Chapter 5

Cycle stabllity

and the ways in which the orbits intertwine— are invariardema general

continuous change of coordinates. Surprisingly, there ekést quantities
that depend on the notion of metric distance between pdintsnpevertheless do
not change value under a smooth change of coordinates. hQoeailtities such
as the eigenvalues of equilibria and periodic orbits, ammbal quantities such
as Lyapunov exponents, metric entropy, and fractal dinomissare examples of
properties of dynamical systems independent of coordiclabee.

TOPOLOGICAL FEATURES Of a dynamical system —singularities, periodic orbits,

We now turn to the first, local class of such invariants, Im&ability of pe-
riodic orbits of flows and maps. This will give us metric infeation about local
dynamics, as well as the key concept, the conceptafighborhoodof a point
X : its size is determined by the number of expanding diresti@nd the rates
of expansion along them: contracting directions play onbgeondary role. (see
sect. 5.4).

If you already know that the eigenvalues of periodic orbitsiavariants of a
flow, skip this chapter.

W fast track:
chapter 7, p. 127

5.1 Stability of periodic orbits o

, 8N
As noted on page 40, a trajectory can be stationary, perimdaperiodic. For

chaotic systems almost all trajectories are aperiodicentiesless, equilibria and
periodic orbits turn out to be the key to unraveling chaotoamics. Here we
note a few of the properties that make them so precious toogishe
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CHAPTER 5. CYCLE STABILITY 100

An obvious virtue of periodic orbits is that they ampologicalinvariants: a
fixed point remains a fixed point for any choice of coordinatasd similarly a
periodic orbit remains periodic in any representation & dynamics. Any re-
parametrization of a dynamical system that preservesptdagy has to preserve
topological relations between periodic orbits, such as teéative inter-windings
and knots. So the mere existence of periodic orbitBcas to partially organize
the spatial layout of a non—wandering set. No less impar@sitwe shall now
show, is the fact that cycle eigenvalues aretric invariants: they determine the
relative sizes of neighborhoods in a non—wandering set.

We start by noting that due to the multiplicative structu4e39) of Jacobian
matrices, the Jacobian matrix for thi repeat of a prime cyclp of period Ty, is

ITe(x) = IT(FITo(x) - ITe(FT() I (X) = Jp(x)' (5.1)
where Jp(X) = JTr(X) is the Jacobian matrix for a single traversal of the prime
cycle p, x € Mp is any point on the cycle, antiTr(x) = x as f'(x) returns tox

every multiple of the period . Hence, it sffices to restrict our considerations to
the stability of prime cycles.

fast track:
W sect. 5.2, p. 104
5.1.1 Floquet vectors

When dealing with periodic orbits, some of the quantitiesady introduced in-
herit names from the Floquet theory offdrential equations with time-periodic
codficients. Consider the equation of variations (4.2) evatliatea periodic orbit

P,
6% = A(t) 6X, At) = A(X(t)) = At + Tp). (5.2)

The T, periodicity of the stability matrix implies that ix(t) is a solution of (5.2)
then alsaox(t + Tp) satisfies the same equation: moreover the two solutions are
related by (4.6)

SX(t + Tp) = Jp(X) OX(t). (5.3)

Even though the Jacobian matrlly(x) depends uporx (the ‘starting’ point of
the periodic orbit), we shall show in sect. 5.2 that its eigdues do not, so we
may write for its eigenvectore) (sometimes referred to as ‘covariant Lyapunov
vectors,’ or, for periodic orbits, as ‘Floquet vectors’)

()N = Ap;€D(x),  Apj=oPed T (5.4)
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CHAPTER 5. CYCLE STABILITY 101

where/lg) = ,ug) + ia)(pj) andag) are independent of. WhenA,; is real, we do
care aboutrt = Apj/IApjl € (+1,-1}, the sign of thejth Floquet multiplier.
If a'(pj) =-1 and/lg) # 0, the corresponding eigen-direction is said tdrherse section 7.3
hyperbolic Keeping track of this by case-by-case enumeration is apagssary
nuisance, so most of our formulas will be stated in terms@flloquet multipliers

Aj rather than in the terms of the multiplier sign§, exponentg and phases
(i
w.

Expandéx in the (5.4) eigenbasisix(t) = 3 ox(t) e, e = el)(x(0)).
Taking into account (5.3), we get tha;(t) is multiplied byAp ; per each period

SX(t+Tp) = > oxj(t+Tp) el = > Apjox;(t) el
j j

We can absorb this exponential growtbontraction by rewriting the cdigcients
oxj(t) as

(i)

6xj(t)=ef‘p uj(t), u;j(0) = 6x;(0),
with u;(t) periodicwith periodTp. Thus each solution of the equation of variations
(4.2) may be expressed in the Floquet form

ox) =y eV tumed,  ujt+Tp) = ui(). (5.5)
]

The continuous time appearing in (5.5) does not imply that eigenvalues of the
Jacobian matrix enjoy any multiplicative property fog rT: /l(p‘) = ,u(p’) + iw(p‘)
refer to a full traversal of the periodic orbit. Indeed, vehil;(t) describes the
variation ofox(t) with respect to the stationary eigen-frame fixed by eigetors

at the pointx(0), the object of real interest is the co-moving eigen-kasefined

below in (5.13).

5.1.2 Floquet matrix eigenvalues and exponents

The time-dependent-periodic vector fields, such as the flow linearized around
a periodic orbit, are described by Floquet theory. Hencenfrmw on we shall
refer to a Jacobian matrix evaluated on a periodic orbieeiéts a-loquet matrix

or amonodromy matrixto its eigenvalueg\, ; as Floquet multipliers (5.4), and

to /1(pj) = y(pj) + iw(pj) as Floquet or characteristic exponents. We sortHloguet
multipliers {Ap1, Apo, ..., Apg} Of the [dxd] Floquet matrixJ, evaluated on the
p-cycle into setge, m, c}

expanding:  {Ale = {Apj:|Apj|>1}
marginal:  {Alm = {Apj: |Apj| =1} (5.6)
contracting:  {Ale = {Apj:|Apj| <1}
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CHAPTER 5. CYCLE STABILITY 102

Figure 5.1: For a prime cyclep, Floquet matrix
Jp returns an infinitesimal spherical neighborhood of
Xo € M, stretched into an ellipsoid, with overlap ra-
tio along the eigendirectioa® of Jy(x) given by the
Floquet multiplierlAj|. These ratios are invariant un-
der smooth nonlinear reparametrizations of state spag
coordinates, and are intrinsic property of cyple

Figure 5.2: An unstable periodic orbit repels every
neighboring trajectory’(t), except those on its center ©
and stable manifolds. X

and denote by\, (no jth eigenvalue index) the product ekpandingFloquet
multipliers

e

As J, is a real matrix, complex eigenvalues always come in comptejugate
pairs,Apjs1 = A’E)i, so the product (5.7) is always real.

The stretchingcontraction rates per unit time are given by the real parts of
Floquet exponents

; 1
ul) = T In[Api| - (5.8)

The factor ¥T, in the definition of the Floquet exponents is motivated by its

form for the linear dynamical systems, for example (4.16)\vell as the fact that
exponents so defined can be interpreted as Lyapunov exgofién88) evaluated

on the prime cycle. As in the three cases of (5.6), we sort the Floquet exponents

A = u +iw into three sets section 17.4

expanding: {1}e = {/l(,i) : ;1(,;) > 0}
marginal: {UVm = {/lg) : yg) =0}
contracting: UV = {/l(,i) : ;1(,? < 0}. (5.9
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CHAPTER 5. CYCLE STABILITY 103

A periodic orbit of a continuous-time flow, or of a map, or a fixeoint of a
map is p. 85

e stablg asinkor alimit cycleif all |[Aj| < 1 (real parts of all of its Floquet
exponents, other than the vanishing longitudinal expofeergerturbations
tangent to the cycle, explained in sect. 5.2.1, are strigttyative ) < 0).

e hyperbolicor a saddle, unstable to perturbations outside its stabfefoha
if some|A|j| < 1, and othelAj| > 1 (a set of—uD) > umin > 0 is strictly
positive, the rest is strictly negative).

e elliptic, neutralor marginalif all [Aj| = 1 ) = 0).

e partially hyperbolic if u) = 0 for a subset of exponents (other than the
longitudinal one).

e repelling or asource unstable to any perturbationafl |A;j| > 1 (all Flo-
quet exponents, other than the vanishing longitudinal eepbare strictly
positive,u®) > pmin > 0).

The region of system parameter values for which a periodiit gris stable
is called thestability windowof p. The setM, of initial points that are asymp-
totically attracted tgp ast — +oo (for a fixed set of system parameter values) is
called thebasin of attractionof p. Repelling and hyperbolic cycles are unstable
to generic perturbations, and thus said taibstable see figure 5.2. section 7.4

If all Floquet exponents (other than the vanishing longitudinalbeent) of
all periodic orbits of a flow are strictly bounded away from zettoe flow is
said to behyperbolic Otherwise the flow is said to b@onhyperbolic A con-
fined smooth flow or map is generically nonhyperbolic, witltigé ellipticity or
marginality expected only in presence of continuous symewetor for bifurca-
tion parameter values. As we shall see in chapter 10, in pcesef continuous
symmetries equilibria and periodic orbits are not likelyusons, and their role
is played by higher-dimensional, toroidal, relative eitpui and relative periodic
orbits. For Hamiltonian flows the Sg\ symmetry (Liouville phase-space volume
conservation, Poincaré invariants) leads to a prolifenadf elliptic and partially
hyperbolic tori. section 7.5

Example 5.1 Stability of cycles of 1-dimensional maps: The stability of a prime
cycle p of a 1-dimensional map follows from the chain rule (4.46) for stability of the npth
iterate of the map

ne-1

Ap= o060 = [ ] 10w, %= 700). (5.10)
m=0

Ap is a property of the cycle, not the initial periodic point, as taking any periodic point
in the p cycle as the initial one yields the same Ay.
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CHAPTER 5. CYCLE STABILITY 104

A critical point X. is a value of x for which the mapping f(X) has vanishing
derivative, f'(x;) = 0. A periodic orbit of a 1-dimensional map is stable if

|Ap| =

£ (np) F () -~ /0 ' (x)| < 1,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope A of the nth iterate f"(X) evaluated
on a periodic point X (fixed point of the nth iterate) lies between —1 and 1. If |Ap| > 1,
p-cycle is unstable.

Example 5.2 Stability of cycles for maps: No matter what method one uses to
determine unstable cycles, the theory to be developed here requires that their Floquet
multipliers be evaluated as well. For maps a Floquet matrix is easily evaluated by
picking any periodic point as a starting point, running once around a prime cycle, and
multiplying the individual periodic point Jacobian matrices according to (4.47). For
example, the Floquet matrix My for a Hénon map (3.17) prime cycle p of length ny is
given by (4.48),

M()—ﬁ —2a% b X € M
pXO_ 1 0 s Kk P

k=n,

and the Floquet matrix My, for a 2-dimensional billiard prime cycle p of length np

w=cor[](8 1) 9)

k=n,

follows from (8.11) of chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond
to multiplication from the left, Mp(x1) = M(Xa,) - -- M(Xq). We shall compute Floquet
multipliers of Hénon map cycles once we learn how to find their periodic orbits, see

exercise 13.13.

5.2 Floquet multipliers are invariant

The 1-dimensional map Floquet multiplier (5.10) is a prddfaderivatives over
all points around the cycle, and is therefore independemtha¢h periodic point
is chosen as the initial one. In higher dimensions the forrthefFloquet ma-
trix Jp(Xo) in (5.1) does depend on the choice of coordinates and thalipoint

Xo € M,. Nevertheless, as we shall now show, the cyélequet multipliers
are intrinsic property of a cycle in any dimension. Consitherith eigenvalue,
eigenvector pairkp;, V) computed froml, evaluated at a periodic point

Jp() €)= Api (%), xeM,. (5.11)
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CHAPTER 5. CYCLE STABILITY 105

Consider another point on the cycle at titdater,x’ = f!(x) whose Floguet matrix
is Jp(X). By the semigroup property (4.39)»*t = J%*Te, and the Jacobian
matrix atx’ can be written either as

JTPH(x) = IT(x) (%) = Jp(x) I'(¥),

or J'(x) Jp(x). Multiplying (5.11) by J'(x), we find that the Floquet matrix evalu-
ated atx’ has the same Floquet multiplier,

Jp(¥)eV(x) = Api €V(x), eD(x)=J(x)eV(x), (5.12)

but with the eigenvectoel) transported along the flow — x to e(x) =
Ji(x) D (x). Hence, in the spirit of the Floquet theory (5.5) one canngefime-
periodic unit eigenvectors (in a co-moving ‘Lagrangiamfes)

ety = e W eD0), () =eDx®), xt)eMp.  (5.13)

Jp evaluated anywhere along the cycle has the same set of Elogulgpliers

{Ap1, Ap2, ---,1,--+ ,Apd-1}. As quantities such as Jp(x), detJy(x) depend
only on the eigenvalues afy(x) and not on the starting poin, in expressions
such as deftl - J5(x)) we may omit reference te,

det(1- Jp) = det(1- Jy(x)) foranyxe Mp. (5.14)

We postpone the proof that the cycle Flogquet multipliers ssam@oth conjugacy
invariants of the flow to sect. 6.6.

5.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either acamis symmetry of the

flow (which one should immediately exploit to simplify theoptem), or a non-

hyperbolicity of a flow (a source of much pain, hard to avold)that case (typical

of parameter values for which bifurcations occur) one hagadeyond linear

stability, deal with Jordan type subspaces (see exampleah8 sub-exponential

growth rates, such 8. chapter 24

exercise 5.1

For flow-invariant solutions such as periodic orbits, tinetievolution is itself

a continuous symmetry, hence a periodic orbit of a flow alwags amarginal

Floguet multiplier

As JY(x) transports the velocity fieldx) by (4.7), after a complete period

Jp()V(X) = V(X), (5.15)
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CHAPTER 5. CYCLE STABILITY 106

so for a periodic orbit of #owthe local velocity field is always has an eigenvector
elD(x) = v(xX) with the unit Floquet multiplier,

App=1, AP =o. (5.16)

exercise 6.3

The continuous invariance that gives rise to this margitadfet multiplier is the
invariance of a cycle (the sél,) under a translation of its points along the cycle:
two points on the cycle (see figure 4.2) initially distadceapart,x’(0) — x(0) =
0x(0), are separated by the exactly satwafter a full periodT,. As we shall see
in sect. 5.3, this marginal stability direction can be efiaied by cutting the cycle
by a Poincaré section and eliminating the continuous flavg&ét matrix in favor
of the Floquet matrix of the Poincaré return map.

If the flow is governed by a time-independent Hamiltoniae, energy is con-
served, and that leads to an additional marginal Floquetiptiat (we shall show
in sect. 7.4 that due to the symplectic invariance (7.27)eigenvalues come in
pairs). Further marginal eigenvalues arise in presencerdfraious symmetries,
as discussed in chapter 10.

5.3 Stability of Poincaré map cycles

o3

(R. PaSkauskas and P. Cvitanovic)

If a continuous flow periodic orbip pierces the Poincaré sectighonce, the
section point is a fixed point of the Poincaré return rRapith stability (4.52)

A v U
Jij = (5ik - V'—k) Jjs (5.17)

with all primes dropped, as the initial and the final pointsicwle, X' = fTr(x) =
X. If the periodic orbitp pierces the Poincaré sectintimes, the same observation
applies to theath iterate ofP.

We have already established in (4.53) that the velog(ly) is a zero eigen-
vector of the Poincaré section Floquet matdx; = 0. Consider nextAp.q, &%),
the full state spaceth (eigenvalue, eigenvector) pair (5.11), evaluated atra pe
odic point on a Poincaré section,

JX) ED(X) = Ay €(x), xeP. (5.18)

Multiplying (5.17) by e and inserting (5.18), we find that the full state space
Floquet matrix and the Poincaré section Floquet matiave the same Floquet
multiplier

JX)EI(X) = Ap &D(x), xeP, (5.19)
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CHAPTER 5. CYCLE STABILITY 107

where&® is a projection of the full state space eigenvector onto thimdarée
section:

vi Uk
(v-U)

@), = (aik - )(e@)k. (5.20)

Hence,JAp evaluated on any Poincaré section point along the gytias the same
set of Floquet multipliergAp 1, Ap2, - - Apg} as the full state space Floquet ma-
trix Jp, except for the marginal unit Floquet multiplier (5.16).

As established in (4.53), due to the continuous symmeirrr}e(ihvariance)fp
is a rankd—1 matrix. We shall refer to any such rankdf1—N)x (d—1-N)]
submatrix withN — 1 continuous symmetries quotiented out as rti@nodromy
matrix My (from Greekmono-= alone, single, andiromo = run, racecourse,
meaning a single run around the stadium). Quotienting coatis symmetries is
discussed in chapter 10 below.

5.4 There goes the neighborhood

o\ e

In what follows, our task will be to determine the size afeighborhoodof x(t),
and that is why we care about the Floguet multipliers, ané&afly the unstable
(expanding) ones.

Nearby points aligned along the stable (contracting) times remain in the
neighborhood of the trajectoy(t) = f!(Xo); the ones to keep an eye on are the
points which leave the neighborhood along the unstabletitres: all chaos arises
from flights along these these directions. The sub-volig| = []7 Ax of the
set of points which get no further away froff(xo) thanL, the typical size of the
system, is fixed by the condition thakA; = O(L) in each expanding direction
I. Hence the neighborhood size scale$/s,| « O(LdE)/|Ap| o 1/|Apl WhereA
is the product of expanding Floquet multipliers (5.7) ordgntracting ones play
a secondary role. Discussion of sect. 1.5.1, figure 1.9, anaefi5.1 illustrate
intersection of initial volume with its return, and chaptd2 and 18 illustrate the
key role that the unstable directions play in systematicadirtitioning the state
space of a given dynamical system. The contracting dinestéve so secondary
that even infinitely many of them (for example, the infinityaointracting eigen-
directions of the spatiotemporally chaotic dynamics dbscrby a PDE will not
matter.

So the dynamically important information is carried by theanding sub-
volume, not the total volume computed so easily in (4.42patThalso the reason
why the dissipative and the Hamiltonian chaotic flows are immore alike than
one would have naively expected for ‘compressilig. ‘incompressible’ flows.
In hyperbolic systems what matters are the expanding drect Whether the
contracting eigenvalues are inverses of the expanding @nest is of secondary
importance. As long as the number of unstable directiongitefithe same theory
applies both to the finite-dimensional ODEs and infinite-elsional PDES.
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Résum é

Periodic orbits play a central role in any invariant chagaeation of the dynam-

ics, because (a) their existence and inter-relations aopaogical coordinate-
independent property of the dynamics, and (b) their Flogugtipliers form an

infinite set ofmetric invariants The Floquet multipliers of a periodic orbit remaigection 6.6
invariant under any smooth nonlinear change of coordinitesho f oh™ . Let

us summarize the linearized flow notation used throughauCthaosBook.

Differential formulation, flows:
X=V, 56X = ASX

governs the dynamics in the tangent bundesx) € T M obtained by adjoining
the d-dimensional tangent spaéa& € T My to every pointx € M in the d-dim-
ensional state spacé! c RY. The stability matrix A = dv/dx describes the
instantaneous rate of shearing of the infinitesimal neigidimd of x(t) by the
flow.

Finite time formulation, maps: A discrete sets of trajectory pointgg, X1, - - -,
Xn, -} € M can be generated by composing finite-time maps, either gigen
Xn+1 = T(Xy), or obtained by integrating the dynamical equations

1

X1 = FO0) = X + drv(x(7)), (5.21)

tn

for a discrete sequence of timgg t1, - - -, tn, - - -}, Specified by some criterion such
as strobing or Poincaré sections. In the discrete timedtation the dynamics in
the tangent bundlex(6x) € T M is governed by

Xor1 = F(X), %1 = J(X) %0,  J(X) = I 270(x),

whereJ(Xn) = 0Xny1/0%n = de exp (A1) is the Jacobian matrix.

Stability of invariant solutions: The linear stability of an equilibrium(xgQ) =
0 is described by the eigenvalues and eigenve¢ibbs ell)} of the stability matrix
A evaluated at the equilibrium point, and the linear stabitif a periodic orbit
fT(X) = X, x e Mp,

: : 0
eV = Ap DX,  Apj=oPel e,

by its Floquet multipliers, vectors and exponefits, e}, wheread = u) +
iw(p’) For every continuous symmetry there is a marginal eigesetion, with

Apj=1, /l(pj) = 0. With all 1+ N continuous symmetries quotiented out (Poincaré
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sections for time, slices for continuous symmetries of dyica, see sect. 10.4)
linear stability of a periodic orbit (and, more generally,aopartially hyperbolic
torus) is described by thed{1-N) x (d-1-N)] monodromy matrix, all of whose
Floguet multipliergAp j| # 1 are generically strictly hyperbolic,

Mp(x) €D (x) = Apj eD(x), xe Mp/G.

We shall show in chapter 11 that extending the linearizehilgtahyperbolic
eigen-directions into stable and unstable manifolds gi@ttbortant global infor-
mation about the topological organization of state spachaf\khatters most are
the expanding directions. The physically important infation is carried by the
unstable manifold, and the expanding sub-volume chaiaetkby the product of
expanding Floquet multipliers af,. As long as the number of unstable directions
is finite, the theory can be applied to flows of arbitrarily thidimension.

- in depth: W fast track:
3 appendix B, p. 787 chapter 9, p. 154
Commentary

Remark 5.1 Periodic orbits vs. ‘cycles’. Throughout this text, the terms ‘periodic
orbit’ and ‘cycle’ (which has many other uses in mathematice used interchangeably;
while ‘periodic orbit’ is more precise, ‘pseudo-cycle’ iaster on the ear than ‘pseudo-
periodic-orbit.” In Soviet times obscure abbreviationseva rage, but here we shy away
from acronyms such as UPOs (Unstable Periodic Orbits). lmotlie mists of time is
the excitement experienced by the first physicist to discthet there are periodic orbits
other than the limit cycles reached by mindless computdtoward in time (many a
mathematician starting with Poincaré had appreciate} that once one understands that
there are at most several stable limit cycles (SPOs?) assedgo the Smale horseshoe
infinities of unstable cycles (UPOs?), what is gained by préfi? It is like calling all
bicycles 'unstable bicycles’ rather than ‘bicycles’.

Remark 5.2 Periodic orbits and Floquet theory. Study of time-dependent aric
periodic vector fields is a classical subject in the theowifiérential equations [5.1, 5.2].
In physics literature Floquet exponents often assunfieréint names according to the
context where the theory is applied: they are called Blochsphk in the discussion of
Schradinger equation with a periodic potential [5.3], aagi-momenta in the quantum
theory of time-periodic Hamiltonians. For further readiog periodic orbits, consult
Moehlis and K. Josit9] Scholarpedia.org article.
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Exercises

5.1. A limit cycle with analytic Floquet exponent. Ermentrout
There are only two examples of nonlinear flows for o _ _
which the Floquet multipliers can be evaluated ana5.2. The other example of a limit cycle with analytic Flo-

lytically. Both are cheats. One example is the 2-  quet exponent. What is the other example of a
dimensional flow nonlinear flow for which the Floquet multipliers can be
evaluated analytically? Hint: email G.B. Ermentrout.
g = p+al-o’-p)
b = —q+pl--p?). 5.3. Yet another example of a limit cycle with analytic
Floquet exponent. Prove G.B. Ermentrout wrong
Determine all periodic solutions of this flow, and deter- by solving a third example (or more) of a nonlinear flow
mine analytically their Floquet exponents. Hint: go to for which the Floquet multipliers can be evaluated ana-
polar coordinatesy, p) = (r cosd, r sinég). G. Bard lytically.
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