Chapter 3

Discrete time dynamics

Gentles, perchance you wonder at this show; But wonder
on, till truth make all things plain.

— W. Shakespeard, Midsummer Night's Dream

tinuous or discrete. Discrete time dynamical systems awagerally from section 2.1

flows. In general there are two strategies for replacing dimoous-time
flow by iterated mappings; by cutting it by Poincaré sedjoor by strobing it
at a sequence of instants in time. Think of your partner nptinthe beat in a
disco: a sequence of frozen stills. While ‘strobing’ is whaty numerical inte-
grator does, by representing a trajectory by a sequencenefititegration step
separated points, strobing is in general not a reductionflofig as the sequence
of strobed points still resides in the full state spade of dimensionalityd. An
exception are non-autonomous flows that are externallyogieally forced. In
that case it might be natural to observe the flow by strobirag ttime intervals
fixed by the external forcing, as in example 7.7 where stigloiha periodically
forced Hamiltonian leads to the ‘standard map.’

THE TIME PARAMETER in the definition of a dynamical system can be either con-

In the Poincaré section methodne records the coordinates of a trajectory
whenever the trajectory crosses a prescribed trigger. tliggering event can be
as simple as vanishing of one of the coordinates, or as coatetl as the trajectory
cutting through a curved hypersurface. A Poincaré sedtonin the remainder
of this chapter, just ‘section’) isot a projection onto a lower-dimensional space:
Rather, it is a local change of coordinates to a directiom@line flow, and the
remaining coordinates (spanning the section) transverse tNo information
about the flow is lost by reducing it to its set of Poincarétisecpoints and the
return maps connecting them; the full space trajectory beayes be reconstructed
by integration from the nearest point in the section.

Reduction of a continuous time flow to its Poincaré sect®a powerful vi-
sualization tool. But, the method of sections is more thanalization; it is also
a fundamental tool of dynamics - to fully unravel the geometra chaotic flow,
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CHAPTER 3. DISCRETE TIME DYNAMICS 56

Figure 3.1: A trajectoryx(t) that intersects a Poincaré
section P at times ty,tp,t3,t4, and closes a cycle
(Ra, %2, %3, Xa), X = X(t) € P of topological length
4 with respect to the section. In general, the interseg-
tions are not normal to the section. Note also that th
crossingz does not count, as it in the wrong direction.

one has toquotient all of its symmetries, and evolution in time is oridlese
(This delphic piece of hindsight while be illuminated in pker 10).

3.1 Poinca sections

R

A continuous time flow decomposes the state space into Lg@gnarspaghetti’ of
figure 2.2, a union of non-intersecting 1-dimensional etbXny point on an orbit
can be used to label the orbit, with the state space thuseddo@ ‘skew-product’
of a (d—1)-dimensional spacg of labeling pointsxj € # and the corresponding
1-dimensional orbit curvest; on which the flow acts as a time translation. How-

ever, as orbits can be arbitrary complicated and, if unstalohcontrollable for

times beyond the Lyapunov time (1.1), in practice it is neaggto split the orbit

into finite trajectory segments, with time intervals cop@sding to the shortest re-
currence times on a non-wondering set of the fliimite times for which the flow

is computable. A particular prescription for picking thébibdabeling points

in called aPoincaré section In introductory texts Poincaré sections are treated

as pretty visualizations of a chaotic flows, akin to plastimyery and Botox, but

their dynamical significance is much deeper than that. Orsseton is defined, chapter 10
a ‘Lagrangian’ description of the flow (discussed above ep4g) is replaced by

the ‘Eulerian’ formulation, with the trajectory-tangenglocity fieldv(X), X € P

enabling us to go freely between the time-quotiened sgaemd the full state
spaceM. The dynamically importantransverse dynamicsdescription of how

nearby trajectories attragtrepeal each other— is encoded in mappin@of> P

induced by the flow - dynamics along orbits is of secondaryairtgmce.

Successive trajectory intersections with a Poincarésgd @-1)-dimension-
al hypersurface embedded in thelimensional state spad¥, figure 3.1, define
thePoincaré return map ), a (d—1)-dimensional map of form

K =P = O, X, ReP. (3.1)

Here thdirst return functionr(X)—sometimes referred to as tbeiling functior-is
the time of flight to the next section for a trajectory stagtat X. The choice of
the section hypersurface is altogether arbitrary. It is rarely possible to define
a single section that cuts across all trajectories of isteffeéortunately, one often
needs only a local section, a finite hypersurface of codimenk intersected by
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CHAPTER 3. DISCRETE TIME DYNAMICS 57

a swarm of trajectories near to the trajectory of interdst (tase of several sec-
tions is discussed in sect. 3.4). Such hypersurface candoifispl implicitly by a
single condition, through a functidd(x) that is zero whenever a poirtis on the
Poincaré section,

ReP iff UR)=0. (3.2)

The gradient ofJ(x) evaluated ak € # serves a two-fold function. First, the
flow should pierce the hypersurfa@ rather than being tangent to it. A nearby
point X + 6x is in the hypersurfac® if U(X + 6X) = 0. A nearby point on the
trajectory is given bysx = vét, so a traversal is ensured by thransversality
condition

d
. . N B
(v-VU):j;v,-(x)a,-U(x);eo, ajU(x)=a—)A(jU(x), ReP. (3.3

Second, the gradieMU defines the orientation of the hypersurfaeThe flow

is oriented as well, and a periodic orbit can pieftéwice, traversing it in either
direction, as in figure 3.1. Hence the definition of Poingatarn magP(X) needs
to be supplemented with the orientation condition

X1 = P(Xn) U(Xne1) =U(%) =0, neZ’

d
Vi(%) 9jU (%) > 0. (3.4)
=1

J

In this way the continuous timieflow x(t) = f'(X) is reduced to a discrete tinme
sequence, of successiv@rientedtrajectory traversals op. chapter 17

With a suficiently clever choice of a Poincaré section or a set of sestiany
orbit of interest intersects a section. Depending on théagin, one might need
to convert the discrete time back to the continuous flow time. This is accom-
plished by adding up the first return function timgs,), with the accumulated
flight time given by

tn+1 = tn + T()’Zn) 5 tO = 0, Xn € P (35)

Other quantities integrated along the trajectory can baeeéfin a similar manner,
and will need to be evaluated in the process of evaluatinguahycal averages.

A few examples may help visualize this.

Example 3.1 A template and the associated hyperplane Poincar  é section:
The simplest choice of a Poincaré section is a plane P specified by a ‘template’ point
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CHAPTER 3. DISCRETE TIME DYNAMICS 58

Figure 3.2: (Right:) a sequence of Poincaré sec- >
tions of the Rossler strange attractor, defined bg// 0
planes through the axis, oriented at angles (a)
-60° (b) @, (c) 6@, (d) 120, in the x-y plane.
(Left:) side andx-y plane view of a typical tra-
jectory with Poincaré sections superimposed. (R.
Paskauskas) 1
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(located at the tip of the vector X') and a normal vector i perpendicular to the plane. A
point X is in this plane if it satisfies the linear condition

UR = (X-X)-A=0 forkeP. (3.6)

Consider a circular periodic orbit centered at X', but not lying in P. It pierces
the hyperplane twice; the v - i > O traversal orientation condition (3.4) ensures that the
first return time is the full period of the cycle. (continued in example 12.1)

What about smooth, continuous time flows, with no obvioudasas that
would be good Poincaré sections?

Example 3.2 Pendulum:  The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,

in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.4. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section'y = O at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it ydticsea piece of
paper. The next exampleftfers a better illustration of the utility of visualization
of dynamics by means of Poincaré sections.
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Example 3.3 Rdssler flow: (continued from example 2.3) Consider figure 2.6, a

typical trajectory of the 3-dimensional Réssler flow (2.17). The strange attractor exeyesse 3.1
around the z axis, so one choice for a Poincaré section is a plane passing through the
Z axis. A sequence of such Poincaré sections placed radially at increasing angles with
respect to the X axis, figure 3.2, illustrates the ‘stretch & fold’ action of the Réssler flow,
by assembling these sections into a series of snapshots of the flow. A line segment
in (a), traversing the width of the attractor aty = 0, x > 0 section, starts out close to
the x-y plane, and after the stretching (a) — (b) followed by the folding (c) — (d), the
folded segment returns (d) — (a) close to the initial segment, strongly compressed. In
one Poincaré return the interval is thus stretched, folded and mapped onto itself, so the
flow is expanding. It is also mixing, as in one Poincaré return a point from the interior
of the attractor can map onto the outer edge, while an edge point lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return map
(8.1), asinfigure 3.3. Cases (a) and (d) are examples of nice 1-to-1 return maps. While
(b) and (c) appear multimodal and non-invertible, they are artifacts of projectingx@rgise 3.2
dimensional return map (rn, Z,) — (i1, Zh+1) ONto a 1-dimensional subspace rp — rny1.
(continued in example 3.5)

W fast track:
sect. 3.3, p. 63

The above examples illustrate why a Poincaré section givesre informative
shapshot of the flow than the full flow portrait. For exampléilesthe full flow
portrait of the Rossler flow figure 2.6 gives us no sense oftlilekness of the
attractor, we see clearly in the Poincaré sections of figWzehat even though the
return maps are 2-dimensional 2-dimensional, the flow contraction is so strong
that for all practical purposes it renders the return magsriensional. (We shall
quantify this claim in example 4.6.)

3.1.1 Section border

How far does the neighborhood of a template extend alongytherplane (3.6)?
A section captures faithfully neighboring orbits as longtasuts them transver-
sally; it fails the moment the velocity field at poirt fails to pierce the section.
At this location the velocity is tangent to the section amaist orthogonal to the
template normanh,”

A-V(R)=0, KeS, (3.7)
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i.e., v, (X), component of the/(X) normal to the section, vanishes it "For a
smooth flow such points form a smooth-@)-dimensionakection borderS c P,
encompassing the open neighborhood of the template chersd by qualita-
tively similar flow. We shall refer to this region of the sextihyperplane as the
(maximal) chart of the template neighborhood for a givenengfane (3.6).

If the template point is an equilibrium, there is no dynamics exactly at this
point as the velocity vanishes(§;) = O by the definition of equilibrium) and
cannot be used to define a normal to the section. Instead, evéhadocal lin-
earized flow to construct the local Poincaré sec#orWWe orient? so the unsta-
ble eigenvectors are transverse to the section, and attlteaskowest contracting
eigenvector is tangent to the section, as in figure 4.7. Tissmres that the flow is
transverse t& in an open neighborhood of the template exercise 3.7

Visualize the flow as a smooth 3-dimensional steady fluid flowhy a 2-
dimensional sheet of light. Lagrangian particle trajee®reither cross, are tan-
gent to, or fail to reach this plane; the 1-dimensional csinfeangency points de-
fine the section border. An example iServed by the velocity field of the Rossler
flow of figure 4.6. Pick a Poincaré section hyperplane soesghrough both equi-
librium points. The section might be transverse to a largghimrhood around
the inner equilibriumx_, but dynamics around the outer equilibrivm is totally
different, and the competition between the two types of motidike$y to lead
to vanishing ofv, (X), component of the/(X) normal to the section, someplace
in-between the two equilibria. A section is good up to thdisedborder, but be-
yond it an orbit infinitesimally close t&* ‘generically does not cross the section
hyperplane, at least not infinitesimally closeSo

For 3-dimensional flows, the section bordeis a 1-dimensional closed curve
in the section 2-dimension#t, and easy to visualize. In higher dimensions, the
section border is ad(- 2)-dimensional manifold, not easily visualized, and the
best one can do is to keep checking for change of sign (3.49iat&¢ section
returns of nearby trajectories close to the section borgeetsurfaceS; (3.7) will
be positive inside, negative immediately outsile

Thus for a nonlinear flow, with its complicated curvilineavariant manifolds,
a single section rarely flices to capture all of the dynamics of interest.

3.1.2 What is the best Poincat section?

In practice, picking sections is a dark and painful art, egdly for high-dimens-
ional flows where the human visual cortex falls short. It bdtpunderstand why
we need them in the first place.

Whenever a system has a continuous symm@trgny two solutions related
by the symmetry are equivalent. We do not want to keep rectingpthese over
and over. We would rather replace the whole continuous faofilsolutions by
one solution in order to be mordheient. This approach replaces the dynamics
(M, f) with dynamics on thejuotient state spacéM/t, fA). For now, we only chapter 10
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Figure 3.4: (a) Lorenz flow figure 2.5 cut by = x
Poincaré section plan® through thez axis and
both EQ,» equilibria. Points where flow pierces
into section are marked by dots. To aid visualiza-
tion of the flow near th&Q, equilibrium, the flow

is cut by the second Poincaré secti#h, through

y = —x and thez axis. (b) Poincaré sectio®and

%’ laid side-by-side. The singular nature of these
sections close t&Q will be elucidated in exam-
ple 4.7 and figure 11.8 (b). (E.
Siminos)

(@) (b)

remark that constructing explicit quotient state space ffois either extremely
difficult, impossible, or generates unintelligible literatu@air solution (see chap-
ter 10) will be to resort to the method of slices.

Time evolution itself is a 1-parameter Lie group, albeitghy nontrivial one
(otherwise this book would not be much of a doorstop). Thariawnts of the flow
are its infinite-time orbits; particularly useful invartasrare compact orbits such
as equilibrium points, periodic orbits, and tori. For anbibit suffices to pick a
single state space poirte My, the rest of the orbit is generated by the flow.

Choice of this one “labeling” point is utterly arbitrary; oiynamics this is
called a “Poincaré section,” and in theoretical physids toes by the excep-
tionally uninformative name of “gauge fixing.” The price Izt one generates
“ghosts,” or, in dynamics, increases the dimensionalitthefstate space by addi-
tional constraints (see sect. 13.4). It is a commonly degaldyut inelegant proce-
dure where symmetry is broken for computational convergand restored only
at the end of the calculation, when all broken pieces aresegalsled.

With this said, there are a few rules of thumb to follow: (auYean pick as
many sections as convenient, as discussed in sect. 3.4. o(l®aBe of compu-
tation, pick linear sections (3.6) when possible. (c) Ififia play important
role in organizing a flow, pick sections that go through theee(example 3.4). In
that case, try to place contractor eigenvectors inside yperplane, see Lorenz
figure 3.4. Remember, the stability eigenvectors are nestbogonal to each

other, unless that is imposed by some symmetry. (d) If yoe lsaglobal discretechapter 9

or continuous symmetry, pick sections left invariant by sgenmetry (see exam-
ple 9.14). For example, setting the normal vectan (3.6) atx to be the velocity
v(X) is natural and locally transverse. (e) If you are solvingaeal problem, like
finding a periodic orbit, you do not need a global sectionkRisection or a set of
(multi-shooting) sections on the fly, requiring only thagytare locally transverse
to the flow. (f) If you have another rule of thumb dear to youuie know.

Example 3.4 Sections of Lorenz flow: (continued from example 2.2) The plane
P fixed by the x =y diagonal and the z-axis depicted in figure 3.4 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.5, as it contains all three equilib-
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CHAPTER 3. DISCRETE TIME DYNAMICS 62

ria, Xeq, = (0,0, 0) and the (2.13) pair Xeq,, Xeq,. A section has to be supplemented
with the orientation condition (3.4): here points where flow pierces into the section are
marked by dots.

Equilibria Xeq,, Xeq, are centers of out-spirals, and close to them the section
is transverse to the flow. However, close to EQy trajectories pass the z-axis either
by crossing the section P or staying on the viewer’s side. We are free to deploy as
many sections as we wish: in order to capture the whole flow in this neighborhood
we add the second Poincaré section, ', through the y = —X diagonal and the z-axis.
Together the two sections, figure 3.4 (b), capture the whole flow near EQy. In contrast
to Rossler sections of figure 3.2, these appear very singular. We explain this singularity
in example 4.7 and postpone construction of a Poincaré return map until example 9.14.
(E. Siminos and J. Halcrow)

3.2 Computing a Poincag section

O3

(R. Mainieri)

For almost any flow of physical interest a Poincaré sectfondt available in

analytic form, so one tends to determine it crudely, by nicadly bracketing

the trajectory traversals of a section and iteratively maimg the bracketing time

interval. We describe here a smarter method, which you wily meed when remark 3.2
you seriously look at a strange attractor, with millions ofris embedded in a
high(er)-dimensional Poincaré section - so skip thisiseain the first reading.

Consider the system (2.6) of ordinanftdrential equations in the vector vari-
ablex = (X1, X2, ..., Xq)

dx
i vi(x 1), (3.8)

where the flow velocity is a vector function of the position in state spacand
the timet. In general, the map™(xp) = X, + deV(X(T)) cannot be integrated
analytically, so we will have to resort to numerical intdégra to determine the
trajectories of the system. Our task is to determine thetpainwhich the numer-
ically integrated trajectory traverses a given hypers@fal he hypersurface will
be specified implicitly through a functiod (x) that is zero whenever a poirtis
on the Poincaré section, such as the hyperplane (3.6).

If we use a tiny step size in our numerical integrator, we daseove the value
of U as we integrate; its sign will change as the trajectory e®#se hypersurface.
The problem with this method is that we have to use a very dmtefjration time
step. However, there is a better way to land exactly on thedaog section.

Let t; be the time just befor&) changes sign, ant) the time just after it
changes sign. The method for landing exactly on the Pagnsaction will be to
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convert one of the space coordinates into an integratiaablarfor the part of the
trajectory betweely andt,. Using

dxcdx _ dx

dx dt - dxlvl(x,t)=vk(x,t) (3.9)

we can rewrite the equations of maotion (3.8) as

dt _ 1 dxa_ v

- - ... =9 3.10
dxq V1 ’ ’ dxq Vi ( )
Now we usex; as the ‘time’ in the integration routine and integrate itfre (t;) to
the value ofx; on the hypersurface, determined by the hypersurface ettos
condition (3.6). This is the end point of the integrationthwmno need for any
interpolation or backtracking to the surface of sectione Xf+-axis need not be

perpendicular to the Poincaré section; afycan be chosen as the integration

variable, provided th&-axis is not parallel to the Poincaré section at the trajgct
intersection point. If the section crossing is transve&8)(v, cannot vanish in

the short segment bracketed by the integration step pregdlaé section, and the
point on the Poincaré section.

Example 3.5 Computation of R d&ssler flow Poincar é sections. (continued from

example 3.3) Convert Rédssler equation (2.17) to cylindrical coordinates:

i = v =-zcosd+arsinfo

-
|

zZ . a .
U9:1+F5|n9+ Esm29

N
I

v, =b+2z(rcosd - c). (3.11)

Poincaré sections of figure 3.2 are defined by the fixing angle U(X) = 6 — 6y = 0. In
principle one should use the equilibrium X, from (2.18) as the origin, and its eigen-
vectors as the coordinate frame, but here original coordinates suffice, as for parameter
values (2.17), and (Xo, Yo, Zo) sufficiently far away from the inner equilibrium, 6 increases
monotonically with time. Integrate

dr dt dz

@=Ur/ve, @=1/U9, @=Uz/ve (3.12)
from (rn, 6n, Zy) to the next Poincaré section at 6.1, and switch the integration back to
(%Y, 2) coordinates. (continued in example 4.1) (Radford Mitchell, Jr.)
3.3 Mappings ~

!\
Do it again!
—lsabelle, age 3
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Figure 3.5: A flow x(t) of figure 3.1 represented by a
Poincaré return map that maps points in the Poincaré
section® asxXp.1 = f(X,). In this example the orbit of
% is periodic and consists of the four periodic points.
(Re, %o, X, Ra).

Though we have motivated discrete time dynamics by consiglesections of a
continuous flow and reduced the continuous-time flow to alfanfimapsP(X)

mapping pointsx from a section to a section, there are many settings in which
dynamics is inherently discrete, and naturally describedepeated iterations of

the same map remark 3.1

f:M—-> M,

or sequences of consecutive applications of a finite set gpediferent map,
fa, fg, ..., for points in diterent regiong Ma, Mg, - - -, Mz},

{fa, fg,... T2} M > M, (313)

for example maps relatingfierent sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applicaiof the map or maps.

As writing out formulas involving repeated applicationsaagfet of maps explicitly
can be awkward, we streamline the notation by denoting tbe-gommutiative)
map composition by’

fz(--- fe(fa(x))---) = fzo--- fg o fa(X), (3.14)
and thenth iterate of mapf by

() = fo ") = f(f"(x) fO(x) = x.

section 2.1

Thetrajectoryof x is the finite set of points
{x (3, F2(3),.... (9} ,

traversed in timan, and My, the orbit of x, is the subset of all points 0¥ that
can be reached by iterations bf A periodic point(cyclepoint) xx belonging to a
periodic orbit(cyclg of periodn is a real solution of

(%) = F(FC.. F(%)...) =%, k=0,12....,n—1. (3.15)

For example, the orbit of;'in figure 3.5 is a set of four cycle pointsg(Xo, X3, X4) .
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Figure 3.6: The strange attractor and an unstable pe- 0.0 15
riod 7 cycle of the Hénon map (3.17) with= 1.4, Xi-1

b = 0.3. The periodic points in the cycle are connected
to guide the eye. (from K.T. Hansen [3.2])

The functional form of such Poincaré return mapas figure 3.3 can be ap-
proximated by tabulating the results of integration of tlwsvffrom X to the first
Poincaré section return for many< #, and constructing a function that inter-
polates through these points. If we find a good approximatoR(X), we can
get rid of numerical integration altogether, by replacihg tontinuous time tra-
jectory f{(X) by iteration of the Poincaré return m&¢x). Constructing accurate
P(X) for a given flow can be tricky, but we can already learn muomfapproxi-
mate Poincaré return maps. Multinomial approximations

d d
PR =+ ) &+ > Gajk%j+...,  ReP (3.16)
=1 ij=1

to Poincaré return maps

)A(l,n+1 Pl()A(n)
X2 n+1 — PZ(XFI) )'Zn, )A<n+1 cp

)A(d,n+1 Pd(kn)
motivate the study of model mappings of the plane, such allémen map.

Example 3.6 Hénon map:  The map

X1 = 1-ax+by,

Ynit = Xn

is a nonlinear 2-dimensional map frequently employed in testing various hunches about
chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence relation

Xne1 = 1—axé + bx 1. (3.18)

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.
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The Hénon map is the simplest map that captures the ‘stretch & fold’ dynamics
of return maps such as Rdssler’s, figure 3.2. It can be obtained by a truncation of a
polynomial approximation (3.16) to a Poincaré return map (3.16) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.6), is obtained by picking an arbitrary starting point and iterating
(3.17) on a computer. We plot here the dynamics in the (Xn, Xn+1) plane, rather than in
the (xn, Yn) plane, because we think of the Hénon map as a model return map X, —
Xnt1. AS we shall soon see, periodic orbits will be key to understanding the longstémse 3.5
dynamics, so we also plot a typical periodic orbit of such a system, in this case an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 29.1, and the periodic point labels 01110101110100-- - in sect. 12.2.

Example 3.7 Lozi map: Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.17) given by

Xn+1 1 - alXq| + byn
yn+1 = Xn . (3.19)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the ‘stretch
& fold’ type.

What we get by iterating such maps is—at least qualitatiredy unlike what
we get from Poincaré section of flows such as the Rossler fitpuve 3.3. For
an arbitrary initial point this process might converge tdabk limit cycle, to a
strange attractor, to a false attractor (due to rotinelmors), or diverge. In other
words, mindless iteration is essentially uncontrollakleg we will need to resort
to more thoughtful explorations. As we shall explain in doerse, strategies forexercise 17.1
systematic exploration rely on stahlastable manifolds, periodic points, saddle-
straddle methods and so on.

Example 3.8 Parabola: For sufficiently large value of the stretching parameter a,
one iteration of the Hénon map (3.17) stretches and folds a region of the (x,y) plane
centered around the origin, as will be illustrated in figure 12.4. The parameter a controls
the amount of stretching, while the parameter b controls the thickness of the folded
image through the ‘1-step memory’ term bx,_1 in (3.18). In figure 3.6 the parameter b is
rather large, b = 0.3, so the attractor is rather thick, with the transverse fractal structure
clearly visible. For vanishingly small b the Hénon map reduces to the 1-dimensional
quadratic map

Xpe1 = 1-ax. (3.20)
exercise 3.6

By setting b = 0 we lose determinism, as on reals the inverse of map (3.20) has two
real preimages {x!_,, X |} for most X,. If Bourbaki is your native dialect: the Hénon
map is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still,
this 1-dimensional approximation is very instructive. (continued in example 11.5)

As we shall see in sect. 11.3, an understanding of 1-dimeakaynamics is
indeed the essential prerequisite to unraveling the @tigkt dynamics of many
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Figure 3.7: Reduction of a continuous-time flow (left
frame) to a set of Poincaré maps (right frame), with
point on 1-cycle and the two cycle points of a 2-cycl
used as template points.

higher-dimensional dynamical systems. For this reasoryraapositions of the
theory of dynamical systems commence with a study of 1-d&oe@l maps. We
prefer to stick to flows, as that is where the physics is. appendix H.8

fast track:
W sect. 4, p. 75
3.4 Charting the state space

In simple examples, such as the Rossler example 3.3, aedfmhcaré section &b
sufices, but this is rarely the case for flows of physical interéstthis section
(skip it on first reading) we commence a discussion of the iggicase.

A Poincaré section is constructed by picking a ‘templat@npx within a
state space region of interest, and defining a hypersurBa2gthat goes through
the template point. In theory, this Poincaré section cbeldny ¢-1)-dimensional
manifold. In practice, a hyperplane (3.6) is the most commnthe natural choice
for the vector normal to the section beimg=" v(X’), the velocity field at the
template poini”. This Poincaré sectior € P is a hyperplane, appendix 13.4

V. (k-%)=0, V=VX), (3.21)

normal to the flow directiornv’ at the template poink’” Such section cuts the
nearby trajectories transversally, and is a good desonif solutions similar to
the given template.

So one hyperspace will, in general, not sffice. A more insightful picture
of the dynamics is obtained by partitioning the state spatN qualitatively
distinct regions{Mi, Mo, ..., Mn} and constructing a Poincaré section per re-
gion, globalatlas of the state space composedMflocal Poincaré section®) section 11.1
or charts, each one capturing a neighborhood of a qualitatively premtirstate
%) e S. We shall refer to these statestamplateseach represented in the state
spaceM of the system by gemplate poin{X'D, ¥ @, ... g},
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Our Poincaré section is a hyperplane. If we pick anothemtata point
%@, it comes along with its own section hyperplane. ThHe {)-dimensional
Poincaré sections for an adjacent pair of template intésse a ‘ridge’ (‘bound-
ary,’ ‘edge”), a fl—2)-dimensional hyperplane, easy to compute. Follow an ant
(the sequence of Poincaré map iterates) as it progresseg #ile Poincaré sec-
tion P, The momentX®(r) — ¥ @) . Al changes sign, the ant has crossed the
ridge, we switch the Poincaré section, and the ant corgiftsamerry stroll now
confined to theP® section. Each Poincaré sectig), provides a local chart
at X) for a neighborhood of an important, qualitatively distimtass of solu-
tions; together they ‘Voronoi’ tessellate the curved maldiin which the reduced
dynamics is replaced by a finite set of mappings between pigres tiles. An ex-
ample is the periodic-orbit implementation of the idea atestspace tessellation
by neighborhoods of recurrent points, so dear to profeasioyclists, illustrated
in figure 3.7.

For a given dynamical flow, the physical task is to pick a maliset of qual-
itatively distinct templates. The state space might bedfitig all kinds of highly
unstable, never revisited equilibria and relative pedodiibits. The choice of
templates should reflect the dynamically prominent staées $n the long-time
simulations of system’s dynamics. We have only vague adwichow to pick a
single Poincaré section (see sect. 3.1.2), and no advit®wrto systematically
pick a set of ‘good’ templates, other than that the assatiséetion tiles should
be as large as possible, but stilfisciently small to exclude orbit tangencies, i.e.,
stop before crossing their section borders (3.7). Ideatyg wold like to pick as
few templates as possible in figure 3.7. Once templates ekedhithe rest is ge-
ometry of hyperplanes, so checking whether the sectiondnasdon the far side
of the tile edge (ridge between two sections) is a fast, ficeanputation.

There is a rub, though - you need to know how to pick the neighgaem-
plates. Perhaps a glance at figure 3.7 helps visualize th#epno imagine that
the tiles belong to the Poincaré sections through templaitets on these orbits.
One could slide templates along their trajectories ungl pairs of straight line
segments connecting neighboring template points are naednbut that seems
a bit arbitrary. At this time we have no advice as how to ‘syncdize’ the tem-
plates relative to each other. The astute reader will itlsta@cognize this as the
problem of ‘local gauge invariance’ or ‘gauge fixing’ of Quam Field Theory
and General Relativity.

3.4.1 Navigating the Poincae-charted state space

Our goal now is to replace the continuous-time dynamics bgteok Poincaré

maps between a set of hyperplane sections, as in figure 3e/flatthyperplane

(3.6) is anad hocconstruct; one Poincaré section rarelyfises to capture all

of the dynamics of interest. Instead we chart the state spgeartitioning it

into N qualitatively distinct regiongMai, Mo, ..., My}. Successive trajectory
intersections with the set ofi{1)-dimensional hypersurfacés embedded in the
d-dimensional state spag¥l, define the set ofd—1) — (d—1) Poincaré maps section 11.1
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1 1

12123 13132

a)

bl

c)
Figure 3.8: Some examples of 3-disk cycles: (a
12123 and13132 are mapped into each other by th 1213 1232 1323
flip across 1 axis. Similarly ()23 andl32 are related
by flips, and (c)1213,1232 andl323 by rotations. (d) 2 2
The cycles121212313 and 21212323 are related by
rotationandtime reversal. These symmetries are dicd!
cussed in chapter 9. (From ref. [3.1]) 3 3

121212313 121212323

Z1 = Psuag (%) = FE(%) (3.22)
K1 € P, Xy € PH, sef{l,2,...,N}.

Thed-dimensional continuous time flow is thus reduced to disctiebe compo-
sition

Pssi-s = Psisiy 070 Pgyg 0 Py

of a set of Poincaré maps (3.22) that map the coordinatesinE&é sectioPs,
to those ofPs,,,, the next section traversed by a given trajectory.

If a trajectory traverses region$ls, - Mg, — --- — My, , the sequence
0S1 S = S — -« S « § is said to beadmissible The return map section 11.6
P, from sectionPs, to itself has a contribution from any admissible returning
(periodic, s, = s9) sequence of compositions

Psysish1s0 = Psosia © 7+ 0 Psysy 0 Py (3.23)

The next examplefeers an unambiguous set of such Poincaré sections whiehter 11
do double duty, providing us both with an exact represemtatif dynamics in
terms of maps, and with a symbolic dynamics, a subject thawiVeeturn to in
chapter 11.

Example 3.9 Pinball game, Poincar é dissected. (continued from sect. 1.4) A
phase-space orbit is fully specified by its position and momentum at a given instant,
So no two distinct phase-space trajectories can intersect. The configuration space
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psin @

A

(s1.py)
o

Sy \
psin @, .
O (s2.p2)
Figure 3.9: (a) Poincaré section coordinates for N 5
the 3-disk game of pinball. (b) Collision sequence @ J
(51, 1) + (S, P2) = (Ss, ps) from the boundary A peng, | (9
of a disk to the boundary of the next disk is coded \\ s
by the Poincaré maps sequerigg ,P. 1.
(a) (b) =

trajectories, however, can and do intersect, in rather unilluminating ways, as e.g. in
figure 3.8 (d), and it can be rather hard to perceive the systematics of orbits from their
configuration space shapes. The problem is that we are looking at the projections of
4-dimensional state space trajectories onto a 2-dimensional configuration subspace.
A much clearer picture of the dynamics is obtained by constructing a set of Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its posi-
tion and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces—the ball just travels at constant velocity along a straight line—so
we can reduce the 4-dimensional flow to a 2-dimensional map Py, that maps the
coordinates (Poincaré section 1) of the pinball from one disk edge to another. Just
after the moment of impact the trajectory is defined by s,, the arc-length position of the
nth bounce along the billiard wall, and p, = psing, the outgoing momentum compo-
nent parallel to the billiard wall at the point of impact, figure 3.9 (a). These coordipaiese 8.6
(due to Birkhoff) are smart, as they conserve the phase-space volume. Trajectories
originating from one disk can hit either of the other two disks, or escape without further
ado. We label the survivor state space regions P12, P13. In terms of the three Poincaré
sections, one for each disk, the dynamics is reduced to the set of six maps

(Sﬁ+la pn+l) = P(J'n+1<70'n(s'1’ pn) ’ o€ {15 2’ 3} (3'24)

from the boundary of a disk to the boundary of the next disk, figure 3.9 (b). The explicit
form of this map is easily written down, see example 8.1, but much more economical
is the symmetry quotiented version of chapter 9 which replaces the above 6 fochap@r 9
maps by a return map pair Po, P1.  (continued in chapter 8) chapter 8

Billiard dynamics is exceptionally simple - free flight segmts, followed by

specular reflections at boundaries, with billiard bouretathe obvious choice as

Poincaré sections. For a general flow one is never so luclsp, Ao far we have

discussed only flows with a 1 continuous parameter (the tiffikg general case

of N-parameter continuous symmetries we postpone to chapter 10

Résum é

In recurrent dynamics a trajectory exits a region in statecsmnd then reenters

it infinitely often, with finite return times. If the orbit isguiodic, it returns after
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a full period. So, on average, nothing much really happemsgathe trajectory—
what is important is behavior of neighboring trajectorieensverse to the flow.
This observation motivates a replacement of the contintimesflow by iterative

mapping, the Poincaré maps. A visualization of a stranfgacibr can be greatly
facilitated by a felicitous choice of Poincaré sectionsg ¢he reduction of flow
to Poincaré maps. This observation motivates in turn thdysof discrete-time
dynamical systems generated by iterations of maps.

A particularly natural application of the Poincaré sectinethod is the reduc-
tion of a billiard flow to a boundary-to-boundary return mdpscribed in chap-
ter 8. As we shall show in chapter 6, further simplificationadPoincaré returnchapter 8
map, or any nonlinear map, can be attained through reatifiiese maps locallychapter 6
by means of smooth conjugacies.

In truth, as we shall see in chapter 10, the reduction of airmeods time
flow by the method of Poincaré sections is not a conveniebaean absolute
necessity - to make sense of an ergodic flow, all of its contisusymmetries
must be reduced, evolution in time being one of these synesetr

Commentary

Remark 3.1 Functions, maps, mappings. In mathematics, “mapping” is a noun,
“map” is a verb. Nevertheless, “mapping” is often shorteteetinap” and is often used
as a synonym for “function.” “Function” is used for mappirthat map to a single point
in R or C, while a mapping which maps ®° would be called a “mapping,” and not a
“function.” Likewise, if a point maps to several points @oidhas several pre-images, this
is a “many-to-many” mapping, rather than a function. In thiese used here, in the theory
of dynamical systems, dynamical evolution from an initiaks to a state finite time later
is a (time-forward) map.

Remark 3.2 Determining a Poincaré section. The trick described in sect. 3.2 is due
to Hénon [3.3, 3.4, 3.5]. The idea of changing the integratiariable from time to one
of the coordinates, although simple, avoids the altereativhaving to interpolate the
numerical solution to determine the intersection.

Remark 3.3 Hénon, Lozi maps. The Hénon map is of no particular physical import in
and of itself—its significance lies in the fact that it is a mial normal form for modeling
flows near a saddle-node bifurcation, and that it is a prp®uf the stretching and folding
dynamics that leads to deterministic chaos. It is generfhérsense that it can exhibit ar-
bitrarily complicated symbolic dynamics and mixtures opbybolic and non—hyperbolic
behaviors. Its construction was motivated by the best kneavly example of ‘determin-
istic chaos,’ the Lorenz equation, see example 2.2 and kethadr Y. Pomeau’s studies
of the Lorenz attractor on an analog computer, and his itsigtio its stretching and
folding dynamics motivated Hénon [3.6] to introduce thertdh map in 1976. Hénon’'s
and Lorenz’s original papers can be found in reprint colbexs refs. [3.7, 3.8]. They are
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a pleasure to read, and are still the best introduction t@liysics motivating such mod-

els. Hénon [3.6] had conjectured that farlf) = (1.4,0.3) HEnon map a generic initial

point converges to strange attractor Its existence has never been proven. While for all
practical purposes this is a strange attractor, it has net blemonstrated that long time
iterations are not attracted by some long attracting lipie. Indeed, the pruning front
techniques that we describe below enable us to find stabtdts arbitrarily close byexercise 17.1
in the parameter space, such as the 13-cycle attractartgt£ (1.399452190.3). A rig-

orous proof of the existence of Hénon attractors close dandensional parabola map is

due to Benedicks and Carleson [3.9]. A detailed descrigtfdhe dynamics of the Henon

map is given by Mira and coworkers [3.10, 3.11, 3.12], as a&llery many other authors.

The Lozi map (3.19) is particularly convenient in investigg the symbolic dynamics of
2-dimensional mappings. Both the Lorenz and Lozi [3.13}eys are uniformly expand-

ing smooth systems with singularities. The existence oéthractor for the Lozi map was

proven by M. Misiurewicz [3.14], and the existence of the SR&asure was established

by L.-S. Young [3.15]. section 16.1
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Exercises

3.1

3.2.

3.3.

3.4.

exerMaps - 29jan2012

Poincaré sections of the Rssler flow. (continuation
of exercise 2.8) Calculate numerically a Poincaré se
tion (or several Poincaré sections) of the Rossler flow.
As the Rossler flow state space iB,3the flow maps
onto a D Poincaré section. Do you see that in your
numerical results? How good an approximation would
a replacement of the return map for this section by a 1-
dimensional map be? More precisely, estimate the thick-
ness of the strange attractor. (continued as exercise 4.4)

(R. PaSkauskas)

A return Poincar & map for the Rossler flow. (con-
tinuation of exercise 3.1) That Poincaré return maps
of figure 3.3 appear multimodal and non-invertible is
an artifact of projections of a 2-dimensional return map
(Rn,z0) = (Rni1, Z0+1) onto a 1-dimensional subspace
Ry — Rns1.

Construct a genuing,;; = f(s,) return map by parame-
terizing points on a Poincaré section of the attractor fig-
ure 3.2 by a Euclidean lengghcomputed curvilinearly
along the attractor section.

This is best done (using methods to be developed in
what follows) by a continuation of the unstable man-
ifold of the 1-cycle embedded in the strange attractor, |
figure 13.2 (b).

(P. Cvitanovit)

Arbitrary Poincar é sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equatidw) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

dxc ¢
E =Klk,
with dt/ds = «, and choosing to be 1 or ¥f;.
This allows one to switch betwearandx; as the
integration 'time.’
(b) Introduce an extra dimensio@,1 into your sys-
tem and set

Xne1 = U(X). (3.26)
How can this be used to find a Poincaré section?

(3.25)

Classical collinear helium dynamics.

(continuation of exercise 2.10) Make a Poincaré surface
of section by plottingi(;, p1) whenever, = 0: Note that
forr, = 0, py is already determined by (7.8). Compare
your results with figure 6.3 (b).

€3.5. Hénon map fixed points.

(Gregor Tanner, Per Rosenqvist)
Show that the two fixed

6. Fixed points of maps.

7. Section border for Rossler.

points o, Xo), (X1, x1) of the Hénon map (3.17) are
given by

~(1-b)- (1-b)2+4a

2a

—~(1-b)+ /(1-b)2+4a

2a

(3.27)

X1 =

A continuous functiorF is
a contraction of the unit interval if it maps the interval
inside itself.

(8) Use the continuity ofF to show that a 1-
dimensional contractioR of the interval [Q 1] has
at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope of
F is always smaller than ong’| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?

(continuation of exer-
cise 3.1) Determine numerically section borders (3.7)
for several Rossler flow Poincaré sections of exercise 3.1
and figure 3.2, at least for angles

(a) -60°, (b) °, and

(c) A Poincaré section hyperplane that goes through
both equilibria, see (2.18) and figure 4.6. Two
points only fix a line: think of a criterion for a
good orientation of the section hyperplane, per-
haps by demanding that the contracting eigenvec-
tor of the ’inner’ equilibriumx_ lies in it.

(d) (Optional) Hand- or computer-draw a visualiza-
tion of the section border as 3-dimensional fluid
flow which either crosses, is tangent to, or fails to
cross a sheet of light cutting across the flow.

As the state space is 3-dimensional, the section borders
are 1-dimensional, and it should be easy to outline the
border by plotting the color-coded magnitudeve{X),
component of the/(X) normal to the section, for a fine
grid of 2-dimensional Poincaré section plane points. For
sections that go through ttzeaxis, the normal velocity

v, (X) is tangent to the circle through and vanishes for

g in the polar coordinates (3.11), but that is not true for
other Poincaré sections, such as the case (c).

(P. Cvitanovi€)
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