Chapter 29

Relaxation for cyclists

YCLES, i.€., solutions of the periodic orbit condition (13.1)
f*Tx) = f'(9, T>0 (29.1)

are prerequisite to chapters 18 and 19 evaluation of spettiassical evo-
lution operators.Chapter 13fered an introductory, hands-on guide to ex-
traction of periodic orbits by means of the Newton-Raphsethod. Here
we take a very dferent tack, drawing inspiration from variational prineglof
classical mechanics, and path integrals of quantum mechani

In sect. 13.2.1 we converted orbits unstable forward in fimw orbits stable
backwards in time. Indeed, all methods for finding unstapldes are based on
the idea of constructing a new dynamical system such thét€ position of the
cycle is the same for the original system and the transforomed (i) the unstable
cycle in the original system is a stable cycle of the tramsfat system.

The Newton-Raphson method for determining a fixed pwirfor a mapx’ =
f(X) is an example. The method replaces iterationf ©f) by iteration of the
Newton-Raphson map (13.5)

() =);. (29.2)

/ . j— A 1_
=009 =1~ 53],

A fixed point x, for a mapf(x) is also a fixed point o§(x), indeed a superstable
fixed point sincedgi(x.)/dx; = 0. This makes the convergence to the fixed point
super-exponential.

We also learned in chapter 13 that methods that start witlaliguesses for
a number of points along a cycle are considerably more rafdtsafer than
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CHAPTER 29. RELAXATION FOR CYCLISTS 596

searches based on direct solution of the fixed-point cand{{29.1). The relax-
ation (or variational) methods that we shall now descrile thais multipoint ap-
proach to its logical extreme, and start by a guess of not api@wts along a
periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the dgsigoldic orbit
looks like globally, and then use variational methods twelithe initial guess
toward the exact solution. Sacrificing computer memory fidsustness of the
method, we replace a guess thapant is on the periodic orbit by a guess of
the entire orbit And, sacrificing speed for safety, in sect. 29.1 we replaee t
Newton-Raphsoiteration by a fictitious timeflow that minimizes a cost function
computed as deviation of the approximate flow from the true filong a loop
approximation to a periodic orbit.

If you have some insight into the topology of the flow and itsbglic dy-
namics, or have already found a set of short cycles, you niighable to con-
struct an initial approximation to a longer cycfeas a sequence dfl points
(&0, L0, ... <O with the periodic boundary conditiornS: = %. Suppose
you have an iterative method for improving your guess; dftigerations the cost

function

N

F2(9) = 3 (¥, - 1(%9))° (29.3)

or some other more cleverly constructed function (for etadsnechanics - action)
is a measure of the deviation of tkié approximate cycle from the true cycle. This
observation motivates variational approaches to detengnicycles.

We give here three examples of such methods, two for mapramtbr bil-
liards. In sect. 29.1 we start out by converting a problemrudifig an unstable
fixed point of a map into a problem of constructing &eliential flow for which
the desired fixed point is an attracting equilibrium pointlVihg differential equa-
tions can be time intensive, so in sect. 29.2 we replace sowls thy discrete iter-
ations. In sect. 29.3 we show that fdd2limensional billiard flows variation dd
coordinates (wher® is the number of Hamiltonian degrees of freedontjisas
to determine cycles in the fulll>-dimensional phase space.

29.1 Fictitious time relaxation

(O. Biham, C. Chandre and P. Cvitanovic)

The relaxation (or gradient) algorithm for finding cycledbased on the observa-
tion that a trajectory of a map such as the Heénon map (3.17),

Xis1 1-ax + by,
Yier = X, (29.4)
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1

Figure 29.1: “Potential” Vi(x) (29.7) for a typical Vi
point along an initial guess trajectory. For = +1

the flow is toward the local maximum &(x), and for

oi = —1 toward the local minimum. A large devia-
tion of x's is needed to destabilize a trajectory passing
through such local extremum ®f(x), hence the basin

of attraction is expected to be large.

ol

is a stationary solution of the relaxation dynamics defingthie flow

%:vi, i=1...,n (29.5)
dr

for any vector field; = vij(X) which vanishes on the trajectory. Herés a “ficti-
tious time” variable, unrelated to the dynamical time (iis ttxample, the discrete
time of map iteration). As the simplest example, takeo be the deviation of an
approximate trajectory from the exact 2-step recurrenoa fof the HEnon map
(3.18)

Vi = Xip1 — 1+ @ — bx_. (29.6)

For fixed xi_1, X4+1 there are two values of satisfyingv; = 0. These solutions
are the two extremal points of a local “potential” functioro(sum on)

v = %vi(x), Vi(X) = (X1 — bX-1 — 1) + 2&3- (29.7)

Assuming that the two extremal points are real, one is a ledalmum of V;(X)
and the other is a local maximum. Now here is the idea; re[{2@®) by

dx .
D ow, i=1....n, (29.8)
dr

whereoj = +1.

The modified flow will be in the direction of the extremal pogiven by the
local maximum ofV;(x) if o; = +1 is chosen, or in the direction of the one corre-
sponding to the local minimum if we takg = —1. This is not quite what happens
in solving (29.8) - allx; andV;(x) change at each integration step - but this is the
observation that motivates the method. THéadential equations (29.8) then drive
an approximate initial guess toward the exact trajectorgkétch of the landscape
in which x; converges towards the proper fixed point is given in figurd .28s
the “potential” function (29.7) is not bounded for a latgg, the flow diverges for
initial guesses which are too distant from the true trajgctblowever, the basin
of attraction of initial guesses that converge to a giverlecicnevertheless very
large, with the spread in acceptable initial guesses fordi@9.1 of order 1, in
contrast to the exponential precision required of initinegses by the Newton-
Raphson method.
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05

Figure 29.2: The repeller for the Henon map at= - -
18,b=03.

-15

Example 29.1 Hénon map cycles. Our aim in this calculation is to find all periodic
orbits of period n for the Hénon map (29.4), in principle at most 2" orbits. We start by
choosing an initial guess trajectory (X1, Xz, - - -, Xn) and impose the periodic boundary
condition X,;1 = X1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is x; = O for all i. In order to find a given orbit one sets
o = -1 for all iterates i which are local minima of V;(X), and o = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such
as the table 15.1. The real issue for all searches for periodic orbits, this one included,
is how large is the basin of attraction of the desired periodic orbit? There is no easy
answer to this question, but empirically it turns out that for the Hénon map such initial
guess almost always converges to the desired trajectory as long as the initial |x| is not
too large compared to 1/ v/a. Figure 29.1 gives some indication of a typical basin of
attraction of the method (see also figure 29.3).

The calculation is carried out by solving the set of n ordinary differential equa-

tions (29.8) using a simple Runge-Kutta method with a relatively large step size (h =

0.1) until |v| becomes smaller than a given value ¢ (in a typical calculation & ~ 1077).

Empirically, in the case that an orbit corresponding to the desired itinerary does not ex-

ist, the initial guess escapes to infinity since the “potential” V;(X) grows without bound.
exercise 29.3

Applied to the Hénon map at the Hénon'’s parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 100Q All prime cycles up to period 10 for the Hénon
map, a = 1.4 and b = 0.3, are listed in table 29.1. The number of unstable periodic
orbits for periods n < 28 is given in table 29.2. Comparing this with the list of all
possible 2-symbol alphabet prime cycles, table 15.1, we see that the pruning is quite
extensive, with the number of periodic points of period n growing as €>4645" = (1.592)'
rather than as 2".

As another example we plot all unstable periodic points up to period n = 14 for
a=18,b=03infigure 29.2. Comparing this repelling set with the strange attractor
for the Hénon'’s parameters figure 3.6, we note the existence of gaps in the set, cut out
by the preimages of the escaping regions. remark 29.2

In practice, the relaxation flow (29.8) finds (almost) all periodic orbits which
exist and indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

The idea of the relaxation algorithm illustrated by the abblénon map ex-
ample is that instead of searching for an unstable periodi¢ of a map, one
searches for a stable attractor of a vector field. More gpensider ad-
dimensional map’ = f(x) with a hyperbolic fixed poink.. Any fixed pointx, is
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Table 29.1: All prime cycles up to period 10 for the Hénon map= 1.4 andb = 0.3.
The columns list the period,, the itinerary (defined in remark 29.4), a periodic point
(Yp Xp), and the cycle Lyapunov exponetyf = In|Ap|/n,. While most of the cycles have
Ap = 0.5, several significantly do not. THeperiodic point is very unstable, isolated and
transient fixed point, with no other cycles returning closét.t At period 13 one finds a
pair of cycles with exceptionally low Lyapunov exponentheTeycles are close for most
of the trajectory, ditering only in the one symbol corresponding to two perioditfso
straddle the (partition) fold of the attractor. As the systis not hyperbolic, there is no
known lower bound on cycle Lyapunov exponents, and the H&rsirange “attractor”
might some day turn out to be nothing but a transient on thetwayperiodic attractor of

some long period.

n P (Yp. Xp) Ap
T 0 (-1.13135447, -1.13135447) 1.18167262
1 (0.63135447, 0.63135447) 0.65427061
2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 -0.70676677 , 0.63819399) 0.53908457
6 010111 -0.41515894,1.07011813 0.55610982
011111 -0.80421990, 0.44190995 0.55245341
7 0011101 -1.04667757 ,-0.17877958 0.40998559
0011111 -1.08728604 , -0.28539206 0.46539757
0101111 -0.34267842 , 1.14123046 0.41283650
0111111 -0.88050537, 0.26827759 0.51090634
8 00011101 -1.25487963, -0.82745422 0.43876727
00011111 -1.25872451 , -0.83714168 0.43942101
00111101 -1.14931330, -0.48368863 0.47834615
00111111 -1.14078564 , -0.44837319 0.49353764
01010111 -0.52309999, 0.93830866 0.54805453
01011111 -0.38817041, 1.09945313 0.55972495
01111111 -0.83680827, 0.36978609 0.56236493
9 000111101 -1.27793296 , -0.90626780 0.38732115
000111111 -1.27771933, -0.90378859 0.39621864
001111101 -1.10392601 , -0.34524675 0.51112950
001111111 -1.11352304 , -0.36427104 0.51757012
010111111 -0.36894919, 1.11803210 0.54264571
011111111 -0.85789748, 0.32147653 0.56016658
10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 -1.26782752, -0.86878943 0.47745508
0011111101 -1.12796804 , -0.41787432 0.52544529
0011111111 -1.12760083, -0.40742737 0.53063973
0101010111 -0.48815908 , 0.98458725 0.54989554
0101011111 -0.53496022 , 0.92336925 0.54960607
0101110111 -0.42726915, 1.05695851 0.54836764
0101111111 -0.37947780, 1.10801373 0.56915950
0111011111 -0.69555680 , 0.66088560 0.54443884
0111111111 -0.84660200, 0.34750875 0.57591048
13 1110011101000 (-1.2085766485,-0.6729999948) 0.148BB2

1110011101001 (-1.0598110494,-0.2056310390) 0.21ar251

Table 29.2: The number of unstable periodic orbits of the Henon mapferl.4,b = 0.3,
of all periodsn < 28. My, is the number of prime cycles of length andN, is the total
number of periodic points of periad(including repeats of shorter prime cycles).

n Mn Nn | Mn Nn n Mn Nn
11 14 156 23 1930 44392
12 19 248 24 2902 69952
13 32 418 25 4498 112452
14 44 648 26 6806 177376
15 72 1082 27 10518 284042
16 102 1696 28 16031 449520
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Figure 29.3: Typical trajectories of the vector field 0
(29.9) for the stabilization of a hyperbolic fixed
point of the lkeda map (29.11) located aty) ~ >
(0.532750.24689). The circle indicates the positior
of the fixed point. Note that the basin of attraction o
this fixed point is large, larger than the entire lIkeda a

tractor. -2
0 X 1
by construction an equilibrium point of the fictitious timewl
d
Xt -x (29.9)
dr

If all eigenvalues of the Jacobian matixx,) = Df(x.) have real parts smaller
than unity, therx, is a stable equilibrium point of the flow.

If some of the eigenvalues have real parts larger than uhiyy one needs to
modify the vector field so that the corresponding directiofihe flow are turned
into stable directions in a neighborhood of the fixed pointthe spirit of (29.8),
modify the flow by

% =C(f(x)-x, (29.10)
dr

whereC is a [dxd] invertible matrix. The aim is to turix, into a stable equilib-
rium point of the flow by an appropriate choice©f It can be shown that a set
of permutatiory reflection matrices with one and only one non-vanishingyentr
+1 per row or column (fod-dimensional systems, there at®? such matrices)
sufices to stabilize any fixed point. In practice, one choosesticpkar matrix

C, and the flow is integrated. For each choiceCofone or more hyperbolic fixed
points of the map may turn into stable equilibria of the flow.

Example 29.2 Ikeda map: We illustrate the method with the determination of the

periodic orbits of the Ikeda map:

X =1+ a(xcosw — ysinw)

Yy = a(xsinw + ycosw) (29.11)

c

h w=b- ———
where 1+x2+y2°

witha = 0.9, b = 0.4, c = 6. The fixed point X. is located at (X,y) ~ (0.532750.24689)
with eigenvalues of the Jacobian matrix (A1, A2) ~ (—2.3897,-0.3389) so the flow is
already stabilized with C = 1. Figure 29.3 depicts the flow of the vector field around the

fixed point X..

In order to determine X., one needs to integrate the vector field (29.9) forward
in time (the convergence is exponential in time), using a fourth order Runge-Kutta or

any other integration routine.

relax - 29mar2004 ChaosBook.org version14, Dec 31 2012
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Figure 29.4: Typical trajectories of the vector
field (29.10) for a hyperbolic fixed point(y) ~
(-0.13529 -0.37559) of {2, wheref is the lkeda
map (29.11). The circle indicates the position of
the fixed point. For the vector field corresponding
to (@ C = 1, x. is a hyperbolic equilibrium point
of the flow, while for ) C = (5 %), x. is an at- 038
tracting equilibrium point.

-0.36

601

-0.36

-0.38

(a) 0.2 ~0.1 (b) 0.2

In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial
C matrices, different from the identity. Consider for example the hyperbolic fixed point
(x,y) ~ (-0.13529 -0.37559)of the third iterate 2 of the Ikeda map. The flow of the
vector field for C = 1, Figure 29.4 (a), indicates a hyperbolic equilibrium point, while for
C= (é 701) the flow of the vector field, figure 29.4 (b) indicates that X, is an attracting
equilibrium point, reached at exponential speed by integration forward in time.

The generalization from searches for fixed points to searébecycles is
straightforward. In order to determine a prime cygle= (X1, Xo,..., X,) of a
d-dimensional map<d = f(x), we modify the multipoint shooting method of
sect. 13.3, and consider thé-dimensional vector field

dx_ C(f(¥)-X, (29.12)
dr

where f(X) = (f(Xn), f(x1), f(X2),..., f(Xr-1)), andC is an invertible fidx nd]
matrix. For the Henon map, it is fficient to consider a set of'2liagonal matrices
with eigenvaluest1. Risking a bit of confusion, we denote By f(x) both the
d-dimensional vectors in (29.10), amdi-dimensional vectors in (29.12), as the
structure of the equations is the same.

29.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

The problem with the Newton-Raphson iteration (29.2) ig thaequires very
precise initial guesses. For example, titk iterate of a unimodal map has as
many as 2 periodic points crammed into the unit interval, so deteation of all
cycles of lengthn requires that the initial guess for each one of them has to be
accurate to roughly 2. This is not much of a problem for 1-dimensional maps,
but making a good initial guess for where a cycle might lie id-dimensional
state space can be a challenge.

Emboldened by the success of the cyclist relaxation triék§Pof manually
turning instability into stability by a sign change, we nayvabandon the Newton-
Raphson method altogetheir) @bandon the continuous fictitious time flow (29.9)
with its time-consuming integration, replacing it by a n@qwith a larger basin
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of attraction (not restricted to a linear neighborhood effilied point). The idea
is to construct a very simple mayp a linear transformation of the origindl| for
which the fixed point is stable. We replace the Jacobian rptdfactor in (29.2)
(whose inversion can be time-consuming) by a constant xaiteifactor

X =g(X) = x+ ATC(f(X) — X), (29.13)

whereAr is a positive real number, ar@is a [dxd] permutation and reflection
matrix with one and only one non-vanishing en#ty per row or column. A fixed
point of f is also a fixed point ofl. SinceC is invertible, the inverse is also true.

This construction is motivated by the observation that foalb Ar — dr the
map (29.13) is the Euler method for integrating the modified/f{29.10), with
the integration step.

The argument why a suitable choice of maitixan lead to the stabilization
of an unstable periodic orbit is similar to the one used toivate the construction
of the modified vector field in sect. 29.1. Indeed, the flow §2% the simplest
example of this method, with the infinitesimal fictitious &rimcrement\r — dr,
the infinitesimal coordinate correctiox £ x') — dx, and the pxn] diagonal
matrixC — o = +1.

For a given fixed point off (X) we again chose & such that the flow in the
expanding directions oM(x.) is turned into a contracting flow. The aim is to
stabilizex, by a suitable choice df. In the case where the map has multiple fixed
points, the set of fixed points is obtained by changing theim& (in general
different for each unstable fixed point) and varying initial adbods for the map
g. For example, for 2-dimensional dissipative maps it cantmve that the 3 remark 29.3
matrices

e<{los)-(o 2o}

sufice to stabilize all kinds of possible hyperbolic fixed points

If At is chosen sfliciently small, the magnitude of the eigenvalues of the
fixed pointx. in the transformed system are smaller than one, and one lasla s
fixed point. HoweverAr should not be chosen too small: Since the convergence
is geometrical with a ratio + aAr (where the value of constant depends on
the stability of the fixed point in the original system), shvat can slow down
the speed of convergence. The critical valueAef which just siffices to make
the fixed point stable, can be reaff rom the quadratic equations relating the
stability codficients of the original system and those of the transformetegy. In
practice, one can find the optimat by iterating the dynamical system stabilized
with a givenC andAr. In general, all starting points converge on the attractor
providedAr is small enough. If this is not the case, the trajectory eittieerges
(if At is far too large) or it oscillates in a small section of thaestgpace (ifA7 is
close to its stabilizing value).
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The search for the fixed points is now straightforward: Atsigrpoint cho-
sen in the global neighborhood of the fixed point iteratechwlite transformed
dynamical systeng converges to the fixed point due to its stability. Numerical
investigations show that the domain of attraction of a §taa fixed point is a
rather extended connected area, by no means confined tcaa iaghborhood.
At times the basin of attraction encompasses the comphie space of the attrac-
tor, so one can be sure to be within the attracting basin ofea fpoint regardless
of where on the on the attractor on picks the initial conditio

The step siz@(X) — x| decreases exponentially when the trajectory approaches
the fixed point. To get the coordinates of the fixed points \aittigh precision,
one therefore needs a large number of iterations for thedi@jy which is already
in the linear neighborhood of the fixed point. To speed up tirevergence of the
final part of the approach to a fixed point we recommend a coatibim of the
above approach with the Newton-Raphson method (29.2).

The fixed points of thath iteratef" are periodic points of a cycle of period
n. If we consider the map

X =g(X) = x+ ArC(f"(X) - X), (29.14)

the iterates ofy converge to a fixed point provided that is suficiently small
andC is a [dxd] constant matrix chosen such that it stabilizes the flow. nAs
grows, At has to be chosen smaller and smaller. In the case of the Ikega m
example 29.2 the method works well for< 20. As in (29.12), the multipoint
shooting method is the method of preference for determildnger cycles. Con-
siderx = (X1, X2, ..., Xn) and thend-dimensional map

X =13 = (F(xn), (xa)..... f(%a-1).

Determining cycles with period for the d-dimensionalf is equivalent to deter-
mining fixed points of the multipoindn-dimensionalf. The idea is to construct a
matrix C such that the fixed point df becomes stable for the map:

X = x+ ArC(f(X) — X),

whereC is now a hdxnd] permutatiorreflection matrix with only one non-zero
matrix element:1 per row or column. For any given matrx, a certain fraction

of the cycles becomes stable and can be found by iteratingahsformed map
which is now and dimensional map.

From a practical point of view, the main advantage of thishadtcompared to
the Newton-Raphson method is twofoldl) the Jacobian matrix of the flow need
not be computed, so there is no large matrix to invert, siiyiptj considerably
the implementation, andi] empirical basins of attractions for individu@l are
much larger than for the Newton-Raphson method. The priaeésluction in the
speed of convergence.
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Table 29.3: All prime cycles up to 6 bounces for the 3-disk fundamentahdm, center-
to-center separatioR = 6, disk radiusa = 1. The columns list the cycle itinerary, its
expanding eigenvalu&,, and the length of the orbit (if the velocil this is the same as
its period or the action). Note that the two 6 cyct#x1011 and01101 are degenerate
due to the time reversal symmetry, but are not related by &tyete spatial symmetry.
(Computed by P.E. Rosenqvist.)

p A T

—0 9898979485566 4.000000000000
1 1.17714551963810"  4.267949192431
01 -1.240948019920107  8.316529485168
001  -1.2405425570400° 12.321746616182
011 1.449545074956.0° 12.580807741032
0001  -1.22957068619G0" 16.322276474382
0011  1.4459975910640° 16.585242906081
0111  -1.7079019008940" 16.849071859224
00001 -1.217338387051C° 20.322330025739
00011  1.4328209515440° 20.585689671758
00101  1.539257907430C° 20.638238386018
00111 -1.7041071554330° 20.853571517227
01011 -1.79901947943GC° 20.897369388186
01111  2.01024734743A0° 21.116994322373
000001 -1.2050629238%C° 24.322335435738
000011 1.4185216228%4C° 24.585734788507
000101 1.5255974482%1C° 24.638760250323
000111 -1.688624934251C° 24.854025100071
001011 -1.796354939783C° 24.902167001066
001101 -1.796354939784C° 24.902167001066
001111 2.0057331062%8C° 25.121488488111
010111 2.119615015369C° 25.165628236279
011111 -2.366378254801C° 25.384945785676
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29.3 Least action method

(P. Dahlgvist)

The methods of sects. 29.1 and 29.2 are someatdiog as for general
flows and iterated maps there is no fundamental principlesidegus in choosing
the cost function, such as (29.3), to vary.

For Hamiltonian dynamics, we are on much firmer ground; Matujzleast
action principle. You yawn your way through it in every megita course—but as
we shall now see, it is a very hands-on numerical method fdirfincycles.

Indeed, the simplest and numerically most robust methoddtermining cy-
cles of planar billiards is given by the principle of leasti@g, or equivalently,
by extremizing the length of an approximate orbit that sisitgiven sequence of
disks. In contrast to the multipoint shooting method of s&8t3 which requires
variation of 2 phase-space points, extremization of a cycle length regwiaria-
tion of only n bounce positions;.

The problem is to find the extremum values of cycle lengfs) wheres =
(s1,..., %), that is find the roots af;L(s) = 0. Expand to first order

diL(so +069) = diL(S0) + ) Bi0jL(S0)dS) + ...
j
exercise 29.1

and useMijj(s) = 0idjL(so) in the n-dimensional Newton-Raphson iteration
scheme of sect. 13.2.2

S S - ; (ﬁ) a;L(s) (29.15)

i

The extremization is achieved by recursive implementatbithe above algo-
rithm, with proviso that if the dynamics is pruned, one alss to check that the

final extremal length orbit does not penetrate a billiardlwal exercise 29.2
exercise 13.13

As an example, the short periods and stabilities of 3-diskesycomputed this
way are listed table 29.3.

Résum é

Unlike the Newton-Raphson method, variational methodsarngrobust. As each
step around a cycle is short, they do noffsufrom exponential instabilities, and
with rather coarse initial guesses one can determine cgtlasitrary length.
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Commentary

Remark 29.1 Piecewise linear maps.  The Lozi map (3.19) is linear, and 100,000’s
of cycles can be easily computed by [2x2] matrix multiplicatand inversion.

Remark 29.2 Relaxation method.  The relaxation (or gradient) algorithm is one of
the methods for solving extremal problems [29.13]. The mettescribed above was
introduced by Biham and Wenzel [29.1], who have also geizexit (in the case of the
Hénon map) to determination aefl 2" cycles of periodh, real or complex [29.2]. The
applicability and reliability of the method is discussedlgtail by Grassberger, Kantz and
Moening [29.5], who give examples of the ways in which thehoditfails: (a) it might
reach a limit cycle rather than a equilibrium saddle poima{tan be remedied by the com-
plex Biham-Wenzel algorithm [29.2]) (b) filerent symbol sequences can converge to the
same cycle (i.e., more refined initial conditions might bede). Furthermore, Hansen
(ref. [29.7] and chapter 4. of ref. [12.22]) has pointed duw#ttthe method cannot find
certain cycles for specific values of the H&Enon map parameie practice, the relaxation
method for determining periodic orbits of maps appears tefleetive almost always, but
not always. It is much slower than the multipoint shootingmod of sect. 13.3, but also
much quicker to program, as it does not require evaluaticstaifility matrices and their
inversion. If the complete set of cycles is required, thehaédthas to be supplemented by
other methods.

Remark 29.3 Hybrid Newton-Raphson/relaxation methods.  The method discussed
in sect. 29.2 was introduced by Schmelckeml [29.9]. The method was extended to
flows by means of the Poincaré surface of section techniquefi [29.10]. It is also
possible to combine the Newton-Raphson method and (291tlei construction of a
transformed map [29.14]. In this approach, each step ofténation scheme is a linear
superposition of a step of the stability transformed system a step of the Newton-
Raphson algorithm. Far from the linear neighborhood thaghteis dominantly on the
globally acting stability transformation algorithm. Céoto the fixed point, the steps of
the iteration are dominated by the Newton-Raphson proeedur

Remark 29.4 Relation to the Smale horseshoe symbolic dynamics. For a complete
horseshoe Hénon repellex §uficiently large), such as the one given in figure 29.2, the
signsoj € {1,-1} are in a 1-to-1 correspondence with the Smale horshesholeadigm
dynamicss € {0, 1}:

S:{o ifoi=-1, x<0 (29.16)

1 ifo=+1, x>0

For arbitrary parameter values with a finite subshift syrntbdynamics or with arbitrar-
ily complicated pruning, the relation of sign sequenges o, - - -, on} to the itineraries
{s1, %, -, S} can be much subtler; this is discussed in ref. [29.5].

Remark 29.5 lkeda map. |keda map (29.11) was introduced in ref. [29.12] is a model
which exhibits complex dynamics observed in nonlinearagbtiing cavities.

relax - 29mar2004 ChaosBook.org version14, Dec 31 2012



CHAPTER 29. RELAXATION FOR CYCLISTS 607

Remark 29.6 Relaxation for continuous time flows. For ad-dimensional flow

X = v(x), the method described above can be extended by consideftgncaré sur-
face of section. The Poincaré section yields a rhagth dimensiond-1, and the above
discrete iterative maps procedures can be carried out. Aaddhat keeps the trial or-
bit continuous throughout the calculation is the Newtorcdag a variational method for
finding periodic orbits of continuous time flows, is descdle refs. [29.15, 29.16].

Remark 29.7 Stability ordering. The parametenr in (29.13) is a key quantity
here. It is related to the stability of the desired cycle ia transformed system: The
more unstable a fixed point is, the smalter has to be to stabilize it. With increasing
cycle periods, the unstable eigenvalue of the Jacobiarbmiatreases and thereforer
has to be reduced to achieve stabilization of all fixed poidts many cases the least
unstable cycles of a given periadare of physically most important [29.11]. In thisection 20.6
contextAr operates as a stability filter. It allows the selective dizdtion of only those
cycles which posses Lyapunov exponents smaller than aftugle. If one starts the
search for cycles within a given periodvith a valueAr ~ O(1071), and gradually lowers
At one obtains the sequence of all unstable orbits of arderted with increasing values
of their Lyapunov exponents. For the specific choic&ahe relation betweenr and
the stability coéficients of the fixed points of the original system is strictlgmotonous.
Transformed dynamical systems with otl&s do not obey such a strict behavior but
show a rough ordering of the sequence of Floquet multiptiétise fixed points stabilized
in the course of decreasing values for. As explained in sect. 20.6, stability ordered
cycles are needed to order cycle expansions of dynamicailtitjiea of chaotic systems
for which a symbolic dynamics is not known. For such systemmsprdering of cycles
with respect to their stability has been proposed [20.14,%2®0.13], and shown to yield
good results in practical applications.

Remark 29.8 Action extremization method. The action extremization (sect. 29.3) as a
numerical method for finding cycles has been introduceddaddently by many people.
We have learned it from G. Russberg, and from M. Sieber’s arftdiner’'s hyperbola
billiard computations [29.17, 29.18]. The convergence iatreally impressive, for the
Sinai billiard some 5000 cycles are computed within CPU sdsavith rather bad initial
guesses.

Variational methods are the key ingredient of the Aubry-hatheory of area-preserving
twist maps (known in the condensed matter literature astbekiel-Kontorova models of
1-dimensional crystals), discrete-time Hamiltonian dyial systems particularly suited
to explorations of the K.A.M. theorem. Proofs of the Aubnaffier theorem [29.20]
on existence of quasi-periodic solutions are variatioftalvas quickly realized that the
variational methods can also yield reliable, high precisiomputations of long periodic
orbits of twist map models in 2 or more dimensions, neede®&fArM. renormalization
studies [29.19].

A fictitious time gradient flow similar to the one discussedehia sect. 29.1 was in-
troduced by Anegent [29.21] for twist maps, and used by G2%22] in his proof of
the Aubry-Mather theorem. Mathematical bounds on the regaf stability of K.A.M.
tori are notoriously restrictive compared to the numerindications, and de la Llave,
Falcolini and Tompaidis [29.23, 29.24] have found the geatiflow formulation advanta-
geous both in studies of the analyticity domains of the K.Ashbility, as well as proving
the Aubry-Mather theorem for extended systems (for a pegiagbintroduction, see the
lattice dynamics section of ref. [29.25]).
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All of the twist-maps work is based on extremizing the diserlynamics version of
the actionS (in this context sometimes called a “generating functio”rfwever, in their
investigations in the complex plane, Falcolini and de laself29.23] do find it useful to
minimize insteadsS, analogous to our cost function (29.3).
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Exercises

29.1.

29.2.

Evaluation of billiard cycles by minimization*.
Given a symbol sequence, you can construct a guess tra-
jectory by taking a point on the boundary of each disk
in the sequence, and connecting them by straight lines.
If this were a rubber band wrapped through 3 rings, it
would shrink into the physical trajectory, which mini-
mizes the action (in this case, the length) of the trajec-
tory.

Write a program to find the periodic orbits for your bil-
liard simulator. Use the least action principle to ex-
tremize the length of the periodic orbit, and reproduce
the periods and stabilities of 3-disk cycles, table 29.3g
(One such method is given in sect. 29.3.) After that
check the accuracy of the computed orbits by iterating
them forward with your simulator. What is your error
[fTe(X) — X|?

Tracking cycles adiabatically’. Once a cycle has been
found, orbits for diferent system parameters values may

References

3. Cycles of the Henon map.

be obtained by varying slowly (adiabatically) the param-
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