Chapter 35

Quantum scattering

Scattering is easier than gathering.
—lrish proverb

(A. Wirzba, P. Cvitanovic and N. Whelan)

consideration is bound. As we shall now see, we are in luck sémiclas-

sics of bound systems is all we need to understand the sesizddor open,
scattering systems as well. We start by a brief review of thentum theory of
elastic scattering of a point particle from a (repulsivedgntial, and then develop
the connection to the standard Gutzwiller theory for bouystesns. We do this
in two steps - first, a heuristic derivation which helps usarstand in what sense
density of states is “density,” and then we sketch a genendation of the cen-
tral result of the spectral theory of quantum scattering, Kinein-Friedel-Lloyd
formula. The end result is that we establish a connectiowdsst the scattering
resonances (both positions and widths) of an open quantsterayand the poles
of the trace of the Green function, which we learned to areailyzarlier chapters.

S raR the trace formulas have been derived assuming that thensystder

35.1 Density of states

For a scattering problem the density of states (31.16) aplbeafined since for-
mulas such as (34.6) involve integration over infinite spaktent. What we will
now show is that a quantity that makes sense physically islitference of two
densities - the first with the scatterer present and the sewdth the scatterer
absent.

In non-relativistic dynamics the relative motion can beasafed from the
center-of-mass motion. Therefore the elastic scatterfrigv@ particles can be
treated as the scattering of one particle from a static piatev{q). We will study
the scattering of a point-particle of (reduced) masby a short-range potential
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V(q), excludinginter alia the Coulomb potential. (The Coulomb potential decays
slowly as a function ofj so that various asymptotic approximations which apply
to general potentials fail for it.) Although we can choose #patial coordinate
frame freely, it is advisable to place its origin somewheeamthe geometrical
center of the potential. The scattering problem is solved,scattering solution

to the time-independent Schrodinger equati®?) (

n? &
(g V@)@ = 0@ (@.1)

can be constructed. Hekeis the energyp = 7K the initial momentum of the
particle, andk the corresponding wave vector.

When the argument = || of the wave function is large compared to the typ-
ical sizea of the scattering region, the Schrodinger equatifiaatively becomes
a free particle equation because of the short-range nafuhe @otential. In the
asymptotic domaim > a, the solutiong(q) of (35.1) can be written as superpo-
sition of ingoing and outgoing solutions of the free pagi€ichrodinger equation
for fixed angular momentum:

#(a) = A(q) + BsH(q), (+ boundary conditions)

where in 1-dimensional problemg)(q), ¢*)(q) are the “left,” “right’ moving
plane waves, and in higher-dimensional scattering problke“incoming,” “out-
going” radial waves, with the constant matriogsB fixed by the boundary con-
ditions. What are the boundary conditions? The scatteremuadify only the
outgoing waves (see figure 35.1), since the incoming onedefigition, have yet
to encounter the scattering region. This defines the quanteahanical scattering
matrix, or theS matrix

Pm(r) = 6)() + Smmd (). (35.2)

All scattering éfects are incorporated in the deviation®from the unit matrix,
the transition matrixi

S=1-iT. (35.3)

For concreteness, we have specialized to two dimensiatgugih the final for-
mula is true for arbitrary dimensions. The indicesandnt are the angular mo-
menta quantum numbers for the incoming and outgoing stateeofcattering
wave function, labeling th&-matrix elementsSn,;. More generally, given a set
of quantum numbers, y, theS matrix is a collectiorSg, of transition amplitudes
B — vy normalized such thas/;yl2 is the probability of thgg —  transition. The
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The matrix is unitary so in a diagonal basis all entries are phases. This means

that an incoming state of the forhté;)(kr)eim" gets scattered into an outgoing state
of the formSm(k)H(m*)(kr)e‘mg, WhereH(m”(z) are incoming and outgoing Hankel

functions respectively. We now embed the scatterer in aitefaylindrical well

of radiusR, and will later takeR — co. Angular momentum is still conserved so
that each eigenstate of this (now bound) problem corresptmsome value ah.

For larger > a each eigenstate is of the asymptotically free form
Figure 35.1: (a) Incomingspherical waves run-
ning into an obstacle. (b) Superpositionaftgo-

ing spherical waves scattered from an obstacle.

€™ (SmHG (kr) + HS (kr))

Q

ém(r)

(a) (b)

total probability that the ingoing stafends up in some outgoing state must add
up to unity

DSyl =1, (35.4)
Y

so theS matrix is unitary:S’S = SSf = 1.

We have already encountered a solution to the 2-dimensfmodlem; free
particle propagation Green function (33.48) is a radialisoh, given in terms of
the Hankel function

im

Golr, 0, E) = 55 H (k).

where we have use8(r,0, E)/n = kr for the action. Themth angular mo-
mentum eigenfunction is proportional méﬁ)(q) o HS,T)(kr), and given a potential
V(q) we can in principle compute the infinity of matrix eleme8gy. We will
not need much information aboblﬁ)(kr), other than that for largeits asymptotic
form is

H* o érikr

In general, the potentia¥(q) is not radially symmetric and (35.1) has to be
solved numerically, by explicit integration, or by diagbnimg a large matrix in
a specific basis. To simplify things a bit, we assume for theetbeing that a
radially symmetric scatterer is centered at the origin; fthal formula will be
true for arbitrary asymmetric potentials. Then the sohgiof the Schrodinger
equation 9?) are separablein(q) = ¢(r)e™, r = |q, the scattering matrix cannot
mix different angular momentum eigenstates, &msldiagonal in the radial basis
(35.2) with matrix elements given by

Sim(k) = e2on®), (35.5)
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Q

---coskr + om(K) — xm) » (35.6)

where-: - - is a common prefactor, ang, = mr/2+x/4 is an annoying phase factor
from the asymptotic expansion of the Hankel functions thiéitplay no role in
what follows.

The state (35.6) must satisfy the external boundary camdthiat it vanish at
r = R. This implies the quantization condition

KnR+ 8m(kn) = xm =nm(n+12) .

We now ask for the dierence in the eigenvalues of two consecutive states of
fixedm. SinceRis large, the density of states is high, and the pl#agk) does

not change much over such a small interval. Therefore, tingeorder we can
include the &ect of the change of the phase on statel by Taylor expanding. is

kne1R+ Sm(Kn) + (Kns1 — Kn)om(kn) = xm ~ 7 + 7(n + 12).

Taking the diference of the two equations we obtaik ~ (R + &j,(k)) 1. This
is the eigenvalue spacing which we now interpret as the savef the density of
states withirm angular momentum sbuspace

k) ~ 7—1r (R+6,(K))..

The R term is essentially the 2 d Weyl term (34.8), appropriate to-1d radial
quantization. For largR, the dominant behavior is given by the size of the circular
enclosure with a correction in terms of the derivative ofgbattering phase shift,
approximation accurate to ordefR. However, not all is well: the area under
consideration tends to infinity. We regularize this by satting from the result
from the free particle density of statdg(k), for the same size container, but this
time without any scatterer, figure 35.2. We also sum ovanafhlues so that

A0 - oK =3 Y 00K = 5 S10gSn

1 ds
- T2
= iTr(s dk). (35.7)

scattering - 29dec2004 ChaosBook.org version14, Dec 31 2012



CHAPTER 35. QUANTUM SCATTERING 676

Figure 35.2: The “difference” of two bounded refer-
ence systems, one with and one without the scattering
system. L@

The first line follows from the definition of the phase shif$§ (5) while the second
line follows from the unitarity ofS so thatS™* = ST. We can now take the limit
R — oo since theR dependence has been cancelled away.

This is essentially what we want to prove since for the lefichaide we al-
ready have the semiclassical theory for the trace of tfierénce of Green func-
tions,

d(K) — do(k) = —%(Im (tr (G(K) - Go(K)) . (35.8)

There are a number of generalizations. This can be done imamper of
dimensions. It is also more common to do this as a functionnefgy and not
wave numbek. However, as the asymptotic dynamics is free wave dynamics
labeled by the wavenumbég we have adaptell as the natural variable in the
above discussion.

Finally, we state without proof that the relation (35.7) iggeven when there
is no circular symmetry. The proof is morefttult since one cannot appeal to the
phase shift$y, but must work directly with a non-diagon&lmatrix.

35.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there @naection between the
scattering matrix and the trace of the quantum Green fum¢timre formally be-
tween the dference of the Green function with and without the scattecgmger.)
We now show how this connection can be derived in a more rigoneanner. We
will also work in terms of the energl¢ rather than the wavenumbky since this
is the more usual exposition. Suppose particles interactorces of sfficiently
short range, so that in the remote past they were in a fre&lpastate labeled
B, and in the distant future they will likewise be free, in astabeledy. In the
Heisenberg picture thB-matrix is defined a$ = Q,Sf+ in terms of the Magller
operators

Q. = lim gHt/hgiHot/h (35.9)

where H is the full Hamiltonian, whereasly is the free Hamiltonian. In the
interaction picture th&-matrix is given by

s = oo = t“m Mot/ g=2iHt/n giHot/h
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-7 exp(—i f :° dtH'(t)) , (35.10)

whereH” =V = H — Hg is the interaction Hamiltonian arilis the time-ordering
operator. In stationary scattering theory tenatrix has the following spectral
representation

S

fm dE S(E)6(Ho — E)
0

S(E) = Q. E)QYE), Qu(E)=1+(Ho-E=xie 'V, (35.11)
such that

1 B 1
—-E-ie H-E-ie

Tr [ST(E)d—c:ES(E)] = Tr[HO —(e & —€)| .(35.12)

The manipulations leading to (35.12) are justified if therapasQ..(E) can be appendix J

linked to trace-class operators.

We can now use this result to derive the Krein-Lloyd formulaichk is the
central result of this chapter. The Krein-Lloyd formula yides the connection
between the trace of the Green function and the poles of thitesing matrix,
implicit in all of the trace formulas for open quantum syssewhich will be pre-
sented in the subsequent chapters.

35.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics ftiesog problems is
provided by the semiclassical limit of the Krein-Frieddéyd sum for the spectral
density which we now derive. This derivation builds on theutts of the last
section and extends the discussion of the opening section.

In chapter 33 we linked the spectral density (see (31.16)bmfunded system

d(E) = Z §(En - E) (35.13)

n

via the identity

oEn-E) = ~lim > Imﬁ
- ‘l@o% Im(Enl=—r——IEn
B %L@O<En E—li—ie_E—iﬂs E"> (35.14)
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to the trace of the Green function (34.1.1). Furthermoreh&semiclassical
approximation, the trace of the Green function is given iy Gutzwiller trace
formula (34.11) in terms of a smooth Weyl term and an osailatontribution of
periodic orbits.

Therefore, the task of constructing the semiclassics oa#tesing system is
completed, if we can find a connection between the spectradityed(E) and the
scattering matrixS. We will see that (35.12) provides the clue. Note that thktrig
hand side of (35.12) has nearly the structure of (35.14) vthefatter is inserted
into (35.13). The principal dierence between these two types of equations is that
the S matrix refers tooutgoingscattering wave functions which are not normal-
izable and which have eontinuousspectrum, whereas the spectral dendity)
refers to a bound system with normalizable wave functiorth widiscrete spec-
trum. Furthermore, the bound system is characterized bgraitian operator,
the HamiltonianH, whereas the scattering system is characterized tyitary
operator, theS-matrix. How can we reconcile these completelffefient classes
of wave functions, operators and spectra? The trick is tmpuscattering system
into a finite box as in the opening section. We choose a spiamatiner with
radiusR and with its center at the center of our finite scatteringesystOur scat-
tering potentialV (F) will be unaltered within the box, whereas at the box walls we
will choose an infinitely high potential, with the Dirichlbbundary conditions at
the outside of the box:

#(Mlr=r=0. (35.15)

In this way, for any finite value of the radii®of the box, we have mapped our
scattering system into a bound system with a spectral ged@; R) over dis-
crete eigenenergieS,(R). It is therefore important that our scattering potential
was chosen to be short-ranged to start with. (Which exphaimg the Coulomb
potential requires special care.) The hope is that in th& IRn— oo we will
recover the scattering system. But some care is requireghpeimenting this.
The smooth Weyl terrd(E; R) belonging to our box with the enclosed potential
diverges for a spherical 2-dimensional box of radRiguadratically, agR?/(4r)

or asR® in the 3-dimensional case. This problem can easily be ctitibe ispec-
tral density of an empty reference box of tk@mesize (radiusR) is subtracted
(see figure 35.2). Then all the divergences linked to theeaming radiuR in
the limit R — oo drop out of the dierence. Furthermore, in the linlR — oo
the energy-eigenfunctions of the box are only normalizable delta distribution,
similarly to a plane wave. So we seem to recover a continoestapn. Still the
problem remains that the wave functions do not discrimiteisveen incoming
and outgoing waves, whereas this symmetry, namely the hieityiis broken in
the scattering problem. The last problem can be tackled ifepéace the spec-
tral density over discrete delta distributions by a smodthgectral density with a
small finite imaginary pari in the energyE:

| 1 1
d(E +in;R) = E;{E—En(R)—in - E_EH(R)H”} . (35.16)
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Note thatd(E + in; R) # d(E — in; R) = —d(E + in; R). By the introduction of the
positivefinite imaginary part; the time-dependent behavior of the wave function
has dfectively been altered from an oscillating one to a decaying and the
hermiticity of the Hamiltonian is removed. Finally the lingi — O can be carried
out, respecting the order of the limiting procedures. Fitg limit R — o has

to be performed for &inite value ofn, only then the limity — 0 is allowed. In
practice, one can try to work with a finite valueRfbut then it will turn out (see
below) that the scattering system is only recoverelyfi > 1.

Let us summarize the relation between the smoothed speetnaitiesd(E +
in; R) of the boxed potential and(¥(E + in; R) of the empty reference system and
the S matrix of the corresponding scattering system:

1 d

. . s _ (O) s il T el
nlLrQOFLmO(d(E+|q, R) - dO(E+in; R)) 2”iTr[s (E)dES(E)]
1_d 1 d
= ﬁTrﬁ In S(E) > dE IndetS(E). (35.17)

This is theKrein-Friedel-Lloyd formula It replaces the scattering problem by
the diference of two bounded reference billiards of the same reRliwkich fi-
nally will be taken to infinity. The first billiard contains ¢hscattering region or
potentials, whereas the other does not (see figure 35.2)e dfEr+ in; R) and
dO(E + in; R) are thesmoothedspectral densities in the presence or in the ab-
sence of the scatterers, respectively. In the semicldsgipgoximation, they are
replaced by a Weyl term (34.10) and an oscillating sum oveogie orbits. Asin
(34.2), the trace formula (35.17) can be integrated to gikelation between the
smoothed staircase functions and the determinant dbttmatrix:

1
i i in — (0) in = —_—
lim F|{|m (N(E+I77, R) — NY(E+in; R)) i IndetS(E). (35.18)

n—+0

Furthermore, in both versions of the Krein-Friedel-Lloydrfiulas the energy ar-
gumentE +in can be replaced by the wavenumber argunierity’. These expres-
sions only make sense for wavenumbers on or above th&-geas. In particular,

if k is chosen to be realy’ must be greater than zero. Otherwise, the exact left
hand sides (35.18) and (35.17) would give discontinuouiscatse or even delta
function sums, respectively, whereas the right hand sidesa@ntinuous to start
with, since they can be expressed by continuous phase. shlitss the order of
the two limits in (35.18) and (35.17) is essential.

The necessity of thein prescription can also be understood by purely phe-
nomenological considerations in the semiclassical appration: Without then
term there is no reason why one should be able to neglectospuperiodic or-
bits which are there solely because of the introduction efdbnfining boundary.
The subtraction of the second (empty) reference systemvesribose spurious
periodic orbits which never encounter the scattering regio addition to the re-
moval of the divergent Weyl term contributions in the lirRit-> . The periodic
orbits that encounter both the scattering region and thermeat wall would still
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survive the first limitR — oo, if they were not exponentially suppressed by the
+in term because of their

LR V2m(E+n) _ LRk LR

behavior. As the length(R) of a spurious periodic orbit grows linearly with the
radiusR. The boundRy’ >> 1 is an essential precondition on the suppression of
the unwanted spurious contributions of the container ifKnein-Friedel-Lloyd

formulas (35.17) and (35.18) are evaluated at a finite vaiie o exercise 35.1

Finally, the semiclassical approximation can also helpwubé interpretation
of the Weyl term contributions for scattering problems. datsering problems the
Weyl term appears with a negative sign. The reason is theztion of the empty
container from the container with the potential. If the ptig is a dispersing bil-
liard system (or a finite collection of dispersing billiayde&/e expect an excluded
volume (or the sum of excluded volumes) relative to the emptytainer. In other
words, the Weyl term contribution of the empty containeraigyér than of the
filled one and therefore a negative net contribution is le#ro Second, if the
scattering potential is a collection of a finite number of fo»erlapping scatter-
ing regions, the Krein-Friedel-Lloyd formulas show thag ttorresponding Weyl
contributions are completely independent of the positibthe single scatterers,
as long as these do not overlap.

354 Wigner timedelay

The term% IndetS in the density formula (35.17) is dimensionally time. This
suggests another, physically important interpretatiosugh formulas for scatter-
ing systems, the Wigner delay, defined as

d(k) d—dkArgdet S(K)

.d
= —|a(log det §(k)

= —itr (s*(k)‘;—i(k)) (35.19)

and can be shown to equal the total delay of a wave packet iattegng system.
We now review this fact.

A related quantity is the total scatteriphpase shif®(k) defined as
dets(k) = e 00

so thatd(k) = £O(K).
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The time delay may be both positive and negative, reflectit@aive re-
spectively repulsive features of the scattering systeneldcidate the connection
between the scattering determinant and the time delay wig stplane wave:

The phase of a wave packet will have the form:
¢ = K-X—wt + 0.

Here the term in the parenthesis refers to the phase shiftithaccur if scattering
is present. The center of the wave packet will be determiryetthdn principle of
stationary phase:

0=dp=dk- - dwt + dO.
Hence the packet is located at

ﬁwt_@

x=2¢
K oK

The first term is just the group velocity times the given tim&hus the packet is
retarded by a length given by the derivative of the phase wlitifi respect to the
wave vectork. The arrival of the wave packet at the positiBmvill therefore be

delayed. Thigime delay can similarly be found as

T(w) = %S))

To show this we introduce thelownesf the phases = K/w for which §- Vg = 1,
whereVj is the group velocity to get

dR-X= 8 Xdw = = do,
Vg

since we may assumg is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

X, 99

t=
Vg ow

If the scattering matrix is not diagonal, one interprets

X 7195” 00j;
At” =Re _ISij % =Re %

scattering - 29dec2004 ChaosBook.org version14, Dec 31 2012



CHAPTER 35. QUANTUM SCATTERING 682

as the delay in thgth scattering channel after an injection in itle The proba-
bility for appearing in channg goes asS;; |2 and therefore the average delay for
the incoming states in channeb

. . 0Sij .. 8S
Aty = > ISijPAtj =Re( ) Sj—=) =Re(iS"- =)
j i

J

I
L
—

@,
IS5
%)
=2

where we have used the derivatidw, of the unitarity relatiors- S' = 1 valid
for real frequencies. This discussion can in particular laelenfor wave packets
related to partial waves and superpositions of these like@ming plane wave
corresponding to free motion. The total Wigner delay treetorresponds to the
sum over all channel delays (35.19).

Commentary

Remark 35.1 Krein-Friedel-Lloyd formula. The third volume of Thirring [35.1],
sections 3.6.14 (Levison Theorem) and 3.6.15 (the prooflp, &cherer’s thesis [35.15]
(appendix) discusses the Levison Theorem.

It helps to start with a toy example or simplified exampleeast of the general the-
orem, namely for the radially symmetric potential in a synimoecavity. Have a look at
the book of K. Huang, chapter 10 (on the "second virialfoient”), or Beth and Uhlen-
beck [35.5], or Friedel [35.7]. These results for the caiecto the density of states are
particular cases of the Krein formula [35.3]. The Kreindéel-Lloyd formula (35.17)
was derived in refs. [35.3, 35.7, 35.8, 35.9], see also {811, 35.14, 35.15, 35.17,
35.18]. The original papers are by Krein and Birman [35.34Bbut beware, they are
mathematicans.

Also, have a look at pages 15-18 of Wirzba's talk on the Casiffect [35.16]. Page
16 discusses the Beth-Uhlenbeck formula [35.5], the prester of the more general
Krein formula for spherical cases.

Remark 35.2 Weyl term for empty container.  For a discussion of why the Weyl term
contribution of the empty container is larger than of theéllbne and therefore a negative
net contribution is left over, see ref. [35.15].

Remark 35.3 Wigner time delay. Wigner time delay and the Wigner-Smith time
delay matrix, are powerful concepts for a statistical desion of scattering. The diagonal
elementsQg, of the lifetime matrixQ = —iS9S/dw, whereSis the [2Nx2N] scattering
matrix, are interpreted in terms of the time spent in thetedag region by a wave packet
incident in one channel. As shown by Smith [35.26], they aeegum over all ouput
channels (both in reflection and transmission)af, = Re [(—1/Sab)(0San/dw)] weighted
by the probability of emerging from that channel. The sunhefQ., over all 2N channels
is the Wigner time delayw = Y, Qaa, Which is the trace of the lifetime matrix and is
proportional to the density of states.
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EXERCISES

Exercises

35.1.

35.2.

35.3.

Spurious orbits under the Krein-Friedel-Lloyd con-
truction. Draw examples for the three types of period
orbits under the Krein-Friedel-Lloyd construction: (a)
the genuine periodic orbits of the scattering region, (b)
spurious periodic orbits which can be removed by the
subtraction of the reference system, (c) spurious peri-
odic orbits which cannot be removed by this subtraction.
What is the role of the double limijt — O, container size

b — c?

The one-disk scattering wave function.  Derive the
one-disk scattering wave function.
(Andreas Wirzba)

Quantum two-disk scattering.  Compute the quasi-
classical spectral determinant

t j+1
Z(e) = l—[ [1_ AjiZI)

Pl p

35.4.

for the two disk problem. Use the geometry

References

683

R

The full quantum mechanical version of this prot
can be solved by finding the zeros knfor the dete
minant of the matrix

(=1)" Im(ka)

Mo = om0

(HRA(R + (=1)"

whereJ, is thenth Bessel function anHIf,l’ is the Har
kel function of the first kind. Find the zeros of the
terminant closest to the origin by solving dé¢k) = 0
(Hints: note the structur®! = | + A to approximate tt
determinant; or rea@haos2, 79 (1992))

Pinball topological index. Upgrade your pinball sir
ulator so that it computes the topological index for
orbit it finds.
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