CHAPTER 16. TRANSPORTING DENSITIES

Gl 5

Figure 16.1: (a) First level of partitioning: A
coarse partition ofM into regionsMo, M;, and

M. (b) n = 2 level of partitioning: A refinement
C hapter 16 of the above partition, with each regiovi; subdi-
vided into Mio, My, and M;,.

Transporting densities

Paulina: I'll draw the curtain:
My lord’s almost so far transported that
He'll think anon it lives.

—W. Shakespear&he Winter's Tale

(P. Cvitanovi¢, R. Artuso, L. Rondoni, and E.A. Spiegel)

saw that such a trajectory can be very complicated. In chabtee stud-

ied a small neighborhood of a trajectory and learned that seahborhood
can grow exponentially with time, making the concept of kiag an individual
trajectory for long times a purely mathematical ideali@ati

I N cHAPTERS 2, 3, 7 and 8 we learned how to track an individual trajectangd

While the trajectory of an individual representative pairdy be highly con-
voluted, as we shall see, the density of these points migit@wn a manner that
is relatively smooth. The evolution of the density of repreative points is for
this reason (and other that will emerge in due course) oftgnterest. So are
the behaviors of other properties carried by the evolvingrewof representative
points.

We shall now show that the global evolution of the densityegfresentative
points is conveniently formulated in terms of linear actarevolution operators.
We shall also show that the important, long-time “naturalariant densities are
unspeakably unfriendly and essentially uncomputableyexezre singular func-
tions with support on fractal sets. Hence, in chapter 17 \thénie what is it that
the theory needs to predict (“expectation values” of “obables”), relate these
to the eigenvalues of evolution operators, and in chapt@® 20 show how to
compute these without ever having to compute a “naturaBiiiant densityg.

329

(a) (b)

16.1 Measures

Do | then measure, O my God, and know not what | mea-
sure?

—St. AugustineThe confessions of Saint Augustine

A fundamental concept in the description of dynamics of atihasystem is that
of measurewhich we denote bylu(x) = p(X)dx. An intuitive way to define and
construct a physically meaningful measure is by a procesafse-graining
Consider a sequence 1, 2, n,.,.. of increasingly refined partitions of state space,
figure 16.1, into regiong/; defined by the characteristic function

) 1ifxeM;,
xi(x) _{ 0 otherwise (16.1)

A coarse-grained measure is obtained by assigning the Shwashe fraction of
trajectories contained in théh regionM; c M at thenth level of partitioning of
the state space:

s [ duban0o= [ iy = [ axo. (16.2)

The functionp(X) = p(x,t) denotes thalensityof representative points in state
space at timé. This density can be (and in chaotic dynamics, often is) an ar
bitrarily ugly function, and it may display remarkable sitgrities; for instance,
there may exist directions along which the measure is simguith respect to the
Lebesgue measure (namely the uniform measure on the state)spWe shall
assume that the measure is normalized

(),
Do hui=1, (16.3)
i

where the sum is over subregionat thenth level of partitioning. The infinites-

imal measurgx(x) dx can be thought of as an infinitely refined partition limit of
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Figure 16.2: The evolution rulef'can be used to map
aregionM; of the state space into the regi6i{/;).

Aui = IMilp(%), where|M;| is the volume of subregioM; and x; € M;; also
p(x) is normalized

f dxp(x) =1. (16.4)
M

Here|M;| is the volume of regionM;, and all|Mi| — 0 asn — co.

So far, any arbitrary sequence of partitions will do. Whatiatelligent ways
of partitioning state space? We already know the answer &loapter 11, but let
us anyway have another look at this, in order to develop soméion about how
the dynamics transports densities. chapter 11

16.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evoito with time.
Consider a swarm of representative points making up the uneasntained in a
region M; at timet = 0. As the flow evolves, this region is carried inte(M;),
as in figure 16.2. No trajectory is created or destroyed, soctnservation of
representative points requires that

f dxp(x 1) = f A% p(%.0).
FL(Mi) M

Transform the integration variable in the expression onléftehand side to the
initial points xo = f~Y(x),

[ drontri0jdetsv0) = [ dxope.0).
M; M

The density changes with time as the inverse of the JacoBidf)(

£(%0.0)

m , x= f'(x). (16.5)

p(x1) =

which makes sense: the density varies inversely with theitefimal volume
occupied by the trajectories of the flow.
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Figure 16.3: A piecewise-linear skew ‘full tent map’
(16.11) (Ao = 4/3,A1 = —4).
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The relation (16.5) is linear ip, so the manner in which a flow transports
densities may be recast into the language of operators, itipgvr exercise 16.1

— (s, - _ft , .
o) = (£00)09 = [ drod(x= 1'00)o000.0) (16.6)

Let us check this formula. As long as the zero is not smack etbtrder oM,
integrating Dirac delta functions is easj}/\:/I dxé(x) = 1if 0 € M, zero otherwise.
The integral over a 1-dimensional Dirac delta function piak the Jacobian of its
argument evaluated at all of its zeros:

(x=x)h'(x)

h(x)

(16.7)

f dxs(h(x)

1

{x:h(x)=0} |h’(X)|

and ind dimensions the denominator is replaced by

1
dxa(hi = dxé(h = _— .
| axatn) ; [, axa00) $| ) (16.8)

where M is any open neighborhood that contains the singleero ofh. Now

you can check that (16.6) is just a rewrite of (16.5): exercise 16.2
(Llop)(0) = ’z(x"), (1-dimensional)
o i 1100’
p(Xo) . )
= —_— (d-dimensional) (16.9)
2o 10et3 ()l

For a deterministic, invertible flow has only one preimage; allowing for mul-
tiple preimages also takes account of noninvertible maggpguch as the ‘stretch
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& fold’ maps of the interval, to be discussed briefly in exaep6.1, and in more
detail in sect. 11.3.

We shall refer to the integral operator with singular ketiél6) as théerron-

Frobenius operatar exercise 16.3
example 23.7

L'(xy) = 5(x- ') . (16.10)

The Perron-Frobenius operator assembles the depisity) at timet by going

back in time to the density(xo, 0) at timet = 0. If you do not like the word “ker-

nel” you might prefer to think of£'(x,y) as a matrix with indices, y, and index
summation in matrix multiplication replaced by an integraéry, (£'op) (X) =

fdyL‘(x, y)p(y) . In the next example Perron-Frobenius oper&a matrix, and remark 19.4
(16.14) illustrates a matrix approximation to the Perr@akienius operator.

Example 16.1 Perron-Frobenius operator for a piecewise-linear map: Consider
the expanding 1-dimensional map f(X) of figure 16.3, a piecewise-linear 2—branch map
with slopes Ao > 1 and Ay = —Ag/(Ap—1) < -1: exercise 16.7
_ fg(X) = AoX, Xe Moo= [0, 1/1\0)
fe9 = { B0 =Ad-%),  xeMy=(1/Ao1]. (16.11)

Both f(Mo) and f(My) map onto the entire unit interval M = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left” unstable fixed point Xy as
the “Ulam” map. Assume a piecewise constant density

_J po ifxe Mo
p()()—{ £o ixe M - (16.12)

As can be easily checked using (16.9), the Perron-Frobenius operator acts on this
piecewise constant function as a [2x2] Markov matrix L with matrix elements  exercise 16.1
exercise 16.5

11
(PO) . Lpz( Ad A )(p"), (16.13)
P1 o 1A /\P1

stretching both po and p1 over the whole unit interval A. In this example the density is
constant after one iteration, so L has only a unit eigenvalue e® = 1/|Ag| + 1/|A4] = 1,
with constant density eigenvector po = p1. The quantities 1/|Aq|, 1/|A4| are, respec-
tively, the fractions of state space taken up by the |[Mo|, |M4| intervals. This simple
explicit matrix representation of the Perron-Frobenius operator is a consequence of the
piecewise linearity of f, and the restriction of the densities p to the space of piece-
wise constant functions. The example gives a flavor of the enterprize upon which we
are about to embark in this book, but the full story is much subtler: in general, there
will exist no such finite-dimensional representation for the Perron-Frobenius operator.
(continued in example 17.5)

fast track:
W sect. 16.4, p. 336
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16.3 Why not just leave it to a computer?

Another subtlety in the [dynamical systems ] theory is that
topological and measure-theoretic concepts of genericity
lead to diferent results.

— John Guckenheimer

(R. Artuso and P. Cvitanovit)

To a student with a practical bent the above Example 16.1lesig@ strategy for, &)
constructing evolution operators for smooth maps, asdiwiitpartitions of state

space into regiond;, with a piecewise-linear approximatioristo the dynamics

in each region, but that would be too naive; much of the plaisidnteresting
spectrum would be missed. As we shall see, the choice ofiumspace fop is chapter 23
crucial, and the physically motivated choice is a space afatmfunctions, rather

than the space of piecewise constant functions.

All of the insight gained in this chapter and in what is to ée¥l is nothing but
an elegant way of thinking of the evolution operat6r,as a matrix (this point of
view will be further elaborated in chapter 23). There are yrtartbook methods
of approximating an operataf by sequences of finite matrix approximatiafis
but in what follows the great achievement will be that we shabid construct-
ing any matrix approximation td’ altogether. Why a new method? Why not
just run it on a computer, as many do with such relish in diagjpimg quantum
Hamiltonians?

The simplest possible way of introducing a state space atigation, fig-
ure 16.4, is to partition the state spas¢ with a non-overlapping collection of
setsMi, i = 1,...,N, and to consider densities (16.2) piecewise constant dmn eac
MiZ

p(¥) = ZN: p'@
2 IM|

wherey;i(x) is the characteristic function (16.1) of the sef;. This piecewise
constant density is a coarse grained presentation of a faieegt density(X),
with (16.2)

o = fM i)

The Perron-Frobenius operator does not preserve the geeanstant form, but
we may reapply coarse graining to the evolved measure

ol = fM Ax(Lop09)

N
_ Pj f
= = dx dys(x— f s
JE:I MG » yo(x— f(y))
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BRUTO INSERSITIVO METHoD :

eigenshite. ]_,.Lj =2

ejgnvalue  det (1-2zL)=0

= Zagaag., oy

o
I

Figure 16.4: State space discretization approach {7
computing averages.

exact spectium PR NP
or
N -1
, IMj 0 F72 (M)
P = ; Pj \Mj|
In this way
IMi 0 £ (M)
= —— p=plL 16.14
ij M p=p ( )

is a matrix approximation to the Perron-Frobenius operatod its leading left

eigenvector is a piecewise constant approximation to tegiemt measure. remark 16.3

The problem with such state space discretization appreaichthat they are
blind, the grid knows not what parts of the state space are imoless important.
This observation motivated the development of the invaniamtitions of chaotic
systems undertaken in chapter 11, we exploited the intriegiology of a flow to
give us both an invariant partition of the state space andasure of the partition
volumes, in the spirit of figure 3.7.

Furthermore, a piecewise constarttelongs to an unphysical function space,
and with such approximations one is plagued by numericdiets such as spu-
rious eigenvalues. In chapter 23 we shall employ a more ekfapgproach to
extracting spectra, by expanding the initial and final d&sp, p’ in some basis
©o, ¢1, 2, -+ (orthogonal polynomials, let us say), and replacifiy, x) by its
¢, basis representatidn,g = (¢.|Llgp). The art is then the subtle art of finding
a “good” basis for which finite truncations &f,s give accurate estimates of the

eigenvalues of’. chapter 23

Regardless of how sophisticated the choice of basis mighthbéebasic prob-
lem cannot be avoided - as illustrated by the natural medsutbe HEnon map
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(3.17) sketched in figure 16.5, eigenfunctions/dre complicated, singular func-
tions concentrated on fractal sets, and in general cannatdvesented by a nice
basis set of smooth functions. We shall resort to matrixaggmtations of_ and
the ¢, basis approach only insofar this helps us prove that thetrspedhat we
compute is indeed the correct one, and that finite periodiit truncations do
converge.

in depth:
8 chapter 1, p. 3
16.4 Invariant measures

A stationaryor invariant densityis a density left unchanged by the flow
p(xt) = p(x 0) = p(X). (16.15)

Conversely, if such a density exists, the transformafig) is said to beneasure-
preserving As we are given deterministic dynamics and our goal is thepme
tation of asymptotic averages of observables, our task identify interesting
invariant measures for a givefii(x). Invariant measures remain dfected by dy-
namics, so they are fixed points (in the infinite-dimensidnakttion space op

densities) of the Perron-Frobenius operator (16.10), thighunit eigenvalue: exercise 16.3

Lp(x) = f dys(x— f'¢))ey) = p(¥)- (16.16)
M

We will construct explicitly such eigenfunction for the p&vise linear map in
example 17.5, witlp(y) = const and eigenvalue 1. In general, depending on the
choice of f{(x) and the function space fer(x), there may be no, one, or many
solutions of the eigenfunction condition (16.16). For amste, a singular measure
du(x) = §(x — Xg)dx concentrated on an equilibrium poir§ = f'(xg), or any
linear combination of such measures, each concentrateddiffieeent equilib-
rium point, is stationary. There are thus infinitely manyietaary measures that
can be constructed. Almost all of them are unnatural in thees¢hat the slightest
perturbation will destroy them.

From a physical point of view, there is no way to prepare ahitensities
which are singular, so we shall focus on measures whichraitslof transforma-
tions experienced by an initial smooth distributjefx) under the action of,

po) = fim fM dya(x— £1(y)) p(y.0). fM dyp(y.0)=1.  (16.17)

Intuitively, the “natural” measure should be the measuat iththe least sensitive
to the (in practice unavoidable) external noise, no matber weak, or round-@
errors in a numerical computation.
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16.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us
useful insight into the foundation of statistical mechaflic
Yang: | don't think so.

—Kerson HuangC.N. Yang interview

In computer experiments, as the Hénon example of figure fie3ong time evo-
lution of many “typical” initial conditions leads to the semasymptotic distribu-
tion. Hence thenatural measure (also called equilibrium measure, SRB measure,
Sinai-Bowen-Ruelle measure, physical measure, invadi@msity, natural density,

or even “natural invariant”) is defined as the limit exercise 16.8
exercise 16.9

M 2 J dr oty - £7(x0)) flows
Do) = (16.18)
liMneo 2 205 8(y = F4(%0)) maps,

where X is a generic initial point.  Generated by the actionfofthe natural
measure satisfies the stationarity condition (16.16) arldus invariant by con-
struction.

Staring at an average over infinitely many Dirac deltas isanptospect we
cherish. From a computational point of view, the natural snea s the visitation
frequency defined by coarse-graining, integrating (160l@8y theM; region

AT = Jim tt-' (16.19)

wheret; is the accumulated time that a trajectory of total duratispends in the
M, region, with the initial pointy picked from some smooth densjtyx).

Leta = a(x) be anyobservable In the mathematical literatui&x) is a func-
tion belonging to some function space, for instance theespéintegrable func-
tionsL, that associates to each point in state space a number cofrsehbers.
In physical applications the observalai) is necessarily a smooth function. The
observable reports on some property of the dynamical sysBaveral examples
will be given in sect. 17.1.

Thespace averagef the observable with respect to a measugds given by
thed-dimensional integral over the state spade

1
@, = o | ety

loml = de,o(x) =mass inM. (16.20)

For now we assume that the state spaAdehas a finite dimension and a finite
volume. By its construction(a), is a function(al) op. Forp = po natural measure
we shall drop the subscript in the definition of the spaceagexa), = (a).
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Inserting the right-hand-side of (16.18) into (16.20), vee shat the natural
measure corresponds tdime averageof the observable along a trajectory of
the initial pointxo,

t
a = im % dra(fT(x)). (16.21)
—00 O

Analysis of the above asymptotic time limit is the centralgem of ergodic
theory. TheBirkhoff ergodic theorenasserts that if an invariant measyrex- remark 16.1
ists, the limita(xo) for the time average (16.21) exists for (almost) all iitig. appendix A
Still, Birkhoff theorem says nothing about the dependenceyaf time averages
ay, (or, equivalently, that the construction of natural meas(16.18) leads to a
“single” density, independent of). This leads to one of the possible definitions
of anergodicevolution: f is ergodic if for any integrable observalden (16.21)
the limit function is constant. If a flow enjoys such a propette time averages
coincide (apart from a set pfmeasure 0) with space averages

t
Jim % f dra(fT (%)) = (@) . (16.22)
—00 O

For future reference, we note a further property that isweo than ergodicity:
if the space average of a product of any two variables deledesewith time, section 22.3

Jim (a(9b(f'(x)) = (@ ¢by , (16.23)

the dynamical system is said to b@xing The terminology may be understood
better once we consider as the pair of observables in (1628pcteristic func-
tions of two setsA andB: then (16.23) may be written as

t

so that the seB spreads “uniformly” over the whole state spacet &screases.
Mixing is a fundamental notion in characterizing statstibehavior for dynam-
ical systems: suppose we start with an arbitrary smoothaqlilerium distribu-

tion p(X)v(X): the after timet the average of an observalzés given by

| axotmr9paco
M
and this tends to the equilibrium avera@g, if f is mixing.

Example 16.2 The Hénon attractor natural measure: A numerical calculation of
the natural measure (16.19) for the Hénon attractor (3.17) is given by the histogram
in figure 16.5. The state space is partitioned into many equal-size areas M;, and the
coarse grained measure (16.19) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area M;. What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.
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N

Figure 16.5: Natural measure (16.19) for the Hénon
map (3.17) strange attractor at parameter values
(a,b) = (1.4,0.3). See figure 3.6 for a sketch of the
attractor without the natural measure binning. (Cour-
tesy of J.-P. Eckmann)

15704

remark A.2

If an invariant measure is quite singular —for instance a&irconcentrated
on a fixed point or a cycle— it is most likely of no physical inmpoNo smooth
initial density will converge to this measure if its neighbood is repelling. In
practice the average (16.18) is problematic and often lmabntrol, as generic
dynamical systems are neither uniformly hyperbolic nouctrrally stable: it is
not known whether even the simplest model of a strange &dtrathe Hénon
attractor of figure 16.5, is “strange,” or merely a transienf very long stable
cycle. exercise 17.1

16.4.2 Determinism vs. stochasticity

While dynamics can lead to very singulais, in any physical setting we cannot

do better than to measupeaveraged over some regigvl;; the coarse-graining is

not an approximation but a physical necessity. One is frehitk of a measure

as a probability density, as long as one keeps in mind thdigmn between de-
terministic and stochastic flows. In deterministic evalotthe evolution kernels

are not probabilistic; the density of trajectories is tmorsed deterministically

What this distinction means will became apparent later:digerministic flows chapter 19
our trace and determinant formulas will eact while for quantum and stochas-

tic flows they will only be the leading saddle point (statipn@hase, steepest
descent) approximations.

Clearly, while deceptively easy to define, measures spmibte. The good
news is that if you hang on, you witlever need to compute theat least not
in this book. How so? The evolution operators to which we iext, and the
trace and determinant formulas to which they will lead udl, agsign the correct
weights to desired averages without recourse to any ekplicnputation of the
coarse-grained measut@;.

16.5 Density evolution for infinitesimal times

Consider the evolution of a smooth densix) = p(x,0) under an infinitesimal
stepét, by expanding the action of®” to linear order inyr:

6T — d _fdr
£%p() fM xo(y - 1709 p(%)
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f dxd(y — X = 67v(X)) p(X)
M
py—otvy))  _ p(y) — 57vi(y)dip(y)

|det(1+6r%)| 1+67 30, avi(y)

POX5) = p(60) o2 (M)p(x0)). (16.24)

Here we have used the infinitesimal form of the flow (2.6), thi@®delta Jaco- exercise 4.1
bian (16.9), and the In det tr In relation. By the Einstein summation conven-

tion, repeated indices imply summation(y)d; = Zidzl Vi(Y)di. Moving p(y, 0) to

the left hand side and dividing by, we discover that the rate of the deformation

of p under the infinitesimal action of the Perron-Frobenius afeeris nothing but

the continuity equatiorfor the density:

Ap+d-(pv) = 0. (16.25)

The family of Perron-Frobenius operators opera{dﬁ‘ste& forms a semigroup
parameterized by time

(@ £0=1
(b) ££8 =" >0 (semigroup property) .

From (16.24), time evolution by an infinitesimal s@pforward in time is gener-
ated by

Ap(¥) = + lim 6% (£7=1)p(9 = -3 (p(x). (16.26)

We shall refer to
d
A=-9-Vv+ Z Vi (X); (16.27)
i

as the time-evolutiogenerator If the flow is finite-dimensional and invertible,
A is a generator of a full-fledged group. The left hand side 6£28) is the
definition of time derivative, so the evolution equation ¢x) is

(% - :i[) (%) = 0. (16.28)

The finite time Perron-Frobenius operator (16.10) can baddly expressed
by exponentiating the time evolution generatias

L= (16.29)
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The generatorA is reminiscent of the generator of translations. Indeeda fwon-
stant velocity field dynamical evolution is nothing but axskation by (timex velocity):

exercise 16.10

eVixa(x) = a(x - tv). (16.30)
16.6 Liouville operator

§
J A case of special interest is the Hamiltonian or symplect ftiefined
by Hamilton’s equations of motion (7.1). A reader versed urarfum mechan-
ics will have observed by now that with replacemefit— —iH, whereH is
the quantum Hamiltonian operator, (16.28) looks rathes tike time dependent
Schrddinger equation, so this is the right moment to figutendhat all this means
for Hamiltonian flows.

The Hamilton’s evolution equations (7.1) for any time-ipdadent quantity
Q = Q(a, p) are given by

dQ_dQdg  9Qdp _9HIQ 9QaH
dt g dt *ap dt  op oG opag (16.31)

where @i, g;) span the full state space, which for Hamiltonian flows welskger
to as thephase spaceAs equations with this structure arise frequently for sym-
plectic flows, it is convenient to introduce a notation fagrth thePoisson bracket
remark 16.4

0A 0B OHA OB
Bl=—— - ——. 16.32
(A8 opi a9 Ip; ( )

In terms of Poisson brackets the time-evolution equati6ri3(ll) takes the compact
form

dQ
5= HQ. (16.33)

The discussion of sect. 16.5 applies to any deterministig. fiche full phase
space flow velocity i = v = (¢, p), where the dot signifies time derivative. section 28.1

If the density itself is a material invariant, combining

ol +v-al =0.
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and (16.25) we conclude thapv; = 0 and detl'(x) = 1. An example of such
incompressible flow is the Hamiltonian flow. For incomprbgsiflows the con-
tinuity equation (16.25) becomes a statement of conservat the phase space
volume (see sect. 7.3), or théuville theorem

B +Vidip = 0. (16.34)

The symplectic structure of Hamilton’s equations (7.1) liegpthat the flow
is incompressibled;v; = 0, so for Hamiltonian flows the equation fereduces to
the continuity equatiorfor the phase-space density:

dp+di(pv)=0, i=12....D. (16.35)

Consider the evolution of the phase-space depstif/an ensemble of nonin-
teracting particles; the particles are conserved, so

9

d a . .0
P05+ a4 p (e p) 0.

Inserting Hamilton’s equations (7.1) we obtain thieuville equation a special
case of (16.28): remark 16.4

0
5°(@ P =-Ap(@.p.) = (H.p@. p.O} (16.36)

wheref{ , } is the Poisson bracket (16.32). The generator of the flov27)6s in
this case a generator of infinitesimal symplectic transé&iioms,

.0 .0 oHo oH O
A=~ + D

- - 16.37
o api - Opidgi Og; Ip; ( )

For example, for separable Hamiltonians of far= p?/2m+V(q), the equations
of motion are

. _ Db . 0V(9)
a = m’ pi = aq (16.38)
and the action of the generator exercise 16.11
pi 0 0
A=—-—=—+V(Q)—. 16.39
mag H O (@ P ( )

Looking back at (16.30) we see that the first term generatesnalation in the
configuration spacef(q, p) — f(q - dtg, p), and the second generates acceler-
ation by forcedV(q) in the momentum space. They do not commute, hence the
time integration is not trivial.
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The time-evolution generator (16.27) for the case of syotjgdlows is called
the Liouville operator You might have encountered it in statistical mechanics,
while discussing what ergodicity means foPd@ard balls. Here its action will
be very tangible; we shall apply the Liouville operator tsteyns as small as 1 or
2 hard balls and to our surprise learn that thiiises to already get a bit of a grip
on foundations of the nonequilibrium statistical mechanic

Résum é

In physically realistic settings the initial state of a gystcan be specified only to
a finite precision. If the dynamics is chaotic, it is not pbsto calculate the long
time trajectory of a given initial point. Depending on thesided precision, and
given a deterministic law of evolution, the state of the systan then be tracked
for a finite time only.

The study of long-time dynamics thus requires trading inebelution of a
single state space point for the evolution ofm@asure or the densityof repre-
sentative points in state space, acted upon bgwatution operator Essentially
this means trading inonlineardynamical equations on a finite dimensional space
X = (X1, X2 - - - Xg) for alinear equation on an infinite dimensional vector space of
density functiong(x). For finite times and for maps such densities are evolved by
the Perron-Frobenius operator

p(1) = (Lo p) (9,
and in a diferential formulation they satisfy th@ntinuity equation
Op+0-(pv) = 0.

The most physical of stationary measures is the naturalunegs measure robust
under perturbations by weak noise.

For long times the dynamics is described in terms of statjomeeasures, i.e.,
fixed points of the appropriate evolution operators. Refdated this way, clas-
sical dynamics takes on a distinctly quantum-mechanicebifldf the Lyapunov
time (1.1), the time after which the notion of an individuakerministic trajectory
loses meaning, is much shorter than the observation tireésttarp” observables
are those dual to time, the eigenvalues of evolution opeyafthis is very much
the same situation as in quantum mechanics; as atomic tialessare so short,
what is measured is the energy, the quantum-mechanicatvalbde dual to the
time. Both in classical and quantum mechanics one has aehbimplementing
dynamical evolution on densities (“Schrodinger pictusect. 16.5) or on observ-
ables (“Heisenberg picture,” sect. 17.2 and chapter 18).

In what follows we shall find the second formulation more earient, but the
alternative is worth keeping in mind when posing and sohim@riant density
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problems. However, as classical evolution operators areimitary, their eigen-
function can be quite singular andfiéftult to work with. In what follows we
shall learn how to avoid dealing with these eigenstategeiter. As a matter of
fact, what follows will be a labor of radical deconstructi@fter having argued so
strenuously here that only smooth measures are “natural shvall merrily pro-
ceed to erect the whole edifice of our theory on periodic srhi¢., objects that
ares-functions in state space. The trick is that each comes witm&rval, its
neighborhood — periodic points only serve to pin these valsr just as millime-
ter markings on a measuring rod are used to partition a aquntininto intervals.

Commentary

Remark 16.1 Ergodic theory:  An overview of ergodic theory is outside the scope of
this book: the interested reader may find it useful to correfit [16.1, 16.3, 16.4, 16.5].
The existence of time average (16.21) is the basic resultgafdéc theory, known as the
Birkhoff theorem, see for example refs. [16.1, 16.25], or the stateofeheorem 7.3.1
in ref. [16.12]. The natural measure (16.19) of sect. 16sidften referred to as the SRB
or Sinai-Ruelle-Bowen measure [1.29, 1.28, 1.32].

There is much literature on explicit form of natural measiorespecial classes of
1-dimensional maps [1.19, 16.14, 16.15] - J. M. Aguirregati16.16], for example,
discusses several families of maps with known smooth meaand behavior of measure
under smooth conjugacies. As no such explicit formulast éaishigher dimensions and
general dynamical systems, we do not discuss such measrees h

Remark 16.2 Time evolution as a Lie group: Time evolution of sect. 16.5 is an
example of a 1-parameter Lie group. Consult, for examplapter 2. of ref. [16.13] for a

clear and pedagogical introduction to Lie groups of tramsfitions. For a discussion of
the bounded semigroups of page 359 see, for example, MaasaieHughes [16.6].

Remark 16.3 Discretization of the Perron-Frobenius operator operator It is an old
idea of Ulam [16.18] that such an approximation for the Peiffoobenius operator is a
meaningful one. The piecewise-linear approximation of Pleeron-Frobenius operator
(16.14) has been shown to reproduce the spectrum for expgnaps, once finer and
finer Markov partitions are used [16.19, 16.23, 16.20]. Thietle point of choosing a
state space partitioning for a “generic case” is discussesfi [16.21, 23.22].

Remark 16.4 The sign convention of the Poisson bracket: The Poisson bracket
is antisymmetric in its arguments and there is a freedom fmelét with either sign
convention. When such freedom exists, it is certain that lsohventions are in use and
this is no exception. In some texts [1.8, 16.7] you will seetight hand side of (16.32)
defined agB, A} so that (16.33) is"ﬁ% = {Q,H}. Other equally reputable texts [16.24]
employ the convention used here. Landau and Lifshitz [1#e8Jote a Poisson bracket by
[A, B], notation that we reserve here for the quantum-mechacaamutator. As long as
one is consistent, there should be no problem.
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Remark 16.5 “Anonitlives”? “Anonitlives” refers to a statue of King Leontes’s wife,
Hermione, who died in a fit of grief after he unjustly accused of infidelity. Twenty
years later, the servant Paulina shows Leontes this statdermione. When he repents,
the statue comes to life. Or perhaps Hermione actually lased Paulina has kept her
hidden all these years. The text of the play seems delibgr@igbiguous. It is probably
a parable for the resurrection of Christ. (John F. Gibson)

REFERENCES

(a) Verify the matrix£ representation (16.13).
(b) The maximum value of the first map is 1. Com-

pute an invariant measure for this map. 16.8

(c) Compute the leading eigenvalueffor this map.

(d) For this map there is an infinite number of in-
variant measures, but only one of them will be
found when one carries out a numerical simula-
tion. Determine that measure, and explain why
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the eigenvalues are available analytically, comput
first few.

. “Kissing disks”*  (continuation of exercises 8.1 «

8.2) Close € the escape by setting = 2, and loo
in real time at the density of the Poincaré section
ates for a trajectory with a randomly chosen initial |
dition. Does it look uniform? Should it be unifor
(Hint - phase-space volumes are preserved for H

16.2. Derivatives of Dirac delta functions.

exerMeasure - 12sep2003

Exercises

16.1. Integrating over Dirac delta functions. ~ Check the fdxb(x)é(z)(y) _ Z i{ b’ by
defta function integrals in o VLY ()
. . 2 "
(@) 1 dimension (16.7), +b(3(();))4 _ %)}16.44)
f dxs(he)) = oy (16:40) ]
(xh(I=0) v (x)1 These formulas are useful for computirfeets of weak

(b) and ind dimensions (16,8} : B9 » &8 noise on deterministic dynamics [16.9].

fR | dxa(h() = Z dxa(n(x))

T oYM

16.3. L' generates a semigroup. Check that the Perron-
Frobenius operator has the semigroup property,

1 a1) f dzL%(y, 2) £z x) = L2 (y, ), t,t, > 0.(1
= . M
h
peiGao) [det 53 As the flows in which we tend to be interested are in-
where M; are arbitrarily small regions enclosing vertible, theL'’s that we will use often do form a group,
the zerosx; (with x; not on the boundary M;). with tg, t> € R.

For a refresher on Jacobian determinants, read, ffé 4. Escape rate of the tent map
example, Stone and Goldbart Sect. 12.2.2. o '

The delta function can be approximated by a se-
quence of Gaussians

. ek
de(S(X)f(X):J,'Tode \/ﬂf(x).

Use this approximation to see whether the formal
expression

f dxs(x?)
R

makes sense.

(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in
the interval [Q 1] for the tent map

f(x) =a(l-2x-0.5])
for several values dd.

(b) Determine analytically thedependence of the es-
cape rate/(a).
(c) Compare your results for (a) and (b).

(c

N3

16.5. Invariant measure.  We will compute the invariant
measure for two dierent piecewise linear maps.
Consider

69 = Zes(x).
Using integration by parts, determine the value of

dxs'(y) wherey = f(x) — x (16.42)
R .
@) - i{ O? Y } ;
Joo = 3 Gives @y o S

ChaosBook.org version14, Dec 31 2012

tonian flows by the Liouville theorem). Do you no
the trajectories that loiter near special regions of |
space for long times? These exemplify “intermitter
a bit of unpleasantness to which we shall return in ¢
ter 24.

your choice is the natural measure for this map.

(e) In the second map the maximum occursrat
(3- ¥5)/2 and the slopes arg( V5 + 1)/2. Find
the natural measure for this map. Show that it is
piecewise linear and that the ratio of its two values
is (V5+1)/2. 16.9. Invariant measure for the Gauss map.  Conside

(medium dificulty) the Gauss map:

16.6. Escape rate for a flow conserving map. Adjust Ao,
A1 in (16.11) so that the gap between the interveds,
M; vanishes. Show that the escape rate equals zero in
this situation.

-2 x#0
f(x):{ X H oS (16.47

where [ ] denotes the integer part.

16.7. Eigenvalues of the Perron-Frobenius operator for the

(a) Verify that the density
skew full tent map.  Show that for the skew full tent

1 1
map X) = ———
) log21+ x
1
is an invariant measure for the map.
0.8 (b) Is it the natural measure?
Ao 16.10. A as a generator of translations.  Verify that fo
06 a constant velocity field the evolution generatérir
A (16.30) is the generator of translations,
1
0.4

Via(x) = a(x + tv).
02 16.11. Incompressible flows. Show that (16.9) implies tt
po(X) = 1 is an eigenfunction of a volume-preser
flow with eigenvaluesy = 0. In particular, this in
plies that the natural measure of hyperbolic and m
X€ Mo =1[0,1/A0) Hamiltonian flows is uniform. Compare this results
X€ My = (1/Ao,1]. erical experiment of exercise 16.8.

02 04 06 08 1

fo(X) = AoX,
f(x):{ 009 = (1%,

0—1
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