Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...]Je Th
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanovit and E.A. Spiegel)

periodic, and aperiodic, refine the ‘aperiodic’ into wardgrand non-

wandering sets, decompose the non-wandering into chaurrent sets,
and illustrate various cases with concrete examples, tsslBf'and Lorenz sys-
tems.

WE perINE a dynamical systeniM, f), classify its solutions as equilibria,

fast track:
W chapter 16, p. 329

2.1 Dynamical systems o o
XX
In a dynamical system we observe the world as it evolves wiik.t We express

our observations as numbers and record how they changan gjiffeciently de-

tailed information and understanding of the underlyinguredtlaws, we see the

future in the present as in a mirror. The motion of the plaagtEnst the celestialsection 1.3
firmament provides an example. Against the daily motion efgtars from East
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()
Figure 2.1: A trajectory traced out by the evolution
rule f'. Starting from the state space poitafter a

timet, the point is atf!(x). X

to West, the planets distinguish themselves by moving artfeméjxed stars. An-
cients discovered that by knowing a sequence of planetdigos-latitudes and
longitudes—its future position could be predicted.

For the solar system, tracking the latitude and longitudéercelestial sphere
sufices to completely specify the planet’'s apparent motionpédisible values for
positions and velocities of the planets form fitease spacef the system. More
generally, a state of a physical system, at a given instdimhi can be represented
by a single point in an abstract space caliaite spaceé\ (mnemonic: curly M’
for a ‘manifold’). As the system changes, so doesrépgesentative point state
space. We refer to the evolution of such pointslgsamics and the functionf!
which specifies where the representative point is at tiagetheevolution rule  remark 2.1

If there is a definite ruld that tells us how this representative point moves in
M, the system is said to be deterministic. For a determinitimmical system,
the evolution rule takes one point of the state space and magie exactly one
point. However, this is not always possible. For exampl@wing the tempera-
ture today is not enough to predict the temperature tomgrkowwing the value
of a stock today will not determine its value tomorrow. Tretsispace can be en-
larged, in the hope that in afficiently large state space it is possible to determine
an evolution rule, so we imagine that knowing the state ofatineosphere, mea-
sured over many points over the entire planet should fiec®nt to determine the
temperature tomorrow. Even that is not quite true, and wéessehopeful when
it comes to stocks.

For a deterministic system almost every point has a uniquueguso trajecto-
ries cannot intersect. We say ‘almost’ because there migstt & set of measure
zero (tips of wedges, cusps, etc.) for which a trajectoryoisdefined. We may chapter 12
think such sets a nuisance, but it is quite the contrary—tikyenable us to parti-
tion state space, so that the dynamics can be better unoérsto

Locally, the state spacé looks like RY, meaning that a dynamical evolu-
tion is an initial value problem, witd numbers sfiicient to determine what will
happen time later. This local Euclidean structure is described by arith@lob-
ally, it may be a more complicatedanifoldsuch as a torus, a cylinder, or some
other smooth geometric object. Byanifoldwe mean a smooth fierentiabled-
dimensional space which looks lik& only locally, within the tangent space at
any given state space poixe M. For example, the state space of an autonomous
Hamiltonian system the flow is confined to a constant energghgurface. When
we need to stress that the dimenstbof M is greater than one, we may refer to
the pointx e M asx wherei = 1,2,3,...,d. If the dynamics is described by a set
of PDEs (partial dierential equations), the state space is the infinite dimansi
function space. The evolution rulé : M — M tells us where a point is in M
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Figure 2.2: The evolution rulef'can be used to map a
region M; of the state space into the regibt{M;).

after a time intervat.

The pair M, f) constitute alynamical system

The dynamical systems we will be studying are smooth. Thexpessed
mathematically by saying that the evolution ridfecan be dfferentiated as many
times as needed. Its action on a pakit sometimes indicated bf(x,t) to re-
mind us thatf is really a function of two variables: the time and a point tate
space. Note that time is relative rather than absolute, Botbe time interval is
necessary. This follows from the fact that a point in stat@cspcompletely de-
termines all future evolution, and it is not necessary tovkiamything else. The
time parameter can be a real variatile R), in which case the evolution is called
aflow, or an integert( € Z), in which case the evolution advances in discrete
steps in time, given biteration of amap The evolution parameter need not be
the physical time; for example, a time-stationary solutibra partial diferential
equation is parameterized by spatial variables. In suctatsiins one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systemsy Tamnifest them-
selves through their trajectories: given an initial poigitthe evolution rule traces
out a sequence of poinkgt) = (o), thetrajectorythrough the poinky = x(0).
A trajectory is parameterized by the tirhand thus belongs tdf{(xo), t) € MxR. exercise 2.1
By extension, we can also talk of the evolution of a regidnof the state space:
just apply f! to every point inM; to obtain a new regiori'(M;), as in figure 2.2.

The subset of points\ly, ¢ M that belong to the infinite-time trajectory
of a given pointxg is called theorbit of xg; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbiaismooth continuous
curve; for a map, it is a sequence of points. ‘Trajectoryérsfto a set of points
or a curve segment traced out k&ft) up to time instant. ‘Orbit’ refers to the
totality of states that can be reached frog) with state spacé\ foliated into
a union of such orbits (eacMy, labeled by a single point belonging to the set,
Xo = X(0) for example). Under time evolution a trajectory segngmtapped into
another trajectory segment, but points within an orbit arg permuted; the orbit
considered as a set is unchanged. Hence orbitlisiamically invarianinotion.

The central idea of ChaosBook is to decompose the complica&teyodic,
asymptotict — oo dynamics into a hierarchy of compatine-invariantsets or
compact orbits (equilibria, periodic orbits, invariantifo- -).
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Figure 2.3: A periodic point returns to the initial point
after a finite timex = fTr(x). Periodic orbitp is the
set of periodic point = Mp = {X1, X2, - - -} swept out
by the trajectory of any one of them in the finite time
Tp.

2.1.1 Aclassification of possible motions?

What kinds of orbits are there? This is a grand question, hatetare many
answers, the chapters to follovifering some. Here is the first attempt to classify
all possible orbits:

stationary: fY{(x) = x for all t
periodic:  fi(x) = f*Tr(x) for a given minimum period
aperiodic: fi(x) # f'(x)  forallt#t’ .

A periodic orbit (or acyclg p is the set of points\, ¢ M swept out by a
trajectory that returns to the initial point in a finite timé/e refer to a point on a
periodic orbit as geriodic point see figure 2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rationbersiare a set of zero
measure on the unit interval. chapter 5

Periodic orbits and equilibrium points are the simplestnegies of ‘non-
wandering’ invariant sets preserved by dynamics. Dynaro@s also preserve
higher-dimensional smooth compact invariant manifoldggsimcommonly en-
countered are th&-dimensional tori of Hamiltonian dynamics, with notion of
periodic motion generalized to quasiperiodic (the supgtipm of M incommen-
surate frequencies) motion on a smooth torus, and famifie®lations related
by a continuous symmetry. Further examples dferded by stablg unstable
manifolds (a semi-infinite curve originating at an equililon along each stabil-
ity eigenvector), and, the most mysterious of all invariaridits, the infinite time
ergodic orbits. section 12.1

The ancients tried to make sense of all dynamics in termsradglie motions,
epicycles, integrable systems. The embarrassing truttaigdr a generic dynam-
ical systems almost all motions are aperiodic. So we refiaeckassification by
dividing aperiodic motions into two subtypes: those thah#er df, and those
that keep coming back.

A point x € M is called awandering pointif there exists an open neighbor-
hood My of x to which the trajectory never returns

fix) ¢ Mo forall t>tpin. (2.1)
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In physics literature, the dynamics of such state is oftéerired to agransient

Wandering points do not take part in the long-time dynansosjour first task
is to prune them from\1 as well as you can. What remains envelops the set of the
long-time trajectories, or theon-wandering set

For times much longer than a typical ‘turnover’ time, it malegense to relax
the notion of exact periodicity, and replace it by the notidmecurrence A point
is recurrentor non-wanderingf for any open neighborhood 1y of x and any time
tmin there exists a later timie such that

f{(x) € Mo. (2.2)

In other words, the trajectory of a non-wandering point teenthe neighborhood
My infinitely often. We shall denote b§ the non—wandering setf f, i.e., the
union of all the non-wandering points afl. The set, the non—wandering set of
f, is the key to understanding the long-time behavior of a dynal system; all
calculations undertaken here will be carried out on non-deeng sets.

So much about individual trajectories. What about cloudsititl points? If
there exists a connected state space volume that mapssatbubder forward
evolution (and you can prove that by the method of Lyapunactionals, or
several other methods available in the literature), the foglobally contracting
onto a subset oM which we shall refer to as thattractor. The attractor may
be unique, or there can coexist any number of distinct di@sets, each with
its own basin of attraction the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed pointsij@ak), a periodic orbit
(alimit cycle), aperiodic, or any combination of the above. The most @stkemng
case is that of an aperiodic recurrent attractor, to whichshadl refer loosely
as astrange attractor We say ‘loosely’, as will soon become apparent th&ample 2.3
diagnosing and proving existence of a genuine, card-gayrsirange attractor is a
highly nontrivial undertaking; it requires explaining fots like “transitive” and
“chain-recurrent” that we will be ready to discuss only ictsd4.1.

Conversely, if we can enclose the non—wanderingsby a connected state
space volumeVg and then show that almost all points withég, but not in<Q,
eventually exitMo, we refer to the non—wandering €eas arepeller. An example
of arepeller is not hard to come by-the pinball game of se8tisla simple chaotic
repeller.Q, thenon—wandering seif f, is the union of all of the above, separately
invariant sets: attractirigepelling fixed points, strange attractors, repellers, etc

It would seem, having said that the periodic points are semienal that
almost all non-wandering points are aperiodic, that we Igaxen up the ancients’
fixation on periodic motions. Nothing could be further fromth. As longer and
longer cycles approximate more and more accurately fingmsats of aperiodic
trajectories, we shall establish control over non—wamdgesets by defining them
as the closure of the union of all periodic points.
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Before we can work out an example of a non—wandering set anal lgetter
grip on what chaotic motion might look like, we need to ponfiiews in a little
more depth.

2.2 Flows

different things. Far, far away.
— T.D. Lee

A flow is a continuous-time dynamical system. The evolution fiiles a family
of mappings ofM — M parameterized by € R. Becausé represents a time
interval, any family of mappings that forms an evolutionerahust satisfy: exercise 2.2

(@) fo%x) =x (in O time there is no motion)
(b) fYfY'(X) = f*'(x) (the evolution law is the same at all times)

(c) the mappingX,t) — f'(x) from M x R into M is continuous.
We shall often find it convenient to represent functional position by © ’ appendix H.1
frS = flo £5 = fY(£5). (2.3)

The family of mappingsf!(x) thus forms a continuous (forward semi-) group.
Why ‘semi-'group? It may fail to form a group if the dynamicsriot reversible,
and the rulef'(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inverge'(f'(x)) = fO(x) =

X, in which case the family of mappingE(x) does not form a group. In ex-
ceedingly many situations of interest—for times beyondLijounov time, for
asymptotic attractors, for dissipative partiatfdiential equations, for systems
with noise, for non-invertible maps—the dynamics cannotube backwards in
time, hence, the circumspect emphasissemgroups. On the other hand, there
are many settings of physical interest, where dynamicverséle (such as finite-
dimensional Hamiltonian flows), and where the family of exinin mapsf! does
form a group.

For infinitesimal times, flows can be defined byféiential equations. We
write a trajectory, a smooth curve embedded in the stateesgmc

X(t+7) = f¥7(x0) = f(f(X0.1),7) (2.4)

and express the tangent to the curve at pgit)tas exercise 2.3
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g_x = 0 F(F(x0,1), Dlrug = X(1). (2.5)
Tlr=0

the time derivative of the evolution rule, a vector evaldadé the pointx(t). By
considering all possible trajectories, we obtain the vexft) at any pointx € M.
This vector fieldis a (generalized) velocity field: remark 10.3

(1) = V(X). (2.6)

Newton’s laws, Lagrange’s method, or Hamilton’s method atdamiliar pro-
cedures for obtaining a set offtiirential equations for the vector fielgx) that
describes the evolution of a mechanical system. Equatibmeochanics may ap-
pear diferent in form from (2.6), as they are often involve higherdiderivatives,
but an equation that is second or higher order in time canyaha rewritten as a
set of first order equations.

We are concerned here with a much larger world of general floveshanical
or not, all defined by a time-independent vector field (2.6).eAch point of the
state space a vector indicates the local direction in wHiehttajectory evolves.
The length of the vectaw(x)| is proportional to the speed at the poxptand the
direction and length of(x) changes from point to point. When the state space is a
complicated manifold embeddedtf, one can no longer think of the vector field
as being embedded in the state space. Instead, we have tioénlagt each point
x of state space has afidirent tangent plan€ My attached to it. The vector field
lives in the union of all these tangent planes, a space ctiktdngent bundle

TM= [ TMs.
XeM

T My is called dibre atx, hence the whole thing is called tfibre bundle Locally
a fibre bundle looks like the product of tiks' spaces. Relax: we'll do our best
not to use such words again.

Example 2.1 A 2-dimensional vector field — v(X): A simple example of a flow is
afforded by the unforced Duffing system

X(t)
y(t)

()
—0.15y(t) + x(t) — x(t)3 (2.7)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configura-
tion coordinates (X(t), y(t)) of state space M, but they belong to a different space, the
tangent bundle T M.

The instantaneous velocity vecteis tangent to the trajectory, except at the
equilibrium points where it vanishes.

If V(Xg) =0, (2.8)
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Figure 2.5: Lorenz “butterfly” strange attractor. (J.
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Xq is also referred to as stationary fixed critical, invariant, rest stagnation
point, zero of the vector fieldv, standing wavgstationary solution or steady
state Our usage will be ‘equilibrium’ for a flow, ‘fixed point’ for amap. The
trajectory remains forever stuck &f. Otherwise the trajectory passing through
Xo at timet = 0 can be obtained by integrating the equations (2.6):

t
X(t) = ft(xo) = Xo +jo‘ dr v(x(7)), X(0) = Xg. (2.9)

We shall consider here ongutonomousdlows, i.e., flows for which the velocity
field v; is stationary not explicitly dependent on time. A non-autonomous system

d

Y wy, 1), (2.10)

dr
can always be converted into a system where time does noaapgplicitly. exercise 2.4
To do so, extend (‘suspend’) state space tode ()-dimensional by definingexercise 2.5
x = {y, 7}, with a stationary vector field

V(X) = [ W({’ 7 ] . (2.11)

The new flowx = v(X) is autonomous, and the trajectorft) can be read 6 x(t)
by ignoring the last component af

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation
X o(y-X)
X=v(X)=| Y |=]| px-y-xz (2.12)
z Xy — bz
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Figure 2.6: A trajectory of the Rossler flow at time
t =250. (G. Simon)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed oo = 10, b = 8/3,
and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQy = (0, 0, 0) at the
origin is attractive. At p = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
at remark 2.3

Xeqr, = (+ VB(o — D).+ yblo — D.p - 1). (2.13)

We shall not explore the Lorenz flow dependence on the p parameter in what follows,
but here is a brief synopsis: the EQy 1-dimensional unstable manifold closes into a
homoclinic orbit at p = 1356.... Beyond that, an infinity of associated periodic orbits
are generated, until p = 24.74. .., where EQq 2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
o =10,b = 8/3,p = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.5, and the positions of its equilibria are
marked in figure 9.5. (continued in example 3.4)

Example 2.3 Rdssler strange attractor: The Duffing flow of figure 2.4 is bit of
a bore—every trajectory ends up in one of the two attractive equilibrium points. Let's
construct a flow that does not die out, but exhibits a recurrent dynamics. Start with a
harmonic oscillator

X=-y, y = X. (2.14)

The solL_Jtions are ret, re™, and the whole X-y plane rotates with constant angular
velocity 6 = 1, period T = 2r. Now make the system unstable by adding

X=-y, y =X+ ay, a>o0, (2.15)

or, in radial coordinates, t = arsir? 6, § = 1+ (a/2) sind. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to oo, Kick it into 3rd dimension when X reaches some value c
by adding

Zz=b+2zx-c), c>0. (2.16)
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As X crosses ¢, z shoots upwards exponentially, z ~ €*-t. In order to bring it back,
start decreasing X by modifying its equation to

X=-y-2z.
Large z drives the trajectory toward x = O; there the exponential contraction by e

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Réssler flow

X+ ay
b+2zx-c), a=b=02, c=57 (2.17)

N <
1l

(for definitiveness, we fix the parameters a, b, ¢ in what follows). The systemeisase 2.8
simple as they get-it would be linear, were it not for the sole bilinear term zx Even for
so ‘simple’ a system the nature of long-time solutions is far from obvious.

There are two repelling equilibrium points (2.8):

X (% + % 41 - 4ab/c?)(c,—c/a, c/a)

x. =~ (ab/c,—b/c,b/c), X; ~ (C,—C/a,c/a)
(x.,y-,z) = (0.007Q -0.0351, 0.0351)
(X:,¥s,2,) = (5.6929 —28464, 28.464) (2.18)

One is close to the origin by construction. The other, some distance away, exists be-
cause the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical in-
tegration. A typical numerically integrated long-time trajectory is sketched in figure 2.6
(see also figure 11.10). Trajectories that start out sufficiently close to the origin seem
to converge to a strange attractor. We say ‘seem’ as there exists no proof thategexcise 17.1
an attractor is asymptotically aperiodic—it might well be that what we see is but a long
transient on a way to an attractive periodic orbit. For now, accept that figure 2.6 and
similar figures in what follows are examples of ‘strange attractors.’ (continued in
exercise 2.8 and example 3.3) (R. Paskauskas)

The Rossler flow is the simplest flow which exhibits many @ key aspects
of chaotic dynamics; we shall use it and the 3-pinball (semptdr 8) systems
throughout ChaosBook to motivate introduction of Poiecgections, return maps,
symbolic dynamics, cycle expansions, and much else. Roslv is integrated
in exercise 2.7, its equilibria are determined in exerciSg i&s Poincaré sections
constructed in exercise 3.1, and the corresponding refinc&é map computed
in exercise 3.2. Its volume contraction rate is computedkerase 4.3, its topol-
ogy investigated in exercise 4.4, the shortest Rossler ¢gnles are computed
and tabulated in exercise 13.10, and its Lyapunov expore@tsiated in exer-
cise 17.4.

There are two profoundly fierent but mathematically equivalent ways to rep-
resent a given flow, the ‘Lagrangian’ and the ‘Eulerian.’ lulétian formulation
the flow is defined by specifying (2.6), the velocity fielk). In the Lagrangian
formulation it is given by the finite time flow (2.9), i.e., thetality of trajectories
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x(t). If we mark the trajectory(t) by its initial point xg, we are describing the
flow in the Lagrangian coordinates The Eulerian velocity v(x) at a fixed state
space positiox is equal to thd_agrangianvelocity v(x(t)) of the trajectory point
passing througlx at the instant. Because! is a single-valued function, any point
on the trajectory can be used to label the trajectory. Thesprart of the velocity
field v(xo) att = O to its value at the current poix{t) = f(xo) is a coordinate
transformation from the Lagrangian coordinates to the fiarlecoordinates.

In numerical work we are given the equations of motion (tiwl Eulerian
velocity tangent field/(x)), but we care about the solutions of these equations (the
globalLagrangian flow). Conversely, in experimental work we obs@&nsembles
of Lagrangian trajectories from which we the extract theowty field (in fluid
dynamics this is achieved by particle image velocimetry/jRIOnce an Eulerian
velocity field has been specified or extracted from the olagienval data, it is
straightforward to compute the Lagrangian trajectoridgeats of great practical
interest in studies of long time dynamics, mixing, and tpams

W fast track:
chapter 3, p. 55

2.3 Computing trajectories

o3

On two occasions | have been asked [by members of Par-
liament], 'Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ | am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integnamerically
whatever dynamical equations you face. Sooner or laterngad to implement
some finite time-step prescription for integration of theatgpns of motion (2.6).
The simplest is the Euler integrator which advances thedtajy byér x velocity
at each time step:

X — X + Vi(X) ot (2.19)

This might sifice to get you started, but as soon as you heed higher numacical

curacy, you will need something better. There are many keleference texts

and computer programs that can help you learn how to sofiereitial equations
numerically using sophisticated numerical tools, suchsasi@o-spectral methods

or implicit methods. If a ‘sophisticated’ integration rog takes days and gobexercise 2.6
bles up terabits of memory, you are using brain-damagedI|big software. Try

writing a few lines of your own Runge-Kutta code in some muredaveryday
language. While you absolutely need to master the requisiteerical methods,exercise 2.7
this is neither the time nor the place to expound upon thenv;you learn them is
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your business. And if you have developed some nice routoresolving problems exercise 2.9
in this text or can point another student to some, let us know. exercise 2.10

Résumé

Chaotic dynamics with a low-dimensional attractor can lmuaiized as a suc-
cession of nearly periodic but unstable motions. In the sspirét, turbulence in
spatially extended systems can be described in terms ofresdispatiotemporal
patterns. Pictorially, dynamics drives a given spatiatyeaded system through
a repertoire of unstable patterns; as we watch a turbuletésyevolve, every so
often we catch a glimpse of a familiar pattern. For any finfiat&l resolution
and finite time the system follows approximately a pattertortging to a finite
repertoire of possible patterns, and the long-term dynaman be thought of as
a walk through the space of such patterns. Recasting thiganméo mathematics
is the subject of this book.

Commentary

Remark 2.1 ‘State space’ or ‘phase space?’ In this text we denote by the terstate
spacethe set of admissible states of a genérair co-dimensional dynamical system, and
reserve the termhase spactm Hamiltonian D-dimensional state spaces, whérés the
number of Hamiltonian degrees of freedom. If the state sjmeecontinuous smooth
manifold much of the literature [A.11, 2.9] refers to it ahgse space,’ but we find the
control engineering usage sharper: in the state spacearf@-domain’) description of an
autonomous physical system, the state of the system isseqmesl as a vector within the
‘state space, space whose axes are the state variabletheagwblution of a state is given
by differential equations which are first-order in time. Hopf [2:&Juld refer to such a
state as an ‘instantaneous phase’ of the system obeyingdferéditial law of the phase
motion’. The distinction made here is needed in a text where toeats both general
dynamical systems and quantum-mechanical systems. Time'piase’ has a precise
meaning in wave mechanics, quantum mechanics and dynafriittgegrable systems at
the heart of Hamilton’s formulation of Newtonian mechaniegile ‘state space’ is more
descriptive of the way the notion is used in the general theérdynamical systems.
Further confusion arises when prefix spatio- as in ‘spatipigral’ is used in reference to
states extended in the (1, 2, or 3-dimensional) physicdigoration space. They may
exhibit spatial wave-like behaviors, but thetate spacés co-dimensional.

Much of the literature denotes the vector field in a first ordifierential equation
(2.6) by f(x) or F(x) or evenX(x), and its integral for time by the ‘timet forward map’
X(Xo0, t) = ®(Xo, t) Or ¢t(Xo) or something else. As we shall treat here maps and flows on
equal footing, and need to save Greek letters for mattenstqgopemechanical, we reserve
the notationf (xX) for mapssuch as (2.9), and refer to a state space velocity vectordteld
v(X). We come to regret this choice very far into the text, onltlg time we delve into
Navier-Stokes equations.

Remark 2.2 Rossler and Duffing flows. The Dufing system (2.7) arises in the
study of electronic circuits [2.1]. The Rossler flow (2.1%)the simplest flow which
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exhibits many of the key aspects of chaotic dynamics. It wa®duced in ref. [2.2]
as a set of equations describing no particular physicaésysbut capturing the essence
of Lorenz chaos in a simplest imaginable smooth flow. OttgdREy, a man of classical
education, was inspired in this quest by that rarely citeshdfather of chaos, Anaxagoras
(456 B.C.). This, and references to earlier work can be fanndfs. [2.3, 2.4, 2.5]. We
recommend in particular the inimitable Abraham and Shavgiithted classic [2.6] for its
beautiful sketches of the Rossler and many other flows. ffigndones [2.7] has a number
of interesting simulations on a Drexel website.

Remark 2.3 Lorenz equation. The Lorenz equation (2.12) is the most celebrated
early illustration of “deterministic chaos” [2.9] (but nifite first - the honor goes to Dame
Cartwright [2.10]). Lorenz’s paper, which can be found ipriet collections refs. [2.11,
2.12], is a pleasure to read, and is still one of the bestdintctons to the physics moti-
vating such models. For a geophysics derivation, see Rotlomarse notes [2.13]. The
equations, a set of ODEs &, exhibit strange attractors. W. Tucker [2.14, 2.15, 2.16]
has proven rigorously via interval arithmetic that the larattractor is strange for the
original parameters (no stable orbits), and has a longesfabiiodic orbit for the slightly
different parameters. In contrast to the hyperbolic strangactdts such as the weakly
perturbed cat map, the Lorenz attractor is structurallyabis. Frayland [2.17] has a nice
brief discussion of Lorenz flow. Frgyland and Alfsen [2.1R]tpnany periodic and hete-
roclinic orbits of the Lorenz flow; some of the symmetric oaesincluded in ref. [2.17].
Guckenheimer-Williams [2.19] and Afraimovich-Bykov-$fikov [2.20] offer in-depth
discussion of the Lorenz equation. The most detailed stfidyeoLorenz equation was
undertaken by Sparrow [2.21]. For a physical interpretatibp as “Rayleigh number.”
see Jackson [2.22] and Seydel [2.23]. Lorenz truncation neo8es is so drastic that
the model bears no relation to the geophysical hydrodyraprablem that motivated it.
For a detailed pictures of Lorenz invariant manifolds cdinsal Il of Jackson [2.22].
Lorenz attractor is a very thin fractal — as we saw, stableifolanthickness is of order
104 — whose fractal structure has been accurately resolved bjs@anath [2.24, 2.25].
If you wander what analytic function theory has to say aboutehz, check ref. [2.26].
Refs. [2.27, 2.28] might also be of interest. (continuectimark 9.2)

Remark 2.4 Diagnosing chaos. In sect. 1.3.1 we have stated that a deterministic
system exhibits ‘chaos’ if its trajectories are locally taide (positive Lyapunov expo-
nent) and globally mixing (positive entropy). In sect. 1¥é shall define Lyapunov
exponents, and discuss their evaluation, but already atpint it would be handy to
have a few quick numerical methods to diagnose chaotic digzarhaskar’'sfrequency
analysismethod [2.29] is useful for extracting quasi-periodic arehkly chaotic regions

of state space in Hamiltonian dynamics with many degreeseeidom. For pointers to
other numerical methods, see ref. [2.30].

Remark 2.5 Dynamical systems software: J.D. Meiss [2.31] has maintained for
many yearsSci.nonlinear FAQvhich is now in part superseded by the SIAM Dynamical
Systems websiteww . dynamicalsystems.org. The website glossary contains most of
Meiss’s FAQ plus new ones, and a up-to-date software li82J2 with links to DSTool,
xpp, AUTO, etc.. Springer on-linEncyclopaedia of Mathematiesaintains links to dy-
namical systems software packages on eom.springeyaE30210.htm. Kuznetsov [1.14]
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Appendix D.9 gives an exhaustive overview of software amAd in 2004. (see also re-
mark 12.1)
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The exercises that you should do hawelerlined titles . The rest §maller type )
are optional. Dificult problems are marked by any number of *** stars.

Exercises

2.1. Trajectories do not intersect. A trajectory in the
state spaceM is the set of points one gets by evolving
x € M forwards and backwards in time:

() =y

Cx={ye M: forte R}.

Show that if two trajectories intersect, then they are thg‘G'

same curve.

2.2. Evolution as a group.  The trajectory evolutiorf' is

a one-parameter semigroup, where (2.3)
ft+s — ft ° fs'

Show that it is a commutative semigroup.

In this case, the commutative character of the semi-
group of evolution functions comes from the commuta-
tive character of the time parameter under addition. Can
you think of any other semigroup replacing time?

2.3. Almost ODE'’s.

(a) Consider the poink on R evolving according
x = €*. Is this an ordinary dferential equation?

(b) Isx = x(x(t)) an ordinary diferential equation?

(c) What abouix= x(t+1)?
2.4. All equilibrium points are fixed points. ~ Show that
a point of a vector fieldy where the velocity is zero is a
fixed point of the dynamics'.

2.5. Gradient systems.  Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an

auxiliary function, the ‘potentiakp
X = =Vp(X)

wherex € RY, andg is a function from that space to the
realsR.

(@) Show that the velocity of the particle is in the di-
rection of most rapid decrease of the functipn

(b) Show that all extrema af are fixed points of the
flow.

exerFlows - 20jan2012

2.7.

2.8.

2.9.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

Runge-Kutta integration. Implement the fourth-
order Runge-Kutta integration formula (see, for exam-
ple, ref. [2.33]) forx = v(X):

N ki ke ks Kk 5
X1 = xn+€+§+§+g+0(6'r)
ki = 6tv(Xn), ko=087V(Xn+Kki/2)
ks = 67V(Xn+ka/2)
ka = 67V(Xn+ks).

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

Rossler flow.  Use the result of exercise 2.6 or some
other integration routine to integrate numerically the
Rossler flow (2.17). Does the result look like a ‘strange
attractor’?

Equilibria of the R dssler flow.

(a) Find all equilibrium points Xg,Yyq,Z;) of the
Rossler system (2.17). How many are there?

(b) Assume thab = a. As we shall see, some surpris-
ingly large, and surprisingly small numbers arise
in this system. In order to understand their size,
introduce parameters

1+ VD)/2.

Express all the equilibria in terms of, €, D, p*),
expand to the first order im, and evaluate for
a=b=02,c=57in (2.17). In the case studied

€ ~ 0.03, so these estimates are quite accurate. .
(continued in exercise 3.1)

e=a/c, D=1-4é, p* =

(Rytis Paskauskas)

Can you integrate me? Integrating equations nu-
merically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
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differential equations has a solution for all times and

there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation

x=x%, x(0)=1.

(a) For what times do solutions of
X = X(x(1)

exist? Do you need a numerical routine to answer
this question?

(b) Let's test the integrator you wrote in exercise 2.6.
The equatiorx = —x with initial conditionsx(0) =
2 andx = 0 has as solutior(t) = e '(1+¢€?!). Can
your integrator reproduce this solution for the in-
tervalt € [0,10]? Check you solution by plotting
the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

X +0.6X+X—|x+1=0,

which can be checked—numerically—to be chaotic.
As initial conditions we will always use&(0) =
X(0) = x(0) = 0. Can you reproduce the re-
sult x(12) = 0.8462071873 (all digits are sig-
nificant)? Even though the equation being inte-
grated is chaotic, the time intervals are not long
enough for the exponential separation of trajecto-
ries to be noticeable (the exponential growth fac-
toris~ 2.4).

(d) Determine the time interval for which the solution
of x = X, x(0) = 1 exists.

52

shall need to compute classical periodic orbits of the he-
lium system. In this exercise we commence their evalu-
ation for the collinear helium atom (7.8)

lp 2. 2, 1
2p2 r Iy r1+r2'

1
Hzépi‘i—

The nuclear charge for helium & = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics
can be visualized as a motion in the, ), ri > 0 quad-
rant. In {1, r;)-coordinates the potential is singular for
ri — 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in sect. 6.3. In the transformed coor-
dinates ., X2, p1, p2) the Hamiltonian equations of mo-
tion take the form

. P2 2
P, = 2Q {2— §2 - Q31+ %)}
. p2 2
Py = 2Q [2— 5 ~ Qi+ %)}

. 1 . 1
Q@ = P Q=P (2.20)

whereR = (Q? + Q3)V/2.

() Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of exercise 2.6
(or whatever integration routine you like). A
convenient way to visualize the 3-dimensional
state space orbit is by projecting it onto the 2-
dimensionali(y(t), ro(t)) plane. (continuedin ex-
ercise 3.4)

2.10. Classical collinear helium dynamics. In order to ap-
ply periodic orbit theory to quantization of helium we

(Gregor Tanner, Per Rosenqvist)
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