Chapter 19

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn'’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don't exactly know what they are!”

—Lewis Carroll, Through the Looking Glass

diverge atz = e %, respectivelys = &, i.e., precisely where one would

like to use them. While this does not prevent numerical esion of
some “thermodynamic” averages for iterated mappings, encise of the Gutz-
willer trace formula this leads to a perplexing observatioat crude estimates
of the radius of convergence seem to put the entire physmadtsum out of
reach. We shall now cure this problem by thinking, at no extrmputational
cost; while traces and determinants are formally equivakgterminants are the
tool of choice when it comes to computing spectra. Deterntéend to have chapter 23
larger analyticity domains because ifff(1 - z£) = —diz Indet (1- z£) diverges
at a particular value df, then det (1- z£) might have an isolated zero there, and
a zero of a function is easier to determine numerically thapales.

THE proBLEM With the trace formulas (18.10), (18.23) and (18.28) is thay

19.1 Spectral determinants for maps

The eigenvalueg of a linear operator are given by the zeros of the determinant

det(1-z£) = | [ -z/z). (19.1)
k

For finite matrices this is the characteristic determinémt;operators this is the
Hadamard representation of tepectral determinant(sparing the reader from

384



CHAPTER 19. SPECTRAL DETERMINANTS 385

pondering possible regularization factors). Considet five case of maps, for

which the evolution operator advances the densities bgénteteps in time. In
this case we can use the formal matrix identity

(o8]

Indet (1- M) = tr In(1 = M) = —Z %’tr M", (19.2)

n=1

to relate the spectral determinant of an evolution opeifaioa map to its traces
(18.8), and hence to periodic orbits:

det(1-z£) = exp{—i%trﬂ‘)
n
1 2R A
_ _ 2 19.3
P Zp:;r|det1 M) (192

Going the other way, the trace formula (18.10) can be reeavéom the
spectral determinant by taking a derivative

2L 9 ndeta- 2. (19.4)

tr1—z£ dz

fast track:
W sect. 19.2, p. 386

Example 19.1 Spectral determinants of transfer operators:
y

exercise 4.1

J For a piecewise-linear map (16.11) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (18.11)

into (19.3):
det (1- ) = ﬁ(l— B _ t—l)
kol Ay Af

where ts = z/|Ag. The eigenvalues are necessarily the same as in (18.12), whi
already determined from the trace formula (18.10).

(19.5)

ch we

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (19.5) is an entire function. It is this property that generalizes to piecewise smooth

flows with finite Markov partitions, and singles out spectral determinants rathe

r than

the trace formulas or dynamical zeta functions as the tool of choice for evaluation of

spectra.
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CHAPTER 19. SPECTRAL DETERMINANTS 386

19.2 Spectral determinant for flows

.. an analogue of the [Artin-Mazur] zeta function for dif-
feomorphisms seems quite remote for flows. However we
will mention a wild idea in this direction.: [-] definel(y)
to be the minimal period of [- -] then define formally
(another zeta function(s) to be the infinite product

Z(s)—l_[l_[ ~ [expl()] ) .

yell k=0

—Stephen Smaldifferentiable Dynamical Systems

We write the formula for the spectral determinant for flowsdnalogy to
(19.3)

21 & BA-sTy)

19.6
i |det 1- M) (19:6)

det(s— A) = exp[ Z
p

and then check that the trace formula (18.23) is the logaittderivative of the
spectral determinant

1 d
trm = d—sln det(s— A). (29.7)

With zset toz = e S as in (18.24), the spectral determinant (19.6) has the same
form for both maps and flows. We refer to (19.6)spectral determinantas the
spectrum of the operatofi is given by the zeros of

det(s— A) =0. (19.8)

We now note that the sum in (19.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the spatgterminant into an
infinite product over periodic orbits as follows:

Let My be thep-cycle [dxd] transverse Jacobian matrix, with eigenvalues
Ap1, Ap2, ..., Apd. Expanding the expanding eigenvalue factofflt 1/Ape)
and the contracting eigenvalue factorgll- Ap ) in (18.4) as geometric series,
substituting back into (19.6), and resumming the logarghwe find that the spec-
tral determinant is formally given by the infinite product

det(s—A) =
( ) !1_:[ nﬁq e
Al Al Al
Ydgre = [ ]|1-te—20 Ej*z kep’d (19.9)
P Ap,lAp,Z o Ape
1
tp = tp(;sﬁ)=meﬂ'Ap—ssz”p. (19.10)
p
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CHAPTER 19. SPECTRAL DETERMINANTS 387

In such formulagy, is a weight associated with thecycle (lettert refers to the
“local trace” evaluated along thecycle trajectory), and the indgxruns through
all distinct prime cycles. Why the factafr? It is associated with the trace for-
mula (18.10) for maps, whereas the faatot' is specific to the continuous time
trace formuls (18.23); according to (18.24) we should useeione or the other.
But we have learned in sect. 3.1 that flows can be represeiitest &y their
continuous-time trajectories, or by their topological diffoincaré section return
maps. In cases when we have good control over the topologiyecfidw, it is
often convenient to insert th& factor into cycle weights, as a formal parame-
ter which keeps track of the topological cycle lengths. Ehiestors will assist chapter 20
us in expanding zeta functions and determinants, eveptuadishall sez = 1.
The subscriptg, ¢ indicate that there amexpanding eigenvalues, andontract-
ing eigenvalues. The observable whose average we wish tputensontributes
through theAl(x) term in thep cycle multiplicative weighe?#». By its definition
(17.1), the weight for maps is a product along the periodiatgo

=]
5
[N

= [ o)

T.
o

and the weight for flows is an exponential of the integral 1 along the cycle

e = exp( f " a(x(T))d‘r).
0

This formula is correct for scalar weighting functions; mgeneral matrix valued
weights require a time-ordering prescription as in the Bmcomatrix of sect. 4.1.

.
Example 19.2 Expanding 1-dimensional map: J For expanding 1-dimensional
mappings the spectral determinant (19.9) takes the form

0 egAp
det@-z0) =[[[[(1-to/AY). o= |Ap|z“p . (19.11)

p k=0
Example 19.3 Two-degree of freedom Hamiltonian flows: For a 2-degree of free-

dom Hamiltonian flows the energy conservation eliminates on phase-space variable,
and restriction to a Poincaré section eliminates the marginal longitudinal eigenvalue
A =1, so a periodic orbit of 2-degree of freedom hyperbolic Hamiltonian flow has one
expanding transverse eigenvalue A, |A| > 1, and one contracting transverse eigenvalue
1/A. The weight in (18.4) is expanded as follows:

1 1 lik+1

- =2 T 19.12
'det(l - MB) IAIN(1—1/AL)?  IAT Ak ( )

k=0

det - 19apr2005 ChaosBook.org version14, Dec 31 2012



CHAPTER 19. SPECTRAL DETERMINANTS 388

The spectral determinant exponent can be resummed,

Ap—STp)r © Ap—sT,
—Zl il Z(k+1)|og(1—e8p7kp),
‘det 1- Mf) k=0 [AplAD

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over prime cycles

o

detc—A) = [ [ ](1-to/al)"" . (19.13)
p k=0

exercise 23.4

Now we are finally poised to deal with the problem posed at #giriming of
chapter 18; how do we actually evaluate the averages irteatin sect. 17.1? The
eigenvalues of the dynamical averaging evolution ope@®given by the values
of s for which the spectral determinant (19.6) of the evolutigemtor (17.16)
vanishes. If we can compute the leading eigenvaljfg) and its derivatives, we
are done. Unfortunately, the infinite product formula (399no more than a
shorthand notation for the periodic orbit weights conttiitgi to the spectral det-
erminant; more work will be needed to bring such formulae etractable form.
This shall be accomplished in chapter 20, but here it is ahtorintroduce still
another variant of a determinant, the dynamical zeta fancti

19.3 Dynamical zeta functions

It follows from sect. 18.1.1 that if one is interested onlythie leading eigenvalue
of £, the size of thep cycle neighborhood can be approximated BjA}|", the
dominant term in theT, = t — oo limit, where A, = []eApe is the product of
the expanding eigenvalues of the Jacobian matix With this replacement the
spectral determinant (19.6) is replaced by digaamical zeta function

®1
1/¢ = exp[— Z Z Ft;} (19.14)
p r=1

that we have already derived heuristically in sect. 1.5.2suRming the loga-
rithms usingy, t,/r = —In(1 - tp) we obtain theEuler product representatioaf
the dynamical zeta function:

1/¢ = l—l(l—tp) . (19.15)

p

In order to simplify the notation, we usually omit the exijilidependence of /£,
tp onz, s, S whenever the dependence is clear from the context.
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CHAPTER 19. SPECTRAL DETERMINANTS 389

The approximate trace formula (18.28) plays the sameuist@-vis the dyn-
amical zeta function (19.7)

(9= gnct= Zpl e (19.16)

as the exact trace formula (18.23) plays-a-vis the spectral determinant (19.6).
The heuristically derived dynamical zeta function of sécb.2 now re-emerges
as the 14y..0(2) part of theexactspectral determinant; other factors in the infinite
product (19.9) fiect the non-leading eigenvalues.ff

In summary, the dynamical zeta function (19.15) associattrothe flow f'(x)
is defined as the product over all prime cycles The quantities,T,, np and
Ap, denote the period, topological length and product of theaaging Floquet
multipliers of prime cyclep, A, is the integrated observabi¢x) evaluated on a
single traversal of cycle (see (17.5))sis a variable dual to the timi z is dual
to the discrete “topological” tima, andty(z s, 5) denotes the local trace over the
cycle p. We have included the factafr in the definition of the cycle weight in
order to keep track of the number of times a cycle traversesuiface of section.
The dynamical zeta function is useful because the term

1/£(9) =0 (19.17)

whens = s, Here s is the leading eigenvalue oft = €, which is often all
that is necessary for application of this equation. The almygument completes
our derivation of the trace and determinant formulas fosgitzal chaotic flows.
In chapters that follow we shall make these formulas taegdiy working out a
series of simple examples.

The remainder of this chapteffers examples of zeta functions.
fast track:
W chapter 20, p. 400
19.3.1 A contour integral formulation

,
J The following observation is sometimes useful, in partcuibr zeta func-
tions with richer analytic structure than just zeros andepphs in the case of
intermittency (chapter 24)",, the trace sum (18.26), can be expressed in terms
of the dynamical zeta function (19.15)

Zp
1@ =] (1 - m) : (19.18)

p
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CHAPTER 19. SPECTRAL DETERMINANTS 390

Figure 19.1: The survival probabilityl’, can be split
into contributions from poles (x) and zeros (0) between
the small and the large circle and a contribution from
the large circle.

as a contour integral

_i —N ﬂ -1
I = o 922 (dzlogg’ (z)) dz , (19.19)

exercise 19.7

where a small contouy; encircles the origin in negative (clockwise) direction.

If the contour is small enough, i.e., it lies inside the umitle |7 = 1, we may

write the logarithmic derivative of ~1(2) as a convergent sum over all periodic

orbits. Integrals and sums can be interchanged, the irsegga be solved term

by term, and the trace formula (18.26) is recovered. For tipge maps, cycle chapter 20
expansions or other techniques provide an analytical woation of the dynam-

ical zeta function beyond the leading zero; we may therefeferm the original

contour into a larger circle with radiu® which encircles both poles and zeros of
71(2), as depicted in figure 19.1. Residue calculus turns thisargum over the

zerosz, and poles of the dynamical zeta function, that is

zeros poles 1

zzé

Iy =
1Z.I<R IZ51<R %

1 d
— @ dzz"—logs?t 19.20

where the last term gives a contribution from a large cingle It would be a
miracle if you still remember this, but in sect. 1.4.3 we iptetedl’, as fraction

of survivors aftem bounces, and defined the escape taés the rate of the find
exponential decay df,. We now see that this exponential decay is dominated by
the leading zero or pole &f(2).

19.3.2 Dynamical zeta functions for transfer operators

,
J Ruelle’s original dynamical zeta function was a generébzeof the topo-

logical zeta function (15.27) to a function that assigrifedént weights to dierent chapter 15
cycles:

00 n-1
4(z)=exp2§[ D tr]‘[g(fi(m)].

n=1 xeFixfn j=0
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CHAPTER 19. SPECTRAL DETERMINANTS 391

exercise 18.2
Here we sum over all periodic poings of periodn, andg(x) is any (matrix val-
ued) weighting function, where the weight evaluated mlittitively along the
trajectory ofx;.

By the chain rule (4.46) the stability of amycycle of a 1-dimensional map
is given byAp = ?:1 f’(x), so the 1-dimensional map cycle stability is the
simplest example of a multiplicative cycle weigiit) = 1/|f’(x)|, and indeed -
via the Perron-Frobenius evolution operator (16.9) - tistohical motivation for
Ruelle’s more abstract construction.

In particular, for a piecewise-linear map with a finite Markzartition such as
the map of example 16.1, the dynamical zeta function is goxea finite polyno-
mial, a straightforward generalization of the topologitahsition matrix deter-
minant (14.1). As explained in sect. 15.3, for a finit&{N] dimensional matrix
the determinant is given by

N
[Ja-t)=> 7cn,
p n=1

wherec, is given by the sum over all non-self-intersecting closeithpaf length
n together with products of all non-intersecting closed pathtotal lengthn.

Example 19.4 A piecewise linear repeller: Due to piecewise linearity, the stability
of any n-cycle of the piecewise linear repeller (16.11) factorizes as As;s,..s, = AJAT™,
where mis the total number of times the letter s; = 0 appears in the p symbol sequence,
so the traces in the sum (18.28) take the particularly simple form

1 1\
T =T =(_+_) |
" Aol A
The dynamical zeta function (19.14) evaluated by resumming the traces, exercise 19.3
1/4(2) = 1= z/|Aol = Z/|A4l, (19.21)

is indeed the determinant det(1— zT) of the transfer operator (16.13), which is almost

as simple as the topological zeta function (15.34).
chapter 15

More generally, piecewise-linear approximations to dyitairsystems yield
polynomial or rational polynomial cycle expansions, pdwd that the symbolic
dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so drdduy quantum
chaologians is a bogus anxiety; we are dealing with expaaBniany cycles of
increasing length and instability, but all that really neadtin this example are the
stabilities of the two fixed points. Clearly the informatioarried by the infinity
of longer cycles is highly redundant; we shall learn in cka@0 how to exploit
this redundancy systematically.
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CHAPTER 19. SPECTRAL DETERMINANTS 392

19.4 False zeros

Compare (19.21) with the Euler product (19.15). For sinifgliconsider two
equal scalegAo| = |A1] = €. Our task is to determine the leading zere: &
of the Euler product. It is a novice error to assume that tfiaite Euler product
(19.15) vanishes whenever one of its factors vanishesatfalire true, each factor
(1-2"/|Apl) would yield

0=1- vl (19.22)

so the escape ratewould equal the Floquet exponent of a repulsive cycle, one
eigenvaluey = vy, for each prime cyclep. This is false! The exponentially
growing number of cycles with growing period conspires tiftshe zeros of the
infinite product. The correct formula follows from (19.21)

0=1-e*"  h=In2 (19.23)

This particular formula for the escape rate is a special odsegeneral relation
between escape rates, Lyapunov exponents and entropiets that yet included
into this book. Physically this means that the escape irdliigethe repulsion
by each unstable fixed point is diminished by the rate of bzatksr from other
repelling regions, i.e., the entrojoy the positive entropy of orbits shifts the “false
zeros”z = e'r of the Euler product (19.15) to the true zere et".

19.5 Spectral determinantsvs. dynamical zeta functions

In sect. 19.3 we derived the dynamical zeta function as anoappation to the
spectral determinant. Here we relate dynamical zeta fomstio spectral deter-
minantsexactly by showing that a dynamical zeta function can be expressed a
ratio of products of spectral determinants.

The elementary identity fal-dimensional matrices

_ 1 : k k
1= oW ;)(—1) tr (A M), (19.24)

inserted into the exponential representation (19.14) efdynamical zeta func-
tion, relates the dynamical zeta functionvieightedspectral determinants.

Example 19.5 Dynamical zeta function in terms of determinants, 1-dimensional
maps:  For 1-dimensional maps the identity

1 1 1

Y=TTn  Aamoun
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CHAPTER 19. SPECTRAL DETERMINANTS 393

Figure 19.2: A game of pinball consisting of two disks L
of equal size in a plane, with its only periodic orbit (A
Wirzba).

<----R-----=

substituted into (19.14) yields an expression for the dynamical zeta function for 1-
dimensional maps as a ratio of two spectral determinants

1¢ = det(1-zL)

where the cycle weight in L) is given by replacement t, — tp/Ap. As we shall see
in chapter 23, this establishes that for nice hyperbolic flows 1/ is meromorphic, with
poles given by the zeros of det (1-zL1)). The dynamical zeta function and the spectral
determinant have the same zeros, although in exceptional circumstances some zeros
of det (1—- zL(1)) might be cancelled by coincident zeros of det(1— zL(1)). Hence even
though we have derived the dynamical zeta function in sect. 19.3 as an “approximation”
to the spectral determinant, the two contain the same spectral information.

Example 19.6 Dynamical zeta function in terms of determinants, 2-dimensional
Hamiltonian maps: For 2-dimensional Hamiltonian flows the above identity yields

1 1

A~ A= TAR 1/A)2(1— 2/A +1/A?),

So

_ det(1- z£) det (1- zL)

ve det (1~ L)

(19.26)

This establishes that for nice 2-dimensional hyperbolic flows the dynamical zeta func-
tion is meromorphic.

Example 19.7 Dynamical zeta functions for ~ 2-dimensional Hamiltonian flows: The
relation (19.26) is not particularly useful for our purposes. Instead we insert the identity

L1 > 1 11
T@-UA?  AQ-UAZ T A(@-1/A2

into the exponential representation (19.14) of 1/, and obtain

_ det(1-2zLy)det(1- 2Lx:2)
det (1- zLk.1))?

1/4k (19.27)

Even though we have no guarantee that det (1- zLy) are entire, we do know that the
upper bound on the leading zeros of det (1- zL.1)) lies strictly below the leading zeros
of det(1- zL), and therefore we expect that for 2-dimensional Hamiltonian flows the
dynamical zeta function 1/{x generically has a double leading pole coinciding with the
leading zero of the det (1- zL.1)) spectral determinant. This might fail if the poles and
leading eigenvalues come in wrong order, but we have not encountered such situations
in our numerical investigations. This result can also be stated as follows: the theorem
establishes that the spectral determinant (19.13) is entire, and also implies that the
poles in 1/ must have the right multiplicities to cancel in the det (1- zL) = [] 1/§|'<‘+l
product.

det - 19apr2005 ChaosBook.org version14, Dec 31 2012



CHAPTER 19. SPECTRAL DETERMINANTS 394
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Figure 19.3: The classical resonances = {k,n} o o o oo st
(19.28) for a 2-disk game of pinball. {0,-3}
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19.6 All too many eigenvalues?

O3

What does the 2-dimensional hyperbolic Hamiltonian flowcs@e determinant
(19.13) tell us? Consider one of the simplest conceivabfetholic flows: the
game of pinball of figure 19.2 consisting of two disks of egsiak in a plane.
There is only one periodic orbit, with the periddand expanding eigenvalue
A given by elementary considerations (see exercise 13.1),tla resonances
det (s, — A) =0, a = {k, n} plotted in figure 19.3:

S = —(kK+ 1) + n?l , neZ,kez,, multplicity k+ 1, (19.28)

can be readfd the spectral determinant (19.13) for a single unstablescycl

)k+l

det(s— A) = ]—[ (1-eT/1AIAk (19.29)
k=0

In the abovel = In|A|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvalug gives the decay rate afth eigenstate, and the
imaginary part gives the “node number” of the eigenstatee figgative real part
of s, indicates that the resonance is unstable, and the decajnrtiis simple
case (zero entropy) equals the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negativesRare not a problem, but
as there are eigenvalues arbitrarily far in the imaginargdion, this might seem
like all too many eigenvalues. However, they are necessag/can check this by
explicit computation of the right hand side of (18.23), tteee formula for flows:

N St N K+ 1 —(k+1L)at+i2znt/T
;e Z Z( +1)e

k=0 N=—c0
t/T oo

N 1 i2znt/ T
%(k+ l)(—|A|Ak) n; g2mt

(9] (9]

> |Ak|r;Alkf D8 -yT)

k=0 r=—o0

(o)

ot—rT)
T Z A TA (19.30)

[=—co
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Hence, the two sides of the trace formula (18.23) are verifib@ formula is fine
fort > 0; fort — 0., however, sides are divergent and need regularization.

The reason why such sums do not occur for maps is that foratéstime we
work with the variablez = €%, so an infinite strip along Iremaps into an annulus
in the complexz plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in (18.8). In the case at hand there is amé time scale
T, and we could just as well replaceby the variablez = € ST. In general, a
continuous time flow has an infinity of irrationally relategcte periods, and the
resonance arrays are more irreguddr,figure 20.1.

Résumé

The eigenvalues of evolution operators are given by theszef@orresponding

determinants, and one way to evaluate determinants is @nexghem in terms

of traces, using the matrix identity log dettr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functiorgsiratis way the spectra
of evolution operators are related to periodic orbits. Tiectral problem is now

recast into a problem of determining zeros of eithergpectral determinant

’

det(s— A) = exp[ ZZ 1|dee(ﬁ: Ap— STp)r)
p

or the leading zeros of thdynamical zeta function

Ye=[]01-t%), t= |Ap|esAp STy
p

The spectral determinant is the tool of choice in actualutatons, as it has
superior convergence properties (this will be discussechapter 23 and is il-
lustrated, for example, by table 20.2). In practice botrcspédeterminants and
dynamical zeta functions are preferable to trace formuézsbse they yield the
eigenvalues more readily; the mairftdrence is that while a trace diverges at an
eigenvalue and requires extrapolation methods, detentsinanish ats corre-
sponding to an eigenvalug,, and are analytic irs in an open neighborhood of

Se-

The critical step in the derivation of the periodic orbitrfarlas for spectral
determinants and dynamical zeta functions is the hyperibplhssumption (18.5)
that no cycle stability eigenvalue is margindl,;| # 1. By dropping the prefac-
tors in (1.5), we have given up on any possibility of recavgrihe precise distri-
bution of the initialx (return to the past is rendered moot by the chaotic mixing
and the exponential growth of errors), but in exchange wa gaidfective de-
scription of the asymptotic behavior of the system. Thegdeasurprise (to be
demonstrated in chapter 20) is that the infinite time belafian unstable system
turns out to be as easy to determine as its short time behavior
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Commentary

Remark 19.1 Piecewise monotone maps. A partial list of cases for which the
transfer operator is well defined: the expanding Holdee cagighted subshifts of finite
type, expanding diierentiable case, see Bowen [1.28]: expanding holomortse,csee
Ruelle [23.9]; piecewise monotone maps of the interval Hefbauer and Keller [19.14]
and Baladi and Keller [19.17].

Remark 19.2 Smale’s wild idea. Smale’s wild idea quoted on page 386 was tech-
nically wrong because 1) the Selberg zeta function yieldssfpectrum of a quantum
mechanical Laplacian rather than the classical resona2¢dbe spectral determinant
weights are dterent from what Smale conjectured, as the individual cy@éeits also
depend on the stability of the cycle, 3) the formula is notetisionally correct, ak is

an integer and represents inverse time. Only for spaces of constant vegatirvature
do all cycles have the same Lyapunov exponent In|Apl/Tp. In this case, one can
normalize time so that = 1, and the factorg ™ /A in (19.9) simplify tos 5*¥Te, as
intuited in Smale’s quote on page 386 (whKsg is the cycle period denoted here Dy).
Nevertheless, Smale’s intuition was remarkably on thestarg

Remark 19.3 Is this a generalization of the Fourier analysis? Fourier analysis
is a theory of the space> eigenfunction duality for dynamics on a circle. The way in
which periodic orbit theory generalizes Fourier analysisanlinear flows is discussed in
ref. [19.3], a very readable introduction to the SelbergaZanction.

Remark 19.4 Zeta functions, antecedents.  For a function to be deserving of the ap-
pellation “zeta function,” one expects it to have an Eulerdurct representation (19.15),
and perhaps also satisfy a functional equation. Varioudkuf zeta functions are re-

viewed in refs. [19.6, 19.7, 19.8]. Historical antecedaitthe dynamical zeta function

are the fixed-point counting functions introduced by WeB.JF], Lefschetz [19.10] and

Artin and Mazur [19.11], and the determinants of transfesrafors of statistical mechan-
ics [1.29].

In his review article Smale [1.27] already intuited, by apl to the Selberg Zeta
function, that the spectral determinant is the right geliton for continuous time
flows. In dynamical systems theory, dynamical zeta funetiarise naturally only for
piecewise linear mappings; for smooth flows the natural @t the study of classi-
cal and quantal spectra are the spectral determinantsleRiezived the relation (19.3)
between spectral determinants and dynamical zeta fursstint since he was motivated
by the Artin-Mazur zeta function (15.27) and the statidtiv&chanics analogy, he did
not consider the spectral determinant to be a more natupatioihan the dynamical zeta
function. This has been put right in papers on “flat trace4” 18, 23.23].

The nomenclature has not settled down yet; what we call eolwperators here
is elsewhere called transfer operators [1.32], Perromé&nmius operators [19.4] afat
Ruelle-Araki operators.

Here we refer to kernels such as (17.16) as evolution opstaite follow Ruelle
in usage of the term “dynamical zeta function,” but elsewharthe literature the func-
tion (19.15) is often called the Ruelle zeta function. Rei¢ll.33] points out that the
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corresponding transfer operafbiwas never considered by either Perron or Frobenius; a
more appropriate designation would be the Ruelle-Arakrape. Determinants sim-
ilar to or identical with our spectral determinants are stimes called Selberg Zetas,
Selberg-Smale zetas [1.8] (Gaspard credits Smale [19.43] why, dynamical spectral
determinant was not derived by either?), functional deiteamts, Fredholm determinants,
or even - to maximize confusion - dynamical zeta functiof®s12]. A Fredholm determi-
nant is a notion that applies only to trace class operatasvweaconsider here a somewhat
wider class of operators, we prefer to refer to their deteamis loosely as “spectral de-
terminants.”

Exercises

19.1. Escape rate for al-dimensional repeller, numerically. (a) Evaluate in closed form the dynamical zeta func-
Consider the quadratic map tion

F(x) = AX(L - X) (19.31) 1@ =]] (1 - li;)
p

on the unit interval. The trajectory of a point starting for the piecewise-linear map (16.11) with the left
in the unit interval either stays in the interval forever or branch slope\o, the right branch slopa;.

after some iterate leaves the interval and diverges to mi-

nus infinity. Estimate numerically the escape rate (22.8), f(x)
the rate of exponential decay of the measure of points )
remaining in the unit interval, for eithek = 9/2 or

A = 6. Remember to compare your numerical estimate 01 11
with the solution of the continuation of this exercise, ex-
ercise 20.2.

19.2. Spectrum of the “golden mean” pruned map. 0 ! %00 510
(medium - exercise 15.7 continued)

X X
(2) Determine an expression forAP, the trace of
powers of the Perron-Frobenius operator (16.10)
acting on the space of real analytic functions for
the tent map of exercise 15.7.

(b) What if there are four dlierent slopesoyo, So1, S10,
and s;; instead of just two, with the preimages
of the gap adjusted so that junctions of branches
S00, So1 @andsy1, S1p Map in the gap in one iteration?
(b) Show that the spectral determinant for the Perron- What would the dynamical zeta function be?

Frobenius operator is ) ) -
19.4. Dynamical zeta functions from transition graphs.

Extend sect. 15.3 to evaluation of dynamical zeta func-

det(1-z£) = (19.32) tions for piecewise linear maps with finite transition
7 2 graphs. This generalizes the results of exercise 19.3.
’ ( TOAKL A2'<+2) 19.5. Zeros of infinite products. Determination of the
even 2 quantities of interest by periodic orbits involves work-
% ]_[ (1 L2 _) ing with infinite product formulas.
Ak+l AZkK+2 )
koodd (a) Consider the infinite product

F@ =] |+ f@)
k=0

19.3. Dynamical zeta functions. (easy)

exerDet - 40ct2003 ChaosBook.org version14, Dec 31 2012



REFERENCES

where the functiong are “suficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of
infinite products.

If z is a root of the functior, show that the infi-
nite product diverges when evaluatedrat

(b)

19.10. Riemann ¢ function.

(c) How does one compute a root of a function repre-
sented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition ofF(2) to the infinite
product

Fo=]]a-

p

(e) Are the roots of the factors in the above product
the zeros of(2)?

Z®

AMp

(Per Rosenqvist)

19.6. Dynamical zeta functions as ratios of spectral determinarg.

(medium) Show that the zeta function
12zv
1¢@) = exp[— I APF]
can be written as the ratio

p -1
1/{(2) = det(1- zL)/det (1- zLy))
where det (- zLg) = [Tp [Tiso(1 — 27/IApIAK).

Contour integral for survival probability.
explicitly the contour integral appearing in (19.19).

19.7.

19.8. Dynamical zeta function for maps. In this prob-

lem we will compare the dynamical zeta function and
the spectral determinant. Compute the exact dynamical
zeta function for the skew full tent map (16.46)

1@ =] (1— ;\n—;) .

peP
What are its roots? Do they agree with those computed
in exercise 16.77?

19.9. Dynamical zeta functions for Hamiltonian maps.

Starting from

1/(9) = exp[— Z i %t[,]

p r=1
for a 2-dimensional Hamiltonian map. Using the equal-
ity
1

_ _ 2
1= aTA? 1/A)2(1 2/A +1/A?),

refsDet - 25sep2001

Perform 19.11. Finite truncations.

398

show that
1/¢ = det(1- £) det(1- Lz)/det(1- Lay)?.

In this expression det zL) is the expansion one gets
by replacing, — tp/A'; in the spectral determinant.

The Riemanry function is
defined as the sum

(9= 1.
n=1

(a) Use factorization into primes to derive the Euler
product representation

€@=[11=-
p

The dynamical zeta function exercise 19.15 is
called a “zeta” function because it shares the form
of the Euler product representation with the Rie-
mann zeta function.

seC.

(b) (Not trivial:) For which complex values cfis the
Riemann zeta sum convergent?

(c) Are the zeros of the terms in the produst,=
—In p, also the zeros of the Riemagrfunction?
If not, why not?

(easy) Suppose we have a 1-
dimensional system with complete binary dynamics,
where the stability of each orbit is given by a simple
multiplicative rule:

Ap=A°AP,  npo=#0inp, npy =#1inp,

so that, for example\op101 = AJAZ.

(&) Compute the dynamical zeta function for this sys-
tem; perhaps by creating a transfer matrix analo-
gous to (16.13), with the right weights.

(b) Compute the finitg truncations of the cycle ex-
pansion, i.e. take the product only over fhap to
given length withn, < N, and expand as a series

Z®

D(l_ |Ap|) '

Do they agree? If not, how does the disagreement
depend on the truncation lengt?
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