t/T ∞
∑

n=−∞

ei2πnt/T

=

∞
∑

k=0

k+ 1

|Λ|rΛkr

∞
∑

r=−∞

δ(r − t/T)

= T
∞
∑

r=−∞

δ(t − rT)

|Λ|r (1− 1/Λr)2
. (19.30)
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Hence, the two sides of the trace formula (18.23) are verified. The formula is fine
for t > 0; for t → 0+, however, sides are divergent and need regularization.

The reason why such sums do not occur for maps is that for discrete time we
work with the variablez= es, so an infinite strip along Imsmaps into an annulus
in the complexz plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in (18.8). In the case at hand there is only one time scale
T, and we could just as well replaces by the variablez = e−sT. In general, a
continuous time flow has an infinity of irrationally related cycle periods, and the
resonance arrays are more irregular,cf. figure 20.1.

Résum é

The eigenvalues of evolution operators are given by the zeros of corresponding
determinants, and one way to evaluate determinants is to expand them in terms
of traces, using the matrix identity log det= tr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functions, and in this way the spectra
of evolution operators are related to periodic orbits. The spectral problem is now
recast into a problem of determining zeros of either thespectral determinant

det (s−A) = exp





















−
∑

p

∞
∑

r=1

1
r

e(β·Ap−sTp)r
∣

∣

∣

∣

det
(

1− Mr
p

)

∣

∣

∣

∣





















,

or the leading zeros of thedynamical zeta function

1/ζ =
∏

p

(

1− tp

)

, tp =
1
|Λp|

eβ·Ap−sTp .

The spectral determinant is the tool of choice in actual calculations, as it has
superior convergence properties (this will be discussed inchapter 23 and is il-
lustrated, for example, by table 20.2). In practice both spectral determinants and
dynamical zeta functions are preferable to trace formulas because they yield the
eigenvalues more readily; the main difference is that while a trace diverges at an
eigenvalue and requires extrapolation methods, determinants vanish ats corre-
sponding to an eigenvaluesα, and are analytic ins in an open neighborhood of
sα.

The critical step in the derivation of the periodic orbit formulas for spectral
determinants and dynamical zeta functions is the hyperbolicity assumption (18.5)
that no cycle stability eigenvalue is marginal,|Λp,i | , 1. By dropping the prefac-
tors in (1.5), we have given up on any possibility of recovering the precise distri-
bution of the initialx (return to the past is rendered moot by the chaotic mixing
and the exponential growth of errors), but in exchange we gain an effective de-
scription of the asymptotic behavior of the system. The pleasant surprise (to be
demonstrated in chapter 20) is that the infinite time behavior of an unstable system
turns out to be as easy to determine as its short time behavior.
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Commentary

Remark 19.1 Piecewise monotone maps. A partial list of cases for which the
transfer operator is well defined: the expanding Hölder case, weighted subshifts of finite
type, expanding differentiable case, see Bowen [1.28]: expanding holomorphic case, see
Ruelle [23.9]; piecewise monotone maps of the interval, seeHofbauer and Keller [19.14]
and Baladi and Keller [19.17].

Remark 19.2 Smale’s wild idea. Smale’s wild idea quoted on page 386 was tech-
nically wrong because 1) the Selberg zeta function yields the spectrum of a quantum
mechanical Laplacian rather than the classical resonances, 2) the spectral determinant
weights are different from what Smale conjectured, as the individual cycle weights also
depend on the stability of the cycle, 3) the formula is not dimensionally correct, ask is
an integer ands represents inverse time. Only for spaces of constant negative curvature
do all cycles have the same Lyapunov exponentλ = ln |Λp|/Tp. In this case, one can
normalize time so thatλ = 1, and the factorse−sTp/Λk

p in (19.9) simplify tos−(s+k)Tp, as
intuited in Smale’s quote on page 386 (wherel(γ) is the cycle period denoted here byTp).
Nevertheless, Smale’s intuition was remarkably on the target.

Remark 19.3 Is this a generalization of the Fourier analysis? Fourier analysis
is a theory of the space↔ eigenfunction duality for dynamics on a circle. The way in
which periodic orbit theory generalizes Fourier analysis to nonlinear flows is discussed in
ref. [19.3], a very readable introduction to the Selberg Zeta function.

Remark 19.4 Zeta functions, antecedents. For a function to be deserving of the ap-
pellation “zeta function,” one expects it to have an Euler product representation (19.15),
and perhaps also satisfy a functional equation. Various kinds of zeta functions are re-
viewed in refs. [19.6, 19.7, 19.8]. Historical antecedentsof the dynamical zeta function
are the fixed-point counting functions introduced by Weil [19.9], Lefschetz [19.10] and
Artin and Mazur [19.11], and the determinants of transfer operators of statistical mechan-
ics [1.29].

In his review article Smale [1.27] already intuited, by analogy to the Selberg Zeta
function, that the spectral determinant is the right generalization for continuous time
flows. In dynamical systems theory, dynamical zeta functions arise naturally only for
piecewise linear mappings; for smooth flows the natural object for the study of classi-
cal and quantal spectra are the spectral determinants. Ruelle derived the relation (19.3)
between spectral determinants and dynamical zeta functions, but since he was motivated
by the Artin-Mazur zeta function (15.27) and the statistical mechanics analogy, he did
not consider the spectral determinant to be a more natural object than the dynamical zeta
function. This has been put right in papers on “flat traces” [11.18, 23.23].

The nomenclature has not settled down yet; what we call evolution operators here
is elsewhere called transfer operators [1.32], Perron-Frobenius operators [19.4] and/or
Ruelle-Araki operators.

Here we refer to kernels such as (17.16) as evolution operators. We follow Ruelle
in usage of the term “dynamical zeta function,” but elsewhere in the literature the func-
tion (19.15) is often called the Ruelle zeta function. Ruelle [1.33] points out that the
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corresponding transfer operatorT was never considered by either Perron or Frobenius; a
more appropriate designation would be the Ruelle-Araki operator. Determinants sim-
ilar to or identical with our spectral determinants are sometimes called Selberg Zetas,
Selberg-Smale zetas [1.8] (Gaspard credits Smale [19.13] -but why, dynamical spectral
determinant was not derived by either?), functional determinants, Fredholm determinants,
or even - to maximize confusion - dynamical zeta functions [19.12]. A Fredholm determi-
nant is a notion that applies only to trace class operators - as we consider here a somewhat
wider class of operators, we prefer to refer to their determinants loosely as “spectral de-
terminants.”

Exercises

19.1. Escape rate for a1-dimensional repeller, numerically.
Consider the quadratic map

f (x) = Ax(1− x) (19.31)

on the unit interval. The trajectory of a point starting
in the unit interval either stays in the interval forever or
after some iterate leaves the interval and diverges to mi-
nus infinity. Estimate numerically the escape rate (22.8),
the rate of exponential decay of the measure of points
remaining in the unit interval, for eitherA = 9/2 or
A = 6. Remember to compare your numerical estimate
with the solution of the continuation of this exercise, ex-
ercise 20.2.

19.2. Spectrum of the “golden mean” pruned map.
(medium - exercise 15.7 continued)

(a) Determine an expression for trLn, the trace of
powers of the Perron-Frobenius operator (16.10)
acting on the space of real analytic functions for
the tent map of exercise 15.7.

(b) Show that the spectral determinant for the Perron-
Frobenius operator is

det (1− zL) = (19.32)
∏

k even

(

1−
z
Λk+1

−
z2

Λ2k+2

)

×
∏

k odd

(

1+
z
Λk+1

+
z2

Λ2k+2

)

.

19.3. Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta func-
tion

1/ζ(z) =
∏

p

(

1−
znp

|Λp|

)

for the piecewise-linear map (16.11) with the left
branch slopeΛ0, the right branch slopeΛ1.

x


f(x)


s10
s00


s01
 s11


(b) What if there are four different slopess00, s01, s10,
and s11 instead of just two, with the preimages
of the gap adjusted so that junctions of branches
s00, s01 ands11, s10 map in the gap in one iteration?
What would the dynamical zeta function be?

19.4. Dynamical zeta functions from transition graphs.
Extend sect. 15.3 to evaluation of dynamical zeta func-
tions for piecewise linear maps with finite transition
graphs. This generalizes the results of exercise 19.3.

19.5. Zeros of infinite products. Determination of the
quantities of interest by periodic orbits involves work-
ing with infinite product formulas.

(a) Consider the infinite product

F(z) =
∞

∏

k=0

(1+ fk(z))
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where the functionsfk are “sufficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of
infinite products.

(b) If z∗ is a root of the functionF, show that the infi-
nite product diverges when evaluated atz∗.

(c) How does one compute a root of a function repre-
sented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition ofF(z) to the infinite
product

F(z) =
∏

p

(1−
znp

Λnp
)

(e) Are the roots of the factors in the above product
the zeros ofF(z)?

(Per Rosenqvist)

19.6. Dynamical zeta functions as ratios of spectral determinants.
(medium) Show that the zeta function

1/ζ(z) = exp

















−
∑

p

∑

r=1

1
r

znp

|Λp|
r

















can be written as the ratio

1/ζ(z) = det (1− zL(0))/det (1− zL(1)) ,

where det (1− zL(s)) =
∏

p
∏∞

k=0(1− znp/|Λp|Λ
k+s
p ).

19.7. Contour integral for survival probability. Perform
explicitly the contour integral appearing in (19.19).

19.8. Dynamical zeta function for maps. In this prob-
lem we will compare the dynamical zeta function and
the spectral determinant. Compute the exact dynamical
zeta function for the skew full tent map (16.46)

1/ζ(z) =
∏

p∈P

(

1−
znp

|Λp|

)

.

What are its roots? Do they agree with those computed
in exercise 16.7?

19.9. Dynamical zeta functions for Hamiltonian maps.
Starting from

1/ζ(s) = exp

















−
∑

p

∞
∑

r=1

1
r

trp

















for a 2-dimensional Hamiltonian map. Using the equal-
ity

1 =
1

(1− 1/Λ)2
(1− 2/Λ + 1/Λ2) ,

show that

1/ζ = det (1− L) det (1− L(2))/det (1− L(1))2 .

In this expression det (1−zL(k)) is the expansion one gets
by replacingtp → tp/Λ

k
p in the spectral determinant.

19.10. Riemann ζ function. The Riemannζ function is
defined as the sum

ζ(s) =
∞
∑

n=1

1
ns
, s ∈ C .

(a) Use factorization into primes to derive the Euler
product representation

ζ(s) =
∏

p

1
1− p−s

.

The dynamical zeta function exercise 19.15 is
called a “zeta” function because it shares the form
of the Euler product representation with the Rie-
mann zeta function.

(b) (Not trivial:) For which complex values ofs is the
Riemann zeta sum convergent?

(c) Are the zeros of the terms in the product,s =
− ln p, also the zeros of the Riemannζ function?
If not, why not?

19.11. Finite truncations. (easy) Suppose we have a 1-
dimensional system with complete binary dynamics,
where the stability of each orbit is given by a simple
multiplicative rule:

Λp = Λ
np,0

0 Λ
np,1

1 , np,0 = #0 in p , np,1 = #1 in p ,

so that, for example,Λ00101= Λ
3
0Λ

2
1.

(a) Compute the dynamical zeta function for this sys-
tem; perhaps by creating a transfer matrix analo-
gous to (16.13), with the right weights.

(b) Compute the finitep truncations of the cycle ex-
pansion, i.e. take the product only over thep up to
given length withnp ≤ N, and expand as a series
in z

∏

p

(

1−
znp

|Λp|

)

.

Do they agree? If not, how does the disagreement
depend on the truncation lengthN?
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