Chapter 28

Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

how it afects classical dynamics, and the ways it mimics quantumrdyna

ics. (D%

Why - in a monograph on deterministic and quantum chaos t disrussing
noise? First, in physical settings any dynamics takes pgegnst a noisy back-
ground, and whatever prediction we might have, we have tokciterobustness to
noise. Second, as we show in this chapter, to the leading oredmise strength,
the semiclassical Hamilton-Jacobi formalism applies t@akie stochastic flows
in toto. As classical noisy dynamics is more intuitive tharagtum dynamics,
understanding féects of noise helps demystify some of the formal machinery of
semiclassical quantization. Surprisingly, symplectitcure emerges here not
as a deep principle of mechanics, but an artifact of the tepdpproximation to
quanturinoisy dynamics. Third, the variational principle derivestdnturns out
to be a powerful tool for determining periodic orbits, seapler 29. And, last but
not least, upon some reflection, the whole enterprize ofapépy deterministic
trajectories by deterministic evolution operators, cheptl6 to 20, seems fatally
flowed; if we have given up infinite precision in specifyingtim conditions, why
do we alow ourselves the infinite precision in the specificaof evolution laws,
i.e., define the evolution operator by means of the Diraadahctions(y— f!(x))?

It will be comforting to learn that the deterministic evaart operators survive un-
scathed, as the leading approximation to the noisy one®ilintit of weak noise.

Tms cHAPTER (Which reader can safely skip on the first reading) is aboigeno

Another key result derived here is the evolution law (28fé5}he covariance
matrix Q of a linearly evolved Gaussian density,

Qa+1 = MaQaMeT\ + Aa.

573



CHAPTER 28. NOISE 574

To keep things simple we shall describe covariance evalitidhe discrete time
dynamics context, but the results apply both to the contiswend discrete time

flows. The most important lesson, however, is that phy&dgtownian difusion

intuition -that the &ect of the noise is to spread out the trajectorywasis wrong

In nonlinear dynamics the noise is alwagsal, determined by balancing local
nonlinear dynamics against the memory of the noise past. section 28.5

We start by deriving the continuity equation for purely detmistic, noiseless
flow, and then incorporate noise in stagedtudiion equation, Langevin equation,
Fokker-Planck equation, stochastic path integrals, Hamilacobi formulation.

28.1 Deterministic transport

(E.A. Spiegel and P. Cvitanovit)

The large body of accrued wisdom on the subject of flows cdlied dynamics
is about physical flows of media with continuous densities.ti@ other hand, the
flows in state spaces of dynamical systems frequently reeguidre abstract tools.
To sharpen our intuition about those, it is helpful to owlthe more tangible fluid
dynamical vision.

Consider first the simplest property of a fluid flow calie@terial invariant
A material invariantl (x) is a property attached to each pointhat is preserved
by the flow,1(x) = 1(f(x)); for example, at poink(t) = f!(x)) a green particle
(more formally: apassive scalgris embedded into the fluid. Agx) is invariant,
its total time derivative vanishe$(x) = 0. Written in terms of partial derivatives
this is theconservation equatiofor the material invariant

ol +v-al = 0. (28.1)

Let thedensityof representative points hg€x,t). The manner in which the flow
redistributed (X) is governed by a partial flerential equation whose form is rel-
atively simple because the representative points arearaiteated nor destroyed.
This conservation property is expressed in the integrédistant

8tdep| =— do fivipl ,
% oV

whereV is an arbitrary volume in the state spakg 9V is its surfacen’is its out-
ward normal, and repeated indices are summed over throtigibe divergence
theorem turns the surface integral into a volume integral,

f [d:(ol) + di(vipl)] dx = 0,
Vv
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CHAPTER 28. NOISE 575

whered; is the partial derivative operator with respectxoSince the integration
is over an arbitrary volume, we conclude that

di(ol) + di(plvi) = 0. (28.2)
The choicd = 1 yields thecontinuity equatiorfor the density:
o + ai(pVi) =0. (28.3)

Here we have used the language of fluid mechanics to easestidization, but,
as we have seen in our previous derivation of the contingjtiagon (16.25), any
deterministic state space flow satisfies the continuity ggu@n any dimension.

Why -even though the dynamics is nonlinear- is this equdii@ar? As each
deterministic orbit is distinct and intersects no otheritomo ‘particles’ are cre-
ated or destroyed, they are non-interacting, hence déserim terms of linear
evolution operators possible.

28.2 Brownian diffusion

Consider tracer molecules, let us say big, laggardly greelecnles, embedded
in a denser gas of light molecules. Assume that the densityacér moleculep

compared to the background gas density is low, so we canctegien-green col-
lisions. Each green molecule, jostled by frequent coltisiavith the background
gas, executes its own Brownian motion. The molecules atbearecreated nor
destroyed, so their number within an arbitrary voluwhehanges with time only
by the current density; flow through its surfacéV (with f its outward normal):

O f dxp = - do A jj . (28.4)
% oV
The divergence theorem turns this into the conservatiorfdawacer density:
o + i ji = 0. (28.5)

The tracer density is defined as the average density of a ‘material particle, av
eraged over a subvolume large enough to contain many greensgdl many
more background) molecules, but small compared to the reespic observa-
tional scales. What ig? If the density is constant, on the average as many
molecules leave the material particle volume as they efjteo ia reasonable phe-
nomenological assumption is that taeeragecurrent densityrfot the individual
particle current densityv; in (28.3)) is driven by the density gradient

, 0
ji=-pL. (28.6)
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CHAPTER 28. NOISE 576

This is theFick law, with the difusion constanD a phenomenological parameter.
Substituting this current into (28.5) yields tdgusionor heatequation,

2 xty=D% ) (28.7)
ot T E e\ Y '

More generally, diusion is described by a space- and time-dependent symmet-
ric diffusion tensorA; = Aji, with jj = —%Aijajp, leading to the anisotropic
diffusion equation

dx ) = 2 (A () 35 px D) (28.8)

For sake of streamlining the argument we have assumed ahatvditusion ind
dimensions is homogenous and iso tro pi¢x) = 2D 1. In practice, the dfusion
tensor is almost always aniso tro pic: for example, physci&rownian difusion
is a flow in the 6-dimensiondlconfiguration, velocity phase space, with white
noise probability distribution exp{/?/2ksT), modeling random force kicks ap-
plied only to the 3 velocity variablea In this case one thinks offilusion codfi-
cientD = kgT/2 as temperature.

28.2.1 Heat kerne

Fourier transforming the heat equation (28.7),

d .. N dk..
k) = DKk, p(xt)= f 5k x| (28.9)

integrating,

_ [dk. jkx-D K2t
(1) = f bk 0) e Pk

and Fourier transforming back we obtain an exact solutich@heat equation in
terms of an initial Dirac delta density distributign(x, 0) = 6(X — Xg),

1 (x-x0)°
e m, (28.10)
(4nDt)9/2

p(X, t) = LFP(X’t; XO’O) =

in the spirit of the quantum free particle propagation otts88.2.2. The average
distance covered in timeobeys the dtusion formula

((x- x0)2>t = f dxp(X, t)(X — X)? = 2dDt. (28.11)

The classical Einstein formula describes 3-dimensionawBran motion; here
the difusion takes place in the dynamical state space of dimeision
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CHAPTER 28. NOISE 577

28.2.2 Random walks

So far we have considered the evolution of the density oktrawlecules. One
can alternatively consider @dimensional random walk of an individual tracer
molecule kicked by a stochastic term,

dx -
i ). (28.12)

A way to make sense df(t) is to first construct the probability distribution for
additive noise¢ at short but finite time step&r, with t,,1 = t, + 67, and the
particlex, = X(t,) at timet, executing a random walk,,1 = X, + &(t) , wherex

is ad-dimensional state vector, andj is its jth component at tima. The natural
choice is that probability that the trajectory reackgs is given by a normalized
Gaussian

1

1
V(2rs7)ddetA 267

& = Xne1 — Xn, Characterized by zero mean and thfwdiion tensor (covariance
matrix),

1
Lep(Xn+1, thets Xn, th) = (fﬁgfn)] , (28.13)

(&) =0, (&) & (t) = 6TA; o, (28.14)

where(- - -) stands for ensemble average over many realizations of filse,remd
the superfix” indicates a transpose. As the time discretizatioris arbitrary,
the diffusing cloud of noisy trajectories should be described bystidution that
keeps its form agr — 0. Indeed, the semigroup property of a Gaussian kernel,

Lep(Xt; X7, 17) = fd)(LFP(x,t;x’,t’)LFP(x’,t’;x”,t”), (28.15)

ensures that the distribution keeps its form under succesiiffusive steps.
Lep(X.1; X0, 0) describes the flusion at any time, including the integer time in-
crements{t,} = {0r, 207,---,nd7,---}, and thus provides a bridge between the
continuous and discrete time formulations of noisy evoluti

Example 28.1 Random walk in one dimension The white noise & = Xpi1 — Xn
for a 1-dimensional diffusion process is a normally distributed random variable, with
standard normal (i.e., Gaussian) probability distribution function,

Lep(x X, 1) (x=X)* ] , (28.16)

1
exp|—
VARD( =) p[ AD{-1)

of mean 0, variance 2D(t—t), and standard deviation \/2D(t — t"), uncorrelated in time:

(Xns1 — %) =0, ((Xmr1 — Xm)(Xn+1 — %)) = 2D 67 6mn.- (28.17)
section 28.4
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CHAPTER 28. NOISE 578

28.3 Noisy trajectories. Continuoustime

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory hav-
ing substance, while its path integral image exists mainly
in the eye of the beholder.

—L. S. Schulman
(P. Cvitanovit and D. Lippolis)

So far we have considered tracer molecule dynamics whichrisly Brownian,
with no deterministic “drift.” Consider next d-dimensional deterministic flow
X = V(X) perturbed by a stochastic tegtt),

dx -
i V(X) + &(1), (28.18)

where the deterministic velocity fiel(x) is called ‘drift’ in the stochastic litera-
ture, andé(t) is additive noise, uncorrelated in time. We shall refer qaations
of this type ad.angevin equationsThe more general case of a tenagk) which
is a state space position dependent but time independenttecaiaated along the
same lines. In this case the stochastic flow (28.18) is wirdte

dx=v(x)dt+o(x)dét),  (éném)=10mm, A=co'. (28.19)

o(X) is called the ‘difusion matrix’, and the noise is referred to as ‘multiplicati
Explicit time dependence in(x, t) would take us into world of non-autonomous,
externally driven flows, beyond the comfort zone of ChaosBag.

As in (28.12), a way to make sense of (28.18) is to first consthe proba-
bility distribution for additive nois& at a short but finite timér. In time 67 the
deterministic trajectory advances k) o7. As dt is arbitrary, it is desirable that
the diffusing cloud of noisy trajectories is given by a distributitat keeps its
form asér — 0. This holds if the noise is Brownian, i.e., the probabitiat the
trajectory reacheg,, 1 is given by a normalized Gaussian (28.13),

1 1 1
£Fp(xn+1, oT; Xn, O) = N exp[—z—&(flA—ngn)] . (28.20)

Hereé&, = 6%, — V(Xn) 07, the deviation of the noisy trajectory from the deter-
ministic one, can be viewed either in terms of velocifigs/(x)} (continuous time
formulation), or finite time mapsx, — X1, Xn — 7 (Xn)} (discrete time formu-
lation),

8Xn = Xnil — Xn = Xn 0T, f97(Xn) — Xn = V(Xn) 7, (28.21)
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CHAPTER 28. NOISE 579
where
{XO’ Xl’ Y Xn, Y Xk} = {X(O)9 X(dT)’ Y X(ndT)’ Y X(t)} (2822)

is a sequence & + 1 pointsx, = X(tn) along the noisy trajectory, separated by
time incrementgr = t/k.

The phenomenological Fick law current (28.6) is now a sumaf compo-
nents, the material particle deterministic dvifk) and the weak noise term

9p

ji=ViP—DaXi,

|- 580090300 | (28.23)

with the full, anisotropic and space-dependent versioicatdd in |-]. Substi-
tuting this j into (28.5) yields thé-okker-Planck equation

o + di(ov;) = D 62 , [ = %& (Aij(X) 9y p(X t)) ] . (28.24)

The left hand sidedop/dt = di + 9 - (oV), is deterministic, with the continuity
eqguation (28.3) recovered in the weak noise liDit—» 0. The right hand side
describes the étusive transport in or out of the material particle volumethi
density is lower than in the immediate neighborhood, thalloarvature is posi-
tive, 3%p > 0, and the density grows. Conversely, for negative cureatiffusion
lowers the local density, thus smoothing the variabilityyofWhere is the density
going globally?

If the system is bound, the probability density vanishéBa@antly fast outside
the central regiong(x,t) — 0 as|x| — oo, and the total probability is conserved

fdx,o(x,t) =1.

Any initial density p(x, 0) is smoothed by diusion and with time tends to the
natural measure, the invariant density

po() = fim p(x.1), (28.25)

an eigenfunctiomp(x, t) = €% pg(X) of the time-independent Fokker-Planck equa-
tion

(6ivi - D&% + s,) p = 0, (28.26)

with vanishing eigenvalugy = 0. Provided the noiseless classical flow is hyper-
bolic, in the vanishing noise limit the leading eigenfunotiof the Fokker-Planck
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CHAPTER 28. NOISE 580

equation tends to natural measure (16.17) of the correapgpaeterministic flow,
the leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of prdligtfrom the
region under study, the leading eigenvalue is contractgg; 0, and the density
of the system tends to zero. In this case the leading eigesglof the time-
independent Fokker-Planck equation (28.26) can be irdtrgrby saying that a
finite density can be maintained by pumping back probabhititg the system at
a constant ratg¢ = —sp. The value ofy for which any initial probability density
converges to a finite stationary equilibrium density isezltheescape rate In
the noiseless limit this coincides with the determinisgcape rate (17.27).

The distribution (28.13) describes how an initial densityarticles concen-
trated in a Dirac delta function a¢, spreads in time&r. In the Fokker-Planck
description individual noisy Langevin trajectories (2B. are replaced by the evo-
lution of the density of noisy trajectories. The finite timekker-Planck evolution
o(xt) = [LtFP o p] (%, 0) of an initial density(xo, 0) is obtained by a sequence of
consecutive short-time steps (28.13)

1

k-1
I5e 2 de(Xn)]z} . (28.27)
n=0

Lep(X. 1; %0, 0) = f [d¥ exp{—

wheret = két, and the Gaussian normalization factor in (28.13) is alesbrbto
intermediate integrations by defining

k-1
@ - |2

n=0 Nn
Ny = (2r67)¥2[detA(x))]Y?  (anisotropic difusion tenson)
= (4Dés7)%? (isotropic difusion A(X) =2D1). (28.28)

As D — 0, the distribution tends to the noiseless, deterministra®delta func-
tion Perron-Frobenius operator (16.10). The stochastie (&8.18) can now be
understood as the continuous tinde, — O limit, with the velocity noise(t) a
Gaussian random variable of zero mean and covariance matrix

Em)y=0.  (AO&W) =y s-1). (28.29)

It is worth noting that the continuous time flow noi&g) in (28.18) and (28.29) is
dimensionally a velocityX]/[t], as L p(Xn+1, 07; Xa, 0) is @ probability density for
velocity &, while the discrete time noisg, in (28.13), (28.14) is dimensionally a
length [X], asp(x,t) is a probability density for positior. The important point is
that the same éiusion tenson(x) describes the éliusion both in the configuration
space and the velocity space.
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CHAPTER 28. NOISE 581

The continuous time limit of (28.27ht = t/k — 0, defines formally the
Fokker-Planck evolution operator

t
Lep(X.t; %0,0) = f [dX] exp{—% fo [X(T)—V(X(T))]zdr} (28.30)

as a stochastic path (or Wiener) integral for a noisy flow, thedassociated con-
tinuous time Fokker-Planck (or forward Kolmogorov) eqaat{28.24) describes
the time evolution of a density of noisy trajectories. Weéawvroduced noise
phenomenologically, and used the weak noise assumptioataining only the
first derivative ofp in formulating the Fick law (28.6) and including noise addi-
tively in (28.23). Thest — 0 limit and the proper definition af(z) are delicate
issues of no import for the applications studied here. Athdlory of stochastic
ODEs is much subtler, but this will do for our purposes.

The exponent

~ oz [ = PO = — 45 1K) - W) (28.31)
can be interpreted as a cost function which penalizes dewiaf the noisy trajec-
tory §x from its deterministic predictionst, or, in the continuous time limit, the
deviation of the noisy trajectory tangexfrom the deterministic velocity fielsl.
Its minimization is one of the most important tools of theiwyatl control theory,
with velocity x(r) along a trial path varied with aim of minimizing its distanto
the targew(x(7)).

28.4 Noisy maps. Discretetime

(P. Cvitanovi¢ and D. Lippolis)

For pedagogical reasons we shall often find it convenienbisider a noisylis-
crete timedynamical system

Xnr1 = FO0) + &, (28.32)

whereXx is ad-dimensional state vector, angl; is its jth component at time.

In the Fokker-Planck description individual noisy trafats are replaced by the
evolution of the density of noisy trajectories, with the= X,.1— f(Xn) probability
distribution of zero mean andfflision tensor, and the time increment in (28.14)
settoor =1,

(&) =0, (¢nién;) = AijO%) onm. (28.33)
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CHAPTER 28. NOISE 582

As we shall show, in nonlinear dynamics the noiseéserisotropic andor ho-
mogeneous. Even if the infinitesimal time step noise (28ct®ariance matrix
in (28.19) were independent of the state space posijdhis cannot be true of
A(X) for the discrete time flow (28.32) obtained by the Poinsaétion reduction
method of sect. 3.1, as the return times (3.1) and the no@eradated along the
corresponding trajectory segments depend on the startimg&é section point.
Indeed, as we shall argue in sect. 28.5, in nonlinear dyrsaticoise is local
As long as the noise distribution &tis autonomous (not explicitly dependent on
time) the stochastic flow (28.32) can be written@s; = X, + o(X)) én, where

A = oo, ando(X) is the multiplicative noise diusion matrix defined in (28.19).

The action of discrete one-time stBpkker-Planck evolution operatam the
density distributiorp at timek,

perly) = [Leppd(y) = f dX Lep(y. ) pc(¥)

1 14 _
Leply) = e BT, (28.34)

is centered on the deterministic stéfx) and smeared out flusively by noise.
Were difusion uniform and isotropic)(x) = 2D 1, the Fokker-Planck evolution
operator would be proportional to e(qs{y - f(x)}Z/ZA), i.e., the penalty for stray-
ing from the deterministic path is just a quadratic errorction. Thekth iterate
of L';P(xk; X0) = Lrp(X.t; X0, 0) is ad-dimensional path integral over tte- 1
intermediate noisy trajectory points,

LE (X Xo) = f[dx] e—%Zn(xml—f(xn))Tﬁ(xml—f(xn)), (28.35)

where the Gaussian normalization factor in (28.34) is dEsbinto intermediate
integrations by defining

k-1
[dx =[] %ﬁ, Nn = +/(27)ddetA(xy) . (28.36)
n=1 n

We shall also need to determine theet of noise accumulated along the
trajectory pointgpreceding x As the noise is additive forward in time, one cannot
simply invert the Fokker-Planck evolution operator; iastethe past is described
by theadjoint Fokker-Planck evolution operator

Peid = [LEpAd() = f [dy] e 201001 5y, (28.37)

which transports a density concentrated around the ddixtto a density con-
centrated around the previous poinaind adds noise to it. In the deterministic,
vanishing noise limit this is the Koopman operator (F.1).
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The Fokker-Planck evolution operator (28.34) is non-h&éamiand non-unitary.
For example, if the deterministic flow is contracting, théunal measure (the lead-
ing right eigenvector of the evolution operator) will be centrated and peaked,
but then the corresponding left eigenvector has to be broddlat, as backward
in time the deterministic flow is expanding. We shall denat@bthe right eigen-
vectors of L, and byp, its left eigenvectors, i.e., the right eigenvectors of the

o i
adjoint operatot/ ..

28.5 All nonlinear noiseislocal

| ain’t gonna work for Maggie’s pa no more

No, | ain’t gonna work for Maggie’s pa no more
Well, he puts his cigar

Out in your face just for kicks

— Bob Dylan,Maggie’s Farm
(P. Cvitanovit and D. Lippolis)

Our main goal in this section is to convince the reader thatifiusive dynamics
of nonlinear flows isundamentally dferent from Brownian motigrwith the flow
inducing a local, history dependent noise. In order to aqaistm this, we gener-
alize here the notion of invariant deterministic recurreoiutions, such as fixed
points and periodic orbits, to noisy flows. While a Langevijdctory (28.32)
can never return exactly to the initial point and thus carevar be periodic, in
the Fokker-Planck formulation (28.35) a recurrent motian be defined as one
where a peaked distribution returns to the initial neighlbod after timen. Re-
currence so defined not only coincides with the classicabnatf a recurrent orbit
in the vanishing noise limit, but it also enables us to degeixact formulas for how
this local, history dependent noise is to be computed.

As the functionx,.1 — f(X,) is a nonlinear function, in general the path inte-
gral (28.35) can only be evaluated numerically. In the J@ng noise limit the
Gaussian kernel sharpens into the Disaftinction, and the Fokker-Planck evo-
lution operator reduces to the deterministic Perron-Fnatseoperator (16.10).
For weak noise the Fokker-Planck evolution operator canvhkiated perturba-
tively as an asymptotic series in powers of thiudiion constant, centered on the
deterministic trajectory. Here we retain only the lineamten this series, which
has a particulary simple dynamics given by a covarianceixgtolution formula
(see (28.45) below) that we now derive.

We shift local coordinates labeled at tima to the deterministic trajectory
{..., X1, Xo, X1, X2,...,} centered coordinate frame= Xy + z,, Taylor expand
f(X) = fa(za) = Xar1 + Mazy + - - -, @and approximate the noisy map (28.32) by its
linearization,

Zav1 = MaZa + &2, Mij(X) = afi/0x;, (28.38)
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with the deterministic trajectory points at = z,,1 = 0, andM,; = M(Xy) the
one time step Jacobian matrix. The corresponding linedfzkker-Planck evo-
lution operator (28.34) action on density(z,) = p(Xa + Za, @) is given in the local
coordinates by

paca(zans) = [ Q2 Lp(zan. 2 palze (28.39)
by the linearization (28.38) centered on the determiniséijectory

Lgp(za+1, z) = % e_%(ZaJrl_Maza)TA_la (zar1-Maza) | (28.40)
The superscriptd’ in L2, distinguishes the local, linearized Fokker-Planck evo-
lution operator coordinate frang = x — X5 centered on the deterministic trajec-
tory point x, from the full global evolution operator (28.35), in glob@ardinate
systemx.

The kernel of the linearized Fokker-Planck evolution opmr#28.40) is a
Gaussian. As a convolution of a Gaussian with a Gaussianais agGaussian,
we investigate the action of the linearized Fokker-PlaneKwgion operator on a
normalized, cigar-shaped Gaussian density distribution

1
pald = T€FE7, Ca=(20)"%(detQa), (28.41)

a

and the action of the linearized adjoint Fokker-Planck ewoh operator on den-
sity

1 171 ~
pa@ = Te W, Ca=(@0)73(det@) 2, (28.42)

a

also centered on the deterministic trajectory, with d{ripositive [dxd] covari-
ance matrice®), Q. Label ‘@’ plays a double role, anth + 1, a} stands both for
the {next, initial} space partition and for the times the trajectory lands irs¢he
partitions.  The linearized Fokker-Planck evolution oparg28.40) maps the
Gaussiar,(zy) into the Gaussian

pralanr) = o [zl G Ag Al (2843
a

one time step later. Likewise, linearizing the adjoint FekRlanck evolution
operator (28.37) around the trajectory point yields:

1

1 —3(Zar1~MaZa)" & (Zas1-Ma L Zas
pa(Ze) = = f [dzy,q] & 20 Mot g G et * 205 5 2] 90 440
a+1l
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Completing the squares, integrating and substitutingd@8respectively (28.42)
we obtain the formula for covariance matrix evolution ford/an time,

Qa1 = MaQaMeTl +Aa. (28.45)
In the adjoint case, the evolution of tgis given by
Ma(jaM; = Qar1 + Aa. (28.46)

The two covariance matricesftéir, as the adjoint evolutio, is computed by
going backwards along the trajectory. Theswariance evolutionules are the
basis of all that follows.

Think of the initial covariance matrix (28.41) as an errortmxadescribing
the precision of the initial state, a cigar-shaped proltgtdistribution pa(z5). In
one time step this density is deterministically advecteadl @gformed into density
with covarianceMQM?T, and then the noisa is added: the two kinds of inde-
pendent uncertainties add up as sums of squares, henceviréance evolution
law (28.45), resulting in the Gaussian ellipsoid whose hsdind orientation are
given by the singular values and singular vectors (4.22hefcbvariance matrix.
After n time steps, the variand®, is built up from the deterministically propa-
gatedMJQ,_nM2T initial distribution, and the sum of noise kicks at interiren
times, MXA,_«MXT, also propagated deterministically.

The pleasant surprise is that the evaluation of this noigeires no Fokker-
Planck PDE formalism. The width of a Gaussian packet cetiterea trajectory
is fully specified by a deterministic computation that iseally a pre-computed
byproduct of the periodic orbit computations; the deteistio orbit and its linear
stability. We have attached labed’ ‘to Ay = A(Xy) in (28.45) to account for
the noise distributions that are inhomogeneous, stateespejgendent, but time
independent multiplicative noise.

28.6 Weak noises Hamiltonian formulation

All imperfection is easier to tolerate if served up in small
doses.
— Wislawa Szymborska

(G. Vattay and P. Cvitanovic)

In the spirit of the WKB approximation (to be fully develop&dchapter 32), we
shall now study the evolution of the probability distritmriiby rewriting it as

p(x,1) = emRD (28.47)
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The time evolution oRis given by
AR+ VOR + (OR)? = Dv + DO°R.

Consider now the weak noise limit and drop the terms propoati to D. The
remaining equation

R+ H(x dR) = 0

is known as the Hamilton-Jacobi equation . The functboran be interpreted as
the Hamilton’s principal function, corresponding to thenkkionian

H(x p) = puX) + p°/2,
with the Hamilton’s equations of motion

= dpH=v+p
= —0yH =-ATp, (28.48)

whereA is the stability matrix (4.3)

Aij(x) = 8;;2() :

The noise Lagrangian is then
. . 1. 5
L(x,X)=x-p—H = > [X=Vv(X)]°. (28.49)

We have come the full circle - the Lagrangian is the exponérmuo assumed
Gaussian distribution (28.31) for noigé = [Xx — (X)]>. What is the meaning
of this Hamiltonian, Lagrangian? Consider two poisgsand x. Which noisy
path is the most probable path that connects them in timEhe probability of a
given pathP is given by the probability of the noise sequei¢® which generates
the path. This probability is proportional to the productileé noise probability
functions (28.31) along the path, and the total probabitityreachingx from xg
in timet is given by the sum over all paths, or the stochastic patlgiatéWiener
integral)

5Tj d/2 _f(Tj)z o
P(X, Xo,1) ~ ;l?[p(f(ﬁ),&j):fl?[dfi (m) e @
1 1M
- ZZP:EXD(—E]; dr¢ (T))’ (28.50)
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whereér; = 7j — 7j, and the normalization constant is

1 . oTj d/2
z=m[1(z5) -

The most probable path is the one maximizing the integradéhe exponential.
If we express the noise (28.18) as

£(1) = X(t) - v(x(®)) ,

the probability is maximized by the variational principle

min f t dr[X() — V(X(r))]? = min f t L(X(7), X(r))dr .
0 0

By the standard arguments, for a given<’ andt the probability is maximized by
a solution of Hamilton’s equations (28.48) that connecéstitio pointsxg — X
in timet. The solution is a bit boringx = v, p = 0, and lives in the initial,
d-dimensional state space, so not much is to be made of thissing appearance
of Hamiltonians.

Résum é

When a deterministic trajectory is smeared out under theenfie of Gaussian
noise of strengttD, the deterministic dynamics is recovered in the weak noise
limit D — 0. The dfect of the noise can be taken into account by adding noise
corrections to the classical trace formula.

Symplectic structure emerges here not as a deep principteeohanics, but
an artifact of the leading approximation to quantoaisy dynamics, not respected
by higher order corrections. The same is true of semiclakgicantum dynamics;
higher corrections do not respect canonical invariance.

Commentary

Remark 28.1 A brief history of noise. The theory of stochastic processes is a vast
subject, starting with the Laplace 1810 memoir [28.42] nsyidg over centuries, and over
disciplines ranging from pure mathematics to impure finan€he presentation given
here is based on the Cvitanovit and Lippolis 2012 Maribotuees [28.1]. The mate-
rial reviewed is standard [28.2, 28.3, 28.43], but needearder to set the notation for
what is new here, the role that local Fokker-Planck opesgitay in defining stochastic
neighborhoods of periodic orbits. We enjoyed reading vampen classic [28.2], espe-
cially his railings against those who blunder carelesdly imonlinear landscapes. Having
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committed this careless chapter to print, we shall no doeltast to a special place on
the long list of van Kampen'’s sinners (and not for the firstetjirither). A more special-
ized monograph like Risken'’s [28.3] will do just as well. &@han’s monograph [28.12]
contains a very readable summary of Kac’s [28.13] expasibibWiener’s integral over
stochastic paths. The standard Langevin equation [28s48]stochastic equation for a
Brownian particle, in which one replaces the Newton'’s eiguefor force by two counter-
balancing forces: random accelerati@(iy which tend to smear out a particle trajectory,
and a damping term which drives the velocity to zero. In tloistextD is Einstein dif-
fusion constant, and (28.11) is the EinsteiffiBion formula [28.41]. Here we denote
by ‘Langevin equation’ a more general family of stochastitedtential equations (28.18)
with additive or multiplicative [28.47, 28.48] weak noiggoisy discrete timedynamical
systems are discussed in refs. [28.60, 28.61, 28.62].

In probabilist literature [28.58] the fierential operator V- (V(X)p(x, t)) + D V2p(x, t)
is called ‘Fokker-Planck operator;’ here we reserve thet#okker-Planck evolution
operator’ for the finite time, ‘Green function’ integral apéor (28.30), i.e., the stochastic
path (Wiener) integral [28.53, 28.54, 28.3] for a noisy flmith the associated continuous
time Fokker-Planck [28.2, 28.3, 28.55] (or forward Kolmogyw) equation (28.24).

The cost function (28.31) appears to have been first intrediby Wiener as the ex-
act solution for a purely dliusive Wiener-Lévy process in one dimension, see (28.16).
Onsager and Machlup [28.19, 28.24] use it in their variaiqrinciple to study ther-
modynamic fluctuations in a neighborhood of single, lingattractive equilibrium point
(i.e., without any dynamics). It plays important role in thgimal control theory [28.63,
28.64]. Gaussians are often rediscovered, so Onsageriiypasbminal paper, which
studies the same attractive linear fixed point, is in literatoften credited for being the
first to introduce a variational method -the “principle oa$t dissipation” based on the
Lagrangian of form (28.49). They, in turn, credit Raylei@8[20] with introducing the
least dissipation principle in hydrodynamics. OnsageciMiap paper deals only with a
finite set of linearly damped thermodynamic variables, aotdwith a nonlinear flow or
unstable periodic orbits.

Gaspard [28.23] derives a trace formula for the Fokker-ékaquation associated
with 1td stochastic dferential equations describing noisy time-continuous inealr dy-
namical systems. In the weak-noise limit, the trace fornmutavides estimations of the
eigenvalues of the Fokker-Planck operator on the basised?dilicott-Ruelle resonances
of the noiseless deterministic system, which is assumea todm-bifurcating. At first
order in the noise amplitude, théfect of noise on a periodic orbit is given in terms
of the period and the derivative of the period with respedh®® pseudo-energy of the
Onsager-Machlup-Freidlin-Wentzell scheme [28.24]. Tiieaimical ‘action’ Lagrangian
in the exponent of (28.30), and the associated symplectmilttmian were first writ-
ten down in 1970’s by Freidlin and Wentzell [28.24], whosenfalation of the ‘large
deviation principle’ was inspired by the Feynman quantuith rategral [28.49]. Feyn-
man, in turn, followed Dirac [28.50] who was the first to digeothat in the short-time
limit the quantum propagator (imaginary time, quantumisidbf the Wiener stochastic
distribution (28.16)) is exact. Gaspard [28.23] thus referthe ‘pseudo-energy of the
Onsager-Machlup-Freidlin-Wentzell scheme.” M. Ronchd@28.51, 28.52] refers to the
Fokker-Planck exponent in (28.30) as the ‘Wiener-Onsagchlup Lagrangian,” con-
structs weak noise saddle-point expansion and writesgoahequations for the higher
order codficients. In our exposition the setting is more general: weysfluctuations
over a state space-varying velocity fiei).
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Remark 28.2 Weak noise perturbation theory. DasBuch omits any discussion of
the Martin-Siggia-Rose [28.69] type weak noise correcidfor an overview of possible
ways for improvement of diagrammatic summation in noisydfigsleories, se€haotic
Field Theory: a Sketcli28.70]. The details are in the three papers on trace formu-
las for stochastic evolution operators (see also ref. [J8.5Weak noise perturbation
theory [16.9], smooth conjugation method [16.10], and lanatrix representation ap-
proach [16.11]. Such corrections have not been evaluatedeygrobably because one
is so unsure about nature of the noise itself tithtorder correction is beyond the point.
Doing continuous time flows requires the same kind of coiwast with diagrams stand-
ing for integrals rather than sums, though no one ever triedkly stochastic flows in
continuous time.

Remark 28.3 Covariance evolution. In quantum mechanics the linearized evolu-
tion operator corresponding to the linearized Fokker-&4avolution operator (28.40) is
known as the Van Vleck propagator, the basic block in the sgasisical periodic orbit
quantization [30.2], see chapter 3Q.covariance matrix composition rule (28.45) or its
continuous time version is called ‘covariance evolutidat @xample, in ref. [28.65]), but

it goes all the way back to Lyapunov’s 1892 thesis [28.66]thie Kalman filter litera-
ture [28.67, 28.68] it is called ‘prediction’.

Remark 28.4 Operator ordering. According to L. Arnold [28.43] review of the orig-
inal literature, the derivations are much more delicata twhat is presented here: the
noise iscoloredrather than Dirac delta function in time. He refers only te linear case
as the ‘Langevin equation’. Th&r — 0 limit and the proper definition of(r) are deli-
cate issues [28.44, 28.45, 28.43, 28.46] of no import foragmalications of stochasticity
studied here: It6 and Stratanovich operator orderingeissuise in the order beyond the
leading approximation considered here.
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Exercises

28.1. Whoordered 4/ ?  Derive the Gaussian integral of two Gaussians

1 f“’ 2
— dx ez = +/a, a>0.
Vor J-w

assuming only that you know to integrate the exponen-

f)=e X mX, g =e X %X

factorizes as

tial functione™. Hint, hint: X2 is a radius-squared of [f % gl(X) = 1 fdk FOG(KE™, (28.52)
something.x is related to the area or circumference of (2r)d
something.

where

28.2. D-dimensional Gaussian integrals. Show that the

Gaussian integral iD-dimensions is given by F(k = ﬁ fddx f(x)e*ik'x - |detAl|1/2e%kT'A1'k
1 d, 36T MLgprpd  _ 1 \p 1 _ik. LT Ao
(o | et < e efdidon G = o [ dxge = deta2eit o
whereM is a real positive definitedx d] matrix, i.e., Hence
a matrix with strictly positive eigenvalues, J are D-
. : . 1
dimensional vectors, and is the transpose of. [fsgl(x) = - dldetAldetA1|l/2fddpe%pT'(A“A
28.3. Convolution of Gaussians. Show that the Fourier (27)

1/2

transform of convolution detAsdetAz |7 1 (apeng)tx

det(A1 + Ap)
[f gl(x) = f dy f(x— y)gW)
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