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Chapter 27

Figure 27.1: Unperturbed circle magk(= 0 in (27.1))
with golden mean rotation number. .

Irrationally winding

intuition is much facilitated by approximating circle malpg number-theoretic
models. The models that arise in this way are by no means matielly triv-
ial, they turn out to be related to number-theoretic abysses as the Riemann
conjecture, already in the context of the “trivial” models.
I don’t care for islands, especially very small ones.

—D.H. Lawrence

(R. Artuso and P. Cvitanovic) 27.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotatn a circle is by

THIs cHAPTER is concerned with the mode locking problems for circle maps: 1-dimensional circle maps— X’ = f(x), restricted to the one dimensional torus,

besides its physical relevance it nicely illustrates the ofcycle expan- such as theine map

sions away from the dynamical setting, in the realm of reradization
theory at the transition to chaos. K
X1 = F(Xa) = X0 + Q — Zsin(ern) mod 1. (27.1)
The physical significance of circle maps is connected witirthbility to
model the two—frequencies mode—locking route to chaosifsightive systems.
In the context ofdissipativedynamical systems one of the most common and
experimentally well explored routes to chaos is the twapfency mode-locking
route. Interaction of pairs of frequencies is of deep thexakinterest due to the
generality of this phenomenon; as the energy input into sightive dynamical
system (for example, a Couette flow) is increased, typidaly one and then two
of intrinsic modes of the system are excited. After two Hojffilzations (a fixed
point with inward spiralling stability has become unstadhel outward spirals to
a limit cycle) a system lives on a two-torus. Such systemd termode-lock:
the system adjusts its internal frequencies slightly so tiey fall in step and
minimize the internal dissipation. In such case the ratitheftwo frequencies
is a rational number. An irrational frequency ratio con@sgs to a quasiperiodic
motion - a curve that never quite repeats itself. If the miod&ed states overlap,
chaos sets in. The likelihood that a mode-locking occurgdep on the strength where "is used in the same sense as in chapter 25.
of the coupling of the two frequencies.

f(x) is assumed to be continuous, have a continuous first degyaind a con-
tinuous second derivative at the inflection point (wheresthgond derivative van-
ishes). For the generic, physically relevant case (the @mé/considered here) the
inflection is cubic. Herd parametrizes the strength of the nonlinear interaction,
andQ is thebarefrequency.

The state space of this map, the unit interval, can be thafgid the elemen-

tary cell of the map

St = (%) = S+ © — 2 sin(ar) (27.2)

The winding number is defined as
Our main concern in this chapter is to illustrate the “gléltheory of circle
maps, connected with universality properties of the whaobgional winding set.

L - . . W(k, Q) = lim (X, — Xo0)/n. 27.
We shall see that critical global properties may be expregsecycle expansions (k) naoo(X" %)/ 27.3)
involving “local” renormalization critical exponents. &wenormalization theory
of critical circle maps demands rather tedious numericalmatations, and our and can be shown to be independent of the initial vatue
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Fork = 0, the map is a simple rotation (tisaift map see figure 27.1
Xne1 = Xn + Q mod 1, (27.4)
and the rotation number is given by the param&er
Wk=0Q)=0Q.

For given values of2 andk the winding number can be either rational or irra-
tional. Forinvertible maps and rational winding numbéfs= P/Q the asymptotic
iterates of the map converge to a unique attractor, a staledic orbit of period

Q
) =%+P,. i=012---,Q-1.

This is a consequence of the independenceyqiréviously mentioned. There is
also an unstable cycle, repelling the trajectory. For atipmal winding number,
there is a finite interval of values @t values for which the iterates of the circle

map are attracted to tHe/Q cycle. This interval is called thB/Q mode-locked exercise 27.1

(or stability) interval, and its width is given by

A _ fight left
Apjg = Q72 = QpI0 - Q56 . (27.5)

WhereQ'F',‘fgt (Q'F‘f/fé) denote the biggest (smallest) valueifor which W(k, Q) =
P/Q. Parametrizing mode lockings by the expongniather than the widti\
will be convenient for description of the distribution oftimode-locking widths,
as the exponents turn out to be of bounded variation. The stability of fB&

cycle is

0%
Apig =52 = F00)1'(x) - /()

For a stable cycleAp/ql lies between O (the superstable value, the “center” of the
stability interval) and 1 (th@:,'?g, Q';f/fé endpoints of (27.5)). For the shift map
(27.4), the stability intervals are shrunk to points. @ss varied from 0 to 1,
the iterates of a circle map either mode-lock, with the wigdhumber given by

a rational numbeP/Q € (0,1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding numb®/ as a function of the shift
parametef is a convenient visualization of the mode-locking struetaf circle
maps. It yields a monotonic “devil’s staircase” of figure2Whose self-similar
structure we are to unravel. Circle maps with zero slopeeairtfiection pointx;
(see figure 27.3)

f()=0,  f'(x)=0
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Figure 27.2: The critical circle mapK = 1 in (27.1)) o s =

devil’s staircase [27.3]; the winding numbétas func- 02 Z

tion of the paramete®. 0.0

Figure 27.3: Critical circle map k = 1 in (27.1)) with
golden mean bare rotation number. . , . .

(k =1, x. = 0in (27.1)) are calledritical: they delineate the borderline of chaos
in this scenario. As the nonlinearity paramekencreases, the mode-locked
intervals become wider, and for the critical circle maks=(1) they fill out the
whole interval. A critical map has a superstabBj& cycle for any rationaP/Q,

as the stability of any cycle that includes the inflectionnp@&quals zero. If the
map is non-invertiblel > 1), it is called supercritical; the bifurcation structurfe o
this regime is extremely rich and beyond the scope of thiesitipn.

The physically relevant transition to chaos is connecteti thie critical case,
however the apparently simple “free” shift map limit is guitstructive: in essence
it involves the problem of ordering rationals embedded ethit interval on a hi-
erarchical structure. From a physical point of view, thempabblem is to identify
a (number-theoretically) consistent hierarchy susckptih experimental verifi-
cation. We will now describe a few ways of organizing ratisr@ong the unit
interval: each has its own advantages as well as its drawbadken analyzed
from both mathematical and physical perspective.

27.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of frerametef2 required to
attain it; given finite time and resolution, we expect to bleab resolve cycles up
to some maximal lengt®. This is the physical motivation for partitioning mode
lockings into sets of cycle length up @ In number theory such sets of rationals
are calledFarey series They are denoted bfq and defined as follows. The
Farey series of orde is the monotonically increasing sequence of all irredecibl
rationals between 0 and 1 whose denominators do not exQeedhus P;/Q;
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belongs toFg if 0 < P; < Q; < Qand @i|Q) = 1. For example

A Farey series is characterized by the property th&if/Q;_1 and P;/Q; are
consecutive terms of g, then

PiQ-1 - PiaQ = 1

The number of terms in the Farey serkeg s given by

Q 2
@ = Y 4@ = 32 + oI Q). (27.6)
n=1

Here the Euler functiom(Q) is the number of integers not exceeding and rel-
atively prime toQ. For exampleg(l) = 1, ¢(2) = 1, ¢(3) = 2, ...,¢(12) =
4,6(13)=12...

From a number-theorist’s point of view, tikentinued fraction partitioningf
the unit interval is the most venerable organization obrals, preferred already
by Gauss. The continued fraction partitioning is obtaingdiwering rationals
corresponding to continued fractions of increasing lentjtive turn this ordering
into a way of covering the complementary set to mode-lockiimga circle map,
then the first level is obtained by deleting, Apj, -« -, Afa,. - - - mode-lockings;
their complement are theoveringintervals £y, £, ..., ls,, ... which contain all
windings, rational and irrational, whose continued fraictexpansion starts with
[a1,...] and is of length at least 2. The second level is obtained HWgtidg
A[llz], A[l,S]» EEEIN A[z,z], A[gyg], EERIN A[n,m]7 --.and so on.

Thenth level continued fraction partitioS, = {a;az - - - a,} is defined as the
monotonically increasing sequence of all ratiorlsQ; between 0 and 1 whose
continued fraction expansion is of length n:

ﬂ=[a1,az,-~-,an]=7l
Qi 1

atr—

az+...a

The object of interest, the set of the irrational winding toems, is in this partition-
ing labeled byS., = {ayaxasz---}, ax € Z*, i.e., the set of winding numbers with
infinite continued fraction expansions. The continuedtfoaclabeling is particu-
larly appealing in the present context because of the clogeaction of the Gauss

irrational - 22sep2000 ChaosBook.org version14, Dec 31 2012

CHAPTER 27. IRRATIONALLY WINDING 555

shift to the renormalization transformatiét) discussed below. The Gauss map

T = %—[}] x#0
0, x=0 (27.7)

([- - ] denotes the integer part) acts as a shift on the continaetidn representa-
tion of numbers on the unit interval

x=[ag,a,83..] = T(X) =[aas,..]. (27.8)

into the “mother” intervala,a, ...

However natural the continued fractions partitioning nbiggeem to a number
theorist, it is problematic in practice, as it requires nueiag infinity of mode-
lockings even at the first step of the partitioning. Thus nucagéand experimental
use of continued fraction partitioning requires at leastsainderstanding of the
asymptotics of mode—lockings with large continued fraténtries.

The Farey tree partitioningis a systematic bisection of rationals: it is based
on the observation that roughly halfways between any twgelatability intervals
(such as 12 and ¥3) in the devil’s staircase of figure 27.2 there is the nexdat
stability interval (such as/8). The winding number of this interval is given by the
Farey mediantR+P’)/(Q+Q’) of the parent mode-locking®/Q andP’/Q’. This
kind of cycle “gluing” is rather general and by no means iet&d to circle maps;
it can be attained whenever it is possible to arrange tha@thdterate deviation
caused by shifting a parameter from the correct value foiQaycle is exactly
compensated by th@'th iterate deviation from closing th@’-cycle; in this way
the two near cycles can be glued together into an exact cf@egthQ+Q’. The
Farey tree is obtained by starting with the ends of the utériml written as
and ¥1, and then recursively bisecting intervals by means ofyFarediants.

We define theith Farey tree level F as the monotonically increasing sequence
of those continued fractior{sy, ay, . . ., a&] whose entriesia> 1, i = 1,2,..., k-
1, a >2 addup tozik:1 a = n + 2. For example

=[R20 2L = (5 5 o o) (27.9)

ol w

The number of terms i, is 2". Each rational inf,_; has two “daughters” iff,,
given by

[---,a=-1,2] [---,a+1]
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and by replacing the initial map by thenth iteratef" restricted to the magnified
neighborhood

(%) = Rp(X) = a0 (x/a)

There are by now many examples of such renormalizations ichithe new func-
tion, framed in a smaller box, is a rescaling of the originaidtion, i.e., the fix-
point function of the renormalization operat8r The best known is the period
doubling renormalization, with the recurrence tinmes= 2'. The simplest circle
map example is the golden mean renormalization, with recee timesy = F;

Figure 27.4: Farey tree: alternating binary or-
dered labeling of all Farey denominators ontite
Farey tree level.

Iteration of this rule places all rationals on a binary tlabeling each by a unique
binary label, figure 27.4.

The smallest and the largest denominator jrare respectively given by

m-2= 155 le.12) = P, (27.10)
n+

where the Fibonacci numbefg are defined b¥,,1 = Fn+Fno1; Fo=0, F1 =
1, andp is the golden mean ratio

o= 1+2‘/§ - 161803 .. (27.11)

Note the enormous spread in the cycle lengths on the samefdhe Farey tree:
n < Q < p". The cycles whose length grows only as a power of the Fareydvel
will cause strong non-hyperbolidfects in the evaluation of various averages.

Having defined the partitioning schemes of interest hereyavebriefly sum-
marize the results of the circle-map renormalization tieor

27.2 Local theory: “Golden mean” renormalization

s
J The way to pinpoint a point on the border of order is to remelgi ad-
just the parameters so that at the recurrence times;, n, ng, - - - the trajectory
passes through a region of contractiorfisiently strong to compensate for the
accumulated expansion of the precedmgteps, but not so strong as to force the
trajectory into a stable attracting orbit. Trenormalization operation Rnple-
ments this procedure by recursively magnifying the neighbod of a point on
the border in the dynamical space (by rescaling by a faefpm the parameter
space (by shifting the parameter origin onto the border asciding by a factaf),
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given by the Fibonacci numbers (27.10). Intuitively, instabntext a metric self-
similarity arises because iterates of critical maps armtfedves critical, i.e., they
also have cubic inflection points with vanishing derivasive

The renormalization operator appropriate to circle maps as a generaliza-
tion of the Gauss shift (27.38); it maps a circle map (repre=k as a pair of
functions @, f), of winding number & b, c,...] into a rescaled map of winding
number p,c,...]:

a1y fo gl
Ra(g) - (“g foa (27.12)

f agtlofogoal)

Acting on a map with winding numbea]a, a, . . .], Ry returns a map with the same
winding number§, a, .. .], so the fixed point oR, has a quadratic irrational wind-
ing numbeW = [a, &, a,...]. This fixed point has a single expanding eigenvalue
Ja. Similarly, the renormalization transformatid®y, ... Re,Ra; = Rajay..a, has

a fixed point of winding numbew,, = [a, &, ..., an,, a1, &, .. ], with a single
expanding eigenvalug,.

For short repeating blocks,can be estimated numerically by comparing suc-
cessive continued fraction approximants\to Consider theP,/Q; rational ap-
proximation to a quadratic irrational winding numb&f, whose continued frac-
tion expansion consists ofepeats of a block. LetQ; be the parameter for which
the map (27.1) has a superstable cycle of rotation nuRb&®; = [p, p,..., p)-
Thed,, can then be estimated by extrapolating from

Q - Q5. (27.13)

What this means is that the “devil’s staircase” of figure 28.8elf-similar under
magnification by factos, around any quadratic irrations.

The fundamental result of the renormalization theory (dredreason why all
this is so interesting) is that the ratios of succes§ivE&), mode-locked intervals
converge tainiversallimits. The simplest example of (27.13) is the sequence of
Fibonacci number continued fraction approximants to theeyomean winding
numberw = [1,1,1,..] = (V5 - 1)/2.
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When global problems are considered, it is useful to haveaatland idea on
extemal scaling laws for mode—lockings. This is achieved first analysis, by
fixing the cycle lengtiQ and describing the range of possible asymptotics.

For a given cycle length, it is found that thenarrowestinterval shrinks with
a power law

Ayjg « Q73 (27.14)

For fixed Q the widestinterval is bounded by/Q = F,_1/Fn, thenth con-
tinued fraction approximant to thgolden mean The intuitive reason is that the
golden mean winding sits as far as possible from any sholé egode-locking.

The golden mean interval shrinks with a universal exponent
Apjg o Q721 (27.15)

whereP = Fn_1, Q = Fpandy; is related to the universal Shenker number
(27.13) and the golden mean (27.11) by

_Injsyq]
KL= 2lnp

= 1.08218... (27.16)
The closeness ¢f; to 1 indicates that the golden mean approximant mode-lgekin
barely feel the fact that the map is critical (in thelklimit this exponent ig = 1).

To summarize: for critical maps the spectrum of exponerignar from the

circle maps renormalization theory is bounded from abovéhbyharmonic scal-
ing, and from below by the geometric golden-mean scaling:

3/2 > pyyn = 1.08218 - - (27.17)

27.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intes\@l7.5):

)

0@ =) > Ao (27.18)
Q=1 (PIQ)=1

The sum is over all irreducible rationad®Q, P < Q, andApq is the width of the
parameter interval for which the iterates of a critical leinmap lock onto a cycle

of lengthQ, with winding numbeP/Q.
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The qualitative behavior of (27.18) is easy to pin down. Rdlicgently neg-
ative 7, the sum is convergent; in particular, foer= -1, Q(-1) = 1, as for the
critical circle maps the mode-lockings fill the entiferange [27.15]. However,
ast increases, the contributions of the narrow (laf@emode-locked intervals
Ap/q get blown up to 1AL o and at some critical value afthe sum diverges.
This occurs forr < 0, asQ(0) equals the number of all rationals and is clearly
divergent.

The sum (27.18) is infinite, but in practice the experimemahumerical
mode-locked intervals are available only for small fir@eHence it is necessary
to split up the sum into subses, = {i} of rational winding number®;/Q; on
the “level” n, and present the set of mode-lockings hierarchically, va#olution
increasing with the level:

Zn(7) = Z AT (27.19)

i€Sh

The original sum (27.18) can now be recovered aszthel value of a “gener-
ating” function Q(z 7) = .,2"'Zn(7). As zis anyway a formal parameter, and
n is a rather arbitrary “level” in somad hocpartitioning of rational numbers,
we bravely introduce a still more gener&®,Q weighted generating function for
(27.18):

00

Q1) = Z Z e PRQHRQ | (27.20)
Q=1 (PIQ)=1

The sum (27.18) correspondsde= 0. Exponentsp,q will reflect the importance
we assign to th&/Q mode-locking, i.e., theneasuraused in the averaging over
all mode-lockings. Three choices of of thg/q hierarchy that we consider here
correspond respectively to the Farey series partitioning

oo

Qo)=Y oQT > Qe (27.21)
Q=1 (-1

the continued fraction partitioning

o0

Q=) M ) Qumal, (27.22)

n=1 [a1,....an]

and the Farey tree partitioning

) 2n
Q)= 2" ", Q/PiET,. (27.23)
k=n i=1

We remark that we are investigating a set arising in the aisbf the parameter
space of a dynamical system: there is no “natural measucedtdd by dynamics,
and the choice of weights reflects only the choice of hieiaatipresentation.

irrational - 22sep2000 ChaosBook.org version14, Dec 31 2012



CHAPTER 27. IRRATIONALLY WINDING 560

27.4 Hausdoff dimension of irrational windings

A finite cover of the set irrational windings at theth level of resolution” is
obtained by deleting the parameter values corresponditigetmode-lockings in
the subseS,,; left behind is the set of complemetveringintervals of widths

. _ omin max
i =p o ~ g - (@7.24)

HereQQ';‘Q (QQI%I) are respectively the lower (upper) edges of the mode-hagki
intervalsAp, /q, (Ap/q) boundingé; andi is a symbolic dynamics label, for ex-
ample the entries of the continued fraction represent®j@ = [a;, @, ..., an] of
one of the boundary mode-lockings= aiay - - - a,. ¢ provide a finite cover for

the irrational winding set, so one may consider the sum

Zor) = ). 67 (27.25)

i€Sn

The value of-7 for which then — oo limit of the sum (27.25) is finite is the
Hausdoyf dimension [y of the irrational winding set. Strictly speaking, this is
the Hausddf dimension only if the choice of covering intervalsis optimal;
otherwise it provides an upper boundlg. As by construction thé; intervals
cover the set of irrational winding with no slack, we expéduttthis limit yields
the Hausddf dimension. This is supported by all numerical evidence ahuioof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical linmapsDy = 0.870. ..
is a (global) universal number. exercise 27.2

27.4.1 The Hausdoff dimension in terms of cycles

Estimating then — oo limit of (27.25) from finite numbers of covering intervals
¢ is a rather unilluminating chore. Fortunately, there eristisiderably more
elegant ways of extractiny. We have noted that in the case of the “trivial”
mode-locking problem (27.4), the covering intervals areegated by iterations
of the Farey map (27.37) or the Gauss shift (27.38). fithdevel sum (27.25) can
be approximated by, where

Loy, X) = 8(x = T

This amounts to approximating each cover widithy |d f"/dX evaluated on the
ith interval. We are thus led to the following determinant

T

Z"p
det(1-z£L;) = exp|- ZZ T 1p/N
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ﬂ]_[ (1= 2Pl /AE) (27.26)
p k=0

The sum (27.25) is dominated by the leading eigenvalug,othe Hausddf
dimension conditiorZ,(—Dy) = O(1) means that = —Dy should be such that
the leading eigenvalue & = 1. The leading eigenvalue is determined by the
k = 0 part of (27.26); putting all these pieces together, weinlagretty formula
relating the Hausddi dimension to the prime cycles of the mé&¢x):

0= ](2-1/18p) . (27.27)
p

For the Gauss shift (27.38) the stabilities of periodic egdre available analytical-
ly, as roots of quadratic equations: For example, théixed points (quadratic
irrationals withx, = [a, a,a. . .] infinitely repeating continued fraction expansion)
are given by

= 5 (27.28)

2
_marvar+d [a+ a2+4]
_fy a— |7~

and thexap = [a,b,a,b,a,b,...] 2-cycles are given by

_ 2
ab+ \/(zib) + 4ab (27.29)

2
(Kan¥on) 2 = ab+2+ \Z/ab(ab+ 4))

>
&
[

We happen to know beforehand thiy = 1 (the irrationals take the full mea-
sure on the unit interval, or, from another point of view, tBauss map is not a
repeller), so is the infinite product (27.27) merely a vergpvaduted way to com-
pute the number 1? Possibly so, but once the meaning of (2fa®been grasped,
the corresponding formula for thegitical circle maps follows immediately:

o= ](x-1/160") - (27.30)
p

The importance of this formula relies on the fact that it egsesDy in terms
of universalquantities, thus providing a nice connection from localvarsal ex-
ponents to global scaling quantities: actual computatieisg (27.30) are rather
involved, as they require a heavy computatiorfédr to extract Shenker’s scaling
6, for periodic continued fractions, and moreover dealinghwait infinite alpha-
bet requires control over tail summation if an accuratevest is to be sought. In
table 27.1 we give a small selection of computed Shenkeabngss.
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Table 27.1: Shenker'sy, for a few periodic continued fractions, from ref. [27.1].

p

1111.. -2.833612
2222..] -6.7992410
3333..] -13.760499
4444 .. -24.62160
5555... -40.38625
6666 ... -62.140
1212.. 17.66549
1313... 31.62973
1414.. 50.80988
1515... 76.01299
2323.. 91.29055

27.5 Thermodynamics of Farey tree: Farey model

y
J We end this chapter by giving an example of a number theateatiodel
motivated by the mode-locking phenomenology. We will cdasiit by means of
the thermodynamic formalism of chapter K, by looking at tfezfenergy.

Consider the Farey tree partition sum (27.23): the narrowexle-locked
interval (27.15) at theth level of the Farey tree partition sum (27.23) is the golden
mean interval

Af, .y /F, o fo1l™ (27.31)

It shrinks exponentially, and far positive and large it dominategr) and bounds
do(r)/dr:

Inls
T = % — 1.502642... (27.32)

However, forr large and negativey(r) is dominated by the interval (27.14) which
shrinks only harmonically, ang(r) approaches 0 as

@ _ 3Inn

7 nin2 (27.33)

So for finite n,qn(7) crosses the axis at—r = Dy, but in then — oo limit, the
g(7) function exhibits a phase transitiog(r) = 0 for r < —Dy, but is a non-trivial
function ofr for —-Dy < 7. This non-analyticity is rather severe - to get a clearer
picture, we illustrate it by a few number-theoretic modéhe (critical circle maps
case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynassiis given by the
“Farey model,” in which the intervalép/q are replaced b2

»
Zi() = ), Q. (27.34)

i=1

irrational - 22sep2000 ChaosBook.org version14, Dec 31 2012

CHAPTER 27. IRRATIONALLY WINDING 563

Here Q; is the denominator of théh Farey rationalP;/Q;. For example (see
figure 27.4),

Z5(1/2) =4+5+5+ 4

By the annihilation property (27.38) of the Gauss shift dioreals, thenth Farey
level sumZy(—1) can be written as the integral

2,(-1) = [ dxa(°0) = Y, 118, o 00

and in general

Zn(1) = deLQ(O, X),

with the sum restricted to the Farey leegl+ ... + ax = n+ 2. Itis easily checked
thatf; ,(0)= (-1)k [zal AAAA ag’ SO the Farey model sum is a partition generated by
the Gauss map preimages»# 0, i.e., by rationals, rather than by the quadratic
irrationals as in (27.26). The sums are generated by the sanmsfer operator, so
the eigenvalue spectrum should be the same as for the peoidaii expansion, but

in this variant of the finite level sums we can can evalagt exactlyfor = k/2,

k a nonnegative integer. First, one observesZhgd) = 2". Itis also easy to check
thatZ,(1/2) = 3, Q = 2-3". More surprisingly,Z,(3/2) = ¥; Q% = 54. 71,

A few of these “sum rules” are listed in the table 27.2, they ewnsequence of
the fact that the denominators on a given level are Farey sfidenominators on

preceding levels. exercise 27.3

A bound onDy can be obtained by approximating (27.34) by
Zn(1) = n% 4+ 20p2", (27.35)

In this approximation we have replaced & o, except the widest intervahn,

by the narrowest intervdk, ,/r, (see (27.15)). The crossover from the harmonic
dominated to the golden mean dominated behavior occure attidue for which
the two terms in (27.35) contribute equally:

Inn A In2
D = =.72... 27.36
) 2Inp ( )

Dn:I5+O(T,

For negativer the sum (27.35) is the lower bound on the sum (27.25)1 &
a lower bound oDy

From a general perspective the analysis of circle maps thdynamics has

revealed the fact that physically interesting dynamicatemys often exhibit mix-
tures of hyperbolic and marginal stabilities. In such systehere are orbits that
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7/

Zn(7/ 2)/?171(1/ 2)
3
(5+ V17)/2
7

5+ V17)/2
7+46
26.20249. ..

2
0
1
2
3
4
5
6

Table 27.2: Partition function sum rules for the Farey model.

stay ‘glued’ arbitrarily close to stable regions for araitly long times. This is a
generic phenomenon for Hamiltonian systems, where @lliptands of stability

coexist with hyperbolic homoclinic tangles. Thus the cdasations of chapter 24
are important also in the analysis of renormalization abihget of chaos.

Résum é

The mode locking problem, and the quasiperiodic transitmmchaos fer an
opportunity to use cycle expansions on hierarchical strestin parameter space:
this is not just an application of the conventional thermwatyic formalism, but
offers a clue on how to extend universality theory from localisga to global
quantities.

Commentary

Remark 27.1 The physics of circle maps. Mode-locking phenomenology is re-
viewed in ref. [27.6], a more theoretically oriented dissios is contained in ref. [27.3].
While representative of dissipative systems we may alssidencircle maps as a crude
approximation to Hamiltonian local dynamics: a typicabisdl of stability in a Hamil-
tonian 2-dimensional map is an infinite sequence of conicel#M tori and chaotic
regions. In the crudest approximation, the radius can heredated as an external pa-
rameterQ, and the angular motion can be modeled by a map periodic irartigelar
variable [27.9, 27.12]. By losing all of the ‘island-withisland’ structure of real sys-
tems, circle map models skirt the problems of determinirgsymbolic dynamics for a
realistic Hamiltonian system, but they do retain some ofehsential features of such
systems, such as the golden mean renormalization [13.8] &7d non-hyperbolicity in
form of sequences of cycles accumulating toward the bofestbility. In particular, in
such systems there are orbits that stay “glued” arbitraidge to stable regions for arbi-
trarily long times. As this is a generic phenomenon in phglgianteresting dynamical
systems, such as the Hamiltonian systems with coexistlipgielislands of stability and
hyperbolic homoclinic tanglees, development of good catanal techniques is here
of utmost practical importance.
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Remark 27.2 Critical mode—locking set The fact that mode-lockings completely fill
the unit interval at the critical point has been proposedfs.rf[27.3, 27.14]. The proof
that the set of irrational windings is of zero Lebesgue memasugiven in ref. [27.15].

Remark 27.3 Counting noise for Farey series.  The number of rationals in the Farey
series of ordeR is ¢(Q), which is a highly irregular function d®: incrementingQ by 1
increase®(Q) by anything from 2 taQ terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numericallatitms with the Farey
series partitionings; it blocks smooth extrapolation®te» oo limits from finite Q data.
While this in practice renders inaccurate most Farey-secgipartitioned averages, the
finite Q Hausdoff dimension estimates exhibit (for reasons that we do not nsiaied)
surprising numerical stability, and the Farey series paning actually yields theestnu-
merical value of the Hausdfiidimension (27.25) of any methods used so far; for example
the computation in ref. [27.16] for critical sine map (27H3sed on 24& Q < 250 Farey
series partitions, yield®y = .87012+ .00001. The quoted error refers to the variation of
Dy over this range of); as the computation is not asymptotic, such numerical liabi
can underestimate the actual error by a large factor.

Remark 27.4 Farey tree presentation function. The Farey tree rationals can be
generated by backward iterates ¢2 by the Farey presentation function [27.17]:

fo(¥)
f1(¥)

x/(1-X) 0<x<1/2
1-x)/x 1/2<x<1.

(27.37)

The Gauss shift (27.7) corresponds to replacing the binargyFpresentation function
branchfy in (27.37) by an infinity of branches

[ORRS

W9 = hoffW=i-a  Trexs<s
fapo(®) = foo-ofyo fa(x). (27.38)

Arationalx = [ay, a, ..., &] is annihilated by théth iterate of the Gauss shift, a,..5,(X) =
0. The above maps look innocent enough, but note that whaging fpartitioned is not
the dynamical space, but the parameter space. The flow beddsy (27.37) and by its
non-trivial circle-map generalizations will turn out to beenormalization grouglow
in the function space of dynamical systems, not an ordinawy fh the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (asclflipping heads and
tails” relations obtained by reversing the order of the targd-fraction entries) with as
yet unexploited implications for the renormalization thecsome of these are discussed
inref. [27.13].

An alternative labeling of Farey denominators has beewdhiced by Knauf [27.7]
in context of number-theoretical modeling of ferromagnepin chains: it allows for a
number of elegant manipulations in thermodynamic averagesected to the Farey tree
hierarchy.
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Remark 27.5 Circle map renormalization ~ The idea underlying golden mean renor-
malization goes back to Shenker [27.12]. A renormalizagiosup procedure was for-
mulated in refs. [27.8, 27.10, 27.11], where moreover thguaness of the relevant eigen-
value is claimed. This statement has been confirmed by a cem@assisted proof[27.18],
and in the following we will always assume it. There are a nenmdf experimental evi-
dences for local universality, see refs. [27.19, 27.20].

On the other side of the scaling tale, the power law scalimghémonic fractions
(discussed in refs. [27.2, 27.13)) is derived by methods &kithose used in describing
intermittency [27.24]: 1Q cycles accumulate toward the edge ¢1@node-locked inter-
val, and as the successive mode-locked interva® 1/(Q — 1) lie on a parabola, their
differences are of ord€ 3.

Remark 27.6 Farey series and the Riemann hypothesis ~ The Farey series thermo-
dynamics is of a number theoretical interest, because theyBeries provide uniform
coverings of the unit interval with rationals, and becalsytare closely related to the
deepest problems in number theory, such as the Riemanntegi®{27.25, 27.26] . The
distribution of the Farey series rationals across the utérval is surprisingly uniform -
indeed, so uniform that in the pre-computer days it has ratgtva compilation of an en-
tire handbook of Farey series [27.27]. A quantitative measéithe non-uniformity of the
distribution of Farey rationals is given by displacemeritSarey rationals foP;/Q; € o
from uniform spacing:

i Pi

"TeQ

i=12---,0(Q)

The Riemann hypothesis states that the zeros of the Riemetanfunction lie on the

s = 1/2 + it line in the complexs plane, and would seem to have nothing to do with
physicists’ real mode-locking widths that we are interéstehere. However, there is a
real-line version of the Riemann hypothesis that lies véggeto the mode-locking prob-
lem. According to the theorem of Franel and Landau [27.2&2727.26], the Riemann
hypothesis is equivalent to the statement that

16l = o(Q)

Q<Q

for all e asQ — oo. The mode-lockingg\p/q contain the necessary information for
constructing the partition of the unit interval into thecovers, and therefore implicitly
contain thes; information. The implications of this for the circle-magating theory have
not been worked out, and is not known whether some conjeahoet the thermodynam-
ics of irrational windings is equivalent to (or harder thiétrg Riemann hypothesis, but the
danger lurks.

Remark 27.7 Farey tree partitioning.  The Farey tree partitioning was introduced in
refs. [27.29, 27.30, 27.13] and its thermodynamics is dised in detail in refs. [27.16,
27.17]. The Farey tree hierarchy of rationals is rather reewd, as far as we are aware,
not previously studied by number theorists. It is appealioth from the experimental
and from the golden-mean renormalization point of view,ibbias a serious drawback of
lumping together mode-locking intervals of wildlyftérent sizes on the same level of the
Farey tree.
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Remark 27.8 Local and global universalit. Numerical evidences for global universal
behavior have been presented in ref. [27.3]. The questieraexamined in ref. [27.16],
where it was pointed out how a high-precision numericaheste is in practice very hard
to obtain. It is not at all clear whether this is the optimallgdl quantity to test but at
least the Hausd@irdimension has the virtue of being independent of how onetjosrd
mode-lockings and should thus be the same for the varietyeofriodynamic averages in
the literature.

The formula (27.30), linking local to global behavior, wasosed in ref. [27.1].

The derivation of (27.30) relies only on the following astsesf the “hyperbolicity
conjecture” of refs. [27.13, 27.21, 27.22, 27.23]:

1. limits for Shenkers’s existand are universal. This should follow from the renor-
malization theory developed in refs. [27.8, 27.10, 27.77118], though a general
proof s still lacking.

2. 6, growexponentiallywith ny, the length of the continued fraction blopk

3. 6p for p = aja,...n with a large continued fraction entry grows as gpower
of n. According to (27.14), lim.« 6p o n3. In the calculation of ref. [27.1] the
explicit values of the asymptotic exponents and prefact@i® not used, only the
assumption that the growth 6§ with nis not slower than a power of

Remark 27.9 Farey model. The Farey model (27.33) has been proposed in ref. [27.16];
though it might seem to have been pulled out of a hat, the Ramlel is as sensible de-
scription of the distribution of rationals as the periodibibexpansion (27.26).

Remark 27.10 Symbolic dynamics for Hamiltonian rotational orbits. ~ The rotational
codes of ref. [27.40] are closely related to those for maphk winatural angle variable,
for example for circle maps [27.37, 27.39] and cat maps [B7 Ref. [27.40] also fiers

a systematic rule for obtaining the symbolic codes of “idgaround islands” rotational
orbits [27.43]. These correspond, for example, to orbasitbtate around orbits that rotate
around the elliptic fixed point; thus they are defined by a seqa of rotation numbers.

A different method for constructing symbolic codes for “islanasiad islands” was
giveninrefs. [27.46, 27.44]; however in these cases theeeswt of orbits in an island was
assigned the same sequence and the motivation was to stuttgutisport implications for
chaotic orbits outside the islands [27.43, 27.45].

Exercises

27.1. Mode-locked intervals.  Check that whetk # 0 the smallk the width ofAg,1 is an increasing function &4

interval Apo have a non-zero width (look for instance
at simple fractions, and considesmall). Show that for
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27.2. Bounds on Hausdoff dimension. By making use of
the bounds (27.17) show that the HausBidimension

for critical mode lockings may be bounded by

2/3 <Dy <.9240...

27.3. Farey model sum rules.

see ref. [27.31].

27.4. Metric entropy of the Gauss shift.

ref. [27.33].

27.5. Refined expansions. Show that the above estimate</-9-

can be refined as follows:
F(z2) ~ ¢(2)+(1-2)log(1-2) - (1-2)
and

F(z9) ~ (9 +T(1-9(1-251-S(9(1-2)

References

Verify the sum rules re-
ported in table 27.2. An elegant way to get a number &f7.7.
sum rules for the Farey model is by taking into account

an lexical ordering introduced by Contucci and Knauf,

Check that 27.8.
the Lyapunov exponent of the Gauss map (27.7) is given
by 72/6In2. This result has been claimed to be rele-
vant in the discussion of “mixmaster” cosmologies, see
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for s € (1,2) (S(s) being expressed by a converging
sum). You may use either more detailed estimate for
{(s,a) (via Euler summation formula) or keep on sub-
tracting leading contributions [27.34].

. jnandag.  Look at the integration region and how it

scales by plotting it for increasing valuesrof

Estimates of the Riemann zeta function.  Try to
approximate numerically the Riemann zeta function for
s = 2,4,6 using diferent acceleration algorithms: check
your results with refs. [27.35, 27.36].

Farey tree and continued fractions I. Consider the
Farey tree presentation functién [0, 1] — [0, 1], such
that if | = [0,1/2) andJ = [1/2,1], f|, = x/(1 - x) and
fl; = (1 - x)/x. Show that the corresponding induced
map is the Gauss mayfx) = 1/x— [1/x].

Farey tree and continued fraction II. (Lethal weapon

). Build the simplest piecewise linear approxima-
tion to the Farey tree presentation function (hint: sub-
stitute first the righmost, hyperbolic branch with a lin-
ear one): consider then the spectral determinant of the
induced mapy,” and calculate the first two eigenvalues
besides the probability conservation one. Compare the
results with the rigorous bound deduced in ref. [24.17].
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