
Chapter 3

Discrete time dynamics

Gentles, perchance you wonder at this show; But wonder
on, till truth make all things plain.

— W. Shakespeare,A Midsummer Night’s Dream

The time parameter in the definition of a dynamical system can be either con-
tinuous or discrete. Discrete time dynamical systems arisenaturally from section 2.1

flows. In general there are two strategies for replacing a continuous-time
flow by iterated mappings; by cutting it by Poincaré sections, or bystrobing it
at a sequence of instants in time. Think of your partner moving to the beat in a
disco: a sequence of frozen stills. While ‘strobing’ is whatany numerical inte-
grator does, by representing a trajectory by a sequence of time-integration step
separated points, strobing is in general not a reduction of aflow, as the sequence
of strobed points still resides in the full state spaceM, of dimensionalityd. An
exception are non-autonomous flows that are externally periodically forced. In
that case it might be natural to observe the flow by strobing itat time intervals
fixed by the external forcing, as in example 7.7 where strobing of a periodically
forced Hamiltonian leads to the ‘standard map.’

In the Poincaré section methodone records the coordinates of a trajectory
whenever the trajectory crosses a prescribed trigger. Thistriggering event can be
as simple as vanishing of one of the coordinates, or as complicated as the trajectory
cutting through a curved hypersurface. A Poincaré section(or, in the remainder
of this chapter, just ‘section’) isnot a projection onto a lower-dimensional space:
Rather, it is a local change of coordinates to a direction along the flow, and the
remaining coordinates (spanning the section) transverse to it. No information
about the flow is lost by reducing it to its set of Poincaré section points and the
return maps connecting them; the full space trajectory can always be reconstructed
by integration from the nearest point in the section.

Reduction of a continuous time flow to its Poincaré section is a powerful vi-
sualization tool. But, the method of sections is more than visualization; it is also
a fundamental tool of dynamics - to fully unravel the geometry of a chaotic flow,
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CHAPTER 3. DISCRETE TIME DYNAMICS 56

Figure 3.1: A trajectoryx(t) that intersects a Poincaré
section P at times t1, t2, t3, t4, and closes a cycle
(x̂1, x̂2, x̂3, x̂4), x̂k = x(tk) ∈ P of topological length
4 with respect to the section. In general, the intersec-
tions are not normal to the section. Note also that the
crossingz does not count, as it in the wrong direction.
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onehas toquotient all of its symmetries, and evolution in time is one of these
(This delphic piece of hindsight while be illuminated in chapter 10).

3.1 Poincaŕe sections

A continuous time flow decomposes the state space into Lagrangian ‘spaghetti’ of
figure 2.2, a union of non-intersecting 1-dimensional orbits. Any point on an orbit
can be used to label the orbit, with the state space thus reduced to a ‘skew-product’
of a (d−1)-dimensional spaceP of labeling points ˆx j ∈ P and the corresponding
1-dimensional orbit curvesM j on which the flow acts as a time translation. How-
ever, as orbits can be arbitrary complicated and, if unstable, uncontrollable for
times beyond the Lyapunov time (1.1), in practice it is necessary to split the orbit
into finite trajectory segments, with time intervals corresponding to the shortest re-
currence times on a non-wondering set of the flow,finite times for which the flow
is computable. A particular prescription for picking the orbit-labeling points
in called aPoincaré section. In introductory texts Poincaré sections are treated
as pretty visualizations of a chaotic flows, akin to plastic surgery and Botox, but
their dynamical significance is much deeper than that. Once asection is defined,chapter 10

a ‘Lagrangian’ description of the flow (discussed above, page 47) is replaced by
the ‘Eulerian’ formulation, with the trajectory-tangent velocity field v(x̂) , x̂ ∈ P
enabling us to go freely between the time-quotiened spaceP and the full state
spaceM. The dynamically importanttransverse dynamics–description of how
nearby trajectories attract/ repeal each other– is encoded in mapping ofP → P

induced by the flow - dynamics along orbits is of secondary importance.

Successive trajectory intersections with a Poincaré section, a (d−1)-dimension-
al hypersurface embedded in thed-dimensional state spaceM, figure 3.1, define
thePoincaré return map P(x̂), a (d−1)-dimensional map of form

x̂′ = P(x̂) = f τ(x̂)(x̂) , x̂′, x̂ ∈ P . (3.1)

Here thefirst return functionτ(x̂)–sometimes referred to as theceiling function–is
the time of flight to the next section for a trajectory starting at x̂. The choice of
the section hypersurfaceP is altogether arbitrary. It is rarely possible to define
a single section that cuts across all trajectories of interest. Fortunately, one often
needs only a local section, a finite hypersurface of codimension 1 intersected by
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CHAPTER 3. DISCRETE TIME DYNAMICS 57

a swarm of trajectories near to the trajectory of interest (the case of several sec-
tions is discussed in sect. 3.4). Such hypersurface can be specified implicitly by a
single condition, through a functionU(x) that is zero whenever a pointx is on the
Poincaré section,

x̂ ∈ P iff U(x̂) = 0 . (3.2)

The gradient ofU(x) evaluated at ˆx ∈ P serves a two-fold function. First, the
flow should pierce the hypersurfaceP, rather than being tangent to it. A nearby
point x̂ + δx is in the hypersurfaceP if U(x̂ + δx) = 0. A nearby point on the
trajectory is given byδx = vδt, so a traversal is ensured by thetransversality
condition

(v · ∇U) =
d
∑

j=1

v j(x̂) ∂ jU(x̂) , 0 , ∂ jU(x̂) =
∂

∂x̂ j
U(x̂) , x̂ ∈ P . (3.3)

Second, the gradient∇U defines the orientation of the hypersurfaceP. The flow
is oriented as well, and a periodic orbit can pierceP twice, traversing it in either
direction, as in figure 3.1. Hence the definition of Poincaréreturn mapP(x̂) needs
to be supplemented with the orientation condition

x̂n+1 = P(x̂n) , U(x̂n+1) = U(x̂n) = 0 , n ∈ Z+

d
∑

j=1

v j(x̂n) ∂ jU(x̂n) > 0 . (3.4)

In this way the continuous timet flow x(t) = f t(x) is reduced to a discrete timen
sequence ˆxn of successiveorientedtrajectory traversals ofP. chapter 17

With a sufficiently clever choice of a Poincaré section or a set of sections, any
orbit of interest intersects a section. Depending on the application, one might need
to convert the discrete timen back to the continuous flow time. This is accom-
plished by adding up the first return function timesτ(x̂n), with the accumulated
flight time given by

tn+1 = tn + τ(x̂n) , t0 = 0 , xn ∈ P . (3.5)

Other quantities integrated along the trajectory can be defined in a similar manner,
and will need to be evaluated in the process of evaluating dynamical averages.

A few examples may help visualize this.

Example 3.1 A template and the associated hyperplane Poincar é section:
The simplest choice of a Poincaré section is a plane P specified by a ‘template’ point
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CHAPTER 3. DISCRETE TIME DYNAMICS 58

Figure 3.2: (Right:) a sequence of Poincaré sec-
tions of the Rössler strange attractor, defined by
planes through thez axis, oriented at angles (a)
−60o (b) 0o, (c) 60o, (d) 120o, in the x-y plane.
(Left:) side andx-y plane view of a typical tra-
jectory with Poincaré sections superimposed. (R.
Paškauskas)
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(located at the tip of the vector x̂′) and a normal vector n̂ perpendicular to the plane. A
point x̂ is in this plane if it satisfies the linear condition

U(x̂) = (x̂− x̂′) · n̂ = 0 for x̂ ∈ P . (3.6)

Consider a circular periodic orbit centered at x̂′, but not lying in P. It pierces
the hyperplane twice; the v · n̂ > 0 traversal orientation condition (3.4) ensures that the
first return time is the full period of the cycle. (continued in example 12.1)

What about smooth, continuous time flows, with no obvious surfaces that
would be good Poincaré sections?

Example 3.2 Pendulum: The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.4. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section y = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a piece of
paper. The next example offers a better illustration of the utility of visualization
of dynamics by means of Poincaré sections.
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CHAPTER 3. DISCRETE TIME DYNAMICS 59

Figure 3.3: Return maps for thern → rn+1 ra-
dial distance Poincaré sections of figure 3.2. The
‘multi-valuedness’ of (b) and (c) is only appar-
ent: the full return map is 2-dimensional,{r ′, z′} =
P{r,z}. (R. Paškauskas)
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Example 3.3 Rössler flow: (continued from example 2.3) Consider figure 2.6, a
typical trajectory of the 3-dimensional Rössler flow (2.17). The strange attractor wrapsexercise 3.1
around the z axis, so one choice for a Poincaré section is a plane passing through the
z axis. A sequence of such Poincaré sections placed radially at increasing angles with
respect to the x axis, figure 3.2, illustrates the ‘stretch & fold’ action of the Rössler flow,
by assembling these sections into a series of snapshots of the flow. A line segment
in (a), traversing the width of the attractor at y = 0, x > 0 section, starts out close to
the x-y plane, and after the stretching (a) → (b) followed by the folding (c) → (d), the
folded segment returns (d)→ (a) close to the initial segment, strongly compressed. In
one Poincaré return the interval is thus stretched, folded and mapped onto itself, so the
flow is expanding. It is also mixing, as in one Poincaré return a point from the interior
of the attractor can map onto the outer edge, while an edge point lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return map
(3.1), as in figure 3.3. Cases (a) and (d) are examples of nice 1-to-1 return maps. While
(b) and (c) appear multimodal and non-invertible, they are artifacts of projecting a 2-exercise 3.2
dimensional return map (rn, zn)→ (rn+1, zn+1) onto a 1-dimensional subspace rn → rn+1.
(continued in example 3.5)

fast track:

sect. 3.3, p. 63

The above examples illustrate why a Poincaré section givesa more informative
snapshot of the flow than the full flow portrait. For example, while the full flow
portrait of the Rössler flow figure 2.6 gives us no sense of thethickness of the
attractor, we see clearly in the Poincaré sections of figure3.2 that even though the
return maps are 2-dimensional→ 2-dimensional, the flow contraction is so strong
that for all practical purposes it renders the return maps 1-dimensional. (We shall
quantify this claim in example 4.6.)

3.1.1 Section border

How far does the neighborhood of a template extend along the hyperplane (3.6)?
A section captures faithfully neighboring orbits as long asit cuts them transver-
sally; it fails the moment the velocity field at point ˆx∗ fails to pierce the section.
At this location the velocity is tangent to the section and, thus, orthogonal to the
template normal ˆn,

n̂ · v(x̂∗) = 0 , x̂∗ ∈ S , (3.7)
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CHAPTER 3. DISCRETE TIME DYNAMICS 60

i.e., v⊥(x̂), component of thev(x̂) normal to the section, vanishes at ˆx∗. For a
smooth flow such points form a smooth (d−2)-dimensionalsection borderS ⊂ P,
encompassing the open neighborhood of the template characterized by qualita-
tively similar flow. We shall refer to this region of the section hyperplane as the
(maximal) chart of the template neighborhood for a given hyperplane (3.6).

If the template point is an equilibriumxq, there is no dynamics exactly at this
point as the velocity vanishes (v(xq) = 0 by the definition of equilibrium) and
cannot be used to define a normal to the section. Instead, we use the local lin-
earized flow to construct the local Poincaré sectionP. We orientP so the unsta-
ble eigenvectors are transverse to the section, and at leastthe slowest contracting
eigenvector is tangent to the section, as in figure 4.7. This ensures that the flow is
transverse toP in an open neighborhood of the templatexq. exercise 3.7

Visualize the flow as a smooth 3-dimensional steady fluid flow cut by a 2-
dimensional sheet of light. Lagrangian particle trajectories either cross, are tan-
gent to, or fail to reach this plane; the 1-dimensional curves of tangency points de-
fine the section border. An example is offered by the velocity field of the Rössler
flow of figure 4.6. Pick a Poincaré section hyperplane so it goes through both equi-
librium points. The section might be transverse to a large neighborhood around
the inner equilibriumx−, but dynamics around the outer equilibriumx+ is totally
different, and the competition between the two types of motion islikely to lead
to vanishing ofv⊥(x̂), component of thev(x̂) normal to the section, someplace
in-between the two equilibria. A section is good up to the section border, but be-
yond it an orbit infinitesimally close to ˆx∗ generically does not cross the section
hyperplane, at least not infinitesimally close toS.

For 3-dimensional flows, the section borderS is a 1-dimensional closed curve
in the section 2-dimensionalP, and easy to visualize. In higher dimensions, the
section border is a (d−2)-dimensional manifold, not easily visualized, and the
best one can do is to keep checking for change of sign (3.4) at Poincaré section
returns of nearby trajectories close to the section border hypersurfaceS; (3.7) will
be positive inside, negative immediately outsideS.

Thus for a nonlinear flow, with its complicated curvilinear invariant manifolds,
a single section rarely suffices to capture all of the dynamics of interest.

3.1.2 What is the best Poincaŕe section?

In practice, picking sections is a dark and painful art, especially for high-dimens-
ional flows where the human visual cortex falls short. It helps to understand why
we need them in the first place.

Whenever a system has a continuous symmetryG, any two solutions related
by the symmetry are equivalent. We do not want to keep recomputing these over
and over. We would rather replace the whole continuous family of solutions by
one solution in order to be more efficient. This approach replaces the dynamics
(M, f ) with dynamics on thequotient state space(M/t, f̂ ). For now, we only chapter 10
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Figure 3.4: (a) Lorenz flow figure 2.5 cut byy = x
Poincaré section planeP through thez axis and
both EQ1,2 equilibria. Points where flow pierces
into section are marked by dots. To aid visualiza-
tion of the flow near theEQ0 equilibrium, the flow
is cut by the second Poincaré section,P′, through
y = −x and thezaxis. (b) Poincaré sectionsP and
P′ laid side-by-side. The singular nature of these
sections close toEQ0 will be elucidated in exam-
ple 4.7 and figure 11.8 (b). (E.
Siminos)

(a) (b)

remark that constructing explicit quotient state space flowf̂ is either extremely
difficult, impossible, or generates unintelligible literature. Our solution (see chap-
ter 10) will be to resort to the method of slices.

Time evolution itself is a 1-parameter Lie group, albeit a highly nontrivial one
(otherwise this book would not be much of a doorstop). The invariants of the flow
are its infinite-time orbits; particularly useful invariants are compact orbits such
as equilibrium points, periodic orbits, and tori. For any orbit it suffices to pick a
single state space pointx ∈ Mp, the rest of the orbit is generated by the flow.

Choice of this one “labeling” point is utterly arbitrary; indynamics this is
called a “Poincaré section,” and in theoretical physics this goes by the excep-
tionally uninformative name of “gauge fixing.” The price is that one generates
“ghosts,” or, in dynamics, increases the dimensionality ofthe state space by addi-
tional constraints (see sect. 13.4). It is a commonly deployed but inelegant proce-
dure where symmetry is broken for computational convenience, and restored only
at the end of the calculation, when all broken pieces are reassembled.

With this said, there are a few rules of thumb to follow: (a) You can pick as
many sections as convenient, as discussed in sect. 3.4. (b) For ease of compu-
tation, pick linear sections (3.6) when possible. (c) If equilibria play important
role in organizing a flow, pick sections that go through them (see example 3.4). In
that case, try to place contractor eigenvectors inside the hyperplane, see Lorenz
figure 3.4. Remember, the stability eigenvectors are never orthogonal to each
other, unless that is imposed by some symmetry. (d) If you have a global discretechapter 9

or continuous symmetry, pick sections left invariant by thesymmetry (see exam-
ple 9.14). For example, setting the normal vector ˆn in (3.6) atx to be the velocity
v(x) is natural and locally transverse. (e) If you are solving a local problem, like
finding a periodic orbit, you do not need a global section. Pick a section or a set of
(multi-shooting) sections on the fly, requiring only that they are locally transverse
to the flow. (f) If you have another rule of thumb dear to you, let us know.

Example 3.4 Sections of Lorenz flow: (continued from example 2.2) The plane
P fixed by the x = y diagonal and the z-axis depicted in figure 3.4 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.5, as it contains all three equilib-
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CHAPTER 3. DISCRETE TIME DYNAMICS 62

ria, xEQ0 = (0, 0, 0) and the (2.13) pair xEQ1 , xEQ2 . A section has to be supplemented
with the orientation condition (3.4): here points where flow pierces into the section are
marked by dots.

Equilibria xEQ1 , xEQ2 are centers of out-spirals, and close to them the section
is transverse to the flow. However, close to EQ0 trajectories pass the z-axis either
by crossing the section P or staying on the viewer’s side. We are free to deploy as
many sections as we wish: in order to capture the whole flow in this neighborhood
we add the second Poincaré section, P′, through the y = −x diagonal and the z-axis.
Together the two sections, figure 3.4 (b), capture the whole flow near EQ0. In contrast
to Rössler sections of figure 3.2, these appear very singular. We explain this singularity
in example 4.7 and postpone construction of a Poincaré return map until example 9.14.
(E. Siminos and J. Halcrow)

3.2 Computing a Poincaŕe section

(R. Mainieri)

For almost any flow of physical interest a Poincaré section is not available in
analytic form, so one tends to determine it crudely, by numerically bracketing
the trajectory traversals of a section and iteratively narrowing the bracketing time
interval. We describe here a smarter method, which you will only need when remark 3.2

you seriously look at a strange attractor, with millions of points embedded in a
high(er)-dimensional Poincaré section - so skip this section on the first reading.

Consider the system (2.6) of ordinary differential equations in the vector vari-
ablex = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.8)

where the flow velocityv is a vector function of the position in state spacex and
the timet. In general, the mapf τn(xn) = xn +

∫

dτ v(x(τ)) cannot be integrated
analytically, so we will have to resort to numerical integration to determine the
trajectories of the system. Our task is to determine the points at which the numer-
ically integrated trajectory traverses a given hypersurface. The hypersurface will
be specified implicitly through a functionU(x) that is zero whenever a pointx is
on the Poincaré section, such as the hyperplane (3.6).

If we use a tiny step size in our numerical integrator, we can observe the value
of U as we integrate; its sign will change as the trajectory crosses the hypersurface.
The problem with this method is that we have to use a very smallintegration time
step. However, there is a better way to land exactly on the Poincaré section.

Let ta be the time just beforeU changes sign, andtb the time just after it
changes sign. The method for landing exactly on the Poincar´e section will be to
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CHAPTER 3. DISCRETE TIME DYNAMICS 63

convert one of the space coordinates into an integration variable for the part of the
trajectory betweenta andtb. Using

dxk

dx1

dx1

dt
=

dxk

dx1
v1(x, t) = vk(x, t) (3.9)

we can rewrite the equations of motion (3.8) as

dt
dx1
=

1
v1
, · · · ,

dxd

dx1
=

vd

v1
. (3.10)

Now we usex1 as the ‘time’ in the integration routine and integrate it from x1(ta) to
the value ofx1 on the hypersurface, determined by the hypersurface intersection
condition (3.6). This is the end point of the integration, with no need for any
interpolation or backtracking to the surface of section. The x1–axis need not be
perpendicular to the Poincaré section; anyxi can be chosen as the integration
variable, provided thexi-axis is not parallel to the Poincaré section at the trajectory
intersection point. If the section crossing is transverse (3.3), v1 cannot vanish in
the short segment bracketed by the integration step preceding the section, and the
point on the Poincaré section.

Example 3.5 Computation of R össler flow Poincar é sections. (continued from
example 3.3) Convert Rössler equation (2.17) to cylindrical coordinates:

ṙ = υr = −zcosθ + ar sin2 θ

θ̇ = υθ = 1+
z
r

sinθ +
a
2

sin 2θ

ż = υz = b+ z(r cosθ − c) . (3.11)

Poincaré sections of figure 3.2 are defined by the fixing angle U(x) = θ − θ0 = 0. In
principle one should use the equilibrium x+ from (2.18) as the origin, and its eigen-
vectors as the coordinate frame, but here original coordinates suffice, as for parameter
values (2.17), and (x0, y0, z0) sufficiently far away from the inner equilibrium, θ increases
monotonically with time. Integrate

dr
dθ
= υr/υθ ,

dt
dθ
= 1/υθ ,

dz
dθ
= υz/υθ (3.12)

from (rn, θn, zn) to the next Poincaré section at θn+1, and switch the integration back to
(x, y, z) coordinates. (continued in example 4.1) (Radford Mitchell, Jr.)

3.3 Mappings

Do it again!
—Isabelle, age 3
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CHAPTER 3. DISCRETE TIME DYNAMICS 64

Figure 3.5: A flow x(t) of figure 3.1 represented by a
Poincaré return map that maps points in the Poincaré
sectionP as x̂n+1 = f (x̂n) . In this example the orbit of
x̂1 is periodic and consists of the four periodic points
(x̂1, x̂2, x̂3, x̂4).
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Though we have motivated discrete time dynamics by considering sections of a
continuous flow and reduced the continuous-time flow to a family of mapsP(x̂)
mapping points ˆx from a section to a section, there are many settings in which
dynamics is inherently discrete, and naturally described by repeated iterations of
the same map remark 3.1

f :M→M ,

or sequences of consecutive applications of a finite set of maps, a different map,
fA, fB, . . ., for points in different regions{MA,MB, · · · ,MZ},

{ fA, fB, . . . fZ} :M→M , (3.13)

for example maps relating different sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applications of the map or maps.
As writing out formulas involving repeated applications ofa set of maps explicitly
can be awkward, we streamline the notation by denoting the (non-commutiative)
map composition by ‘◦’

fZ(· · · fB( fA(x))) · · ·) = fZ ◦ · · · fB ◦ fA(x) , (3.14)

and thenth iterate of mapf by

f n(x) = f ◦ f n−1(x) = f
(

f n−1(x)
)

, f 0(x) = x .
section 2.1

The trajectoryof x is the finite set of points

{

x, f (x), f 2(x), . . . , f n(x)
}

,

traversed in timen, andMx, theorbit of x, is the subset of all points ofM that
can be reached by iterations off . A periodic point(cyclepoint) xk belonging to a
periodic orbit (cycle) of periodn is a real solution of

f n(xk) = f ( f (. . . f (xk) . . .)) = xk , k = 0, 1, 2, . . . , n − 1 . (3.15)

For example, the orbit of ˆx1 in figure 3.5 is a set of four cycle points, ( ˆx1, x̂2, x̂3, x̂4) .
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Figure 3.6: The strange attractor and an unstable pe-
riod 7 cycle of the Hénon map (3.17) witha = 1.4,
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (from K.T. Hansen [3.2])
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The functional form of such Poincaré return mapsP as figure 3.3 can be ap-
proximated by tabulating the results of integration of the flow from x̂ to the first
Poincaré section return for many ˆx ∈ P, and constructing a function that inter-
polates through these points. If we find a good approximationto P(x̂), we can
get rid of numerical integration altogether, by replacing the continuous time tra-
jectory f t(x̂) by iteration of the Poincaré return mapP(x̂). Constructing accurate
P(x̂) for a given flow can be tricky, but we can already learn much from approxi-
mate Poincaré return maps. Multinomial approximations

Pk(x̂) = ak +

d
∑

j=1

bk j x̂ j +

d
∑

i, j=1

cki j x̂i x̂ j + . . . , x̂ ∈ P (3.16)

to Poincaré return maps
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, x̂n, x̂n+1 ∈ P

motivate the study of model mappings of the plane, such as theHénon map.

Example 3.6 Hénon map: The map

xn+1 = 1− ax2
n + byn

yn+1 = xn (3.17)

is a nonlinear 2-dimensional map frequently employed in testing various hunches about
chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence relation

xn+1 = 1− ax2
n + bxn−1 . (3.18)

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.
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The Hénon map is the simplest map that captures the ‘stretch & fold’ dynamics
of return maps such as Rössler’s, figure 3.2. It can be obtained by a truncation of a
polynomial approximation (3.16) to a Poincaré return map (3.16) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.6), is obtained by picking an arbitrary starting point and iterating
(3.17) on a computer. We plot here the dynamics in the (xn, xn+1) plane, rather than in
the (xn, yn) plane, because we think of the Hénon map as a model return map xn →

xn+1. As we shall soon see, periodic orbits will be key to understanding the long-timeexercise 3.5
dynamics, so we also plot a typical periodic orbit of such a system, in this case an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 29.1, and the periodic point labels 0111010, 1110100, · · · in sect. 12.2.

Example 3.7 Lozi map: Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.17) given by

xn+1 = 1− a|xn| + byn

yn+1 = xn . (3.19)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the ‘stretch
& fold’ type.

What we get by iterating such maps is–at least qualitatively–not unlike what
we get from Poincaré section of flows such as the Rössler flowfigure 3.3. For
an arbitrary initial point this process might converge to a stable limit cycle, to a
strange attractor, to a false attractor (due to roundoff errors), or diverge. In other
words, mindless iteration is essentially uncontrollable,and we will need to resort
to more thoughtful explorations. As we shall explain in due course, strategies forexercise 17.1

systematic exploration rely on stable/unstable manifolds, periodic points, saddle-
straddle methods and so on.

Example 3.8 Parabola: For sufficiently large value of the stretching parameter a,
one iteration of the Hénon map (3.17) stretches and folds a region of the (x, y) plane
centered around the origin, as will be illustrated in figure 12.4. The parameter a controls
the amount of stretching, while the parameter b controls the thickness of the folded
image through the ‘1-step memory’ term bxn−1 in (3.18). In figure 3.6 the parameter b is
rather large, b = 0.3, so the attractor is rather thick, with the transverse fractal structure
clearly visible. For vanishingly small b the Hénon map reduces to the 1-dimensional
quadratic map

xn+1 = 1− ax2
n . (3.20)

exercise 3.6

By setting b = 0 we lose determinism, as on reals the inverse of map (3.20) has two
real preimages {x+n−1, x

−
n−1} for most xn. If Bourbaki is your native dialect: the Hénon

map is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still,
this 1-dimensional approximation is very instructive. (continued in example 11.5)

As we shall see in sect. 11.3, an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the qualitative dynamics of many

maps - 16mar2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 3. DISCRETE TIME DYNAMICS 67

Figure 3.7: Reduction of a continuous-time flow (left
frame) to a set of Poincaré maps (right frame), with a
point on 1-cycle and the two cycle points of a 2-cycle
used as template points.

higher-dimensional dynamical systems. For this reason many expositions of the
theory of dynamical systems commence with a study of 1-dimensional maps. We
prefer to stick to flows, as that is where the physics is. appendix H.8

fast track:

sect. 4, p. 75

3.4 Charting the state space

In simple examples, such as the Rössler example 3.3, a single Poincaré section
suffices, but this is rarely the case for flows of physical interest. In this section
(skip it on first reading) we commence a discussion of the general case.

A Poincaré section is constructed by picking a ‘template’ point x̂′ within a
state space region of interest, and defining a hypersurface (3.2) that goes through
the template point. In theory, this Poincaré section couldbe any (d−1)-dimensional
manifold. In practice, a hyperplane (3.6) is the most convenient, the natural choice
for the vector normal to the section being ˆn = v(x̂′), the velocity field at the
template point ˆx′. This Poincaré section ˆx ∈ P is a hyperplane, appendix 13.4

v′ · (x̂− x̂′) = 0 , v′ = v(x̂′) , (3.21)

normal to the flow directionv′ at the template point ˆx′. Such section cuts the
nearby trajectories transversally, and is a good description of solutions similar to
the given template.

So one hyperspaceP will, in general, not suffice. A more insightful picture
of the dynamics is obtained by partitioning the state space into N qualitatively
distinct regions{M1,M2, . . . ,MN} and constructing a Poincaré section per re-
gion, globalatlas of the state space composed ofN local Poincaré sectionsP( j) section 11.1

or charts,each one capturing a neighborhood of a qualitatively prominent state
x̂′( j) ∈ S. We shall refer to these states astemplates, each represented in the state
spaceM of the system by atemplate point{x̂′(1), x̂′(2), · · · , x̂′(N)}.
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Our Poincaré section is a hyperplane. If we pick another template point
x̂′(2), it comes along with its own section hyperplane. The (d−1)-dimensional
Poincaré sections for an adjacent pair of template intersects in a ‘ridge’ (‘bound-
ary,’ ‘edge’), a (d−2)-dimensional hyperplane, easy to compute. Follow an ant
(the sequence of Poincaré map iterates) as it progresses along the Poincaré sec-
tion P(1). The moment ( ˆx(1)(τ) − x̂′(2)) · n̂(2) changes sign, the ant has crossed the
ridge, we switch the Poincaré section, and the ant continues its merry stroll now
confined to theP(2) section. Each Poincaré sectionP( j), provides a local chart
at x̂′( j) for a neighborhood of an important, qualitatively distinctclass of solu-
tions; together they ‘Voronoi’ tessellate the curved manifold in which the reduced
dynamics is replaced by a finite set of mappings between hyperplane tiles. An ex-
ample is the periodic-orbit implementation of the idea of state space tessellation
by neighborhoods of recurrent points, so dear to professional cyclists, illustrated
in figure 3.7.

For a given dynamical flow, the physical task is to pick a minimal set of qual-
itatively distinct templates. The state space might be filled by all kinds of highly
unstable, never revisited equilibria and relative periodic orbits. The choice of
templates should reflect the dynamically prominent states seen in the long-time
simulations of system’s dynamics. We have only vague adviceon how to pick a
single Poincaré section (see sect. 3.1.2), and no advice onhow to systematically
pick a set of ‘good’ templates, other than that the associated section tiles should
be as large as possible, but still sufficiently small to exclude orbit tangencies, i.e.,
stop before crossing their section borders (3.7). Ideally,one wold like to pick as
few templates as possible in figure 3.7. Once templates are picked, the rest is ge-
ometry of hyperplanes, so checking whether the section border is on the far side
of the tile edge (ridge between two sections) is a fast, linear computation.

There is a rub, though - you need to know how to pick the neighboring tem-
plates. Perhaps a glance at figure 3.7 helps visualize the problem; imagine that
the tiles belong to the Poincaré sections through templatepoints on these orbits.
One could slide templates along their trajectories until the pairs of straight line
segments connecting neighboring template points are minimized, but that seems
a bit arbitrary. At this time we have no advice as how to ‘synchronize’ the tem-
plates relative to each other. The astute reader will instantly recognize this as the
problem of ‘local gauge invariance’ or ‘gauge fixing’ of Quantum Field Theory
and General Relativity.

3.4.1 Navigating the Poincaŕe-charted state space

Our goal now is to replace the continuous-time dynamics by a set of Poincaré
maps between a set of hyperplane sections, as in figure 3.7. The flat hyperplane
(3.6) is anad hocconstruct; one Poincaré section rarely suffices to capture all
of the dynamics of interest. Instead we chart the state spaceby partitioning it
into N qualitatively distinct regions{M1,M2, . . . ,MN}. Successive trajectory
intersections with the set of (d−1)-dimensional hypersurfacesPs embedded in the
d-dimensional state spaceM, define the set of (d−1)→ (d−1) Poincaré maps section 11.1
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Figure 3.8: Some examples of 3-disk cycles: (a)
12123 and13132 are mapped into each other by the
flip across 1 axis. Similarly (b)123 and132 are related
by flips, and (c)1213,1232 and1323 by rotations. (d)
The cycles121212313 and121212323 are related by
rotationand time reversal. These symmetries are dis-
cussed in chapter 9. (From ref. [3.1])

x̂n+1 = Psn+1sn(x̂n) = f τ(x̂n)(x̂n) (3.22)

x̂n+1 ∈ P
sn+1 , x̂n ∈ P

sn , s ∈ {1, 2, . . . ,N} .

Thed-dimensional continuous time flow is thus reduced to discrete time compo-
sition

Ps0s1···sn = Psnsn−1 ◦ · · · ◦ Ps2s1 ◦ Ps1s0

of a set of Poincaré maps (3.22) that map the coordinates of Poincaré sectionPsn

to those ofPsn+1, the next section traversed by a given trajectory.

If a trajectory traverses regionsMs0 → Ms1 → · · · → Msn , the sequence
s0s1 · · · sn = sn ← · · · ← s1 ← s0 is said to beadmissible. The return map section 11.6

Ps0 from sectionPs0 to itself has a contribution from any admissible returning
(periodic,sn = s0) sequence of compositions

Ps0s1···sn−1s0 = Ps0sn−1 ◦ · · · ◦ Ps2s1 ◦ Ps1s0 (3.23)

The next example offers an unambiguous set of such Poincaré sections whichchapter 11

do double duty, providing us both with an exact representation of dynamics in
terms of maps, and with a symbolic dynamics, a subject that wewill return to in
chapter 11.

Example 3.9 Pinball game, Poincar é dissected. (continued from sect. 1.4) A
phase-space orbit is fully specified by its position and momentum at a given instant,
so no two distinct phase-space trajectories can intersect. The configuration space
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Figure 3.9: (a) Poincaré section coordinates for
the 3-disk game of pinball. (b) Collision sequence
(s1, p1) 7→ (s2, p2) 7→ (s3, p3) from the boundary
of a disk to the boundary of the next disk is coded
by the Poincaré maps sequenceP3←2P2←1.

(a)

s1

φ1

s2

a

φ1

(b)

p sin φ1

s1

p sin φ2

s2

p sin φ3

s3

(s1,p1)

(s2,p2)

(s3,p3)

trajectories, however, can and do intersect, in rather unilluminating ways, as e.g. in
figure 3.8 (d), and it can be rather hard to perceive the systematics of orbits from their
configuration space shapes. The problem is that we are looking at the projections of
4-dimensional state space trajectories onto a 2-dimensional configuration subspace.
A much clearer picture of the dynamics is obtained by constructing a set of Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its posi-
tion and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces–the ball just travels at constant velocity along a straight line–so
we can reduce the 4-dimensional flow to a 2-dimensional map Pσk←σ j that maps the
coordinates (Poincaré section P1) of the pinball from one disk edge to another. Just
after the moment of impact the trajectory is defined by sn, the arc-length position of the
nth bounce along the billiard wall, and pn = psinφn the outgoing momentum compo-
nent parallel to the billiard wall at the point of impact, figure 3.9 (a). These coordinatesexercise 8.6
(due to Birkhoff) are smart, as they conserve the phase-space volume. Trajectories
originating from one disk can hit either of the other two disks, or escape without further
ado. We label the survivor state space regions P12, P13. In terms of the three Poincaré
sections, one for each disk, the dynamics is reduced to the set of six maps

(sn+1, pn+1) = Pσn+1←σn(sn, pn) , σ ∈ {1, 2, 3} (3.24)

from the boundary of a disk to the boundary of the next disk, figure 3.9 (b). The explicit
form of this map is easily written down, see example 8.1, but much more economical
is the symmetry quotiented version of chapter 9 which replaces the above 6 forwardchapter 9
maps by a return map pair P0,P1. (continued in chapter 8) chapter 8

Billiard dynamics is exceptionally simple - free flight segments, followed by
specular reflections at boundaries, with billiard boundaries the obvious choice as
Poincaré sections. For a general flow one is never so lucky. Also, so far we have
discussed only flows with a 1 continuous parameter (the time). The general case
of N-parameter continuous symmetries we postpone to chapter 10.

Résum é

In recurrent dynamics a trajectory exits a region in state space and then reenters
it infinitely often, with finite return times. If the orbit is periodic, it returns after
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a full period. So, on average, nothing much really happens along the trajectory–
what is important is behavior of neighboring trajectories transverse to the flow.
This observation motivates a replacement of the continuoustime flow by iterative
mapping, the Poincaré maps. A visualization of a strange attractor can be greatly
facilitated by a felicitous choice of Poincaré sections, and the reduction of flow
to Poincaré maps. This observation motivates in turn the study of discrete-time
dynamical systems generated by iterations of maps.

A particularly natural application of the Poincaré section method is the reduc-
tion of a billiard flow to a boundary-to-boundary return map,described in chap-
ter 8. As we shall show in chapter 6, further simplification ofa Poincaré returnchapter 8

chapter 6map, or any nonlinear map, can be attained through rectifying these maps locally
by means of smooth conjugacies.

In truth, as we shall see in chapter 10, the reduction of a continuous time
flow by the method of Poincaré sections is not a convenience,but an absolute
necessity - to make sense of an ergodic flow, all of its continuous symmetries
must be reduced, evolution in time being one of these symmetries.

Commentary

Remark 3.1 Functions, maps, mappings. In mathematics, “mapping” is a noun,
“map” is a verb. Nevertheless, “mapping” is often shortenedto “map” and is often used
as a synonym for “function.” “Function” is used for mappingsthat map to a single point
in R or C, while a mapping which maps toRd would be called a “mapping,” and not a
“function.” Likewise, if a point maps to several points and/or has several pre-images, this
is a “many-to-many” mapping, rather than a function. In the sense used here, in the theory
of dynamical systems, dynamical evolution from an initial state to a state finite time later
is a (time-forward) map.

Remark 3.2 Determining a Poincaré section. The trick described in sect. 3.2 is due
to Hénon [3.3, 3.4, 3.5]. The idea of changing the integration variable from time to one
of the coordinates, although simple, avoids the alternative of having to interpolate the
numerical solution to determine the intersection.

Remark 3.3 Hénon, Lozi maps. The Hénon map is of no particular physical import in
and of itself–its significance lies in the fact that it is a minimal normal form for modeling
flows near a saddle-node bifurcation, and that it is a prototype of the stretching and folding
dynamics that leads to deterministic chaos. It is generic inthe sense that it can exhibit ar-
bitrarily complicated symbolic dynamics and mixtures of hyperbolic and non–hyperbolic
behaviors. Its construction was motivated by the best knownearly example of ‘determin-
istic chaos,’ the Lorenz equation, see example 2.2 and remark 2.3. Y. Pomeau’s studies
of the Lorenz attractor on an analog computer, and his insights into its stretching and
folding dynamics motivated Hénon [3.6] to introduce the H´enon map in 1976. Hénon’s
and Lorenz’s original papers can be found in reprint collections refs. [3.7, 3.8]. They are
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a pleasure to read, and are still the best introduction to thephysics motivating such mod-
els. Hénon [3.6] had conjectured that for (a, b) = (1.4, 0.3) Hénon map a generic initial
point converges to astrange attractor. Its existence has never been proven. While for all
practical purposes this is a strange attractor, it has not been demonstrated that long time
iterations are not attracted by some long attracting limit cycle. Indeed, the pruning front
techniques that we describe below enable us to find stable attractors arbitrarily close byexercise 17.1

in the parameter space, such as the 13-cycle attractor at (a, b) = (1.39945219, 0.3). A rig-
orous proof of the existence of Hénon attractors close to 1-dimensional parabola map is
due to Benedicks and Carleson [3.9]. A detailed descriptionof the dynamics of the Hénon
map is given by Mira and coworkers [3.10, 3.11, 3.12], as wellas very many other authors.
The Lozi map (3.19) is particularly convenient in investigating the symbolic dynamics of
2-dimensional mappings. Both the Lorenz and Lozi [3.13] systems are uniformly expand-
ing smooth systems with singularities. The existence of theattractor for the Lozi map was
proven by M. Misiurewicz [3.14], and the existence of the SRBmeasure was established
by L.-S. Young [3.15]. section 16.1
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Exercises

3.1. Poincaré sections of the R̈ossler flow. (continuation
of exercise 2.8) Calculate numerically a Poincaré sec-
tion (or several Poincaré sections) of the Rössler flow.
As the Rössler flow state space is 3D, the flow maps
onto a 2D Poincaré section. Do you see that in your
numerical results? How good an approximation would
a replacement of the return map for this section by a 1-
dimensional map be? More precisely, estimate the thick-
ness of the strange attractor. (continued as exercise 4.4)

(R. Paškauskas)

3.2. A return Poincar é map for the Rössler flow. (con-
tinuation of exercise 3.1) That Poincaré return maps
of figure 3.3 appear multimodal and non-invertible is
an artifact of projections of a 2-dimensional return map
(Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional subspace
Rn→ Rn+1.

Construct a genuinesn+1 = f (sn) return map by parame-
terizing points on a Poincaré section of the attractor fig-
ure 3.2 by a Euclidean lengths computed curvilinearly
along the attractor section.

This is best done (using methods to be developed in
what follows) by a continuation of the unstable man-
ifold of the 1-cycle embedded in the strange attractor,
figure 13.2 (b).

(P. Cvitanović)

3.3. Arbitrary Poincar é sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equationU(x) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

dxk

ds
= κ fk , (3.25)

with dt/ds = κ, and choosingκ to be 1 or 1/ f1.
This allows one to switch betweent andx1 as the
integration ’time.’

(b) Introduce an extra dimensionxn+1 into your sys-
tem and set

xn+1 = U(x) . (3.26)

How can this be used to find a Poincaré section?

3.4. Classical collinear helium dynamics.
(continuation of exercise 2.10) Make a Poincaré surface
of section by plotting (r1, p1) wheneverr2 = 0: Note that
for r2 = 0, p2 is already determined by (7.8). Compare
your results with figure 6.3 (b).

(Gregor Tanner, Per Rosenqvist)

3.5. Hénon map fixed points. Show that the two fixed
points (x0, x0), (x1, x1) of the Hénon map (3.17) are
given by

x0 =
−(1− b) −

√

(1− b)2 + 4a
2a

,

x1 =
−(1− b) +

√

(1− b)2 + 4a
2a

. (3.27)

3.6. Fixed points of maps. A continuous functionF is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity ofF to show that a 1-
dimensional contractionF of the interval [0, 1] has
at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope of
F is always smaller than one,|F′| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?

3.7. Section border for Rössler. (continuation of exer-
cise 3.1) Determine numerically section borders (3.7)
for several Rössler flow Poincaré sections of exercise 3.1
and figure 3.2, at least for angles

(a) −60o , (b) 0o, and

(c) A Poincaré section hyperplane that goes through
both equilibria, see (2.18) and figure 4.6. Two
points only fix a line: think of a criterion for a
good orientation of the section hyperplane, per-
haps by demanding that the contracting eigenvec-
tor of the ’inner’ equilibriumx− lies in it.

(d) (Optional) Hand- or computer-draw a visualiza-
tion of the section border as 3-dimensional fluid
flow which either crosses, is tangent to, or fails to
cross a sheet of light cutting across the flow.

As the state space is 3-dimensional, the section borders
are 1-dimensional, and it should be easy to outline the
border by plotting the color-coded magnitude ofv⊥(x̂),
component of thev(x̂) normal to the section, for a fine
grid of 2-dimensional Poincaré section plane points. For
sections that go through thez-axis, the normal velocity
v⊥(x̂) is tangent to the circle through ˆx, and vanishes for
θ̇ in the polar coordinates (3.11), but that is not true for
other Poincaré sections, such as the case (c).

(P. Cvitanović)
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Math.133, 73 (1991).

[3.10] C. Mira,Chaotic Dynamics–From one dimensional endomorphism to two
dimensional diffeomorphism, (World Scientific, Singapore, 1987).

[3.11] I. Gumowski and C. Mira,Recurrances and Discrete Dynamical Systems
(Springer-Verlag, Berlin 1980).

[3.12] D. Fournier, H. Kawakami and C. Mira,C.R. Acad. Sci. Ser. I,298, 253
(1984); 301, 223 (1985);301, 325 (1985).

[3.13] R. Lozi, “Un attracteur étrange du type attracteur de Hénon,” J. Phys.
(Paris) Colloq.39, 9 (1978).

[3.14] M. Misiurewicz, “Strange attractors for the Lozi mapping,” Ann. New York
Acad. Sci.357, 348 (1980).

[3.15] L.-S. Young, “Bowen-Ruelle measures for certain piecewise hyperbolic
maps,”Trans. Amer. Math. Soc.287, 41 (1985).

[3.16] W. S. Franklin, “New Books,”Phys. Rev.6, 173 (1898);
seewww.ceafinney.com/chaos.

[3.17] P. Dahlqvist and G. Russberg, “Existence of stable orbits in thex2y2 po-
tential,” Phys. Rev. Lett.65, 2837 (1990).

refsMaps - 6mar2009 ChaosBook.org version14, Dec 31 2012


