Appendix M

Noise/quantum corrections

(G. Vattay)

HE GUTZWILLER TRACE FORMULA IS only a good approximation to the quantum
T mechanics whef is small. Can we improve the trace formula by addi @%
guantum corrections to the semiclassical terms? A similestion can
be posed when the classical deterministic dynamics is ristuby some way
Gaussian white noise with strengih The deterministic dynamics then can be
considered as the weak noise liit— 0. The dfect of the noise can be taken
into account by adding noise corrections to the classieaktformula. A formal
analogy exists between the noise and the quantum problers.amblogy allows
us to treat the noise and quantum corrections together.

M.1 Periodic orbitsasintegrable systems

From now on, we use the language of quantum mechanics, s$ircendre con-
venient to visualize the results there. Where it is necgssarwill discuss the
difference between noise and quantum cases.

First, we would like to introduce periodic orbits from an snal point of
view, which can convince you, that chaotic and integrablstesys are in fact
not as diferent from each other, than we might think. If we start orbitshe
neighborhood of a periodic orbit and look at the picture amFBoincaré section
we can see a regular picture. For stable periodic orbits tietgp form small
ellipses around the center and for unstable orbits they forperbolas (See Fig.
M.1).

Figure M.1: Poincaré section close to a stable and an unstable peddalic
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The motion close to a periodic orbits is regular in both cagéss is due to
the fact, that we can linearize the Hamiltonian close to a&it,cand linear systems
are always integrable. The linearized Hamilton’s equaticlose to the periodic
orbit (qp(t) + 0, pp(t) + p) look like

+02H(Gp(). Pp()d + 92 ,H (Gp(1). Pp(t))P. (M.1)
—2H(p(t), Po(®))d — 92oH (Gp(1), Po(t) P, (M.2)

where the new coordinatesand p are relative to a periodic orbit. This linearized
eqguation can be regarded ag dimensional oscillator with time periodic frequen-
cies. These equations are representing the equation admiata redundant way
since more than one combination @fp andt determines the same point of the
phase space. This can be cured by an extra restriction onatiebles, a con-
straint the variables should fulfill. This constraint candsgived from the time
independence or stationarity of the full Hamiltonian

OH(Gp(t) + g, pp(t) + p) = 0. (M.3)

Using the linearized form of this constraint we can eliménaie of the linearized
equations. Itis very useful, although technicallgfidult, to do one more transfor-
mation and to introduce a coordinate, which is parallel thign Hamiltonian flow
(%)) and others which are orthogonal. In the orthogonal dioestiwe again get
linear equations. These equations wijidependent rescaling can be transformed
into normal coordinates, so that we get tiny oscillatorsha hew coordinates
with constant frequencies. This result has first been detiyePoincaré for equi-
librium points and later it was extended for periodic ortisV.l. Arnol’'d and
co-workers. In the new coordinates, the Hamiltonian reads a

d-1
1 1
Ho(X1. Py % Pr) = 55 + U(X) + > 5(PA £ i), (M.4)
n=1

which is the general form of the Hamiltonian in the neighloardh of a periodic
orbit. The+ sign denotes, that for stable modes the oscillator potestigosi-
tive while for an unstable mode it is negative. For the urlstatbodesw is the
Lyapunov exponent of the orbit

(J)n = In Ap’n/Tp, (MS)

whereAp is the expanding eigenvalue of the Jacobi matrix. For tHelestdirec-
tions the eigenvalues of the Jacobi matrix are connectddawés

Ap’n = e_iwnTp. (MG)
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The Hamiltonian close to the periodic orbit is integrablel @an be quantized by
the Bohr-Sommerfeld rules. The result of the Bohr-Somnh@idieiantization for
the oscillators gives the energy spectra

o1
En = Twn (]n + E)for stable modes, (M.7)
. o1
En = -ihwn (Jn + E)for unstable modes,

where j, = 0,1, .... Itis convenient to introduce the indesx = 1 for stable and
s, = —i for unstable directions. The parallel mode can be quantizgdicitly
trough the classical action function of the mode:

% 95 prdx = %Sn(Em) - h(m+ %) (M.8)

wheremy,, is the topological index of the motion in the parallel difent This
latter condition can be rewritten by a very useful trick ithe equivalent form

(1 _ eiSH(Em)/h—impn/Z) =0 (Mg)

The eigen-energies of a semiclassically quantized periodiit are all the possi-
ble energies

d-1
E= Em+ZEn. (M.10)
n=1

This relation allows us to change in (M.®, with the full energy minus the
oscillator energie&, = E -}, En. All the possible eigenenergies of the periodic
orbit then are the zeroes of the expression

Ap(E) — 1—[ (1- dSi(E=2n hSnwn(J'n+l/2))/h—imp7T/2). (M.11)

Jasesda-1
If we Taylor expand the action arourgto first order
S||(E + 6) &5 S||(E) + T(E)E, (M12)

whereT (E) is the period of the orbit, and use the relations)@nd the eigenvalues
of the Jacobi matrix, we get the expression of the Selberdymto

eiSp(E)/h—impn/Z
Ap(E) = | | [1——. : (M.13)
(1/2+]n)
JaseesJd-1 HnAp,n+
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If we use the right convention for the square root we get éx#oe d dimensional
expression of the Selberg product formula we derived froenGlutzwiller trace
formula in ? . Just here we derived it in &fdrent way! The functiom\p(E) is
the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to condtiaufunction
which is zero, whenever the energy coincides with the BStigethenergy of one
of the periodic orbits, we have to take the product of theserdenants:

A(E) = ]_[ Ap(E). (M.14)
p

The miracle of the semiclassical zeta function is, that iftalee infinitely many
periodic orbits, the infinite product will have zeroes naiese energies, but close
to the eiger-energies of the whole system !

So we learned, that both stable and unstable orbits areaftiegsystems and
can be individually quantized semiclassically by the olhBSommerfeld rules.
So we almost completed the program of Sommerfeld to quagéreral systems
with the method of Bohr.Let us have a remark here. In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximatiodiZM. Sommerfeld
would never do this ! At that point we loose some importantipien compared
to the BS rules and we get somewhat worse results than a sesigdl formula
is able to do. We will come back to this point later when wewdische quantum
corrections.To complete the program of full scale Bohr-Sommerfeld gzatibn
of chaotic systems we have to go beyond the linear approxmatround the
periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel anmimal coordi-
nates can be written as the ‘harmonic’ plus ‘anaharmonigupeation

H (X, Py Xn> Pr) = Ho(X> Pyi» Xns Pn) + HA(X> Xn, Pn)s (M.15)

where the anaharmonic part can be written as a sum of homoggipelynomials
of x, and p,, with x; dependent cd&cients:

HACY, %o, ) = > H (1, X0, Pr) (M.16)
k=3

H O, X0 ) = > HE o ()X pEe (M.17)
> Ih+my=k

This classical Hamiltonian is hopeless from Sommerfeldigpof view, since

it is non integrable. However, Birklfibin 1927 introduced the concept of nor-
mal form, which helps us out from this problem by giving siwssiee integrable
approximation to a non-integrable problem. Let’s learntartmre about it!

31t is really a pity, that in 1926 Schrodinger introduced th@ve mechanics and blocked the
development of Sommerfeld’s concept.
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M.2 TheBirkhoff normal form

Birkhoff studied the canonical perturbation theory close to an ibgiuiin point of
a Hamiltonian. Equilibrium point is where the potential lrasinimumvuU = 0
and small perturbations lead to oscillatory motion. We dagdrize the prob-
lem and by introducing normal coordinatgsand conjugate momentunps the
quadratic part of the Hamiltonian will be a set of oscillator

d
1
Ho(%. Pr) = D 5(Pf + wix). (M.18)

The full Hamiltonian can be rewritten with the new coordesat

H(Xn, Pn) = Ho(Xn, Pn) + HA(Xn, Pn), (M.19)

whereHa is the anaharmonic part of the potential in the new coordmailhe
anaharmonic part can be written as a series of homogenebuspuoals

(9]

HaG, pn) = > HI(0, pr), (M.20)
j=3

Hion ) = ) hixp™ (M.21)
ll+Imi=]

where hljrn are real constants and we used the multi-indices (I, ...,14) with
definitions

ol Jige
I = Z In, X = XI XX

Birkhoff showed, that that by successive canonical transformataescan in-
troduce new momentums and coordinates such, that in the oexdinates the
anaharmonic part of the Hamiltonian up to any givepolynomial will depend
only on the variable combination

1
= S(Ph + wpX0), (M.22)

wherex, and p, are the new coordinates and momentums,dgyis the original
frequency. This is called the Birkfionormal form of degreé\:

N
HO, Po) = ) H(r1, . 7a), (M.23)
=2
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whereH! are homogeneous degré¢eolynomials ofr-s. This is an integrable
Hamiltonian, the non-integrability is pushed into the rémdar, which consists of
polynomials of degree higher th&h We run into trouble only when the oscillator
frequencies are commensurate e.g. it is possible to find af §g#egersm, such
that the linear combination

d
Z (Unmn,
n=1

vanishes. This extra problem has been solved by Gustavsd®66 and we
call the object Birkhf-Gustavson normal form. The procedure of the succes-
sive canonical transformations can be computerized andbeaarried out up to
high orders £ 20).

Of course, we pay a price for forcing the system to be intdgrap to degree
N. For a non-integrable system the high order terms behave wildly and the
series is not convergent. Therefore we have to use this twefuly. Now, we
learned how to approximate a non-integrable system witlgaesece of integrable
systems and we can go back and carry out the BS quantization.

M.3 Bohr-Sommerfeld quantization of periodic orbits

There is some dierence between equilibrium points and periodic orbits. The
Hamiltonian (M.4) is not a sum of oscillators. One can transf the parallel
part, describing circulation along the orbit, into an datdr Hamiltonian, but this
would make the problem extremelfiicult. Therefore, we carry out the canonical
transformations dictated by the Birkffiggrocedure only in the orthogonal direc-
tions. Thex, coordinate plays the role of a parameter. After the transédion up

to orderN the Hamiltonian (M.17) is

N
H(Xy. py» 715 ---Td-1) = Ho(Xj, Pyjs 71 -.-,Td—1)+Z Ul(x, 71, ... Td-1),(M.24)
=2

whereU! is a jth order homogeneous polynomial o& with X, dependent co-
efficients. The orthogonal part can be BS quantized by quagtihie individual
oscillators, replacing-s as we did in (M.8). This leads to a one dimensional
effective potential indexed bj, ..., jg-1

d-1

. , 1 ,
H, Py, Jas s Ja-1) = Epﬁ UG + ) hswn(jn +1/2) + (M.25)
n=1

N
+ > UK hsiwn(jn + 1/2) hsswa(jo + 1/2), ... hso-1wa-a(ja1 + 1/2))
=2
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where j, can be any non-negative integer. The term with inkléx proportional
with 7K due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given sgsof

SHE. . o) = b pic = (M.26)

Sgd)qIJ Zhsnwn(ln"‘l/z) U, J1, - Jd-1) = 2rA(M+ my/2),

whereU contains all thex; dependent terms of the Hamiltonian. The spectral
determinant becomes

Ap(E) = 1—[ 1- eisp(Esjl’---’jd—l)/h_mpﬂ/z). (M.27)

jsid-1

This expression completes the Sommerfeld method and h®w to quan-
tize chaotic or general Hamiltonian systems. Unforturyatghantum mechanics
postponed this nice formula until our book.

This formula has been derived with the help of the semiadas&ohr-Sommerfeld
quantization rule and the classical normal form theory.etu] if we expand,
in the exponent in the powers bf

N
Sp= ) HSk,
k=0

we get more than just a constant and a linear term. This f@ralibady gives
us corrections to the semiclassical zeta function in all grswof. There is a
very attracting feature of this semiclassical expansiénn S, shows up only
in the combinatiorfis,wn(jn + 1/2). A term proportional withi¥ can only be a
homogeneous expression of the oscillator energies(jn + 1/2). For example
in two dimensions there is only one possibility of the fuantl form of the order
k term

= &(E) - wk(j + 1/2)%,

wherecy(E) is the only function to be determined.

The corrections derived sofar adeublysemiclassical, since they give semi-
classical corrections to the semiclassical approximatidihat can quantum me-
chanics add to this ? As we have stressed in the previoussgetlie exact quan-
tum mechanics is not invariant under canonical transfaomat In other context,
this phenomenon is called the operator ordering problemceSihe operators ~
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and p do not commute, we run into problems, when we would like tdenvdiown
operators for classical quantities likép?. On the classical level the four possible
orderingsxpxp ppxx pxpxandxxppare equivalent, but they arefidirent in
the quantum case. The expression for the energy (M.26) iexaatt. We have to
go back to the level of the Schrodinger equation if we woikd to get the exact
expression.

M.4 Quantum calculation of 7 corrections

The Gutzwiller trace formula has originally been deriveanirthe saddle point
approximation of the Feynman path integral form of the pgappar. The exact
trace is a path-sum for all closed paths of the system

TrG(x, X, t) = fde(x, X 1) = f@xés(x’t)/h, (M.28)

where f Dx denotes the discretization and summation for all pathswé tength
tin the limit of the infinite refinement an8(x, t) is the classical action calculated
along the path. The trace in the saddle point calculationsam for classical
periodic orbits and zero length orbits, since these are xheraa of the action
6S(x,t) = 0 for closed paths:

TrG(x, X, t) = go(t) + Z f DépSEtO/M (M.29)
pePO

wherego(t) is the zero length orbit contribution. We introduced thevre®ordi-
nateép with respect to the periodic orbiy(t), x = &p + Xp(t). Now, each path
sumfi)gp is computed in the vicinity of periodic orbits. Since the dladpoints
are taken in the configuration space, only spatially disfoeciodic orbits, the so
called prime periodic orbits, appear in the summation. Soédhing new has
been invented. If we continue the standard textbook caionldcheme, we have
to Taylor expand the action i#, and keep the quadratic term in the exponent
while treating the higher order terms as corrections. Thercan compute the
path integrals with the help of Gaussian integrals. The la@gtgere is that we
don’t compute the path sum directly. We use the correspardéptween path
integrals and partial élierential equations. This idea comes from Maslov [M.5]
and a good summary is in ref. [M.6]. We search for that Scingel equation,
which leads to the path sum

f D @S0/, (M.30)
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where the action around the periodic orbit is in a multi-disienal Taylor ex-
panded form:

S(x.1) = Z Si(t)(X — Xp(B)"/nL. (M.31)

The symboln = (ng, ny, ..., Ng) denotes the multi index id dimensions,n! =
[1%, ni! the multi factorial and X — xp())" = [TL,(% — Xpi ()™, respectively.
The expansion cdgcients of the action can be determined from the Hamilton-
Jacobi equation

&S + :—ZL(VS)Z +U =0, (M.32)

in which the potential is expanded in a multidimensionall®dageries around the
orbit

UG = > tn(t)(x = xp(t))"/nt. (M.33)

The Schrodinger equation

2
inow = Hy = —%mp + Uy, (M.34)

with this potential also can be expanded around the per@dit. Using the WKB
ansatz

v = pdS", (M.35)

we can construct a Schrodinger equation correspondinggivea order of the
Taylor expansion of the classical action. The Schrodireggration induces the
Hamilton-Jacobi equation (M.32) for the phase and the pamn®quation of Maslov
and Fjedoriuk [M.7] for the amplitude:

1 in
Ougp + VoVS + ZpAS - 'EAQD - 0. (M.36)

This is the partial dferential equation, solved in the neighborhood of a peri-
odic orbit with the expanded action (M.31), which belongs$hi® local path-sum
(M.30).

If we know the Green functio® (¢, £, t) corresponding to the local equation
(M.36), then the local path sum can be converted back intaczir

f DM ZnSCeODGMN - TrG (£, £, 1). (M.37)
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The saddle point expansion of the trace in terms of locaksdlcen becomes

TIG(x, X, 1) = TrGw(x, X, t) + Z TIGp(&, &', 1), (M.38)
p

where Gw(x, X, t) denotes formally the Green function expanded around zero
length (non moving) periodic orbits, known as the Weyl teivhd]. Each Green
function can be Fourier-Laplace transformed indepengemttl by definition we

get in the energy domain:

TrG(x, X, E) = go(E) + Z TIG (&, &, E). (M.39)
p

Note that we do not need here to take further saddle poinisi, since we are
dealing with exact time and energy domain Green functiongexGreen func-
tion'energy dependent

The spectral determinant is a function which has zeroesatitien-energies
En of the Hamilton operatoH. Formally it is

A(E) = det € - H) = ]_[(E ~Ep).

The logarithmic derivative of the spectral determinanthis trace of the energy
domain Green function:

= 9 1ogAE). (M.40)

TrG(x, X, E) = = —
( ) Zn:E—En dE

We can define the spectral determinag(E) also for the local operators and we
can write

d
TIGy(¢.£', E) = 7= log Ap(E). (M.41)

Using (M.39) we can express the full spectral determinard psoduct for the
sub-determinants

A(E) = eV® ]_[ Ap(E),
p

whereW(E) = fE 0go(E")dE’ is the term coming from the Weyl expansion.

The construction of the local spectral determinants candme easily. We
have to consider the stationary eigenvalue problem of tte Bchrodinger prob-
lem and keep in mind, that we are in a coordinate system mdegether with
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the periodic orbit. If the classical energy of the periodibibcoincides with an
eigen-energ\E of the local Schrodinger equation around the periodictpthéen
the corresponding stationary eigenfunction fulfills

l/’p(f’t + Tp) = fd‘f,Gp(‘f’ gl’t + Tp)l//p(g’, t) = e_iETp/hl//p(f’ t)’ (M42)

whereT), is the period of the prime orbjt. If the classical energy of the periodic
orbit is not an eigeaenergy of the local Schrodinger equation, the non-statipn
eigenfunctions fulfill

Y€ t+Tp) = f d¢'Gp(&, &, t+ Tplup(€, 1) = e ETo/M A (E)yl(t),(M.43)

wherel = (I3, 1, ...) is a multi-index of the possible qguantum numbers of thelloca
Schrodinger equation. If the eigenvalu/é,;(E) are known the local functional
determinant can be written as

Ap(B) = [ [ - 2(E)), (M.44)
I

sinceAp(E) is zero at the eigerenergies of the local Schrodinger problem. We
can insert the ansatz (M.35) and reformulate (M.43) as

eFSETal (1 4+ Tp) = e ET/ A (E)et SO (1) (M.45)

The phase change is given by the action integral for one @p&(o+ T,) — S(t) =
foT" L(t)dt. Using this and the identity for the acti@)(E) of the periodic orbit

§
Sp(E) = Sgpdq: fo "L(dt+ ET,, (M.46)
we get
et S El(t + Tp) = AL(E)e (0): (M.47)

Introducing the eigen-equation for the amplitude

ep(t+ Tp) = R p(E)e(D), (M.48)

the local spectral determinant can be expressed as a pffiodtloé quantum num-
bers of the local problem:

Ap(E) = [ @ - R p(E)ei®E). (M.49)
|
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Sincer is a small parameter we can develop a perturbation serighdam-
. is\M . . . .
plitudespl(t) = Z_o (%) 5™ (t) which can be inserted into the equation (M.36)
and we get an iterative scheme starting with the semicklssidutione'©:

1
@¢®+V¢®VS+E¢QMS = 0 (M.50)

1
B ™D Ly My §¢I(m+1)AS = AP

The eigenvalue can also be expanded in powerik/@t

Rp(E) = exp{i (%)mcfﬁ’} (M.51)
m=0
= expCO (1 + %C% (m)((cmf+cﬁ»+m. (M.52)

The eigenvalue equation (M.48) inexpanded form reads as
expC s (0,
expCNLS (@) + CLe ),

expCDlep” () + Clep ) + (CF + 5 - cOdfhmn)

ot + Tp)
ot +Tp)

|
o2t +Tp)

and so on. These equations are the conditions selectingigbavectors and
eigenvalues and they hold for all

It is very convenient to expand the functiap'gn)(x, t) in Taylor series around
the periodic orbit and to solve the equations (M.51) in thasib [M.10], since
only a couple of coicients should be computed to derive the first corrections.
This technical part we are going to publish elsewhere [M®he can derive in
general the zero order ter@f” = invy + S (Ii + 3) up;. whereup; = log Ap,
are the logarithms of the eigenvalues of the monodromy m#g andv, is the
topological index of the periodic orbit. The first correctiis given by the integral

|(0)
®

(l)
[t

When the theory is applied for billiard systems, the wavecfiom should
fulfill the Dirichlet boundary condition on hard walls, eigshould vanish on the
wall. The wave function determined from (M.36) behaves aiinuously when
the trajectoryx,(t) hits the wall. For the simplicity we consider a two dimemsib
billiard system here. The wave function on the wall before Itlounce t( o ) is
given by

in(X Y(X), 1) = @(X, Y(X), t_o)gS Gy o)/t (M.54)
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wherey(X) = Yox2/2! + Y3x3/3! + Y4x*/4! + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave functiotthe wall after the
bounce {(,o) is

Wout(% Y(X), 1) = @(X, Y(X), t0)gS OV L)/t (M.55)

The sum of these wave functions should vanish on the hard Waik implies that
the incoming and the outgoing amplitudes and the phaseglated as

S(X, ¥(X). t-0) = S(x, ¥(), t+0), (M.56)

and

@(X ¥(X): t0) = —¢(X. ¥(X). t+0). (M.57)

The minus sign can be interpreted as the topological phasegdrom the hard
wall.

Now we can reexpress the spectral determinant with the &gahvalues:

AE) = 'O T ] [@- R p(E)ei>®). (M.58)
p |

This expression is the quantum generalization of the sass@al Selberg-product
formula [M.11]. A similar decomposition has been found faragtum Baker
maps in ref. [M.12]. The functions

G YE) = [ |- Rp(E)er®E) (M.59)
p

are the generalizations of the Ruelle type [34.23] zetations. The trace formula
can be recovered from (M.40):

_ 1 _dlogRp(E). R, p(E)eiS®
TIG(E) = go(E) + %}(Tp(E)—Ih G SEREE (M.60)

We can rewrite the denominator as a sum of a geometric semiewa get

dlogR p(E)

=R p(E)) iS5, (M.61)

TIG(E) = go(E) + % %(Tp(E) —in

The new index can be interpreted as the repetition number of the primd orbi
p. This expression is the generalization of the semiclaksiaae formula for
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the exact quantum mechanics. We would like to stress heaethh perturbation
calculus introduced above is just one way to compute thenesdiges of the local
Schrodinger problems. Non-perturbative methods can bd ts calculate the
local eigenvalues for stable, unstable and marginal orbitserefore, our trace
formula is not limited to integrable or hyperbolic systentscan describe the
most general case of systems with mixed phase space.

The semiclassical trace formula can be recovered by drgghssub-leading
I
term—izdlogR p(E)/dE and using the semiclassical elgenvdRﬁ%(E) e

e e Zilli+1/2Upi - Symmation for the indexdsyields the celebrated semiclas-
sical amplitude

0) - e—irvpn
Z(a,p(e)) - TR (M.62)

To have an impression about the improvement caused by th&uguecor-
rections we have developed a numerical code [M.13] whichutates the first
correctloncg) for general two dimensional billiard systems . The first eotion
depends only on some basic data of the periodic orbit sucheakehgths of the
free flights between bounces, the angles of incidence arftrshéhree Taylor ex-
pansion cofficientsY>, Y3, Y, of the wall in the point of incidence. To check that
our new local method gives the same result as the directlatilmu of the Feyn-
man integral, we computed the fufst:orrectlonC(l) for the periodic orbits of the
3-disk scattering system [M.14] where the quantum comestihave been We
have found agreement up to the fifth decimal digit, while o@tlmod generates
these numbers with any desired precision. Unfortunatbly] &= O codficients
cannot be compared to ref. [M.15], since thgependence was not realized there
due to the lack of general formulas (M.58) and (M.59). Howetlee | depen-
dence can be checked on the 2 disk scattering system [M.16]th® standard
example [M.14, M.15, M.16, M.18], when the distance of thatees R) is 6
times the disk radiusaj, we got

1
c® = ——_(-0.625° - 0.31292 + 1.4373 + 0.625)
' VZE

Forl = 0 and 1 this has been confirmed by A. Wirzba [M.17], who was &ble
computeCél) from his exact quantum calculation. Our method makes itiposs
ble to utilize the symmetry reduction of Cvitanovi¢ and Bakdt and to repeat
the fundamental domain cycle expansion calculation of[Mf18] with the first
quantum correction. We computed the correction to the ihgpdP6 prime peri-
odic orbits with 10 or less bounces in the fundamental donigble I. shows the
numerical values of the exact quantum calculation [M.1&,semiclassical cycle
expansion [M.10] and our corrected calculation. One cantkaethe error of the
corrected calculation vs. the error of the semiclassicialutation decreases with
the wave-number. Besides the improved results, a fast openee up to six dec-
imal digits can be observed, which is just three decimaltgligi the full domain
calculation [M.15].
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Figure M.2: A typical bounce on a billiard wall. The wall can be charaizted by the local
expansiony(X) = Yox2/2! + Yax3/3! + Y, x4 /4! + ...

Table M.1: Real part of the resonances (Ref the 3-disk scattering system at disk separation 6:1.
Semiclassical and first corrected cycle expansion versast gxiantum calculation and the error of
the semiclassicalsc divided by the error of the first correctidiao,. The magnitude of the error in
the imaginary part of the resonances remains unchanged.

Quantum| Semiclassical First correction| dsc/dcorr
0.697995| 0.758313 0.585150 0.53
2.239601| 2.274278 2.222930 2.08
3.762686| 3.787876 3.756594 4.13
5.275666| 5.296067 5.272627 6.71
6.776066| 6.793636 6.774061 8.76
30.24130| 30.24555 30.24125 92.3
31.72739| 31.73148 31.72734 83.8
32.30110| 32.30391 32.30095 20.0
33.21053| 33.21446 33.21048 79.4
33.85222| 33.85493 33.85211 25.2
34.69157| 34.69534 34.69152 77.0
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