Chapter 25

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanovit)

HE ADVANCES in the theory of dynamical systems have brought a new life to
T Boltzmann's mechanical formulation of statistical medbanSinai, Ruelle
and Bowen (SRB) have generalized Boltzmann’s notion ofdigity for a
constant energy surface for a Hamiltonian system in eqiilib to dissipative sys-
tems in nonequilibrium stationary states. In this more gareetting the attractor
plays the role of a constant energy surface, and the SRB meeafgect. 16.1 is
a generalization of the Liouville measure. Such measurepuaely microscopic
and indiferent to whether the system is at equilibrium, close to éyiiim or far
from it. “Far for equilibrium” in this context refers to syshs with large devia-
tions from Maxwell’'s equilibrium velocity distribution. thermore, the theory
of dynamical systems has yielded new sets of microscopiamjcs formulas for
macroscopic observables such afutiion constants and the pressure, to which
we turn now.

We shall apply cycle expansions to the analysigrafsport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assionptare made, and
the all correlations are taken into account by the inclusibeycles of all periods.
The infinite extent systems for which the periodic orbit ttyegields formulas for
diffusion and other transport déieients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The ratitw are physical
problems such as beam defocusing in particle accelerataisaontic behavior of
passive tracers in 2-dimensional rotating flows, problerigkwcan be described
as deterministic diusion in periodic arrays.

In sect. 25.1 we derive the formulas foffdision codicients in a simple phys-
ical setting, the 2-dimensional periodic Lorentz gas. Hystem, however, is not
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Figure 25.1: Deterministic difusion in a finite horizon
periodic Lorentz gas. (T. Schreiber))

the best one to illustrate the theory, due to its complicatgdbolic dynamics.
Therefore we apply the theory first tofiilision induced by a 1-dimensional maps
in sect. 25.2.

25.1 Diffusion in periodic arrays

Chaos happens - let's make a better use of it.
— Edward Tenner

The 2-dimensionalorentz gass an infinite scatterer array in whichfflision of a
light molecule in a gas of heavy scatterers is modeled by thteomof a point par-
ticle in a plane bouncingfban array of reflecting disks. The Lorentz gas is called
“gas” as one can equivalently think of it as consisting of aoynber of pointlike
fast “light molecules” interacting only with the statiogdheavy molecules” and
not among themselves. As the scatterer array is built up waiy defocusing
concave surfaces, it is a pure hyperbolic system, and onkeo§implest non-
trivial dynamical systems that exhibits deterministi@ubion, figure 25.1. We
shall now show that theeriodic Lorentz gas is amenable to a purely determin-
istic treatment. In this class of open dynamical systemsiifies characterizing
global dynamics, such as the Lyapunov exponent, pressdrdi@nsion constant,
can be computed from the dynamics restricted to the elemyecedl. The method
applies to any hyperbolic dynamical system that is a periblifig M= Unetr Ma

of the dynamical state spa(zé( by translatesMy of anelementary cellM, with

T the abelian group of lattice translations. If the scattg@nray has further dis-
crete symmetries, such as reflection symmetry, each elenyerell may be built
from afundamental domaim by the action of a discrete (not necessarily abelian)
groupG. The symboW( refers here to the full state space, i.e.,, both the spatial
coordinates and the momenta. The spatial componeﬁ’l of the complement of
the disks in thavholespace.
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Figure 25.2: Tiling of M, a periodic lattice of reflect-
ing disks, by the fundamental domaM. Indicated is
an example of a global trajectoryt) together with the
corresponding elementary cell trajectorft) and the '

fundamental domain trajectom(t). (Courtesy of J.-P.

s Y Y Y_

We shall now relate the dynamics M to diffusive properties of the Lorentz
gas inM.

These concepts are best illustrated by a specific exampleremtz gas based
on the hexagonal lattice Sinai billiard of figure 25.2. Wetidiguish two types
of diffusive behavior; thénfinite horizoncase, which allows for infinite length
flights, and thefinite horizoncase, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our coesation to the finite
horizon case, with disks fiiciently large so that no infinite length free flight is
possible. In this case thefiision is normal, withx(t)? growing liket. We shall
discuss the anomalousfiision case in sect. 25.3.

As we will work with three kinds of state spaces, good mannegsiire that
we repeat what tildes, nothings and hats atop symbols gignif

fundamental domain, triangle in figure 25.2
elementary cell, hexagon in figure 25.2
full state space, lattice in figure 25.2 (25.1)

It is convenient to define an evolution operator for each ef 3hcases of fig-
ure 25.2.x{t) = fY(X) denotes the point in the global spasé reached by the
flow in timet. x() = fY(xo) denotes the corresponding flow in the elementary
cell; the two are related by

f(x0) = f'(x0) — f'(x0) € T, (25.2)
the translation of the endpoint of the global path into tresredntary cellM. The
quantity X(t) = f%(X) denotes the flow in the fundamental domatiity fY(R) is
related tof'(X) by a discrete symmetny € G which mapsx(t) € Mto x(t) € M. chapter 21
Fix a vectorp € RY, whered is the dimension of the state space. We will

compute the dfusive properties of the Lorentz gas from the leading eigeevef
the evolution operator (17.11)

@) = Jim 1 log @O, (253)
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where the average is over all initial points in the elemegneail, x € M.

If all odd derivatives vanish by symmetry, there is no drifidathe second
derivatives

0 0

S(B)‘ = Jim RO - (0 - 9uc,
=0

yield a difusion matrix. This symmetric matrix can, in general, be @tniic
(i.e., haved distinct eigenvalues and eigenvectors). The spatffsion constant
is then given by the Einstein relation (17.13)

I P 5
D= EZ @S(ﬁ)‘ﬂzo = Jim Z5¢(@® - A7

where thda sum is restricted to the spatial componegjtsf the state space vectors
x = (g, p), i.e., if the dynamics is Hamiltonian, the sum is over thine degrees
of freedom.

We now turn to the connection between (25.3) and periodiitsoiib the ele-
mentary cell. As the fullM — M reduction is complicated by the non-abeliaemark 25.5
nature ofG, we discuss only the abeliahl — M reduction.

25.1.1 Reduction fromM to M

The key idea follows from inspection of the relation

(e 0-R) dxdy 0959 - (%) .

M = |M| xeM

JeM

IM| = fM dxis the volume of the elementary célil. Due to translational symme-
try, it suffices to start with a density of trajectories defined over dsielgmentary
cell M. As in sect. 17.2, we have used the identity JfMdyé(y— X(t)) to moti-
vate the introduction of the evolution operat6¥(¥, x). There is a unique lattice
translationn"such thaty"= y — A, with the endpoiny € M translated back to the
elementary cell, and'(x) given by (25.2). The dierence is a translation by a
constant lattice vectar, and the Jacobian for changing integration frdgrto dy
equals unity. Therefore, and this is the main point, trditsianvariance can be
used to reduce this average to the elementary cell:

(PO = Wll dedyé‘f‘(x)-X)a(y— f1(x) . (25.4)
X,YE

As this is a translation, the Jacobiand$/dy] = 1. In this way the globaF!(x)
flow, infinite volume state space averages can be computedllbywing the flow
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f'(xo) restricted to the compact, finite volume elementary adll The equation
(25.4) suggests that we study the evolution operator

Ly, x) = 0Ny - f(x), (25.5)

wherex(t) = fi(x) € Mis the displacement in the full space, butf'(x), y € M.
It is straightforward to check that this operator satisfles semigroup property
(17.18),

f dZ.L:tz(y, Z)Ltl (Z, X) - Ltzﬁl(y’ X) .
M

Forp = 0, the operator (25.5) is the Perron-Frobenius operatofQ}6with the
leading eigenvalue® = 1 because there is no escape from this system (see the
flow conservation sum rule (20.17)).

The rest is old hat. The spectrum 6fis evaluated by taking the trace section 18.2
trot = f dx @Ms(x - (1)) .
M

Hereri(X) is the discrete lattice translation defined in (25.2). Twalk of orbits
periodic in the elementary cell contribute. A periodic orki calledstanding

if it is also periodic orbit of the infinite state space dynespif "°(x) = x, and it

is calledrunning if it corresponds to a lattice translation in the dynamicstoa
infinite state spacefTp(X) = X+ fp. We recognize the shortest repeating segment
of a running orbit as our old ‘relative periodic orbit’ fridrirom chapter 9. In the
theory of area—preserving maps such as the standard mamoipéx 7.7 these
orbits are callecccelerator modess the ditusion takes place along the momen-
tum rather than the position coordinate. The traveled oégtd, = fir (xo) is
independent of the starting poirg, as can be easily seen by continuing the path
periodically in M.

The final result is the spectral determinant (19.6)

s 1 e(/i~ﬁp—sTp)r
det(S(B) — A) = expl-) ———|, (25.6)
L] [ rz-;’|det(1—Ma)]

or the corresponding dynamical zeta function (19.15)
-Ap—STp)
il ) (25.7)

o= -2

p
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The dynamical zeta function cycle averaging formula (2pf4 the difusion
constant (17.13), zero mean dri&) = 0, is given by

(25.8)

1 (*2>g 1 LZ (1)K (P, + -+ + )2

T2, ~ 2d (T, Apy - Apd

where the sum is over all distinct non-repeating combimadioprime cycles. The
derivation is standard, still the formula is strangeffi8ion is unbounded motion
across an infinite lattice; nevertheless, the reductiohéetementary cell enables
us to compute relevant quantities in the usual way, in terihpgodic orbits.

A sleepy reader might protest the(T,) — x(0) is manifestly equal to zero for
a periodic orbit. That is correctyyin the above formula refers to a displacement
X(Tp) on theinfinite periodic lattice, whilep refers to closed orbit of the dynamics
f{(x) reduced to the elementary cell, with a periodic point in the closed prime
cyclep.

Even so, this is not an obvious formula. Globally periodibimhavex% =0,
and contribute only to the time normalizati@f),. The mean square displace-
ment()‘@)( gets contributions only from the periodic runaway trajeets they
are closed in the elementary cell, but on the periodic katéiach one grows like
K(t)? = (Ap/Tp)’t? = VAt2. So the orbits that contribute to the trace formulas
and spectral determinants exhibit either ballistic transpr no transport at all:
diffusion arises as a balance between the two kinds of motiomghtezl by the
1/IApl measure. If the system is not hyperbolic such weights mayheranally
large, with Y|Ap| ~ 1/Tp* rather than A|Ay| = e Te!, where is the Lyapunov
exponent, and they may lead to anomaloudRudion - accelerated or slowed down
depending on whether the probabilities of the running orstla@ding orbits are
enhanced. section 25.3

We illustrate the main idea, tracking of a globallyffdsing orbit by the as-
sociated confined orbit restricted to the elementary ceth w& class of simple
1-dimensional dynamical systems where all transportfmdents can be evalu-
ated analytically.

25.2 Diffusion induced by chains ofl-dimensional maps

In a typical deterministic diusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers irbonace, and then the
process is repeated. As was shown in chapter 11, the e$gmantiaf this pro-
cess is the stretching along the unstable directions of dve find in the crud-
est approximation the dynamics can be modeled by 1-dimealsiexpanding
maps. This observation motivates introduction of a claspasficularly simple
1-dimensional systems.
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Figure 25.3: (a) f (), the full space sawtooth map - ]
(25.9), A > 2. (b) f(x), the sawtooth map re- S
stricted to the unit circle (25.12)\ = 6. % 143151 64 4
() (b) © "
Example 25.1 Chains of piecewise linear maps. We start by defining the map f on

the unit interval as

frov _ | AR X€[0,1/2)

f(x)*{Aful—A Re(U21] ¢+ A>2 (25.9)
and then extending the dynamics to the entire real line, by imposing the translation
property

f(g+f) = f(R+A Aez. (25.10)

As the map is discontinuous at X = 1/2, fA(l/2) is undefined, and the x = 1/2 point
has to be excluded from the Markov partition. The map is antisymmetric under the
X-coordinate flip

f(%) = -f(-%). (25.11)

so the dynamics will exhibit no mean drift; all odd derivatives of the generating function
(17.11) with respect to 3, evaluated at 8 = 0, will vanish.

The map (25.9) is sketched in figure 25.3 (a). Initial points sufficiently close to
either of the fixed points in the initial unit interval remain in the elementary cell for one
iteration; depending on the slope A, other points jump f cells, either to the right or to
the left. Repetition of this process generates a random walk for almost every initial
condition.

The translational symmetry (25.10) relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell - in the example at hand, the unit
interval curled up into a circle. Associated to f (X) we thus also consider the circle map

f=f®-[f®]. x=x-[Ke[0.1] (25.12)

figure 25.3 (b), where [---] stands for the integer part (25.2). For the piecewise linear
map of figure 25.3 we can evaluate the dynamical zeta function in closed form. Each
branch has the same value of the slope, and the map can be parameterized by a single
parameter, for example its critical value a = f(1/2), the absolute maximum on the
interval [0, 1] related to the slope of the map by a = A/2. The larger A is, the stronger
is the stretching action of the map.
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As noted in sect. 25.1.1, the elementary cell cycles coombpo either stand-

ing or running orbits for the map on the full line: we shalleefori, € Z as the
jumping numbenf the p cycle, and take as the cycle weight

tp = 2PN /|A . (25.13)

The difusion constant formula (25.8) for 1-dimensional maps is

A2
1 <n >(
=-—, 25.14
2 (e ( )
where the “mean cycle time” is given by (20.25)
29 kMpy + -+ 4 Np
n - s 25.15
e = 32((0 Dlpy Z T |Ap1 Apd ( )
and the “mean cycle displacement squared” by (20.28)
. &2 (A -+ A, )2
A A3 T L. Y 25.16
< >4 B2 L(B,2) Z D |Ap1 Apd ( )

the primed sum indicating all distinct non-repeating camaktions of prime cy-
cles. The evaluation of these formulas for the simple systtexample 25.1 will
require nothing more than pencil and paper.

Example 25.2 Unrestricted symbolic dynamics. Whenever A is an integer num-
ber, the symbolic dynamics is exceedingly simple. For example, for the case A = 6 illus-
trated in figure 25.3 (b), the elementary cell map consists of 6 full branches, with uniform
stretching factor A = 6. The branches have different jumping numbers: for branches 1
and 2 we have f = 0, for branch 3 we have fi = +1, for branch 4 i = -1, and finally for
branches 5 and 6 we have respectively i = +2 and i = —2. The same structure reap-
pears whenever A is an even integer A = 2a: all branches are mapped onto the whole
unit interval and we have two i = 0 branches, one branch for which it = +1 and one for
which i = =1, and so on, up to the maximal jump |fi| = a — 1. The symbolic dynamics
is thus full, unrestricted shift in 2a symbols {0,, 1., ..., (a-1),, (@a-1)_, ..., 1., 0_},
where the symbol indicates both the length and the direction of the corresponding jump.

For the piecewise linear maps with uniform stretching the weight associated
with a given symbol sequence is a product of weights for individual steps, tsq = tstq. For
the map of figure 25.3 there are 6 distinct weights (25.13):

1 = to=2z/A
7N, ty=ePzA, ts=e¥z/A, ts=ePzA.

t3

diffusion - 12jan2009 ChaosBook.org version14, Dec 31 2012



CHAPTER 25. DETERMINISTIC DIFFUSION 519

The piecewise linearity and the simple symbolic dynamics lead to the full cancelation
of all curvature corrections in (20.7). The exact dynamical zeta function (15.15) is given
by the fixed point contributions:

1/4B.2) = 1-ty, —to —---—t@1), —ta

a-1
1- g[u Zcoshﬁj)). (25.17)
j=1

The leading (and only) eigenvalue of the evolution operator (25.5) is

a-1
s(B) = |og{§1 [1 > coshgj)]} . A=2a ainteger. (25.18)
=1

The flow conservation (20.17) sum rule is manifestly satisfied, so s(0) = 0. The first
derivative S(0) vanishes as well by the left/right symmetry of the dynamics, implying
vanishing mean drift (X) = 0. The second derivative S(8)” yields the diffusion constant
(25.14):

2 2 2 12
(" =2ax =1, (%) = P L GNP | Gk (25.19)
A ¢ TA A TA A
Using the identity Yp_, k? = n(n+ 1)(2n + 1)/6 we obtain
D= 2—14(/\ -1)(A-2), A even integer. (25.20)
Similar calculation for odd integer A = 2k — 1 yields exercise 25.1
D = 2—14(1\2— 1), A odd integer. (25.21)
25.2.1 Higher order transport codficients
The same approach yields higher order transporffictents
B 1d s(B) B,=D (25.22)
k= 7ok ) 2 =D, .
k! dk =0

known fork > 2 as the Burnett cdicients. The behavior of the higher or-
der codficients yields information on the relaxation to the asymptdistribution
function generated by theftlisive process. Herr s the relevant dynamical
variable andBy’s are related to momen(§<{<> of arbitrary order.

Were the difusive process purely Gaussian

gsle dg fRe/UDY 7Dt (25.23)

) 1 00
" arDt Lo
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Figure 25.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping number
Ax) I = {0,,1,,2,,2.,1.,0_}. The partition is
Markov, as the critical point is mapped onto the
right border of My, . (b) The transition graph for
this partition. (c) The transition graph in the com-
pact notation of (25.26) (introduced by Vadim Mo-
roz).

@ (b)

Example 25.3 B, Burnett coefficient. For the map under consideration the first
Burnett coefficient coefficient B, is easily evaluated. For example, using (25.18) in the
case of even integer slope A = 2a we obtain exercise 25.2

By = _Tlm)(a_ 1)(2a-1)(4a> - 9a+7). (25.24)

We see that deterministicfilision is nota Gaussian stochastic process. Higher
order even caicients may be calculated along the same lines.

25.2.2 Finite Markov partitions

For piecewise-linear maps exact results may be obtainedheviee the critical

points are mapped in finite numbers of iterations onto pamtibboundary points,
or onto unstable periodic orbits. We will work out here anrepé& for which

this occurs in two iterations, leaving other cases as esesci The key idea
is to construct aMarkov partition (11.2), with intervals mappednto unions of

intervals.

Example 25.4 A finite Markov patrtition. As an example we determine a value
of the parameter 4 < A < 6 for which f (f(1/2)) = 0. As in the integer A case,
we partition the unit interval into six intervals, labeled by the jumping number A(X) €
{Mo,, M1, Mo, Mo, M1, Mo_}, ordered by their placement along the unit interval,
figure 25.4 (a).

In general the critical value a = fﬁ(l/ 2) will not correspond to an interval border,
but now we choose a such that the critical point is mapped onto the right border of
My,. Equating f(1/2) with the right border of My, x = 1/A, we obtain a quadratic
equation with the expanding solution A = 2( V2+ 1). For this parameter value f(My,) =
Mo, UMy, F(Mz) = Mo_|J My, while the remaining intervals map onto the whole
unit interval M. The transition matrix (14.1) is given by

[y

¢o.
¢1.

the only Bx codficient diferent from zero would b&, = D. Hence, nonvan-
ishing higher order cdicients signal deviations of deterministidfdision from a
Gaussian stochastic process.
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One could diagonalize (25.25) on a computer, but, as we saw in chapter 14, the tran-
sition graph of figure 25.4 (b) corresponding to map figure 25.4 (a) offers more insight
into the dynamics. Figure 25.4 (b) can be redrawn more compactly as transition graph
figure 25.4 (c) by replacing parallel lines in a graph by their sum

@ —errrezlithtly (25.26)

The dynamics is unrestricted in the alphabet
A={0,,1.,2,0,,2,1,,2.1,20_,1,0}.

Applying the loop expansion (15.15) of sect. 15.3, we are led to the dynamical zeta
function

1/{B.2 = 1-to, —ty, —too —t21, —t21 —tao —ti —to

= 1- 2Xz(l + coshp)) — i—zzz (cosh() + cosh(®)) . (25.27)

For grammar as simple as this one, the dynamical zeta function is the sum over fixed
points of the unrestricted alphabet. As the first check of this expression for the dynam-
ical zeta function we verify that

4 2
1/¢(0,1) =1—K—E

=0,
as required by the flow conservation (20.17). Conversely, we could have started by
picking the desired Markov partition, writing down the corresponding dynamical zeta
function, and then fixing A by the 1/£(0, 1) = O condition. For more complicated transi-
tion graphs this approach, together with the factorization (25.35), is helpful in reducing
the order of the polynomial condition that fixes A.

The diffusion constant follows from (25.14) exercise 25.3
102 - 12 22 3
(M = 4T +4-, (n )( =2 42542
15+2v2
15+2v2 (25.28)
16+8V2

Itis by now clear how to build an infinite hierarchy of finite Kkav partitions:
tune the slope in such a way that the critical vaf{&/2) is mapped into the fixed
point at the origin in a finite number of iteratiopsfP(1/2) = 0. By taking higher
and higher values op one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in whithrrals are densely
embedded in the unit interval. For example, each of the 6aminntervals can
be subdivided into 6 intervals obtained by the 2-nd iterdtd® map, and for the
critical point mapping into any of those in 2 steps the gram(aad the corre-
sponding cycle expansion) is finite. So, if we can prove cwiity of D = D(A),
we can apply the periodic orbit theory to the sawtooth map9(2fer a random
“generic” value of the parametet, for exampleA = 4.5. The idea is to bracket
this value ofA by a sequence of nearby Markov values, compute the exfiat di
sion constant for each such Markov partition, and study t@ivergence toward
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the value ofD for A = 4.5. Judging how dficult such problem is already for a
tent map (see sect. 15.5), this is not likely to take only aknefevork.

Expressions like (25.20) may lead to an expectation thatliffiesion codi-
cient (and thus transport properties) are smooth functidmmrameters control-
ling the chaoticity of the system. For example, one migheexgthat the diusion
codficient increases smoothly and monotonically as the sbopéthe map (25.9)
is increased, or, perhaps more physically, that tffeision codicient is a smooth
function of the Lyapunov exponent This turns out not to be trued as a func-
tion of A is a fractal, nowhere flierentiable curve illustrated in figure 25.5. The
dependence dd on the map paramete is rather unexpected - even though for
larger A more points are mapped outside the unit cell in one iteratienditusion
constant does not necessarily grow.
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1/s branch cut in dynamical zeta function was the whole answer. Here we shall take a
slightly different route, and pick piecewise constant slopes such that the dynamical zeta
function for intermittent system can be expressed in terms of the Jonquiere functiemark 25.7

‘ Iz9 = ) 2k (25.29)
A =}
T Once the 0 fixed point is pruned away, the symbolic dynamics is given by the
T 10 infinite alphabet {1, 2,3,4,011,012,03,0'4}, i, j. k. = 1,2,... (comparehwith table 24.1).
T Ly — The partitioning of the subinterval Mo is induced by My igny = f(;i';ht)(/v(gU Ma)
1 - (where f};iéh‘) denotes the inverse of the right branch of f| Mo) and the same rgason—
1 ing applies to the leftmost branch. These are regions over which the slope of f|, is
Fea T . constant. Thus we have the following stabilities and jumping numbers associated to
1 - cey | g 1 letters:
Il L+ar a
‘ 03,04  Ap=kz =1
01,02 Ap=t; fAp=-1
Figure 25.6:(a) A map with marginal fixed point. , 34 Ao = +A Ao =1
(b) The map restricted to the unit circle. Y 2 0 31 4 > P R
(a) (b) ey ¥ /2 2,1 Ap==A fp = -1, (25.30)
where a = 1/s is determined by the intermittency exponent (24.1), while q is to be
This is a consequence of the lack of structural stabilityenesf purely hyper- determined by the flow conservation (20.17) for f:
bolic systems such as the Lozi map and the 1-dimensiofffalsthin map (25.9). 4
The trouble arises due to non-smooth dependence of theoipal entropy on At 2q¢(e+1)=1
system parameters - any parameter change, no mater how krad# to creation ) _ ) )
and destruction of infinitely many periodic orbits. As fardiusion is concerned (where { is the Riemann zeta function), so that g = (A ~4)/(2A¢(a+1)). The dynamical
this means that even though local expansion rate is a smuonttién of A, the zeta function picks up contributions just by the alphabet’s letters, as we have imposed
number of ways in which the trajectory can re-enter theahitell is an irr(;gular piecewise linearity, and can be expressed in terms of a Jonquiere function (25.29):
function of A. 4 A -
1 =1-— - -J 1). 25.31
1¢o(zB) ~Zcoshp AT Q)ZCOShB (za+1) ( )
The lesson is that lack of structural stability implies ladlspectral stability, ) ) )
and no global observable is expected to depend smoothlyeosystem parame- Its first zero 2(§) is determined by
ters. If you want to master the material, working through ofithe deterministic 4 A-4 1
diffusion projects othaosBook . org/pages is strongly recommended. AN A Jza+l) = coshg”

D vanishes by the implicit function theorera}(8)|;-, = 0 whene < 1. The
25.3 Marginal stability and anomalous dffusion physical interpretation is that a typical orbit will stickrflong times near th®
marginal fixed point, and the ‘trapping time’ will be largearfhigher values of
the intermittency parametar(recalla = 1/s). As always, we need to look more

What gfect does the intermittency of chapter 24 have on transpopepties? A closely at the behavior of traces of high powers of the temsperator.
marginal fixed point fiects the balance between the running and standing orbits,
thus generating a mechanism that may result in anomaldiussidin. The evaluation of transport cfieient requires one more derivative with re-

spect to expectation values of state space observablesdsee?5.1): if we use
the difusion dynamical zeta function (25.7), we may write thugion codi-

cient as an inverse Laplace transform, in such a way thatiiection between
maps and flows has vanished. In the case of 1-dimensioffiabidin we thus have

Example 25.5 Anomalous diffusion. Consider a 1-dimensional map of the real line
on itself shown in figure 25.6 (a), with the same properties as in sect. 25.2, except for a
marginal fixed point at X = 0. The corresponding circle map is given in figure 25.6 (b).

As in sect. 24.2.1, a branch with support in M;, i = 1,2,3,4 has constant slope A;, )

while f|p, is of intermittent form. To keep you nimble, this time we take a slightly i d? 1 atleo (LB, 9)

different choice of slopes. The toy example of sect. 24.2.1 was cooked up so that the D= tllm a82 27 f . dsé€ (25.32)
—eo dB 1 Ja-ico (B, 9) 5=0
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where the” refers to the derivative with respect $o

The evaluation of inverse Laplace transforms for high \&lofethe argument
is most conveniently performed using Tauberian theorems.shll take

w(l) = j;m dxeu(x),

with u(x) monotone ax — oo; then, ast — 0 andx — oo respectively (and
p €(0,00),

w(d) ~ /1];’ (%)
if and only if
u(x) ~ r—(lp)wll_(x),

whereL denotes any slowly varying function with lim., L(ty)/L(t) = 1. Now

Yw(E€Sh) (4 + 2A (J(e-S,a +1)+ (e, a))) coshp
1/¢0(e,8) ~ 1- 4eScoshs - )e-s(e-5 @ +1)coshpd’

/\[(l-Hl
Taking the second derivative with respecptae obtain

2

7 (V' €@=BIHE™B),
~ /\ + M(h”) (JEes,a+1)+ €S a) - a9 (25.33)
(l - Ke s_ es)(es,a+ 1))2 o .

Al (1+a)

The asymptotic behavior of the inverse Laplace transforfi3®) may then be
evaluated via Tauberian theorems, once we use our estimatieef behavior of
Jonquiére functions near= 1. The deviations from normal behavior correspond
to an explicit dependence ©f on time. Omitting prefactors (which can be calcu-
lated by the same procedure) we have

s?2 for @ >1
0o(9) ~ ¢ s@D  for @ (0,1)
1/($Ins) for @ =1.

The anomalous €iusion exponents follow: exercise 25.6
t for @€ (0,1)
((x=%)Ht ~ 4 t/Int for a=1 (25.34)
t for @ >1.
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Résum é

Perfection itself is imperfection.
— Vladimir Horowitz

With initial data accuracyx = [6x(0)| and system sizk, a trajectory is predictable
only to the finite Lyapunov tim@ | yap ~ A71In|L/6x . Beyond that, chaos rules.
We have discussed the implications in sect. 1.8: chaos is gews for prediction
of long term observables such as transport in statisticaharacs.

The classical Boltzmann equation for evolution of 1-péetidensity is based
on stosszahlansatneglect of particle correlations prior to, or after a 2tjude
collision. It is a very good approximate description of tBlgas dynamics, but
a difficult starting point for inclusion of systematic correcsonlin the theory
developed here, no correlations are neglected - they anechiided in the cycle
averaging formula such as the cycle expansion for ttfesion constant

_ k+1(nP1 +npk)
2d <T> Z( ) |AP1 Apkl

Such formulas arexact the issue in their applications is what are the most ef-
fective schemes of estimating the infinite cycle sums regufior their evaluation.
Unlike most statistical mechanics, here there are no phenolagical macro-
scopic parameters; quantities such as transpoifficieats are calculable to any
desired accuracy from the microscopic dynamics.

For systems of a few degrees of freedom these results argawous footing,
but there are indications that they capture the essentizrdics of systems of
many degrees of freedom as well.

Though superficially indistinguishable from the probatiti random walk
diffusion, deterministic diiusion is quite recognizable, at least in low dimen-
sional settings, through fractal dependence of tifesibn constant on the system
parameters, and through non-Gaussion relaxation to bruiin (non-vanishing
Burnett codficients).

That Smale’s “structural stability” conjecture turned ¢aibe wrong is not a
bane of chaotic dynamics - it is actually a virtue, perhagsriost dramatic ex-
perimentally measurable prediction of chaotic dynamics.ldhg as microscopic
periodicity is exact, the prediction is counterintuitiver fa physicist - transport
codficients arenot smooth functions of system parameters, rather they are non-
monotonic,nowhere djferentiablefunctions.

Actual evaluation of transport cfiients is a test of the techniques developed
above in physical settings. In cases of severe pruning #ve iormulas and er-
godic sampling of dominant cycles might be mofieetive strategy than the cycle
expansions of dynamical zeta functions and systematic eratian of all cycles.
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Commentary

Remark 25.1 Lorentz gas.  The original pinball model proposed by Lorentz [25.4]
consisted of randomly, rather than regularly placed seate

Remark 25.2 Who's dunnit?  Cycle expansions for theftiiision constant of a particle
moving in a periodic array have been introduced by R. Artig®q] (exact dynamic-
al zeta function for 1-dimensional chains of maps (25.8))YN. Vance [25.6],and by
P. Cvitanovi¢, J.-P. Eckmann, and P. Gaspard [25.7] (thewhjcal zeta function cycle
expansion (25.8) applied to the Lorentz gas).

Remark 25.3 Lack of structural stability for D.  Expressions like (25.20) may lead
to an expectation that theftlision codficient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized ekample, by the Lyapunov
exponentl = InA). This turns out not to be trueD as a function ofA is a fractal,
nowhere diferentiable curve shown in figure 25.5. The dependende oh the map
parameterA is rather unexpected - even though for largemore points are mapped
outside the unit cell in one iteration, theffdision constant does not necessarily grow.
We refer the reader to refs. [25.15, 25.16] for early work lo& deterministic dfusion
induced by 1-dimensional maps. The sawtooth map (25.9)ntesdiuced by Grossmann
and Fujisaka [25.17] who derived the integer slope form(&&s20) for the difusion
constant. The sawtooth map is also discussed in refs. [R5Th@ fractal dependence of
diffusion constant on the map parameter is discussed in ref9, 258, 25.10]. Sect. 1.8
gives a brief summary of the experimental implications;tha the current state of the art
of fractal transport cd@cients consult the first part of Klage’s monograph [25.12hud

be nice if someone would eventually check these predictioegperiments... Statistical
mechanicians tend to believe that such complicated beh&vioot to be expected in
systems with very many degrees of freedom, as the additiaridge integer dimension
of a number smaller than 1 should be as unnoticeable as asoapiw perturbation of a
macroscopic quantity. No fractal-like behavior of the codiivity for the Lorentz gas has
been detected so far [25.14]. (P. Cvitanovi¢ and L. Rondoni

Remark 25.4 Symmetry factorization in one dimension. In the = 0O limit the
dynamics (25.11) is symmetric under —x, and the zeta functions factorize into prod-
ucts of zeta functions for the symmetric and antisymmeuizspaces, as described in
sect. 21.1.1:

11 1
0,2 ~ 40,2 %(0,2
01 _ 101 101 (2539

az¢ (5028 La02ls

The leading (material flow conserving) eigenvaiue 1 belongs to the symmetric sub-
space 1¢5(0,1) = 0, so the derivatives (25.15) also depend only on the synicretb-
space:

0 1

e = 25709
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[ Tength [ # cycles] £(0,0) | 1]

1 51 -1.216975 -

2 10 | -0.024823| 1.745407

3 32 | -0.021694| 1.719617

4 104 | 0.000329| 1.743494

5 351 | 0.002527| 1.760581

6 1243| 0.000034| 1.756546

Table 25.1: Fundamental domain, 0.3 .

1 2 2 1
2a(0,2) "9z 45(0,2) 1,0y

(25.36)

Implementing the symmetry factorization is convenient, it essential, at this level of
computation.

Remark 25.5 Lorentz gas in the fundamental domain. The vector valued nature
of the generating function (25.3) in the case under conatier makes it dficult to
perform a calculation of the flusion constant within the fundamental domain. Yet we
point out that, at least as regards scalar quantities, theefluction toM leads to better
estimates. A proper symbolic dynamics in the fundamentalaio has been introduced
in ref. [25.19].

In order to perform the full reduction for filusion one should express the dynamical
zeta function (25.7) in terms of the prime cycles of the fundatal domainM of the
lattice (see figure 25.2) rather than those of the elemeiftligner-Seitz) cellM. This
problem is complicated by the breaking of the rotationalsyatry by the auxiliary vector
B, or, in other words, the non-commutativity of translati@nsl rotations: see ref. [25.7].

Remark 25.6 Anomalous diffusion. Anomalous difusion for 1-dimensional inter-
mittent maps was studied in the continuous time random wafikaach in refs. [24.10,
24.11]. The first approach within the framework of cycle exgians (based on truncated
dynamical zeta functions) was proposed in ref. [24.12]. @estment follows methods
introduced in ref. [24.13], applied there to investigateilehavior of the Lorentz gas with
unbounded horizon.

Remark 25.7 Jonquiére functions. In statistical mechanics Jonquiere function
(25.29) appears in the theory of free Bose-Einstein gagesee[24.22, 24.23].
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Exercises

25.1.

25.2.

25.3.
25.4.

25.5.

25.6.

Diffusion for odd integerA. Show that when the
slopeA = 2k — 1 in (25.9) is an odd integer, the dif-
fusion constant is given b = (A% — 1)/24, as stated in
(25.21).

Fourth-order transport coefficient.
You will need the identity

Verify (25.24).

DK = in(n+ 1)(2n+ 1)(3n% + 3n - 1).
& 30

Finite Markov partitions.  Verify (25.28).

Maps with variable peak shape:
lowing piecewise linear map

25.7.
Consider the fol-

% X€M1
609 =1 3- (1% -x) xe Mz (25.37)
1- &5 (x-42+6) xeM;

where My = [0.3(1-6)], Mz = [3(1-06).2(2+9)],

Mz = [é(2+6), %] and the map in [12, 1] is obtained

by antisymmetry with respect to= 1/2,y = 1/2, Write

the corresponding dynamical zeta function relevant to
diffusion and then show that

_ 6(2+9)
D)

See refs. [25.21, 25.22] for further details.

Two-symbol cycles for the Lorentz gas. Write down

all cycles labeled by two symbols, such as (0 6), (1 7£5.8.
(15)and (05).

ChaosBook.org/pages offers several project-length
deterministic difusion exercises.

Accelerated difusion. (medium dificulty) Consider
a maph, such thah = f of figure 25.6 (b), but now run-
ning branches are turned into standing branches and vice
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versa, so that,2, 3,4 are standing while 0 leads to both
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dynamical zeta function and show that
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stantD in terms of the fundamental domain cycles (rela-
tive periodic orbits) alone (P. Gaspard says it cannot be
done [25.7]).

[25.1] J. Machta and R. Zwanzi@hys. Rev. Letb0, 1959 (1983).

[25.2] G.P. Morriss and L. Rondoni, Stat. Phys75, 553 (1994).

refsDiff - 7aug2002

ChaosBook.org version14, Dec 31 2012

References 530

[25.3] L. Rondoni and G.P. Morriss, “Stationary nonequilion ensembles for
thermostated systemd$?hys. ReVE 53, 2143 (1996).

[25.4] H.A. Lorentz,Proc. Amst. Acadz, 438 (1905).
[25.5] R. Artuso,Phys. LettA 160, 528 (1991).
[25.6] W.N. VancePhys. Rev. LetB6, 1356 (1992).

[25.7] P.Cvitanovic, J.-P. Eckmann, and P. Gasp@tthos, Solitons and Fractals
6, 113 (1995).

[25.8] R. Klages and J.R. Dorfman, “Simple Maps with Fra€igtusion Codi-
cients,”Phys. Rev. Let74, 387 (1995);
arXiv:chao-dyn/9407018.

[25.9] R. KlagesDeterministic dffusion in one-dimensional chaotic dynamical
systemgWissenschaft & Technik-Verlag, Berlin, 1996);
www .mpipks-dresden.mpg.de/ rklages/publ/phd.html.

[25.10] R. Klages and J.R. Dorfman, “Dynamical crossovedeterministic dif-
fusion,” Phys. Re\E 55, R1247 (1997).

[25.11] R. Klages and J.R. Dorfman, “Simple deterministymamical systems
with fractal difusion codicients,”Phys. Rev. (59, 5361 (1999).

[25.12] R. KlagesMicroscopic Chaos, Fractals and Transport in Nonequilib-
rium Statistical MechanicgWorld Scientific, Singapore 2007).

[25.13] G. Keller, P. Howard and R. Klages, “Continuity peofies of transport
codficients in simple mapsNonlinearity21, 1719 (2008).

[25.14] J. Lloyd, M. Niemeyer, L. Rondoni and G.P. Morri$3HAOS5, 536
(1995).

[25.15] T. Geisel and J. Nierwetberighys. Rev. Letd8, 7 (1982).
[25.16] M. Schell, S. Fraser and R. Kaprghys. RevA 26, 504 (1982).

[25.17] S. Grossmann, H. Fujisaka, Phys. Re26, 1179 (1982); H. Fujisaka
and S. Grossmann, Z. Phys 48, 261 (1982).

[25.18] P. Gaspard and F. Baras, in M. Mareschal and B.L.atpleds. Mi-
croscopic simulations of Complex Hydrodynamic PhenonBlenum, NY
1992).

[25.19] F. Christiansen, Master’s Thesis, Univ. of Copeygma(June 1989).

[25.20] P. Cvitanovic, P. Gaspard, and T. Schreiber, “stigation of the Lorentz
Gas in terms of periodic orbitsCHAOS2, 85 (1992).

[25.21] S. Grossmann and S. ThomBéys. LetA 97, 263 (1983).
[25.22] R. Artuso, G. Casati and R. LombarBhysicaA 205, 412 (1994).

[25.23] I. Dana and V.E. Chernov, “Periodic orbits and chadiffusion proba-
bility distributions,” Physica A332, 219 (2004).

refsDiff - 7aug2002 ChaosBook.org version14, Dec 31 2012



