Chapter 11

Charting the state space

The classification of the constituents of a chaos, nothing
less is here essayed.

—Herman Melville,Moby Dick chapter 32

N THIs cHAPTER and the next we learn foartition state space in a topologically
invariant way, anddentify topologically distinct orbits.

We start in sect. 11.1 with a simple and intuitive example,-disg game
of pinball. The qualitative dynamics of stretchjsrinking strips of surviving
state space regions enables us to partition the state spdcasaignsymbolic
dynamicsitineraries to trajectories. For the 3-disk game of pinladllipossible
symbol sequences enumerate all possible orbits.

In sect. 11.2 we use Rossler and Lorenz flows to motivate limagef higher-
dimensional flows by iteration of 1-dimensional maps. Fasthtwo flows the
1-dimensional maps capture essentially all of the high@edsional flow dynam-
ics, both qualitatively and quantitatively. 1-dimensibr@aps stfice to explain
the two key aspects of qualitative dynamitsmporal ordering or itinerary with
which a trajectory visits state space regions (sect. 1ar8),thespatial ordering
between trajectory points (sect. 11.4), which is the keyet@ianining the admis-
sibility of an orbit with a prescribed itinerary. In a gereedynamical system not
every symbol sequence is realized as a dynamical trajeasrgne looks further
and further, one discovers more and more ‘pruning’ rulesctvigrohibit fami-
lies of itineraries. For 1-dimensional ‘stretch & fold’ nmthekneading theory
(sect. 11.5) provides the definitive answer as to which teaipiineraries ared-
missibleas trajectories of the dynamical system. Finally, sec6 lkklmeant serve
as a guide to the basic concepts of symbolic dynamics.

Deceptively simple, this subject can get verftidult very quickly, so in this
chapter we do the first, 1-dimensional pass at a pedestnah [gostponing the
discussion of higher-dimensional, cyclist level issuesttapter 12.

Even though by inclination you might only care about theaesistdf, like
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Figure 11.1: A coarse partition oM into regionsMo,
My, andM,, labeled by ternary alphahét = {1, 2, 3}.

Rydberg atoms or mesoscopic devices, and resent wastiegotinfiormal things,
this chapter and chapters 14 and 15 are good for you. Study. the

11.1 Qualitative dynamics

(R. Mainieri and P. Cvitanovic)

A
What can a flow do to points in state space? This is a veficdit question to

answer because we have assumed very little about the evofutiction f!; con-

tinuity, and diterentiability a stficient number of times. Trying to make sense of
this question is one of the basic concerns in the study ofyecal systems. The
first answer was inspired by the motion of the planets: th@eapto repeat their
motion through the firmament, so the ancients’ attempts seritee dynamical
systems were to think of them as periodic.

However, periodicity is almost never quite exact. What amels to observe
is recurrence A recurrence of a poinky of a dynamical system is a return of
that point to a neighborhood of where it started. How clogephint X, must
return is up to us: we can choose a volume of any size and shagesall it the
neighborhoodMo, as long as it encloseg. For chaotic dynamical systems, the
evolution might bring the point back to the starting neigttomd infinitely often.
That is, the set

[yeMo: y=1(x), t>t) 11.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods ofsaithis sug-
gests another way of describing how points move in stateesghe important
first step on the way to a theory of dynamical systems: quaktatopological
dynamics, orsymbolic dynamicsAs the subject can get quite technical, a sum-
mary of the basic notions and definitions of symbolic dynanigrelegated to
sect. 11.6; check that section and references cited in kefrfal whenever you
run into batling jargon.
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Figure 11.2: A trajectory with itinerary 021012.

B

9]9 "

Figure 11.3: A 1-step memory refinement of the par-
tition of figure 11.1, with each regioM; subdivided
into Mo, Mi;, and My, labeled by nine ‘words’
{00,01,02 ---,21,22}.

We start by dividing the state space up into regiovia, Mg, ..., Mz, as in
figure 11.1. This can be done in many ways, not all equallyezleyAny such
division of state space into distinct regions constitutpardition, and we associate
with each region (sometimes referred to astate a symbols from anN-letter
alphabetor state setA = {A,B,C,---,Z}. As the state evolves, ftierent regions
will be visited. The visitation sequence - forthwith refmirto as thatinerary -
can be represented by the letters of the alphabef, as in the example sketched
in figure 11.2, the state space is divided into three regiofas Mz, and My, the
‘letters’ are the integer§0, 1,2}, and the itinerary for the trajectory sketched in
the figureis0-> 2 10 12+ -

Example 11.1 3-disk symbolic dynamics: Consider the motion of a freeegeitite 1.1
particle in a plane with 3 elastically reflecting convex disks, figure 11.4. After a collision

with a disk a particle either continues to another disk or escapes, so a trajectory can

be labeled by the disk sequence. Sets of configuration space pinball trajectories of
figure 11.4 become quickly hard to disentangle. As we shall see in what follows, their
state space visualization in terms of Poincaré sections P = [s, p] (figure 11.5, see also
figure 3.9 (b)) is much more powerful.  (continued in example 11.2)

In general only a subset of points Mg reachesMa. This observation fbers
a systematic way to refine a partition by introducimgstep memorythe region
Ms,..s;5 CONsists of the subset of points 8, whose trajectory for the nexn
time steps will besg = s - -+ > sy, see figure 11.3.

Example 11.2 3-disk state space partition: (continued from example 11.1) Em-
bedded within M2, Mas are four strips Miz1, Mizs, Miz1, Maisz of initial conditions
that survive two bounces, and so forth. At each bounce a cone of initially nearby trajec-
tories disperses (see figures 1.8 and 11.4). Also in order to attain a desired longer and
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23132321

Figure 11.4: Two pinballs that start out very close
to each other exhibit the same qualitative dynamics
2313 for the first three bounces, but due to the expo-
nentially growing separation of trajectories with time,
follow different itineraries thereafter: one escapes after
2313, the other one escapes aft@8132321. (No-
tation 2313 is explained in sect. 11.6.)

2313

Figure 11.5: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x = (arclength, parallel momenturs) (s, p),
wherep = sind. (a) Strips of initial pointsM,, 23| \131
Mz which reach disks 2, 3 in one bounce, re- 8 o 2o
spectively. (b) 1-step memory refinement of parti- ? 120|132
tion (see figure 11.3): strips of initial pointsl;.s,
Mazi, Mazp and Mio3 which reach disks 1, 2, 3
in two bounces, respectively. Disk radius : center \
separation ratio a:R 1:2.5. (Y. Lan) -1 -1
-25 0 2% 25 0 2
@ s (b) s

longer itinerary of bounces, the strip of initial points Xo = (So, Po) requires exponentially
finer precision, nested within the initial state space strips drawn in figure 11.5. Provided
that the disks are sufficiently separated, after n bounces the survivors are labeled by 2"
distinct itineraries $1%S3 ... S».  (continued in example 12.2)

Ifthere is no way to reach partitioé; from partitionM;, and conversely, par-
tition M; from partition M;, the state space consists of at least two disconnected
pieces, and we can analyze it piece by piece. An interestnttipn should be
dynamically connected, i.e., one should be able to go fropregion M; to any
other regionM; in a finite number of steps. A dynamical system with such a
partition is said to benetrically indecomposahle

In general one also encounters transient regions - regomghich the dy-
namics does not return once they are exited. Hence we hawvstiogdish be-
tween (uninteresting to us) wandering trajectories thaeneeturn to the initial
neighborhood, and the non-wandering set (2.2) of¢lcarrenttrajectories. We
are implicitly assuming that the transients aréisiently short-lived not to be of
experimental interest.

However, knowing that a point fronM; reachegM;, - --, M} in one step
is not quite good enough. We would be happier if we knew thattfap of the
entire initial regionf (M;) overlaps nicely with the entird1;; otherwise we have
to subpartitionM; into the subsetf (M;) and the reminder, and often we will
find ourselves partitioningd infinitum a dificult topic that we shall return to
sect. 12.4.

Such considerations motivate the notion dflarkov partition a partition for
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Figure 11.6: For the 3-disk game of pinball no
itineraries are pruned as long as the inter-disk spe
ing exceedsR : a > 204821419... (from
K.T. Hansen [12.22])

which no memory of preceding steps is required to fix the ttans allowed
in the next step. Finite Markov partitionscan be generated bgxpanding €
dimensional iterated mappinds: M — M, if M can be divided intd\ regions
{Mo, My, ..., Mn-1} such that in one step points from an initial regidf) either
fully cover a regionM;, or miss it altogether,

either Mjnf(Mj)=0 or M;c f(M). (11.2)

Whether such partitions can be found is not clear at all - treldrs need to be
lower-dimensional sets invariant under dynamics, andetieno guarantee that
these are topologically simple objects. However, the gafmenball (and many
other non-wandering repeller sets) is especially niceighige of determining the
partition borders does not arise, as the survivors live scatinected pieces of the
state space, separated by a chasm of escaping trajectories.

The itinerary of a billiard trajectory is finite for a scaftey trajectory, coming
in from infinity and escaping after a finite number of collis$ infinite for a
trapped trajectory, and infinitely repeating for a periodibit. A finite length
trajectory is not uniquely specified by its finite itinerabyt an isolated unstable
cycle is: its itinerary is an infinitely repeating block ofrsipols. For hyperbolic
flows the intersection of the future and past itineraries, tirinfinite itinerary
S8t =...5,515%.999% - - - Specifies a unique orbit. AlImost all infinite length
trajectories (orbits) are aperiodic. Still, the longer tragectory is, the closer to
it is a periodic orbit whose itinerary shadows the trajectior its whole length:
think of the state space as the unit interval, aperiodict®m@$ normal numbers,
and periodic ones as fractions whose denominators comdsjoocycle periods,
as is literally the case for the Farey map (24.42), to be disediin sect. 24.3.4.

Determining whether the symbolic dynamics is complete gahé case for
suficiently separated disks, see figure 11.6), pruned (for elarfgy touching or
overlapping disks), or only a first coarse-graining of theology (as, for example,
for smooth potentials with islands of stability) requiresase-by-case investiga-
tion, a discussion we postpone until sect. 11.5 and chagtefdr now, we assume
that the disks are $iiciently separated that there is no additional pruning beyon
the prohibition of self-bounces.

Inspecting figure 11.5 we see that the relative ordering giores with dif-
fering finite itineraries is a qualitative, topological pesty of the flow. This ob-
servation motivates searches for simple, ‘canonical’ifiams which exhibit in
a simple manner the spatial ordering common to entire cdaskéopologically
similar nonlinear flows.
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11.2 Fromd-dimensional flows tol-dimensional maps

Symbolic dynamics for the 3-disk game of pinball is so stigfigrward that one
may altogether fail to see the connection between the tggoéd hyperbolic
flows and their symbolic dynamics. This is brought out moe=ady by the 1-
dimensional visualization of ‘stretch & fold’ flows to whiake turn now.

We construct here the return maps (3.4) for two iconic flows,Rossler and
the Lorenz, in order to show how ODEs in higher dimensionsteamodeled by
low-dimensional maps. In the examples at hand the strorsipdison happens to
render the dynamics essentially 1-dimensional, both tisiely and quantitati-
vely. However, as we shall show in chapter 12, strong disisipas not essential
-the hyperbolicity is- so the method applies to Hamiltonfsymplectic areas pre-
serving) flows as well. The key idea is to replace the origiadiitrarily concocted
coordinates by intrinsic, dynamically invariant curvéar coordinates erected on
neighborhoods of unstable manifolds.

fast track:
W sect. 11.3, p. 227
Suppose concentrations of certain chemical reactantywou, or the variati-
ons in the Chicago temperature, humidity, pressure andsaaffieict your mood.
Such quantities vary within some fixed range, and so do tla¢@srof change.
Even if we are studying an open system such as the 3-disklpgdrae, we tend
to be interested in a finite region around the disks and igtiweescapees. So a
typical dynamical system that we care abouiasinded If the price to keep going
is high - for example, we try to stir up some tar, and obseraiihe to a dead
stop the moment we cease our labors - the dynamics tendsl®istt a simple
state. However, as the resistance to change decreasesr ihbeated up and we
are more vigorous in our stirring - the dynamics becomesainfest

Example 11.3 Réssler attractor return map: Stretch & fold. (continued from
example 4.6) In the Rdssler flow (2.17) of example 3.3 we sketched the attractor by

running a long chaotic trajectory, and noted that the attractor of figure 3.2 is very thin.
For Raéssler flow an interval transverse to the attractor is stretched, folded and fiercely
pressed back. The attractor is ‘fractal,” but for all practical purposes the return map
is 1-dimensional; your printer will need a resolution better than 10'® dots per inch to
start resolving its structure. We had attempted to describe this ‘stretch & fold’ flow by a
1-dimensional return map, but the maps that we plotted in figure 3.3 were disquieting;
they did not appear to be a 1-to-1 maps. This apparent non-invertibility is an artifact of
projection of a 2-dimensional return map (R, Zz,) — (Rn+1, Z+1) onto the 1-dimensional
subspace R, — Rn.1. Now that we understand equilibria and their linear stability, let's
do this right.

The key idea is to measure arclength distances along the unstable manifold of
the x_ equilibrium point, as in figure 11.7 (a). Luck is with us; figure 11.7 (b) return map
Sw1 = P(s,) looks much like a parabola of example 3.8, so we shall take the unimodal
map symbolic dynamics, sect. 11.3, as our guess for the covering symbolic dynamics.

(continued in example 11.11)

knead - 8jun2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 11. CHARTING THE STATE SPACE 225
10
0
8 \
-0.02 ~ \
o t® \
%) \
Figure 11.7: (a)x = 0,y > 0 Poincaré section of ~0.04 4 \\
the x_ unstable manifold, Rossler flow figure 2.6. :
(p1. p2) are measured with the origin placedxat 2
(b) s — P(s) return map, whersis the arc-length

i i -0.06 0
dlstgpcg mea;ured along the unstable manifold of % 5 10 o 2 2 5 s 10
equilibrium pointx_. (A. Basu and J. Newman)

(@ Py () %

You get the idea - Rossler flow winds around the stable mihdbthe ‘cen-
tral’ equilibrium, stretches and folds, and the dynamicstmn Poincaré section
of the flow can be reduced to a 1-dimensional map. The next gbeai® simi-
lar, but the folding mechanism is veryfiirent: the unstable manifold of one of
the equilibria collides with the stable manifold of the atleae, forcing a robust
heteroclinic connectiobetween the two.

fast track:
W sect. 11.3, p. 227
11.2.1 Heteroclinic connections

In general, two manifolds can intersect in a stable way ifshe of their di-
mensions is greater than or equal to the dimension of the sgce, hence an
unstable manifold of dimensiokiis likely to intersect a stable manifold whose
codimension in state space is less than or equiafit@., robustly with respect to

small changes of system parameters). Trajectories theg Edixed point along

its unstable manifold and reach another fixed point alongtéble manifold are

called heteroclinicif the two fixed points are distinct dromoclinicif the initial

and the final point are the same point. Whether the two matsfattually in- remark 11.3
tersect is a subtle question that is central to the issuetnictsiral stability” of

ergodic dynamical systems.

Example 11.4 Lorenz flow: Stretch & crease. We now deploy the symmetry of
Lorenz flow to streamline and complete analysis of the Lorenz strange attractor com-
menced in example 9.14. There we showed that the dihedral D; = {e, R} symmetry
identifies the two equilibria EQy and EQ,, and the traditional ‘two-eared’ Lorenz flow
figure 2.5 is replaced by the ‘single-eared’ flow of figure 9.6 (a). Furthermore, symme-
try identifies two sides of any plane through the z axis, replacing a full-space Poincaré
section plane by a half-plane, and the two directions of a full-space eigenvector of EQy
by a one-sided eigenvector, see figure 9.6 (a).

Example 4.8 explained the genesis of the Xeq, equilibrium unstable manifold,
its orientation and thickness, its collision with the z-axis, and its heteroclinic connec-
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WHEQ,)
Figure 11.8:(a) A Poincaré section of the Lol 49
flow in the doubled-polar angle representatiol "
ure 9.6, given by they, Z plane that contains 30
z-axis and the equilibriunEQ,. X’ axis points 1 N EQ,
ward the viewer. (b) The Poincaré section ¢ 20|

Lorenz flow by the section Crossing#o the se
tion are marked red (solid) and crossingst «
the section are marked blue (dashed). Oute
points of both in- and out-sections are give

10

WHEQ).

the EQ, unstable manifoltV(E Q) intersectior
(E. Siminos)

T 0 10 20

(b)
7 wieQ)
Figure 11.9: The Poincaré return map,; = 20| g
P(s,) parameterized by Euclidean arclengthmea-
sured along th&Q, unstable manifold, fronxgq, to 15

WH(EQ) section point, uppermost right point of the ,,,g
blue (dashed) segment in figure 11.8 (b). The critic. 10
point (the ‘crease’) of the map is given by the sectio
of the heteroclinic orbiWws(E Q) that descends all the 5
way toEQ, in infinite time and with infinite slope. (E.
Siminos) 0

tion to the Xeq, = (0, O, 0) equilibrium. All that remains is to describe how the EQy
neighborhood connects back to the EQ, unstable manifold.

Figure 9.6 and figure 11.8 (a) show clearly how the Lorenz dynamics is pieced
together from the 2 equilibria and their unstable manifolds: Having completed the de-
scent to EQy, the infinitesimal neighborhood of the heteroclinic EQ, — EQy trajectory
is ejected along the unstable manifold of EQy and is re-injected into the unstable man-
ifold of EQy. Both sides of the narrow strip enclosing the EQy unstable manifold lie
above it, and they get folded onto each other with a knife-edge crease (contracted
exponentially for infinite time to the EQy heteroclinic point), with the heteroclinic out-
trajectory defining the outer edge of the strange attractor. This leads to the folding of
the outer branch of the Lorenz strange attractor, illustrated in figure 11.8 (b), with the
outermost edge following the unstable manifold of EQy.

Now the stage is set for construction of Poincaré sections and associated
Poincaré return maps. There are two natural choices; the section at EQy, lower part
of figure 11.8(b), and the section (blue) above EQ,. The first section, together with
the blowup of the EQy neighborhood, figure 4.7 (b), illustrates clearly the scarcity of
trajectories (vanishing natural measure) in the neighborhood of EQy. The flat section
above EQ (which is, believe it or not, a smooth conjugacy by the flow of the knife-sharp
section at EQy) is more convenient for our purposes. lIts return map (3.4) is given by
figure 11.9.

The rest is straight sailing: to accuracy 107 the return map is unimodal, its crit-
ical point’s forward trajectory yields the kneading sequence (11.13), and the admissible
binary sequences, so any number of periodic points can be accurately determined from
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Figure 11.10: (a) The Rossler flow, figure 3.2, is 2 Figure 11.11: The full tent map (11.4) partition
an example of ? recurrent flow that stretches and (Moo, Mor, Maz, Meo) together with the fixed points 0/ Ve Vo
folds. (b) The Rossler ‘stretch & fold’ return map, 0 5 %o, X 4
figure 11.7 (b). (R. Paskauskas and A. Basu) 0 4 6 8 10 P
’ T ' S 00 01 11 10
(CY (b) n
val, as in the Rossler return map figure 11.10 (b). A unimaedap f(X) is a 1-
this 1-dimensional return map, and the 3-dimensional cycles then verified by integrating dimensional functior® — R defined on an intervaM e R with a monotonically
the Lorenz differential equations (2.12). As already observed by Lorenz, such a map is increasing (or decreasing) brancheriical point (or interval) x. for which f(xc)
everywhere expanding on the strange attractor, so it is no wonder mathematicians can ttains th . o7 | foll db i d _
here make the ergodicity rigorous. section 20.6 attains the maximum (minimum) value, followed by a monatatly decreasing

(increasing) branchUni-modal means that the map is a 1-humped map with one
critical point within interval M. Multi-modal maps, with several critical points
within interval M, can be described with a straight-forward generalizatiothe
What have we learned from the above two exemplary 3-dimaasittows? methods we describe next.
If a flow is locally unstable but globally bounded, any opeti bainitial points
will be stretched out and then folded back. If the equilitai@ hyperbolic, the
trajectories will be attracted along some eigen-direstiand ejected along others.
The unstable manifold of one equilibrium can avoid stablenifoéds of other

(E. Siminos and J. Halcrow)

Example 11.5 Unimodal maps:  (continued from example 3.8) The simplest exam-
ples of unimodal maps are the quadratic map

equilibria, as is the case for Rossler, or slice them headasris the case for f(X) = AX(1-x), xe M=[0,1] (11.3)
Lorenz. A typical trajectory wanders through state spalterratively attracted

into equilibria neighborhoods, and then ejected again. tighemportant is the and numerically computed return maps such as figure 11.10(b). Such dynamical

motion along the unstable manifolds — that is whedtlerfaps come from. systems are irreversible (the inverse of f is double-valued), but, as we shall show

in sect. 12.2, they may nevertheless serve as effective descriptions of invertible 2-

At this juncture we proceed to show how this works on the sirsipexam- dimensional hyperbolic flows. For the unimodal map such as figure 11.12 a Markov

partition of the unit interval M is given by the two intervals { Mo, Ma}.  (continued in

ple: unimodal mappings of the interval. The erudite readay 1skim through
example 11.6)

this chapter and then take a more demanding path, via theeSmeadeshoes of
chapter 12. Unimodal maps are easier, but less physicaitypeting. Smale
horseshoesfter the high road, more complicated, but the right tool to geliee

what we learned from the 3-disk dynamics, and begin anabfsieneral dynam- Example 11.6 Full tent map, Ulam map: (continued from example 11.5) The

ical systems. It is up to you - unimodal mapsfse to get quickly to the heart of simplest examples of unimodal maps with complete binary symbolic dynamics are the
this treatise full tent map, figure 11.11,

fo)=1-2y-1/2, yeM=[01], (114
11.3 Tempora| ordering: Itineraries the Ulam map (quadratic map (11.3) with A = 4) exercise 6.4
f(x) =4x(1-x), xe M=[0,1], (11.5)

In this section we learn tnametopologically distinct trajectories for the simple,

but instructive case; 1-dimensional maps of an interval. and the repelling unimodal maps such as figure 11.12. For unimodal maps the Markov

partition of the unit interval M is given by intervals { Mo, M1}. We refer to (11.4) as the
complete tent map because its symbolic dynamics is completely binary: as both f (Mo)
and f (M) fully cover M = { Mo, M1}, all binary sequences are realized as admissible
itineraries.

The simplest mapping of this typeusimodal;interval is stretched and folded
only once, with at most two points mapping into a point in teélded inter-
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110

Figure 11.12: A unimodal repeller with the survivor
intervals after 1 and 2 iterations. Intervals marke:
SIS, - -+ S consist of points that do not escapeniiter-

ations, and follow the itinerar$* = s;s,-- - s,. Note )
that the spatial ordering does not respect the binary df~"

10
101

dering; for examplego < Xo1 < X11 < X10. Also indi-

cated are the fixed poinG 1, the 2-cycleD1, and the

3-cycle011. . . 1

00__o1 1 10

For 1d maps thecritical value denotes either the maximum or the minimum
value of f(X) on the defining interval; we assume here that it is a maximum,
f(xc) > f(x) for all x e M. The critical pointx that yields the critical valué(xc)
belongs to neither the left nor the right partitidrt; and is instead denoted by its
own symbols = C. As we shall see, its images and preimages serve as partition
boundary points.

The trajectoryxs, Xo, X3, ... of the initial point xg is given by the iteration
Xn+1 = F(Xn) . Iterating f and checking whether the point lands to the left or to the
right of x. generates t&emporallyordered topological itinerary (11.17) for a given
trajectory,

1 if Xy > X
$5={ C ifXh=x . (11.6)
0 if Xn < X

We refer toS*(xp) = .s15S3 - - - as thefuture itinerary. Our next task is to answer
the reverse problem: given an itinerary, what is $patial ordering of points that
belong to the corresponding state space trajectory?

11.4 Spatial ordering

A well-known theorem states that combinatorial factors
are impossible to explain. [11.22]
—G. 't Hooft and M. Veltman, DIAGRAMMAR

Suppose you have succeeded in constructing a covering igndlgnamics, such
as the one we constructed for a well-separated 3-disk syStkw start moving
the disks toward each other. At some critical separatioa {igeire 11.6) a disk
will start blocking families of trajectories traversingettother two disks. The
order in which trajectories disappear is determined byr thedative ordering in
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Yn+1

Figure 11.13: Then = 2, 4-intervals state space par-
tition for the Bernoulli shift map (11.7), together withd
the fixed pointd, 1 and the 2-cycl®1. .

00

space; the ones closest to the intervening disk will be gidinst. Determining
inadmissible itineraries requires that we relate the apatidering of trajectories

to their time ordered itineraries. exercise 12.7

The easiest point of departure is to start by working out thiation for
the symbolic dynamics of 1-dimensional mappings. As it appempossible
to present this material without getting bogged down in a afe@’s, 1's and
subscripted subscripts, we announce the main result befakerking upon its

derivation: section 11.5

The admissibility criterion (sect. 11.5) eliminatel itineraries that cannot
occur for a given unimodal map.

Example 11.7 Bernoulli shift map state space patrtition. First, an easy example:
the Bernoulli shift map, figure 11.13,

boly) = 27 Mo=[0,1/2
b(y’:{ O PATPTRA 1 (1.7)

models the 50-50% probability of a coin toss. It maps the unit interval onto itself, with
fixed points yo = 0, y1 = 1. The closely related doubling map acts on the circle

x> 2x (mod 1), x€[0,1] (11.8)

and consequently has only one fixed point, xo = 0 =1 (mod 1). The Bernoulli map
is called a ‘shift’ map, as a multiplication by 2 acts on the binary representation of
v = .s1%Ss... by shifting its digits, b(y) = .$Ss.... The nth preimages b™"(y) of the
critical point y. = 1/2 partition the state space into 2" subintervals, each labeled by the
first n binary digits of points y = .$1$,Ss . . . within the subinterval: figure 11.13 illustrates
such 4-intervals state space partition { Moo, Mo1, M1, Mo} forn = 2.

Consider a map f(x) topologically conjugate (two monotonically increasing
branches) to the Bernoulli shift, with the forward orbit of X generating the itinerary
S19S3.... Convert this itinerary into Bernoulli map pointy = .$1$Ss.... These values
can now be used to spatially order points with different temporal itineraries: ify < v/,
then x < X'.

Suppose we have already computed all (n — 1)-cycles of f(x), and would now
like to compute the cycle p = $1$S3.. .. S of period n. Mark y values on the unit interval
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Figure 11.14: An alternating binary tree relates the
itinerary labeling of the unimodal map intervals, fig-
ure 11.12, to their spatial ordering. The dotted ling ° L
stands for 0, the full line for 1; the binary sub-tree

whose root is a full line with symbol 1 reverses th
orientation, due to the orientation-reversing fold inf|gm _— o0 110\t 10

ures 11.10 and 11.12. See also figure 14.4. T‘Tr T

for all known periodic points of the Bernoulli shift map, and then insert in between them
Yop- K =0,1,--+,np — 1 corresponding to periodic points of cycle p. In the dynamical
state space they will be bracketed by corresponding cycle points X; from cycles al-
ready computed, and thus the knowledge of the topological ordering of all cycle points
provides us with robust initial guesses for periodic-orbit searches for any map with 2
monotonically increasing branches. (continued in example 23.5)

For the Bernoulli shift converting itineraries into a topgical ordering is
easy; the binary expansion of coordingtis also its temporary itinerary. The tent
map (11.4), figure 11.11 is a bit harder. It consists of twaight segments joined
at x = 1/2. The symbols, defined in (11.6) equals 0 if the function increases,
and 1 if it decreases. Iteration forward in time generatedithe itinerary. More
importantly, the piecewise linearity of the map makes thevecse possible: de-
termine analytically an initial point given its itinerarg,property that we now use
to define a topological coordinatization common to all unii@anaps.

Here we have to face the fundamental problem of pedagogybic@torics
cannot be taught. The best one can do is to state the answéopedhat you
will figure it out by yourself. Then you can also complain ttiz way the rule is
stated here is incomprehensible.

The tent map poing(S*) with future itineraryS* is given by converting the
itinerary of s;’s into a binary numbey by the following algorithm:

W if =0 B
Whi1 = { 1*Wn if 51+l:1 5 W1 =8
WS = OwawgWs...= ) wn/2". (11.9)

This follows by inspection from the binary tree of figure 14..1Once you figure exercise 11.4
this out, feel free to complain that the way the rule is stédtex is incomprehen-
sible, and show us how you did it better.

Example 11.8 Converting y to S*:  y whose itinerary is S* = 0110000 - - is given
by the binary number y = .010000 --. Conversely, the itinerary of y = .0lis 53 = O,
fly)=1- =1 f%y) = f(1)= 1 — s3 = 1, etc.. Orbit that starts out as a finite
block followed by infinite repeats of another block p = Sp = (S193... %) is said to
be heteroclinic to the cycle p. An orbit that starts out as p> followed by a finite block
followed by infinite repeats of another block p’ is said to be heteroclinic connection from
cycle p to cycle p'.
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We refer toy(S*) as the(future) topological coordinate The wy's are the
digits in the binary expansion of the starting pojnfor the full tent map (11.4).
In the left half-interval the mayh(x) acts by multiplication by 2, while in the right
half-interval the map acts as a flip as well as multiplicatipn2, reversing the
ordering, and generating in the process the sequenggsdfom the binary digits
Wh.

The mapping Xo — S*(x0) — yo = ¥(S*) is atopological conjugacythat
maps the trajectory of an initial poing under the iteration of a given unimodal
map to that initial pointyg for which the trajectory of the ‘canonical’ unimodal
map, the full tent map (11.4), has the same itinerary. Theeiof this conjugacy
is thaty(S*) preserves the orderinépr any unimodal map in the sense that if
X > X, theny > y.

Example 11.9 Periodic orbits of unimodal maps. Let
_f fo(if  x< X
f() —{ f00 i X> % (11.10)

and assume that all periodic orbits are unstable, i.e., the stability Ap = X (see (4.46))
satisfies |Ap| > 1. Then the periodic point Xss,s,..s, is the only fixed point of the unique
composition (3.15) of n maps

fs, 0 o fs 0 fs(Xsigs..s) = Xeisses, (11.11)

(note that successive maps, applied from the left, correspond to later times, i.e., later
symbols in the itinerary).

The nth iterate of a unimodal map has at most 2" monotone segments, and
therefore there will be 2" or fewer periodic points of length n.  For the full tent map
(11.4) it has exactly 2" periodic points. A periodic orbit p of length n correspondsstetun
infinite repetition of a length n = n, symbol string block, customarily indicated by a line
over the string: p = Sp = (S1983...%)" = S19S3... & . As all itineraries are infinite,
we shall adopt convention that a finite string itinerary p = $5% ... S stands for infinite
repetition of a finite block, and routinely omit the overline. A cycle p is called prime if its
itinerary S cannot be written as a repetition of a shorter block S’. If the itinerary of Xg is
P = S19%%... S, its cyclic permutation 7*p = §Sa1... 551 S.1 corresponds to the
point X1 in the same cycle.

Example 11.10 Periodic points of the full tent map. Each cycle p is a set of np
rational-valued full tent map periodic points y. It follows from (11.9) that if the repeating
string 1S, ... Sy contains an odd number of ‘1’s, the string of well ordered symbols
WiWs ... Wo, has to be of the double length before it repeats itself. The cycle-pointy is
a geometrical sum which we can rewrite as the odd-denominator fraction

n 2n
Wi 1 W

Y& 5) = Ttem it
=1 t=1
o2n 2n m
= ) = (11.12)
2142

Using this we can calculate the ¥, = ¥(Sp) for all short cycles. For orbits up to length 5
this is done in table 11.1.
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S | _ ¥(S) S| ¥(S)
0.0 = 0 || 10111 11010 =  26/31
1|.10 = 2/3 | 10110| .1101100100 = 28/33
10| .1100 =  4/5 | 10010| .11100 = 28/31
101 .110 =  6/7 | 10011|.1110100010 = 10/11
100 .111000 =  8/9 | 10001|.11110 =  30/31
1011|.11010010 = 14/17 || 10000| .1111100000 = 32/33
1001| .1110 = 14/15
1000| .11110000 = 16/17

Table 11.1: The maximal values of unimodal map cycles up to length 5. (Kansen)

Critical points are special - they define the boundary betwatervals, i.e.,
interval is split into O [left part] x; [critical point] and 1 [right part]. For the dike
map and the repeller figure 11.%Qis the whole interval of points along the flat
top of the map, but usually it is a point. As illustrated by figg111.11 and 11.13,
for a unimodal map the preimagés"(x.) of the critical pointx. serve as partition
boundary points. But not all preimages—one has to ensutéhyaare within the
set of all admissible orbits by checking them against theadimgy sequence of the
map.

11.5 Kneading theory

Tired of being harassed by your professors? Finish, get a
job, do combinatorics your own way, while you still know
everything.

—Professor Gatto Nero

(K.T. Hansen and P. Cvitanovit)

The reason we need to be mindful of spatial ordering of tealptineraries is
that this spatial ordering provides us with criteria thatesate inadmissible orbits
from those realizable by the dynamics. For 1-dimensionadpimgs thekneading
theoryprovides a precise and definitive criterion of admissiilit

If the parameter in the quadratic map (11.3Ais- 4, then the iterates of the
critical pointx. diverge forn — co, and any sequenc®” composed of letters =
{0, 1} is admissible, and any value o0y < 1 corresponds to an admissible orbit
in the non—wandering set of the map. The corresponding lezgela complete
binary labeled Cantor set, thre — oo limit of the nth level covering intervals
sketched in figure 11.12.

For A < 4 only a subset of the points in the intergale [0, 1] corresponds
to admissible orbits. The forbidden symbolic values aremteined by observing
that the largesk, value in an orbitx; — X2 — X3 — ... has to be smaller than or
equal to the image of the critical poirthe critical value f(x;). Let K = S*(xc)
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Figure 11.15: The ‘dike’ map obtained by slicing of
the top portion of the tent map in figure 11.11. Any or
bit that visits the primary pruning intervat,(1] is inad-
missible. The admissible orbits form the Cantor set o
tained by removing from the unit interval the primary
pruning interval and all its iterates. Any admissible or- /.
bit has the same topological coordinate and itinerary
the corresponding tent map figure 11.11 orbit. 4

pruned

be the itinerary of the critical point;, denoted th&neading sequena# the map.
The corresponding topological coordinate is calledkheading value

Kk =y(K) = ¥(S™(X)- (11.13)

The ‘canonical’ map that has the same kneading sequi€r(dd..13) asf (x)
is the dike map, figure 11.15,

fo(y) = 2y y € Mo = [0,«/2)
f(y) =1 foly) =« yeMe=[k/2,1-«/2] , (11.14)
fiy) =2(1-y) yeMi=1-«/21]

obtained by slicing i all y(S*(xp)) > «. The dike map is the full tent map

figure 11.11 with the top slicedfi It is convenient for coding the symbolic dy-

namics, as thosg values that survive the pruning are the same as for the futll te
map figure 11.11, and are easily converted into admissibleréries by (11.9).

If ¥(S*) > y(K), the pointx whose itinerary isS* would exceed the critical
value,x > f(xc), and hence cannot be an admissible orbit. Let

st = sngpy(rr"‘(s*)) (11.15)

be themaximal value the highest topological coordinate reached by the orbit
X] — X2 = X3 — ..., whereo is the shift (11.20)p(--- S25.1%0.91%S3 ") =

-+ 8.2519%1-9S3 - - - - We shall call the intervalk( 1] the primary pruned inter-
val. The orhitS* is inadmissible ify of any shifted sequence & falls into this
interval.

Criterion of admissibility: Let« be the kneading value of the critical point,
andy(S™") be the maximal value of the orbit'SThen the orbit S is admissible
if and only ify(S*) < k.

While a unimodal map may depend on many arbitrarily chosearpeters, its
dynamics determines the unique kneading valué/e shall calk thetopological
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Figure 11.16: (a) Web diagram generated by 4
the trajectory of the critical point the unimodal , 02
Rossler return map of figure 11.7 (b). (b) The web 2 s '
diagram for the corresponding ‘canonical’ dike 4

N

0
0 2 4 6 8 10 0

@ n (b)

parameterof the map. Unlike the parameters of the original dynamigatesm,
the topological parameter has no reason to be either smoatbntinuous. The
jumps ink as a function of the map parameter suchAds (11.3) correspond to
inadmissible values of the topological parameter. Eaclpjimx corresponds to
a stability window associated with a stable cycle of a smawiimodal map. For
the quadratic map (11.3)increases monotonically with the parameteibut for
a general unimodal map such monotonicity need not hold.

Example 11.11 Réssler return map web diagram:
arclength distance along the unstable manifold of the X_ equilibrium point return map,
figure 11.7 (b), generates the kneading sequence (11.13) as the itinerary of the critical
point plotted in figure 11.16 (a).

For further details of unimodal dynamics, the reader isreteto appendix D.1.
As we shall see in sect. 12.4, for higher dimensional mapsfland there is no
single parameter that orders dynamics monotonically; astemof fact, there
is an infinity of parameters that need adjustment for a giyenb®lic dynamics.
This difficult subject is beyond our current ambition horizon.

fast track:
W chapter 12, p. 244
11.6 Symbolic dynamics, basic notions

(Mathematics) is considered a specialized dialect of the
natural language and its functioning as a special case of
speech.

— Yuri l. Manin [11.1]

02 04 06 08
yﬂ

(continuation of example 11.2) The

In this section we collect the basic notions and definitiohsymbolic dynamics. &b

The reader might prefer to skim through this material on &fgading and return
to it later, as the need arises.
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Shifts. We associate with every initial poing € M the future itinerary, a se-
quence of symbol§*(xg) = $15%3- -+ which indicates the order in which the
regions are visited. If the trajectomy, Xo, X3, ... of the initial pointXg is gener-
ated by

Xn+1 = f(Xn), (11.16)
then the itinerary is given by the symbol sequence
S$=S if Xn € Ms. (11.17)

Similarly, thepast itinerary S(xp) = - - - 5.25.15 describes the history of, the
order in which the regions were visited before arriving te fointxy,. To each
point Xo in the dynamical space we thus associate a bi-infinite #iryer

S(%0) = (Skez =S™.S" =+ 8285 1%0.919S%" " - (11.18)

The itinerary will be finite for a scattering trajectory, erihg and then escaping
M after a finite time, infinite for a trapped trajectory, andritgly repeating for
a periodic trajectory.

The set of all bi-infinite itineraries that can be formed frtme letters of the
alphabet# is called thefull shift (or topological Markov chaih

AL = {(S)kez : k€A forall kez). (11.19)

The jargon is not thrilling, but this is how professional dymicists talk to each
other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries asabeeringsymbolic dy-
namics. The namshiftis descriptive of the way the dynamics acts on these se-
qguences. As is clear from the definition (11.17), a forwaditionx — X' = f(x)
shifts the entire itinerary to the left through the ‘decirpaint.” This operation,
denoted by the shift operator,

(52519998 1) =+ S25 195198 (11.20)

demoting the current partition labglfrom the futureS* to the ‘has been’ itinerary
S. The inverse shifi-~! shifts the entire itinerary one step to the right.

A finite sequencd = S(Sc1 - - - Skeny—1 Of Symbols fromA is called ablock
of lengthny. If the symbols outside of the block remain unspecified, weotke
the totality of orbits that share this block bgSci1 - - - Sciny-1--
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A state space orbit igeriodicif it returns to its initial point after a finite time;
in shift space the orbit is periodic if its itinerary is an iifely repeating block
p*. We shall refer to the set of periodic pointd,, that belong to a given periodic
orbit as acycle

P=51% Sy, = Xeyspmpr Xpospst > Xepsispa) - (11.21)

By its definition, a cycle is invariant under cyclic permigas of the symbols
in the repeating block. A bar over a finite block of symbols ates a periodic
itinerary with infinitely repeating basic block; we shall irthe bar whenever it
is clear from the context that the orbit is periodic. Eaehiodic pointis labeled
by the firstn, steps of its future itinerary. For example, the 2nd periquiint is

labeled by

Xspsnps1 = XG5, 51555, 51 -

This - a bit strained - notation is meant to indicate that §ralml block repeats
both in the past and in the future. It is helpful for determ@ipatial ordering of
cycles of D-hyperbolic maps, to be undertaken in sect. 12.3.1.

A prime cycle p of lengthny is a single traversal of the orbit; its label is
a block ofnp symbols that cannot be written as a repeat of a shorter biack (
the literature, such cycles are sometimes catigdhitive; we shall refer to it as
‘prime’ throughout this text).

Partitions. A partition is calledgeneratingif every infinite symbol sequence
corresponds to a distinct point in state space. The finite&kMepartition (11.2)
is an example. Constructing a generating partition for amgsystem is a dicult
problem. In the examples to follow, we shall concentrate ases which that
permit finite partitions, but in practice almost any genempartition of interest
is infinite.

A partition too coarse, coarser than, for example, a Markaniton, would
assign the same symbol sequence to distinct dynamicattmaies. To avoid that,
we often find it convenient to work with partitions finer thatmictly necessary.
Ideally the dynamics in the refined partition assigns a umitpdinite itinerary
-+ S281%.919S3 - to each distinct orbit, but there might exist full shift sym-
bol sequences (11.19) which are not realized as orbits; sephences are called
inadmissible and we say that the symbolic dynamicgisined The word is
suggested by the ‘pruning’ of branches corresponding taidden sequences for
symbolic dynamics organized hierarchically into a treecttire, as explained in
chapter 14.

A mapping f : M — M together with a partitionA inducestopological
dynamics(Z, o), where thesubshift

T = {(Skez} » (11.22)
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is the set of alladmissible(i.e., ‘pruned’) infinite itineraries, and : £ — X
is the shift operator (11.20). The designation ‘subshifimes form the fact that
T ¢ AZis the subset of the full shift (11.19). One of our principasks in
developing the symbolic dynamics of dynamical systemsdbetir in nature will
be to determin&, the set of all bi-infinite itinerarie§S that are actually realized
by the given dynamical system.

Pruning.  If the dynamics is pruned, the alphabet must be supplemdnyted
agrammar a set of pruning rules. After the inadmissible sequences baen
pruned, it is often convenient to parse the symbolic stringswords of variable
length - this is callectoding Suppose that the grammar can be stated as a finite
number of pruning rules, each forbidding a block of finitegém

G ={by,bp,- by}, (11.23)

where gopruning block his a sequence of symbdis= 5,5, - - - s, s € A, of finite
lengthny. In this case we can always construct a finite Markov partiiil.2) by
replacing finite length words of the original partition bytérs of a new alphabet.
In particular, if the longest forbidden block is of length + 1, we say that the
symbolic dynamics is a shift of finite type witli-step memory. In that case we
canrecodethe symbolic dynamics in terms of a new alphabet, with eaeh ne
letter given by an admissible block of at most leniyth

A topological dynamical systenx(c) for which all admissible itineraries are
generated by a finite transition matrix (14.1)

2 ={(Skez  Tase, =1 forallk} (11.24)

is called a subshift dfinite type

in depth:
” chapter 12, p. 244
Résumé

From our initial chapters 2 to 4 fixation on things local: aresgentative point, a
short-time trajectory, a neighborhood, in this chapter aeeimade a courageous
leap and gone global.

The main lesson is that - if one intends to go thoughtfullywlybobalization -
one should trust the dynamics itself, and let it partitiom $tate space, by means of
its (topologically invariant) unstable manifolds. This ks if every equilibrium
and periodic orbit is unstable, so one exits it local neighbod via its unstable
manifold. We delineate the segment of the unstable manifetdieen the fixed
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point and the point where the nonlinearity of the dynamiddsdack on itself
as the primary segment, and measure location of nearby spate points by
arclengths measured along this (curvilinear) segment. 1Fdimensional maps
the folding point is the critical point, and easy to deterenin higher dimensions,
the situation is not so clear - we shall discuss that in chidite

Trajectories exit a neighborhood of an equilibrium or péiégoint along un-
stable directions, and fall along stable manifolds towantther fixed points, until
they again are repelled along their unstable manifolds.hSeguences of visi-
tations can be described Bymbolic dynamicsAs we shall show in chapter 14,
they are encoded by transition matrigasansition graphs, and approximated dy-
namically by sequences of unstable manifeldunstable manifold maps, or, in
case of a return to the initial neighborhood, by return mags f(9).

As ‘kneading theory’ of sect. 11.5 illustrates, not all ceivable symbol seg-
uences are actually realizeadfnissiblg. The identification of all inadmissible or
prunedsequences is in general not possible. However, the thedrg tleveloped
here relies on exhaustive enumeration of all admissihbheriéiries up to a given
topological length; chapters 12 and 15 describe sevegtksfies for accomplish-
ing this for physically realistic goals.

Commentary

Remark 11.1 Symbolic dynamics.  For a brief history of symbolic dynamics, from
Hadamard in 1898, Morse and Hedlund in 1938 and onward, sies tm chapter 1 of
Kitchens monograph [11.2], a very clear and enjoyable nmagtieal introduction to top-
ics discussed here. Diacu and Holmes [11.3] provide an kextedurvey of symbolic
dynamics applied to celestial mechanics. For a compacegusf symbolic dynamics
techniques, consult sects. 3.2 and 8.3 of Robinson [11.4e Hinary labeling of the
once-folding map periodic points was introduced by Myrbjdrty5] for 1-dimensional
maps, and its utility to 2-dimensional maps has been empéasi refs. [11.6, 11.7]. For
1-dimensional maps it is now customary to usefhle notation of Metropolis, Stein and
Stein [11.8, 11.9], indicating that the poixt lies either to the left or to the right of the
critical point in figure 11.12. The symbolic dynamics of sunhppings has been exten-
sively studied by means of the Smale horseshoes, see forpéxaedf. [11.10]. Using
letters rather than numerals in symbol dynamics alphatretsaply reflects good taste.
We prefer numerals for their computational conveniencéhey speed up conversions of
itineraries into the topological coordinatésy) introduced in sect. 12.3.1. The alternating
binary ordering of figure 11.14 is related to the Gray codesoofiputer science [11.11].
Kitchens [11.2] convention is - S S 1.5$1$S3 - - -, with " placed diferently from our
convention (11.18).

Remark 11.2 Kneadingtheory. The admissible itineraries are studied, for example, in
refs.[11.12,11.8, 11.10, 11.13]. We follow here the Mikidmurston exposition [11.14].
They study the topological zeta function for piecewise ntone maps of the interval,
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and show that for the finite subshift case it can be expressegtins of a finite dimen-
sionalkneading determinantAs the kneading determinant is essentially the topoldgica
zeta function of sect. 15.4, we do not discuss it here. BaladiRuelle have reworked
this theory in a series of papers [11.15, 11.16, 11.17, 11.88e also P. Dahlqvist's
appendix D.1. Knight and Klages [11.19] in their study ofedetinistic difusion (for
deterministic difusion, see chapter 25) refer to the set of iterates of thiearjpoint as
‘generating orbit.” They say: “The structure of the Markartitions varies wildly under
parameter variation. The method we employ to understanili#rkov partitions involves
iterating the critical point. The set of iterates of thismidiorm a set of Markov partition
points for the map. Hence we call the orbit of the criticalni@ ‘generating orbit.’ If the
generating orbit is finite for a particular value of paramgteve obtain a finite Markov
partition. We can then use the finite Markov partition to tedlabout the diusive proper-
ties of the map and hence the structure of tHeudion codicient.”

Remark 11.3 Heteroclinic connections.  For sketches of heteroclinic connections in
the nonlinear setting, see Abraham and Shaw illustrateskicld11.20]. Section 5 of
ref. [11.21] makes elegant use of stable manifold co-dineensounts and of invariant
subspaces implied by discrete symmetries of the underRDig to deduce the existence
of a heteroclinic connection.
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Exercises

11.1.

11.2.

11.3.

11.4.

11.5.

exerKnead - 4jun2003

Binary symbolic dynamics.  Verify that the short-

ure 11.12 aré®, 1, 01,001,011, - -. Compare with ta-
ble 15.1. Sketch them in the graph of the unimodal func-
tion f(x); compare the ordering of the periodic points
with that in figure 11.14. The point is that while over-
layed on each other the longer cycles look like a hope-
less jumble, the periodic points are clearly and logically
ordered by the alternating binary tree.

Generating prime cycles. Write a program that gen-
erates all binary prime cycles up to a given finite length.

A contracting baker’'s map. Consider the contracting
(or “dissipative”) baker's map defined in exercise 4.6.

The symbolic dynamics encoding of trajectories is reai-1.6. “Golden mean” pruned map.

ized via symbols 0y(< 1/2) and 1 y > 1/2). Consider
the observabla(x,y) = x. Verify that for any periodic
orbitp (er...e,), & € 10,1}

3L
A = Z; i1

Unimodal map symbolic dynamics.  Show that the
tent map pointy(S*) with future itineraryS* is given
by converting the sequence §fs into a binary number
by the algorithm (11.9). This follows by inspection from
the binary tree of figure 11.14.

Unimodal map kneading value. Consider the 1-

dimensional quadratic map

f(x)=Ax(1-x),

A=38. (11.25)

(a) (easy) Plot (11.25), and the first 4-8 (whatever
looks better) iterates of the critical poixt = 1/2.

(b) (hard) Draw corresponding intervals of the parti-
tion of the unit interval as levels of a Cantor set, as
in the symbolic dynamics partition of figure 11.12.
Note, however, that some of the intervals of fig-
ure 11.12 do not appear in this case - they are
pruned

(c) (easy) Check numerically thit= S*(xc), knead-
ing sequence (the itinerary of the critical point
(11.13))is

K =1011011110110111101011110111110

As the orbits of a chaotic map are exponentially
unstable, so many digits seem too good to be true

- recheck this sequence using arbitrary precision
arithmetics.

(d) (medium) The tent map poin{S*) with future
itineraryS* is given by converting the sequence of
s,'s into a binary number by the algorithm (11.9).
List the corresponding kneading value (11.13) se-
quencex = y(K) to the same number of digits as
K.

(e) (hard) Plot the dike map, figure 11.15, with the
same kneading sequeni€eas f (x). The dike map
is obtained by slicing @ all y (S*(xo)) > «, from
the full tent map figure 11.11, see (11.14).

How this kneading sequence is converted into a series of
pruning rules is a dark art, relegated to sect. 15.5.

Consider a symmetric

tent map on the unit interval such that its highest point
belongs to a 3-cycle:

1
0.8
0.6

0.4

0.2

0 02 04 06 08 1

(a) Find the valugA| for the slope (the two dlierent
slopes+A just differ by a sign) where the maxi-
mum at J2 is part of a 3-cycle, as depicted in the
figure.

(b

-

Show that no orbit of this map can visit the region
x > (1+ V/5)/4 more than once. Verify also that
once an orbit exceeds> (V5 - 1)/4, it does not
reenter the regior < (V5 — 1)/4.

If an orbit is in the interval §/5 - 1)/4 < x < 1/2,
where will it be on the next iteration?

(c

-

(

=

If the symbolic dynamics is such that fer< 1/2
we use the symbol 0 and for> 1/2 we use the
symbol 1, show that no periodic orbit will have the
substring 00_in it.

(e

N

On a second thought, is there a periodic orbit that
violates the aboveD0_ pruning rule?
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To continue with this line of thinking, see exercise 15.7
and exercise 19.2. See also exercise 15.6 and exer-
cise 15.8.

11.7. Binary 3-step transition matrix. ~ Construct an [&8]
binary 3-step transition matrix analogous to the 2-step
transition matrix (14.10). Convince yourself that the
number of terms of contributing to T" is independent
of the memory length, and that thisT22™ trace is well
defined in the infinite memory limin — co.

just making sure you know how to go back and fortt
tween spatial and temporal ordering of trajectory pc
(a) derive (11.12)
(b) compute the five periodic points of cyd€011
(c) compute the five periodic points of cycdd®000
(d) (optional) plot the above two cycles on the g
of the full tent map.

11.8. Full tent map periodic points.  This exercise is easy: (continued in exercise 13.15)
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