Chapter 20

Cycle expansions

Recycle... It's the Law!
—Poster, New York City Department of Sanitation

HE EuLER PRODUCT representations of spectral determinants (19.9) and dyn-

T amical zeta functions (19.15) are really only a shorthartdtian - the ze-
ros of the individual factors anmeot the zeros of the zeta function, and the
convergence of these objects is far from obvious. Now we gfa meaning to
dynamical zeta functions and spectral determinants byrelipg them asycle
expansionswhich are series representations ordered by increaguujoigical cy-
cle length, with products in (19.9), (19.15) expanded asssoverpseudo-cycles
products of weights, of contributing cycles. The zeros of correctly truncated
cycle expansions yield the desired leading eigenvaluesabfion operators, and
the expectation values of observables are given by the eyeleaging formulas
obtained from the partial derivatives of dynamical zetecfions (or spectral det-
erminants).

For reasons of pedagogy in what follows everything is firpl@xed in terms
of dynamical zeta functions: they aid us in developing ‘sveidg’ intuition about
the geometrical meaning of cycle expansions. For actualtzlions, we recom-
mend the spectral determinant cycle expansions of sec&22dnd 20.4.2. While
the shadowing is less transparent, and the weights catmulistan iterative nu-
merical algorithm, these expansions use full analyticrimfation about the flow,
and can have better convergence properties than the dyalareta functions. For
example, as we shall show in chapter 23, even when a speeteahtinant (19.6)
is entire and calculations are super-exponentially cayergt cycle expansion of
the corresponding dynamical zeta function (19.25) has tefmaidius of conver-
gence and captures only the leading eigenvalue, at expaligbnvergent rate.

400

CHAPTER 20. CYCLE EXPANSIONS 401

20.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (19.15) evaluateé®tft by computing
the lengths and Floguet multipliers of the shortest cyclBlsis always requires
numerical work, such as searches for periodic solutions\@aton’s method;
we shall assume for the purpose of this discussion that theerias is under chapter 13
control, and thatll short cycles up to a given (topological) length have been
found. Examples of the data required for application ofqud orbit formulas
are the lists of cycles given in exercise 13.14 and table.2%adly, it is not
enough to set a computer to blindly troll for invariant s@uos, and blithely feed
those into the formulas that will be given here. The reasan tiis chapter is
numbered 20 and not 6, is that understanding the geomethgeafdn—wandering
set is a prerequisite to good estimation of dynamical awsragne has to identify
cycles that belong to a given ergodic component (whose slientbgnamics and
shadowing is organized by its transition graph), and dés¢he isolated cycles
and equilibria that do not take part in the asymptotic dymamilt is important
not to missany short cycles, as the calculation is as accurate as theeshoycle
dropped - including cycles longer than the shortest omiti@ek not improve the
accuracy (more precisely, the calculation improves, blitts as not to be worth
while).

Given a set of periodic orbits, we can compute their weightsd expand the
dynamical zeta function (19.15) as a formal power series,

ve=la-t=1- 3" 10Uty .t (20.1)
p

{pP1p2... Pk}

where the prime on the sum indicates that the sum is overstiihdt non-repeating
combinations of prime cycles. As we shall frequently usésuens, let us denote
by t, = (—1)k+1tp1tp2 ...tp, an element of the set of all distinct products of the
prime cycle weights,. The formal power series (20.1) is now compactly written
as

17=1-3"t,. (20.2)

Fork > 1, the signed products are weights opseudo-cycleghey are sequences
of shorter cycles that shadow a cycle with the symbol secqipng; . .. px along
the segment1, pz,..., Pk, as in figure 1.12. The symbdl’ denotes the re-
stricted sum, for which any given prime cycfecontributes at most once to a
given pseudo-cycle weigly.

The pseudo-cycle weight, i.e., the product of weights (QPaf prime cycles
comprising the pseudo-cycle,

t, = (71)‘“1m hSTe 2 | (20.3)
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depends on the pseudo-cycle integrated observghlthe periodT,, the stability
Ax, remark 5.1

Ay ApAp, - Ap Te=Tp +...+Tp
Ar = Ap +...+ Ay, Ne =Np, + ...+ Ny, (20.4)

and, when available, the topological length

20.1.1 Curvature expansions

The simplest example is the pseudo-cycle sum for a systeamibed by a com-
plete binary symbolic dynamics. In this case the Euler pcodi©.15) is given

by

1/¢ = (1-1t0)(1 - t1)(L ~ tor)(L - toon)(1 — to11) (20.5)
X (1 - tooo) (1 — too1)(L — to111)(1 — toooo1)(1 — tooo11)
X (1 - to0100(1 — too112)(L — tor01)(L - to1111) - .-

(see table 15.1), and the first few terms of the expansio2Y2ddered by increas-
ing total pseudo-cycle length are:

1/ = 1-to—1t1—1to1—too1 — to11 — tooo1 — too11 — toraz—---
+ 1oty + totos + toats + totoo1 + toto11 + tooats + to1ata
—totorts — ... (20.6)

We refer to such series representation of a dynamical zettifun or a spectral
determinant, expanded as a sum over pseudo-cycles, anearodg increasing
cycle length and instability, as@cle expansion

The next step is the key step: regroup the terms into the domtfimdamental
contributionsts and the decreasingurvature correctionsc,, eachcy split into
prime cyclesp of length ny=n grouped together with pseudo-cycles whose full
itineraries build up the itinerary gf. For the binary case this regrouping is given

by

1—1to—tg — [(tor — tato)] — [(too1 — toato) + (toaz — tosts)]
~[(tooo1 — totoos) + (to111— torats)
+(too11 — toots — toto11 + totosts)] —. ..

1—th—Zen‘ (20.7)
f n

1/¢
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All terms in this expansion up to lengtfy = 6 are given in table 20.1. We refer to
such regrouped series asrvature expansiondecause the shadowed combina-
tions [ -] vanish identically for piecewise-linear maps with nicetins, such
as the ‘full tent map’ of figure 16.3.

This separation into ‘fundamental’ and ‘curvature’ partsycle expansions
is possibleonly for dynamical systems whose symbolic dynamics has finiteigra
mar. The fundamental cyclég, t; have no shorter approximations; they are the
“building blocks” of the dynamics in the sense that all longbits can be approx-
imately pieced together from them. The fundamental parteyfcde expansion is
given by the sum of the products of all non-intersecting ®opthe associated
transition graph, discussed in chapter 14. The terms grbinplerackets |- -] are section 15.3
the curvature corrections; the terms grouped in parershesgare combinations section 20.5
of longer cycles and corresponding sequences of “shaddwwsgudo-cycles, as
in figure 1.12. If all orbits are weighted equall, (= z%), such combinations
cancel exactly, and the dynamical zeta function reducekeddpological poly-
nomial (15.27). If the flow is continuous and smooth, orbitsimilar symbolic
dynamics will traverse the same neighborhoods and will sawéar weights, and
the weights in such combinations will almost cancel. Thétyitf cycle expan-
sions of dynamical zeta functions and spectral determsnamtcontrast to naive
averages over periodic orbits such as the trace formulasstisd in sect. 22.4,
lies precisely in this organization into nearly cancelimnbinations: cycle ex-
pansions are dominated by short cycles, with longer cydlésggexponentially
decaying corrections.

More often than not, good symbolic dynamics for a given floweitaer not
available, or its grammar is not finite, or the convergenceyaie expansions
is dfected by non-hyperbolic regions of state space. In thosesdasncations
such as thestability cutgf of sect. 20.6 and sect. 24.3.4 might be helpful. The
idea is to truncate the cycle expansion by including onlypgbeudo-cycles such
that|Ap, -+ Apl < Amax With the cutdf Amax equal to or greater than the most
unstableA in the data set.

In what follows, we shall introduce two cycle averaging fotes, one based
on dynamical zeta functions and the other on spectral détants. (Frequently
used, but inferior ‘level sums’ shall be discussed in sez#2}

20.2 Construction of cycle expansions

Due to the lack of factorization of the determinant in thealemator of the full
pseudo-cycle weight in (18.23),

det(1— Mp,p,) # det(1 - My, ) det(1- Mp,) ,

the cycle expansions for the spectral determinant (19e9samewhat less trans-
parent than is the case for the dynamical zeta functions, espagtpone their
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Table 20.1: The binary curvature expansion (20.7) up to length 6, ligteslich a way that
the sum of terms along thgth horizontal line is the curvatuig associated with a prime
cycle p, or a combination of prime cycles such as thgi01+ tioo110pair.

-to

_tl

'th +t1t0

-Ti00 + T10l0

-l + tioty

-Tioo0  + Tioolo

-tipor +lioch  +tioalo - tatiolo

-tionn  +toily

-Ti0000  + T100dlo

-tio001  +ticoifo  +tioodts - totioota

-ti0010  + tioolio

-tio101  + troatio

-tioo1r  +ltionfo  +tiooafs - totioata

-tioa1r  +tioaaly

-Ti00000 + T1000d0

-ti00001  + tiooofo  + tioooda - totioogts

- tio0010  + tioo1do  + tioodtio - fotiootio

-tioo011  + tioortto  + tacoorts - fotiooafs

-tioo101 - taop110  + tiooada  + tro1ado
+ tiotiopr  + taootior - totaotion - tatiotioo

-tio1110 +tiorada  + taonatio - tatzoatio

-tioo111  + tioortts  + taoaasfo - totzoaafs

-tio1111 + tionaaha

evaluation to sect. 20.2.2. Sect. 20.2.1 is a pedagogicahu@ In actual calcu-
lations, implementing the spectral determinant cycle agjmms of sect. 20.2.2 is
recommended. Correct objects are spectral determinamtsgsausing the correct
object costs exactly the same as using the approximatidmgsettle for less?

20.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluabederically by first
computing the weights, = tp(8, ) of all prime cyclesp of topological length
np < N, for given fixeds ands. Denote by the subscript)(theith prime cycle
computed, ordered by the topological lengiy < ng.1). The dynamical zeta
function /¢y truncated tan, < N cycles is computed recursively, by multiplying

1/45) = 14—l -t 2], (20.8)

and truncating the expansion at each step to a finite polyedamz”, n < N. The
result is theNth order polynomial approximation

N
Yin=1- Z . (20.9)
n=1
In other words, a cycle expansion is a Taylor expansion irdtiramy variablez,
where each term in the sum is raised to the topological cyeigth. If both the

number of cycles and their individual weights grow not fagiean exponentially
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with the cycle length, and we multiply the weight of each eygby a factorz™,

the cycle expansion converges fofftiently small|Z. If the symbolic dynamics
grammar is finite, the truncation cuttiifhas to be larger than the length of longest
cycle in the transition graph (15.15), for the salubriofie@ of shadowing cance-
lations to kick in. If that is the case, further increasesligield the exponentially
decreasing correctiorg, ih (20.7).

If the dynamics is given by an iterated mapping, the leadie@ of (20.9)
as a function ot yields the leading eigenvalue of the appropriate evolutiper-
ator. For continuous time flowg,is a dummy variable that we set zo= 1, and
the leading eigenvalue of the evolution operator is giverthgyleading zero of
1/¢£(s,B(9)) as function ofs.

20.2.2 Evaluation of traces and spectral determinants

We commence the cycle expansion evaluation of a spectratrdietant by com-
puting the trace formula (18.10) or (18.23). The weight dfier cyclep repeated
r times is

B-A n
bz = — 2" (iscrete time) (20.10)
|det(1 - mp)
(B-Ap—sTp)
tp(SB.1) u (continuous time) (20.11)
|det(1- m)|

For discrete timethe trace formula (18.10) truncated to all prime cygteand
their repeats such thanpr <N,

=>C?,  Ca=tL (20.12)

is computed as a polynomial by adding a cycle at the time:

2 0 nGr<N
tr ‘ :tr—‘ + N tiy(ZB.1).
1-2zLlG 1-2zLlG-1) ® ; 0EA.1)

Forcontinuous timewe assume that the method of Poincaré sections assigms eac
cycle a topological length,. Than the trace formula (18.23) is also organized as
a polynomial

N

il = chz”, (20.13)

n=1

1
S—

tr

recycle - 19nov2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 20. CYCLE EXPANSIONS 406

computed as:

ner<N

1
A '(i—l) +To ), tossNZY

r=1

The periodic orbit data set (20.4) consists of the list ofdhele periodsT, the
cycle Floquet multipliersAp1, Ap2, ..., Apd, and the cycle averages of the ob-
servableA,, for all prime cyclesp such than, < N. The codficient of 2" is then
evaluated numerically for the given parameter valyes)( Always compute the
leading eigenvalue of the evolution operator first, i.ee, ¢scape rate = —sp, in
order to use it in calculation of averages of sect. 20.4 asighte’"0 in (20.12).
Now that we have an expansion for the trace formula (18.9)pmer series, we
compute theNth order approximation to the spectral determinant (19.3),

N
det(1-zL)y=1- Z QnZ', Qn=nth cumulant (20.14)
n=1

as follows. The logarithmic derivative relation (19.4)Idie

2L . _d
(tr - ZL) det(1-2z£) = —zd—zdet(l— z[)

(C1z+CoZ2 + )L — Quz— QP —--) = Quz+ 2QZ2 + 3QsZ - - -

so thenth order term of the spectral determinant cycle (or in thiecéhe cumu-
lant) expansion is given recursively by the convolutiorcérdormula expansion
codficients

Qn= % (Cr=Cn1Qi---CiQn1).  Qu=Ci. (20.19)

Given the trace formula (20.12) truncatedzth we now also have the spectral
determinant truncated @

The same program can also be reused to compute the dynaetiadlinction

cycle expansion (20.9), by replaciﬂg(l— Azi).j) in (20.12) by the product ofsection 19.3

expanding eigenvaluesg = [leA().e-

A few points concerning dierent cycle averaging formulas:

e The dynamical zeta functions is an approximation to spedeterminant
that yields only the leading eigenvalue of the evolutionrepie. The cycle
weights depend only on the product of expandifng Floquet multipliers,
so signs do no matter. For hyperbolic flows they converge resmpidally
with increasing cycle lengths.
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Table 20.2: The 3-disk repeller escape rates computed from cycle eigeef the spec-
tral determinant (19.6) and the dynamical zeta function1(8p as functions of the max-
imal cycle lengthN. The disk-disk center separation to disk radius ratiB:& and the
det(s — A) is an estimate of the classical escape rate computed frersphctral det-
erminant cycle expansion in the fundamental domain. Faeladisk-disk separations,
the dynamics is more uniform, as illustrated by the fasteweogence. Convergence of
spectral determinant det{ A) is super-exponential, see chapter 23. For comparison, the
1/£(s) column lists estimates from the fundamental domain dynahzieta function cycle
expansion (20.7), and the'J(s)3_gjsk column lists estimates from the full 3-disk cycle
expansion (20.35). The convergence of the fundamental mhodiyaamical zeta function
is significantly slower than the convergence of the corredpw@ spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta functiwas still poorer convergence.
(P.E. Rosenqvist.)

Ra N . det(s— A) 1/£(9) 1/£(9)3-disk
0.39 0.407

0.4105 0.41028 0.435
0.410338 0.410336  0.4049
0.4103384074 0.4103383  0.40945
0.4103384077696 0.4103384 0.410367
0.410338407769346482 0.4103383 0.410338
0.4103384077693464892 0.4103396
0.410338407769346489338468
0.4103384077693464893384613074
0.4103384077693464893384613078192

041

0.72

0.675

0.67797

0.677921

0.6779227

0.6779226894

0.6779226896002

0.677922689599532

0.67792268959953606

[
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e spectral determinants weights in (19.3) contajifL - A;| factors, so for
them signs of Floquet multipliera; do matter. With finite grammar the
leading eigenvalue converges super-exponentially irechgrigth.

Note that while the dynamical zeta functions weights usg tm expand-
ing Floguet multipliersA¢|, for spectral determinants the weights are of
form|1- A'|, both expanding and contracting directions contributel, tae
signs of multipliers do matter. That's why ChaosBook evérgre tracks
multipliers A;, rather than Floquet exponents. A's belong to equilibria,
periodic orbits require multipliers. That's the way cookieimbles. For
very high-dimensional flows (such as unstable periodict&wig of Navier-
Stokes equations), usually only a subset of the most urstdeast con-
tracting Floquet multipliers is known. As long as the codtireg Floquet
multipliers omitted from the weights in (20.12) arefstiently strongly con-
tracting, the errors introduced by replacemidnt A'j| — 1 for such eigen-
values should be negligible.

The least enlightened are the ‘level sum’ cycle averagimmédas. There
is no point in using them, except that they have to be mentio(teere in
sect. 22.4), as there is voluminous literature that uses.the

e Other formulas published in physics literature are likelype wrong.

If the set of computed periodic orbits is incomplete, andrtRéoquet mul-
tipliers inaccurate, distinctions betweerffdirent cycle averaging formulas are
academic, as there are notftiently many cycles to start worrying about what
expansion converges faster.

20.3 Periodic orbit averaging

The first cycle expansion calculation should always be therdenation of the

leading eigenvalue of the evolution operator, calculatedodlows. After the

prime cycles and the pseudo-cycles have been grouped insetsuof equal topo-

logical length, the dummy variable can be set equat to 1. With z = 1, the
expansion (20.14) constitutes the cycle expansion (1@6)hie spectral deter-

minant det§é — A) . We varysin cycle weights, and determineth eigenvalue

Sy (17.20) by findings = s, for which (20.14) vanishes. As an example, the
convergence of a leading eigenvalue for a nice hyperbobtesy is illustrated in

table 20.2 by the list of pinball escape rates= —sy estimates computed from
truncations of (20.7) and (20.14) tofidirent maximal cycle lengths. chapter 23

The pleasant surprise, to be explained in chapter 23, isaot@tcan prove
that the coéiicients in these cycle expansions decay exponentially or faster,
because of the analyticity of det{ A) or 1/(s), for svalues well beyond those
for which the corresponding trace formula (18.23) diverges
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Figure 20.1: Example scans in the complex
plane: contour plots of the logarithm of the ab- -0.5
solute values of (left) &Z(s), (right) spectral deter-

minant det - A) for the 3-disk system, separation IR /v 1. P e L, P o

R:a = 6. TheA; subspace is evaluated numeri- E A AR A A A A A E

cally. The eigenvalues of the evolution operafbr

are given by the centers of elliptic neighborhood: -1.5 - -1.5
of the rapidly narrowing rings. While the dynam-

ical zeta function is analytic on the le®> -1 half- 2.0
plane, the spectral determinant is entire and reves "
further families of zeros. (P.E. Rosenqvist)

20.3.1 Newton algorithm for determining the evolution opeator eigen-
values

s
J Cycle expansions of spectral determinants can be used tputera set
of leading eigenvalues of the evolution operator. A coreenivay to search for
these is by plotting either the absolute magnitudelén(s — A)| or the phase of
spectral determinants and dynamical zeta functions agifunscof the complex
variables. The eye is guided to the zeros of spectral determinants yamahaical
zeta functions by means of complexylane contour plots, with élierent intervals
of the absolute value of the function under investigatiosigreed diferent col-
ors; zeros emerge as centers of elliptic neighborhoodspadiyachanging colors.
Detailed scans of the whole area of the compdgtane under investigation and
searches for the zeros of spectral determinants, figure 28éal complicated
patterns of resonances even for something as simple asdis& 8ame of pinball.
With a good starting guess (such as the location of a zeroesteg by the com-
plex s scan of figure 20.1), a zerq4(s) = 0 can now be determined by standard
numerical methods, such as the iterative Newton algorith®4), with themth
Newton estimate given by

1/{(sm) _

20.16
T (20.16)

Sm1 = Sm— ({(sn)ﬁ%(l(sn))_l = Sn—

The denominatotT), is required for Newton iteration and is given by cycle ex-
pansion (20.25). We need to evaluate it anyhow(Tag is needed for the cycle
averaging formulas.

Our next task will be to compute long-time averages of olz@es. Three
situations arise, two of them equal in practice:

(i) The system is bounded, and we have all cycles up to sonu#fcatways
start by testing the cycle expansion sum rules of sect. 20.3.

(ii) The system is unbounded, and averages have to be codhpute a repeller
whose natural measure is obtained by balancing local iitisgaith the
global escape rate = -, as in sect. 17.3.
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(iii) The system is bounded, but we only have a repelling sasisting of a sub-
set of unstable cycles embedded into the bounded stramgetatt Best one
can do is to treat this as an open system, case (iii). Thajresaistationary
natural measure to neighborhoods of the solutions usedip¢héinstabili-
ties balanced by a weight that includes escape ratey@xp( Whether use
of this measure improves averages as one increases thigys@albdft de-
pends on whether the longer cycles explore qualitativeffednt regions
of state space not visited by the shorter (fundamentalesydr only revisit
already known regions (curvature corrections).

20.3.2 Flow conservation sum rules

If a dynamical system is bounded, so that all trajectoriesaia confined for all
times, the escape rate (22.8) vanishes —sy = 0, and the leading eigenvalue of
the Perron-Frobenius operator (16.10) (evolution operaith g = 0) is simply
exp(-ty) = 1. Conservation of material flow thus implies that for bowhflews
cycle expansions of dynamical zeta functions and specet@rohinants satisfy
exactflow conservatiorsum rules:

1/£(0,0)

Il

=
>

T

=
> =
2

|

o

F(0,0)

1- i Qn(0,0)=0 (20.17)
n=1

obtained by setting = 0 in (20.18), (20.19) with cycle weightg = e‘STp/\Ap| —
1/IApl . These sum rules depend neither on the cycle pefiga®r on the observ-
ablea(x) under investigation, but only on the cycle stabiliti®g1, Ap2, -+ -, Apd.
Their significance is purely geometric; they are a measuteoaf well periodic
orbits tessellate state space, as in figure 1.11. Consamvaftimaterial flow pro-
vides a first and very useful test of the quality of finite cylelegth truncations and
is something that you should always check when construetingcle expansion
for a bounded flow.

20.4 Cycle formulas for dynamical averages

The eigenvalue conditions for the dynamical zeta functRhZ) and the spectral
determinant (20.14),

0= 1-3"t.  L=tB) (20.18)

1- Qn, Qn= Qn(ﬂ» S(,B)) > (2O~19)

n=1

o
1l

recycle - 19nov2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 20. CYCLE EXPANSIONS 411

BA

F(3.s())=0 curve

Figure 20.2: The eigenvalue condition is satisfied on
the curveF = 0 on the @, s) plane. The expectation

N\ S

>
value of the observable (17.12) is given by the slope of ds/zL/;\
the curve. aB >

N

are implicit equations for an eigenvalse= s(8) of the form 0= F(B, S(8)). The
eigenvalues = s(B) as a function of3 is sketched in figure 20.2; this condition
is satisfied on the curvE = 0. The cycle averaging formulas for the slope and
curvature ofs(g) are obtained as in (17.12) by taking derivatives of thereigkie
condition. Evaluated along = 0, by the chain rule the first derivative yields

d
0 = @F(ﬂ,s(ﬂ))
OF  ds oF ds  oF OF
- T B = 3l (20.20)
and the second derivative B{, s(8)) = 0 yields
s PF  _dsdF  (ds\?9?F]| ,oF
w[% was* () @} as 2020
Denoting
oF oF
We = = me=
i 9B lp =s(p) P oshssp
2 0°F
(A-A?). = — , (20.22)
9B g s-p)

respectively, and the mean cycle expectation valud,ahe mean cycle period,
and the second derivative &f computed forF (5, S(8)) = 0, we obtain the cycle
averaging formulas for the expectation and variance of bsewable (17.12):

@ = % (20.23)
(@-@)y?) = <.|}—>F<(A—<A))2>F‘ (20.24)

These formulas are the central result of periodic orbit the@e now show that
for each choice of the functioR(3, s) in (20.2), (20.14), and (22.15), the above
guantities have explicit cycle expansions.

recycle - 19nov2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 20. CYCLE EXPANSIONS 412
20.4.1 Dynamical zeta function cycle averaging formulas

For the dynamical zeta function condition (20.18), the eyaleraging formulas
(20.20), (20.24) require one to evaluate derivatives ofdyical zeta functions at
a given eigenvalue. Substituting the cycle expansion §#0ra2he dynamical zeta
function we obtain

01

O > Aty (20.25)
a1 ’ 01 ,
My = 357 = Z Tate, (M) = 757 Z Moty s

where the subscript ity - -), stands for the dynamical zeta function average over
prime cyclesA,, T,, andn, given by (20.3) are evaluated on pseudo-cycles (20.4),
and pseudo-cycle weights = t,(z 8, S(8)) are evaluated at the eigenvalgg).

In most applicationg = 0, ands(B) of interest is typically the leading eigenvalue
S = %(0) of the evolution generatof.

For bounded flows the leading eigenvalue (the escape ratishes,s(0) = 0,
the exponenBA, — sT, in (20.3) vanishes, so the cycle expansions take a simple
form

’ Ap, +Ap, -+ A
Py P2 Pk
(A= (et PP B, (20.26)
where analogous formulas hold fF),, (n),.
Example 20.1 Cycle expansion for the mean cycle period: For example, for the
complete binary symbolic dynamics the mean cycle period (T), is given by section 1.5.4
To T ( Tor To+ Tl)
Ty, = -9, 1 . (% _ 20.27
e = 5g " iaa \ihod ™ Tond (20.27)
( Toor T01+To) +( Tour T01+T1) N
[Acodl  [Ao1Aol [Aowal  [AosAll ) 77

Note that the cycle expansions for averages are groupedhatsame shad-
owing combinations as the dynamical zeta function cycleaasn (20.7), with
nearby pseudo-cycles nearly canceling each other.

The cycle averaging formulas for the expectation of obssex) follow by

substitution into (20.24). Assuming zero mean dfit = 0, the cycle expansion
(20.14) for the variancé(A— (A>)2>( is given by

, (Ao + Ay + Apk)2
(), =2 (—1)k+1w, (20.28)
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20.4.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a péatlgisimple structure,
with the shadowing apparent already by a term-by-term ictgpe of table 20.2.
For “nice” hyperbolic systems, shadowing ensures expdsiergnvergence of thesection 23.5
dynamical zeta function cycle expansions. This, howegenoi the best achiev-
able convergence. As will be explained in chapter 23, foe higperbolic systems
the spectral determinant constructed from the same cyt#base is entire, and
its cycle expansion converges faster than exponentiale féistest convergence
is attained by the spectral determinant cycle expansiorl@@nd its deriva-
tives. In this case th&/ds, d/dp derivatives are computed recursively, by taking
derivatives of the spectral determinant cycle expansionritiutions (20.12) and
(20.15).

The cycle averaging formulas are exact, and highly converfg nice hy-
perbolic dynamical systems. An example of their utility e tcycle expansion
formula for the Lyapunov exponent of example 20.2. Furthmglieations of cy-
cle expansions will be discussed in chapter 22.

20.4.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation vdbreya flow in con-

tinuous time, and sometimes it might be easier to computedisicrete time, from

a Poincaré return map. Return times (3.1) might vary wijldhd it is not at all

clear that the continuous and discrete time averages ateddh any simple way.

As we shall now show, the relationship turns out to be bothasidly simple, and

totally general. exercise 20.13

The mean cycle periodT), fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or tregewviast return time.
For example, if we have evaluated a billiard expectatioruevdh)y in terms of
continuous time, and would like to also have the correspandiveragea)qscr
measured in discrete time, given by the number of reflectashbilliard walls,
the two averages are related by

@dscr= (@ (T)g /() (20.29)

where(n), the average of the number of bouncgsalong the cyclep is given by
is (20.25).

Example 20.2 Cycle expansion formula for Lyapunov exponents: In sect. 17.4
we defined the Lyapunov exponent for a 1-dimensional map, relating it to the leading
eigenvalue of an evolution operator, and promised to evaluate it. Now we are finally in
position to deliver on our promise.
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The cycle averaging formula (20.26) yields an exact explict expression for the

Lyapunov exponent in terms of prime cycles:

log|Ap,| + -+ +10g|Apl

1 ’
A= — _pet =P PR 20.30
oy 2 g Ap] (20.30)

For a repeller, the 1/|Ap| weights are replaced by (22.10), the normalized measure

weights explynp)/|Apl, where y is the escape rate.

For 2-dimensional Hamiltonian flows such as our game of pirfbae exam-
ple 19.3), there is only one expanding eigenvalue and (2@&gplies as written.
However, in dimensions higher than one, a correct calaraif Lyapunov expo-
nents requires a bit of sophistication.

20.5 Cycle expansions for finite alphabets

A finite transition graph like the one given in figure 14.6 (sl)ai compact encod-
ing of the transition matrix for a given subshift. It is a spamatrix, and the
associated determinant (15.20) can be written by inspecttds the sum of all
possible partitions of the graph into products of non-sgeting loops, with each
loop carrying a minus sign:

det(1-T) = 1 - to — too11 — tooo1 — tooo11+ totoo11 + too1itooos (20.31)

The simplest application of this determinant is the evabmaof the topological
entropy; if we set, = Z%, wheren, is the length of thep-cycle, the determinant
reduces to the topological polynomial (15.21).

The determinant (20.31) is exact for the finite graph figurés (&), as well
as for the associated finite-dimensional transfer opewft@xample 17.5. For
the associated (infinite dimensional) evolution operatas, the beginning of the
cycle expansion of the corresponding dynamical zeta fancti

1/ = 1-to—too11— tooo1+ toooitoo11
_(tOOOll_ totoo11+ - - - curvatures). . (2032)

The cycle, 0001 andD011 are théundamentatycles introduced in (20.7); they
are not shadowed by any combinations of shorter cycles. tAérocycles appear
together with their shadows (for example, tign11 — totop11 COMbination, see
figure 1.12) and yield exponentially small corrections fgpérbolic systems. For
cycle counting purposes, bot, and the pseudo-cycle combinatitny = tatp in
(20.2) have the same weight*™, so all curvature combinatiorg, — taty vanish
exactly, and the topological polynomial (15.27fevs a quick way of checking
the fundamental part of a cycle expansion.
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The splitting of cycles into the fundamental cycles and thevature correc-
tions depends on balancing long cydgsagainst their pseudo-trajectory shadows
tatp. If the ab cycle or either of the shadovias b do not to exist, such curvature
cancelation is unbalanced.

The most important lesson of the pruning of the cycle exmassis that pro-
hibition of a finite subsequence imbalances the head of & agbansion and
increases the number of the fundamental cycles in (20.7hcéléhe pruned ex-
pansions are expected to start converging @figr all fundamental cycles have
been incorporated - in the last example, the cy@leE), 10100,1011100. With-
out cycle expansions, no such crisp and clear cut definitithecfundamental set
of scales is available.

Because topological zeta functions reduce to polynomaalirfite grammars,
only a few fundamental cycles exist and long cycles can beggd into curvature
combinations. For example, the fundamental cycles in é&se@.6 are the three
2-cycles that bounce back and forth between two disks anthth&-cycles that
visit every disk. Of all cycles, the 2-cycles have the snsallloquet exponent,
and the 3-cycles the largest. It is only after these fundaaheycles have been
included that a cycle expansion is expected to start comgggnoothly, i.e., only
for n larger than the lengths of the fundamental cycles are theaturescy (in
expansion (20.7)), a measure of the deviations betweenddyits and their short
cycle approximations, expected to faif eapidly with n.

20.6 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins
(C.P. Dettmann and P. Cvitanovit)

We have judiciously deployed the 3-disk pinball, with itsiple grammar, to mo-
tivate the periodic orbit theory. Most dynamical systemmt#rest, however, have
infinite grammar, so at any order ia cycle expansion may contain unmatched
terms that do not fit neatly into the almost canceling cumeatiorrections. Sim-
ilarly, for the intermittent systems that we shall discusséct. 24.3.4, curvature
corrections are not small in general, so again the cycleresipas may converge
slowly. For such systems, schemes that collect the psealdotsrms according
to some criterion other than the topology of the flow may cogedaster than
expansions based on the topological length.

All chaotic systems exhibit some degree of shadowing, amubd ¢runcation
criterion should do its best to respect the shadowing as magbossible. If a
long cycle is shadowed by two or more shorter cycles and theiiemooth, the
periods and the Floquet exponents will be additive in selmaethe period of the
longer cycle is approximately the sum of the shorter cycléods. Similarly, as
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stability is multiplicative, shadowing is approximatelyeperved by including all
terms with pseudo-cycle stability

[Apy - Ap] < Amax (20.33)

and ignoring any pseudo-cycles that are less stable.

Two such schemes for ordering cycle expansions that appedgly respect
shadowing are truncations by the pseudocycle period andtédity ordering
that we shall discuss here. In these schemes, a dynamiedLinetion or a spec-
tral determinant is expanded. One keeps all terms for witietperiod, action or
stability for a combination of cycles (pseudo-cycles) ssléhan a given cutb

Settings in which stability ordering may be preferable talesing by topo-
logical cycle length are the cases of bad grammar, of integngdy, and of partial
cycle data sets.

20.6.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of stapace generates the
“optimal” symbolic dynamics. Stability ordering does netjuire understanding
dynamics in such detail: if you can find the cycles, you canstability-ordered
cycle expansions. Stability truncation is thus easier tplément for a generic
dynamical system than the curvature expansions (20.7}ehabn finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a longctraje for near
recurrences. The long trajectory method for detectingesygbreferentially finds
the least unstable cycles, regardless of their topolodgeajth. Another practical
advantage of the method (in contrast to blind Newton metleadches) is that it
preferentially finds cycles in a given connected ergodic poment of state space,
ignoring isolated cycles or other ergodic regions elsew/festate space.

Why should stability-ordered cycle expansions of a dynaitieta function
converge better than the crude trace formula (22.9), to $=mudsed in sect. 22.2?
The argument has essentially already been laid out in sBd: In truncations
that respect shadowing, most of the pseudo-cycles appedrainiowing combi-
nations and nearly cancel, while only the relatively smabiset #fected by the
increasingly long pruning rules is not shadowed. The estypically of the order
of 1/A, which is smaller by a facta@T than the trace formula (22.9) error, where
his the entropy and is the typical cycle length for cycles of stability.

20.6.2 Smoothing

y
J If most, but not all long cycles in a stability truncation ateadowed by
shorter cycles, we say that the shadowing is partial. Thakiimg of exact shad-
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owing cancellations deserves further comment. Any pastialdowing that may
be present can be (partially) restored by smoothing thélisgatirdered cycle ex-
pansions by replacing thg A weight for each term with the pseudo-cycle stability
A = Ap,---Ap by f(A)/A. Here, f(A) decreases monotonically frof{0) = 1

to f(Amax) = 0. The lack of smoothing means we have a step function.

A typical “shadowing error” induced by the cufas due to two pseudo-cycles
of stability A separated bA; the contributions of these pseudo-cycles are of
opposite sign. Ignoring possible weighting factors, theynitade of the resulting
term is of order 1A — 1/(A + AA) ~ AA/A?. With smoothing, one obtains an
extra term of the formf’(A)AA/A, which we want to minimize. A reasonable
guess might be to keeff(A)/A constant and as small as possible, so that

f(A) = 1-(AA )2

max

The results of a stability-ordered expansion (20.33) shalivays be tested
for robustness by varying the ctitd\may. If this introduces significant variations,
smoothing is probably necessary.

Résumé

A cycle expansiolis a series representation of a dynamical zeta functionetra
formula or a spectral determinant, with products in (19.¥Xpanded as sums
over pseudo-cyclgswhich are products of the prime cycle weighgs

If a flow is hyperbolic and has the topology of the Smale hdrseqa sub-
shift of finite type), dynamical zeta functions are holonfocp(have only poles
in the complexs plane), the spectral determinants are entire, and therspectf
the evolution operator is discrete. The situation is carsidly more reassuring
than what practitioners of quantum chaos fear; there is hsciasa of absolute
convergence’ and no ‘entropy barier’, the exponential ifexdtion of cycles is
no problem, spectral determinants are entire and converggwehere, and the
topology dictates the choice of cycles to be used in cyclaesion truncations.

In this case, the basic observation is that the motion indawensional dy-

namical systems is organized around a femwdamentalcycles, with the cycle
expansion of the Euler product

Yo=1-)t = &
f n

regrouped into dominarfundamentakontributionst; and decreasingurvature
correctionscy. The fundamental cycleis have no shorter approximations; they
are the ‘building blocks’ of the dynamics in the sense thidbaler orbits can be
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approximately pieced together from them. A typical curvatcontribution toch
is thedifferenceof a long cyclefab} and its shadowing approximation by shorter
cycles{a} and{b}, as in figure 1.12:

tab — tath = tan(1 — tals/tan)

Orbits that follow the same symbolic dynamics, suckedss and a ‘pseudo-cycle’
{a}{b}, lie close to each other, have similar weights, and for iasirgly long
orbits the curvature corrections falfeapidly. Indeed, for systems that satisfy the
‘axiom A requirements, such as the 3-disk billiard, cunratexpansions converge
very well.

Once a set of the shortest cycles has been found, and thepeyaes, stabili-
ties, and integrated observable have been computed, theeasyaraging formulas
such as (20.25) for the dynamical zeta function

@ = (A /(T

01 ’ 01l ’
W = —gpz = Y A (=52 = ) Tl

yield the expectation value of the observaé(g), i.e., the long time average over
the chaotic non—wandering set).

Commentary

Remark 20.1 Pseudocycle expansions. Bowen'’s introduction of shadowingr
pseudo-orbits [1.28] was a significant contribution to Sisatheory. The expression
‘pseudo-orbits’ seems to have been introduced in Parry ahidétt's 1983 paper [20.16].
Following them, M. Berry [20.9] used the expression 'psewodoits’ in his 1986 paper
on Riemann zeta and quantum chaos. Cycle and curvature®gparf dynamical zeta
functions and spectral determinants were introduced is. {80.10, 20.2]. Some liter-
ature [19.12] refers to pseudo-orbits as ‘composite drhatsd to cycle expansions as
‘Dirichlet series’ (see also appendix .5 and remark 1.1).

Remark 20.2 Cumulant expansion. To statistical mechanicians, curvature expansions

are very reminiscent of cumulant expansions. Indeed, 80slthe standard Plemelj-
Smithies cumulant formula for the Fredholm determinantevraspect, not reminiscent
of statistical mechanics, is that in cycle expansions échoeficient is expressed as a
sum over exponentially many cycles.

Remark 20.3 Exponential growth of the number of cycles. Going fromN, ~ N"

periodic points of lengtim to M,, prime cycles reduces the number of computations from

N, to My, ~ N™1/n. The use of discrete symmetries (chapter 21) reduces théeum
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of nth level terms by another factor. While reformulating thefmom trace (18.28) to
cycle expansion (20.7) does not eliminate exponential gramvthe number of cycles, in
practice only the shortest cycles are used, and the reduictioomputational labor for
these cycles can be significant.

Remark 20.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in
table 20.1 leads to the temptation to associate curvataresdividual cycles, such as
€001 = tooo1 — totoo1. Such combinations tend to be numerically small (see, fangle,
ref. [20.3], table 1). However, splitting, into individual cycle curvatures is not possible
in general [20.12]; the first example of such ambiguity in birgary cycle expansion is
given by thetigo1os, t1001100 <> 1 symmetric pair of 6-cycles; the countertetggitoia in
table 20.1 is shared by these two cycles.

Remark 20.5 Escape rates. A lucid introduction to escape from repellers is given by
Kadandr and Tang [22.10]. For a review of transient chaos see re2s1]2 22.13]. The
{—function formulation is given by Ruelle [22.14] and W. Baand M. Pollicott [22.15]
and discussed in ref. [22.16P.C Aug 28, 2008: Altmann and Tel [22.17] give a detailed
study of escape rates, with citations to more recent lieeat

Remark 20.6 Stability ordering.  The stability ordering was introduced by Dahlqvist
and Russberg [20.13] in a study of chaotic dynamics for #tfg?f"/2 potential. The
presentation here runs along the lines of Dettmann and B%f20.14] for the Lorentz
gas, which is hyperbolic but with highly pruned symbolic dymics, and Dettmann and
Cvitanovit [20.15] for a family of intermittent maps. Indtapplications discussed in
the above papers, stability ordering yields a consideriampeovement over topological
length ordering. In quantum chaos applications, cycle esjpam cancelations aréfacted
by the phases of pseudo-cycles (their actions), hpadedor action orderingrather than
stability is frequently employed.

Remark 20.7 Desymmetrized cycle expansions. The 3-disk cycle expansions
(20.35) might be useful for cross-checking purposes, utye shall see in chapter 21,
they are not recommended for actual computations, as theriized zeta functions yield
much better convergence.
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Exercises

20.1.

20.2.

20.3.

exerRecyc - 19nov2012

Cycle expansions.  Write programs that implement
binary symbolic dynamics cycle expansions for (a) dyn-
amical zeta functions, (b) spectral determinants. Com-
bined with the cycles computed for a 2-branch repeller
or a 3-disk system they will be useful in the problems
below.

Escape rate for a 1-dimensional repeller. (continua-
tion of exercise 19.1 - easy, but long) Consider again
the quadratic map (19.31)

f(x) = AX(1 - x)

on the unit interval. In order to be definitive, take ei-
therA = 9/2 or A = 6. Describing the itinerary of any

trajectory by the binary alphabg, 1} (0’ if the iterate 20 4. pinball escape rate, semi-analytical.

is in the first half of the interval and "1’ if it is in the
second half), we have a repeller with a complete binary
symbolic dynamics.

(@) Sketch the graph df and determine its two fixed
pointsO andl, along with their stabilities.

(b) Show that
Agycy = +2"

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for
this system

{h=1-to—ty— (tor —toty) — -+

Note that the convergence as a function of the
truncation cycle length is slow. Try to fix that by
treating theAo = 4 cycle separately. (continued
as exercise 20.12)

Estimate the
3-disk pinball escape rate f&t : a = 6 by substituting
analytical cycle stabilities and periods (see exercisé 13.
and exercise 13.8) into the appropriate binary cycle ex-
pansion. Compare your result with the numerical esti-
mate exercise 17.3.

(b) Sketch the two branches ¢f*. Determine all 20.5. Pinball escape rate, from numerical cycles. Com-

the prime cycles up to topological length 4 using
your calculator and backwards iteration {see
sect. 13.2.1).
(c) Determine the leading zero of the zeta function
(19.15) using the weighty = 2% /|A |, whereA,
is the stability of thep-cycle.
Show that forA = 9/2 the escape rate of the
repeller is 0361509... using the spectral deter-
minantwith the same cycle weight. If you have
takenA = 6, show instead that the escape rate
is in 0.83149298.., as shown in solution 20.2.
Compare the cd&cients of the spectral determin-

(d

=

pute the escape rate for the 3-disk pinball vitha = 6

by substituting the list of numerically computed cycle
stabilities of exercise 13.5 into the binary cycle expan-
sion.

20.6. Pinball resonances in the complex plane. Plot the

logarithm of the absolute value of the dynamical zeta
function andor the spectral determinant cycle expansion
(20.5) as contour plots in the compleplane. Do you

find zeros other than the one corresponding to the com-

plex one? Do you see evidence for a finite radius of
convergence for either cycle expansion?

antand the zeta function cycle expansions. Whick0.7. Counting the 3-disk psudocycles. (continuation of

expansion converges faster?

(Per Rosenqyvist)

Escape rate for the Ulam map. (Medium; repeat of
exercise 13.1) We will try to compute the escape rate for
the Ulam map (11.5)

f(x) = 4x(1 - x),

using the method of cycle expansions. The answer
should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map.
Show thatAg = 4, A1 = -2, Ag1 = —4, Ago1 = -8
andAo1; = 8.

exercise 15.12) Show that the number of terms in the
3-disk pinball curvature expansion (20.34) is given by

1-34-25
l:[(lﬂp) S 13227

3 26+ 122+ 27)
= l+322+223+1_32f_223

= 1+32+22+67+127
+202° + 487" + 842 + 1848 + . ..

This means that, for example; has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(20.35).
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20.8. 3—disk unfactorized zeta cycle expansions. Check

that the curvature expansion (20.2) for the 3-disk pin-
ball, assuming no symmetries between disks, is given
by
1/¢ = (1-Ztp)1-2ts)(1- 2g)
(1 - Zt12a)(1 - 2tuzo)(1 - Z't1219)
(1 - Z'1232)(1 - Zt1329(1 — 212129 -+
= 1-2,- Pty — 2ty - Z(tios + tiz)
~Z[(t1213— tizt1a) + (tr2a2— tiotos)
+(t1323 — t1tos)] (20.34)
~Z[(t12123— taatsoa) + -] =+

Show that the symmetrically arranged 3-disk pinball cy-
cle expansion of the Euler product (20.2) (see table 15.5
and figure 9.1) is given by:

1/¢ = (1= 2t12)°(1 - 2t129 (1 - Z'11219)°

(1- 2t12129%(1 - P121219°

(1-Ptiz1s29°. ..

= 1-372 11 — 27 t103— 37 (t1213— t%z)
—62 (t12123— tioti2s)
~2° (Bt121213+ 3tu21323+ 5, — Ytuztiziz — )

7 2
—62" (t1212123+ t1212313+ t1213123+ t5t123

(20.35)

—3tiat12123— t12al1219)
-372 (2t2121213+ t12121315+ 2t12121323
+2Mt2123123+ 2112123213+ t12132123

+ 3t t1g+ tiatd,3 — 6tastizizig

— 3tistizisos— 4lizglizizs— Bpyg) — -+

20.9. 4—disk unfactorized dynamical zeta function cycle

expansions.  For the symmetrically arranged 4-disk
pinball, the symmetry group is4 which is of order 8.
The degenerate cycles can have multiplicities 2, 4 or 8
(see table 15.3). Show that:

1 = (1-2t)*(1- 2ta)*(1- Ptig)°

(1 - Z211219%(1 - Zt121*(1 — Pt1234)? 20.13.

(1~ 21249 (1 — Pt12129%(1 — Pt12129°

(1- Pt12139%(1 - Pt12149°

(1~ 2t12319%(1 — Pt12419® - . (20.36)
Show that the cycle expansion is given by

1/¢ = 1-Z(Atp+2t3) - 82t
~Z(8tu213+ 4t121a+ 2t123a + Al1203
—612, — t3; — 8tyat13)
—82(t12123+ 1124+ t12134+ tiz143+ t12313
+12413— 4t12t123 — 2113t123)

20.10.

20.11.

20.12.

421

—426(2 Sg + 84 + tiZ + 31;2 t13+ tlgti
—8listio13— 4tiotizig
—2t1ot1234 — 4tioti243

—4t13t1213— 2tistiz1a— tistizas
~2tygtipaz— Tthy) — -+

where in the cofficient of 2 ,the abbreviationSg an
S, stand for the sums over the weights of the 12 c
with multiplicity 8 and the 5 orbits with multiplicity
respectively; the orbits are listed in table 15.5.

Escape rate for the Rossler flow.  (continuation
exercise 13.10) Try to compute the escape rate fi
Rossler flow (2.17) using the method of cycle ex
sions. The answer should be zero, as nothing es
Ideally you should already have computed the c
and have an approximate grammar, but failing tha
can cheat a bit and peak into exercise 13.10.

State space volume contraction, recycled. (contin
uation of exercise 4.3) The plot of instantaneous
space volume contraction as a function of time in ¢
cise 4.3 (d) illustrates one problem of time-averagi
chaotic flows - the observable might vary wildly ac
each recurrence to a given Poincaré section. Eva
on a given short cycle, the average is crisp and
trarily accurate. Recomput@ - v) by means of cyc
expansion, study its convergence/t tonvergence
mindless time-averaging is now replaced by expon
convergence in the cycle length.

Ulam map is conjugate to the tent map. (con
tinuation of exercise 20.3, repeat of exercise 6.4
exercise 13.2; requires real smarts, unless you It
up) Explain the magically simple form of cycle stz
ities of exercise 20.3 by constructing an explicit sm
conjugacy (6.1)

g'(Yo) = ho f'o h (yo)

that conjugates the Ulam map (11.5) into the tent
(11.4).

Continuous vs. discrete mean return time.  Shov
that the expectation valu@) time-averaged over cc
tinuous time flow is related to the corresponding ave
(aygscrmeasured in discrete time (e.g. , Poincaré se
returns) by (20.29):

(@dscr=(@(T), /(N - (20.37

(Hint: consider the form of their cycle expansions.)
mean discrete periogh), averaged over cycles, and
mean continuous time periof), need to be eval
ated only once, thereafter one can compute eith
or (@)gscr Whichever is more convenient.
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